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Summary

The subject has not always been deeply discussed in Engineering
Mechanics Education and, even worse, not always properly included in

many modern Engineering Courses curricula, at both undergraduate and
graduate levels.

The purpose of the present talk is to re-address such an important
matter, aiming at contributing to Engineering Mechanics Education, by
discussing under a historical perspective some theoretical aspects
iInvolved in variable mass systems dynamics which are usually hidden
behind many derivations.



Motivation

Variable mass systems have been the focus of a large number of
problems in classical mechanics. However, despite the classic nature
and importance of variable mass systems dynamics, many
misinterpretations were done on the correct application of Newton’s
second law, even in a not so distant past. Such misinterpretations
sometimes give rise to apparent paradoxes in Classical Mechanics.

For instance, motivated by the rocket problem, a long debate on the
correct application of Newton'’s law took place during the 1960’s, among
American scholars and educators.

Even subtler may be the proper application and interpretation of the
Lagrangian formalism to systems presenting mass dependence on time,
position (and velocity).



Facts on Newton’s law application
1960’s American scholars debate

“...this basic law of mechanics is currently
being seriously misinterpreted. This
misinterpretation appears under conditions
where the mass of a body is a function of

b

time.’

Meriam J.L. 1960 J. Eng. Ed. 51 243



Facts on Newton’s law application
1960’s American scholars debate

“There exists considerable confusion and
disagreement among professional physicists
concerning the correct classical equations of

motion for systems of changing mass...”

Tiersten M.S. 1969 Am. J. Phys. 40 183



Facts on Newton's law application
1990’s

formany yes
law in this context. For example; W
(1984), and Das et al. (1989), who analy?ed the rastncted ﬂmae hc-cly problem
when the mass of the infinitesimal body varies, and Saslaw (1985), who discussed
the virial theorem for a collection of bodies of variable mass, incorrectly applied
Newton’s second law (or the equivalent Lagrange’s equations) to deal with the
variable masses and obtained erroneous results.

ON THE USE AND ABUSE OF NEWTON’S SECOND LAW FOR
VARIABLE MASS PROBLEMS

Plastino, A.R. & Muzzio, J.C. 1992

Celestial Mechanics and Dynamical Astronomy 53: 227-232, 1992.
(©) 1992 Kiuwer Academic Publishers. Printed in the Netherlands.
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Newton’s Laws

Lex I: Corpus omne perseverare in statu suo quiescendi vel
movendi uniformiter in directum, nisi quatenus a viribus
Impressis cogitur statum illum mutare.

Lex I1: Mutationem motis proportionalem esse vi motrici
Impressae, etfieri secundum lineam rectam qua vis illa
Imprimitur.

Lex I11: Actioni contrariam semper et aequalem esse
reactionem: sine corporum duorum actiones in se mutuo
semper esse aequales et in partes contrarias dirigi.



Newton’s Laws

“‘Law | — Every body perseveres In its state of rest or of uniform motion
In a right line, unless it is compelled to change that state by forces

|mpressed thereon ; \[ Law of inertia; establishes inertial }

frames of reference

“‘Law Il - The alteration of [the quantity] of motion is ever proportional to
the motive force impressed; and is made in the direction of the right
line in which that force is impressed”;

Law of acceleration }

“Law lll - To every action there is always opposed an equal reaction —
or the mutual actions of the two bodies upon each other are always
equal, and directed to contrary parts”;\[

Action-reaction Principle }

Dugas, page 206.

Dugas, R., 1955, A History of Mechanics, Dover ed.,1988, 662 pp.



Newton’s Definition of mass

The term ‘law of motion’ was introduced in the 17th century by
Descartes. After stating the law of inertia in an essentially modern
form, Descartes stated a law of conservation of momentum with
respect to its magnitude only, and not to direction, and continued
with a list of ‘laws of impact’ which involved the impact between
solid bodies.

At the beginning of his famous Philosophiae Naturalis Principia
Mathematica, Newton asserted the so-called ‘laws of motion’, which
IS more than a result of an appreciation of previous works.

“Rather than dealing with relations between initial and final
conditions in an interacting system, as done by Descartes, Newton
dealt directly with the effect of the forces acting on individual
bodies...”

Arons and Bork (1964)



Newton’s Definition of mass

When Newton discussed the motion of bodies, the trajectories were
conic sections and not straight lines or other paths, and the forces
considered by him were central forces.

Apparently, he showed no interest in the mechanical problems
usually found in today textbooks, particularly the variable mass
ones.

Paradoxically, according to Dugas (1951), “Newton introduced the
notion of mass into Mechanics(*)”, even though “this notion had
appeared in Huyghen'’s work, but only in an impermanent form”.

(*) “Definition | — The Quantity of Matter is the measure of the same,
arising from its density and bulk conjunctly”; Dugas (1951), page
201.



Variable mass problems

Early 19th Century

According to Sima and Podolsky (2005), the Czech scientist and
inventor von Buquoy “was the first to investigate systems with a

varying mass”.
Georg Franz August de Longueval, Baron von Vaux, Graf von Buquoy
(* Brussel, September 7t 1781; T Prag, April 19t 1851)

“In 1812 von Buquoy explicitly formulated the correct dynamical
equation of motion for the case when the mass of a moving object is

changing’.

von Buquoy, G., 1812, “Analytische Bestimmung des Gesetzes der
Virtuellen Geschwindigkeiten in Mechanischer und Statischer

Hinsicht”, Leipzig: Breitkopf und Hartel.



Variable mass problems

Early 19th Century

von Buquoy’s work was presented in 1815, at the Paris Academy of
Sciences.

“Apart from a single short article by Poisson (1819), his ideas did not
attract attnion, and they gradually become forgotten.”

Sima and Podolsky (2005).

Poisson, S.D., 1819, “Sur le Mouvement
d’un Systeme de Corps, en
supposant le Masses Variables”,
Bull. Sci. Soc. Philomat. Paris,
avril, pp. 60-62

" Siméon Denis Poisson

* Pithviers, June 21st 1781; 1 Paris, April 25t 1840



Variable mass problems

19th Century

“Buquoys’s general equation of motion and other explicit examples
were later formulated independently by various authors;

to be mentioned, Tait and Steele (1856) and Meshchersky (1897),”

Sima and Podolsky (2005).

Peter Guthrie Tait, 1831-1901;

Scaottish, topology and mathematical physics




Variable mass problems

Mid 19th Century

1857, Cayley: suspending chain coiled up at a table

— Cayley, A., 1857, "On a Class of Dynamical Problems". Proceedings of Royal
Society of London, Vol VI, pp 506-511.

Falling chain: still a very intriguing problem...

— Davis, Am. J. Phys., 1952

— Prato & Gleiser, Am. J. Phys, 1982

— Calkin & March, Am. J. Phys., 1989

— Vrbik, Am. J. Phys., 1993

— Keiffer, Am. J. Phys., 2001

— Tomaszewski & Pieranski, Am. J. Phys., 2006
— Wong & Yasui, Am. J. Phys., 2006

— Wong, Youn & Yasui, Eur. J Phys, 2007

— Casetta, Doctoral Thesis, EPUSP, 2008

— Grewal, Johnson & Ruina, Am. J. Phys., 2011
— lrschik, J Theo & Appl Mech, 2012

Arthur Cayley, 1821-1895
British mathematician



Variable mass problems

Late 19th Century
lvan Vsevolodovich Meshchersky, 1859 - 1935

Meshchersky (1897) Master Thesis, and his subsequent work
written in 1904, have been ever since recognized - in the Russian
technical literature - as the limestone in the study of variable mass
systems in the context of Classical Mechanics; see, e.g., Targ

(1976), page 394 or Starjinski (1980), page 498.

