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 A MATRIX APPROACH TO THE MANAGEMENT

 OF RENEWABLE RESOURCES, WITH

 SPECIAL REFERENCE TO SELECTION

 FORESTS

 BY M. B. USHER

 Department of Forestry and Natural Resources, University of Edinburgh

 The manager of a renewable resource is concerned with a set of organisms that are
 growing older or larger, and with the exploitation of some of these organisms. Con-
 servation of the resource is required in order that a sustained production can be achieved,
 and this in turn implies that the exploited organisms are being replaced by younger ones.
 To achieve a maximum sustained production the proportions of the different size or
 age classes of the resource will have to be determined, and the amount of replacement by
 younger organisms calculated.

 Black (1965) asks the question: 'if it were possible to remove all the factors acting to
 maintain yields at a low level, what would then determine yield and what might the
 yield then be?' It is proposed to answer a weaker form of this question: 'given the
 effect of the site factors on the growth of the resource, what then is the structure of the
 resource that will achieve the maximum sustained yield?'.

 Selection forests have been chosen as an example of a renewable resource. Manage-
 ment of these forests on an experimental basis was conceived by Gurnaud in the nine-
 teenth century. Biolley (1920, 1954) codified the ideas and from them a system of
 management known as the check method has evolved. Biolley concludes that the check
 method provides management with an experimental foundation. The system of manage-
 ment aims at producing as much timber as possible, consistent with the constraints of
 quality and conservation.

 Methods of selection working are considered by Colette (1934, 1960). The
 exploitation of the stand is based on the results of periodic enumerations, recording
 all trees by species and circumference classes. Colette calculates an overall percentage
 recruitment from one circumference class to the class above, and this figure is used
 in calculating the exploitation. The stem-number curve forms a graphical check on
 the state of the stand. It is compared with a theoretical smooth curve in which the
 number of trees in each successive class is represented by a decreasing geometric
 progression. Successive terms in this progression are related by the 'coefficient of diminu-
 tion', due to de Liocourt. The method of calculating this coefficient is described later in
 this paper.

 A manager of the selection forests wants to know which forest structure will give him
 the greatest production, but yet will conserve his forest. The manager of any renewable
 resource wants to know similar facts about his resource. He is thus maximizing the
 volume of production, subject to conservation of the resource. Another possible approach,
 that is not developed in this paper, would be to maximize the economic yield, consistent
 with conservation. It is proposed to show that a theoretical structure can be determined
 from a knowledge of the individual recruitments in each class of the resource to the class
 or classes above, and that this structure can be defined for any set of management
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 356 Matrix approach to management of renewable resources

 objectives. The importance of this theoretical structure is that it is unique, and that it
 will optimize the yield from the resource over a long period. Though greater production
 could be obtained over a shorter period by a different structure, for example, by having
 a large excess of trees that were exploitable, there could be no sustained production at
 this higher level. The best theoretical structure is thus characterized, and it should be
 the aim of the resource manager to approximate to this as closely as he can.

 A MATHEMATICAL MODEL

 The stable age structure in an animal population, or in populations measured by age
 classes, has been investigated by Leslie (1945, 1948) and Williamson (1959). Lefkovitch
 (1965) has considered insect populations grouped by stages of development. The data
 concerning the population are used to calculate the elements of a matrix that will link
 the numbers in the various age groups at successive times. The link is provided by the
 matrix equation

 fo fi f2 ... fn -Ifn - nt,O = nt+ 1, 0

 Po *li..t, I nt+ 1, 1

 Pi nt, 2 lit+1, 2

 P2 . . nt,3 nt+,3

 * * * ~~~Pn- 1* _ _nt, n- _ _nt+l1, n

 In the matrix, fi (i = 0, 1, 2, ..., n) refers to the fecundity of a female in the ith age
 group, and pi (i = 0, 1, 2, .. ., n-1) is the probability that a female in the ith age group
 will be alive in the (i+ I)th age group. It is evident that pi < 1, since a female must either
 die or become one age group older during the period over which the matrix operates.

 In the vectors, nt,i is the known number of animals in the ith age group at time t, and
 nt+ +1, is the predicted number in the same age group at time t+ 1. The matrix equation
 means that the ith element in the vector on the right-hand side of the equation is equal
 to the inner product of the ith row of the matrix and the vector on the left-hand side of
 the equation. The matrix can be broken down into the sum of two matrices, one stochastic
 matrix which gives the probability that an individual will be in another class at the end
 of the period of time, and a second matrix that gives the reproductive data for all
 classes.

