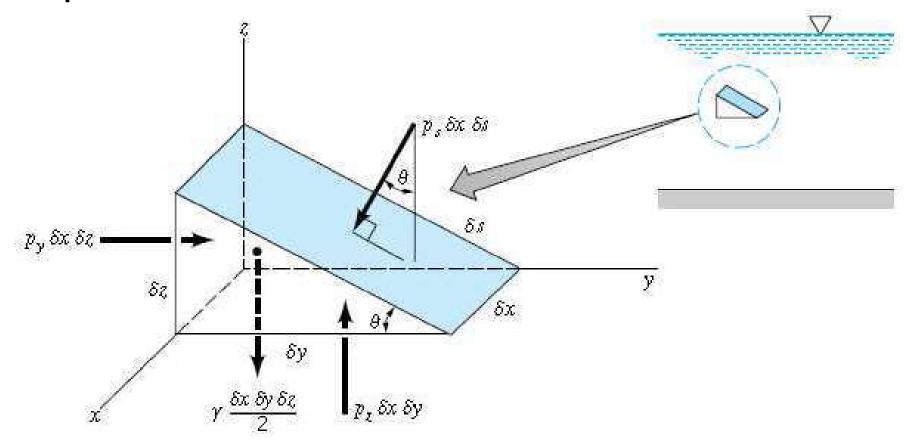
PME 3222

Estática de fluidos

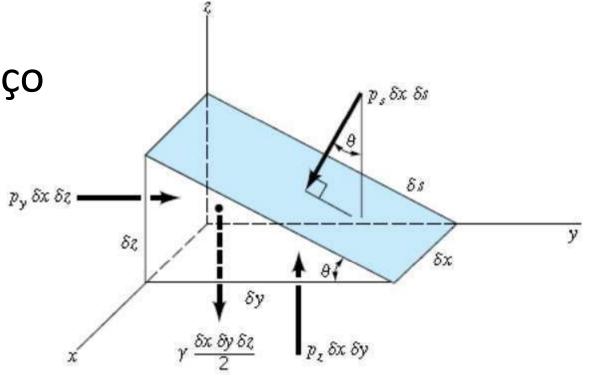
Alberto Hernandez Neto

- Pressão: força normal por unidade de área que atua sobre um ponto fluido em um dado plano
- Processos com fluido estático:
 - Tensões de cisalhamento são nulas
 - Forças de superfície: apenas forças de pressão
- Estudo da pressão: sua variação no meio fluido e seu efeito sobre superfícies imersas

• Considerando um elemento fluido na forma de cunha, com dimensões δx , δy , δz e peso específico Υ :



 Realizando o balanço de forças na direção y e z tem-se:



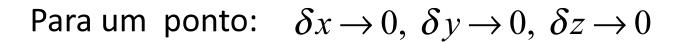
$$\sum F_{y} = p_{y} \delta x \delta z - p_{s} \delta x \delta s en\theta = \rho \frac{\delta x \delta y \delta z}{2} a_{y}$$

$$\sum F_{z} = p_{z} \delta x \delta y - p_{s} \delta x \delta s \cos \theta - \gamma \frac{\delta x \delta y \delta z}{2} = \rho \frac{\delta x \delta y \delta z}{2} a_{z}$$

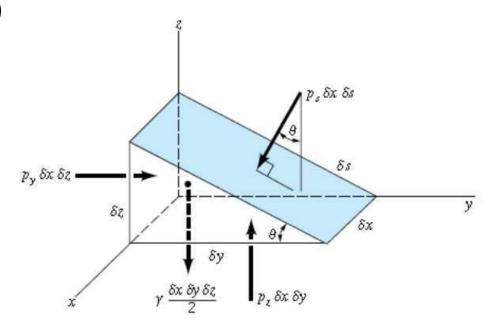
Sendo: $\delta_y = \delta s \cos \theta$

$$\delta_z = \delta s \operatorname{sen} \theta$$

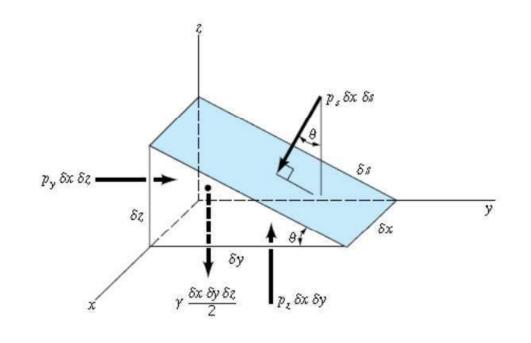
Tem-se que: $p_y - p_s = \rho \frac{\delta y}{2} a_y$ $p_z - p_s = (\gamma + \rho a_z) \frac{\delta z}{2}$

