A MECÂNICA DE SISTEMAS DE MASSA

 VARIÁVELMECÂNICA II PME 3200

18/ 06 / 2015
Horários:
07:30-09:10
09:20-11:10

Summary

The subject has not always been deeply discussed in Engineering Mechanics Education and, even worse, not always properly included in many modern Engineering Courses curricula, at both undergraduate and graduate levels.

The purpose of the present talk is to re-address such an important matter, aiming at contributing to Engineering Mechanics Education, by discussing under a historical perspective some theoretical aspects involved in variable mass systems dynamics which are usually hidden behind many derivations.

Motivation

Variable mass systems have been the focus of a large number of problems in classical mechanics. However, despite the classic nature and importance of variable mass systems dynamics, many misinterpretations were done on the correct application of Newton's second law, even in a not so distant past. Such misinterpretations sometimes give rise to apparent paradoxes in Classical Mechanics.

For instance, motivated by the rocket problem, a long debate on the correct application of Newton's law took place during the 1960's, among American scholars and educators.

Even subtler may be the proper application and interpretation of the Lagrangian formalism to systems presenting mass dependence on time, position (and velocity).

Facts on Newton's law application 1960's American scholars debate

"...this basic law of mechanics is currently
being seriously misinterpreted. This misinterpretation appears under conditions where the mass of a body is a function of time."

Meriam J.L. 1960 J. Eng. Ed. 51243

Facts on Newton's law application 1960's American scholars debate

"There exists considerable confusion and disagreement among professional physicists concerning the correct classical equations of motion for systems of changing mass..."

Tiersten M.S. 1969 Am. J. Phys. 40183

Facts on Newton's law application 1990's

Despite the fact that variable mass dynamies has been an active research field for many yearswe still find in the literature wrong applications of Newton's second law in this context. For example, Silrivastava and Ishwar(1903), Singh and Ishwar (1984), and Das et al. (1989), who analyzed the restricted three-body problem when the mass of the infinitesimal body varies, and Saslaw (1985), who discussed the virial theorem for a collection of bodies of variable mass, incorrectly applied Newton's second law (or the equivalent Lagrange's equations) to deal with the variable masses and obtained erroneous results.

ON THE USE AND ABUSE OF NEWTON'S SECOND LAW FOR VARIABLE MASS PROBLEMS

Plastino, A.R. \& Muzzio, J.C. 1992

Celestial Mechanics and Dynamical Astronomy 53: 227-232, 1992.
(c) 1992 Kluwer Academic Publishers. Printed in the Netherlands.

Brief history

PHILOSOPHIÆ
NATURALIS
PRINCIPIA
MATHEMATICA.

Autoce 7 S. NEWTON, Tria, Cdl. Contab. Sx, Mutbericos Profeifore Lacsfuens, \& Societatis Regals Sodali,
(1687)

IMPRIMATUR.
S. PEFYS, Rrg. Sov. PR \AA SES. Jowio 5. 1686.
LONDINI,

Juffu Soriestir Regic ae Typí Tofaphi Sirence. Profut apod plares Billiopolas duw MDCLXXXV'IL.

$\underset{\text { (1689, by Godirey Kneller) }}{\text { Sir Isaac Newton }}$

* January $4^{\text {th }} 1643$, in Woolsthorpe; \dagger March $31^{\text {st }} 1727$ in London

Newton's Laws

Lex I: Corpus omne perseverare in statu suo quiescendi vel movendi uniformiter in directum, nisi quatenus a viribus impressis cogitur statum illum mutare.

Lex II: Mutationem motis proportionalem esse vi motrici impressae, etfieri secundum lineam rectam qua vis illa imprimitur.

Lex III: Actioni contrariam semper et aequalem esse reactionem: sine corporum duorum actiones in se mutuo semper esse aequales et in partes contrarias dirigi.

Newton's Laws

"Law I - Every body perseveres in its state of rest or of uniform motion in a right line, unless it is compelled to change that state by forces impressed thereon";
"Law II - The alteration of [the quantity] of motion is ever proportional to the motive force impressed; and is made in the direction of the right line in which that force is impressed";

"Law III - To every action there is always opposed an equal reaction or the mutual actions of the two bodies upon each other are always equal, and directed to contrary parts";

Dugas, page 206.

Dugas, R., 1955, A History of Mechanics, Dover ed., 1988, 662 pp.

Newton's Definition of mass

The term 'law of motion' was introduced in the 17th century by Descartes. After stating the law of inertia in an essentially modern form, Descartes stated a law of conservation of momentum with respect to its magnitude only, and not to direction, and continued with a list of 'laws of impact' which involved the impact between solid bodies.

At the beginning of his famous Philosophiae Naturalis Principia Mathematica, Newton asserted the so-called 'laws of motion', which is more than a result of an appreciation of previous works.
"Rather than dealing with relations between initial and final conditions in an interacting system, as done by Descartes, Newton dealt directly with the effect of the forces acting on individual bodies..."

Arons and Bork (1964)

Newton's Definition of mass

When Newton discussed the motion of bodies, the trajectories were conic sections and not straight lines or other paths, and the forces considered by him were central forces.

Apparently, he showed no interest in the mechanical problems usually found in today textbooks, particularly the variable mass ones.

Paradoxically, according to Dugas (1951), "Newton introduced the notion of mass into Mechanics(*)", even though "this notion had appeared in Huyghen's work, but only in an impermanent form".
(*) "Definition I - The Quantity of Matter is the measure of the same, arising from its density and bulk conjunctly"; Dugas (1951), page 201.

Variable mass problems

Early 19th Century

According to Šíma and Podolský (2005), the Czech scientist and inventor von Buquoy "was the first to investigate systems with a varying mass".
Georg Franz August de Longueval, Baron von Vaux, Graf von Buquoy (* Brussel, September $7^{\text {th }} 1781$; \dagger Prag, April 19th 1851)
"In 1812 von Buquoy explicitly formulated the correct dynamical equation of motion for the case when the mass of a moving object is changing".
von Buquoy, G., 1812, "Analytische Bestimmung des Gesetzes der Virtuellen Geschwindigkeiten in Mechanischer und Statischer Hinsicht", Leipzig: Breitkopf und Hartel.

Variable mass problems

Early 19th Century

von Buquoy's work was presented in 1815, at the Paris Academy of Sciences.
"Apart from a single short article by Poisson (1819), his ideas did not attract attention, and they gradually become forgotten."

Šíma and Podolský (2005).

Poisson, S.D., 1819, "Sur le Mouvement d'un Système de Corps, en supposant le Masses Variables", Bull. Sci. Soc. Philomat. Paris, avril, pp. 60-62

Siméon Denis Poisson

* Pithviers, June $21^{\text {st }} 1781 ; ~ \dagger$ Paris, April $25^{\text {th }} 1840$

Variable mass problems

19th Century

"Buquoys's general equation of motion and other explicit examples were later formulated independently by various authors;
to be mentioned, Tait and Steele (1856) and Meshchersky (1897),"

Šíma and Podolský (2005).

Peter Guthrie Tait, 1831-1901;
Scottish, topology and mathematical physics

Variable mass problems

Mid 19th Century

1857, Cayley: suspending chain coiled up at a table

- Cayley, A., 1857, "On a Class of Dynamical Problems". Proceedings of Royal Society of London, Vol VIII, pp 506-511.

Falling chain: still a very intriguing problem...

- Davis, Am. J. Phys., 1952
- Prato \& Gleiser, Am. J. Phys, 1982
- Calkin \& March, Am. J. Phys., 1989
- Vrbik, Am. J. Phys., 1993
- Keiffer, Am. J. Phys., 2001
- Tomaszewski \& Pieranski, Am. J. Phys., 2006
- Wong \& Yasui, Am. J. Phys., 2006
- Wong, Youn \& Yasui, Eur. J Phys, 2007
- Casetta, Doctoral Thesis, EPUSP, 2008
- Grewal, Johnson \& Ruina, Am. J. Phys., 2011
- Irschik, J Theo \& Appl Mech, 2012

Arthur Cayley, 1821-1895
 British mathematician

Variable mass problems

Late 19th Century

Ivan Vsevolodovich Meshchersky, 1859-1935
Meshchersky (1897) Master Thesis, and his subsequent work written in 1904, have been ever since recognized - in the Russian technical literature - as the limestone in the study of variable mass systems in the context of Classical Mechanics; see, e.g., Targ (1976), page 394 or Starjinski (1980), page 498.

Meshchersky, I. V., 1897, Dinamika tochki Peremnoj Massy (*), St Petesburg, Akademia Nauk, Peterburskij Universitet.
(*) Динамика точки переменной массы
Meshchersky, I.V, 1904, "Equations of Motion of a Variable Mass Point in the General Case" (in Russian), St. Petersburg Polytechnic University News, Vol.1, pp. 77-118.

Ivan Vsevolodovich Meshchersky 1859-1935
 (http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

Meshchersky taught in St
Petersburg for 58 years. Obtained a Master's Degree in applied mathematics in 1889 and was appointed as a dozent at the university in 1890.

Meshchersky is best known for his work on the motion of bodies of variable mass which he described in January 1893 at a meeting of the St Petersburg Mathematical Society.

He continued to develop his work on this topic for his dissertation entitled The dynamics of a point of variable mass, submitted in 1897.

Meshcheysky's examples:
the increase of the mass of the earth caused by falling meteorites;
the increase of the mass of a freezing iceberg and the decrease of a thawing one;
the increase of the mass of the sun gathering of cosmic dust and its decrease with radiation;
the decrease of the mass of a rocket as its fuel is consumed.

