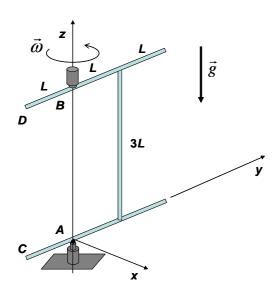


Departamento de Engenharia Mecânica

PME 2200 – MECÂNICA B – 1ª Prova – 10/04/2007 – Duração 100 minutos (Não é permitido o uso de calculadoras).



1ª Questão (3,0 pontos).

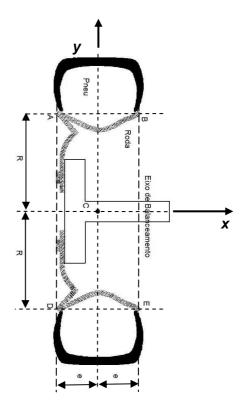
O sistema mostrado na figura, composto por três barras, de massa m e comprimento 3L, gira em torno do eixo Az com rotação $\vec{\omega} = \omega \vec{k}$, constante.

Determine:

- a) As reações (X_A, Y_A) , na articulação A e (X_B, Y_B) , no anel B (considere o peso);
- b) As massas m_1 e m_2 , a serem colocadas nos pontos C e D, respectivamente, necessárias para balancear o sistema.

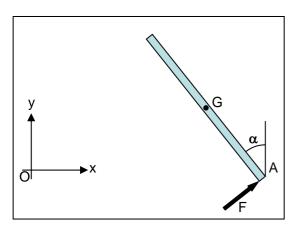
2ª Questão (3,5 pontos)

Um conjunto roda/pneu, de massa m, é preso a uma máquina de balanceamento e posto a girar a uma rotação $\vec{\omega} = \omega \vec{i}$, mantida constante. O sistema Oxyz está no conjunto, que pode ser considerado como corpo rígido. O eixo x é horizontal. Sabe-se, que o centro de massa do conjunto roda/pneu está no plano Cyz. Admite-se que o torque aplicado ao eixo de rotação varia de forma a se contrapor ao torque ocasionado pela força peso e pelo atrito nos mancais, mantendo a rotação constante. Verifica-se, então, que as parcelas dinâmicas (descontados os efeitos da força peso) das forças exercidas pelo conjunto sobre a máquina são equivalentes a uma força $\vec{F} = F\vec{j}$, F > 0, aplicada em C e a um binário de momento $\vec{M}_C = M\vec{k}, M > 0$. Sabe-se também, que M < Fe. Pede-se:



- a) As coordenadas (y_G, z_G) , do centro de massa do conjunto;
- b) Os produtos de inércia J_{xy} e J_{xz} ;
- c) Os valores m_1 e m_2 de duas pequenas massas de balanceamento, a serem respectivamente posicionadas nos pontos D = (-e, -R, 0) e E = (e, -R, 0).
- d) Qual das duas massas tem maior valor? Ambas tem valor positivo? Justifique.

Departamento de Engenharia Mecânica



3ª Questão (3,5 pontos)

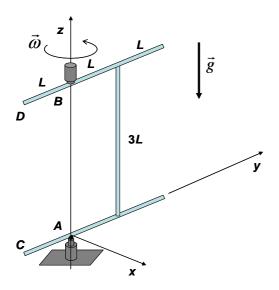
Considerando o enunciado do EP # 1:

A barra homogênea da figura tem massa m=0.5 Kg, comprimento L=2 m e está livre para se deslocar, sem atrito, no plano horizontal. Uma força F, de magnitude constante 1N e direção sempre ortogonal à barra, está aplicada à sua extremidade A. No instante inicial (t=0) o baricentro G está na origem O do sistema Oxy $(x_G=0)$ e $y_G=0$, o ângulo α é nulo e a barra se encontra em repouso.

- a) Deduza as equações escalares que governam o movimento da barra;
- b) Esquematize um diagrama Scicos que contenha apenas a parte necessária para calcular $\alpha(t)$ e apresentar o seu gráfico;
- c) Esboce o gráfico de $\alpha(t)$ para $0 \le t \le 4s$;
- d) Esboce o gráfico da trajetória de G para $0 \le t \le 4s$;
- e) Esboce o gráfico da trajetória de A para $0 \le t \le 4s$;
- f) Esboce o gráfico da velocidade escalar do baricentro para $0 \le t \le 4s$;
- g) Esboce o gráfico da velocidade escalar do ponto A para $0 \le t \le 4s$.