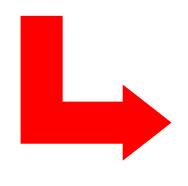


$$\therefore p_y = p_s; p_z = p_s$$



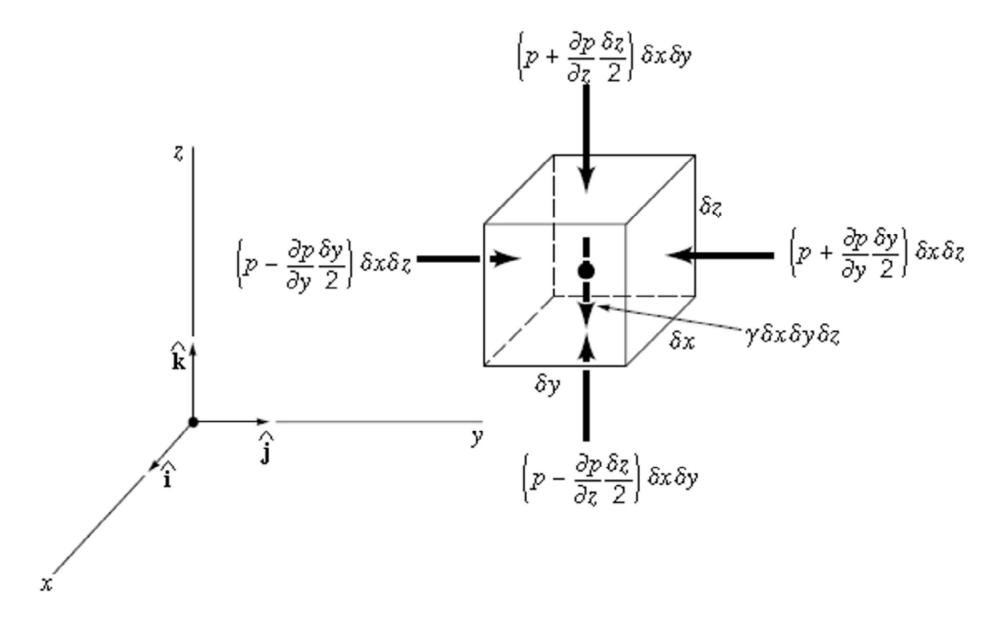
 Como θ é arbitrário, tem-se que quando o fluido está em repouso ou quando τ = 0 (sem tensão de cisalhamento):

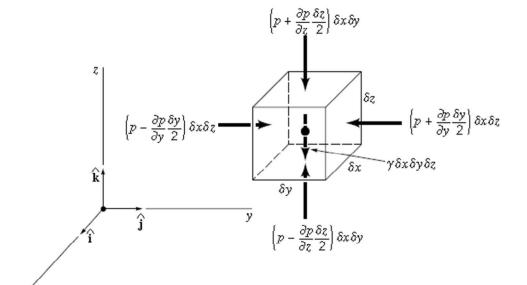




O valor da pressão em um ponto do fluido independe da direção

- Definindo-se um pequeno elemento em um fluido qualquer com:
 - Dimensões elementares δx , δy e δz
 - Pressão no seu centro geométrico igual a p
 - Propriedades fixas e iguais a
 - ρ = massa específica
 - $\gamma = \rho g = peso específico$
 - variações da pressão no elemento aproximada por séries de Taylor de ordem 1





Balanço de forças

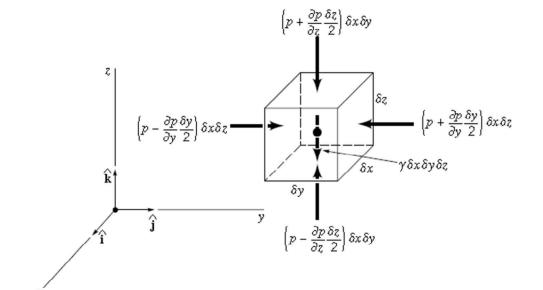
$$\delta F_{y} = \left(p - \frac{\partial p}{\partial y} \frac{\delta y}{2} \right) \delta x \delta z - \left(p + \frac{\partial p}{\partial y} \frac{\delta y}{2} \right) \delta x \delta = -\frac{\partial p}{\partial y} \delta x \delta y \delta z$$
 (1)

$$\delta F_{x} = -\frac{\partial p}{\partial x} \delta x \delta y \delta z \tag{2}$$

$$\delta F_z = -\frac{\partial p}{\partial z} \delta x \delta y \delta z \tag{3}$$

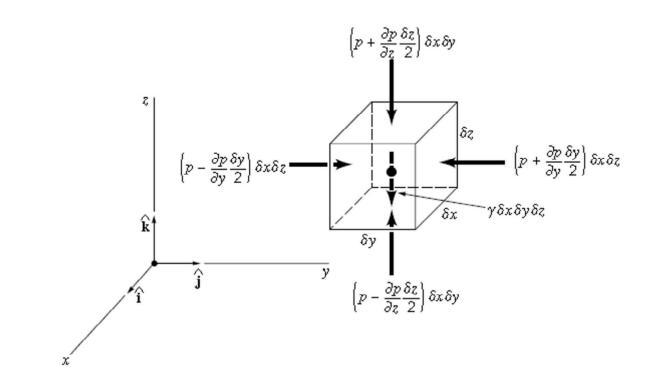
Na forma vetorial

$$\delta \vec{F}_{S} = \delta F_{x} \hat{i} + \delta F_{y} \hat{j} + \delta F_{z} \hat{k}$$
 (4)



