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Abstract The human oral and gut microbiomes influ-
ence health via competition for a distinct niche in the
body with pathogens, via metabolic capabilities that
increase host digestive capacity and generate com-
pounds engaged in signaling pathways and modulation
of immune system functions. Old age alters our meta-
bolic and regenerative capacity. Following recruitment
of 65 human subjects in the age range of 70 to 82, we
discerned healthy aging (HA) and non-healthy aging
(NHA) cohorts discordant in the occurrence of one or
more major diseases: (1) cancer, (2) acute or chronic
cardiovascular diseases, (3) acute or chronic pulmonary
diseases, (4) diabetes, and (5) stroke or neurodegenera-
tive disorders. We analyzed these cohorts’ oral
microbiomes (saliva) and gut microbiomes (stool) to
assess diversity and identify microbial biomarkers for
HA. In contrast to the gut microbiome where no change

was observed, we found that the saliva microbiome had
higher α-diversity in the HA compared with the NHA
group. We observed the genus Akkermansia to be sig-
nificantly more abundant in the gut microbiota of the
HA group. Akkermansia muciniphila is a colonic
mucin-degrading bacterium believed to have beneficial
effects on gastrointestinal health, particularly in the con-
text of diabetes and obesity. Erysipelotrichaceae UCG-
003 was a taxon increased in abundance in the HA
cohort. Streptococcus was the only genus observed to
be significantly decreased in abundance in both the gut
and oral microbiomes of the HA cohort compared with
the NHA cohort. Our data support the notion that these
microbes are potential probiotics to decrease the risks of
non-healthy aging.
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Introduction

Healthy aging is influenced by human genetics and
environmental factors, including nutrition and lifestyle.
The aging process is generally characterized by a de-
cline of physiological and immunological functions
which, in turn, triggers acute and chronic diseases in-
cluding organ failure. Chronic low-grade inflammation
has long been thought to contribute to increased disease
risks in the context of aging (Woods et al. 2012). Mito-
chondria and lysosomes are cellular organelles with
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important roles in the degradation of cellular waste
products and the recycling of their molecular building
blocks for anabolic processes. Reduced function of
these organelles and the consequential accumulation of
cellular waste results in inflammation and, therefore, is
linked to aging (Bratic and Larsson 2013; Carmona-
Gutierrez et al. 2016; Harman 1972). One commonly
studied model system for research on aging in multicel-
lular organisms with a digestive tract is the nematode
Caenorhabditis elegans. Associations between mito-
chondrial function and aging were demonstrating using
C. elegans (Shen et al. 2014). Human genetic traits
associated with healthy aging, even in cases of excep-
tional longevity (centenarians), are complex (Sebastiani
et al. 2012, 2010). A C. elegans model was used to
identify genes of potential importance to the aging pro-
cess. Among those are sir2 and daf16. Other genes
encode proteins with apparent roles in longevity (Lin
et al. 1997; Tissenbaum and Guarente 2001). A human
Sir2 ortholog, SIRT3, has a potential mitochondrial
NAD-dependent deacetylase function. Genotype vari-
ability in SIRT3 was statistically linked to longevity
(Rose et al. 2003) and later described as a protein
involved in reactive oxygen species (ROS) suppression
and mitochondrial biogenesis (Kong et al. 2010) as well
as tumor suppressor functions (Chen et al. 2014). Addi-
tionally, the insulin/IGF-1 signaling (IIS) pathway was
identified as an important evolutionarily conserved
pathway with a role in NF-kB signaling and the aging
process. SIRT1 (a paralog of SIRT3) and class O
Forkhead box (FoxO) transcription factors (human
orthologs of the C. elegans protein Daf16) are NF-kB
signaling inhibitors (Salminen and Kaarniranta 2010).
In yet another study, genetic variability in the gene-
encoding FOXO3A was strongly associated with lon-
gevity (Willcox et al. 2008).

Mitochondrial functions are influenced by environ-
mental factors such as toxicants and steroid hormones that
a large human population is exposed to (Meyer et al.
2013; Velarde 2014). The metabolism of nutrients, with
a final stage in mitochondria, generates oxidants that may
contribute to degenerative aging diseases (Ames et al.
1993). Low intake of antioxidant-rich foods is thought
to be a factor in aging diseases (Ames et al. 1993). Given
the role of humanmicrobiota colonizing the digestive tract
in the uptake and metabolism of foods, orally ingested
toxicants and steroid hormones, relationships between the
composition of human microbiota and aging likely exist
(Heintz and Mair 2014; Kumar et al. 2016). The rapid