Meshchersky, 1.V., 1897, Dinamika tochki
Peremnoj Massy (*), St Petesburg, Akademia

Nauk, Peterburskij Universitet.
(*) QuHamuka moyKku rnepemeHHouU macchbl

Meshchersky, 1.V, 1904, “Equations of Motion
of a Variable Mass Point in the General Case’
(in Russian), St. Petersburg Polytechnic
University News, Vol.1, pp. 77-118.

J




lvan Vsevolodovich Meshchersky
1859 — 1935

(http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

Meshchersky taught in St
Petersburg for 58 years. Obtained a
Master's Degree in applied
mathematics in 1889 and was
appointed as a dozent at the
university in 1890.

Meshchersky is best known for
his work on the motion of bodies
of variable mass which he
described in January 1893 at a
meeting of the St Petersburg
Mathematical Society.

He continued to develop his work on
this topic for his dissertation entitled
The dynamics of a point of variable
mass, submitted in 1897.

Meshcheysky’s examples:

the increase of the mass of the
earth caused by falling
meteorites;

the increase of the mass of a
freezing iceberg and the
decrease of a thawing one;

the increas_e of the mass of the
sun gathering of cosmic dust
and its decrease with radiation;

the decrease of the mass of a
rocket as its fuel is
consumed.



lvan Vsevolodovich Meshchersky
1850 — 1935

(http:/mww-gap.| EVven before that, in 1903, the Russian scientist
Tsiolkovski - who had invented a kind of rocket-
He applied his theory  aircraft around 1883 - applied Meshchersky's  aising
being the first to stud  Equation to solve the rocket problem in two g of

problem of determinil yersijons: (j) gravity-free and (i) non-gravity-free.

—~+

mass from a knowleq : tute was
and the acting forceg Those two problems are sometimes referred to

as the first and the second problems of r role in
His work on the moti Tsiolkovski. 13 was

: | | |
fo(;‘rvr%réigltetén;abs!asz %for svel opeadsls Mathematics at the Polytechnic
after 1945. '
Curiously, at the time of _

Even before his dissertation the American Scholars cianfglJ{Zq[O

Meshchersky had shown anoth

major interest in his life: teaching. ion of problems

He published The teaching of -
mechanics in certain institutions of 26th RU Fn edition by 1960,

higher education in Italy, France -
; ro ’ translated Ynto English by Pergamon
Switzerland and Germany in 1895. Press in 1965.

s book had reached its




Other worth mentioning studies

Early 20th Century

1928; Levi-Civita: )le mass problem
"Sul Moto di un

. ti delle Sedute della Reale
Accademia Nazi , Aggiunta alla nota, pp
621-622.

“Ancora sul Mofc
Reale Accademi

St or gained
Il velocity

1936; Agostinelli:

"Sui Sistemi Din
Scienze di Torin(
272.

with variable mass

1le Accademia delle
Naturali, 71, I, pp. 254-

1940-50’s; several & oblems.

Leitmann, G., 1957, “On the Equation of Rocket Motion”, Journal of the British
Interplanetary Society, Vol.16, No. 3, pp. 141-147.



American Scholars debate

The 1960’s

1960, Meriam: Engineering Education
“Variable-Mass Dynamics”, Journal of Engineering Education, Vol.51, No. 3, pp.
240-243.

1962, Thorpe: Engineering Education

“On the Momentum Theorem for a Continuous System of Variable Mass”,
American Journal of Physics, Vol.30, No. 9, pp. 637-640.

1969, Tiersten: Engineering Education

“Force, Momentum Change and Motion”, American Journal of Physics, Vol.37,
No. 1, pp. 82-87.



Recent studies on variable mass systems

Late 60’s to 80’s T —
1968, Weber, H.I. Bevilacqua, L. _
contribution
generalizing
Reynolds Transport
Theorem

“Vibracao de Vigas com Massa Variavel no

1973 Mclver: general open systems

“Hamilton’s Principle for Systems of Changing Mass”, Journal of Engineering
Mathematics, Vol.7, No. 3, pp. 249-261.

1975, Mikhailov: history of mechanics.
“On the history of variable-mass system dynamics”. Mechanics of Solids, 10(5),
32-40
1982 Copeland work-energy theorem

“Work-energy theorem for variable mass systems”, A. J. Phys., 50(7), 699-601.



Recent studies on variable mass systems

Early 80’s to 90’s

1982, 84, Ge: non-holonomic variable mass systems
1984, 89, 92, 93, 94, 2001. Industrial systems (textile, lifting-crane)
(Cveticanin) vibration problems due to variable
mass;
1995, 97 (Crellin et al): tethered satellites;
1999, Musicki: general open systems

“General Energy Change Law for Systems with Variable Mass”, European
Journal of Mechanics A/Solids, Vol.18, pp. 719-730.



Nowadays studies: 2000-2004

2000, Musicki: general open systems

“Generalization of a New Parametric Formulation of Mechanics for Systems with
Variable Mass”, Eur Journal of Mechanics A/Solids, Vol.19, pp. 1059-1076.

2002, Eke & Mao: Engineering Education

“On the Dynamics of Variable Mass Systems”, International Journal of
Mechanical Engineering Education, Vol.30, No. 2, pp. 123-137.

2003, Pesce: Lagrange Equation and variable mass systems

“The Application of Lagrange Equations to Mechanical Systems with Mass
Explicitly Dependent on Position”, Journal of Applied Mechanics, Vol. 70, pp.
751-756.

2004, Irschik & Holl: general open systems

“The Equations of Lagrange Written for a Non-Material Volume”, Acta
Mechanica, Vol.153, pp. 231-248.

2004, Irschik & Holl: general open systems

“Mechanics of Variable-Mass Systems — Part 1. Balance of Mass and Linear
Momentum”, Applied Mechanics Review, Vol.57, No. 2, pp. 145-160.



2005-2007

2005, Musicki: general open systems

‘Extended Lagrangian Formalism and Main General Principles of Mechanics’,
European Journal of Mechanics A/Solids, Vol.24, pp. 227-242

2006, Wong & Yasui: Engineering Education
“Falling chains”. American Journal of Physics, v. 6, 490-496.
2006, Pesce, Casetta, Tannuri: ocean engineering applications

“The Lagrange Equations for Systems with Mass Varying explictly with Position:
Some Applications to Offshore Engineering”, JBSMSE, vol. 28, 496-504.
2007, Wong, Youn & Yasui: Engineering Education

“The falling chain of Hopkins, Tait, Steele and Cayley”. European Journal of
Physics, v. 28, 385-400.

2007, Bazant & Verdure: mechanics of progressive collapse

“Mechanics of progressive collapse: learning from World Trade center and
Building Demolitions”, Journal of Engineering Mechanics, ASCE Vol.133 (3), pp.
308-319

2007, Casetta & Pesce: hydrodynamic impact

“Hamilton’s Principle for Dissipative Systems and Wagner’s Problem”, 2nd
International Workshop on Water Waves and Floating Bodies 15th—18th April
2007, Plitvice, Croatia.