 Renewable resources measured in terms of size attributes rather than age will be
 considered in developing a model for their management. Thus an organism which is in
 the ith class at the start of a period of time can be in the same class at the end of the
 period, or it can be in a class characterized by a larger size of that attribute, or it can have
 died. If the organism dies, it will be assumed to form part of the exploitation. A conven-
 tion in forest enumeration is that trees that have died during the period since the previous
 enumeration are measured and counted as part of the current exploitation. Thus it is
 assumed that the probability of an organism disappearing during a period is zero. If
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 M. B. USHER 357

 organisms either move up one class, or remain in the same class, the recruitment data

 can be represented by a stochastic matrix:

 Pt= a . 1o

 bo a,

 . b, a2

 . . b2 a3

 . . . * a1an-l

 . . . * bbn- an-
 ai (i = 0, 1, 2, .. ., n) is the probability that an organism in the ith class will remain in
 that class during the period, and bi (i = 0, 1, 2, . . ., n-1) is the probability that an
 organism in the ith class will recruit up to the (i+ I)th class during the period. P' is thus
 a square matrix with n + 1 rows and columns.

 It is assumed that exploitation occurs at the end of one period of time, just prior to the

 start of the next period, and that exploitation from the largest class is enhanced since

 larger trees are not required. This latter assumption implies that an< 1. Since the loss
 of an organism during the period is assumed impossible.

 ai+bi=I (i=0,1,2,...,n-1) (1)

 Also, since all the n + 1 classes represented by the matrix are attainable, a proportion of
 the organisms in each class, except the nth class, must move up a class. It is possible that
 all organisms in a class might move up. Thus the following bounds can be put on the
 probabilities

 0 a <1 (2)

 and from equation (1) it follows that

 0< bi 1 (3)

 The matrix P' accounts for the processes of enlarging, but regeneration processes must
 also be considered by adding another square matrix with n + 1 rows and columns. This

 second matrix contains zero elements except for some positive elements in the first row.
 These elements represent functions of the regeneration that will be discussed below.
 The resultant matrix is:

 Q = ao k1 k2 k3 ... kn-, kn

 bo a, *

 . b, a2 *

 . . b2 a3

 :an-

 bn-I an_
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 358 Matrix approach to management of renewable resources

 where ki (i = 1, 2, . . ., n) are functions of the regeneration from the ith class. Consider
 also the column vector

 qt = {qt, On qt, 1, qt, 2 ** qt, n}

 where the element qt,i (i = 0, 1, 2, . . ., n) gives the number of organisms in the ith class
 at the time t. Since the matrix Q contains estimates of the regeneration and of the
 probabilities that organisms will change classes, the structure of the resource at time

 t + 1 is given by

 qt+ I=Q qt

 The stability of the resource can be investigated by comparing the structures at times t
 and t + 1. If the resource has reached a stable structure the proportions of organisms in
 each class will be the same at both times, even although the number of organisms in the
 resource has increased during the period. The increase will be harvested. Thus, if A is a
 constant, then the equation

 1
 qt= qt+ 1

 would characterize a stable resource. Assuming that stability has now been reached,

 and letting the stable structure by proportions be represented by the vector q, then

 Qq=;Aq

 Clearly A is a latent root of the matrix Q. Since Q is a matrix with n + 1 rows and columns
 there are n + 1 possible values of ), though some of these might be negative, repeated or
 imaginary.

 If there is a value of ) that is greater than unity then the number of organisms can
 be seen to increase over the period of time, and the increase in the number of organisms
 is a measure of the potential exploitation. Hence, if there are N organisms at the start

 of a period and AN at the end, the potential exploitation by numbers is (A- 1)N+ qnen,
 where en is the proportional enhanced yield from the nth class. It can be seen that

 an= 1-en

 It will be assumed that ci (i = 1, 2, . . ., n) organisms of class 0 can regenerate in a
 location previously occupied by an organism of class i that has been exploited. ci is
 thus a function of the number of smaller organisms that can occupy the space of a larger
 organism that has been exploited as well as the amount of this space which is taken by
 expansion of neighbouring organisms. Thus,

 ci >0 (4a)

 and when i is sufficiently large

 ci > 1 (4b)

 In particular, cn> 1.
 These regeneration expressions can now be substituted for the ki in the matrix Q.