progress in next-generation sequencing (NGS) technolo-
gies and associated bioinformatics analysis tools have
permitted the taxonomic characterization of human oral
cavity and gut microbiota using metagenomics. Links
between the highly complex microbiota and disease states
can be identified (Eckburg et al. 2005; Gill et al. 2006;
Round andMazmanian 2009). To name a few studies and
perspectives, associations of gut microbial changes with
dysregulated adaptive immune cells (Round and
Mazmanian 2009) and nutrient metabolism (Kau et al.
2011) were established. Caries has been linked to a dis-
tinct composition of the oral microbiome, and cariogenic
microbes were identified (Gomez et al. 2017). Claesson
et al. (2012) reported that fecal microbiota of older indi-
viduals had greater interindividual variations compared
with younger adults. These investigators also found gut
microbiota of people in long-term care facilities to be less
diverse than those of community-dwelling older adults.
Data on the abundance of the cytokines IL-6 and IL-8,
diastolic blood pressure, and weight suggested that quan-
titative changes of Ruminococcus, Prevotella,
Oscillobacter CAG, and Bacteroides taxa in the gut
microbiome played a role in healthy aging (Claesson
et al. 2012). Many bacteria residing in the digestive tract
produce metabolites absorbed by the host’s intestinal mu-
cosa where they induce physiological changes. For exam-
ple, the type 2 diabetes drug metformin was found to
increase the life span ofC. eleganswhen co-cultured with
Escherichia coli by altering folate and methionine metab-
olism (Cabreiro et al. 2013). Such gut microbiota-
mediatedmetabolic adaptationsmay also occur in humans
who take this therapeutic drug. In a study on Parkinson’s
disease, a progressive neurological disorder that mostly
elderly people suffer from, the concentrations of short-
chain fatty acids (SCFAs) were decreased compared with
an age-matched control group (Unger et al. 2016). Pro-
duced by many GI commensal organisms, SCFAs modu-
late signaling pathways including the inhibition of histone
deacetylases and activation of G protein–coupled recep-
tors. SCFAs are absorbed by enterocytes and enter the
blood stream (Tan et al. 2014). Examples of SCFA pro-
ducers are Lachnospiraceae family members that convert
lactate to propionate and Faecalibacterium, Eubacterium,
and Roseburia, species that produce butyrate from
butyryl-CoA. There is evidence of cross-feeding of such
SCFAs among gut commensals (Rios-Covian et al. 2016).
Changes in the oral microbiota were also linked to in-
creased risks of cardiovascular disease, a set ofmorbidities
afflicting many older adults (Leishman et al. 2010).
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To our knowledge, no data have been published on
the correlation of gut and oral microbial profiles with
elderly cohorts discordant with respect to incidence of at
least one major disease in their lifetimes. We enrolled a
cohort of 65 human subjects, half of whom had evidence
of healthy aging (HA) and half of whom self-reported
having suffered from at least one major disease (defined
here as non-healthy aging (NHA)). The enrolled older
adults provided stool and saliva samples collected at two
timepoints 4 to 6 months apart. The NHA group had a
medical history of cancer, stroke or other neurological
disease, heart attack or other cardiovascular disease,
chronic pulmonary disease, or diabetes/diabetic compli-
cations. Gut and oral cavity microbiomes (from stool
and saliva samples, respectively) were phylogenetically
profiled to determine diversity and taxonomic differ-
ences between the two groups. REAP surveys (Gans
et al. 2003) were used to correlate data on nutritional
intake and disease status with the microbiomes.

Materials and methods

Study population, recruitment, and specimen collections

A case-control, prospective study was conducted. The
internal review boards (IRB) of Danbury Hospital, Dan-
bury, CT, and the J. Craig Venter Institute, Rockville,
MD, approved a human-subject consent form and a
protocol outlining the risks and benefits of participation,
as well as a questionnaire that requested a detailed
medical history and nutrition via a Rapid Eating and
Activity Assessment for Patients (REAP) (Gans et al.
2003). IRB approvals for the study were received in
November 2013 (name: The Rudy Ruggles Systems
Biology Study to Identify and Elucidate Health Aging;
protocol number: 13-01) and continued for the time
period of data generation and analysis. Participants
who enrolled in the study visited a physician at Danbury
Hospital in the context of routine or disease follow-up
health care. Provided that their age was in the 70–82
range, they were asked about their interest in
volunteering for the study. Sixty-five human subjects
of both genders were enrolled in 2014 and agreed to
provide saliva, stool, blood, and urine specimens twice
during the active enrollment period. By early 2015,
recruitment and specimen collections were completed.
Medical history data allowing grouping subjects into the
HA vs. NHA cohorts were available for all 65

