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Summary

The subject has not always been deeply discussed in Engineering 

Mechanics Education and, even worse, not always properly included in 

many modern Engineering Courses curricula, at both undergraduate and 

graduate levels.

The purpose of the present talk is to re-address such an important 

matter, aiming at contributing to Engineering Mechanics Education, by 

discussing under a historical perspective some theoretical aspects 

involved in variable mass systems dynamics which are usually hidden 

behind many derivations.



Motivation

Variable mass systems have been the focus of a large number of 

problems in classical mechanics. However, despite the classic nature 

and importance of variable mass systems dynamics, many 

misinterpretations were done on the correct application of Newton’s 

second  law, even in a not so distant past. Such misinterpretations 

sometimes give rise to apparent paradoxes in Classical Mechanics.

For instance, motivated by the rocket problem, a long debate on the 

correct application of Newton’s law took place during the 1960’s, among 

American scholars and educators.

Even subtler may be the proper application and interpretation of the 

Lagrangian formalism to systems presenting mass dependence on time, 

position (and velocity).



Facts on Newton’s law application

1960’s American scholars debate

“…this basic law of mechanics is currently 

being seriously misinterpreted. This 

misinterpretation appears under conditions 

where the mass of a body is a function of 

time.”

Meriam J.L. 1960 J. Eng. Ed. 51 243



Facts on Newton’s law application

1960’s American scholars debate

“There exists considerable confusion and 

disagreement among professional physicists 

concerning the correct classical equations of 

motion for systems of changing mass…”

Tiersten M.S. 1969 Am. J. Phys. 40 183



Plastino, A.R. & Muzzio, J.C. 1992

Facts on Newton’s law application
1990’s



Brief history

(1687)

Sir Isaac Newton
(1689, by Godfrey Kneller)

* January 4th 1643, in Woolsthorpe; † March 31st 1727 in London



Newton’s Laws

Lex I: Corpus omne perseverare in statu suo quiescendi vel

movendi uniformiter in directum, nisi quatenus a viribus

impressis cogitur statum illum mutare.

Lex II: Mutationem motis proportionalem esse vi motrici

impressae, etfieri secundum lineam rectam qua vis illa

imprimitur.

Lex III: Actioni contrariam semper et aequalem esse 

reactionem: sine corporum duorum actiones in se mutuo 

semper esse aequales et in partes contrarias dirigi.



“Law I – Every body perseveres in its state of rest or of uniform motion 
in a right line, unless it is compelled to change that state by forces 
impressed thereon”; 

“Law II - The alteration of [the quantity] of motion is ever proportional to 
the motive force impressed; and is made in the direction of the right 
line in which that force is impressed”; 

“Law III - To every action there is always opposed an equal reaction –
or the mutual actions of the two bodies upon each other are always 
equal, and directed to contrary parts”;

Dugas, page 206.

Dugas, R., 1955, A History of Mechanics, Dover ed.,1988, 662 pp.

Newton’s Laws

Law of inertia; establishes inertial 

frames of reference

Law of acceleration

Action-reaction Principle



Newton’s Definition of mass

The term ‘law of motion’ was introduced in the 17th century by 

Descartes. After stating the law of inertia in an essentially modern 

form, Descartes stated a law of conservation of momentum with 

respect to its magnitude only, and not to direction, and continued 

with a list of ‘laws of impact’ which involved the impact between 

solid bodies.

At the beginning of his famous Philosophiae Naturalis Principia 

Mathematica, Newton asserted the so-called ‘laws of motion’, which 

is more than a result of an appreciation of previous works.

“Rather than dealing with relations between initial and final 

conditions in an interacting system, as done by Descartes, Newton 

dealt directly with the effect of the forces acting on individual 

bodies…”

Arons and Bork (1964)



Newton’s Definition of mass

When Newton discussed the motion of bodies, the trajectories were 

conic sections and not straight lines or other paths, and the forces 

considered by him were central forces. 

Apparently, he showed no interest in the mechanical problems 

usually found in today textbooks, particularly the variable mass 

ones.

Paradoxically, according to Dugas (1951), “Newton introduced the 

notion of mass into Mechanics(*)”, even though “this notion had 

appeared in Huyghen’s work, but only in an impermanent form”.

(*) “Definition I – The Quantity of Matter is the measure of the same, 

arising from its density and bulk conjunctly”; Dugas (1951), page 

201.



Variable mass problems

Early 19th Century

According to Šíma and Podolský (2005), the Czech scientist and 
inventor von Buquoy “was the first to investigate systems with a 
varying mass”.