Substituindo as eqs.
(1), (2) e (3) na eq (4) tem-se:

$$\delta \vec{F}_{S} = -\left(\frac{\partial p}{\partial x}\hat{i} + \frac{\partial p}{\partial y}\hat{j} + \frac{\partial p}{\partial z}\hat{k}\right)\delta x \delta y \delta z$$



$$\delta \vec{F}_{S} = -\left(\frac{\partial p}{\partial x}\hat{i} + \frac{\partial p}{\partial y}\hat{j} + \frac{\partial p}{\partial z}\hat{k}\right)\delta x \delta y \delta z \qquad \longrightarrow \qquad \frac{\delta \vec{F}_{S}}{\delta x \delta y \delta z} = \nabla p$$

 Pode-se descrever as forças de campos gravitacionais (influência dos demais campos desprezada) como:

$$\delta \vec{F}_{\scriptscriptstyle B} = \rho \delta x \delta y \delta z \vec{g}$$

Pela segunda lei de Newton tem-se que:

$$\sum \delta \vec{F} = \delta m \vec{a}$$

$$\delta \vec{F}_S + \delta \vec{F}_B = \delta m \vec{a}$$

$$-\nabla p \delta x \delta y \delta z + \rho \delta x \delta y \delta z \vec{g} = \rho \delta x \delta y \delta z \vec{a}$$

• Dividindo a expressão anterior por $\delta x \delta y \delta z$:

$$-\nabla p + \rho \vec{g} = \rho \vec{a}$$

 Esta é a equação básica que descreve o campo de pressão em fluido

- Adotando as seguintes simplificações:
 - 1. Se a aceleração da gravidade *g* não varia com *z*:

$$\vec{g} = -g\hat{k} \quad \Longrightarrow \quad -\nabla p + \gamma \hat{k} = \rho \vec{a}$$

2. Se o fluido está em repouso (estático):

$$\vec{a} = 0$$

$$-\nabla p + \gamma \hat{k} = 0$$

Adotando as seguintes simplificações:

3. Se:

$$\frac{\partial p}{\partial x} = 0$$

$$\frac{\partial p}{\partial y} = 0$$

$$p = p(z) \rightarrow \frac{\partial p}{\partial z} = \frac{dp}{dz} = -\gamma$$

$$\frac{\partial p}{\partial z} = -\gamma$$

- Adotando as seguintes simplificações:
 - 4. Se ρ for constante (fluido incompressível)

$$\int_{p_1}^{p_2} dp = -\gamma \int_{z_1}^{z_2} dz \qquad \qquad p_2 - p_1 = \gamma (z_2 - z_1)$$

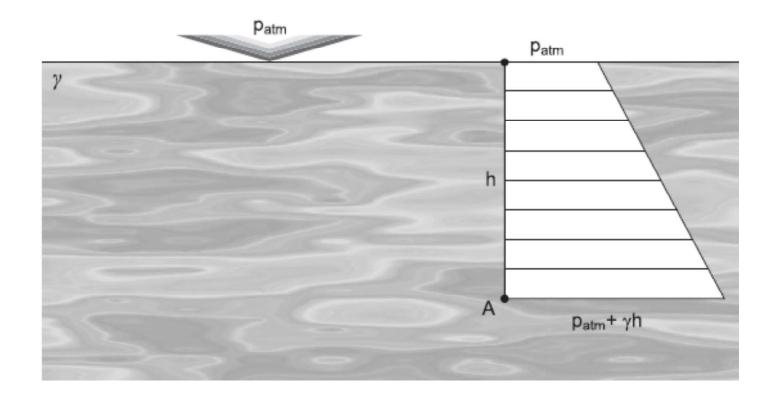
Sendo:

$$h = (z_2 - z_1) \qquad \qquad p_1 = p_2 + \gamma h$$

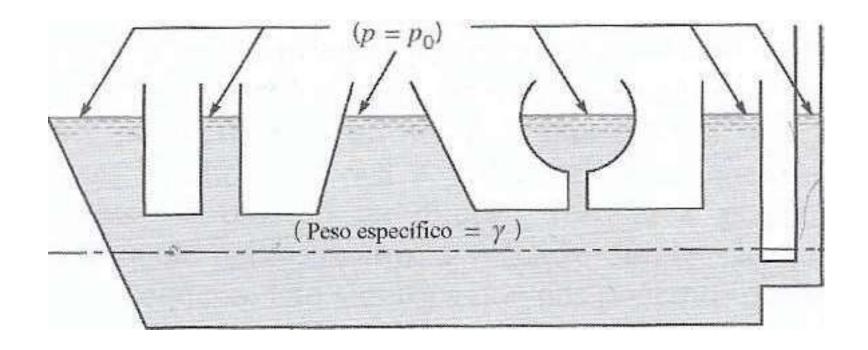
Lei de Stevin da Hidrostática

"A diferença entre as pressões de dois pontos de um fluido em equilíbrio (repouso) é igual ao produto entre a densidade do fluido, a aceleração da gravidade e a diferença entre as profundidades dos pontos."

$$h = (z_2 - z_1) = \frac{p_2 - p_1}{\gamma} \implies \text{Carga de Pressão}$$

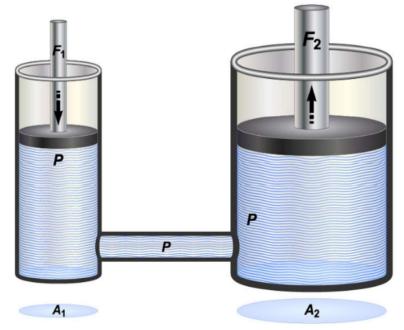


- Consequência da Lei de Stevin
 - Pressão na mesma cota é igual independe do formato do recipiente