participants. The NHA group had a medical history
linked to one or more of the following major disease
categories: (1) cancer, (2) acute or chronic cardiovascu-
lar disease, (3) acute or chronic pulmonary disease, (4)
chronic liver disease, (5) diabetes and diabetic compli-
cations, (6) stroke or neurodegenerative disorder. Hu-
man subjects who were in the HA group did not report
being diagnosed with any of these diseases in their
lifetimes. A standard stool collection protocol devel-
oped by the Human Microbiome Project initiative
(Human Microbiome Project 2012) was used for this
study. Stool and saliva specimens were shipped to the
main study site (JCVI), cooled at 5–10 °C overnight,
and then frozen at − 80 °C until used for 16S rDNA
sequencing experiments.

Stool DNA extraction

DNA for 16S rRNA PCR reactions was extracted from
stool samples using aMoBIO powersoil purification kit.
We aliquoted approximately 1 g of stool into a centri-
fuge tube and resuspended it in 800 μl of lysis buffer
(1M Tris-HCl, 2 mMEDTA, 1.2% Triton X-100). Stool
samples were incubated at 75 °C for 10 min, allowed to
cool to room temperature, and followed by the addition
of 60 μl 200 mg/ml lysozyme and 5 μl RNase A. Stool
lysates were incubated overnight at 37 °C, and then
added to lysing tubes provided in the MoBIO powersoil
purification kit. The DNAwas extracted using the man-
ufacturer’s specifications and eluted in 100 μl of the
solution (Rajagopala et al. 2016).

Saliva DNA extraction

Saliva specimens were thawed at 4 °C and vortexed
thoroughly. A 300-μl aliquot was resuspended in
300 μl TES buffer (20 mM Tris-HCl, pH 8.0, 2 mM
EDTA, and 1.2% Triton X-100). The sample was pulse-
vortexed and incubated at 75 °C for 10 min followed by
cooling to 20 °C. To this suspension, we added 60 μl
chicken egg lysozyme (200 μg/ml), 5.5 μl mutanolysin
(20 U/ml; Sigma–Aldrich), and 5 μl linker RNase A.
Gently mixing, the suspension was incubated for 60min
at 37 °C. After addition of 100 μl 10% SDS and 42 μl
proteinase K (20 mg/ml), the lysate was digested over-
night at 55 °C. DNAwas extracted by adding an equal
volume of phenol:chloroform:isoamylalcohol (25:24:1;
pH 6.6). The suspension was vortexed and centrifuged
at 13,100×g for 20 min. The aqueous phase was
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transferred to a clean sterile microcentrifuge tube. The
residual sample was re-extracted repeating the previous
step, followed by a final extraction using an equal
volume of chloroform:isoamylalcohol (24:1) and centri-
fugation at 13,100×g for 15 min. To the aqueous phase,
we added 3 M sodium acetate (pH 5.2) at one tenth of
the volume. DNA was precipitated by adding an equal
volume of ice-cold isopropanol. Incubations at − 80 °C
for 30min or at − 20 °C overnight followed. Precipitated
DNAwas centrifuged at 13,000×g for 10 min and was
washed with 80% ethanol. The centrifugation step
was repeated after renewed addition of 80% ethanol.
The air-dried DNA pellet was resuspended in TE buffer
(20 mM Tris-HCl, pH 8.0; 1 mMNa-EDTA) and stored
at − 20 °C. PCR inhibitors were removed using the
MOBio PowerClean DNA purification kit according to
the manufacturer’s specifications.

16S rDNA analysis by MiSeq sequencing

DNA extracted from stool samples was amplified using
primers that targeted the V1-V3 regions of the 16S
rRNA gene (Rajagopala et al. 2016). These primers
included the i5 and i7 adaptor sequences for Illumina
MiSeq pyrosequencing as well as unique 8-bp indices
incorporated in both primers such that each sample
received its unique barcode pair. This method of incor-
porating the adaptors and index sequences in the primers
at the PCR stage providedminimal loss of sequence data
when compared with previous methods that would li-
gate the adaptors to every amplicon after amplification.
This method also allows generating sequence reads
which are all in the same 5′-3′ orientation. Using ap-
proximately 100 ng of extracted DNA, the amplicons
were generated with Platinum Taq polymerase (Life
Technologies, CA) and by using the following cycling
conditions: 95 °C for 5 min for an initial denaturing step
followed by 95 °C for 30 s, 55 °C for 30 s, 72 °C for 30 s
for a total of 35 cycles followed by a final extension step
of 72 °C for 7 min and then stored at 4 °C. Once the
PCR for each sample was completed, the amplicons
were purified using the QIAquick PCR purification kit
(Qiagen Valencia, CA), quantified fluorometrically
using SYBR Gold Nucleic Acid Gel Stain (Thermo
Fisher Scientific), normalized, and pooled in preparation
for bridge amplification followed by Illumina MiSEQ
sequencing using the dual index 2 × 300-bp format
(Roche, Branford, CT) following the manufacturer’s
protocol.