 Thus ki is replaced by ci(X- 1), since ci represents the number of organisms that will fill
 a location, and the proportion of locations after exploitation is (A- 1). With an enhanced
 yield from the nth class,

 kn = Cn (- 1) + Cn (1- an) = cn (-an)
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 M. B. USHER 359

 Thus, the regeneration and recruitment data can be represented by the matrix Q, where

 Q = a0 cl(1-1) c2(1-1) ... c A1(x-1) cn((il-an)

 bo a,

 . a2

 . . ~~b2

 an-I~~~~
 * * ~~~~~bn-I an

 From the matrix equation

 Qq = Aq (5)

 it is shown in the appendix that there exists at least one latent root of the matrix Q

 that is greater than unity. It is also shown that the latent vector associated with such a

 latent root has all its elements of the same sign. Since latent vectors are determined only
 up to a constant factor, the sign of the elements can be taken as positive.

 In a model of a renewable resource no significance can be attached to negative or

 imaginary numbers of organisms. It follows from the appendix that AO, which is any one
 of the latent roots greater than unity, is associated with a latent vector having positive
 elements. This root is not less than the absolute value of any other latent root, and thus
 it is the largest real latent root of the matrix. Thus it is proved that there is a unique

 optimal structure for a renewable resource, classified by some size attribute, that is

 meaningful (having no negative or imaginary terms). This structure is associated with
 the greatest latent root of the matrix and therefore maximizes the yield from the resource.

 AN APPLICATION OF THE MODEL TO A SCOTS PINE FOREST

 The data given in the example are taken from the forest plantations at Corrour in

 Inverness-shire. Since 1952 the Department of Forestry and Natural Resources of
 Edinburgh University has applied the check method of management to a part of these
 plantations. The forest contains a large mixture of species, predominantly Norway and
 Sitka spruce and Scots pine. The stands of Sitka spruce and Scots pine are generally
 quality class III (Hummel & Christie 1953). The management of the area is divided into
 six roughly equal blocks, each one of which is enumerated every sixth year. The enumera-
 tion consists of recording all the trees in the block by species and by quarter girth classes.
 The enumeration data for Scots pine have been used in this example.

 The pooled enumeration data for Scots pine are summarized in Table 1. The table also

 shows how the transition probabilities, ai and bi, are estimated. The data for the re-
 generation terms have not been measured in the field, and values for these terms have
 been estimated from yield tables for Scots pine given by Hummel & Christie (1953).
 They have been calculated as the ratio of the number of trees of size class 0 per acre to
 the number of trees of class i. The figures are interpolated from the quality class III
 table. It has been assumed that gaps caused by the felling of small trees are utilized by
 the crowns of surrounding trees, and that they do not form foci for regeneration.
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 360 Matrix approach to management of renewable resources

 The matrix Q is therefore

 Q = [0.72 0 0 3 6(A-1) 5 1(A-1) 7 5A-

 0-28 0-69 0 0 0 0

 0 0 31 075 0 0 0

 0 0 0-25 0 77 0 0

 0 0 0 0-23 0 63 0

 -0 0 0 0 0-37 0

 It will be assumed that the objects of management are to have a sustained yield of
 Scots pine timber, and that class 5 trees are the largest that are required, and hence all
 trees in this class will be exploited. Hence the a5 term in the matrix Q is zero.

 1000 \

 900 \

 800 \

 700\

 600\

 *t500\\

 .0

 E 400\
 z

 300\

 200 ...

 100I

 .. . ...................................
 0 1 2 3 4 5

 Quarter-girth ctasses

 FIG. 1. The relation between number of trees and quarter girth classes. The solid line
 represents the stem-number curve using the matrix model developed in this paper. The
 dashed line represents a model based on a geometric progression. The exploitation expected

 under the matrix model is shown as a dotted line.

 The coefficient of diminution can be calculated as the average of every di weighted by
 the number of trees in the ith class (see Table 1). This is found to be 2-08. Colette's (1934)
 'courbe d'equilibre theoretique' is a geometric progression in which the number of trees
 in each class is 2 08 times the number in the following class. This forms the smooth
 stem-number curve that is illustrated in Fig. 1.