Ivan Vsevolodovich Meshchersky

18.5.9-19.3.5

(http://www-gap.
He applied his theory being the first to stud problem of determini mass from a knowled and the acting forces

His work on the moti
Even before that, in 1903, the Russian scientist Tsiolkovski - who had invented a kind of rocketaircraft around 1883 - applied Meshchersky's
Equation to solve the rocket problem in two versions: (i) gravity-free and (ii) non-gravity-free. Those two problems are sometimes referred to as the first and the second problems of Tsiolkovski.
aising

tute was
r role in
le was
of variable mass formed for rocket techy developed after 1945.

Even before his dissertation Meshchersky had shown anothe major interest in his life: teaching.

He published The teaching of mechanics in certain institutions of higher education in Italy, France,
Switzerland and Germany in 1895.

Curiously, at the time of the American Scholars Debate OTIT This far 26th Rus. an edition by 1960, translated Nnto English by Pergamon Press in 1965.

Other worth mentioning studies

American Scholars debate

The 1960's

1960, Meriam:

Engineering Education

"Variable-Mass Dynamics", Journal of Engineering Education, Vol.51, No. 3, pp. 240-243.

1962, Thorpe: Engineering Education
"On the Momentum Theorem for a Continuous System of Variable Mass", American Journal of Physics, Vol.30, No. 9, pp. 637-640.

1969, Tiersten:

Engineering Education

"Force, Momentum Change and Motion", American Journal of Physics, Vol.37, No. 1, pp. 82-87.

Recent studies on variable mass systems

Late 60's to 80's
1968, Weber, H.I.
"Vibração de Vigas com Massa Variavelno

"Hamilton's Principle for Systems of Changing Mass", Journal of Engineering Mathematics, Vol.7, No. 3, pp. 249-261.

1975, Mikhailov:
history of mechanics.
"On the history of variable-mass system dynamics". Mechanics of Solids, 10(5), 32-40

1982 Copeland work-energy theorem
"Work-energy theorem for variable mass systems", A. J. Phys., 50(7), 599-601.

Recent studies on variable mass systems

Early 80's to 90's

1982, 84, Ge:

1984, 89, 92, 93, 94, 2001: (Cveticanin)
non-holonomic variable mass systems
industrial systems (textile, lifting-crane) vibration problems due to variable mass;
tethered satellites;
general open systems

Nowadays studies: 2000-2004

2000, Mušicki:

general open systems

"Generalization of a New Parametric Formulation of Mechanics for Systems with Variable Mass", Eur Journal of Mechanics A/Solids, Vol.19, pp. 1059-1076.
2002, Eke \& Mao:
Engineering Education
"On the Dynamics of Variable Mass Systems", International Journal of Mechanical Engineering Education, Vol.30, No. 2, pp. 123-137.
2003, Pesce: Lagrange Equation and variable mass systems
"The Application of Lagrange Equations to Mechanical Systems with Mass
Explicitly Dependent on Position", Journal of Applied Mechanics, Vol. 70, pp. 751-756.
2004, Irschik \& Holl: general open systems
"The Equations of Lagrange Written for a Non-Material Volume", Acta Mechanica, Vol.153, pp. 231-248.
2004, Irschik \& Holl:
general open systems
"Mechanics of Variable-Mass Systems - Part 1: Balance of Mass and Linear Momentum", Applied Mechanics Review, Vol.57, No. 2, pp. 145-160.

2005-2007

2005, Mušicki:
general open systems
"Extended Lagrangian Formalism and Main General Principles of Mechanics",
European Journal of Mechanics A/Solids, Vol.24, pp. 227-242
2006, Wong \& Yasui:
Engineering Education
"Falling chains". American Journal of Physics, v. 6, 490-496.
2006, Pesce, Casetta, Tannuri: ocean engineering applications
"The Lagrange Equations for Systems with Mass Varying explictly with Position: Some Applications to Offshore Engineering", JBSMSE, vol. 28, 496-504.
2007, Wong, Youn \& Yasui: Engineering Education
"The falling chain of Hopkins, Tait, Steele and Cayley". European Journal of Physics, v. 28, 385-400.
2007, Bazant \& Verdure: mechanics of progressive collapse
"Mechanics of progressive collapse: learning from World Trade center and Building Demolitions", Journal of Engineering Mechanics, ASCE Vol. 133 (3), pp. 308-319
2007, Casetta \& Pesce:
hydrodynamic impact
"Hamilton's Principle for Dissipative Systems and Wagner's Problem", 2nd International Workshop on Water Waves and Floating Bodies 15th-18th April 2007, Plitvice, Croatia.

2008-2010

2008, Seffen: mechanics of progressive collapse
"Progressive Collapse of the World Trace Center: simple analysis", Journal of Engineering Mechanics, ASCE Vol. 134 (2), pp. 125-132
2008, Casetta: mechanics of variable mass systems
"Contribuições à Mecânica dos Sistemas de Massa Variável", EPUSP, Tese de Doutorado, 185 pp
htto://www.teses.usp.br/teses/disponiveis/3/3152/tde-05082009-100852/
2009, Cveticanin: multi body dynamics
"Dynamics of Body Separation - analytical procedure", Nonlinear Dynamics, Vol. 55, pp. 269-278
2009, Schwarzbart et al:
tethered satellites
"Tethered satellite systems: a challenge for mechanics and applied mathematics. GAMM-Mitteilungen, v. 32, n. 1, p. 105-20.
2010, Bažant, Le, Greening, \& Benson: mechanics of progressive collapse "What did and did not cause collapse of World Trade Center twin towers in New York?", Journal of Engineering Mechanics, ASCE vol. 134 (10). 892-906

2011

2011, Casetta \& Pesce: variational principles in hydrodynamics
"On Seliger and Whitham's variational principle for hydrodynamic systems from the point of view of fictitious particles", Acta Mechanica, vol. 219, 181-184.
2011, Le \& Bažant:
mechanics of progressive collapse
"Why the observed motion history of World Trade Center towers is smooth". Journal of Engineering Mechanics, ASCE, 137 (1), 82-84.
2011, Casetta, Pesce, Santos :
hydrodynamic impact
"On the Hydrodynamic Vertical Impact Problem: an Analytical Mechanics Approach", Marine Systems and Ocean Technology, 6(1), 47-57.
2011, Grewal, Johnson and Ruina: falling chains
"A Chain that speeds up, rather tan slows, due to collisions: how compression can cause tension", Am. J.Phys., 79(7), 723-729.
2011, Jeltsema \& Dòria-Cerezo: systems modeling
"Modeling of systems with position-dependent mass revisited: a Port-Hamiltonian approach", Journal of Applied Mechanics, Vol. 78 / 061009-1.

2011-2012

2011, Bedoustani et al:
robotics, cable-driven manipulators
"Lagrangian dynamics of cable-driven parallel manipulators: a variable mass formulation". Transactions Canadian Soc. Mech. Engineers, 35(4), 529-542.
2011, Holl \& Hammelmuller:
coiling processes
"Analysis of the vibrations due to thermal deflection of the drum in the coiling process.
Proc. Appl. Math. Mech. 11, 317-318
2012, Cveticanin: nonlinear oscillators
"Oscillator with non-integer order nonlinearity and time variable parameters". Acta Mechanica, 223 (7):1417-1429.
2012, Cveticanin \& Pogany: nonlinear oscillators "Oscillator with a sum of non-integer order non-linearities". Journal of Applied Mathematics, vol. 2012, art. no. 649050.
2012, Casetta \& Pesce:
general open systems
"On the generalized canonical equations of Hamilton for a time-dependent mass particle", Acta Mechanica, vol. 223, 2723-2726.
2012, Irschik:
continuous impact and open systems
"The Cayley variational principle for continuous-impact problems: a continuum mechanics based version in the presence of a singular surface", J of Theoretical and Appl Mech, 50 (3), 717-727.

2013

2013, Cruz y Cruz \& Rosa-Ortiz: position dependent mass \& Poisson algebra
"Generating Algebras of Mechanical Systems with Position-Dependent Mass". Symmetry, Integrability and Geometry: Methods and Applications, Special issue.

2013, Cveticanin:
nonlinear oscillators
"Van der Pol oscillator with time variable parameters", Acta Mechanica, Vol. 224(5), 945955.

2013, Casetta \& Pesce:
"The generalized Hamilton's principle for a non-mate 224, 919-924.

2013, Casetta \& Pesce:
discrete systems and inverse problems
"The inverse problem of Lagrangian mechanics for Meshchersky's equation", Acta Mechanica, vol. 225, 1607-1623.

Leading to the Advanced International Course
 Dynamics of Mechanical Systems with Variable Mass

CISM
 International Centre for Mechanical Sciences

Udine, Italia

$$
\text { 24-28 Sep } 2012
$$

TIME TABLE

ADMISSION AND ACCOMMODATION

Applicants must contact CISM Secretariat at least one month before the beginning of the cxurse. Application forms should be sent on-line through our web site: http-//www.cism.it or by post.
A message of confirmation will be sent to accepted participants. If you need assistance for registration please contact our secretariat.

The 700,00 Euro registration fee includes a complimentary bag, four fixed menu buffet lunches (Friday not included), hot beverages, on-line/downloadable lecture notes and wi-fi internet access.
A limited number of participants from universities and research centres who are not supported by their own institutions can be offered board and/or lodging in a reasonably priced hotel. Requests should be sent to CISM Secretariat by July 24, 2012 along with the applicant's curriculum and a letter of recommendation by the head of the department or a supervisor confirming that the institute cannot provide funding. Preference will be given to applicants from countries that sponsor CISM.
Information about travel and accommodation is available on our web site, or can be mailed upon request.
Please note that the centre will be closed for summer vacation the first three weeks in August.