Departamento de Engenharia Mecânica

PME 2200 – MECÂNICA B – 1ª Prova – 10/04/2007 – Duração 100 minutos (Não é permitido o uso de calculadoras).



1ª Questão (3,0 pontos).

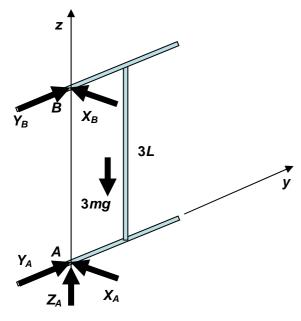
O sistema mostrado na figura, composto por três barras, de massa m e comprimento 3L, gira em torno do eixo Az com rotação $\vec{\omega} = \omega \vec{k}$, constante.

Determine:

- a) As reações (X_A, Y_A) , na articulação A e (X_B, Y_B) , no anel B (considere o peso);
- b) As massas m_1 e m_2 , a serem colocadas nos pontos C e D, respectivamente, necessárias para balancear o sistema.

Solução:

a) As reações (X_A, Y_A) , na articulação $A \in (X_B, Y_B)$, no anel B (considere o peso):



Posição do baricentro:

$$x_G = 0$$

$$3my_G = mL/2 + mL + mL/2 \implies y_G = 2L/3$$

$$z_G = 3L/2 \text{ (simetria)}$$

Aceleração do baricentro ($\vec{\omega} = \omega \vec{k}$, constante):

$$\vec{a}_G = -(2L/3)\omega^2 \vec{j} \tag{0.5}$$

TMR

$$-X_A - X_B = 0$$

$$Y_A + Y_B = 3m\left(-(2L/3)\omega^2\right)$$

$$Z_A = 3mg$$
(0,5)

Momento Angular, pólo A (fixo):

$$\vec{H}_A = \begin{bmatrix} J_A \end{bmatrix} \{ \vec{\omega} \} = -J_{xz} \omega \vec{i} - J_{yz} \omega \vec{j} + J_z \omega \vec{k} \implies \dot{\vec{H}}_A = -J_{xz} \omega \dot{\vec{i}} - J_{yz} \omega \dot{\vec{j}} + J_z \omega \dot{\vec{k}} = -J_{xz} \omega^2 \vec{j} + J_{yz} \omega^2 \vec{i}$$

Mas
$$J_{xz} = 0$$
; e $J_{yz} = (J_{yz})_{barra1} + (J_{yz})_{barra2} + (J_{yz})_{barra3} = 0 + (0 + m.L.3L/2) + (0 + m.L/2.3L)$

$$\Rightarrow \boxed{J_{yz} = 3mL^2} \text{ e, portanto, } \boxed{\dot{H}_A = 3mL^2\omega^2 \dot{i}}$$
 (0,5)

Departamento de Engenharia Mecânica

TMA, pólo A (fixo):

$$\dot{\vec{H}}_{A} = \vec{M}_{A}^{ext} \Rightarrow
\begin{cases}
3mL^{2}\omega^{2} = -Y_{B}3L - 3mg.2L/3 \\
0 = -X_{B}3L
\end{cases}
\Rightarrow
\begin{cases}
X_{A} = X_{B} = 0 \\
Y_{A} = 2mg/3 - mL\omega^{2} \\
Y_{B} = -2mg/3 - mL\omega^{2}
\end{cases}$$
(0,5)

b) As massas m_1 e m_2 , a serem colocadas nos pontos C e D, respectivamente, necessárias para balancear o sistema:

$$m_1$$
 em $(0,-L,0)$ e m_2 em $(0,-L,3L)$

Baricentro na condição balanceada ($y_G' = 0$): $3m.2L/3 - m_1L - m_2L = 0 \implies m_1 + m_2 = 2m$

