PGF5003: Classical Electrodynamics I
Problem Set 3

Professor: Luis Raul Weber Abramo
Monitor: Natali Soler Matubaro de Santi
(Due to May 11, 2021)

Guidelines: write down the most relevant passages in your calculations, not only the final results.
Do not forget to write the mathematical expressions that you are using in order to solve the questions.
We strongly recommended the use of the International System of Units.

1 Question (1 point)
Given the following magnetic field:

B(r) = Byz + 2 x Vf(r) (1)

a) Show that this satisfies: V-B=0;

b) Find the equation(s) for the field lines and show that, performing the following change of variables:
x — q (generalized coordinate), y — p (conjugate momenta), z — t and considering [ = —ByH
(where H is a Hamiltonian), this is equivalent to

Gg=— and p=——. (2)
P

Hint: Use a scalar parameter \ to ensure that every differential element of magnetic field line ds is

parallel to B(r) itself: ds = \B.
c) What can you say about the magnetic field lines doing the analogy with the above Hamilton’s

equations?

1.1 Solution

a) We can compute

ﬁB:ﬁ-[Boszﬁf(r) =0 — 0,0, f% + 0,0, fy = 00, (3)



b) Considering the hint and the changes in question, we can write

ds = \B
dx = \B,,dy = A\B,,dz = AB,
dv By % @_BoapH . OH

4z B, B, dt By, 179
dy _ By, _0:f  dp_ B9 H _ . OH

= = = =
dz B, By dt By P dq

(4)

¢) The magnetic field lines are similar to, following this analogy, “time-dependent” trajectories
in (p, q) phase space of a “particle” with Hamiltonian H = — f/Bj. Since most Hamiltonian are
non-integrable and produce chaotic trajectories, the magnetic field line configuration will be very
complex!

2 Question (1 point)
Show that the force F on a magnetic dipole m exerted by an arbitrary magnetic field B is given by

F=V(m-B). (5)
Hint: Given the magnetic field of a point magnetic dipole B at ry

=1 m-(r—rp)

B(I‘) = Ho mé(r — I'()) — VEW (6)
find its current density J.
2.1 Solution
Following the hint, the magnetic field of a point magnetic dipole m at r is
- 1 m-(r—rp)
B(I') = Mo m5(r — I'()) — VEW (7)
This leads to the current density
I - -
j(r):u—VXB:VX [mé(r —rg)] = —m x Vi(r —rp). (8)
0
As we want to compute the force F, we have
F:/d3rj xB:/d3rB x [mx%(r—ro)]
= /d37" [B - Vé(r —ro)m — (m - B)Vi(r — ro)]
=— /d3rm5(r —1r,)V-B+ /d3r(5(r —10)V(m - B)
= Vo (m- B(ry)) O (9)

where [ have used A x (B x C) = B(A - C) — C(A - B), from the first to second line, integrated
by parts from the third to the fourth line and used that there is no magnetic charge (V - B = 0).




3 Question (1 point)

A right-handed circular solenoid of finite length L and radius a has N turns per unit length and carries
a current I. Show that the magnetic induction on the cylinder axis in the limit NL — oo is

NI
B, = 5 (cos @y + cosby) (10)

Figure 1: Figure for the question 3.

3.1 Solution
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Figure 2: Visualizing the question 3.

We can compute it using Biot-Savart

po Idl x (r —r’)
Ar |r—r/?

dB = (11)
Let’s explain the objects that we are going to use: considering the axis of the solenoid as z, pointing
positively to the right, we could see x going out the page and y going down the page. Then, the
elements are

dl = Rd6O (12)

r= 25 (13)

v =2'2+y'§+ 22 = Rcos0i + Rsinfy + 2’2 (14)

r—r1' = (z—2)2— R(cos 0z + sin 07) (15)

vt —1'| = /(2 — /)2 + R? (16)

0 = cos Ay — sin 61 (17)

dl x (r —1') = RdO [(z — ') cos 0% + (2 — 2') sin Oy + RZ]. (18)



Figure 3: Solving the question 3.

Putting all this together and considering that an element of length dz’ contain dI = INdz', we can

write
pol Ndz' Rd [(z — 2') cos 0% + (2 — 2’) sin 0y + RZ]

dB = . 19
A [(z — 2')% + R?]3/? (19)
The magnetic field is given when we integrate this expression. Then,
B_ /27r dQ/Ldz’MOINR[(Z — 2')cos 0% + (2 — 2')sin Oy + Ré]‘ (20)
But, as the integrations
2m 2m
/ dﬁsin9:/ df cosf = 0, (21)
0 0
we only need to deal with the integral in 2. In this way,
27 oI N R? /L dz' R
B = . 22
4m 0 [(z—z’)2+R2]3/22 (22)
We can perform this integral, changing variables
u=z—2,du=—d
A=0=>u =z (23)
zg=L=uy=2—L. (24)
Thus,
pol N R? / # du .
B=— —Z. 25
2 | @+ RPPT @)

Performing now other change of variables like

Figure 4: Changing variables.