For further information please contact:

CISM

Palazzo del Torso
Piazra Garibaldi 18
33100 Udine (Italy)
tal. +390432248511 (6 lines)
fax +390432248550
e-mail cism@cismit

Udine, September 24-28, 2012

The fundamental equations of classical mechanics were originally formulated for situations where mass is conserved in the mechanical system under consideration. Nass is generally not conserved when a supply of mass is present, or when open systems with a flow of mass through their surface are to be considered. Mass of the mechanical system then is said to be variable. In such a situation, the general methodological approaches of mechanics have to be properly modified. In fluid mechanics, open systems are encountered when studying a non-material control volume. In solid mechanics, systems with a variable mass appear
as the result of a problemoriented model ing, e.g. when mass is expelled or captured by a structure or machine. This again leads to the traatment as an open system, or to the assumption that that mass is explicity dependent on the position. In solid mechanics, as well as in fluid mechanics, it is often appropriate to model the exchange of mass between the system under consideration and the environmental world by means of a supply of mass in the interioc. This is of particular interest in the continuum theory of maxtures, for which mass and other entities are exchanged between the various components. It is the goal of the proposed course to present up-to-date and
unifying formulations for traating the dynamies of different types of mechanical systems with variable mass. We start with an overview of the continuum mechanics relations of balance and jump for open systems, from which axtended Lagrange and Hamiltonian formulations will be derived, as a basis of current numerical procedures. Corresponding approaches will be stated at the level of the analytical mechanics, with emphasis on systems with a position-dependent mass, and applications to offshore engineering, as well as at the level of structural mechanics. Special emphasis will be laid upon axially moving structures, like belts and chains, and on pipes with an axial flow of fluid.

PRELIMIMARY SUGGESTED READINGS

Irschilk H, Holl, HJ., Mechanics of variable-mass systems - part 1: balance of mass and linear momentum". Applied Mechanics Review, 57, 145-160, 2004.
Irschis, H., Holl, H., The equations of Laprange witten for a non-material volume. Acta Mechanica, 153, 231 -
248, 2002 .
Cveticanin, L, Dynamics of Machines with Variable Mass, Gordon and Breach Sc. Publishers, Lendon, 1998
Oveticanin, L, Dnnamics of body separation - Analytical procedure, Nonlinear Dynamics, 55, 269-278, 2009.

Cveticanin, L., Duukic, Dj., Dynamic properties of a body with disconinual mass variation, Nenlinear Dynamics, 52, 249-261, 2008.
Cueticanin, L., Kovacic, I., On the dynamics of bodies with continual mass variation, Trans ASME, Journal of Applied Mechanics, 74, 810-815, 2007.

Indeitsev, DA, Semenov, B. N. About one model of structural-phase Aboutsiormations under hydragen influerce. Acta Mechanica, 195, 295304,2008 .

Indetsev, DA, Naumoc, VN, Semenov, B.N, Beyzey, AK., Thermpelastic waves in a cortinuum with complex structure. ZAMM, 89, 279-287, 2009.
Pesce, CP, The application of Lagrange equations to mechanical systems with mass explicity dependent on position. Journal of Applied Mecharics, 70, 751-6, 2003.
Mclver, D.B., Hamiltor's principle for systems of changing mass. Joumal of Engineering Mathematics, 7, 249261, 1973.

Constitutive relations appearing in the dynamics of mechanical systems with variable mass will be studied with particular reference to the modeling of multi-component mixtures. Damage of steel structures in the form of hydrogen embrittlement will be addressed in this context. The dynamics of machines with a variable mass will be trated in detail and, in this context, conservation laws and the stability of motion will be analyzed. Novel finite element formulations for open systems in coupled fluid and structural dynamics will be presented. Moreover, the course will provide mathematical models directly related to methods of automatic control, and therefore should be of interest in the fields of Civil and Mechanical Engineering, as and Mechanical Engineer
well as in Mechatronics.

Musicki, D., General energy change law for systems with variable mass. European Journal of Mechanics A/ Solits, 18, 719-730, 1999.
Barant, Z.P., Verdure, M. Mechanics of progressive collapse: learning from world trade center and building demolitions. Journal of Engineering Mechanics, ASCE, 133, 308-19, 2007.
E. Naudascher, E., Rockwell, D., Flow-induced vibrations: an engineering quide. A.A. Balkema, Ratneering guide.
terdam, 1994.

Alerander K. Belyaer - Russian Acad. of Sciences, St. Petersburg, Russia 6 lectures on: General fomulations: Structural mechanics of systems with variable mass; the Rayleigh-Ritz method for vibrating structures with variable mass; dynamics and stability of axially moving structures; Lagrange and Hamiltonian formulations for axially moving strings and beams. Engineering applications: Transmission processes, such as those by belts and chains- nines with an axial flow of fluid.

Livija Cveticanin - University of Novi Sad, Serbia
6 lectures an: General formulations: General principles and dynamics of machines with continual and discontinual mass variation; chaos in systems with variable mass, conservation laws and stability of motion for machines with variable mass. Engineering applications: Dynamics and stability of machines with motating elements and variable sess.

Dmitry Indeitsev - State University of St. Petersburg, Russia 5 lectures on: General formulations: Mechanics of multi-component media with an exchange of mass and mon-classical supplies, inelastic constitutive relations modeled in the framework of multi-component media. Engineering applications: Analttical and numerical formulations for damage in steel; hydrogen embrittlement of alloys.

Hans Irschik - University of Linv, Austria
6 lectures on: General formulations: Continuum mechanics based relations of balance and jump for systems with variable mass and non-classical supplies; derivation of Lagrange and Hamiltonian formulations; equations of Lagrange for systems with variable mass written in the Euler and Lagrange description of continuum mechanics. Engineering applications-Inductrial coiling processes.

Celso P. Pesce - University of Sao Paulo, Brasil 6 lectures on: General formulations: Analytic mechanics of systems with mass explicitly dependent on position; corresponding Lagrange and Hamiltonian formulations. Engineering applications: Offfshore engineering problems; problems of the falling and unfolding chain ty collapsing dynamics of buildings.
Andreas Zilian - Technical University of Braunschweig, Gemmany 6 lectures an: General formulations: Mechanics of coupled systems with mass dependent on structural motion and/or deformation; effects of added mass/damping/stiffness; models to fluid-structure interaction of discrete and distributed mass systems. Numerical schemes for complex fluid-structure interaction and associated reduced-order models. Engineering applications: Aeroelasticity and lydreelasticity.

All lectures will be given in english. lecture notes can be downloaded from cism web site, instructions will be sent to accepted participants.

Springer book (2014):

Dynamics of Mechanical Systems with Variable Mass

http://www.springer.com/br/book/9783709118085

Springer book (2014):

 Dynamics of Mechanical Systems with Variable Mass

 Dynamics of Mechanical Systems with Variable Mass}
http://www.springer.com/br/book/9783709118085

Chapter 1-H. Irschik and A. Humer
A rational treatment of the relations of balance for mechanical systems with a time-variable mass and other nonclassical supplies

Chapter 2 - C.P. Pesce and L. Casetta
Systems with mass explicitly dependent on position
Chapter 3 - L. Cveticanin
Dynamics of the Mass Variable Body
Chapter 4 - D. Indeitsev and Yu. Mochalova
Mechanics of multi-component media with exchange of mass and non-classical supplies;
Chapter 5-A. Zilian
Modelling of Fluid-Structure Interaction - Effects of Added Mass, Damping and Stiffness;
Chapter 6 - A.K. Belyaev
Dynamics and Stability of Engineering Systems with Moving Continua;

2014-2015

2014, Casetta:
"The inverse problem of Lagrangian mecp-
Mechanica, VI. 225 (6)

2014, Cveticanin:
multi body dynamics
"Principle of generalized velocities in dynamics of planar separation of a rigid body".
Acta Mechanica, 226 2511-2525

2015, Irschik \& Holl:

general open systems

"Lagrange's equations for open systems, derived via the method of fictitious particles, and written in the Lagrange description of continuum mechanics", Acta Mechanica, Vol. 226 (1), 63-79, 2015

2015, Casetta \& Pesce:

 discrete systo Solves special cases of"A brief note on the analytical solution of Meshe analytically, including problem of Lagrangian mechanics", Acta MechantuaCayley's problem

2015

2015, Cveticanin: multi body dynamics
"Principle of generalized velocities in dynamics of planar separation of a rigid body". Acta Mechanica, Vol. 226, 2511-2525

2015, Garcia-Ferieta \& Casas:
celestial mechanics
"Simulación interactiva del problema de dos cuerpos perturbados por un objeto de masa variable dependiente de la posición: un ilustrativo ejemplo para el estudio de la cinemática de cometas", Revista de Ciencias, Vol. 6, No. 3 de 2015.

2015, Bartkowiak, Grabski \& Kołodziej:
discrete systems
"Numerical and experimental investigations of the dynamics of a variable mass pendulum", J of Mechanical Engineering Science, DOI: 10.1177/0954406215590454

2015, Casetta, Irschik \& Pesce: open systems and conservation laws
"A generalization of Noether's theorem for a non-material volume", ZAMM - Zeitschrift fur Angewandte Mathematik und Mechanik, approved, to appear.

Meshchersky's equation

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{F}+\mathbf{\Phi}=\mathbf{F}+\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{v}_{r e l}
$$

\mathbf{w} is the velocity of the accreted or lost mass with respect to the same inertial frame of reference

Particular case

$$
\mathbf{F}=\frac{\mathrm{d}}{\mathrm{~d} t}(m \mathbf{v})
$$

It is not generally valid, for a single partif
It is only valid if mass is gained or lost at null velocity!