Georg Franz August de Longueval, Baron von Vaux, Graf von Buquoy

(* Brussel, September 7th 1781; † Prag, April 19th 1851)

“In 1812 von Buquoy explicitly formulated the correct dynamical 
equation of motion for the case when the mass of a moving object is 
changing”.

von Buquoy, G., 1812, “Analytische Bestimmung des Gesetzes der 
Virtuellen Geschwindigkeiten in Mechanischer und Statischer 
Hinsicht”, Leipzig: Breitkopf und Hartel.



Early 19th Century

von Buquoy’s work was  presented in 1815, at the Paris Academy of 
Sciences. 

“Apart from a single short article by Poisson (1819), his ideas did not 
attract attention, and they gradually become forgotten.”

Šíma and Podolský (2005).

Poisson, S.D., 1819, “Sur le Mouvement 
d’un Système de Corps, en 
supposant le Masses Variables”, 
Bull. Sci. Soc. Philomat. Paris, 
avril, pp. 60-62

Siméon Denis Poisson

* Pithviers, June 21st 1781; † Paris, April 25th 1840

Variable mass problems



Variable mass problems

19th Century

“Buquoys’s general equation of motion and other explicit examples 
were later formulated independently by various authors; 

to be mentioned, Tait and Steele (1856) and Meshchersky (1897),”

Šíma and Podolský (2005).

Peter Guthrie Tait, 1831-1901;

Scottish, topology and mathematical physics



Variable mass problems

Mid 19th Century

1857, Cayley: suspending chain coiled up at a table
– Cayley, A., 1857, "On a Class of Dynamical Problems". Proceedings of Royal 

Society of London, Vol VIII, pp 506-511.

Falling chain: still a very intriguing problem…

– Davis, Am. J. Phys., 1952

– Prato & Gleiser, Am. J. Phys, 1982

– Calkin & March, Am. J. Phys., 1989

– Vrbik, Am. J. Phys., 1993

– Keiffer, Am. J. Phys., 2001

– Tomaszewski & Pieranski, Am. J. Phys., 2006

– Wong & Yasui, Am. J. Phys., 2006

– Wong, Youn & Yasui, Eur. J Phys, 2007

– Casetta, Doctoral Thesis, EPUSP, 2008

– Grewal, Johnson & Ruina, Am. J. Phys., 2011

– Irschik, J Theo  & Appl Mech, 2012

Arthur Cayley, 1821-1895

British mathematician



Variable mass problems
Late 19th Century

Ivan Vsevolodovich Meshchersky, 1859 - 1935

Meshchersky (1897) Master Thesis, and his subsequent work 
written in 1904, have been ever since recognized - in the Russian 
technical literature - as the limestone in the study of variable mass 
systems in the context of Classical Mechanics; see, e.g., Targ

(1976), page 394 or Starjinski (1980), page 498.

Meshchersky, I.V., 1897, Dinamika tochki

Peremnoj Massy (*), St Petesburg, Akademia

Nauk, Peterburskij Universitet.
(*) Динамика точки переменной массы

Meshchersky, I.V, 1904, “Equations of Motion 

of a Variable Mass Point in the General Case” 

(in Russian), St. Petersburg Polytechnic 

University News, Vol.1, pp. 77-118.



Ivan Vsevolodovich Meshchersky
1859 – 1935

(http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

Meshchersky taught in St 
Petersburg for 58 years. Obtained a 
Master's Degree in applied 
mathematics in 1889 and was 
appointed as a dozent at the 
university in 1890. 

Meshchersky is best known for 
his work on the motion of bodies 
of variable mass which he 
described in January 1893 at a 
meeting of the St Petersburg 
Mathematical Society.

He continued to develop his work on 
this topic for his dissertation entitled 
The dynamics of a point of variable 
mass, submitted in 1897. 

Meshcheysky’s examples:

the increase of the mass of the 
earth caused by falling 
meteorites; 

the increase of the mass of a 
freezing iceberg and the 
decrease of a thawing one;

the increase of the mass of the 
sun gathering of cosmic dust 
and its decrease with radiation;

the decrease of the mass of a 
rocket as its fuel is 
consumed.



Ivan Vsevolodovich Meshchersky
1859 – 1935

(http://www-gap.dcs.st-and.ac.uk/~history/Biographies/Meshchersky.html)

He applied his theory to comets 
being the first to study the inverse 
problem of determining the loss of 
mass from a knowledge of the orbit 
and the acting forces.

His work on the motion of particles 
of variable mass formed the basis 
for rocket technology developed 
after 1945.

Even before his dissertation 
Meshchersky had shown another 
major interest in his life: teaching. 

He published The teaching of 
mechanics in certain institutions of 
higher education in Italy, France, 
Switzerland and Germany in 1895. 