2008-2010

2008, Seffen: mechanics of progressive collapse

“Progressive Collapse of the World Trace Center: simple analysis”, Journal of
Engineering Mechanics, ASCE Vol.134 (2), pp. 125-132

2008, Casetta: mechanics of variable mass systems

“Contribuicbes a Mecanica dos Sistemas de Massa Variavel”, EPUSP, Tese de
Doutorado, 185 pp

2009, Cveticanin: multi body dynamics
“Dynamics of Body Separation — analytical procedure”, Nonlinear Dynamics, Vol. 55,
pp. 269-278

2009, Schwarzbart et al: tethered satellites

“Tethered satellite systems: a challenge for mechanics and applied mathematics.
GAMM-Mitteilungen, v. 32, n. 1, p. 105-20.

2010, Bazant, Le, Greening, & Benson: mechanics of progressive collapse

“What did and did not cause collapse of World Trade Center twin towers in New
York?”, Journal of Engineering Mechanics, ASCE vol. 134 (10). 892-906


http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05082009-100852/

2011

2011, Casetta & Pesce: variational principles in hydrodynamics

“On Seliger and Whitham’s variational principle for hydrodynamic systems from the
point of view of fictitious particles”, Acta Mechanica, vol. 219, 181-184.

2011, Le & Bazant: mechanics of progressive collapse

"Why the observed motion history of World Trade Center towers is smooth”,
Journal of Engineering Mechanics, ASCE, 137 (1), 82-84.

2011, Casetta, Pesce, Santos : hydrodynamic impact

“On the Hydrodynamic Vertical Impact Problem: an Analytical Mechanics Approach’,
Marine Systems and Ocean Technology, 6(1), 47-57.

2011, Grewal, Johnson and Ruina: falling chains

“A Chain that speeds up, rather tan slows, due to collisions: how compression can
cause tension”, Am. J .Phys., 79(7), 723-729.

2011, Jeltsema & Doria-Cerezo: systems modeling

“Modeling of systems with position-dependent mass revisited: a Port-Hamiltonian
approach”, Journal of Applied Mechanics, Vol. 78 / 061009-1.



2011-2012

2011, Bedoustani et al: robotics, cable-driven manipulators
“Lagrangian dynamics of cable-driven parallel manipulators: a variable mass
formulation”. Transactions Canadian Soc. Mech. Engineers, 35(4), 529-542.

2011, Holl & Hammelmuller: coiling processes

“Analysis of the vibrations due to thermal deflection of the drum in the coiling process.
Proc. Appl. Math. Mech. 11, 317-318

2012, Cveticanin: nonlinear oscillators

“Oscillator with non-integer order nonlinearity and time variable parameters”. Acta
Mechanica, 223 (7):1417-1429.

2012, Cveticanin & Pogany: nonlinear oscillators
“Oscillator with a sum of non-integer order non-linearities”. Journal of Applied
Mathematics, vol. 2012, art. no. 649050.

2012, Casetta & Pesce: general open systems

“On the generalized canonical equations of Hamilton for a time-dependent mass
particle”, Acta Mechanica, vol. 223, 2723-2726.

2012, Irschik: continuous impact and open systems

“The Cayley variational principle for continuous-impact problems: a continuum
mechanics based version in the presence of a singular surface”, J of Theoretical and
Appl Mech, 50 (3), 717-727.



2013

2013, Cruz y Cruz & Rosa-Ortiz: position dependent mass & Poisson algebra

“Generating Algebras of Mechanical Systems with Position-Dependent Mass”,
Symmetry, Integrability and Geometry: Methods and Applications, Special issue.

2013, Cveticanin: nonlinear oscillators
“Van der Pol oscillator with time variable parameters”, Acta Mechanica, Vol. 224(5), 945-
955.

2013, Casetta & Pesce:

“The generalized Hamilton’s principle for a non-mate

Generalizes Mclver’s
Hamiltonian approach to

224, 919-924. Reynolds transport
theorem
2013, Casetta & Pesce: discrete systems and inverse problems

“The inverse problem of Lagrangian mechanics for Meshchersky’s equation”, Acta
Mechanica, vol. 225, 1607-1623.



Leading to the
Advanced International Course

Dynamics of Mechanical Systems
with Variable Mass

CISM
International Centre for Mechanical Sciences

Udine, Italia
24-28 Sep 2012


http://www.cism.it/courses/C1212
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ADMISSI0N AND ACCOMMODATION

Applicants must contact CISM Secretariat at least one month be-
fore the beginning of the coursa. Application forms should ba sant
on-ina through ourwed site- hitp-fwww.cismit or by post.

A message of confirmation will be sent to accepted partici-
pants. If you need assistanca for registration pleasa contact
our secrefariat.

The 700,00 Euro registration fee includes & complimantzry
bag, four fed menu buffet lunches (Friday mot included),
hot bewerzges, on-linefdownloadable lecture notes and wi-fi
infamet access.

A limited number of participants from universities and ressarch
centres who ara not supportad by their own institutions can be
offered boand andfor kadging in & reasonably priced hotel. Re-
quesks should be sent fo/C15M Secratariat by luly 24, 2012 zlong
with the applicant's cumiculum and a letter of recommendation
by the head of the department or & suparsisor confirming that
the instifute cannot provide funding. Preference will be given
1o applicants from countries that spansor CISM.

Information abowt travel and accommidation is available on
ourweb site, or can be mailed upon request.

Pleasa nobe that the centre will ba closed for summer vacation
tha first throa wesks in August.

For furtfer information peass contact:

CISM

Palazzo del Torso

Piarza Garibaldi 18

33100 Udine {lkak)

tel. +-39 0432 248511 (8 Fines)
fam +39 0432 248550

g-mail: cismdcism.it
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Advancad School
coordinated by

Hams Irschik

University of Linz

Austria

Alexander K Balyaoy
Russian Academy of Sciences
& Petersburg

[Russia

Udine, September 24 - 28, 2011



DYNAMICS OF MECHANICAL SYSTEMS WITH VARIABLE MASS

The fundamaental equations

of clzssical mechanics wans
originally formulated for
situations where mass is
consanved in the mechanical
sysiem under considaration.
Mass is genarally nof consarved
when a supgly of mass i
present, or when open systams
with a fiow of mass throwgh their
siriace ara to be considerad.
Mass of the mechanical
system then is said to e
wariable. In such a situation,
the ganeral methodological
approaches of mechanics have
to be property modified. In fiuid
mechanics, open systems are
encountarsd when studying a
non-materizl control wolume.
In 500 mechanics, systems
with a variable mass appear

35 the result of 3 problem-
oriented modafing, e.g. when
mass is expalied or captunsd

by a struckne or machine. This
again leads to the treatment

a5 an open system, or fo the
assumption that that mass

is explicitly depandant on the
position. In solid mechanics,

a5 well a5 in fluid mechanics,
it is often appropriate to model
the exchange of mass betwaan
the system under considaration
anid the environmental world by
means of 2 supply of mass in
the interior. This is of particular
interast in tha confinuwm theaory
of mixturas, for which mass and
other entities are exchanged
between the various components.
It is the goal of the propossd
coursa to present up-io-date and

PRELIMINARY SUGGESTED READINGS

Irschil, H_. Holl, H1., Mechanics of
vanable-mass systems - part 1:
halanmd mass and linear momen-

Eﬂuﬂ Mechanics Review, 57,
145-1

Irschik, H_, Holl, H., The equations of

rlgalmthiua non-material

ume. Acta Mechanica, 153, 231-
248, 2002,

Cweticanin, L, Dynamics of Machines
with Variable Mzss, Gordon and
Baeach Sc. Publishers, London, 1998,
Cveticanin, L, Dynamics of body
saparation - Analytical ure,
H}Emhammg 169-778,

et o by il
ma: uanntlm Nonlinear
[Ip-:;, =3 740361, M08,

Coedicamin, L., Kovacic, ., On the
tynamics of bodies with continual
mass vanation, Trans ASME, Journal
nfhgpliu:l Mechanics, 74, B10-815,

Indeftzew, DA, Szmemov, B N.,
Abowt coe model of dmﬁl‘al—phum
transimations wnder ydrogen
influence. Acta llmhnnu“%.
304, 2008.

unifying formulations for treating
the dynamics of difiorent types
of mechanical systems with
varizble mass. We start with
an ovarview of the continuum
mechianics relations of balancs
and jump for open systems,
from which extendad Lagrange
and Hamittonian formulztions
will be derived, a5 & basis of
currant numencal procedures.
Comespanding approaches

will b stated at the level of
the anzlytical mechanics, with
emphasis on systems with

a position-dependent mass,
and applications to offshane
engineering, a5 well a5 at the
leval of structural mechanics.
Spacial emphasis will be laid
upon axmzlly moving structures,
|ike balts and chains, and on
pipes with an auial Flow of fluid.

