


ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia Mecânica

PME 3200 – Mecânica II Exercício de Modelagem e Simulação Computacional 2019

Parte 1/3

O corpo rígido ilustrado na figura ao lado é constituído por um setor recortado de um disco homogêneo, de centro A e raio R, encaixado no interior de um anel homogêneo de raio R de espessura e inércia desprezíveis, que pode rolar sem escorregar sobre a superfície plana horizontal indicada. O corpo tem massa m e seu centro de massa G está a uma distância e do ponto A. O ângulo θ mede a inclinação do segmento GA com respeito à vertical.

- 1.1 Aplicando os teoremas da Mecânica, deduza a equação diferencial ordinária não-linear na variável θ que modela o movimento deste corpo nas condições descritas.
- 1.2 Determine as posições de equilíbrio do sistema e discuta, do ponto de vista físico, a estabilidade destas configurações.
- 1.3 Para cada posição de equilíbrio, obtenha a versão linearizada da equação de movimento, interpretando-a no contexto da análise do item anterior.
- 1.4 Utilizando a equação linearizada associada à configuração estável de equilíbrio, determine a frequência natural ω_n do sistema. Interprete-a por meio de uma analogia com um pêndulo, definindo um "comprimento equivalente".
- 1.5 Expresse a equação diferencial ordinária não-linear obtida no item 1.1 na forma de espaço de estados.
- 1.6 Implemente uma rotina no ambiente computacional Scilab para a integração numérica da equação nãolinear de movimento em forma de espaço de estados, utilizando a função ode.
- 1.7 Adotando $g = 9.8 \text{ m/s}^2 \text{ e } R = 0.30 \text{ m}$, utilize a rotina implementada para simular os seguintes cenários:

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia Mecânica

	Parâmetro	Condições iniciais	
Cenário	e	$\theta(0)[rad]$	$\dot{\theta}(0)[\mathrm{rad/s}]$
1.1	0.20R	$\pi/10$	0
1.2	0.20R	$\pi/6$	0
1.3	0.20R	$-\pi/2$	-2
1.4	0.20R	0.99π	0
1.5	0.20R	π	1
1.6	0.05R	$\pi/6$	0
1.7	0.50R	$\pi/6$	0
1.8	0.10R	$\pi/3$	-2.5

Para cada cenário represente os resultados das simulações na forma de três gráficos:

- a) série temporal de θ (θ em função do tempo);
- **b)** série temporal de $\dot{\theta}$ ($\dot{\theta}$ em função do tempo);
- c) trajetórias no espaço de fase ($\dot{\theta}$ em função de θ).
- 1.8 Analisando os resultados das simulações numéricas, avalie em quais dos cenários propostos as formas linearizadas da equação de movimento fornecem boas aproximações para a resposta observada.
- 1.9 Interprete fisicamente a geometria das trajetórias no espaço de fase, em particular observando se são ou não curvas fechadas.
- 1.10 Explore seu modelo variando parâmetros e condições iniciais, propondo novos cenários de simulação além dos sugeridos.