This played a major role in raising 
the standards of the teaching of 
mechanics in Russia. The St 
Petersburg Polytechnic Institute was 
being set up at this time and 
Meshchersky played a major role in 
developing the curriculum. He was 
appointed as Head of Applied 
Mathematics at the Polytechnic 
Institute in 1902.

Meshchersky’s Mechanics course 
became famous, leading in 1914 to 
a textbook  “A collection of problems 
of mechanics”.

This famous book had reached its 
26th Russian edition by 1960, 
translated into English by Pergamon 
Press in 1965.

Curiously, at the time of 

the American Scholars 

Debate

Even before that, in 1903, the Russian scientist 

Tsiolkovski - who had invented a kind of rocket-

aircraft around 1883 - applied Meshchersky’s

Equation to solve the rocket problem in two 

versions: (i) gravity-free and (ii) non-gravity-free. 

Those two problems are sometimes referred to 

as the first and the second problems of 

Tsiolkovski.



Other worth mentioning studies

Early 20th Century

1928; Levi-Civita: two bodies, variable mass problem 

"Sul Moto di un Corpo de Massa Variabile".  Rendiconti delle Sedute della Reale 
Accademia Nazionale dei Lincei. Vol VIII, pp 329-333, Aggiunta alla nota, pp 
621-622.

“Ancora sul Moto di um Corpo de Massa Variabile”, Rendiconti delle Sedute della 
Reale Accademia dei Lincei, Vol.11, pp. 626-632.

1936; Agostinelli: dynamic systems with variable mass

"Sui Sistemi Dinamici di Masse Variabili". Atti della Reale Accademia delle 
Scienze di Torino, Classe di Scienze Fisiche, Matemat. Naturali, 71, I, pp. 254-
272.

1940-50’s; several authors: rockets and satellite problems.

Leitmann, G., 1957, “On the Equation of Rocket Motion”, Journal of the British 

Interplanetary Society, Vol.16, No. 3, pp. 141-147.

(lost or  gained at 
null velocity)

still lost or  gained 
at null velocity

1873-1941, Italy



American Scholars debate

The 1960’s

1960, Meriam: Engineering Education

“Variable-Mass Dynamics”, Journal of Engineering Education, Vol.51, No. 3, pp. 

240-243.

1962, Thorpe: Engineering Education

“On the Momentum Theorem for a Continuous System of Variable Mass”, 

American Journal of Physics, Vol.30, No. 9, pp. 637-640.

....

1969, Tiersten: Engineering Education

“Force, Momentum Change and Motion”, American Journal of Physics, Vol.37, 

No. 1, pp. 82-87.



Recent studies on variable mass systems

Late 60’s to 80’s

1968, Weber, H.I.

“Vibração de Vigas com Massa Variavel no Tempo”. MSc Thesis, UFRJ

1973 McIver: general open systems

“Hamilton’s Principle for Systems of Changing Mass”, Journal of Engineering 

Mathematics, Vol.7, No. 3, pp. 249-261.

1975, Mikhailov: history of mechanics. 

“On the history of variable-mass system dynamics”. Mechanics of Solids, 10(5),     

32-40

1982 Copeland work-energy theorem

“Work-energy theorem for variable mass systems”, A. J. Phys., 50(7), 599-601.

Key contribution 

generalizing 

Reynolds Transport 

Theorem

Supervisor: 

Bevilacqua, L.



Recent studies on variable mass systems

Early 80’s to 90’s

1982, 84, Ge: non-holonomic variable mass systems

1984, 89, 92, 93, 94, 2001: industrial systems (textile, lifting-crane) 

(Cveticanin) vibration problems due to variable 

mass;

1995, 97 (Crellin et al): tethered satellites;

1999, Mušicki: general open systems

“General Energy Change Law for Systems with Variable Mass”, European 

Journal of Mechanics A/Solids, Vol.18, pp. 719-730.



Nowadays studies: 2000-2004

2000, Mušicki: general open systems

”Generalization of a New Parametric Formulation of Mechanics for Systems with 

Variable Mass”, Eur Journal of Mechanics A/Solids, Vol.19, pp. 1059-1076.

2002, Eke & Mao: Engineering Education

“On the Dynamics of Variable Mass Systems”, International Journal of 

Mechanical Engineering Education, Vol.30, No. 2, pp. 123-137.

2003, Pesce: Lagrange Equation and variable mass systems

“The Application of Lagrange Equations to Mechanical Systems with Mass 

Explicitly Dependent on Position”, Journal of Applied Mechanics, Vol. 70, pp. 

751-756.

2004, Irschik & Holl: general open systems

“The Equations of Lagrange Written for a Non-Material Volume”, Acta

Mechanica, Vol.153, pp. 231-248.