Indedtzev, DA, Maumoe, VA, Semen-
e, BN, Belyzew, ALK, Thermoelastic
wWEves in 2 continuum with com
structure. TAMM,

Pesce, CF, The application of
nge equations to mechanical
% with mass dalm-
i:lpuntm Journal of Applied
Mechamics, 70, 751-6, 2003.
Michver, D 8., Hamilion's principle for
?tnm:ufnha ing mass. Joumal
Eniinming athematics, 7, 243-
261, 1973

Constitutive relations appaaring
in e dynamics of mechanical
systems with variable mass
will be siudied with particular
referenca to tha modeling of
multi-companent mixtures.

Damape of sipal structures in the

form of hydrogan embrttiemant
will be addrezsed in this contest.
The dynamics of machines

with & variable mass will be
treated in datail and, in this
contest, consaneation laws and
the stability of motion will be
analyzad. Kovel finits element
formulatians for open systems
in cowpled fuid and structural
dynamics will be presented.
Woreovar, the courss will provide
mzthematical models directly
relzted to methods of automatic
control, and theredore should be
of intarest in the fields of Givil
and Mechanical Engineering, a5
well 35 in Mechatmnics.

Musichi, [, General g change

| fior sysiems rmr&a mass.

Eul nJu.lrnaId Mechanics AS
, 18, T19-730, 1999,

of o cull llm -
progressive collapse: learmi
Trom world trade mntaralblﬁdmg
demilitions. Journal of
‘izl:lﬁuhdmnm,ﬁ]E,l ,Eﬂ-ﬂ-lﬂ,

E. Kaudascher, E., Rockwell, O,

F‘-'-i"dmﬂ“m?;;“ i

nesring guide. 3,
oae

INVITED LECTURERS

Alezander K. Balysey - Russian Acad. of Scences, 5t Pefersburg, Russia
& lartumes on: General femulations- Strecteral mechanics of systems
with wariable mazs; the Raylsigh-Ritz method for vibrating structures
with variable mass; dynamics and stability of zxally moving stuciures;
L=granpe and Hamittonian formulations for zdzlly moving strings and
beams. Engineering applications: Transmission processes, such as
those by belis ial ficw of flud.

Livija Cveticamin - University of Mowi Sad, Serhia
& leciumes on: General joomulations: Gemeral principles 2nd dynamics
of machines with continual and discontinual mass variation: chacs in
systems with variable mess comservation laws and stahility of mation
for machines with variable mass. Enginesring applications: Dynami
and stability of machines with mizting elements and varial

Dmitry Indeitsey - State of 5t. Petershurg, Russia

5 lactumes on: Gemeral foomulations: Mechanics of muti-component
media with an exchange of mess and non-classical supplies; inelastic
constitufive relations modeded in the frrmework of mulis

media. Engineenng applications: Anakytical and numenical formulations
for damage in shesl; Iydropen embrittiement of alloys.

Bames rschik - Uniersity of Line, Awstria

& lartumes on: General femulations: Continuum mechanics based
re{ations of balance 2nd jump jor systems with vanable mass 2nd
non-classical supplies; dervation of Lagrange and Hamilionian
formulations; equations of Lagrange for systems with variable mass
written in the Euler and Lagranpe description of comtinuum mechanics.

Caelso P Pesca - University of 330 Paulo, Brasil
b lactumes on: General fomulations: Analytic mechanics of systems
with mass eeplicitly dependent on position; comesponding Lagrange
and Hamiltonian formulations. Engineering applications: (fshom

Andreas Tilian - Techmical Unreersty of Braunschweig, Germany

& lactumes on: Gemeral fomulations: Mechanics of coupled sysiems with
mass dependent on structural motion andfor deformation; sHects of
added mzssdamping/stifiness; models fo fluid-structure interaction of
discrete and disiritwied mass systems. Rumencal schemes for complex
fiuid-strocture interaction and associsied reduced-onder modeds.

Enginesring applications- Aeroelzsticity and bydme{asticity.

LECTURES

Al lerchores will be given in english. lecture noies. can be downloaded
from cism web siie, instructions will be sent to accepied paricipants.



Springer book (2014):

Dynamics of Mechanical Systems with Variable Mass
http://www.springer.com/br/book/9783709118085
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Springer book (2014):

Dynamics of Mechanical Systems with Variable Mass
http://www.springer.com/br/book/9783709118085

Chapter 1 - H. Irschik and A. Humer
A rational treatment of the relations of balance for mechanical systems with a time-variable
mass and other nonclassical supplies

Chapter 2 - C.P. Pesce and L. Casetta
Systems with mass explicitly dependent on position

Chapter 3 - L. Cveticanin
Dynamics of the Mass Variable Body

Chapter 4 - D. Indeitsev and Yu. Mochalova
Mechanics of multi-component media with exchange of mass and non-classical supplies;

Chapter 5 - A. Zilian
Modelling of Fluid-Structure Interaction — Effects of Added Mass, Damping and Stiffness;

Chapter 6 - A.K. Belyaev
Dynamics and Stability of Engineering Systems with Moving Continua;



2014-2015

Generalizes the inverse
problem of Lagrangian
mechanics for continuous
open sytems

2014, Casetta: general open 7

“The inverse problem of Lagrangian mecy
Mechanica, VI. 225 (6)

2014, Cveticanin: multi body dynamics

“Principle of generalized velocities in dynamics of planar separation of a rigid body”.
Acta Mechanica, 226 2511-2525

2015, Irschik & Holl: general open systems
“Lagrange’s equations for open systems, derived via the method of fictitious particles,

and written in the Lagrange description of continuum mechanics”, Acta Mechanica, Vol.
226 (1), 63-79, 2015

Solves special cases of
Meshchersky’s equation
analytically, including

_Cayley’s problem

2015, Casetta & Pesce: discrete syste~

“A brief note on the analytical solution of Mesh{
problem of Lagrangian mechanics”, Acta Mecha



http://link.springer.com/article/10.1007/s00707-014-1156-7

2015

2015, Cveticanin: multi body dynamics

“Principle of generalized velocities in dynamics of planar separation of a rigid body”.
Acta Mechanica, Vol. 226, 2511-2525

2015, Garcia-Ferieta & Casas: celestial mechanics

“Simulacion interactiva del problema de dos cuerpos perturbados por un objeto de
masa variable dependiente de la posicion: un ilustrativo ejemplo para el estudio de la
cinematica de cometas” Revista de Ciencias, Vol. 6, No. 3 de 2015.