® =u® + R? (26)

cos Rdb
du = Rd = 27
N ( sin 0 ) sin® @ @)
R
= 28
. sin 6 (28)
u = xcosb, (29)
we have
oI NR? [ =1\ [ L
B = — (& . df sin 0z (30)
poINR?cosf , . upINR* 1 u L
= cLE = -3 [y (31)
2 R2 47 R2 vVu? + R?
_ ol N L B (z—1L) 5 (32)
2 |VI2+ R \J(:-L)?2+R?
Here we can notice that
cos b = L (33)
Ny
— L
cos(m — 6y) = (- L) (34)
(z — L)? + R?
cos(m — y) = — cos bs. (35)
Therefore, we finally arrive at
NI
B, = Ho (cos 0y + cos b,) O1. (36)

4 Question (1 point)

A cylindrical conductor of radius a has a cylindrical hole of radius b cored parallel to, and centered a
distance d from, the cylinder axis (d+b < a). The current density is uniform throughout the remaining
metal of the cylinder and is parallel to the axis. Use Ampere’s law and the principle of linear superpo-
sition to find the magnitude and direction of the magnetic flux density in the hole.

2D visualizstion

2T visualimtion

Figure 5: Figure for question 4.



4.1 Solution

First, let’s say, for example, that we are looking to the system from above, i.e., we see a plane cut of
the cylinder, where z comes in our direction. If a uniform current density .J; flows in the positive z
direction, for superposition you can think in a cylinder where it flows in this way everywhere plus
another little cylinder (the hole) with a current density J, flowing in the negative z direction.

(\

Figure 6: Visualizing question 4.

%Bwll:uo/dS-J, (37)
C S

if we take the Amperian circuit is at some radius r inside the cylinder with no hole we can write

Due the Ampere’s Law

B27mr = pyg Jomr?

podor oo
chlinder = 9 ¢ = 2

(—yz + zy) . (38)

sla®=4( . = a
© LP—.-mmGﬁf‘mg
Wo~ %

nN°

Figure 7: Change from ¢ to (z, y).

Using the same idea, but now for the hole, we have the same expression for its field, considering
that the current if flowing in the opposite direction. However, considering that the hole is with its
center on (z,y) = (d,0), it is

[—y& + (z — d)]. (39)



By superposition, the total magnetic field is the sum of both ones

B = chlinder + Bhole

Loy . Mo . .
= =5 (myi +2g) = =2 [~y + (v — d)g]
_ poJd
o 2 y.

If considering according to the figure it is (x,y) = (0,d), it is

toJo

Bhole = - 9

[—(y — )z +2g].
By superposition, the total magnetic field is the sum of both ones

B = chlinder + Bhole

J, ) ) J R .
= u02 (—yi + 27) — u02 U~y — d)i + 23]
poJd .
= — Z.
2

(40)

(41)

(42)

(43)

(44)

5 Question (2 points)

A small loop # 1 of wire (radius a) is held at a distance z above the center of a large loop # 2 (radius b),
as shown in Figure 2. The planes of the two loops are parallel and perpendicular to the common axis.

<a

<

-l

Figure 8: Figure for the question 5.

a) First, find the magnetic field of a loop in its axis (here consider it as z, as indicated in Figure).
Second, suppose current I flows in the big loop. Find the flux through the little loop. Hint: the little

loop is so small that you may consider the field of the big loop to be essentially constant.

b) Suppose current I flows in the little loop. Find the flux through the big loop. Hint: The little loop

is so small that you may treat it as a magnetic dipole. Consider its magnetic field as

B(r) = Homt (2 cos 07 + sin Qé) :

4qrp3

¢) Find the mutual inductance and confirm that M5 = M.