More over, it is not invariant with respect to the choice of inertial frames of reference, except when mass is constant.

Therefore, it does not satisfy the Galilean relativity principle.

On the other hand, Meshchersky's Equation

$$
m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}=\mathbf{F}+\boldsymbol{\Phi}=\mathbf{F}+\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{v}_{r e l}
$$

Is generally valid!

It is invariant with respect to the choice of inertial frames of reference.

It does satisfy the Galilean relativity principle.

Galilean Invariance

Consider two inertial frames of reference. One of them, for simplicity and no loss of generality, is supposed fixed and the other one moves with a constant velocity $\mathbf{v}_{\text {ref }}$ Let \mathbf{v} and \mathbf{v}^{\prime} be the velocity of a point with respect to those frames of reference. So,

$$
\begin{gathered}
\mathbf{v}=\mathbf{v}^{\prime}+\mathbf{v}_{r e f} \\
\mathbf{F}=\frac{\dot{\mathbf{d}}}{\mathrm{d} t}(m \mathbf{v})-\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{w}=\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{v}+m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}-\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{w} \\
\mathbf{F}=\frac{\mathrm{d} m}{\mathrm{~d} t}\left(\mathbf{v}^{\prime}+\mathbf{v}_{r e f}\right)+m \frac{\mathrm{~d} \mathbf{v}^{\prime}}{\mathrm{d} t}-\frac{\mathrm{d} m}{\mathrm{~d} t}\left(\mathbf{w}^{\prime}+\mathbf{v}_{r e f}\right) \\
\left.\mathbf{F}=\frac{\mathrm{d}}{\mathrm{~d} t}\left(m \mathbf{v}^{\prime}\right)-\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{w}^{\prime}\right)
\end{gathered}
$$

On the other hand...

the, particular form

Depends on the choice of the inertial frame:
$\mathbf{F}=\frac{\mathrm{d}}{\mathrm{d} t}(m \mathbf{v})=m \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} t}+\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{v}=m \frac{\mathrm{~d} \mathbf{v}^{\prime}}{\mathrm{d} t}+\frac{\mathrm{d} m}{\mathrm{~d} t}\left(\mathbf{v}^{\prime}+\mathbf{v}_{r e f}\right)=\frac{\mathrm{d}}{\mathrm{d} t}\left(m \mathbf{v}^{\prime}\right)+\frac{\mathrm{d} m}{\mathrm{~d} t} \mathbf{v}_{r e f}$

Except when

$$
\frac{\mathrm{d} m}{\mathrm{~d} t} \equiv 0
$$

Despite all these

- Even though most text books, either at undergraduate or graduate level, mention variable mass systems, there are not so many of them presenting comprehensive and properly didactic treatments of Newton's second law.
- Examples which do give proper treatments are: Inglis (1951), Targ (1976), Starjinski (1986), José and Saletan (1998).
- In many other good undergraduate and graduate texts, either the problem is simply not addressed (some times just mentioned) or is treated only when dealing with the 'rocket problem'. Meriam and Kraige (1987) or Boresi and Schmidt (1954) are examples of this last approach.
- Worse, there are even some classics that give wrong treatments to the problem, stating Eq. (1) as generally valid for a single varying mass particle, with no further consideration; see, e.g., Goldstein (1950, 1981), chapter 1, Singe and Griffith (1959), chapter 12.
- The reasons for this are not clear, but certainly influenced the surprising debate occurred among American educators in the 1950's and 60's.

Example of course in Brazil

Login
Usuário
Senha

Apresentaçāo

- Apresentação

Acesso

- Esqueci a senha
- Primeiro acesso

Acesso público

- Período de matrícula

Disciplinas oferecidas

- Catálogo de disciplinas
- Orientadores
- Egressos USP

Disciplina PME5010-5 Mecânica Analítica

Criaçāo: 08/12/2008
Ativação: 08/12/2008

Ir. de Créditos: 8

Carga Horária:

Teórica	Prática	Estudos	Duraçāo	Total
(por semana)	(por semana)	(por semana)		
3	0	7	12 semanas	120 horas

Docentes Responsáveis:

Celso Pupo Pesce
Clovis de Arruda Martins

abjetivos:

Aprofundar conceitos da Mecânica Clássica, sob a ótica da Mecânica Analítica, formando uma base teórica sólida; apresentar e discutir métodos de solução preparando o aluno para resolver problemas avançados da dinâmica.

Justificativa:

Uma formação conceitual sólida em Mecânica Analítica é desejável para todos aqueles que desenvolvem pesquisas em temas relacionados com a Dinâmica. Essa formação teóric̣a não é por si só suficiente, mas deve ser aliada ao desenvolvimento da habilidade de aplicar os conhecimentos adquiridos na solução de problemas da engenharia

Conteúdo:

Introduçã̃o. Graus de Liberdade. Coordenadas Generalizadas. Vínculos. Sistemas Holônomos. Prinápio dos Trabalhos Virtuais. Princípio de d'Alembert. Princípio de Hamilton Equa̧ues de Lagrange. sistemas MãoHolônomos. Multiplicadores de Lagrange. Sistemas Dissipativose Sistemas com Variação de Massa. Felnção de Dissipação de Rayleigh. Leis de Conservação. Método de Routh. Equa̧̧ق̃es de Hamilten. Formulação Lagrangeana da Dinâmica do Contínuo.

Forma de Avaliação:

Exercícios, Provas e Trabalho Final.

observação:

Bibliografia:
Lanczos, C., The Variational Principles of Mechanics, Dover, 1986
Goldstein, H., Poole, C.P. Safko, 1 Classical Mechanics, Addiso
Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, 1988.
Dugas, R., A. History of Mechanics, Dover, 1988.
José, J.V., Saletan, E.J., Classical Dynamics: a Contemporary Approach, Cambridge University Press, 1998 reprinted 2002.
Arnold, V.I., Weistein, A. Vogtmann, Mathematical Methods of Classical Mechanics, Springer, 1989.

Example of course in Brazil

```
ANO BASE: 2006
PROGRAMA: 31005012012P-1 Engenharia Mecânica - PUC-RIO
```

DISCIPLINA	Sigla-Número	Nivel		Carga Horária			Créditos	
				M	D	F		
Mecânica Clássica	MEC-2101		Mestrado/Doutorado	45	45		3	

Obrigatória nas Áreas de Concentração
Mecânica Aplicada

Período: 1° Semestre
Carga-Horária: 45
Créditos: 3
Sub-Título:

Docentes	Categoria	Carga Horária $\%$	
Rubens Sampaio Filho	Docente	Permanente	45
\mathbf{N}° de Docentes: 1		100,00	

Ementa:
Mecânica newtoniana aplicada a partículas, sistemas de particulas sistemas de massa variável dom ênfase em referências móveis. Formulação de Lagrange e aplicações. Aplicações do cálculo das variaçêeres. Principios de Hamilton e equações de Hamilton. Cinemática e dinâmica dos corpos rígidos e aplicações. Introdução à teoria geométrica e estabilidade de sistemas autônomos.

Bibliografia:
Principles of Dynamics, Greenwood, D.T., Prentice-Hall, 1965; Methods of Analytical Dynamics, Meirovitch, L., McGraw-Hill, 1970

Specific text book

Cveticanin, Livija

Dynamics of Machines with Variable Mass

Gordon and Breach Science Publishers. Series of Books and Monographs in Stability and Control Theory, Methods and Applications, 1998, 236 p.

Much subtler: Lagrange Equation

Recall the usual invariant mass form

Kinetic Energy

or

$$
\frac{d}{d t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}=Q_{j}
$$

$$
\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}_{j}}\right)-\frac{\partial L}{\partial q_{j}}=Q_{j}^{n c} \text { Lagrangean }
$$

Lagrange Equations for Variable Mass Systems

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t}\left(\frac{\partial T}{\partial \dot{q}_{j}}\right)-\frac{\partial T}{\partial q_{j}}=\hat{Q}_{j} \\
& m_{i}=m_{i}(t) \\
& m_{i}=m_{i}\left(q_{j} ; t\right) \\
& \left.\hat{Q}_{j}=\sum_{i}\left(\mathbf{F}_{i}+\dot{m}_{i} \mathbf{u}_{i}\right) \cdot \frac{\partial P_{i}}{\partial q_{j}}-\sum \frac{1}{2} \frac{\partial m_{i}}{\partial q_{j}} \mathbf{v}_{i}\right)^{2} \\
& m_{i}=m_{i}\left(q_{j}, \dot{q}_{j} ; t\right) \quad \hat{Q}_{j}=\sum_{i}\left(\mathbf{F}_{i}+\dot{m}_{i} \mathbf{u}_{i}\right) \cdot \frac{\partial P_{i}}{\partial q_{j}} \underbrace{\sum_{i}\left[\frac{1}{2} \frac{d}{d t}\left(\frac{\partial m_{i}}{\partial \dot{q}_{j}}\left(\mathbf{v}_{i}\right)^{2}\right)-\frac{1}{2} \frac{\partial m_{i}}{\partial q_{j}}\left(\mathbf{v}_{i}\right)^{2}\right\}}_{\left[\begin{array}{l}
\text { Mass with } \\
\text { velocity !!!! }
\end{array}\right.}
\end{aligned}
$$

Example: the simplest problem

 particle loosing (gaining) mass, at null velocity, but explicitly with position$$
m(x) \xrightarrow[F(x, \dot{x}, t)]{\longrightarrow}
$$

Newton:
Usual
Lagrange:

Correct:

Missing term

Apparently Paradoxal Problems :

Falling chain problems:

Buquoy version;
Cayley version;
'U' falling chain;
Vertical collapse of buildings

Classical problem

The falling chain of Cayley

Cayley's 'falling' chain

- Classic idealized problem treated by Cayley, in 1857, similar to Buquoy's.
- Ever since, matter of controversies regarding proper formulation if treated under the Lagrangean approach.
- Recent account, see:

Grewal, Johnson and Ruina, "A Chain that speeds up, rather than slows, due to collisions: how compression can cause tension", Am. J. Phys., 79(7), 723-729, 2011.