2015, Bartkowiak, Grabski & Kotodziey: discrete systems

“‘Numerical and experimental investigations of the dynamics of a variable mass
pendulum’, J of Mechanical Engineering Science, DOI. 10.1177/0954406215590454

2015, Casetta, Irschik & Pesce: open systems and conservation laws

“A generalization of Noether’s theorem for a non-material volume”, ZAMM - Zeitschrift
fur Angewandte Mathematik und Mechanik, approved, to appear.

and much more to be done...



Meshchersky’s eguation

V m
md— =F+®= F+d—vIrel
dt dt
Meshchersky force
[ 1\(1) — mvrel
Vit =W—V

W is the velocity of the accreted or lost mass with respect to the same
Inertial frame of reference



Particular case

F :i(mv)

dt Levi-Civita J

Case

It is not generally valid, for a single parti

It is only valid if mass is gained or lost at null velocity!

More over, It is not invariant with respect to the
choice of inertial frames of reference, except when
mass is constant.

Therefore, it does not satisfy the Galilean relativity
principle.



On the other hand, Meshchersky’s
Equation

Is generally valid!

It is invariant with respect to the choice of inertial
frames of reference.

It does satisfy the Galilean relativity principle.



Galilean Invariance

Consider two inertial frames of reference. One of them, for
simplicity and no loss of generality, is supposed fixed and the
other one moves with a constant velocity v, Let v and v’ be the
velocity of a point with respect to those frames of reference. So,

V=V +V V=V
Meshchersky }
d dm dm dv dm
w

F=—(mMV)——W=—V+m——-—
dt d dt dt dt




On the other hand...

the, particular form
)

Depends on the choice of the inertial frame:

F—i(mv)—mdv + dm V=m av + dm (VH+V e )
dt dt  dt dt  dt ref ”

Except when Z—T =0




Despite all these

Even though most text books, either at undergraduate or graduate
level, mention variable mass systems, there are not so many of them
presenting comprehensive and properly didactic treatments of
Newton’s second law.

Examples which do give proper treatments are: Inglis (1951), Targ
(1976), Starjinski (1986), Jose and Saletan (1998).

In many other good undergraduate and graduate texts, either the
problem is simply not addressed (some times just mentioned) or is
treated only when dealing with the ‘rocket problem’. Meriam and Kraige
(1987) or Boresi and Schmidt (1954) are examples of this last
approach.

Worse, there are even some classics that give wrong treatments to the
problem, stating Eq. (1) as generally valid for a single varying mass
particle, with no further consideration; see, e.g., Goldstein (1950,
1981), chapter 1, Singe and Griffith (1959), chapter 12.

The reasons for this are not clear, but certainly influenced the
surprising debate occurred among American educators in the 1950’s
and 60’s.



Example of course in Brazil

1000613 Janus

Janus

Disciplinas oferecidas

Usudrio

I:I Disciplina PMEED10-5

Mecdnica Analitica
Senha

I:I Area de Concentracio: 3152
Criagde: 05/12/2008
Ativagde: 08/12/2008
Nr. de Créditos: &

» Apresentacdo Carga Heraria:

« Esqueci a senha
« Primeiro acesso

3 ] 7 12 semanas 120 horas

« Periodo de matricula Decentes Respensaveis:
« Disciplinas oferecidas

« Catdlogo de disciplinas
« Orientadores Clovis de Arruda Martins

Celso Pupo Pesce

« Egressos USP Objetivos:
Aprofundar conceitos da Mecdnica Classica, sob a dtica da Mecdnica Analitica, formando uma base tedrica
sdlida; apresentar e discutir métodos de solucdo preparando o aluno para resolver problemas avancados da
dindrmica.

Justificativa:

Urna formacdo conceitual sdlida em Mecinica Analitica é desejavel para todos agqueles que desenvolvem
pesquisas em temas relacionados com a Dindmica. Essa formacdo tedrica ndo @ por si sd suficiente, mas
deve ser aliada ao desenvaolvimento da habilidade de aplicar os conhecimentos adquiridos na solugdo de
problemas da engenharia.

Contelddo:

Introducdo, Graus de Liberdade. Coordenadas Generalizadas, Winculos, Sistemas Holt@inomos, Prindpio dos
Trabalhos wirtuais. Principio de d " alembert. Principio de Hamilto T de Lagrange, of ELE
Holdnomos, Multiplicadores de Lagrange, Sistemas Dissipativo Sistemas com Variacdo de Massa, Edncio
de Dissipacdo de Rayleigh. Leis de Conservacdo. Método de Routh’ Srzs—d Heste

Lagrangeana da Dindmica do Continuo,

T

Forma de Avaliagao:

Exercicios, Provas e Trabalho Final,
Observacao:

Bibliografia:

Lanczos, C., The Wariational Principles of Mechanics, Dover, 1986,

Goldstein, H., Poole, C.P., Safko, 1.L., Classical Mechanics, addison-Wesley,

Meirovitch, L., Methods of Analytical Dynamics, McGraw-Hill, 1923,

Dugas, R., & Histary of Mechanics, Dover, 1922,

José, 1., Saletan, EJ., Classical Dynamics: a Contermporary Approach, Cambridge University Press, 1998,
reprinted 2002,

Arnold, W.I1., Weistein, &, Yogtmann, Mathematical Methods of Classical Mechanics, Springer, 1939,



Example of course in Brazil

ANO BASE: 2006
PROGRAMA: 31005012012P-1 Engenharia Macénica - PUC-RIO

DISCIPLINA Sigla-Numero [Nivel Carga Horaria | [Créditos
M D F
Mecanica Classica MEC-2101 Mestrado/Doutorado 45 45 3

Obrigatoria nas Areas de Concentraciio

Mecénica Aplicada

Periodo: 1° Semestre Carga-Horaria: 45 Créditos: 3
Sub-Titulo:

Docentes Categoria Carga Horéria %
Rubens Sampaio Filho Docente Parmanente 45 100,00
N° de Docentes: 1 45 100,00
Ementa:

Mecénica newtoniana aplicada a particulas, sistemas de particulas «Gistemas de massa vanavel pom énfase em referéncias
moveis. Formulagdo de Lagrange e aplicagdes. Aplicagdes do calculo 035 vanactes mios de Hamilton e equagdas de
Hamilton. Cinematica e dindmica dos corpos rigides e aplicagdes. Introdugic & teona geomeétrica e estabilidade de sistemas
autdnomos.

Bibliografia:

Principles of Dynamics, Greenwood, D.T., Prentice-Hall, 1985; Methods of Analytical Dynamics, Meirovitch, L., McGraw-Hill,
1970,




Specific text book
Cveticanin, Livija

Dynamics of Machines with Variable Mass

Gordon and Breach Science Publishers. Series of Books and
Monographs in Stability and Control Theory, Methods and
Applications, 1998, 236 p.



Much subtler: Lagrange Equation

Recall the usual invariant mass fomc EHGFQY}
d| oT ol

dt[aq,}a;@i

or %angean

Non-conservative
generalized forces

|




Lagrange Equations for Variable Mass Systems

d| oT _8_T —(5 _
dt 5C|j Oqj j Mass with J
m. =m. (T
! '( ) Mass with
position !!
m; =m,(qj,t) (jj :Z(Fi+miui)'

Mass with

velocity !l




Example: the simplest problem

particle loosing (gaining) mass, at null velocity, but
explicitly with position

m(X) o—
F(x,X,1)
Newton: m(x)X = F(x,x,t)  Correct
Usual
Lagrange: +m(x)X = F(x,x,t)  Incorrect

Missing
Correct: | d(aT/ax)/dt—aT /ox = F(x, %, ) m'(x)x? /2 b term

N—_




Apparently Paradoxal Problems :

Falling chain problems:
Buquoy version;
Cayley version;

‘U’ falling chain;

Vertical collapse of buildings



Classical problem
The falling chain of Cayley



Cayley’s ‘falling’ chain

Classic idealized problem treated by Cayley, in
1857, similar to Buquoy’s.

