
PGF5003: Classical Electrodynamics I
Problem Set 3

Professor: Luis Raul Weber Abramo
Monitor: Natalí Soler Matubaro de Santi

(Due to May 11, 2021)

Guidelines: write down the most relevant passages in your calculations, not only the �nal results.
Do not forget to write the mathematical expressions that you are using in order to solve the questions.
We strongly recommended the use of the International System of Units.

1 Question (1 point)
Given the following magnetic �eld:

B(r) = B0ẑ + ẑ× ~∇f(r) (1)

a) Show that this satis�es: ~∇ ·B = 0;

b) Find the equation(s) for the �eld lines and show that, performing the following change of variables:
x → q (generalized coordinate), y → p (conjugate momenta), z → t and considering f = −B0H
(where H is a Hamiltonian), this is equivalent to

q̇ =
∂H

∂p
and ṗ = −∂H

∂q
. (2)

Hint: Use a scalar parameter λ to ensure that every di�erential element of magnetic �eld line ds is
parallel to B(r) itself: ds = λB.

c) What can you say about the magnetic �eld lines doing the analogy with the above Hamilton’s
equations?

1.1 Solution
a) We can compute

~∇ ·B = ~∇ ·
[
B0ẑ + ẑ× ~∇f(r)

]
= 0− ∂y∂xf x̂ + ∂x∂yf ŷ = 0 �. (3)
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b) Considering the hint and the changes in question, we can write

ds = λB

dx = λBx, dy = λBy, dz = λBz

dx

dz
=
Bx

Bz

= −∂yf
B0

⇒ dq

dt
=
B0∂pH

B0

⇒ q̇ =
∂H

∂p
dy

dz
=
By

Bz

=
∂xf

B0

⇒ dp

dt
= −B0∂qH

B0

⇒ ṗ =
∂H

∂q
(4)

c) The magnetic �eld lines are similar to, following this analogy, “time-dependent” trajectories
in (p, q) phase space of a “particle” with Hamiltonian H = −f/B0. Since most Hamiltonian are
non-integrable and produce chaotic trajectories, the magnetic �eld line con�guration will be very
complex!

2 Question (1 point)
Show that the force F on a magnetic dipole m exerted by an arbitrary magnetic �eld B is given by

F = ~∇ (m ·B) . (5)
Hint: Given the magnetic �eld of a point magnetic dipole B at r0

B(r) = µ0

[
mδ(r− r0)− ~∇ 1

4π

m · (r− r0)

|r− r0|3

]
. (6)

�nd its current density J.

2.1 Solution
Following the hint, the magnetic �eld of a point magnetic dipole m at r0 is

B(r) = µ0

[
mδ(r− r0)− ~∇ 1

4π

m · (r− r0)

|r− r0|3

]
. (7)

This leads to the current density

j(r) =
1

µ0

~∇×B = ~∇× [mδ(r− r0)] = −m× ~∇δ(r− r0). (8)

As we want to compute the force F, we have

F =

∫
d3rj×B =

∫
d3rB×

[
m× ~∇δ(r− r0)

]
=

∫
d3r
[
B · ~∇δ(r− r0)m− (m ·B)~∇δ(r− r0)

]
= −

∫
d3rmδ(r− r0)~∇ ·B +

∫
d3rδ(r− r0)~∇(m ·B)

= ~∇0 (m ·B(r0)) �. (9)

where I have used A× (B×C) = B(A ·C)−C(A ·B), from the �rst to second line, integrated
by parts from the third to the fourth line and used that there is no magnetic charge (~∇ ·B = 0).
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3 Question (1 point)
A right-handed circular solenoid of �nite length L and radius a hasN turns per unit length and carries
a current I . Show that the magnetic induction on the cylinder axis in the limit NL→∞ is

Bz =
µ0NI

2
(cos θ1 + cos θ2) (10)

where the angles are de�ned in Figure 1.

Figure 1: Figure for the question 3.

3.1 Solution

Figure 2: Visualizing the question 3.

We can compute it using Biot-Savart

dB =
µ0

4π

Id`× (r− r′)

|r− r′|3
. (11)

Let’s explain the objects that we are going to use: considering the axis of the solenoid as z, pointing
positively to the right, we could see x going out the page and y going down the page. Then, the
elements are

d` = Rdθθ̂ (12)
r = zẑ (13)
r′ = x′x̂+ y′ŷ + z′ẑ = R cos θx̂+R sin θŷ + z′ẑ (14)

r− r′ = (z − z′)ẑ −R(cos θx̂+ sin θŷ) (15)
|r− r′| =

√
(z − z′)2 +R2 (16)

θ̂ = cos θŷ − sin θx̂ (17)
d`× (r− r′) = Rdθ [(z − z′) cos θx̂+ (z − z′) sin θŷ +Rẑ] . (18)
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Figure 3: Solving the question 3.