2004, Irschik & Holl: general open systems

“Mechanics of Variable-Mass Systems – Part 1: Balance of Mass and Linear 

Momentum”, Applied Mechanics Review, Vol.57, No. 2, pp. 145-160.



2005, Mušicki: general open systems

“Extended Lagrangian Formalism and Main General Principles of Mechanics”, 

European Journal of Mechanics A/Solids, Vol.24, pp. 227-242

2006, Wong & Yasui: Engineering Education
“Falling chains”. American Journal of Physics, v. 6, 490-496.

2006, Pesce, Casetta, Tannuri: ocean engineering applications

“The Lagrange Equations for Systems with Mass Varying explictly with Position: 

Some Applications to Offshore Engineering”, JBSMSE, vol. 28, 496-504.

2007, Wong, Youn & Yasui: Engineering Education
“The falling chain of Hopkins, Tait, Steele and Cayley”. European Journal of    

Physics, v. 28, 385-400.

2007, Bazant & Verdure: mechanics of progressive collapse

“Mechanics of progressive collapse: learning from World Trade center and 

Building Demolitions”, Journal of Engineering Mechanics, ASCE Vol.133 (3), pp. 

308-319

2007, Casetta & Pesce: hydrodynamic impact

“Hamilton’s Principle for Dissipative Systems and Wagner’s Problem”, 2nd 

International Workshop on Water Waves and Floating Bodies 15th–18th April 

2007, Plitvice, Croatia.

2005-2007



2008-2010

2008, Seffen: mechanics of progressive collapse

“Progressive Collapse of the World Trace Center: simple analysis”, Journal of 

Engineering Mechanics, ASCE Vol.134 (2), pp. 125-132

2008, Casetta: mechanics of variable mass systems

“Contribuições à Mecânica dos Sistemas de Massa Variável”, EPUSP, Tese de 

Doutorado, 185 pp

http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05082009-100852/ 

2009, Cveticanin: multi body dynamics

“Dynamics of Body Separation – analytical procedure”, Nonlinear Dynamics, Vol. 55, 

pp. 269-278

2009, Schwarzbart et al: tethered satellites

“Tethered satellite systems: a challenge for mechanics and applied mathematics. 

GAMM-Mitteilungen, v. 32, n. 1, p. 105-20.

2010, Bažant, Le, Greening, & Benson: mechanics of progressive collapse

“What did and did not cause collapse of World Trade Center twin towers in New 

York?”, Journal of Engineering Mechanics, ASCE  vol. 134 (10). 892-906

http://www.teses.usp.br/teses/disponiveis/3/3152/tde-05082009-100852/


2011

2011, Casetta & Pesce: variational principles in hydrodynamics

“On Seliger and Whitham’s variational principle for hydrodynamic systems from the 

point of view of fictitious particles”, Acta Mechanica, vol. 219, 181-184.

2011, Le & Bažant: mechanics of progressive collapse

"Why the observed motion history of World Trade Center towers is smooth”.  

Journal of  Engineering Mechanics, ASCE, 137 (1), 82-84.

2011, Casetta, Pesce, Santos : hydrodynamic impact

“On the Hydrodynamic Vertical Impact Problem: an Analytical Mechanics Approach”, 

Marine Systems and Ocean Technology, 6(1), 47-57.

2011, Grewal, Johnson and Ruina: falling chains

“A Chain that speeds up, rather tan slows, due to collisions: how compression can 

cause tension”, Am. J .Phys., 79(7), 723-729.

2011, Jeltsema & Dòria-Cerezo: systems modeling

“Modeling of systems with position-dependent mass revisited: a Port-Hamiltonian 

approach”, Journal of Applied Mechanics, Vol. 78 / 061009-1.



2011, Bedoustani et al: robotics, cable-driven manipulators

“Lagrangian dynamics of cable-driven parallel manipulators: a variable mass 

formulation”.  Transactions Canadian Soc. Mech. Engineers, 35(4), 529-542.

2011, Holl & Hammelmuller: coiling processes

“Analysis of the vibrations due to thermal deflection of the drum in the coiling process. 

Proc. Appl. Math. Mech. 11, 317-318

2012, Cveticanin: nonlinear oscillators

“Oscillator with non-integer order nonlinearity and time variable parameters”. Acta

Mechanica, 223 (7):1417-1429.

2012, Cveticanin & Pogany: nonlinear oscillators

“Oscillator with a sum of non-integer order non-linearities”. Journal of Applied 

Mathematics, vol. 2012, art. no. 649050.

2012, Casetta & Pesce: general open systems

“On the generalized canonical equations of Hamilton for a time-dependent mass 

particle”, Acta Mechanica, vol. 223, 2723-2726.

2012, Irschik: continuous impact and open systems

“The Cayley variational principle for continuous-impact problems: a continuum 

mechanics based version in the presence of a singular surface”, J of Theoretical and 

Appl Mech, 50 (3), 717-727.

