

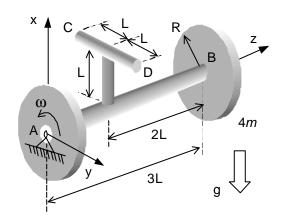
Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

PME 2200 – MECÂNICA B – Primeira Prova – 8 de Abril de 2008 Duração da Prova: 100 minutos (não é permitido uso de calculadoras)

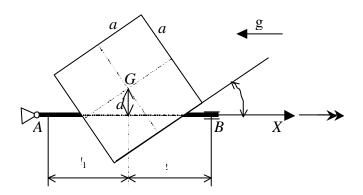
1ª Questão (3,5 pontos)

O eixo de comprimento 3L é apoiado na articulação A e no anel B. O eixo tem massa 3m e possui dois discos de raio R e massa 4m em cada extremidade. O eixo possui ainda uma haste no formato T formada por um segmento reto vertical de comprimento L e massa m e outro segmento CD alinhado com o eixo y de comprimento 2L e massa 2m. O sistema gira em torno do eixo z com velocidade angular constante w. Considerando o referencial Axyz solidário ao corpo, pede-se determinar:



- a) a posição do baricentro do conjunto;
- b) os produtos de inércia e o momento de inércia em relação ao eixo z;
- c) a localização e os valores de duas massas compensadoras m_1 e m_2 fixadas na parte externa dos discos, suficientes para balancear o sistema.

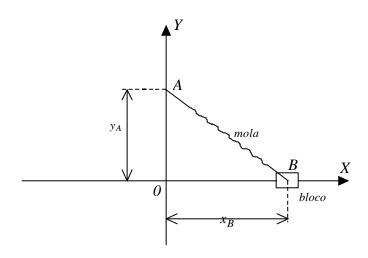
Questão (3,0 pontos) A figura mostra uma placa homogênea quadrada de massa m e lado 2a que gira ao redor do eixo X com velocidade angular w constante; são conhecidos o ângulo a e as distâncias d, l_1 e l_2 . Considere que a aceleração da gravidade atua na direção do eixo X e calcule as reações na articulação A e no anel B.



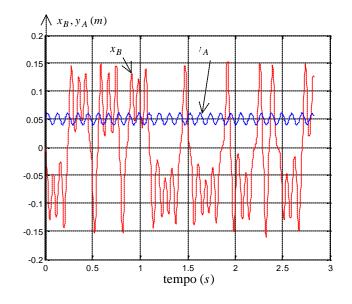
Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

3ª Questão (3,5 pontos) A figura mostra um bloco de massa m que desliza sem atrito sobre uma guia horizontal preso à extremidade de uma mola linear de comprimento natural L_O e constante elástica K. A outra extremidade da mola percorre uma guia vertical sujeita a um movimento descrito pela equação $y_A = \overline{y}_A + \widetilde{y}_A$, onde \overline{y}_A é uma constante e \widetilde{y}_A é uma função do tempo a ser definida.



- 1) Deduza a equação diferencial do movimento do bloco em função de m, L_O , K, \bar{y}_A e \tilde{y}_A e também a expressão da reação exercida pela guia sobre o bloco.
- 2) Foram realizadas simulações adotando o conjunto de parâmetros $x_B(0) = 0$, $\overline{y}_A = 1.5L_0$ e $\widetilde{y}_A = 0$ (constante), juntamente com diferentes valores de $\dot{x}_B(0)$: $\dot{x}_B(0) = -0.5, -1.0, -5.0, -10.0$ e -15.0 m/s. Como variou a frequência das oscilações em função de $\dot{x}_B(0)$?
- 3) Foram realizadas simulações considerando o conjunto de parâmetros $x_B(0) = 0$, $\dot{x}_B(0) = -1.0$ m/s, $\bar{y}_A = 1.5 L_0$ e $\tilde{y}_A = Y_A sen(w_A t + j_0)$ com $j_0 = 0$; foi atribuído um determinado valor para w_A e foram adotados diferentes valores para Y_A : $Y_A = 0.1 L_O$, $Y_A = 0.3 L_O$ e $Y_A = 0.5 L_O$. Como variou a freqüência das oscilações em função de Y_A ? O que foi observado ao comparar a freqüência das oscilações com o valor de w_A ?
- 4) Em quais situações foram obtidos resultados análogos aos mostrados na figura ao lado?