Putting all this together and considering that an element of length dz′ contain dI = INdz′, we can
write

dB =
µ0INdz

′

4π

Rdθ [(z − z′) cos θx̂+ (z − z′) sin θŷ +Rẑ]

[(z − z′)2 +R2]3/2
. (19)

The magnetic �eld is given when we integrate this expression. Then,

B =

∫ 2π

0

dθ

∫ L

0

dz′
µ0IN

4π

R [(z − z′) cos θx̂+ (z − z′) sin θŷ +Rẑ]

[(z − z′)2 +R2]3/2
. (20)

But, as the integrations ∫ 2π

0

dθ sin θ =

∫ 2π

0

dθ cos θ = 0, (21)

we only need to deal with the integral in z′. In this way,

B =
2πµ0INR

2

4π

∫ L

0

dz′

[(z − z′)2 +R2]3/2
ẑ. (22)

We can perform this integral, changing variables

u = z − z′, du = −dz′

z′1 = 0⇒ u1 = z (23)
z′2 = L⇒ u2 = z − L. (24)

Thus,

B =
µ0INR

2

2

∫ z

z−L

du

[u2 +R2]3/2
ẑ. (25)

Performing now other change of variables like

Figure 4: Changing variables.
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x2 = u2 +R2 (26)

du = Rd

(
cos θ

sin θ

)
= − Rdθ

sin2 θ
(27)

x =
R

sin θ
(28)

u = x cos θ, (29)

we have

B =
µ0INR

2

2

(
−1

R2

)∫ θ=z

θ=z−L
dθ sin θẑ (30)

=
µ0INR

2

2

cos θ

R2
|Lz−Lẑ =

µ0INR
2

4π

1

R2

u√
u2 +R2

|Lz−Lẑ (31)

=
µ0IN

2

[
L√

L2 +R2
− (z − L)√

(z − L)2 +R2

]
ẑ. (32)

Here we can notice that

cos θ1 =
L√

L2 +R2
(33)

cos(π − θ2) =
(z − L)√

(z − L)2 +R2
(34)

cos(π − θ2) = − cos θ2. (35)

Therefore, we �nally arrive at

Bz =
µ0NI

2
(cos θ1 + cos θ2)�. (36)

4 Question (1 point)
A cylindrical conductor of radius a has a cylindrical hole of radius b cored parallel to, and centered a
distance d from, the cylinder axis (d+ b < a). The current density is uniform throughout the remaining
metal of the cylinder and is parallel to the axis. Use Ampere’s law and the principle of linear superpo-
sition to �nd the magnitude and direction of the magnetic �ux density in the hole.

Figure 5: Figure for question 4.
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4.1 Solution
First, let’s say, for example, that we are looking to the system from above, i.e., we see a plane cut of
the cylinder, where z comes in our direction. If a uniform current density J0 �ows in the positive z
direction, for superposition you can think in a cylinder where it �ows in this way everywhere plus
another little cylinder (the hole) with a current density J0 �owing in the negative z direction.

Figure 6: Visualizing question 4.

Due the Ampere’s Law ∮
C

B · dl = µ0

∫
S

dS · J, (37)

if we take the Amperian circuit is at some radius r inside the cylinder with no hole we can write

B2πr = µ0J0πr
2

Bcylinder =
µ0J0r

2
φ̂ =

µ0J0
2

(−yx̂+ xŷ) . (38)

Figure 7: Change from φ̂ to (x, y).

Using the same idea, but now for the hole, we have the same expression for its �eld, considering
that the current if �owing in the opposite direction. However, considering that the hole is with its
center on (x, y) = (d, 0), it is

Bhole = −µ0J0
2

[−yx̂+ (x− d)ŷ] . (39)
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By superposition, the total magnetic �eld is the sum of both ones

B = Bcylinder + Bhole (40)

=
µ0J0

2
(−yx̂+ xŷ)− µ0J0

2
[−yx̂+ (x− d)ŷ]

=
µ0Jd

2
ŷ. (41)

If considering according to the �gure it is (x, y) = (0, d), it is

Bhole = −µ0J0
2

[−(y − d)x̂+ xŷ] . (42)

By superposition, the total magnetic �eld is the sum of both ones

B = Bcylinder + Bhole (43)

=
µ0J0

2
(−yx̂+ xŷ)− µ0J0

2
[−(y − d)x̂+ xŷ]

= −µ0Jd

2
x̂. (44)

5 Question (2 points)
A small loop # 1 of wire (radius a) is held at a distance z above the center of a large loop # 2 (radius b),
as shown in Figure 2. The planes of the two loops are parallel and perpendicular to the common axis.