2011-2012



2013, Cruz  y Cruz & Rosa-Ortiz: position dependent mass & Poisson algebra 

“Generating Algebras of Mechanical Systems with Position-Dependent Mass”. 

Symmetry, Integrability and Geometry: Methods and Applications, Special issue.

2013, Cveticanin: nonlinear oscillators

“Van der Pol oscillator with time variable parameters”, Acta Mechanica, Vol. 224(5), 945-

955.

2013, Casetta & Pesce: general open systems

“The generalized Hamilton’s principle for a non-material volume”, Acta Mechanica, vol. 

224, 919-924.

2013, Casetta & Pesce: discrete systems and inverse problems

“The inverse problem of Lagrangian mechanics for Meshchersky’s equation”, Acta

Mechanica, vol. 225, 1607-1623.

2013

Generalizes McIver’s

Hamiltonian approach to 

Reynolds transport

theorem



Leading to the

Advanced International Course

Dynamics of Mechanical Systems 

with Variable Mass

CISM

International Centre for Mechanical Sciences

Udine, Italia

24-28 Sep 2012

http://www.cism.it/courses/C1212

http://www.cism.it/courses/C1212






Hans Irschik,
University of Linz, Austria

Alexander Belyaev,
Univ of St Petersburg, Russia

Livija Cveticanin,
University of Novi Sad, Serbia

Celso Pesce,
University of S. Paulo, Brazil

Andreas Zilian,
Tech Univ of Braunshweig, Germany

Dmitry Indeitsev,
Univ of St Petersburg, Russia

Springer book (2014):

Dynamics of Mechanical Systems with Variable Mass
http://www.springer.com/br/book/9783709118085



Springer book (2014):

Dynamics of Mechanical Systems with Variable Mass
http://www.springer.com/br/book/9783709118085

Chapter 1 - H. Irschik and A. Humer

A rational treatment of the relations of balance for mechanical systems with a time-variable 

mass and other nonclassical supplies

Chapter 2 - C.P. Pesce and L. Casetta

Systems with mass explicitly dependent on position

Chapter 3 - L. Cveticanin

Dynamics of the Mass Variable Body

Chapter 4 - D. Indeitsev and Yu. Mochalova

Mechanics of multi-component media with exchange of mass and non-classical supplies;

Chapter 5 - A. Zilian

Modelling of Fluid-Structure Interaction – Effects of Added Mass, Damping and Stiffness; 

Chapter 6 - A.K. Belyaev

Dynamics and Stability of Engineering Systems with Moving Continua;



2014, Casetta: general open systems and inverse problems

“The inverse problem of Lagrangian mechanics for a non-material volume”, Acta

Mechanica, Vl. 225 (6) DOI.

2014, Cveticanin: multi body dynamics

“Principle of generalized velocities in dynamics of planar separation of a rigid body”. 

Acta Mechanica, 226 2511-2525

2015, Irschik & Holl: general open systems
“Lagrange´s equations for open systems, derived via the method of fictitious particles, 

and written in the Lagrange description of continuum mechanics”, Acta Mechanica, Vol. 

226 (1), 63-79, 2015

2015, Casetta & Pesce: discrete systems and inverse problems

“A brief note on the analytical solution of Meshchersky’s equation within the inverse 

problem of Lagrangian mechanics”, Acta Mechanica, vol. 226, 2435-2439.

2014-2015

Generalizes the inverse

problem of Lagrangian 

mechanics for continuous

open sytems

Solves special cases of

Meshchersky’s equation

analytically, including

Cayley’s problem

http://link.springer.com/article/10.1007/s00707-014-1156-7


2015, Cveticanin: multi body dynamics

“Principle of generalized velocities in dynamics of planar separation of a rigid body”. 

Acta Mechanica, Vol. 226, 2511-2525

2015, Garcia-Ferieta & Casas: celestial mechanics
“Simulación interactiva del problema de dos cuerpos perturbados por un objeto de 

masa variable dependiente de la posición: un ilustrativo ejemplo para el estudio de la

cinemática de cometas”, Revista de Ciencias, Vol. 6, No. 3 de 2015.

2015, Bartkowiak, Grabski & Kołodziej: discrete systems

“Numerical and experimental investigations of the dynamics of a variable mass 

pendulum”, J of Mechanical Engineering Science, DOI: 10.1177/0954406215590454

2015, Casetta, Irschik & Pesce: open systems and conservation laws

“A generalization of Noether’s theorem for a non-material volume”, ZAMM - Zeitschrift 

fur Angewandte Mathematik und Mechanik, approved, to appear.