This content downloaded from 
������������177.215.105.203 on Tue, 04 May 2021 13:19:59 UTC������������ 

All use subject to https://about.jstor.org/terms



 M. B. USHER 361

 0~~~0P
 < O t~~~~~~~O

 00 .9 .o XvYQ 000 -
 0

 > @ c 2 c o ] 00 -q I en >i

 * 0, 0 O

 0~~~~

 r Az cd +1 r- en c mo

 C ; (1 -? " ON r- WI6

 (1 o

 z -4 0*%00 O J-00 0

 0 00

 *J c, o I 1 6 - Ct 00 O

 Cd ~ ~ ~ l

 ) o

 A 0

 O .0 Y
 ,9 V 3 O N (,D , 0

 . -

 0 ~~~~00

 0

 -+A c

 Z ~~~~~~~~~~ 0 n 0e

 u ~~~~~~~0)

This content downloaded from 
������������177.215.105.203 on Tue, 04 May 2021 13:19:59 UTC������������ 

All use subject to https://about.jstor.org/terms



 362 Matrix approach to management of renewable resources

 The stable structure represented by the matrix Q can be found by a process of iteration.
 Matrix equation (5)

 Qq = q

 yields a set of n + 1 simultaneous linear equations in n + 2 unknowns. These equations are

 072qo+3 6(A-1)q3+5 (A- 1)q4+7 5iq5 = Aqo

 0-28qo+069q1 =AZql

 0 31qI+075q2 = Aq2

 0 25 q2+O077 q3 = q3

 023q3+063q4 =q4

 0 37 q4 = q5
 whence

 028 031

 q= A-0.69 qo q2 A-0.75 q

 0-25 0-23

 q3 - t 077q2 q4=, 063 q3 (6)

 037
 q5= il q4

 and

 z= (-0-72)qo-3-6(A-1)q3-51(i{-l)q4-7T5q5 =0 (7)

 If qo is chosen arbitrarily as 1000 (as was chosen for the stem-number curve using the
 coefficient of diminution) trial values of A can be used to give the structure represented by
 the q terms in equations (6). When these q terms and the trial value of A give a value of
 z = 0 in equation (7) then the actual value of A has been found.

 As an example, the trial value of A, 2A = 1P2, was used with qo = 1000. From equa-
 tions (6) this gave the results q, = 549-020, q2 = 378-213, q3 = 219-891, q4 = 88728,
 q5 = 27-358. On putting these values in equation (7), z, = 15 045. It is useful at this
 stage to work with three or four decimal places. These can be dropped after the final
 value of A has been obtained.

 If z is positive the trial value of A is too small. Conversely, if z is negative, A is too large.

 A second approximation to A, 22 = 1P21, was tried with qo = 1000. The results from

 equations (6) are q, = 538-462, q2 = 362-876, q3 = 206-180, q4 = 81P761, q5 = 25-001
 giving a value of z, Z2 = - 19-679. 22 is thus too large, and the actual value of 2 lies
 between 1-20 and 1P21. A revised estimate, based on linear interpolation between 2A
 and 22, is given by

 3 = ,Al+(Al-2)( )= 1-2043

 Using 23 with qo = 1000 gives the results q1 = 544A429, q2 = 3719501, q3 = 213 851,
 q4 = 85'644, q5 = 26&313 giving Z3 = -04119. If 24 = 1P2042 is tried the result Z4 =
 0-230 is obtained, and thus a value of A correct to four places of decimals is 1 2043. The
 structure of the stable forest is represented by the vector

 {1000, 544, 372, 214, 86, 26}
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 M. B. USHER 363

 This stem-number curve is plotted in Fig. 1. Comparing it with the geometric curve
 shows that far more trees in the middle size classes are required for a stable forest struc-

 ture. It will be noticed in this model that the concept of a smooth stem-number curve,
 as was obtained with a geometric model, is no longer valid.

 After each enumeration period of 6 years there will be a harvest of [(1 -204-1)/1 204] x
 10000 or, approximately, 1700 of the stand plus the extra taken from the largest class.
 The exploitation is shown in Fig. 1.