(45)



5.1 Solution

a)
i) We can deduce the magnetic field using Biot-Savart law
Ids x 7
JB = MO X T (46)
A r?
As ds L 7 (because 7 points to a point in 2), [s X 7| = ds, then
Mo Ids
dB = —————, 47
A7 (22 + R?) #7)

where R is the radius of the loop. We only have components in z because the other cancel. Then,
we only needs to integrate in z: dB, = dB cos ), where cos§ = R/v/2% + R?, in the way that

o  Ids R
B, = ¢ dBcosh = ¢ 2
i[ 7{ ir (2 + R?) 2 + R2

pol R o piol R?
pu— = . 4
(22 + R /0 R =50 rypn (48)
Which is a general magnetic field for a loop on its axis.
ii) The flux through loop # 1 is given by
b, = f B,dS;. (49)
S

According to the hint, the field of the larger loop is constant in the region of the smaller loop, then,
using the magnetic field computed before for R = b gives

) pomlab?
Cbl = fSBQdSl = BQ?TCI, = m (50)
b) The flux through loop # 2 is given by
(I)Q - f BldSQ. (51)
S

We can use the hint remembering that m = Iwa®. Moreover, this integral may be taken over any
surface that is bounded by the loop # 2. Choosing the spherical “cap” centered at the little loop in
the way that dS, = r? sin 8dfd¢r, we have

b, = j{ B1dS,
S

0’ 2
= / do sin@/ dor?r - Hom (2 cos 07 + sin 69)
0 0

43

6/
:27r/ dGSineio—m@cose)
0

wr

T 2 o’
_ Holma / d6 sin 0 cos 6. (52)
r 0

Writing r and 6’ in terms of the geometry of the problem

r= Vb + 22

sin@ = b = b (53)

r Vb2 + 22



Figure 9: Solving question 5.

we end up with

0/

2

Ina2 Ira2 —cos2O o
b, = Ho  Td dfsinf cosf = Ho T4 ( cos )
0

_ polwa® sin®@ polwa® b 2
V22 2 2Vt 2 (\/b2—|—z2)
ol ma®h?

¢) The mutual inductance of each loop is given by
(Dl = Mlglg and (I)Q == Mgljl.

As Iy = I, = I, we have

) mwa’bh?
My = — = A

I 2(22+0b2)%

) 2p?
My, = 2 MoTa

T 2022 4 232

which are clearly the same!

(54)

(55)

(56)

(57)

6 Question (2 point)

A sphere of linear magnetic material (with permeability 1) is placed in an otherwise uniform magnetic
field By. Find the new field inside the sphere. Hint: solve this problem using separation of variables.

6.1 Solution

As we do not have any mention to a free current in the sphere, we can write

-

H=-Vo
V20 =0,

(58)



for the field H and scalar potential . Because we have a spherical geometry, let’s do it in spherical
coordinates:

O(r,0,9) = R(r)0(0)¢(¢)

1 o ( ,0 0 8 1 (& _
r2sind {SIHQE( 87’) a0 (sn9%> " sin ¢ (8752)} v=0

- 2
sin?@ d (72@) N sinf d (sm@@) wd (0 0

R dr dr e df df do?
sin?0 d [ ,dR sinf d doe 9
R dr (r %) "o (Sme%) -
1 d*y _ 2
) dg?

But, as we have azymutal symmetry, m = 0, i.e., the dependence in ¢ is zero. Then, we can write

d [ ,dR
% (T‘ dr) —>\R 0

1 d dO
il <sm6’—) +A0 =0

and the general solution is given using Legendre polynomials Py(cos ) as

O(r,0) = Z <Ag7“ + %) Py(cos ). (59)

=0

Inside the sphere, to not diverge the solution, we have

By (1, 0) ZAZT Py(cos®). (60)
=0

Before write the general expression for the potential outside, let’s remember that, for large r we
want to have the uniform magnetic field By. In order to have this we can follow

B B
By=By=H=— =222 (61)
Mo Ho
and hence, the potential stays
—B B 0
O(r — 00) = 0, = 2087 (62)
Ho Ho

Just having this in mind we can write the potential outside (to not diverge) as

Dy (r,0) = D(r — o0) + Z ) Py(cos )

B 0 < C
= 2T mPg(COS 6). (63)
Ho —o

Imposing now the boundary conditions:

10



(I)ms(r = R) = q)out(/r = R)

s B 0
Z AyR*Py(cos 0) = —ﬂ + Z %Pg(COS 0).
(=0 Ho = It

(64)
Here we see that cos = P;(cos ), which gives
AR = —ER+ gg,e: 1
AR = Rm,é £ 1. (65)
o 10, Pips(r = R) = 1100, Pout(r = R)
poO0rPoui(r = R) = g | —— (3089 Z KEZ}FQCZ Py(cos )
= —Bgcosf — Z %PE(COS 0)
10y ®Pins(r = R) = i /MAgRg’ng(cos 6) (66)
=0

Once again this gives

R3 ::LLAI’E:l

W = ,u€AgR£71,€ # 1. (67)

Now we need to match the results from both boundary conditions

« 0 #£1:

Cg — A€R2€+1
R AL [l + po(0 +1)] = 0
A, =0. (68)
eV =1:

ByR B
AAR=——+ —
' Ho - R?