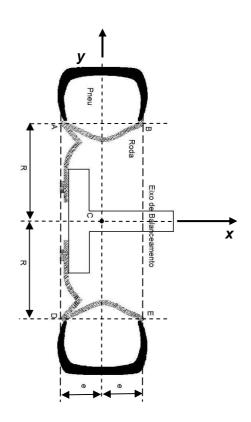
Produtos de inércia na condição balanceada nulos: $J'_{yz} = 0 = 3mL^2 + 0 - 3m_2L^2 \implies m_2 = m$

Assim:
$$m_1 = m_2 = m$$
. (1,0)

Departamento de Engenharia Mecânica

2ª Questão (3,5 pontos)

Um conjunto roda/pneu, de massa m, é preso a uma máquina de balanceamento e posto a girar a uma rotação $\vec{\omega} = \omega i$, mantida constante. O sistema Oxyz está fixo no conjunto, que pode ser considerado como corpo rígido. O eixo x é horizontal. Sabe-se, que o centro de massa do conjunto roda/pneu está no plano Cyz. Admite-se que o torque aplicado ao eixo de rotação varia de forma a se contrapor ao torque ocasionado pela força peso e pelo atrito nos mancais, mantendo a rotação constante. Verifica-se, então, que as parcelas dinâmicas (descontados os efeitos da força peso) das forças exercidas pelo conjunto sobre máquina são equivalentes a uma força $\vec{F} = F\vec{j}$, F > 0, aplicada em C e a um binário de momento $\vec{M}_C = M\vec{k}, M > 0$.



- a) As coordenadas (y_G, z_G) , do centro de massa do conjunto;
- b) Os produtos de inércia J_{xy} e J_{xz} ;

Sabe-se também, que M < Fe. Pede-se:

- c) Os valores m_1 e m_2 de duas pequenas massas de balanceamento, a serem respectivamente posicionadas nos pontos D=(-e,-R,0) e E=(e,-R,0).
- d) Qual das duas massas tem maior valor? Ambas tem valor positivo? Justifique.

Solução:

a) As coordenadas (y_G, z_G) , do centro de massa do conjunto:

TMB:
$$m\vec{a}_G = -F\vec{j}$$

(Note que a resultante é igual à parcela dinâmica da força reativa da máquina sobre a roda, pois a parcela estática da reação é o oposto da força peso, que por ela é anulada).

Como neste caso a rotação é constante, $\vec{a}_G = \omega \vec{i} \times (\omega \vec{i} \times (x_G \vec{i} + y_G \vec{j} + z_G \vec{k}))$. Vem, então que

$$\vec{a}_G = -\omega^2 \left(y_G \vec{j} + z_G \vec{k} \right) \text{ e, portanto, } -m\omega^2 \left(y_G \vec{j} + z_G \vec{k} \right) = -F\vec{j} \Rightarrow \left[y_G = F/\left(m\omega^2 \right) \right] \text{ e} \left[z_G = 0 \right].$$
 (0,5)

(A posição do centro de massa do conjunto será então dada por $(G-C) = F/m\omega^2 \ \vec{j}$).

b) Os produtos de inércia J_{xy} e J_{xz} :

Momento Angular do conjunto em relação ao pólo fixo C:

$$\vec{H}_C = [J_C] \{\vec{\omega}\} = (J_{Cx}\vec{i} - J_{Cxy}\vec{j} - J_{Cxz}\vec{k})\omega.$$

Como a rotação é constante
$$\Rightarrow \dot{\vec{H}}_C = \left(-J_{Cxy}\vec{k} + J_{Cxz}\vec{j}\right)\omega^2$$
. (0,5)

Como é sabido que o centro de massa está no plano Cyz, o momento da força peso é nulo em relação a estes eixos. Também é sabido que o torque aplicado ao eixo de rotação varia de forma a

Departamento de Engenharia Mecânica

se contrapor ao torque ocasionado pela força peso (em torno de Cx) e pelo atrito nos mancais, de forma a manter a rotação constante. Assim, do TMA, tomado em relação ao pólo fixo C, $\vec{H}_C = \vec{M}_C^{ext}$, com $\vec{M}_C^{ext} = -\vec{M}_C = -M\vec{k}$, seguem as equações de equilíbrio dinâmico em torno dos eixos y e z:

$$J_{Cxz}\omega^2 = 0$$

 $-J_{Cxy}\omega^2 = -M$ e, portanto, $J_{Cxz} = 0$ e $J_{Cxy} = \frac{M}{\omega^2}$ (0,5)

Note que como M > 0, então $J_{Cxy} > 0$.

c) Os valores m_1 e m_2 de duas pequenas massas de balanceamento, a serem respectivamente posicionadas nos pontos D = (-e, -R, 0) e E = (e, -R, 0).