2015

and much more to be done…



Meshchersky’s equation
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Meshchersky force

w is the velocity of the accreted or lost mass with respect to the same 
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Particular case
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It is not generally valid, for a single particle.

It is only valid if mass is gained or lost at null velocity!

More over, it is not invariant with respect to the

choice of inertial frames of reference, except when

mass is constant.

Therefore, it does not satisfy the Galilean relativity

principle.

Levi-Civita 

Case



On the other hand, Meshchersky’s 

Equation

Is generally valid!

It is invariant with respect to the choice of inertial

frames of reference.

It does satisfy the Galilean relativity principle.
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Galilean Invariance
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Consider two inertial frames of reference. One of them, for 

simplicity and no loss of generality, is supposed fixed and the 

other one moves with a constant velocity vref. Let  v and v’ be the 

velocity of a point with respect to those frames of reference. So,

vv  

vv  
Meshchersky

Form is invariant



On the other hand…

the, particular form
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Depends on the choice of the inertial frame: 
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Despite all these
• Even though most text books, either at undergraduate or graduate 

level, mention variable mass systems, there are not so many of them 

presenting comprehensive and properly didactic treatments of 

Newton’s second law. 

• Examples which do give proper treatments are: Inglis (1951), Targ 

(1976), Starjinski (1986), José and Saletan (1998).

• In many other good undergraduate and graduate texts, either the 

problem is simply not addressed (some times just mentioned) or is 

treated only when dealing with the ‘rocket problem’. Meriam and Kraige 

(1987) or Boresi and Schmidt (1954) are examples of this last 

approach.

• Worse, there are even some classics that give wrong treatments to the 

problem, stating Eq. (1) as generally valid for a single varying mass 

particle, with no further consideration; see, e.g., Goldstein (1950, 

1981), chapter 1, Singe and Griffith (1959), chapter 12.

• The reasons for this are not clear, but certainly influenced the 

surprising debate occurred among American educators in the 1950’s 

and 60’s.



Example of course in Brazil

POLI



Example of course in Brazil

PUC - RJ



Specific text book

Cveticanin, Livija

Dynamics of Machines with Variable Mass

Gordon and Breach Science Publishers. Series of Books and

Monographs in Stability and Control Theory, Methods and

Applications, 1998, 236 p.



Kinetic Energy

Much subtler: Lagrange Equation

Recall the usual invariant mass form
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Non-conservative

generalized forces
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Lagrange Equations for Variable Mass Systems
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Mass with 

time !
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Mass with 

position !!

Mass with 

velocity !!!



Example: the simplest problem
particle loosing (gaining) mass, at null velocity, but 

explicitly with position

)(xm

),,( txxF 
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Newton:

Usual 

Lagrange:

Missing 

termCorrect:

Correct

Incorrect



Apparently Paradoxal Problems :

Falling chain problems:

Buquoy version;

Cayley version;

‘U’ falling chain;

Vertical collapse of buildings



Classical problem

The falling chain of Cayley

F

g



Cayley’s ‘falling’ chain

• Classic idealized problem treated by Cayley, in 

1857, similar to Buquoy’s.

• Ever since, matter of controversies regarding

proper formulation if treated under the

Lagrangean approach.

• Recent account, see:

Grewal, Johnson and Ruina, “A Chain that 

speeds up, rather than slows, due to 

collisions: how compression can cause 

tension”, Am. J. Phys., 79(7), 723-729, 2011.
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g
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Cayley’s ‘falling’ chain

• Falling (or suspended part) treatable as a 

position dependent variable mass system.

• Classic idealized hypotheses (*):

a. Falling (suspended) part of the chain treated as a 

continual vertically moving ‘rigid’ body (pure

translatory motion);

b. There is no friction force apllied either by the

table on slidding links, or by one to each other, 

or even by the hole internal surface to the

leaving link;

c. Existence of a sudden acceleration (velocity

jumps from zero) as the links leave the chain

pile, being the transfer of any angular 

momentum to linear momentum disregarded;

d. Decreasing thickness of chain pile ignored.

(*) Discussion on hypotheses (a), (b) and (c)  and other

points may be encountered in Grewal, Johnson and Ruina, 

2011.
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Cayley’s ‘falling’ chain
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Chain total mass

Falling (suspended) mass

Falling mass time rate

Linear density

Flux of momentum at the pile
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Cayley’s ‘falling’ chain

Kinetic energy

Potential energy

Lagrangean
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Cayley’s ‘falling’ chain

Extended

Lagrange equation

or

In terms of the

Lagrangean

Recall: 0w
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Cayley’s ‘falling’ chain

Derivatives

Extended Lagrange equation leads to:

Finally:
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Cayley’s ‘falling’ chain

Nondimensional 

variables

Get:
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Cayley’s ‘falling’ chain

Usual Lagrange

equation

or

In terms of the

Lagrangean

Recall: 0w
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Cayley’s ‘falling’ chain

Get:

Such that:

Or, in nondimensional form:

i.e.:
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Cayley’s ‘falling’ chain

When F=0 (0,  both equations

and

Both predict, from initial rest condition, a ‘free-fall’ 

with initial acceleration equal to gravity.