Processing and filtering of sequence reads

Operational taxonomic units (OTUs) were generated de
novo from raw Illumina sequence reads using the
UPARSE pipeline (Edgar 2013). Paired-end reads were
trimmed of adapter sequences, barcodes, and primers prior
to assembly. Sequences of low quality and singletonswere
discarded. Sequences were subjected to a de-replication
step, and abundances were determined. Chimera filtering
of the sequences occurred during the clustering step. We
used the Wang classifier (method = Wang) and
bootstrapped using 100 iterations (iters = 100). We set
mothur to report full taxonomies only for sequences where
80 or more of the 100 iterations are the same (cutoff = 80).
Taxonomies were assigned to the OTUs with mothur
(Schloss et al. 2009) using version 123 of the SILVA
16S ribosomal RNA database (Quast et al. 2013) as the
reference. Tables with OTUs and the corresponding tax-
onomy assignments were generated and used in subse-
quent analyses. The next step was to remove likely non-
informative OTUs with an independent filtering process.
Rare OTUs or taxa are strongly affected by MiSeq se-
quencing errors, and any statistical conclusions relying on
them are typically unstable. Even in the univariate differ-
ential abundance analysis, the presence of such taxa in-
creases the penalty from the multiple testing correction
applied to the more abundant taxa. We used unbiased
metadata-independent filtering at each level of the taxon-
omy by eliminating all features that did not pass these
criteria. This included samples with less than 2000 reads
and OTUs present in less than 10 samples.

Identification of phylogenetic groups in gut and oral
microbiota

The phyloseq package version 1.16.2 in the R package
version 3.2.3 was used for the microbiome census data
analysis (McMurdie and Holmes 2013; Team 2015).
The ordination analysis was performed using non-
metric multidimensional scaling (NMDS) with the
Bray–Curtis dissimilarity matrix (Bray and Curtis
1957). The data output was used for the generation of
a heatmap using the plot_heatmap function in the
phyloseq package (McMurdie and Holmes 2013). Dif-
ferences in microbial richness (alpha diversity) were
evaluated using different algorithms included in the
phyloseq plot_richness function. For genus-level and
OTU count matrices, we performed the following rich-
ness and diversity analyses using the R phyloseq
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package. The plot_richness function was used to create
a plot of alpha diversity index estimates for each sample.
Heatmaps of taxonomic profiles clustered hierarchically
using the plot_heatmap function in phyloseq were con-
structed (Rajaram and Oono 2010). A beta diversity
Bray–Curtis dissimilarity matrix was used to compute
the non-metric multidimensional scaling (NMDS). The
ordination output was plotted in the form of heatmaps
using the plot_heatmap function including a side bar
where clinical variables associated with each sample
were assigned to look for specific associations.

Statistical analyses of gut and oral microbiome data

To detect differential abundances in the gut microbiota
at a genus or species level, the DESeq2 package version
1.12.3 in R was used. The phyloseq data are converted
in to a DESeq2 ob j ec t u s ing the func t i on
phyloseq_to_deseq2 function. DESeq2 (Love et al.
2014) is a method for the differential analysis of count
data that uses shrinkage estimation for dispersions and
fold changes to improve the stability and interpretability
of estimates. The DESeq2 test uses a negative binomial
model rather than simple proportion-based normaliza-
tion or rarefaction to control for different sequencing
depths, which may increase the power and also lower
the false positive detection rate (McMurdie and Holmes
2014). Default options of DESeq2 were used for multi-
ple testing adjustment applying the Benjamini and
Hochberg method (Benjamini and Hochberg 1995).

Results

Cohort descriptions and study design

We recruited 65 human subjects in the age range of 70 to
82. The healthy aging (HA) and non-healthy aging (NHA)
groups were discordant in the incidence of one or more
major diseases based on self-reported data. Major disease
categories defining NHA for this study’s participants were
at least one-time diagnosis for (1) cancer, (2) acute or
chronic cardiovascular diseases, (3) acute or chronic pul-
monary diseases, (4) diabetes, and (5) stroke or neurode-
generative disorders. Moreover, study participants were
asked questions related to chronic pain, memory loss,
recent hospitalizations (these factors were not among the
criteria sufficient to place an individual in the NHAgroup)
and nutrition. Data on the disease groups among the 65