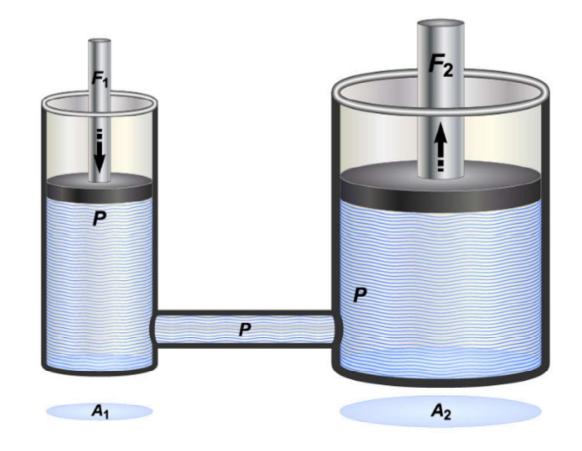
Lei de Pascal

"O aumento da pressão exercida em um líquido em equilíbrio é transmitido integralmente a todos os pontos do líquido bem como às paredes do recipiente em que ele está contido."

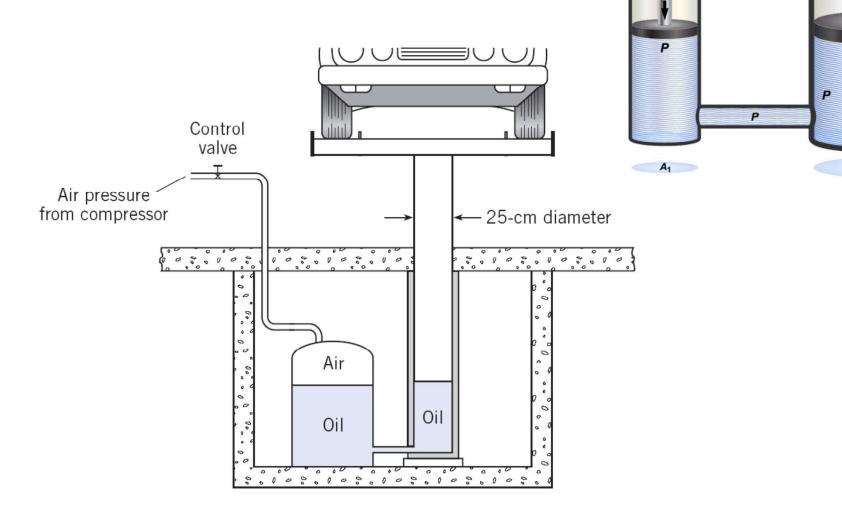


- Lei de Pascal
 - Em termos matemáticos

$$\frac{F_1}{A_1} = \frac{F_2}{A_2}$$



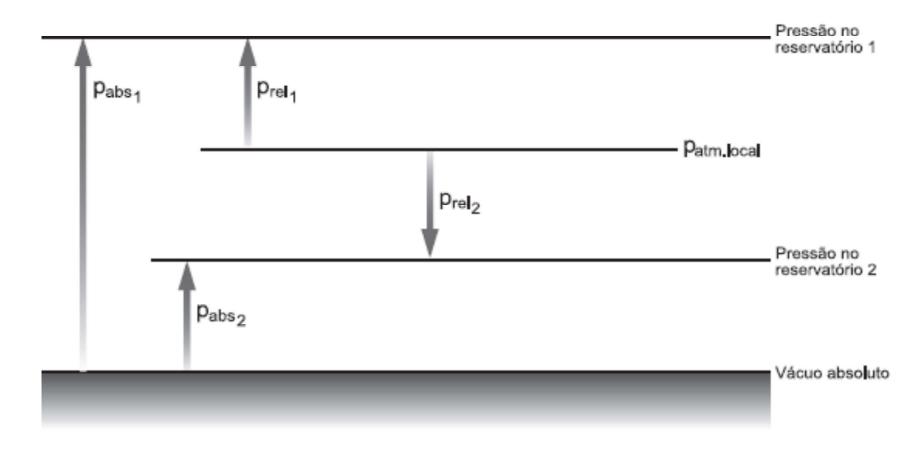
Uso: Elevadores hidráulicos



- Valores estabelecidos em relação a uma referência
 - Atmosfera Padrão
 - Representação ideal da atmosfera terrestre avaliada numa latitude média e condição ambiental média anual

Propriedades da Atmosfera Padrão (Nível do Mar)*	
Temperatura, T	288,15 K (15 °C)
Pressão, p	101,325 kPa
Massa específica, $ ho$	1,225 kg/m ³
Peso específico, γ	12,014 N/m ³
Viscosidade, μ	1,789 × 10 ⁻⁵ N.s/m ²
* Aceleração da gravidade ao nível do mar = 9,807 m/s²	

- Valores estabelecidos em relação a uma referência
 - Unidades: Pa = N/m^2 (SI), psi, bar, altura de coluna de líquido (m.c.a ou mH_2O , mmH_2O), etc.