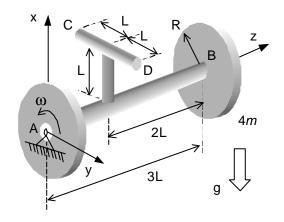
Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

PME 2200 - MECÂNICA B - Primeira Prova - Resolução - 08/04/2008

Resolução da 1ª Questão (3,5 pontos)

O eixo de comprimento 3L é apoiado na articulação A e no anel B. O eixo tem massa 3m e possui dois discos de raio R e massa 4m em cada extremidade. O eixo possui ainda uma haste no formato T formada por um segmento reto vertical de comprimento L e massa m e outro segmento CD alinhado com o eixo y de comprimento 2L e massa 2m. O sistema gira em torno do eixo z com velocidade angular constante w. Considerando o referencial Axyz solidário ao corpo, pede-se determinar:



a) a posição do baricentro do conjunto; massa total: M = 14m

$$x_G = (m(L/2) + 2m(L))/14m = \frac{5}{28}L;$$
 $y_G = 0$

$$z_G = (4m(0) + 3m(3L/2) + m(L) + 2m(L) + 4m(3L))/14m = \frac{39}{28}L \qquad \boxed{G = (5L/28, 0, 39L/28)}$$
(0,5)

b) os produtos de inércia e o momento de inércia em relação ao eixo z;

$$J_{xz} = m(L)(L/2) + 2m(L)(L) = \frac{5}{2}mL^2;$$
 $J_{xy} = 0$ $J_{yz} = 0$ $J_{xz} = \frac{5}{2}mL^2$ (1,0)

considerando os eixos esbeltos:

$$J_z = 4mR^2/2 + mL^2/3 + (2m(2L)^2/12 + 2mL^2) + 4mR^2/2 \qquad \qquad J_z = m(4R^2 + 3L^2)$$
 (0.5)

c) a localização e os valores de duas massas compensadoras m_1 e m_2 fixadas na parte externa dos discos, suficientes para balancear o sistema.

Posições das massas: m_1 (-R, 0, 0); m_2 (-R, 0, 3L);

$$J'xz = Jxz + m_1 (-R)(0) + m_2 (-R)(3L) = 0$$
 (0,5) \rightarrow $m_2 = \frac{5}{6} \frac{mL}{R}$ em (-R, 0, 3L);

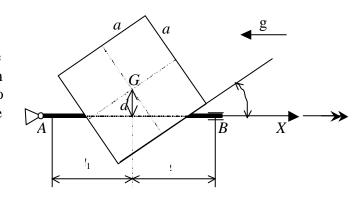
$$M x_{\rm G} + m_1 (-R) + m_2 (-R) = 0$$
 $(0,5)$ $\rightarrow \left[m_1 = \frac{5}{3} \frac{mL}{R} \right]$ em $(-R, 0, 0)$. $(0,5)$

Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

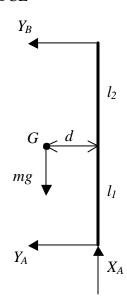
Resolução da 2ª Questão (3,0 pontos)

A figura mostra uma placa homogênea quadrada de massa m e lado 2a que gira ao redor do eixo X com velocidade angular w constante; são conhecidos o ângulo a e as distâncias d, l_1 e l_2 . Considere que a aceleração da gravidade atua na direção do eixo X e calcule as reações na articulação A e no anel B.



Resolução:

DCL



Aplicando o teorema do movimento do centro de massa:

$$\begin{cases} X_A = mg & (1) \\ -mw^2d = Y_A + Y_B & (2) \end{cases}$$
 (0.5)

Aplicando o teorema do momento angular:

$$\left\{ \vec{i}, \vec{j}, \vec{k} \right\} \left[J \right]_G \begin{cases} \mathbf{w} \\ 0 \\ 0 \end{cases} = \vec{M}_G \tag{0.5}$$

Como a placa é quadrada, a sua matriz de inércia $[J]_G$ é diagonal (0.5) e não varia em função de a; sendo \vec{i} o versor de um eixo paralelo a X e solidário à placa, resulta $\vec{i} = \vec{0}$, de modo que $\vec{M}_G = \vec{0}$ (0.5); portanto

$$X_A d + Y_B l_2 - Y_A l_1 = 0$$
 (3) (0.5)

Resolvendo as equações (1), (2) e (3) obtém-se:

$$Y_A = \frac{md(g - \mathbf{w}^2 l_2)}{l_1 + l_2}; \ Y_B = \frac{-md(g + \mathbf{w}^2 l_2)}{l_1 + l_2}$$
 (0.5)

Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

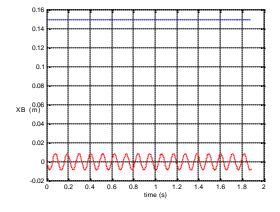
Departamento de Engenharia Mecânica

Resolução da 3ª Questão (3,5 pontos)

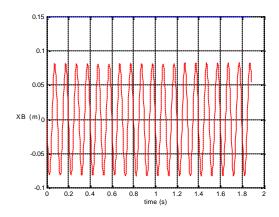
1) Equação diferencial do movimento do bloco:
$$\ddot{x}_B = \frac{-\frac{K}{m} \left\{ \left[x_B^2 + (\overline{y}_A + \widetilde{y}_A)^2 \right]^{0.5} - L_0 \right\} x_B}{\left[x_B^2 + (\overline{y}_A + \widetilde{y}_A)^2 \right]^{0.5}}; \tag{0.3}$$