Ever since, matter of controversies regarding
proper formulation if treated under the
Lagrangean approach.

g \
Recent account, see:

Grewal, Johnson and Ruina, “A Chain that
speeds up, rather than slows, due to

collisions: how compression can cause y
tension”, Am. J. Phys., 79(7), 723-729, 2011.




Cayley’s ‘falling’ chain

« Falling (or suspended part) treatable as a
position dependent variable mass system.

» Classic idealized hypotheses (*):

a. Falling (suspended) part of the chain treated as a
continual vertically moving ‘rigid’ body (pure
translatory motion);

b. There is no friction force apllied either by the
table on slidding links, or by one to each other, g \
or even by the hole internal surface to the
leaving link;

c. Existence of a sudden acceleration (velocity
jumps from zero) as the links leave the chain
pile, being the transfer of any angular y
momentum to linear momentum disregarded;

d. Decreasing thickness of chain pile ignored. E l

(*) Discussion on hypotheses (a), (b) and (c) and other
points may be encountered in Grewal, Johnson and Ruina,
2011.



Cayley’s ‘falling’ chain

Chain total mass
Falling (suspended) mass

Falling mass time rate

Linear density

F
Flux of momentum at the pile




Cayley’s ‘falling’ chain

T

y Z
Ts = |5 mvy) dy = [ ue’dy =

1 .2 1.2
S Y =-Mgy Kinetic energy

y
V=V =—(I)ﬂgwdw=

1 2 1 i ; \
=—> Hgy" =—>msgy Potential energy

L:(T_V):LS:(TS _VS): Y

= S y(¥2 +gy) =, mg (¥ + gy) Fl
Lagrangean




Cayley’s ‘falling’ chain

d aTS _ % — Q Extended
dt{ oy y Lagrange equation

A . omg .
Qy:msg+F+mS%_;Wsyz
or

In terms of the
i % _%: yne Lagrangean
dt\ oy | oy 7

Jnc _

y =F+mgw——>——=y

oy

0

Recall: W




Cayley’s ‘falling’ chain

% Y =mey Derivatives
o S

Extended Lagrange equation leads to:

uyywz—/%zyZ:ng—}%yz

Finally:




Cayley’s ‘falling’ chain

*x_J
y L
=t g/L Nondimensional
* = y variables
JoL
ge= 2
d g\
D — F _ =
gl mg
Get: N y
Oy Fl
e T
y y




Cayley’s ‘falling’ chain

d aTS _%_Q Usual Lagrange
dt{ oy oy oy equation

Qy:msg+F+mS%

or

Lagrangean
dt\ oy oy

Recall: w=20

d (al—sj_%_ . In terms of the




Cayley’s ‘falling’ chain

Get:

Y+ 157 =5 1° = pyg + F

l.e.:

Y+ 517 = 1yg + F

Such that: 0 \
"2
j=g+——1 L
My y
Or, in nondimensional form: _y—
. +2_ 1y_*2 - l
y©= y* 2 g *




Cayley’s ‘falling’ chain

When F=0 (®=0), both equations

'6)) w%2 |0 O O

] B y

y"=41+ * * From the extended
y y Lagrange equation

and

yr=1+ 2 _ 1 y *2 From the Invariant

y* 2\ * mass Lagrange g
4 € uatlo%) Not OK!

Wong &

Both predict, from initial rest condition, a free-fall Yasui (200

§)
with initial acceleration equal to gravity. )

However acceleration decreases monotonically A
(so is smaller than gravity) tending to different F
asymptotic limits.

There is no singularity at y=07* !l



Cayley Problem

—Eq. (4.11a)
= = =Eq. (4.153)
,
6
5
Erroneous
4 (usual) e e
, e . /
2 . p /
) .- / Correct
/ (extended)
0,0 0,5 1,0 15 2,0 2,5 3,0 3,5 4,0 4,5 5,0
t' =t

o



Cayley’s ‘falling’ chain

In this case, the puzzling aspect regarding distinct
asymptotic limits, is related to the application of either
form of the Lagrange equations, rather than to the
validity of the idealized hypotheses.

Cayley’s solution (the proper one) predicts a limit
acceleration of g/3.

Wong and Yasui (2006)(*) (the erroneous on

predict a limit acceleration of g/2. Meritorious g \

scientific
Experimental work by Wong et aIO(ZQO%)(** attitude
measured the limit as y,;,, = (0.3204 £ 0.0010)g !

(*) Wong &Yasui, “Falling chains”. American Journal of
Physics, v. 6, 490-496, 2006. F l

(**) Wong, Youn &Yasui, “The falling chain of Hopkins, Tait,
Steele and Cayley”. European Journal of Physics, v. 28,
385-400, 2007.



Cayley’s ‘falling’ chain

d(@sz oLs . OR _
di\ oy )" oy oy

Cayley’s Lagrange
equation, by introducing
a special Rayleigh-like

1 .5 function,

R(y,y) = (msy) G

IS equivalent to

d 8LS aLS A
dt y

1 OMg -2
SRVEES

obtained from the general
extended Lagrange
equation.

should!

Frequently, the work by Cayley
has been not appreciated as it




A Civil Engineering Application:

The vertically collapsing tower



Purpose

To highlight the discussion about a still open subject on a

simple single degree of freedom model (SDOF), addressing
a controversial point.

Based on a recently published paper:

Pesce, C.P., Casetta, L., Santos, F.M., 20712, “The equation of
motion governing the dynamics of vertically collapsing buildings”,
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453



Striking Problem

Vertical collapse of buildings: WTC twin towers

Moving region

Region at rest




Possible approaches

Newtonian mechanics
Lagrangian mechanics

Generalized Reynolds’ Transport Theorem (Mclver, 73, Irschick and
Holl, 2004)

‘Mass transfer’ wave equation with moving boundaries (Bevilacqua,
DINAME2011)

Other...



Motivation:

Can a simple SDOF model represent the dynamics of a
vertically collapsing tower?

YES!

Bazant, Z. P, Verdure, M., 2007, “Mechanics of progressive
collapse: learning from World Trade Center and building
demolitions”. Journal of Engineering Mechanics, v. 133, n. 3, pp.
308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade
Center: simple analysis”. Journal of Engineering Mechanics, v. 134,
n. 2, p. 125-32.



Motivation:

Such model is able to describe the evolution of the avalanche
front of vertically collapsing towers.

However:

The equation of motion derived from the usual Lagrange equation
formalism differs from that derived from Newton’s law.

An apparent paradox !

Similar to the falling chain problem and likewise controversial.

Neither Bazant & Verdure, or Seffen are conclusive on
which one should be the proper equation!



The Vertical Collapse

Variable
N, mass with
Moving region ) = L Dty s position !!

Region at rest




Simple Model

YT

A2

cTI‘IC

non-

Ya

compacted

S

01331 BUINOIN

_\ VYB

compactec

Avalanche

front

compacted

non-

uoigal

guinow UON




Recall the Extended Lagrange Equations

Most complete case:  M; =m;(q;;0;;t)

d oT o7 . :
dt @qj aqj Mass depending
explicitly on time

Extended
generalized force A

~

Mass depending I\/_Ia_ss dependi_ng
explicitly on velocity explicitly on position
\_ J \ J




Simple Model

The collapsing tower is divided in two
distinct regions:

— the falling region;
— the still region.