 It is for the forest manager to decide what stocking is required, since neither the matrix

 model nor the geometric model can determine the actual number of trees per unit of
 area. Only the relationship between the actual numbers is given. Thus in the examples
 used the smallest class is assumed to have 1000 trees. It follows from this that the latent
 vector is determined except for an arbitrary constant by which each element in the

 vector can be multiplied. The forest manager can also revise the elements in the matrix Q
 as more accurate estimates of the probabilities become available by periodic enumeration

 or sampling. Replacement of the elements by functions involving the stand density
 would also be possible, but insufficient data are available from Corrour to estimate such

 functions. The manager will also have to ensure that regeneration is sufficient to meet the
 recruitment into class 0 required by the model.

 Table 2. The effect of small changes in the probabilities used in the matrix Q
 on the dominant latent root and latent vector of the matrix

 Normal Recruitments Recruitments
 (matrix Q) increased 500 decreased 50

 Latent root 1 204 1.232 1-177

 Vector class 0 1000 1000 1000
 1 544 549 539
 2 372 363 382
 3 214 209 220
 4 86 88 82
 5 26 29 24

 The concept of error in the assessment of the elements of the matrix is important. If
 the latent root and latent vector are to provide a firm foundation for management they
 should not be too sensitive to small inaccuracies in the estimation of the elements in the
 matrix. Table 2 gives some comparisons that suggest that the matrix is able to determine
 a stable structure that is not very sensitive to small errors in the enumeration data.

 The approach to stability can also be predicted by the matrix model. If the value of
 A = 1 2043 is inserted in the matrix Q, then

 Q = 0-72 0 0 0 74 1-04 9.03]

 0-28 0 69 0 0 0 0

 0 0-31 0-75 0 0 0

 0 0 0-25 0 77 0 0

 0 0 0 0-23 0-63 0

 0 0 0 0 0-37 0

 and if the present structure of the forest after exploitation, qo, is known, then

 r, = q1 +el = Qqo
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 364 Matrix approach to management of renewable resources

 where r, is the forest structure before exploitation, q, is the structure after exploitation
 that continues into the second period, and el is the exploitation. When k periods of time
 have elapsed the structure and exploitation at k + 1 is estimated as

 rk+1= qk+l+ek+I Qqk

 ek + 1 is thus an estimate of the exploitation after k + 1 periods of time and hence manage-

 ment forecasts could be based on such information.

 The structure at the present time, qo, is given in Table 1 as

 qo - {4461, 2926, 1086, 222, 27, 2}

 though the two class 5 trees will be taken as enhanced yield. Pre-multiplying this vector

 by the matrix Q gives the forest structure after 6 years as

 r, = {3422, 3268, 1722, 442, 68, 101

 If a yield of 17? (A = 1P2043) is taken, then

 e, = {581, 554, 292, 75, 11, 2}

 leaving a structure, ql, for the next period

 q, -{2841, 2714, 1430, 367, 57, 8}

 where the eight class 5 trees will be taken as enhanced yield.

 If r, is compared with the trees measured at the end of the period, E, in Table 1 it

 5000

 1000 'v'@ o ..... O .. .. Ca 2......
 500 / tn ,,_ _x--X--x- _ C x 3
 E

 E 0 0-~~~~ Class 4

 z ~~~~~~~~.**CLass 5

 ff 1 0 0 of ,,,, qy,, ~........ * ClK*Xass **** 2 vv Xe4

 o ~ ~~~~~~~~~~~~~ ......as

 0 12 24 36 48 60 72 84
 Year (en umerat ion period is 6 years)

 FIG. 2. The structure of a Scots pine forest estimated, after an exploitation of 1700, for
 the next fourteen 6-year enumeration periods. The forest has approximated to its stable

 structure after about twelve periods.
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 M. B. USHER 365

 will be seen that the structures agree closely above class 0. Class 0 differs since there is
 an excess of young Scots pine trees at Corrour, and hence there has been excessive

 recruitment into class 0. The forest structures, qi, for values of i from 0 to 14 have been
 plotted in Fig. 2. The curves drawn in the figure connect the same class during the four-

 teen periods. Interpolation between points is not possible since the structures are plotted
 for the exploited stand just prior to the commencement of a 6-year period. It can be seen

 that the forest would be brought to approximately its stable structure, previously cal-
 culated as q, after about twelve enumeration periods. This period would allow for the
 gradual build-up of the older growing stock, replacing the excessive young stock, that
 is shown by Fig. 2.
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 SUMMARY

 The management of a renewable resource, classified by size classes, is considered. A
 mathematical model which predicts the stable structure of such a resource is developed.
 Data on the percentage recruitment of organisms from one class to the class above and
 data on the regeneration of young organisms are used as elements of a matrix. The
 largest real latent root of this matrix gives the maximum exploitation, and the latent
 vector associated with this root gives the stable structure.