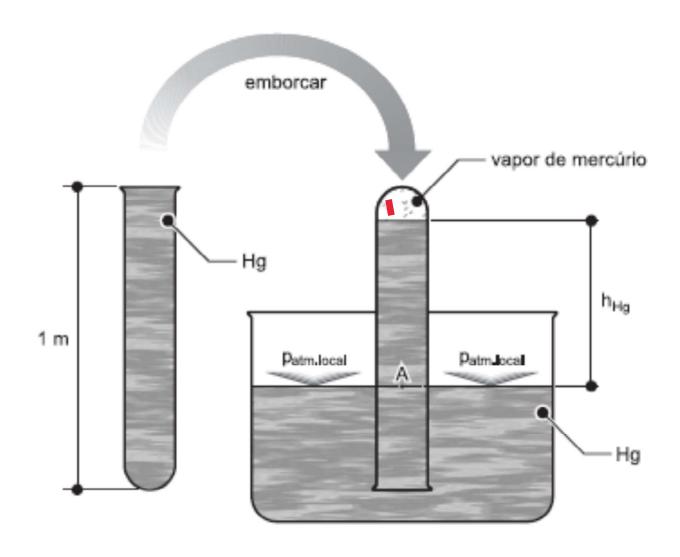
Pressão

 atmosférica:
 barômetro de
 mercúrio

$$p_{atm} = p_{vapor} + \gamma_{Hg} h$$

$$desprezivel$$

$$p_{atm} = \gamma_{Hg} h$$

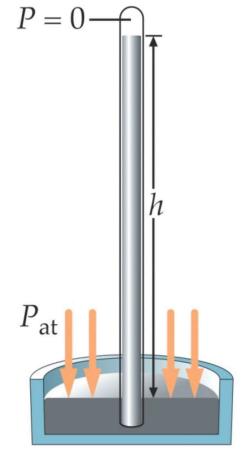


Ao nível do mar: p_{atm} = 760 mmHg = 10,33 mH₂O

 Valores da pressão atmosférica em diferentes unidades

$$p_{atm} = 101.325 \text{ Pa} (Pascal)$$

= 1,0 atm (atmosfera)
= 1,01325 bar
= 760 mmHg
= 10,33 mH₂O
= 1,0332 kgf/cm²
= 14,7 psi

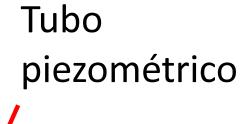


aberto

- Manômetro:
 - Medição da pressão relativa

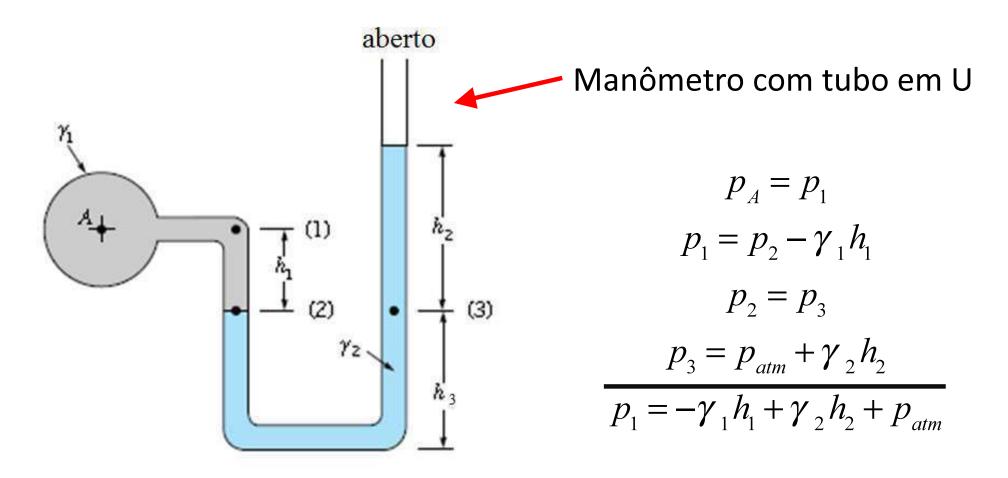
 $p_{A} = p_{O} + \gamma_{1} h_{1}$ (pressão absoluta)

$$p_{A} = \gamma_{1} h_{1}$$
(pressão relativa)



Restrições:

- $p_A > p_{atm}$
- p_A não pode ser muito grande
- Fluido do recipiente tem que ser líquido



- Fluido manométrico pode ser diferente do fluido do recipiente
- Se o fluido do recipiente for um gás, o seu peso específico pode ser desprezado