participants is provided in Table 1. All demographic and
medical data that were collected and the group assign-
ments (HAvs. NHA) are provided in Suppl. File S1. The
specimens to characterize microbial and other molecular
signatures for the HA and NHA cohorts were blood
plasma, urine, saliva, and stool. The specimens were
collected for two timepoints, approximately 4 to 6 months
apart, from all but 5 study participants. We analyzed 125
saliva and stool samples to characterize differences in the
oral and gastrointestinal (GI) tract microbiomes, respec-
tively. There were no instructions to fast or change diet
prior to the specimen collection times or alter the regimen
for therapeutic drug intake. Recent intake of antibiotic
drugs was reported by one participant, which occurred
6 weeks prior to the 1st collection timepoint. These do-
nor’s samples were not excluded from the surveys. All
medical conditions newly reported at the time of the 2nd
clinical visit did not modify group assignments. No con-
clusive new diagnoses of a major disease pertaining to the
subjects of the HA group occurred in the 4- to 6-month
timeframe of specimen collection.

Abundance differences for oral microbial profiles
comparing HA and NHA cohorts

The alpha-diversity parameters consisting of Shannon
(species evenness) and Chao1 (species richness) diver-
sity indices show that the oral microbiome alpha diver-
sity of the HA group is significantly higher than that
of the NHA group with p values of 0.003 (Shannon) and
0.004 (Chao1) (Fig. 1a). The most abundant phyla were
Firmicutes followed by Actinobacteria (Fig. 1b). Most
abundant among the top 10 genera in both HA and NHA
groups were Streptococcus (> 40%), Veillonella (each
belongs to phylum Firmicutes), Rothia (phylum
Actinobacteria), Prevotella (phylum Bacteriodetes),
and Neisseria (phylum Proteobacteria) (Fig. 1c). Next,
we determined differentially abundant genera between
the HA and NHA groups by using the negative binomial
model-implemented DESeq2 package. In Fig. 2, we
considered only those genera that make up at least 1%
of the relative abundance of the entire community and
have p values < 0.05 (HA vs. NHA). Streptococcus,
Veillonella, and Rothia were increased in the NHA
cohort, while Neisseria was increased in the HA cohort.
Lower abundance genera with differential abundances
increased in the HA cohort were Haemophilus,
Fusobacterium, and Capnocytophaga (Suppl. File S2).
We performed ordination with the Bray–Curtis
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dissimilarity matrix (PERMANOVA’s R2 = 0.047, p =
0.001) and the Bray–Curtis similarity matrix (presence
and absence) (PERMANOVA’s R2 = 0.048, p = 0.001).
Thus, we identified statistically significant differences
between the HA and NHA groups. As shown in the
ordination plots of Fig. 3, the separation of the two
groups is weak. Given the small R2 values, we infer that
only a few species are differentially abundant as evident
in the DESeq2 results.

Abundance differences for gut microbial profiles
comparing HA and NHA cohorts

The gut microbiota is more diverse compared with other
body sites including the oral cavity. This explains that,
using statistical analyses for species evenness and rich-
ness, there were no significant differences in alpha-
diversity comparing the HA and NHA groups (p values

> 0.05) (Fig. 4a). The most abundant phylum was
Firmicutes. Verrucomicrobia, Bacteriodetes, and
Actinobacteria were less abundant (Fig. 4b). On the genus
level, abundant in both HA and NHA groups were Clos-
tridium sensu stricto followed by Blautia, Eubacterium
halli i group, Romboutsia , Peptoclostridium ,
Ruminococcus, and Anaerostipes (all in the order
Clostridiales) (Fig. 4c). We determined differentially
abundant genera between the HA and NHA groups (via
the DESeq2 tool). Interestingly, non-clostridial genera
were most significantly changed in abundance, foremost
Akkermansia (phylumVerrucomicrobia) with a more than
3-fold abundance increase in the HA group (Fig. 5).
Erysipelotrichaceae (UCG-003), in the order
Erysipelotrichiales, and Bacteroides were more abundant
in the HA group, while Streptococcus and Lactobacillus,
each in the order Lactobacillales, were less abundant in the
HA group (Fig. 5). Lachnospiraceae (UCG-005) and the

Table 1 Demographic and medical history data for HA and NHA cohorts

Gender HA NHA Cancer Diabetes Cardio.
diseases

Pulmo.
diseases

Neuro.
diseases

Memory
loss

Frequent fever/
pain

Avg no.
hosp/10 yearsa

Male 14 17 6 6 10 3 1 5 5 1.8

Female 19 15 5 2 5 4 0 3 4 1.4

Cardio. (cardiovascular) diseases include heart attack, chronic heart disease, and coronary bypass surgery; Pulmo. (pulmonary) diseases
include COPD, emphysema, chronic bronchitis, and pneumoniae; Neuro. (neurodegenerative) diseases include stroke and Alzheimer’s and
Parkinson’s diseases
a Average hospitalization events over last 10 years