The still (intact) region transfers mass to the

falling region:
— the mass of the falling region increases;
— the mass of the still region decreases.

The falling region is divided in two parts:
— The intact (non compacted) part;
— The smashed (compacted) part.

Fl

YT

non-

| Moving regior

non-

Non moving
region

compacted|

BNy COMmpacted |

compacted

Ya

—_\V | YB

Avalanche
front



Simplest SDOF Model

« Three Major Hypotheses:

1. the ‘intact’ upper part of the falling structure is a rigid body,
translating vertically and smashing the ‘lower’ part as it falls;

2. thereis adensity jump through the avalanche front; i.e., the
density of the accreted mass jumps from a ‘non ed’ value to a
‘compacted’ value, in a continuous impacting mg

3. the ggion, composed by the ‘intact’ rigid falling part
accreted by the instantaneously compacted part, translates as a rigid
material system with mass varying explicitly with position.

\elocity
jump!




Simplest SDOF Model

 Therefore:

YT

1. both regions are material systems with
varying mass,;

non-
compacted|

Ya

M compacted Ye

2. A single generalized coordinate may Avalanche
represent the collapsing dynamics;

| Moving region

non-
compacted

Non moving
region

3. Thevarying masses may be
expressed as explicit functions of
the chosen coordinate.



Simplest SDOF Model

Mass of the falling region

7 Vg
Moy = jo-ncdy+ Iacdy =0nc(Ya—Yr)+0c(Yg —Ya)

Yt Ya
. . YT
Mass of the still region 5
H Eg non-
H -g compacted Ya
mrest — J‘Gncdy = GnC(H - yB) = mm.z;lanZ:eB
yB o o front
'g compacted
EiS
2id




Simplest SDOF Model
Conservation of mass of the whole building

M :O-ncH = Moy T Myegt
c One(Ya—Yr —Yg)+0:.(Yg —Ya)=0

Y ) Mpuov =0 YB

YT

Kinematic constrains: h=(y, — Y7 ) =)

non-
compacted|

Ya
VW | Y8

T e ) Y =Y, =) ‘yA = (- K)yB‘

front

| Moving region

non-
compacted

Non moving
region

Compaction
Factor

: K=0o,/0,<1




Simplest SDOF Model

_1 v 2 _
Tmov_EmmovyA —

A
YT
| =
.8
a0
)
—
Qo non-
£ compacted|
3 Ya
S W | YB
. COMpacted | /.
Avalanche
front
20 non-
3 compacted
c
EiS
o0
=z
\ 4

Kinetic Energy

1

%[O-ncyB ]yA2 — 92 O-nc|:

Or

Thov= %O-nc(l_ K)2 Ye yBZ



Simplest SDOF Model

Lagrange equation

Extended form for mass varying with position

d (aTmov j . aTmov _ QA

5 dt\ oy Y A
YT

Eo non- A am 2

'S compacted) - _ 1 mov_y

gL 124 | v QA_mmovg_F 2 5 Ya

Avalanche yA

o0 on. front

% compacted|

£is

210 Dissipative term
\ 4




Simplest SDOF Model

Actually
A Rayleigh-like function could be defined

R(YarYa) = ¢MYa” = cM(ya) Ya°

A
YT
oR 1 2
0o non- . ’ .
.g compacted| Va .— — § m (yA) yA
= |feommmma{— v 8 @y A
AvalanZhe
0 o front
% compacted|
: B Dissipative term
zi2
\ 4




Simplest SDOF Model

Lagrange equation

Extended Rayleighian form for mass varying with position

d £8Tmovj oT.., ©OR
- Qa

A _|_ e
Vi dt\ oy, Yn OYa
S
3
) non-
E compacted| Ya
o _ . . . .
2 LV | vs Qr=m_,9-F Dissipative
Avalanche term
0 front
c non-
'g compacted|
£ ic




Simplest SDOF Model

—Kh |.
Ya }YAZ

Tmov:%mmovyA =3 [GncyB]yA _% |: (1-K)

Kinetic energy derivatives

aTmov
Y a

1] d (et d d vy
: dt( o, J:"mdt(yByA):“‘K)Gmdt‘yByB’

V4 = (1-K)Yg|

A

= Oqc yB yA - (1 K)O-nc yB yB

non-
compacted|

| Moving region

H yA 2
—\ | Ys aT y
BN Compacted | / Y 2
Avalanche — mov — _%O-HC yA _%(1_ K)O-ncyB
front ay 1— K
) non- A

compacted

which cancels out exactly the position dependent term:

om . 2 O . . 2
-3 aymov Ya = %l n(|:< YA —5(1-K)o. Vg
A

Non moving
region




Simplest SDOF Model

Recall:

Myuov =0 YB

YT

non-
compacted|

Ya
VW | Y8

Avalanche
front

| Moving region

W COompacted |

non-
compacted

Non moving
region

Then:
d (8Tmovj_ aTmov _Q
. - XA
dt\ oya ) OYya
A om.., ..
QA:mmovg_F_% = yA2

Y a

!

d .
(1-K)oy i (YeYg)=0,0Ys —F

!

g yBZ 1 F

y — — _
1K yg (1K) oneYs




Simplest SDOF Model

All this leads to

Extended Lagrange Equation Usual Lagrange Equation

%2

%2
g =y 1 0 i y*:@y L1 0
y 1=K (@1-K)y 2y 1-K (1-K)y"

Compaction Avalanche
factor front
— *
K=0o,/0; YB

YZF

Resistive O=F/P Tower height
load
Tower weight



Aparent Paradox

Neither Bazant & Verdure, or Seffen were conclusive on
which one should be the proper equation!

Extended Lagrange Equation Usual Lagrange Equation

%2 %2

y*:_y* n l _ (D _ y*:@y* n 1 . (D _
y 1-K (@-K)y y 1-K (@1-K)y
-

L Proper Eq.!

|

Crash down duration (tower 1): 11s

[Non -proper

Eq.!f

Crush down duration (tower 1): 9,8s




Similarity with falling chains
F=0; K=0
Cayley’s

Extended Lagrange Equation Usual Lagrange Equation

.2 .2

o) -5
/N
[ Proper EQ.! } gI [&roper Eq.!}




Similarity with falling chains

F=0; K=0
Extended Lagrange Equation F ‘ Usual Lagrange Equation
1=—g-L Z 1= g L1F
: o z
X—
[ Proper EQ.! } Non -proper Eq.!}

Buquoy’s



Simplest SDOF Model
Case Study: the WTC Towers

H =407m P=3.073GN o, =770x10°t/m

0<d=F/P<021 K=o,/oc,=0.2

Bazant, Z. P, Verdure, M., 2007, “Mechanics of progressive collapse: learning
from World Trade Center and building demolitions”. Journal of Engineering
Mechanics, v. 133, n. 3, pp. 308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade Center: simple
analysis”. Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.

Pesce, C.P.,, Casetta, L., Santos, FM., 2012, “The equation of motion governing
the dynamics of vertically collapsing buildings’,
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453
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Table 1. ‘Crush-down’ time. WTC: towers 1 and 2. Comparing the
results from the proper and non proper ones equations.