Manômetros com tubo em U

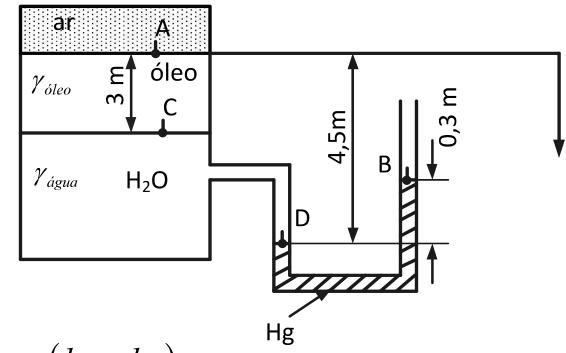
Exercício 1

Calcular a pressão efetiva em A, kgf/cm²

$$\gamma_{\delta leo} = 800 \, kgf / m^3$$

$$\gamma_{\delta gua} = 1.000 \, kgf / m^3$$

$$\gamma_{Hg} = 13.600 \, kgf / m^3$$



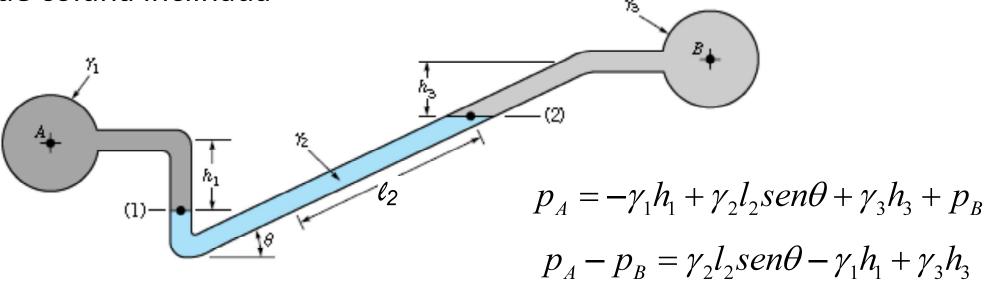
$$p_{A} = -\gamma_{\delta leo} h_{C} - \gamma_{\delta gua} (h_{D} - h_{C}) + \gamma_{Hg} (h_{D} - h_{B})$$

$$p_{A} = -800 \times 3 - 1.000 (4,5-3) + 13.600 (0,3) = 180 \text{ kgf/m}^{2}$$

$$p_{A} = 0.018 \text{ kgf/cm}^{2}$$

Exercício 2

Avaliação da pressão em manômetro

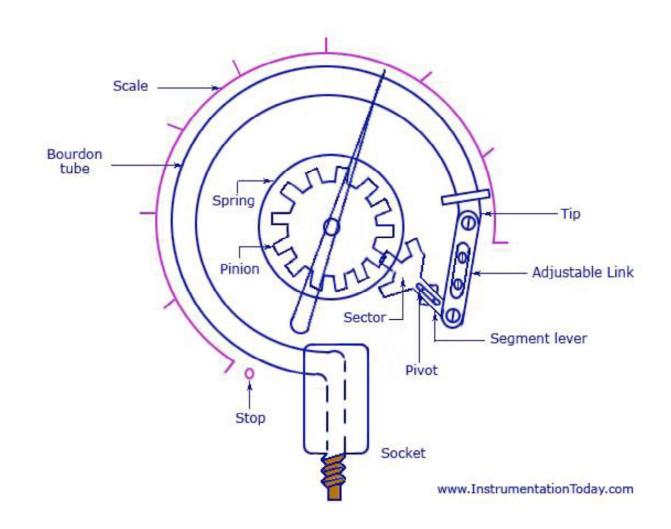


Se os fluidos em 1 e 3 forem gases: $\gamma_1 h_1 = \gamma_3 h_3 = 0$

$$p_A - p_B = \gamma_2 l_2 sen\theta \Rightarrow l_2 = \frac{p_A - p_B}{\gamma_2 sen\theta}$$