However acceleration decreases monotonically

(so is smaller than gravity)  tending to different

asymptotic limits.

There is no singularity at y=0+ !!!

From the extended

Lagrange equation

From the invariant

mass Lagrange

equation

OK! 

Cayley’s

result

Not OK!

Wong & 

Yasui (2006)
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Eq. (4.11a)

Eq. (4.15a)

Correct 

(extended)

Erroneous 

(usual)

Cayley Problem

F

g

y



Cayley’s ‘falling’ chain

In this case, the puzzling aspect regarding distinct

asymptotic limits, is related to the application of either

form of the Lagrange equations, rather than to the

validity of the idealized hypotheses.

(*) Wong &Yasui, “Falling chains”. American Journal of 

Physics, v. 6, 490-496, 2006.

(**) Wong, Youn &Yasui, “The falling chain of Hopkins, Tait, 

Steele and Cayley”. European Journal of    Physics, v. 28, 

385-400, 2007.
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y

Cayley’s solution (the proper one) predicts a limit

acceleration of g/3.

Wong and Yasui (2006)(*) (the erroneous one)  

predict a limit acceleration of g/2.

Experimental work by Wong et al (2007)(**) 

measured the limit as                                       !

Meritorious

scientific

attitude

gy )0010.03204.0(lim 



Cayley’s ‘falling’ chain
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Cayley’s Lagrange

equation, by introducing

a special Rayleigh-like

function,

is equivalent to

obtained from the general 

extended Lagrange

equation.

Frequently, the work by Cayley

has been not appreciated as it 

should!



A Civil Engineering Application:

The vertically collapsing tower



Purpose

To highlight the discussion about a still open subject on a 

simple single degree of freedom model (SDOF), addressing 

a controversial point.

Based on a recently published paper:

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of 

motion governing the dynamics of vertically collapsing buildings”, 

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453

.



Vertical collapse of buildings: WTC twin towers

Moving region

Region at rest

Striking Problem



• Newtonian mechanics

• Lagrangian mechanics

• Generalized Reynolds’ Transport Theorem (McIver, 73, Irschick and

Holl, 2004)

• ‘Mass transfer’ wave equation with moving boundaries (Bevilacqua, 

DINAME2011)

• Other...

Possible approaches



Motivation:

Can a simple SDOF model represent the dynamics of a 

vertically collapsing tower?

YES!

Bažant, Z. P., Verdure, M., 2007, “Mechanics of progressive 

collapse: learning from World Trade Center and building 

demolitions”. Journal of Engineering Mechanics, v. 133, n. 3, pp. 

308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade 

Center: simple analysis”. Journal of Engineering Mechanics, v. 134, 

n. 2, p. 125-32.

.



Such model is able to describe the evolution of the avalanche

front of vertically collapsing towers.

However:

The equation of motion derived from the usual Lagrange equation

formalism differs from that derived from Newton’s law.

An apparent paradox !

Similar to the falling chain problem and likewise controversial.

Motivation:

Neither Bažant & Verdure, or Seffen are conclusive on

which one should be the proper equation!



Moving region

Region at rest

The Vertical Collapse

Variable 

mass with 

position !!



Simple Model
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Mass depending

explicitly on position  
Mass depending

explicitly on velocity  
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Most complete case:  

Two new terms

Recall the Extended Lagrange Equations

Mass depending

explicitly on time  

Extended

generalized force  



H

yT

yA
yB

non-
compacted

non-
compacted

M
o

vi
n

g
re

gi
o

n
N

o
n

m
o

vi
n

g
re

gi
o

n

Avalanche 
front

compacted

• The collapsing tower is divided in two

distinct regions:

– the falling region;

– the still region.

• The still (intact) region transfers mass to the

falling region:

– the mass of the falling region increases;

– the mass of the still region decreases.

• The falling region is divided in two parts:

– The intact (non compacted) part;

– The smashed (compacted) part.

Simple Model



• Three Major Hypotheses:

1. the ‘intact’ upper part of the falling structure is a rigid body, 

translating vertically and smashing the ‘lower’ part as it falls;

2. there is a density jump through the avalanche front; i.e., the 

density of the accreted mass jumps from a ‘non compacted’ value to a 

‘compacted’ value, in a continuous impacting manner;

3. the whole falling region, composed by the ‘intact’ rigid falling part 

accreted by the instantaneously compacted part, translates as a rigid 

material system with mass varying explicitly with position.