Fig. 1 a Alpha-diversity comparing the oral HA and NHA
groups. b Phyla and c top 10 genera in the saliva microbiota
averaged from the data of HA and NHA groups. Bacterial alpha-
diversity using calculations are based on the Chao1 (emphasis on
OTU richness) and Shannon (emphasis on OTU abundance/

evenness) indices. The cohorts consisted of 33 HA and 32 NHA
subjects. The data for the two timepoints were merged to perform
the statistical analyses which were based on Wilcoxon rank sum
tests (p value < 0.05). Arrows connect specific bar segments in b
and c with the names of the phyla and genera, respectively
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Escherichia/Shigella group were increased and decreased,
respectively, with statistically significant differences in the
HA cohort (Suppl. File S2). The ordination plots do not
show a separation of the two groups, using the Bray–
Curtis dissimilarity matrix (PERMANOVA’s R2 = 0.009,
p = 0.2) and Bray–Curtis similarity matrix (presence and
absence) (PERMANOVA’s R2 = 0.167, p = 0.013) (Suppl.
File S3). The overall microbial diversity of the two groups
was similar. To determine if the gut microbial profiles
clustered for any individual disease group, a principal
component analysis was performed to separately visualize
the main five NHA groups. As shown in Fig. 6, there was
no separation among the disease groups.

Eating habits in the context of HA vs. NHA group
associations

Using the Rapid Eating Assessment for Participants
(REAP) survey with 16 questions of diets, differences
between the HA and NHA cohorts were assessed.

Moderate differences were observed for five questions.
REAP 3 pertained to the intake of high-fiber/whole-
grain foods, REAP 4 the intake of fruit/fruit juices,
REAP 6 to dairy products, REAP 10 to processed foods
high in fat contents, and REAP 12 to dessert foods high
in sugar and fat contents. The strongest difference
pertained to REAP 4. Seventy-five percent of the HA
subjects reported rarely missing the consumption of two
servings of fruit per day, while only 43% of the NHA
subjects did (Suppl. File S4).

Discussion

Research during the last two decades has demonstrated
evidence that a large subset of the microbes colonizing
the human GI tract, oral cavity, and skin has a mutual-
istic relationship with the host. Especially in the GI tract,
these microbiota influence and are influenced by the
immune system via interactions with mucosal tissues

Fig. 2 Differentially abundant
genera in the oral microbiome
with average abundances greater
than 1%. We converted the
relative abundance value of each
genus into a log10 values for a
better comparative display in box
plots. The data for the two
timepoints were merged to
perform the statistical analyses
which were based on Wilcoxon
rank sum tests (p value < 0.05)
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(Round and Mazmanian 2009) and contribute to the
metabolism of foods, thus enhancing the utilization of
nutrients not digestible by the host enzymatic repertoire
(Krajmalnik-Brown et al. 2012). In that process, the
microbiome generates unique molecules, for example
SCFAs, that are absorbed by mucosal enterocytes and
modify signaling processes and ultimately organ func-
tion in the human host (Rios-Covian et al. 2016; Tan
et al. 2014). Under conditions of dysbiosis,

opportunistic pathogens often expand, and commensal
microbes are diminished in abundance. The imbalance
can trigger various human pathologies (Round and
Mazmanian 2009; Sun and Kato 2016; Yang et al.
2009). Given that human aging is defined by
immunosenescence and inflamm-aging, mechanisms
that are considered to have adverse health effects
(Franceschi and Campisi 2014; Fulop et al. 2017;
Gruver et al. 2007), it is of interest to assess whether

Fig. 3 Principal component analysis based on ordination with aBray–Curtis dissimilarity and bBray–Curtis similarity matrices using saliva
microbial profiles. There is a weak separation of the two cohorts

Fig. 4 a Alpha-diversity comparing the GI tract HA and NHA
groups. b Phyla and c top 10 genera in the stool microbiota
averaged from the data of HA and NHA groups. Bacterial alpha-
diversity using calculations are based on the Chao1 (emphasis on
OTU richness) and Shannon (emphasis on OTU abundance/

evenness) indices. The cohorts consisted of 33 HA and 32 NHA
subjects. The data for the two timepoints were merged to perform
the statistical analyses which were based on Wilcoxon rank sum
tests (p value < 0.05). Arrows connect specific bar segments in b
and c with the names of the phyla and genera, respectively
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the altered composition of microbiota in elderly popu-
lations can provide insights into pathologies affecting
older people and into healthy vs. non-healthy aging.