K=0.2; ®=0.044 K=0.2; ®=0.0
Tower Equation té te (s) té t. (s)
1 Eq. (102) - proper 1.75 11.3 1.59 10.2
1 Eg. (103) - non-proper 1.55 10.0 1.39 9.0
2 Eq. (102) - proper 1.45 9.3 1.36 8.8
2 Eq. (103) - non-proper 1.32 8.5 1.23 7.9

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion
governing the dynamics of vertically collapsing buildings”’,
http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453
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the resistive force, @, having as parameter the
compaction factor K.
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CONCLUSIONS

Problems of variable mass systems in Engineering Mechanics are rather
classical and very well explored in the technical literature, since von
Buquoy’s work, 1812-1815, Cayley, 1857, and Meshchersky’s, 1897.

However, its subtlety sometimes reserve trappings to students and even
to scholars. As a matter of fact, much work is still being carried out on
the subject, as testimonies the excellent and recent review by Irschik and
Holl (2004).

Nevertheless, from time to time, misinterpretations are found on the
correct application of Newton’s second law or concerning the Lagrangian
Equation to this kind of systems

Sometimes, motivated by nonlinear dynamics applications, aroused from
engineering problems, other times by theoretical issues, see, e.g.
Musicki (2005), variable mass system dynamics is still a state-of-the-art
matter, both, grounding the rational formulation of open systems
dynamics or directly linked to technical applications.

Its importance goes beyond applications on engineering, extending from
solids and fluids dynamics to complex flows of mixtures, fluid flows in
porous media, or even reaching quite distinct problems in theoretical
physics.



“Be extremely careful when dealing with
variable mass systems!!”

Thank you!
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Derivation of the Extended
Lagrange Equation for General
Variable Mass Systems

2003, Pesce, C. P.

“The Application of Lagrange Equations to Mechanical
Systems with Mass Explicitly Dependent on Position”, Journal
of Applied Mechanics, Vol. 70, pp. 751-756.



Extended Lagrange Equations
Derivation via D’ Alembert Principle and PVW

dp;
Z(d_tl_lzljé]:)l:o Fi:fi+hi

f. Active forces

Reactive forces

" \elocity o
expelled (gained) mass

measured in an
\____Inertial frame.

dv;
Z(mi T (i + @, )j oh =0 Relative velocity of
| expelled (gained) mass

Meschersky’s Force

or




LLagrange Equations: via Principle of Virtual Work

oP.
P=) —L
. 2 T
vi =V;(d;;0;;t); 1 =1..., M ov; d| oP
oq; dt| aq;
ov;  oP
Kinematic relations oq; 69,
dv B _dflov’) @ (2]
dt aq; dt(2a4; | ag;\2
oP, oR, _
Q; :ZFi '__:Z(fi +hy) - Generalized forces



Simplest case: constant mass

dVi GPI d 1 8IIIiVi2 8 1 2 d 5T, 6TI
dt oq; dt|2 oq; oq; \ 2 dt\ og; | oq;
J J J J J

dcrlr;i 0 | dt dt
oP
Q. =Sf. I
| Z" oq;




Case: m(t)

dp; oP.
PVW Z[di—(f.m.)] éﬂ{]Z g =0
' o ]
Integration by o :di Im Wizj_dmi {_ . iz)_
parts, first ogj dt{2 " oq; ) dt |2 aq;
term: _4gdj1
dt
_d
ot

oP. dmiv_.%_ldmiavi2
dt ' ag; 2 dt odg;

Most general form



Case: m(t)

(continued)

eading to the same usual form

d oT oT
. :QJ1 J:11
dt oq; 0q;
with
oP oP
Q=Y F-——=> (f+h;)—
J Z 8qj Z( )qJ
where



Most complete case: m; =m;(q;;qd;;t)

Integration by o dvi R
parts, first
term:

Cancel each other,
\as before
second
term: dm; R




Most complete case: m; =m;(q;;q;;t)
Leading to the Extended Form of the Lagrange Equations:

d oT a
dtaqJ

=Q;; j=1...,M
Mass depending }

Extended explicitly on time
generallzed force
Z (f, +mv,;) —+

Two new terms

a9

~

Mass depending Mass depending
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Ocean Enginering Problems



Ocean Engineering problems

moon-pool

Deploying
cable

Cable Deployment from a Reel

Is(6)=R¢&




Cable Deployment from a Reel

System 7(0) = ﬂR@((l— £)g — Ré) Hanging traction
Wound Mg (0) = —uRO Mass rate
cable+reel:

- T, =1/2(15)0% =1/2(1 5 + uR? (L — RH))H?
Variable mass

c?t(fagj_%:% Qe:(f(é’)+mR(<9)R6’)R

l’ INCORRECT

(Io + mRZ)é—(l—,B),ugRZH =0




System
Wound

Cable Deployment from a Reel

cable+reel:

Variable mass

d

0Ty

7(6) = /,R,g((l_ B)g— Ré) Hanging traction

Mg (0) = — 1RO Mass rate

T, =1/2(15)0% =1/2(1 5 + uR? (L — RH))H?

dt
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aTl = (5(9 (39 = (T(9)+mR (Q)Rg) —E—g R<6

06
1 CORRECT
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Cable Deployment from a Reel: typical analysis

I.C.. 15(0(0)=10m; 6(0)=0

o(t)(rad /s)

20

—— Consistent eq.
— Erroneous eq.

15F

10

0 50 100 150 200 t ( 250
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F =—1/2C; pD(RO)?I,(6) =—1/2C; pDR0)?



Ocean Engineering problems

2] pipe
pier S.
0 T
H Sw
SR
Oscillating water column In Oscillating water column in the
open pipes moon-pool of a mono-column

platform



; pipe
pier
] Sk
0 T
H Sw

SR
Oscillating water column In open pipes



Oscillating water column In open pipes

T =2 pAG +H)?

F=f+mv,=(F+Fp)+my, =
1 . .
=(— pAg(sz§2j+(pA:2)pAgc

doT ar

9 _F & 6 _
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Oscillating water column In open pipes

F—f+mv ——

d or oT

dt o oc
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1
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Oscillating water column In open pipes

w=,9/H
Normalizing n(t)=<(t)/H
—1<n
1ot
ij + * =0
2 (n+1)  (n+1)
Small n+n=0

oscillations:



Oscillating water column In open pipes

CORRECT Phase INCORRECT
portraits

1.C.: 1(0) = —0.99..— 0.5;77(0) = 0



Ocean Engineering problems

Hydrodynamic Impact

Jet 6C jet
Vv Vv
VR el
Jet rooth free surface
T-im, w?
2z Added mass dependent on position
MM ()
t
= j Wt
0+

Buoyancy and Gravitational Forces are neglectable at
the very instant of impact



Hydrodynamic Impact




Hydrodynamic Impact

Force applied on the body via non-extended form

I INCORRECT




Hydrodynamic Impact

Second
order

Force applied on the bulk of the liquid

oy d(@TjJr@_T_lszz

= W 2 —2rhv, sin a
oW ) 8¢ 2 d¢

ST

Force applied on the body via extended form
d (8T j o1 L Extraterm |
F, = +
g
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Hydrodynamic Impact

Sphere of radius R and mass m
[Non-dimensional

. normalizing _
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Hydrodynamic Impact
Sphere of radius R and mass m

normalizing
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Hydrodynamic Impact
Sphere of radius R and mass m
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Hydrodynamic Impact
Sphere of radius R and mass m

n=¢/R

0.30 0.30
025 F 025 }
020 F 0.20 }
= 015 ¢} = 015 }
0.10 F 0.10 }
005 F 005 F
0.00 0.00
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.00 0.05 0.10 0.15 0.20 0.25 0.30

t t

t=W,t/R t=W,t/R

CORRECT INCORRECT

B=m/m, =3m/(4pR?): specific mass