By
Bo+2p0—5 7 +pAr =0
A =3B
(200 + 1)
R3By(p —
Cl — O(/*L ,UO) ) (70)
fo(240 + 1)

(69)

11



This result leads to the potential inside the sphere as

—3B —3B
Bis(r0) = — 0 peosf = — 07 (71)
(210 + 1) (2p0 + 1)
Because H;,,s, = —6@2-,15, we get
3B 3B
Hins = 0 zZ= 0 (72)
(200 + 1) (240 + 1)
and therefore 3,B
(210 + 1)

7 Question (2 points)

A current distribution J(x) exists in a medium of unit relative permeability adjacent to a semi-infinite
slab of material having relative permeability p and filling the half-space, z < 0.

a) Show that for = > 0 the magnetic induction can be calculated by replacing the medium of
permeability ji by an image current distribution J*, with components

(- 1) ()
VES AL A ey

J = Jo(x,y, —2)T + J.(x,y,—2)2 (74)

b) Show that for z < 0 the magnetic induction appears to be due to a current distribution %J in
a medium of unit relative permeability.

7.1 Solution

a) Using the suggested method of images, we replace the effects of the actual currents on the mate-
rial interface with an image current deep within the magnetic material. The real current distribution
J is known but its image needs to be determined. Because the “mirror surface” is a flat plane, we
can assume that each piece i of current in J at (z, y, z) will be mirrored by a piece i of current in J*
at the opposite z, ie., (z,y, —2):

Ji(x,y, 2) = Ji(x,y, —=2). (75)

As the magnetic field is given by

B(r) = X¢ / gy I > (r =) (76)

 A4n v —r/|3

we can write the magnetic field in all space as

(') + I ()] x (r —x')

B..o(r) = 10 / av’

T 4r lr — /|3
Lot aJ(r’) x (r—r’
B..o(r) = ﬁ /dvl ( ‘2 _ I(,/‘g : (77)

12



where I designate by a.J (r') the current bellow the plane because to match the boundary conditions.
These conditions are then:

V-B=0= (By;—By) ..o =0 (78)
VxH=0=fx (Hy, — Hy)|._o = 0. (79)
Using the first one we have

Bz>0(r) : 2|z:0 - Bz<0(r> : 2’7;:0
gy @) + I ()] x (r — 1) popt [ pad (') x (r —1')

47r v —r/|3 =0 = pra v —r/|3
[J(') + T x (r = 1) 2,00 = apd (v') x (r —1') - 2|.—0. (80)
The above computation is much easier if we break it on transverse and z components. Besides, I
will use the identity: A - (B x C) = C- (A x B):
(LZ2+T)+ (24 3)) x (r—1') - 2o =au(J.2+ Jy) x (v — 1) - 2].—0
{2 (L2 +J0) + (22 +IDN} - (r = 1) om0 = por{2 x [(J22 4+ J0)] - (r = 1)} |o=0
{[ExJi+2x 7] (r =)} om0 = pa{[2 x J4] - (r =)} =0
{[Jx?j —Jy& + J7g — Jy*jf} (r— r,)} om0 = pa{[Jog — Jy2] - (r — ')} |.=0
[(=Jy = T)@ =) + (o + T)(y = )] = pa[= Ty (@ — 2') + To(y — )]
Jy + J; = pad,
Jo + Jp = pad,

: 2|z=0

Sy = (por = 1) Jo, (81)
Jy = (pa—1) J,. (82)
Applying the second boundary condition
1 1
nxHy=nxH; = —2Zx Bz>0|z:0 = —2ZX Bz<0’z:0
Ho Kot
1 N 1 .
— gz X [J(") + T ()] x (r —v')| .0 = —popz X [J(x') x (r — )] |.=0. (83)
[o fiopt

Again, I am going to use a identity, whichis A x (B x C) = B(A - C) — C(A - B)
(z = 2)I) + ()] = () x (r =) (- + J*) a[J()(z =) = (r—r')J.]

=1 -a)ds (34)
=(1—-a) Jy, (85)
J; = (a—1)J.. (86)
And using the previous results with this one we finally get that: a = ﬁ
Finally, we deduce that
(n—1) . (=1 - (=1 :
Jr= J:c T, Y, —z T+ ——=, xaya_'zy——l]z T, Y, —%z)z (87)
()2 ARy ey =20 =y e =)
b) We showed that
fopt ad(r) x (r—r)  pop 2 / J@) x (r 1)
B =—[|d = d . 88
=>0() 47t / v v — /|3 4 (p+1) v v —r/|3 (88)

Then, we can just pick up the terms and see that we have an effective current, in a medium with a
unit permeability, given by
2
-
(n+1)

Jer = (89)
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