Figure 8: Figure for the question 5.

a) First, �nd the magnetic �eld of a loop in its axis (here consider it as z, as indicated in Figure).
Second, suppose current I �ows in the big loop. Find the �ux through the little loop. Hint: the little
loop is so small that you may consider the �eld of the big loop to be essentially constant.

b) Suppose current I �ows in the little loop. Find the �ux through the big loop. Hint: The little loop
is so small that you may treat it as a magnetic dipole. Consider its magnetic �eld as

B(r) =
µ0m

4πr3

(
2 cos θr̂ + sin θθ̂

)
. (45)

c) Find the mutual inductance and con�rm thatM12 = M21.
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5.1 Solution
a)

i) We can deduce the magnetic �eld using Biot-Savart law

dB =
µ0

4π

Ids× r̂
r2

. (46)

As ds ⊥ r̂ (because r̂ points to a point in ẑ), |s× r̂| = ds, then

dB =
µ0

4π

Ids

(z2 +R2)
, (47)

where R is the radius of the loop. We only have components in z because the other cancel. Then,
we only needs to integrate in z: dBz = dB cos θ, where cos θ = R/

√
z2 +R2, in the way that

Bz =

∮
dB cos θ =

∮
µ0

4π

Ids

(z2 +R2)

R√
z2 +R2

=
µ0IR

4π(z2 +R2)3/2

∫ 2π

0

dφR =
µ0IR

2

2(z2 +R2)3/2
. (48)

Which is a general magnetic �eld for a loop on its axis.
ii) The �ux through loop # 1 is given by

Φ1 =

∮
S

B2dS1. (49)

According to the hint, the �eld of the larger loop is constant in the region of the smaller loop, then,
using the magnetic �eld computed before for R = b gives

Φ1 =

∮
S

B2dS1 = B2πa
2 =

µ0πIa
2b2

2(z2 + b2)3/2
. (50)

b) The �ux through loop # 2 is given by

Φ2 =

∮
S

B1dS2. (51)

We can use the hint remembering that m = Iπa2. Moreover, this integral may be taken over any
surface that is bounded by the loop # 2. Choosing the spherical “cap” centered at the little loop in
the way that dS2 = r2 sin θdθdφr̂, we have

Φ2 =

∮
S

B1dS2

=

∫ θ′

0

dθ sin θ

∫ 2π

0

dφr2r̂ · µ0m

4πr3

(
2 cos θr̂ + sin θθ̂

)
= 2π

∫ θ′

0

dθ sin θ
µ0m

4πr
(2 cos θ)

=
µ0Iπa

2

r

∫ θ′

0

dθ sin θ cos θ. (52)

Writing r and θ′ in terms of the geometry of the problem

r =
√
b2 + z2

sin θ′ =
b

r
=

b√
b2 + z2

, (53)
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Figure 9: Solving question 5.

we end up with

Φ2 =
µ0Iπa

2

√
b2 + z2

∫ θ′

0

dθ sin θ cos θ =
µ0Iπa

2

√
b2 + z2

(
− cos2 θ

2

)θ′
0

=
µ0Iπa

2

√
b2 + z2

sin2 θ′

2
=

µ0Iπa
2

2
√
b2 + z2

(
b√

b2 + z2

)2

=
µ0Iπa

2b2

2(b2 + z2)3/2
. (54)

c) The mutual inductance of each loop is given by

Φ1 = M12I2 and Φ2 = M21I1. (55)

As I1 = I2 = I , we have

M12 =
Φ1

I
=

µ0πa
2b2

2(z2 + b2)3/2
(56)

M21 =
Φ2

I
=

µ0πa
2b2

2(z2 + b2)3/2
, (57)

which are clearly the same!

6 Question (2 point)
A sphere of linear magnetic material (with permeability µ) is placed in an otherwise uniform magnetic
�eld B0. Find the new �eld inside the sphere. Hint: solve this problem using separation of variables.