Manômetros de Bourdon

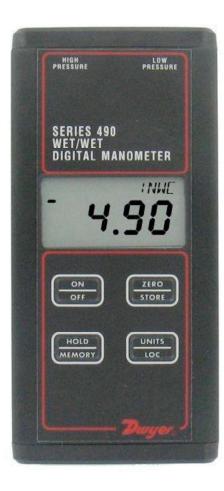
Manômetro de Bourdon



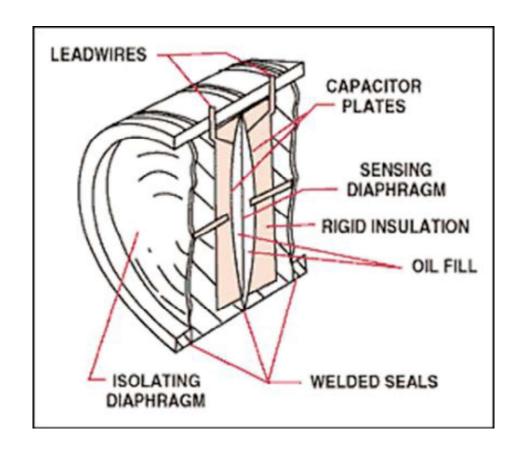
Bourdon Tube Pressure Gauge

Manômetros

digitais



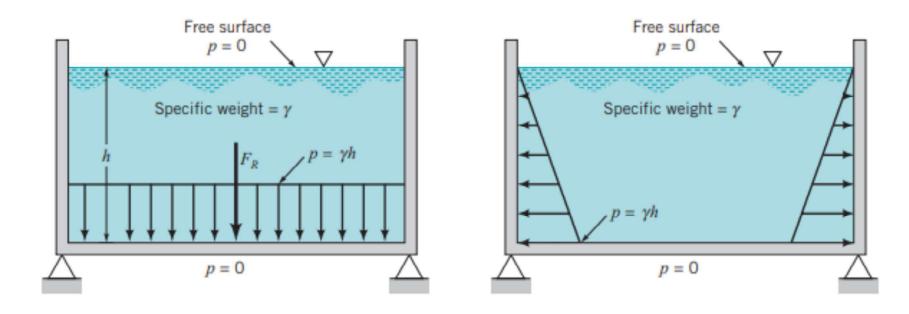
Manômetros digitais



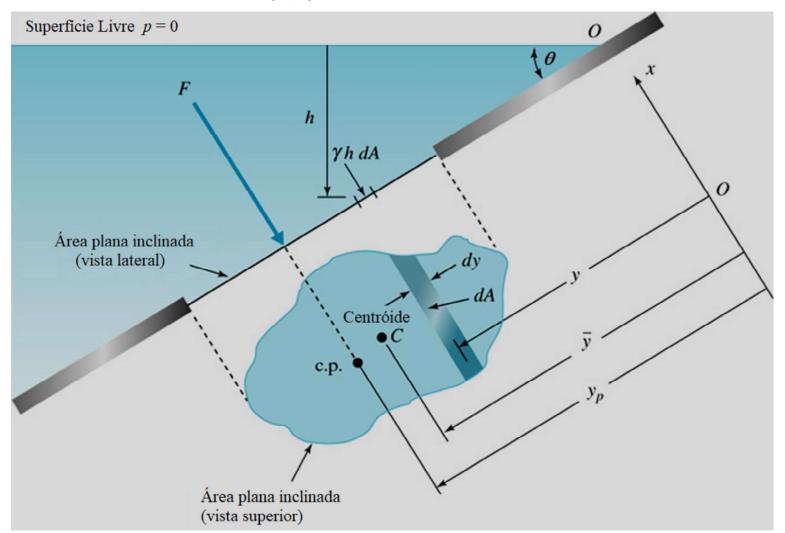
Transdutores de pressão

Força Hidrostática em superfícies planas

- Distribuição de pressões em um reservatório aberto
 - Dois métodos de resolução
 - Método dos momentos de 1º e 2º ordem
 - Método dos Prismas de Pressão



- Método dos momentos de 1ª e 2ª ordem
 - Centróide (C): propriedade matemática da área
 - Centro de Pressão (cp): local de ação da força resultante



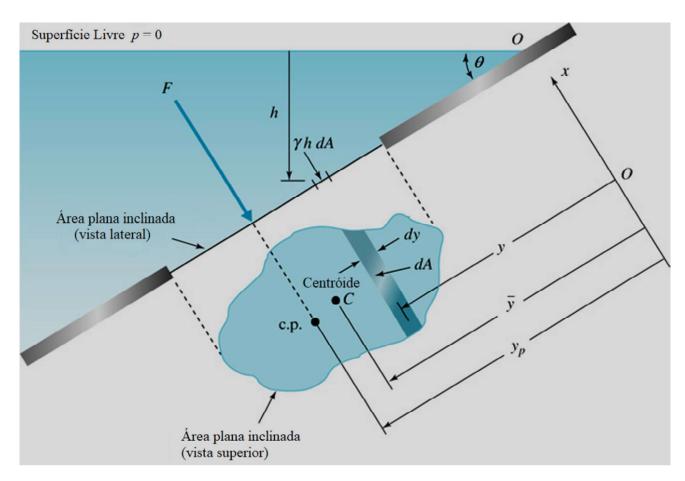
• Método dos momentos de 1ª e 2ª ordem

$$F_{R} = \int \gamma h \, dA$$

$$= \int \gamma y \operatorname{sen} \theta \, dA$$

$$= \gamma \operatorname{sen} \theta \int y \, dA$$

$$\uparrow A$$



Essa integral é o Momento de 1ª ordem da área em relação ao eixo x

• Método dos momentos de 1ª e 2ª ordem

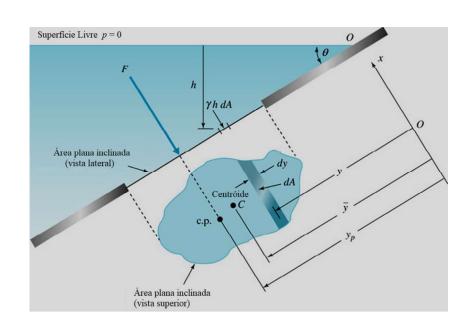
$$F_R = \gamma \operatorname{sen} \theta \int_A y \, dA$$

 Como a integral é o Momento de 1ª ordem da área em relação ao eixo x, pode-se escrever

$$\int y \, dA = y_c A$$
Coordenada do centróide

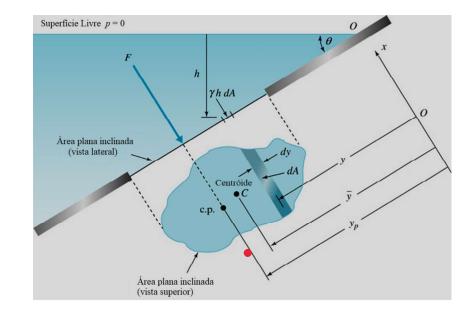
- E assim

$$F_R = \gamma A y_c \operatorname{sen} \theta = \gamma h_c A$$



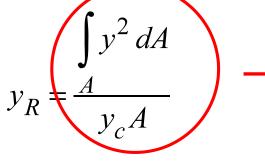
- A linha de ação da força resultante, y_r, pode ser determinada pela soma dos momentos em relação a x
 - momento da força resultante =
 momentos das forças de pressão

$$F_R y_R = \int_A y \, dF = \int_A \gamma \operatorname{sen} \theta y_c^2 \, dA$$