Balanceamento estático:

Com $(x_1, y_1, z_1) = D = (-e, -R, 0)$ e $(x_2, y_2, z_2) = E = (e, -R, 0)$ e impondo que o centro de massa na condição balanceada esteja posicionado sobre o eixo de rotação Cx, ou seja, (G' - C) = (a, 0, 0), com a arbitrário, teremos,

$$mx_G + m_1x_1 + m_2x_2 = (m + m_1 + m_2)a$$

$$my_G + m_1y_1 + m_2y_2 = 0$$

$$mz_G + m_1z_1 + m_2z_2 = 0$$

A primeira equação é irrelevante. A terceira é uma identidade, pois $z_G = z_1 = z_2 = 0$. A segunda envolve duas incógnitas, m_1 e m_2 :

$$m_1 + m_2 = \frac{F}{\omega^2 R} \tag{1} \tag{0.5}$$

Balanceamento dinâmico:

Na condição balanceada os produtos de inércia devem ser anulados (ou permanecerem nulos). Ou seja, $J'_{Cxy} = m_1 x_1 y_1 + m_2 x_2 y_2 + J_{Cxy} = 0$ e $J'_{Cxz} = m_1 x_1 z_1 + m_2 x_2 z_2 + J_{Cxz} = 0$. A segunda condição fica automaticamente satisfeita, já que $J_{Cxz} = 0$ e $z_1 = z_2 = 0$. A primeira condição fornece:

$$m_1 - m_2 = -\frac{M}{e\omega^2 R} \tag{2}$$

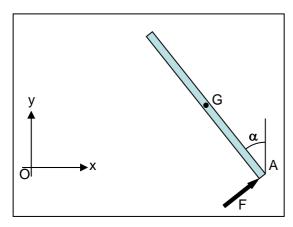
As equações (1) e (2), resolvidas nas incógnitas m_1 e m_2 , levam a:

$$m_1 = \frac{(Fe - M)}{2eR\omega^2}$$
 e $m_2 = \frac{(Fe + M)}{2eR\omega^2}$ (0,5)

d) Qual das duas massas tem maior valor? Ambas tem valor positivo? Justifique.

Como
$$Fe > M > 0$$
, então, $m_2 > m_1 > 0$. (0,5)

Departamento de Engenharia Mecânica



3ª Questão (3,5 pontos)

Considerando o enunciado do EP # 1:

A barra homogênea da figura tem massa m=0.5 Kg, comprimento L=2 m e está livre para se deslocar, sem atrito, no plano horizontal. Uma força F, de magnitude constante 1N e direção sempre ortogonal à barra, está aplicada à sua extremidade A. No instante inicial (t=0) o baricentro G está na origem O do sistema Oxy $(x_G=0)$ e $y_G=0$, o ângulo α é nulo e a barra se encontra em repouso.

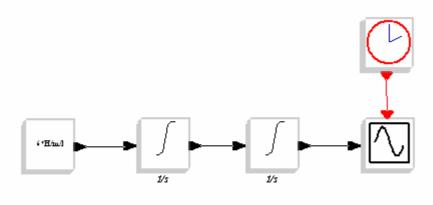
- a) Deduza as equações escalares que governam o movimento da barra;
- b) Esquematize um diagrama Scicos que contenha apenas a parte necessária para calcular $\alpha(t)$ e apresentar o seu gráfico;
- c) Esboce o gráfico de $\alpha(t)$ para $0 \le t \le 4s$;
- d) Esboce o gráfico da trajetória de G para $0 \le t \le 4s$;
- e) Esboce o gráfico da trajetória de A para $0 \le t \le 4s$;
- f) Esboce o gráfico da velocidade escalar do baricentro para $0 \le t \le 4s$;
- g) Esboce o gráfico da velocidade escalar do ponto A para $0 \le t \le 4s$.