6.1 Solution
As we do not have any mention to a free current in the sphere, we can write

H = −~∇Φ

∇2Φ = 0, (58)
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for the �eld H and scalar potential Φ. Because we have a spherical geometry, let’s do it in spherical
coordinates:

Φ(r, θ, φ) = R(r)Θ(θ)ψ(φ)

1

r2 sin θ

[
sin θ

∂

∂r

(
r2
∂

∂r

)
+

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin θ

(
∂2

∂φ2

)]
Φ = 0

sin2 θ

R

d

dr

(
r2
dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
+

1

ψ

d2ψ

dφ2
= 0

sin2 θ

R

d

dr

(
r2
dR

dr

)
+

sin θ

Θ

d

dθ

(
sin θ

dΘ

dθ

)
= m2

1

ψ

d2ψ

dφ2
= −m2

But, as we have azymutal symmetry, m = 0, i.e., the dependence in φ is zero. Then, we can write

d

dr

(
r2
dR

dr

)
− λR = 0,

1

sin θ

d

dθ

(
sin θ

dΘ

dθ

)
+ λΘ = 0

and the general solution is given using Legendre polynomials P`(cos θ) as

Φ(r, θ) =
∞∑
`=0

(
A`r

` +
C`
r`+1

)
P`(cos θ). (59)

Inside the sphere, to not diverge the solution, we have

Φins(r, θ) =
∞∑
`=0

A`r
`P`(cos θ). (60)

Before write the general expression for the potential outside, let’s remember that, for large r we
want to have the uniform magnetic �eld B0. In order to have this we can follow

B0 = B0ẑ ⇒ H =
B

µ0

=
B0

µ0

ẑ (61)

and hence, the potential stays

Φ(r →∞) =
−B0

µ0

z = −B0r cos θ

µ0

. (62)

Just having this in mind we can write the potential outside (to not diverge) as

Φout(r, θ) = Φ(r →∞) +
∞∑
`=0

C`
r`+1

P`(cos θ)

= −B0r cos θ

µ0

+
∞∑
`=0

C`
r`+1

P`(cos θ). (63)

Imposing now the boundary conditions:
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• Φins(r = R) = Φout(r = R)

Φins(r = R) = Φout(r = R)
∞∑
`=0

A`R
`P`(cos θ) = −B0R cos θ

µ0

+
∞∑
`=0

C`
R`+1

P`(cos θ). (64)

Here we see that cos θ = P1(cos θ), which gives

A1R = −B0

µ0

R +
C1

R2
, ` = 1

A`R
` =

C`
R`+1

, ` 6= 1. (65)

• µ∂rΦins(r = R) = µ0∂rΦout(r = R)

µ0∂rΦout(r = R) = µ0

[
−B0

µ0

cos θ −
∞∑
`=0

(`+ 1)C`
R`+2

P`(cos θ)

]

= −B0 cos θ −
∞∑
`=0

µ0(`+ 1)C`
R`+2

P`(cos θ)

µ∂rΦins(r = R) =
∞∑
`=0

µ`A`R
`−1P`(cos θ) (66)

Once again this gives

−B0 −
2µ0C1

R3
= µA1, ` = 1

−µ0(`+ 1)C`
R`+2

= µ`A`R
`−1, ` 6= 1. (67)

Now we need to match the results from both boundary conditions:

• ` 6= 1:

C` = A`R
2`+1

R`−1A` [µ`+ µ0(`+ 1)] = 0

A` = 0. (68)

• ` = 1:

A1R = −B0R

µ0

+
B1

R2

B0+2µ0
B1

R3
+ µA1 = 0

A1 =
−3B0

(2µ0 + µ)
(69)

C1 =
R3B0(µ− µ0)

µ0(2µ0 + µ)
. (70)

11



This result leads to the potential inside the sphere as

Φins(r, θ) =
−3B0

(2µ0 + µ)
r cos θ =

−3B0z

(2µ0 + µ)
. (71)

Because Hins = −~∇Φins, we get

Hins =
3B0

(2µ0 + µ)
ẑ =

3B0

(2µ0 + µ)
(72)

and therefore
Bins = µHins =

3µB0

(2µ0 + µ)
. (73)

7 Question (2 points)
A current distribution J(x) exists in a medium of unit relative permeability adjacent to a semi-in�nite
slab of material having relative permeability µ and �lling the half-space, z < 0.

a) Show that for z > 0 the magnetic induction can be calculated by replacing the medium of
permeability µ by an image current distribution J?, with components

J? =
(µ− 1)

(µ+ 1)
Jx(x, y,−z)x̂+

(µ− 1)

(µ+ 1)
Jy(x, y,−z)ŷ − (µ− 1)

(µ+ 1)
Jz(x, y,−z)ẑ (74)

b) Show that for z < 0 the magnetic induction appears to be due to a current distribution 2µ
(µ+1)

J in
a medium of unit relative permeability.