By surveying 65 people ranging in age from 70 to
82 years, approximately half of whom had not suffered
from a major chronic disease (HA group) and half of
whom had (NHA group), we quantitatively profiled their
salivary and stool microbiomes via 16S rDNA
metagenomic sequencing and identified genera that were
differentially abundant in HAvs. NHA cohorts. In contrast
to the salivary microbiome, the gut microbiome did not
reveal statistically significant differences in alpha-diversity.
The HA cohort revealed higher taxonomic diversity in the
oral microbiome than the NHA cohort. In related studies,
Claesson et al. (2011) found core gut microbiota of elderly
subjects to be distinct from those of younger adults, with a
greater proportion of Bacteroides spp., and gut microbiota
of elderly in long-term care facilities to be less diverse than
that of community dwellers (Claesson et al. 2012). Jiang
et al. (2018) reported that the oral microbiota of elderly
patients with dental caries were not significantly different
in bacterial richness and diversity compared with age-
matched healthy controls.

Our metagenomic data on gut microbiomes suggest
that Clostridium sensu stricto (Clostridiaceae), Blautia
(Lachnospiraceae), and the Eubacterium hallii group
(Eubacteriaceae) were abundant for both the HA and
NHA groups. The data aligned with one of the previ-
ously reported three gut microbial enterotypes, the
enterotype dominated by Ruminococcus and other
Clostridiales (for example, Blautia) that also harbors
Akkermansia as one of the more abundant members
(Arumugam et al. 2011). In our comparative analysis,
Akkermansia was 3-fold more abundant in the HA vs.
NHA cohort. It was the eighth most abundant genus in
the HA group overall. Akkermansia, named after
AntoonAkkermans, has been discovered as an intestinal
mucin-degrading bacterial genus and is a member of the
phylumVerrucomicrobia (Belzer and de Vos 2012). One
species, A. muciniphila, is by far the best characterized
one, although metagenomic data suggest that eight ad-
ditional species of this genus that can colonize humans
(Belzer and de Vos 2012). A. muciniphila accounts for
up to 1–4% of the bacteria in the human colon (Derrien
et al. 2008), strengthens the intestinal epithelial cell
integrity (Reunanen et al. 2015; Collado et al. 2007),

Fig. 5 Differentially abundant
genera in the GI tract microbiome
with average abundance greater
than 1%. We convert the relative
abundance value of each genera
into log10 values for a better
comparative display as box plots.
The data for the two timepoints
were merged to perform the
statistical analyses which were
based onWilcoxon rank sum tests
(p value < 0.05)
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and has a competitive advantage during nutrient depri-
vation in the intestine due to its unique mucin-
catabolism function (Belzer and de Vos 2012). Consis-
tent with our data revealing a 1–4% abundance in the
HA cohort, A. muciniphila may promote health and act
in an anti-inflammatory role in the GI tract of the elderly
and may have “anti-inflamm-aging” properties. Its
abundance in the gut has been reported to inversely
correlate with the onset of inflammation during obesity
(Schneeberger et al. 2015), and high abundance of
Akkermansia has been associated with improved meta-
bolic health during dietary intervention in obesity (Dao
et al. 2016). In a murine model, the presence of
A. muciniphila in the gut microbiome enhanced glucose
tolerance in an IFN-γ-dependent pathway (Greer et al.
2016). In a NOD mouse model, A. muciniphila promot-
ed regulatory immunity and delayed diabetes develop-
ment, supporting the notion of positive effects of robust
colonization with A. muciniphila on metabolic diseases
such as diabetes and obesity.

Erysipelotrichaceae UCG-003 were similarly in-
creased in abundance in the HA vs. NHA cohort.

Erysipelotrichi are Firmicutes (Kaakoush 2015).
Their increased abundance in the GI tract has been
associated with effects detrimental to human health,
e.g., colorectal cancer (Chen et al. 2012) and TNF-α-
induced gastrointestinal inflammation, which is a path-
way implicated in irritable bowel disease (IBD) and
Crohn’s disease (Schaubeck et al. 2016). Erysipelotrichi
also appear to affect cholesterol and lipid metabolism in
the GI tract (Parmentier-Decrucq et al. 2009). Distinct
functional roles for the UCG-003 subtype have not been
reported. Among the taxa that have metabolic activities
to digest complex carbohydrates and metabolize them to
SCFAs, Lachnospiraceae UCG-005 and Bacteroides
were moderately increased in the HA cohort.
Bacteroides spp. are well-known fermenters of complex
carbohydrates and produce hundreds of glycosyl hydro-
lases (Wexler 2007). Most Bacteroides are commensals
that produce volatile SCFAs and attach to mucus gly-
cans via their surface structures, processes that likely
benefit mucosal integrity in the colon, and result in out-
competition of harmful microbes in the gut. For exam-
ple, B. thetaiotaomicron stimulates the production of