Cayley's 'falling' chain

- Falling (or suspended part) treatable as a position dependent variable mass system.
- Classic idealized hypotheses $(*)$:
a. Falling (suspended) part of the chain treated as a continual vertically moving 'rigid' body (pure translatory motion);
b. There is no friction force apllied either by the table on slidding links, or by one to each other, or even by the hole internal surface to the leaving link;
c. Existence of a sudden acceleration (velocity jumps from zero) as the links leave the chain pile, being the transfer of any angular momentum to linear momentum disregarded;
d. Decreasing thickness of chain pile ignored.

(*) Discussion on hypotheses (a), (b) and (c) and other points may be encountered in Grewal, Johnson and Ruina, 2011.

Cayley's 'falling' chain

$$
\begin{array}{ll}
m=\mu L & \text { Chain total mass } \\
m_{S}=\mu y & \text { Falling (suspended) mass } \\
\dot{m}_{S}=\mu \dot{y} & \text { Falling mass time rate } \\
\frac{\partial m_{S}}{\partial y}=\mu & \text { Linear density } \\
\mathrm{q}=\mu \dot{y}^{2} & \text { Flux of momentum at the pile }
\end{array}
$$

Cayley's 'falling' chain

$$
\begin{aligned}
& T=T_{S}=\int_{0}^{y} \frac{1}{2} \mu v(\psi)^{2} d \psi=\int_{0}^{2} \frac{1}{2} \mu \dot{z}^{2} d \psi= \\
&=\frac{1}{2} \mu y \dot{y}^{2}=\frac{1}{2} m_{S} \dot{y}^{2} \quad \quad \text { Kinetic energy } \\
& V=V_{S}=-\int_{0}^{y} \mu g \psi d \psi= \\
&=-\frac{1}{2} \mu g y^{2}=-\frac{1}{2} m_{S} g y \quad \quad \quad \text { Potential energy } \\
& L=(T-V)=L_{S}=\left(T_{S}-V_{S}\right)= \\
&=\frac{1}{2} \mu y\left(\dot{y}^{2}+g y\right)=\frac{1}{2} m_{S}\left(\dot{y}^{2}+g y\right) \\
& \quad \text { Lagrangean }
\end{aligned}
$$

Cayley's 'falling' chain

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T_{S}}{\partial \dot{y}}\right)-\frac{\partial T_{S}}{\partial y}=\hat{Q}_{y} \quad \begin{array}{c}
\text { Extended } \\
\text { Lagrange equation }
\end{array} \\
& \hat{Q}_{y}=m_{S} g+F+\dot{m}_{S} \nLeftarrow-\frac{1}{2} \frac{\partial m_{S}}{\partial y} \dot{y}^{2}
\end{aligned}
$$

or

$$
\frac{d}{d t}\left(\frac{\partial L_{S}}{\partial \dot{y}}\right)-\frac{\partial L_{S}}{\partial y}=\hat{Q}_{y}^{n c}
$$

In terms of the Lagrangean
$\hat{Q}_{y}^{n c}=F+\dot{m}_{S} w-\frac{1}{2} \frac{\partial m_{S}}{\partial y} \dot{y}^{2}$

Recall: $\quad w=0$

Cayley's 'falling' chain

$$
\begin{aligned}
& \frac{\partial T_{S}}{\partial y}=\frac{1}{2} \mu \dot{y}^{2} \\
& \frac{\partial T_{S}}{\partial \dot{y}}=\mu \dot{y} \dot{y}=m_{S} \dot{y} \\
& \frac{d}{d t}\left(\frac{\partial T_{S}}{\partial \dot{y}}\right)=\mu y \ddot{y}+\mu \dot{y}^{2}=\mu y \ddot{y}+\mathrm{q}
\end{aligned}
$$

Extended Lagrange equation leads to:

$$
\mu y \ddot{y}+\mu \dot{y}^{2}-\frac{1}{2} / \mu \dot{y}^{2}=\mu y g+F-\frac{1}{2} / \mu \dot{y}^{2}
$$

Finally:

$$
\ddot{y}+\frac{\dot{y}^{2}}{y}=g+\frac{F}{\mu y}
$$

Cayley's 'falling' chain

$$
\begin{aligned}
& y^{*}=\frac{y}{L} \\
& t^{*}=t \sqrt{g / L} \\
& \dot{y}^{*}=\frac{\dot{y}}{\sqrt{g L}} \\
& \ddot{y}^{*}=\frac{\ddot{y}}{g} \\
& \Phi=\frac{F}{\mu g L}=\frac{F}{m g}
\end{aligned}
$$

Get:

$$
\ddot{y}^{*}=1+\frac{\Phi}{y^{*}}-\frac{\dot{y}^{* 2}}{y^{*}}
$$

Cayley's 'falling' chain

$$
\begin{array}{ll}
\frac{d}{d t}\left(\frac{\partial T_{S}}{\partial \dot{y}}\right)-\frac{\partial T_{S}}{\partial y}=\hat{Q}_{y} & \begin{array}{l}
\text { Usual Lagrange } \\
\text { equation }
\end{array} \\
\hat{Q}_{y}=m_{S} g+F+\dot{m}_{s} \Downarrow
\end{array}
$$

or
$\frac{d}{d t}\left(\frac{\partial L_{S}}{\partial \dot{y}}\right)-\frac{\partial L_{S}}{\partial y}=\hat{Q}_{y}^{n c}$
$\hat{Q}_{y}^{n c}=F+\dot{m}_{s} \Downarrow$
In terms of the Lagrangean

Recall: $\quad w=0$

Cayley's 'falling' chain

Get:
$\mu y \ddot{y}+\mu \dot{y}^{2}-\frac{1}{2} \mu \dot{y}^{2}=\mu y g+F$
i.e.:
$\mu y \ddot{y}+\frac{1}{2} \mu \dot{y}^{2}=\mu y g+F$
Such that:

$$
\ddot{y}=g+\frac{F}{\mu y}-\frac{1}{2} \frac{\dot{y}^{2}}{y}
$$

Or, in nondimensional form:

$$
\ddot{y}^{*}=1+\frac{\Phi}{y^{*}}-\frac{1}{2} \frac{\dot{y}^{* 2}}{y^{*}}
$$

Cayley's 'falling' chain

When $F=0(\Phi=0)$, both equations

Both predict, from initial rest condition, a 'free-fall' with initial acceleration equal to gravity.

However acceleration decreases monotonically (so is smaller than gravity) tending to different asymptotic limits.

There is no singularity at $y=0^{+}!!!$

Cayley Problem

$$
y^{*}=y / y_{0}
$$

Cayley's 'falling' chain

In this case, the puzzling aspect regarding distinct asymptotic limits, is related to the application of either form of the Lagrange equations, rather than to the validity of the idealized hypotheses.

Cayley's solution (the proper one) predicts a limit acceleration of $g / 3$.

Wong and Yasui (2006)(*) (the erroneous on凤) predict a limit acceleration of $g / 2$.
Experimental work by Wong et aP $(2007)(* *)$ attitude measured the limit as $\ddot{y}_{\text {lim }}=(0.3204 \pm 0.0010) \mathrm{g}$
(*) Wong \&Yasui, "Falling chains". American Journal of Physics, v. 6, 490-496, 2006.
(**) Wong, Youn \&Yasui, "The falling chain of Hopkins, Tait,

Steele and Cayley". European Journal of Physics, v. 28, 385-400, 2007.

Cayley's 'falling' chain

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial L_{S}}{\partial \dot{y}}\right)-\frac{\partial L_{S}}{\partial y}+\frac{\partial R}{\partial \dot{y}}=0 \quad \begin{array}{l}
\text { Cayley's Lagrange } \\
\text { equation, by introducing } \\
\text { a special Rayleigh-like } \\
\text { function, }
\end{array} \\
& R(y, \dot{y})=\frac{1}{2}\left(\frac{1}{3} \dot{m}_{S} \dot{y}^{2}\right)=\frac{1}{6} \mu \dot{y}^{3} \\
& \text { is equivalent to } \\
& \frac{d}{d t}\left(\frac{\partial L_{S}}{\partial \dot{y}}\right)-\frac{\partial L_{S}}{\partial y}=\hat{Q}_{y}^{n c} \quad \begin{array}{l}
\text { obtained from the general } \\
\text { extended Lagrange } \\
\text { equation. }
\end{array} \\
& \hat{Q}_{y}^{n c}=\not F+\dot{m}_{S} \neq \frac{1}{2} \frac{\partial m_{S}}{\partial y} \dot{y}^{2}
\end{aligned}
$$

A Civil Engineering Application:

The vertically collapsing tower

Purpose

To highlight the discussion about a still open subject on a simple single degree of freedom model (SDOF), addressing a controversial point.

Based on a recently published paper:

> Pesce, C.P., Casetta, L., Santos, F.M., 2012, "The equation of motion governing the dynamics of vertically collapsing buildings", http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

Striking Problem

Vertical collapse of buildings: WTC twin towers

Possible approaches

- Newtonian mechanics
- Lagrangian mechanics
- Generalized Reynolds' Transport Theorem (Mc/ver, 73, Irschick and Holl, 2004)
- 'Mass transfer' wave equation with moving boundaries (Bevilacqua, DINAME2011)
- Other...