 The model is illustrated by reference to a Scots pine forest in Inverness-shire. An
 iterative process for finding the latent root and vector is described. This matrix method is
 compared with a geometric method.

 APPENDIX

 AN ALGEBRAIC PROOF OF THE EXISTENCE OF A LATENT ROOT
 OF Q GREATER THAN UNITY

 Consider the matrix Q and the matrix equation (5) that have been previously defined.
 The equation (5) gives a set of n + 1 simultaneous linear equations in n +2 unknowns,

 i, qo, ql, q2, .. *, qn. Expanding equation (5) gives

 a0q0+c1ql(A-l)+C2q2(iA-1)+ *** +Cn-1qn-1(il 1)

 +Cnqn(i-an) = Aq, (8)
 and

 boqo+al q1 =A q1

 blql+a2q2=)Aq2
 (9)

 bn-I qn-l+anqn = Alqn
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 366 Matrix approach to management of renewable resources

 From equations (9), in the general case,

 qi qo - y b =) (i =1, 2,..., n) (10)

 y

 where fI represents the product over all values of j from x to y inclusive. Substitution
 j = x

 of the values of qi given by (10) in equation (8) gives

 aO+bocj ( + .+ -1) __ (_

 +...+bn H = IA-a) (11)
 The factor qo has been cancelled since this can be arbitrarily chosen as non-zero, other-
 wise all qs are zero.

 If A is put equal to one in equation (11) then the left-hand side becomes

 ao + b (1-an) fl ( j -1 (12)
 bn ~j=I IJ-aj/

 where bn is defined as 1- an.

 Expression (12) becomes

 ao + bo cn-1 since 1-a, = bj
 = bo((cn-1) > 0 since cn> 1 and bo > 0

 Now, letting A tend to infinity in equation (11), the left hand side becomes

 ao -00 + bo cl < 0 since a0, bo and cl are finite.

 Thus, when A = 1, the left-hand side of equation (11) is positive, whereas as A-- oc this
 expression is negative. Therefore there exists at least one value of A greater than unity

 for which equation (11) is satisfied. Values of A satisfying equation (11) are the required
 solutions of the matrix equation (5). In equation (10), if a value of A > 1 is substituted,

 and if qo is chosen positive, then the terms qi (i = 1, 2, . . ., n) are all positive. Thus
 associated with any latent root greater than unity there is a latent vector such that all
 its elements can be chosen as positive numbers.

 The properties of latent roots and vectors of matrices with positive and non-negative
 elements have been studied by Frobenius (1912), Fan (1958) and Brauer (1957, 1961,

 1962). They show that there exists a latent root AO of any non-negative matrix N such
 that: (i) corresponding to the latent root AO there exists a latent vector having all its
 elements positive. AO is the only latent root of N for which a corresponding latent vector
 exists with all its elements non-negative; and (ii) AO is not less than the absolute value of
 any other latent root of N. Theorems 3 and 4 of Brauer (1962) show that the latent root

 AO is greater than or equal to the smallest row sum of N, and that AO is greater than the
 greatest main diagonal element N. The same inequalities are true of column sums as
 well as row sums.

 If a value of A greater than unity of the matrix Q is considered, then Q has only non-

 negative elements. If Ai. which is a root greater than unity of the matrix Q, is inserted
 in Q to give Q('i), then there are n + 1 possible roots of this matrix. One of these is ) ,
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 M. B. USHER 367

 and the other n would not normally be latent roots of Q. It has been shown above that

 ,j is associated with a latent vector with all its elements positive. It therefore follows from
 the theorems stated above that Rj is the largest latent root of Q(i), and that it is the
 only root associated with a vector of positive elements. Thus, any latent root greater
 than unity of the matrix Q determines a unique structure that is biologically meaningful.
 It cannot yet be proved that there is only one latent root greater than unity which
 satisfies the matrix Q. There is, however, an optimal solution corresponding to the
 largest latent root.
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