Solução:

a) Deduza as equações escalares que governam o movimento da barra;

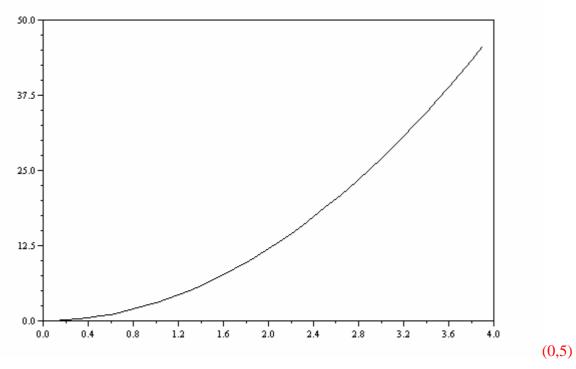
$$\ddot{\alpha} = \frac{6F}{mL} \; ; \; \ddot{x} = \frac{F}{m} \cos \alpha \; ; \; \ddot{y} = \frac{F}{m} \sin \alpha$$
 (0,5)

b) Esquematize um diagrama Scicos que contenha apenas a parte necessária para calcular $\alpha(t)$ e apresentar o seu gráfico;

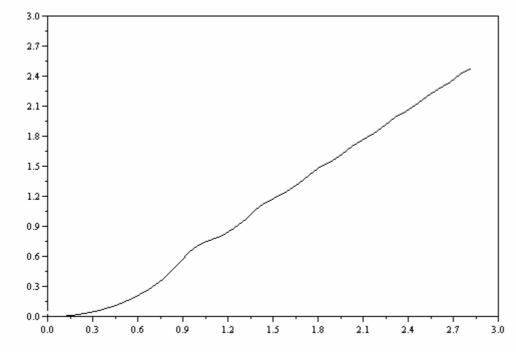


Departamento de Engenharia Mecânica

c) Esboce o gráfico de $\alpha(t)$ para $0 \le t \le 4s$;



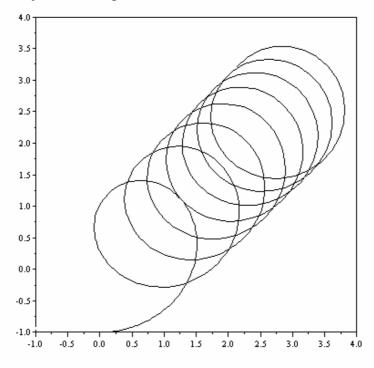
d) Esboce o gráfico da trajetória de G para $0 \le t \le 4s$;



(0,5)

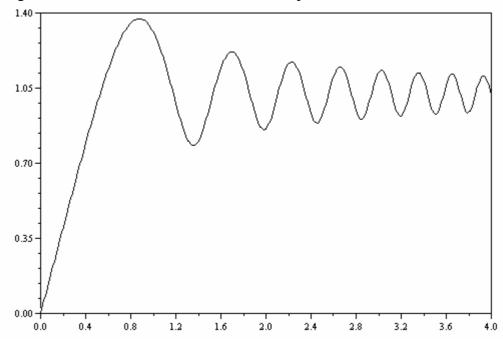
Departamento de Engenharia Mecânica

e) Esboce o gráfico da trajetória de A para $0 \le t \le 4s$;



(0,5)

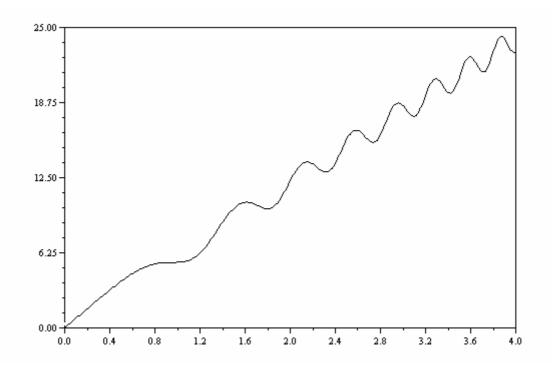
f) Esboce o gráfico da velocidade escalar do baricentro para $0 \le t \le 4s$;



(0,5)

Departamento de Engenharia Mecânica

g) Esboce o gráfico da velocidade escalar do ponto A para $0 \le t \le 4s$.



(0,5)