Fig. 6 Principal component analysis based on ordination separating gut microbiota into 5 distinct disease groups
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RegIII-γ, an antimicrobial protein that kills gram-
positive bacteria (Wexler 2007). Far less well character-
ized are Lachnospiraceae, a bacterial family with select
members able to degrade dietary fibers with deoxy
sugars in the gut and metabolize those to SCFAs. An
example is Coprococcus catus (Reichardt et al. 2014).
Volatile SCFAs produced by these fermenting bacteria
result in toxicity for other, potentially pathogenic bacte-
ria. Diminished competitiveness of the latter contain
their abundance in the colon and the production of toxic
bacteriocins, e.g., those produced by Escherichia/Shi-
gella and Streptococci (Schippa and Conte 2014). Both
Streptococcus and Escherichia/Shigellawere moderate-
ly decreased in abundance in stool of the HA vs. NHA
cohort, indeed contrasting with the parallel increase of
anaerobic commensals such as Bacteroides and sub-
groups of Lachnospiraceae and Erysipelotrichaceae. To
assess this in the context of the intake of complex
carbohydrates, the percentage of study participants in
the HA group, compared with the NHA group, who
reported rarely missing days with high consumption of
high-fiber foods (whole grain products, fruit) was
higher. Using a mouse model, dietary fiber-deprived
gut microbial communities were reported to degrade
the mucosal barrier integrity (Desai et al. 2016).

Streptococcal species are diverse in the intestinal
microbial communities (van den Bogert et al. 2013)
and diverse and dominant bacteria in the oral cavity
(Aas et al. 2005). Interestingly, Streptococci were the
only at least moderately abundant bacterial taxon in
saliva and stool samples and featured statistically sig-
nificant abundance increases in the NHA vs. HA
microbiomes. Some Streptococci such as S. mitis and
S. pneumoniae are pathogens and can cause tooth decay
and pneumonia. Both species evolved to have mutual-
istic and pathogenic lifestyles (Kilian et al. 2014). We
did not have the data resolution to speciate the Strepto-
cocci. Higher taxonomic resolution for Streptococci is
of interest to investigate the role of this bacterial genus
in the context of healthy aging. This requires the analy-
sis of the gut and saliva microbiota by in depth shotgun
sequencing.

The abundances of Veillonella and Rothia, known to
be dominant genera in the oral cavity (Aas et al. 2005;
Tsuzukibashi et al. 2017), were increased in abundance
in the NHA vs. HA cohort and, together with Strepto-
cocci, responsible for decreased alpha-diversity in sali-
vary samples of the NHA cohort. Neisseria and
Fusobacterium were among the two genera higher in

abundance for the HA cohort. Similar to Streptococci,
manyNeisseria species are identified as oral commensal
organisms, but a few species are pathogens (Liu et al.
2015). Fusobacteria are more moderately abundant
among the oral cavity microbiota. One species,
Fusobacterium nucleatum, has been associated with
inflammation in the oral cavity (Shang and Liu 2018),
colorectal cancer (Shang and Liu 2018), and esophageal
cancer (Yamamura et al. 2016). Although the increased
diversity of oral microbiota in the HA cohort is note-
worthy, it is difficult to draw clear conclusions from the
genus-level abundance differences because most genera
in oral microbiomes profiled here are represented by
multiple species, some of which are opportunistic path-
ogens that can also live a mutualistic lifestyle in the
human host and others that are commensal organisms.
Shotgun metagenomic analyses need to be performed to
identify distinct species, or even strains, that allow
deeper insights into their prevalence, including patho-
gens, within microbial profiles of the HA vs. NHA
groups. Due to the absence of data on diseases affecting
the oral cavity, we were not able to correlate microbial
profiles with oral mucosal and dental morbidities.

Concluding remarks

In a comparison of oral and gut microbiomes from a
cohort with evidence of healthy aging (HA) and a cohort
with a medical history of serious chronic diseases
(NHA), we identified higher alpha diversity in the HA
oral microbiome and increased abundances of
Akkermansia and Erysipelotrichaceae (UCG-003) in
the HA gut microbiome. We hypothesize that these
fermentative, complex carbohydrate-digesting bacteria
promote a healthy intestinal barrier function and thus
contribute to the healthy aging process.
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