7.1 Solution
a) Using the suggested method of images, we replace the e�ects of the actual currents on the mate-
rial interface with an image current deep within the magnetic material. The real current distribution
J is known but its image needs to be determined. Because the “mirror surface” is a �at plane, we
can assume that each piece i of current in J at (x, y, z) will be mirrored by a piece i of current in J?
at the opposite z, i.e., (x, y,−z):

J?i (x, y, z) = Ji(x, y,−z). (75)

As the magnetic �eld is given by

B(r) =
µ0

4π

∫
dV ′

J(r′)× (r− r′)

|r− r′|3
(76)

we can write the magnetic �eld in all space as

Bz>0(r) =
µ0

4π

∫
dV ′

[J(r′) + J?(r′)]× (r− r′)

|r− r′|3

Bz>0(r) =
µ0µ

4π

∫
dV ′

αJ(r′)× (r− r′)

|r− r′|3
(77)
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where I designate by αJ(r′) the current bellow the plane because to match the boundary conditions.
These conditions are then:

~∇ ·B = 0⇒ (B2 −B1) · n̂|z=0 = 0 (78)
~∇×H = 0⇒ n̂× (H2 −H1)|z=0 = 0. (79)

Using the �rst one we have

Bz>0(r) · ẑ|z=0 = Bz<0(r) · ẑ|z=0

µ0

4π

∫
dV ′

[J(r′) + J?(r′)]× (r− r′)

|r− r′|3
· ẑ|z=0 =

µ0µ

4π

∫
dV ′

αJ(r′)× (r− r′)

|r− r′|3
· ẑ|z=0

[J(r′) + J?(r′)]× (r− r′) · ẑ|z=0 = αµJ(r′)× (r− r′) · ẑ|z=0. (80)

The above computation is much easier if we break it on transverse and z components. Besides, I
will use the identity: A · (B×C) = C · (A×B):

[(Jz ẑ + Jt) + (J?z ẑ + J?t )]× (r− r′) · ẑ|z=0 = αµ(Jz ẑ + Jt)× (r− r′) · ẑ|z=0

{ẑ × [(Jz ẑ + Jt) + (J?z ẑ + J?t )]} · (r− r′)|z=0 = µα {ẑ × [(Jz ẑ + Jt)] · (r− r′)} |z=0

{[ẑ × Jt + ẑ × J?t ] · (r− r′)} |z=0 = µα {[ẑ × Jt] · (r− r′)} |z=0{[
Jxŷ − Jyx̂+ J?x ŷ − J?y x̂

]
· (r− r′)

}
|z=0 = µα {[Jxŷ − Jyx̂] · (r− r′)} |z=0[

(−Jy − J?y )(x− x′) + (Jx + J?x)(y − y′)
]

= µα [−Jy(x− x′) + Jx(y − y′)]
Jy + J?y = µαJy

Jx + J?x = µαJx

J?x = (µα− 1) Jx, (81)
J?y = (µα− 1) Jy. (82)

Applying the second boundary condition

n̂×H2 = n̂×H1 ⇒
1

µ0

ẑ ×Bz>0|z=0 =
1

µ0µ
ẑ ×Bz<0|z=0

1

µ0

µ0ẑ × [J(r′) + J?(r′)]× (r− r′)|z=0 =
1

µ0µ
µ0µẑ × [J(r′)× (r− r′)] |z=0. (83)

Again, I am going to use a identity, which is A× (B×C) = B(A ·C)−C(A ·B)

(z − z′)[J(r′) + J?(r′)]− (r′)× (r− r′) (Jz + J?z ) = α [J(r′)(z − z′)− (r− r′)Jz]

J?x = (1− α) Jx, (84)
J?y = (1− α) Jy, (85)
J?z = (α− 1) Jz. (86)

And using the previous results with this one we �nally get that: α = 2
(µ+1)

.
Finally, we deduce that

J? =
(µ− 1)

(µ+ 1)
Jx(x, y,−z)x̂+

(µ− 1)

(µ+ 1)
Jy(x, y,−z)ŷ − (µ− 1)

(µ+ 1)
Jz(x, y,−z)ẑ (87)

b) We showed that

Bz>0(r) =
µ0µ

4π

∫
dV ′

αJ(r′)× (r− r′)

|r− r′|3
=
µ0µ

4π

2

(µ+ 1)

∫
dV ′

J(r′)× (r− r′)

|r− r′|3
. (88)

Then, we can just pick up the terms and see that we have an e�ective current, in a medium with a
unit permeability, given by

Jeff =
2µ

(µ+ 1)
J. (89)
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