Reação da guia sobre o bloco:
$$R_{Y} = \frac{-K \left\{ \left[x_{B}^{2} + (\overline{y}_{A} + \widetilde{y}_{A})^{2} \right]^{0.5} - L_{0} \right\} y_{A}}{\left[x_{B}^{2} + (\overline{y}_{A} + \widetilde{y}_{A})^{2} \right]^{0.5}}. \tag{0.2}$$

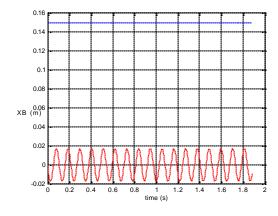
2) Considerando $x_B(0) = 0$, $\overline{y}_A = 1.5L_0$ e $\widetilde{y}_A = 0$ (constante), juntamente com os seguintes valores de $\dot{x}_B(0)$: $\dot{x}_B(0) = -0.5, -1.0, -5.0, -10.0$ e -15.0 m/s, resultam os seguintes gráficos de $x_B(t)$:



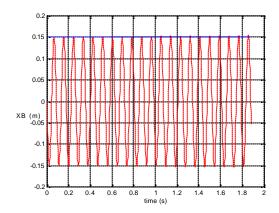
$$\dot{x}_B(0) = -5.0 \text{ m/s}$$



 $\dot{x}_B(0) = -1.0 \text{ m/s}$



 $\dot{x}_{B}(0) = -10.0 \text{ m/s}$



Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

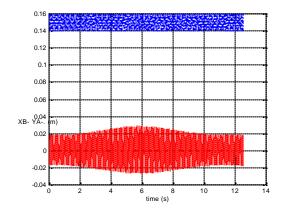
 $\dot{x}_B(0) = -15.0 \text{ m/s}$



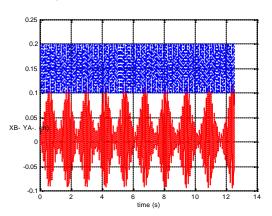
Observa-se que o número de ciclos, e, portanto, a freqüência das oscilações aumentou em função de $|\dot{x}_B(0)|$. (1.0)

3) Considerando o conjunto de parâmetros $x_B(0) = 0$, $\dot{x}_B(0) = -1.0$ m/s, $\ddot{y}_A = 1.5 L_0$ e $\tilde{y}_A = Y_A sen(\boldsymbol{w}_A t + \boldsymbol{j}_0)$ com $\boldsymbol{j}_0 = 0$ e atribuindo para \boldsymbol{w}_A o valor estimado da freqüência das oscilações correspondentes a $\dot{x}_B(0) = -1.0$ m/s no item 2, $\boldsymbol{w}_A \approx 9.221 Hz = 57.935 rad/s$, resultam os seguintes gráficos correspondentes aos diferentes valores de Y_A : $Y_A = 0.1 L_O$, $Y_A = 0.3 L_O$ e $Y_A = 0.5 L_O$:

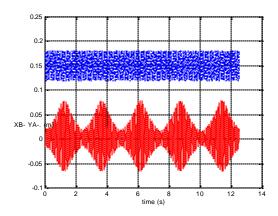
 $Y_A = 0.1 L_O$



 $Y_A = 0.5 L_O$



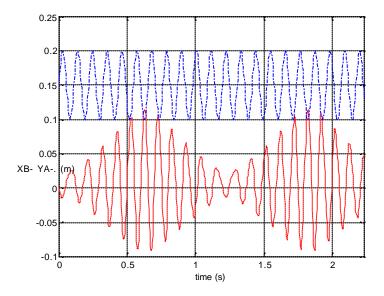
 $Y_A = 0.3 L_O$



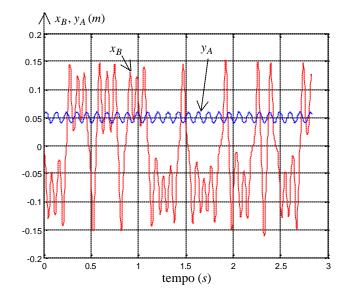
Avenida Professor Mello Moraes, nº 2231. cep 05508-900, São Paulo, SP. Telefone: (0xx11) 3091 5337 Fax: (0xx11) 3813 1886

Departamento de Engenharia Mecânica

Independentemente do aspecto do gráfico, é possível observar que a freqüência das oscilações não depende propriamente de Y_A . Reduzindo o intervalo de integração para aproximadamente 2.2 segundos, observa-se que a freqüência das oscilações varia ao longo do tempo, assumindo valores próximos ao valor atribuído a w_A (1.0); as freqüências mais baixas correspondem às amplitudes menores e as freqüências mais altas às amplitudes maiores, conforme exemplificado no gráfico abaixo ($Y_A = 0.5 L_O$):



4)



O gráfico mostra que a mola está inicialmente comprimida com $\bar{y}_A = 0.5 L_0$ e que a amplitude das oscilações da extremidade A da mola é $Y_A \approx 0.1 L_O$; observa-se também que $\dot{x}_B(0)$ é negativa. (1.0)