Motivation:

Can a simple SDOF model represent the dynamics of a vertically collapsing tower?

YES!

Bažant, Z. P., Verdure, M., 2007, "Mechanics of progressive collapse: learning from World Trade Center and building demolitions". Journal of Engineering Mechanics, v. 133, n. 3, pp. 308-19.

Seffen, K. A., 2008, "Progressive collapse of the World Trade Center: simple analysis". Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.

Motivation:

Such model is able to describe the evolution of the avalanche front of vertically collapsing towers. However:

The equation of motion derived from the usual Lagrange equation formalism differs from that derived from Newton's law.

An apparent paradox!

Similar to the falling chain problem and likewise controversial.

Neither Bažant \& Verdure, or Seffen are conclusive on which one should be the proper equation!

The Vertical Collapse

Simple Model

Recall the Extended Lagrange Equations

Most complete case: $\quad m_{i}=m_{i}\left(q_{j} ; \dot{q}_{j} ; t\right)$

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}=\hat{Q}_{j} ;
$$

Simple Model

- The collapsing tower is divided in two distinct regions:
- the falling region;
- the still region.
- The still (intact) region transfers mass to the falling region:
- the mass of the falling region increases;
- the mass of the still region decreases.

- The falling region is divided in two parts:
- The intact (non compacted) part;
- The smashed (compacted) part.

Simplest SDOF Model

- Three Major Hypotheses:

1. the 'intact' upper part of the falling structure is a rigid body, translating vertically and smashing the 'lower' part as it falls;
2. there is a density jump through the avalanche front; i.e., the density of the accreted mass jumps from a 'non compacted' value to a 'compacted' value, in a continuous impacting ma' $\sigma_{n c}=\sigma_{0}$
$\sigma_{c}>\sigma_{0}$
3. the wric ${ }_{c}>\sigma_{0}$ egion, composed by the 'intact' rigid falling part accreted by the instantaneously compacted part, translates as a rigid material system with mass varying explicitly with position.

Simplest SDOF Model

- Therefore:

1. both regions are material systems with varying mass;
2. A single generalized coordinate may represent the collapsing dynamics;
3. The varying masses may be
 expressed as explicit functions of the chosen coordinate.

Simplest SDOF Model

Mass of the falling region

$$
m_{m o v}=\int_{y_{T}}^{y_{A}} \sigma_{n c} \mathrm{~d} y+\int_{y_{A}}^{y_{B}} \sigma_{c} \mathrm{~d} y=\sigma_{n c}\left(y_{A}-y_{T}\right)+\sigma_{c}\left(y_{B}-y_{A}\right)
$$

Mass of the still region

$$
m_{r e s t}=\int_{y_{B}}^{H} \sigma_{n c} \mathrm{~d} y=\sigma_{n c}\left(H-y_{B}\right)
$$

Simplest SDOF Model

Conservation of mass of the whole building

$$
m_{m o v}=\sigma_{n c} y_{B}
$$

Kinematic constrains: $h=\left(y_{A}-y_{T}\right) \Longrightarrow$

Compaction

$$
K=\sigma_{n c} / \sigma_{c}<1
$$

Simplest SDOF Model

Kinetic Energy

$$
T_{m o v}=\frac{1}{2} m_{m o v} \dot{y}_{A}^{2}=\frac{1}{2}\left[\sigma_{n c} y_{B}\right] \dot{y}_{A}^{2}=\frac{1}{2} \sigma_{n c}\left[\frac{y_{A}-K h}{(1-K)}\right] \dot{y}_{A}^{2}
$$

$$
\begin{aligned}
& \text { Or } \\
& T_{\text {mov }}=\frac{1}{2} \sigma_{n c}(1-K)^{2} y_{B} \dot{y}_{B}^{2}
\end{aligned}
$$

Simplest SDOF Model

Lagrange equation

Extended form for mass varying with position

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T_{m o v}}{\partial \dot{y}_{A}}\right)-\frac{\partial T_{m o v}}{\partial y_{A}}=\hat{Q}_{A} \\
& \hat{Q}_{A}=m_{m o v} g-F-\frac{1}{2} \frac{\partial m_{m o v}}{\partial y_{A}} \dot{y}_{A}^{2}
\end{aligned}
$$

Simplest SDOF Model

Actually

A Rayleigh-like function could be defined

$$
R\left(y_{A}, \dot{y}_{A}\right)=\frac{1}{6} \dot{m} \dot{y}_{A}^{2}=\frac{1}{6} m^{\prime}\left(y_{A}\right) \dot{y}_{A}^{3}
$$

$$
\frac{\downarrow}{\frac{\partial R}{\partial \dot{y}_{A}}=\frac{1}{2} m^{\prime}\left(y_{A}\right) \dot{y}_{A}{ }^{2}}
$$

Simplest SDOF Model

Lagrange equation

Extended Rayleighian form for mass varying with position

$$
\frac{d}{d t}\left(\frac{\partial T_{m o v}}{\partial \dot{y}_{A}}\right)-\frac{\partial T_{m o v}}{\partial y_{A}}+\frac{\partial R}{\partial \dot{y}_{A}}=Q_{A}
$$

$$
Q_{A}=m_{m o v} g-F
$$

Simplest SDOF Model

$$
T_{m o v}=\frac{1}{2} m_{m o v} \dot{y}_{A}^{2}=\frac{1}{2}\left[\sigma_{n c} y_{B}\right] \dot{y}_{A}^{2}=\frac{1}{2} \sigma_{n c}\left[\frac{y_{A}-K h}{(1-K)}\right] \dot{y}_{A}^{2}
$$

Kinetic energy derivatives

$$
\dot{y}_{A}=(1-K) \dot{y}_{B}
$$

$$
\frac{\partial T_{m o v}}{\partial \dot{y}_{A}}=\sigma_{n c} y_{B} \dot{y}_{A}=(1-K) \sigma_{n c} y_{B} \dot{y}_{B}
$$

Simplest SDOF Model

Recall:

$$
m_{m o v}=\sigma_{n c} y_{B}
$$

Then:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{\partial T_{m o v}}{\partial \dot{y}_{A}}\right)-\frac{\partial T_{m o v}}{\partial y_{A}}=\hat{Q}_{A} \\
& \hat{Q}_{A}=m_{m o v} g-F-\frac{1}{2} \frac{\partial m_{m o v}}{\partial y_{A}} \dot{y}_{A}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& (1-K) \sigma_{n c} \frac{d}{d t}\left(y_{B} \dot{y}_{B}\right)=\sigma_{n c} g y_{B}-F \\
& \ddot{y}_{B}=\frac{g}{1-K}-\frac{\dot{y}_{B}^{2}}{y_{B}}-\frac{1}{(1-K)} \frac{F}{\sigma_{n c} y_{B}}
\end{aligned}
$$

Simplest SDOF Model

All this leads to

Extended Lagrange Equation

$$
\ddot{y}^{*}=-\frac{\dot{y}^{* 2}}{y^{*}}+\frac{1}{1-K}-\frac{\Phi}{(1-K) y^{*}} \quad \ddot{y}^{*}=-\left(\frac{1}{2}\right) \frac{\dot{y}^{* 2}}{y^{*}}+\frac{1}{1-K}-\frac{\Phi}{(1-K) y^{*}}
$$

$$
\underbrace{}_{\substack{\text { Compaction } \\ \text { factor }}} K=\sigma_{n c} / \sigma_{c}
$$

 load

Usual Lagrange Equation

Tower weight

Aparent Paradox

Neither Bažant \& Verdure, or Seffen were conclusive on which one should be the proper equation!

Extended Lagrange Equation

Crash down duration (tower 1): 11s

Usual Lagrange Equation

$$
\ddot{y}^{\ddot{y}^{*}=-\left(\frac{1}{2} \frac{\dot{y}^{*^{2}}}{y^{*}}+\frac{1}{1-K}-\frac{\Phi}{(1-K) y^{*}}\right.} \underset{\text { Non -proper Eq.! }}{\text { N }}
$$

Crush down duration (tower 1): 9,8s

Similarity with falling chains

$$
F=0 ; \quad K=0
$$

Cayley's
Extended Lagrange Equation

Similarity with falling chains

$$
F=0 ; \quad K=0
$$

Extended Lagrange Equation

Usual Lagrange Equation

Buquoy's

Simplest SDOF Model

Case Study: the WTC Towers

$$
H=407 \mathrm{~m} \quad P=3.073 \mathrm{GN} \quad \sigma_{n c}=770 \times 10^{3} \mathrm{t} / \mathrm{m}
$$

$$
0<\Phi=F / P<0.21
$$

$$
K=\sigma_{n c} / \sigma_{c}=0.2
$$

Bažant, Z. P., Verdure, M., 2007, "Mechanics of progressive collapse: learning from World Trade Center and building demolitions". Journal of Engineering Mechanics, v. 133, n. 3, pp. 308-19.
Seffen, K. A., 2008, "Progressive collapse of the World Trade Center: simple analysis". Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.
Pesce, C.P., Casetta, L., Santos, F.M., 2012, "The equation of motion governing the dynamics of vertically collapsing buildings",
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

Table 1. ‘Crush-down' time. WTC: towers 1 and 2. Comparing the results from the proper and non proper ones equations.

$$
K=0.2 ; \Phi=0.044 \quad K=0.2 ; \Phi=0.0
$$

Tower	Equation	t_{C}^{*}	$t_{C}(\mathrm{~s})$	t_{C}^{*}	$t_{C}(\mathrm{~s})$
1	Eq. (102) - proper	1.75	11.3	1.59	10.2
1	Eq. (103) - non-proper	1.55	10.0	1.39	9.0
2	Eq. (102) - proper	1.45	9.3	1.36	8.8
2	Eq. (103) - non-proper	1.32	8.5	1.23	7.9

[^0]

WTC Tower 1

WTC Tower 2

Initial acceleration of the avalanche front, as function of the resistive force, Φ, having as parameter the compaction factor K.