Simplest SDOF Model

0ss nc

0ss c

Velocity

jump!
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• Therefore:

1. both regions are material systems with 

varying mass;

2. A single generalized coordinate may 

represent the collapsing dynamics;

3. The varying masses may be 

expressed as explicit functions of 

the chosen coordinate.

Simplest SDOF Model
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Simplest SDOF Model
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Simplest SDOF Model

Conservation of mass of the whole building

Kinematic constrains:
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Simplest SDOF Model

Kinetic Energy
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Simplest SDOF Model

Extended form for mass varying with position

Lagrange equation
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Dissipative term
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Simplest SDOF Model

A Rayleigh-like function could be defined

Actually

Dissipative term
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Simplest SDOF Model

Extended Rayleighian form for mass varying with position

Lagrange equation
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Simplest SDOF Model

Kinetic energy derivatives
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which cancels out exactly the position dependent term:



Simplest SDOF Model
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Usual Lagrange EquationExtended Lagrange Equation
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All this leads to

Tower weight

Simplest SDOF Model
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Extended Lagrange Equation
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Crush down duration (tower  1): 9,8sCrash down duration (tower 1): 11s

Aparent Paradox

Neither Bažant & Verdure, or Seffen were conclusive on 

which  one should be the proper equation!

Proper Eq.! Non -proper Eq.!

Usual Lagrange Equation
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Extended Lagrange Equation

Similarity with falling chains

Proper Eq.! Non -proper Eq.!

Usual Lagrange Equation

Cayley’s
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Extended Lagrange Equation

Similarity with falling chains

Proper Eq.! Non -proper Eq.!

Usual Lagrange Equation
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Simplest SDOF Model

Case Study: the WTC Towers

m407H t/m10770 3ncsGN073.3P

21.0/Φ0  PF 2.0/  cncK ss

Bažant, Z. P., Verdure, M., 2007, “Mechanics of progressive collapse: learning 

from World Trade Center and building demolitions”. Journal of Engineering 

Mechanics, v. 133, n. 3, pp. 308-19.

Seffen, K. A., 2008, “Progressive collapse of the World Trade Center: simple 

analysis”. Journal of Engineering Mechanics, v. 134, n. 2, p. 125-32.

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion governing 

the dynamics of vertically collapsing buildings”, 

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453
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Table 1. ‘Crush-down’ time. WTC: towers 1 and 2. Comparing the 

results from the proper and non proper ones equations.

         K=0.2; =0.044         K=0.2; =0.0 

Tower Equation *
Ct  (s)Ct  *

Ct  (s)Ct  

1 Eq. (102) - proper 1.75 11.3 1.59 10.2 

1 Eq. (103) - non-proper 1.55 10.0 1.39 9.0 

2 Eq. (102) - proper 1.45 9.3 1.36 8.8 

2 Eq. (103) - non-proper 1.32 8.5 1.23 7.9 

 

Pesce, C.P., Casetta, L., Santos, F.M., 2012, “The equation of motion 

governing the dynamics of vertically collapsing buildings”, 

http://dx.doi.org/10.1061/(ASCE)EM.1943-7889.0000453
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CONCLUSIONS
Problems of variable mass systems in Engineering Mechanics are rather 

classical and very well explored in the technical literature, since von 

Buquoy’s work, 1812-1815, Cayley, 1857, and Meshchersky’s, 1897.

However, its subtlety sometimes reserve trappings to students and even 

to scholars. As a matter of fact, much work is still being carried out on 

the subject, as testimonies the excellent and recent review by Irschik and 

Holl (2004).

Nevertheless, from time to time, misinterpretations are found on the 

correct application of Newton’s second law or concerning the Lagrangian 

Equation to this kind of systems

Sometimes, motivated by nonlinear dynamics applications, aroused from 

engineering problems, other times by theoretical issues, see, e.g. 

Mušicki (2005), variable mass system dynamics is still a state-of-the-art 

matter, both, grounding the rational formulation of open systems 

dynamics or directly linked to technical applications.

Its importance goes beyond applications on engineering, extending from 

solids and fluids dynamics to complex flows of mixtures, fluid flows in 

porous media, or even reaching quite distinct problems in theoretical 

physics.

.



“Be extremely careful when dealing with 

variable mass systems!!”

Thank you!
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Appendix I

Derivation of the Extended 

Lagrange Equation for General 

Variable Mass Systems

2003, Pesce, C. P.

“The Application of Lagrange Equations to Mechanical 

Systems with Mass Explicitly Dependent on Position”, Journal 

of Applied Mechanics, Vol. 70, pp. 751-756.
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