Non dimensional 'crush-down' time, as function of the resistive force, Ф.

CONCLUSIONS

Problems of variable mass systems in Engineering Mechanics are rather classical and very well explored in the technical literature, since von Buquoy's work, 1812-1815, Cayley, 1857, and Meshchersky's, 1897. However, its subtlety sometimes reserve trappings to students and even to scholars. As a matter of fact, much work is still being carried out on the subject, as testimonies the excellent and recent review by Irschik and Holl (2004).
Nevertheless, from time to time, misinterpretations are found on the correct application of Newton's second law or concerning the Lagrangian Equation to this kind of systems
Sometimes, motivated by nonlinear dynamics applications, aroused from engineering problems, other times by theoretical issues, see, e.g. Mušicki (2005), variable mass system dynamics is still a state-of-the-art matter, both, grounding the rational formulation of open systems dynamics or directly linked to technical applications.
Its importance goes beyond applications on engineering, extending from solids and fluids dynamics to complex flows of mixtures, fluid flows in porous media, or even reaching quite distinct problems in theoretical physics.

"Be extremely careful when dealing with

 variable mass systems!!"
Thank you!

Acknowledgments:

CNPq

FAPESP

Especial thanks
Dr. Leonardo Casetta

Appendix I

Derivation of the Extended Lagrange Equation for General Variable Mass Systems

2003, Pesce, C. P.
"The Application of Lagrange Equations to Mechanical
Systems with Mass Explicitly Dependent on Position", Journal of Applied Mechanics, Vol. 70, pp. 751-756.

Extended Lagrange Equations

Derivation via D'Alembert Principle and PVW

$$
\sum_{i}\left(\frac{d \mathbf{p}_{i}}{d t}-\mathbf{F}_{i}\right) \cdot \delta P_{i}=\mathbf{0} \quad \mathbf{F}_{i}=\mathbf{f}_{i}+\mathbf{h}_{i}
$$

$$
\sum_{i}\left(m_{i} \frac{d \mathbf{v}_{i}}{d t}-\left(\mathbf{f}_{i}+\Phi_{i}\right)\right) \cdot \delta P_{i}=\mathbf{0}
$$

Relative velocity of
expelled (gained) mass

Meschersky's Force

Lagrange Equations: via Principle of Virtual Work

$$
\begin{aligned}
& \delta P_{i}=\sum_{j} \frac{\partial P_{i}}{\partial q_{j}} \cdot \delta q_{j} \\
& \mathbf{v}_{i}=\mathbf{v}_{i}\left(q_{j} ; \dot{q}_{j} ; t\right) ; j=1, \ldots, M
\end{aligned}
$$

Kinematic relations

$$
\frac{\partial \mathbf{v}_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{\partial P_{i}}{\partial q_{j}}\right)
$$

$$
\frac{\partial \mathbf{v}_{i}}{\partial \dot{q}_{j}}=\frac{\partial P_{i}}{\partial q_{j}}
$$

$$
\frac{d \mathbf{v}_{i}}{d t} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{1}{2} \frac{\partial \mathbf{v}_{i}^{2}}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} \mathbf{v}_{\mathrm{i}}^{2}\right)
$$

$$
Q_{j}=\sum_{i} \mathbf{F}_{i} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\sum_{i}\left(\mathbf{f}_{i}+\mathbf{h}_{i}\right) \cdot \frac{\partial P_{i}}{\partial q_{j}}
$$

Generalized forces

Simplest case: constant mass

$$
\begin{array}{r}
m_{i} \frac{d \mathbf{v}_{i}}{d t} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{1}{2} \frac{\partial m_{i} \mathbf{v}_{i}^{2}}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} m_{i} \mathbf{v}_{\mathrm{i}}^{2}\right)=\frac{d}{d t}\left(\frac{\partial T_{i}}{\partial \dot{q}_{j}}\right)-\frac{\partial T_{i}}{\partial q_{j}} \\
\frac{d m_{i}}{d t}=0 \\
\frac{d \mathbf{p}_{i}}{d t}=m_{i} \frac{d \mathbf{v}_{i}}{d t} \\
Q_{j}=\sum_{i} \mathbf{f}_{i} \cdot \frac{\partial P_{i}}{\partial q_{j}}
\end{array}
$$

$$
\square \quad \frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}=Q_{j} ; \quad j=1, \ldots, M
$$

Case: $m(t)$

$$
\text { PVW: } \quad \sum_{i}\left(\frac{d \mathbf{p}_{i}}{d t}-\left(\mathbf{f}_{i}+\mathbf{h}_{i}\right)\right) \cdot \delta P_{i}=\sum_{j} \sum_{i}\left(m_{i} \frac{d \mathbf{v}_{i}}{d t}+\frac{d m_{i}}{d t} \mathbf{v}_{i}-\left(\mathbf{f}_{i}+\mathbf{h}_{i}\right)\right) \cdot \frac{\partial P_{i}}{\partial q_{j}} \delta q_{j}=\mathbf{0}
$$

$\begin{aligned} & \text { Integration by } \\ & \text { parts, first }\end{aligned} m_{i} \frac{d \mathbf{v}_{i}}{d t} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\frac{d}{d t}\left(\frac{1}{2} m_{i} \frac{\partial \mathbf{v}_{i}{ }^{2}}{\partial \dot{q}_{j}}\right)-\frac{d m_{i}}{d t}\left(\frac{1}{2} \frac{\partial \mathbf{v}_{i}{ }^{2}}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} m_{i} \mathbf{v}_{\mathbf{i}}{ }^{2}\right)=$

$$
\begin{aligned}
& =\frac{d}{d t}\left(\frac{1}{2} \frac{\partial m_{i} \mathbf{v}_{i}^{2}}{\partial \dot{q}_{j}}\right)-\frac{d m_{i}}{d t}\left(\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{\partial}{\partial m_{i}}\left(\frac{1}{2} m_{i} \mathbf{v}_{i}^{2}\right)\right)\right)-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} m_{i} \mathbf{v}_{i}^{2}\right)= \\
& =\frac{d}{d t}\left(\frac{\partial T_{i}}{\partial \dot{q}_{j}}\right)-\frac{d m_{i}}{d t}\left(\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{\partial T_{i}}{\partial m_{i}}\right)-\frac{\partial T_{i}}{\partial q_{j}}\right. \text { Cancel each }
\end{aligned}
$$

second

 term:$\left(\frac{d m_{i}}{d t} \mathbf{v}_{i} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\frac{d m_{i}}{d t} \mathbf{v}_{i} \cdot \frac{\partial \mathbf{v}_{i}}{\partial \dot{q}_{j}}=\frac{1}{2} \frac{d m_{i}}{d t} \frac{\partial \mathbf{v}_{i}{ }^{2}}{\partial \dot{q}_{j}}=\left(\frac{d m_{i}}{d t}\left(\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{\partial T_{i}}{\partial m_{i}}\right)\right)\right.\right.$
Most general form
Most general form

Case: $m(t)$
 (continued)

Leading to the same usual form

$$
\frac{d}{d t} \frac{\partial T}{\partial \dot{q}_{j}}-\frac{\partial T}{\partial q_{j}}=Q_{j} ; \quad j=1, \ldots, M
$$

with

$$
Q_{j}=\sum_{i} \mathbf{F}_{i} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\sum_{i}\left(\mathbf{f}_{i}+\mathbf{h}_{i}\right) \cdot \frac{\partial P_{i}}{\partial q_{j}}
$$

where

$$
\mathbf{h}_{i}=\dot{m}_{i} \mathbf{v}_{o i}
$$

Most complete case: $m_{i}=m_{i}\left(q_{j} ; \dot{q}_{j} ; t\right)$

Integration by
parts, first

$$
m_{i} \frac{d \mathbf{v}_{i}}{d t} \cdot \frac{\partial P_{i}}{\partial q_{j}}=
$$

term:

$$
\begin{aligned}
& \frac{d}{d t}\left(\frac{1}{2} m_{i} \frac{\partial \mathbf{v}_{i}^{2}}{\partial \dot{q}_{j}}\right)-\frac{1}{2} \frac{d m_{i}}{d t}\left(\frac{\partial \mathbf{v}_{i}^{2}}{\partial \dot{q}_{j}}\right)-\frac{\partial}{\partial q_{j}}\left(\frac{1}{2} m_{i} \mathbf{v}_{\mathrm{i}}^{2}\right)+\frac{1}{2} \frac{\partial m_{i}}{\partial q_{j}}\left(\mathbf{v}_{\mathrm{i}}^{2}\right)=
\end{aligned}
$$

$$
\begin{aligned}
& \text { Two new terms }
\end{aligned}
$$

second
term:

$$
\frac{d m_{i}}{d t} \mathbf{v}_{i} \cdot \frac{\partial P_{i}}{\partial q_{j}}=\frac{d m_{i}}{d t} \mathbf{v}_{i} \cdot \frac{\partial \mathbf{v}_{i}}{\partial \dot{q}_{j}}=\frac{1}{2} \frac{d m_{i}}{d t} \frac{\partial \mathbf{v}_{i}{ }^{2}}{\partial \dot{q}_{j}}=\frac{d m_{i}}{d t}\left(\frac{\partial}{\partial \dot{q}_{j}}\left(\frac{\partial T_{i}}{\partial m_{i}}\right)\right.
$$

Most complete case:
 $m_{i}=m_{i}\left(q_{j} ; \dot{q}_{j} ; t\right)$

Leading to the Extended Form of the Lagrange Equations:

Appendix II

Ocean Enginering Problems

Ocean Engineering problems

Cable Deployment from a Reel

Cable Deployment from a Reel

System
Wound cable+reel:

Variable mass

$$
\frac{d}{d t}\left(\frac{\partial T_{1}}{\partial \dot{\theta}}\right)-\frac{\partial T_{1}}{\partial \theta}=Q_{\theta} \quad Q_{\theta}=\left(\tau(\theta)+\dot{m}_{R}(\theta) R \dot{\theta}\right) R
$$

INCORRECT

$$
\left(I_{O}+m R^{2}\right) \ddot{\theta}+\frac{1}{2} \mu R^{3} \dot{\theta}^{2}-(1-\beta) \mu g R^{2} \theta=0
$$

Cable Deployment from a Reel

System
Wound cable+reel:

$$
\tau(\theta)=\mu R \theta((1-\beta) g-R \ddot{\theta}) \quad \text { Hanging traction }
$$

$$
\dot{m}_{R}(\theta)=-\mu R \dot{\theta}
$$

Variable mass

Mass rate

$$
T_{1}=1 / 2\left(I_{R}\right) \dot{\theta}^{2}=1 / 2\left(I_{O}+\mu R^{2}(L-R \theta)\right) \dot{\theta}^{2}
$$

$$
\begin{array}{cc}
\frac{d}{d t}\left(\frac{\partial T_{1}}{\partial \dot{\theta}}\right)-\frac{\partial T_{1}}{\partial \theta}=\hat{Q}_{\theta} & \hat{Q}_{\theta}=\left(\tau(\theta)+\dot{m}_{R}(\theta) R \dot{\theta}\right) R-\frac{1}{2} \frac{d m_{R} R^{2} \dot{\theta}^{2}}{d \theta} \\
\text { CORRECT }
\end{array}
$$

$$
\left(I_{O}+m R^{2}\right) \ddot{\theta}-(1-\beta) \mu g R^{2} \theta=0
$$

Cable Deployment from a Reel: typical analysis

I.C.: $\quad l_{S}(\theta(0))=10 \mathrm{~m} ; \quad \dot{\theta}(0)=0$

$$
\dot{\theta}(t)(\mathrm{rad} / \mathrm{s})
$$

$$
F_{f}=-1 / 2 C_{f} \rho D(R \dot{\theta})^{2} l_{s}(\theta)=-1 / 2 C_{f} \rho D R^{3} \theta \dot{\theta}^{2}
$$

Ocean Engineering problems

Oscillating water column in open pipes

Oscillating water column in the moon-pool of a mono-column platform

Oscillating water column in open pipes

Oscillating water column in open pipes

$$
\begin{gathered}
T=\frac{1}{2} \rho A(\zeta+H) \dot{\zeta}^{2} \\
F=f+\dot{m} v_{o}=\left(F_{S}+F_{D}\right)+\dot{m} v_{o}= \\
=\left(-\rho A g \zeta-\frac{1}{2} \rho A \dot{\zeta}^{2}\right)+\left(\rho A \dot{\zeta}^{2}\right)=-\rho A g \zeta\left(+\frac{1}{2} \rho A \dot{\zeta}^{2}\right) \\
\frac{d}{d t} \frac{\partial T}{\partial \dot{\zeta}}-\frac{\partial T}{\partial \zeta}=F \\
\text { INCORRECT }
\end{gathered}
$$

Oscillating water column in open pipes

$$
\begin{gathered}
T=\frac{1}{2} \rho A(\zeta+H) \dot{\zeta}^{2} \\
\hat{F}=f+\dot{m} v_{o}-\frac{1}{2} \sum_{i} \frac{\partial m_{i}}{\partial \zeta} \mathbf{v}_{i}{ }^{2}=\left(F_{S}+F_{D}\right)+\dot{m} v_{o}\left(-\frac{1}{2} \frac{\partial m}{\partial \zeta} \dot{\zeta}^{2}\right)= \\
=\left(-\rho A g \zeta-\frac{1}{2} \rho A \dot{\zeta}^{2}\right)+\left(\rho A \dot{\zeta}^{2}\right)\left(-\left(\frac{1}{2} \rho A \dot{\zeta}^{2}\right)=-\rho A g \zeta\right. \\
\frac{d}{d t} \frac{\partial T}{\partial \dot{\zeta}}-\frac{\partial T}{\partial \zeta}=\hat{F} \\
\longrightarrow \ddot{\zeta}+\frac{1}{2} \frac{\dot{\zeta}^{2}}{(\zeta+H)}+g \frac{\zeta}{(\zeta+H)}=0
\end{gathered}
$$

CORRECT

Oscillating water column in open pipes

$$
\omega=\sqrt{g / H}
$$

Normalizing

$$
\begin{aligned}
\eta(t) & =\zeta(t) / H \\
-1 & <\eta
\end{aligned}
$$

$$
\ddot{\eta}+\frac{1}{2} \frac{\dot{\eta}^{2}}{(\eta+1)}+\frac{\eta}{(\eta+1)}=0
$$

Small

$$
\ddot{\eta}+\eta=0
$$

Oscillating water column in open pipes

I.C.: $\quad \eta(0)=-0.99 . .-0.5 ; \dot{\eta}(0)=0$

Ocean Engineering problems

$$
T=\frac{1}{2} M_{z z} W^{2}
$$

Added mass dependent on position

Buoyancy and Gravitational Forces are neglectable at the very instant of impact

Hydrodynamic Impact

Sphere

Hydrodynamic Impact

Force applied on the body via non-extended form

$$
F_{z}=-\frac{d}{d t}\left(\frac{\partial T}{\partial W}\right)+\frac{\partial T}{\partial \zeta}
$$

INCORRECT

$$
F_{z}=-\frac{1}{2} \frac{d M_{z z}}{d t} W-M_{z z} \frac{d W}{d t}
$$

Hydrodynamic Impact

Force applied on the bulk of the liquid

Second order

Force applied on the body via extended form

$$
F_{z}=-\frac{d}{d t}\left(\frac{\partial T}{\partial W}\right)+\frac{\partial T}{\partial \zeta}-\frac{1}{2} \frac{d M_{z z}}{d \zeta} W^{2} \text { Extra term }
$$

CORRECT

$$
F_{z}=-\frac{d}{d t}\left(M_{z z} W\right)+\frac{1}{2} W^{2} \frac{d M_{z z}}{d \zeta}-\frac{1}{2} \frac{d M_{z z}}{d \zeta} W^{2}=-\frac{d}{d t}\left(M_{z z} W\right)
$$

Hydrodynamic Impact Sphere of radius \boldsymbol{R} and mass \boldsymbol{m}

Non-dimensional

normalizing
Mass ratio
$\eta=\zeta / R$

$$
\dot{\eta}=\frac{d \eta}{d \mathrm{t}}=\frac{1}{W_{0}} \frac{d \zeta}{d t} \quad \ddot{\eta}=\frac{d^{2} \eta}{d \mathrm{t}^{2}}=\frac{R}{W_{0}{ }^{2}} \frac{d^{2} \zeta}{d t^{2}}
$$

INCORRECT

Asymptotics, similitude solutions and NonExtended Lagrange Equations:

$$
\ddot{\eta}+\left(\frac{1}{2} \frac{\frac{9 \sqrt{3}}{2 \pi} \eta^{1 / 2} \dot{\eta}^{2}}{\beta+\frac{3 \sqrt{3}}{\pi} \eta^{3 / 2}}=0\right.
$$

Hydrodynamic Impact Sphere of radius \boldsymbol{R} and mass \boldsymbol{m}

normalizing

$$
\begin{gathered}
\mathrm{t}=W_{0} t / R \quad \beta=m / m_{D} \\
\eta=\zeta / R \quad \dot{\eta}=\frac{d \eta}{d \mathrm{t}}=\frac{1}{W_{0}} \frac{d \zeta}{d t} \quad \ddot{\eta}=\frac{d^{2} \eta}{d \mathrm{t}^{2}}=\frac{R}{W_{0}{ }^{2}} \frac{d^{2} \zeta}{d t^{2}}
\end{gathered}
$$

CORRECT

Asymptotics, similitude solutions and Extended Lagrange Equations:

$$
\ddot{\eta}+\frac{\frac{9 \sqrt{3}}{2 \pi} \eta^{1 / 2} \dot{\eta}^{2}}{\beta+\frac{3 \sqrt{3}}{\pi} \eta^{3 / 2}}=0
$$

Hydrodynamic Impact Sphere of radius \boldsymbol{R} and mass \boldsymbol{m}

CORRECT
INCORRECT

$$
\beta=m / m_{D}=3 m /\left(4 \rho \pi R^{3}\right): \text { specific mass }
$$

Hydrodynamic Impact
 Sphere of radius \boldsymbol{R} and mass \boldsymbol{m}

CORRECT
INCORRECT

$$
\beta=m / m_{D}=3 m /\left(4 \rho \pi R^{3}\right): \text { specific mass }
$$

Hydrodynamic Impact Sphere of radius \boldsymbol{R} and mass \boldsymbol{m}

$$
\eta=\zeta / R
$$

CORRECT

INCORRECT

$$
\beta=m / m_{D}=3 m /\left(4 \rho \pi R^{3}\right): \text { specific mass }
$$

[^0]: Pesce, C.P., Casetta, L., Santos, F.M., 2012, "The equation of motion governing the dynamics of vertically collapsing buildings",
 http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