Como

$$F_R = \gamma \mathrm{sen}\,\theta y_c A$$



Momento de 2ª ordem da superfície *A*, ou momento de inércia *I*_x

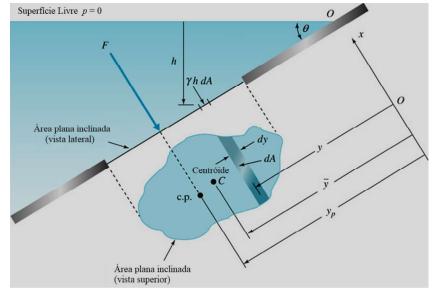
$$y_R = \frac{I_x}{y_c A}$$

 Pelo teorema dos eixos paralelos temos

$$I_{x} = I_{xc} + Ay_{c}^{2}$$

$$y_{R} = \frac{I_{xc}}{y_{c}A} + y_{c}$$

$$> 0$$



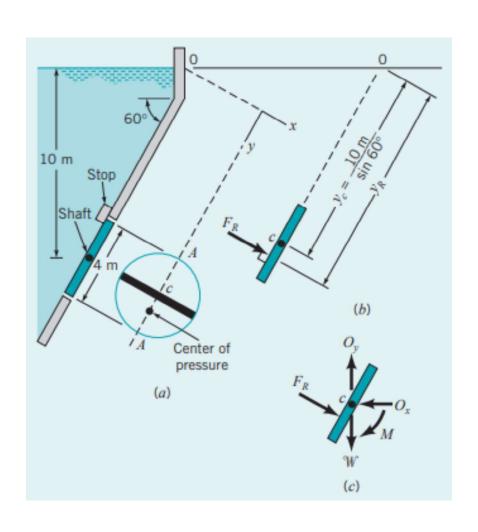
Ponto de aplicação estará sempre abaixo da cota do centróide

• De forma análoga para a coordenada x_r

$$x_R = \frac{\int xy \, dA}{y_c A} = \frac{I_{xy}}{y_c A} \implies x_R = \frac{I_{xyc}}{y_c A} + x_c$$

 Propriedades geométricas de algumas superfícies

	Esboço	Área	Centróide	Segundo momento
Retângulo	$y \downarrow b \downarrow h$	bh	$\overline{y} = h/2$	$\bar{I} = bh^3/12$ $\bar{I}_{xy} = 0$
Triângulo	$ \begin{array}{c c} \hline y \downarrow \\ \hline h \\ \hline b+d \\ \hline b \\ \hline b \end{array} $	<i>bh</i> /2	$\overline{y} = h/3$	$\bar{I} = bh^3/36$ $\bar{I}_{xy} = (b - 2d)bh^3/72$
Círculo	$\frac{\overline{y} \downarrow}{\uparrow} \underbrace{\bullet} D$	$\pi D^2/4$	$\overline{y} = r$	$\bar{I} = \pi D^4/64$
Semicírculo	$ \begin{array}{c c} D & \downarrow \overline{y} \\ \hline \uparrow & x \end{array} $	$\pi D^2/8$	$\overline{y} = 4r/3\pi$	$I_x = \pi D^4/128$
Elipse	$\frac{\overline{y} \downarrow}{\uparrow} \underbrace{\begin{array}{c} 2a \\ \hline \\ 2b \\ \hline \\ \end{array}}$	πab	$\overline{y} = b$	$\bar{I} = \pi a b^3 / 4$
Semielipse	$\frac{\overline{y} \downarrow}{\uparrow} \xrightarrow{2a} \downarrow b \\ \uparrow x$	πab/2	$\overline{y} = 4b/3\pi$	$I_x = \pi a b^3/8$

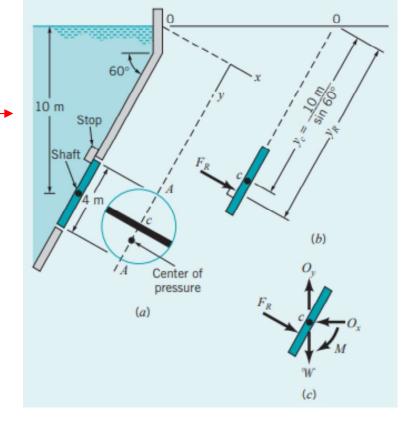


- 1. Determine a magnitude e a força resultante da exercida pela água sobre a comporta circular com 4m de diâmetro.
- 2. Determine o momento a ser aplicado no eixo para abrir a comporta.

$$F_R = \gamma h_c A = 9.8.10^3 \times 10 \times \frac{\pi.4^2}{4} = 1.23.10^6 \text{ N}$$

Ponto de aplicação

$$y_R = \frac{I_{xc}}{y_c A} + y_c$$
 e $x_R = \frac{I_{xy_c}}{y_c A} + x_c$ (por simetria)



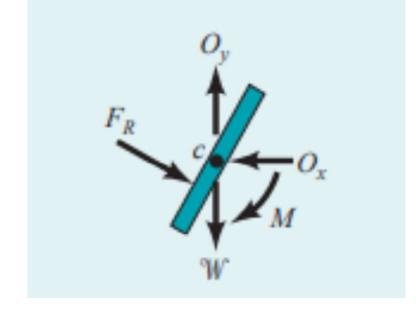
da tabela
$$I_{x_c} = \frac{\pi R^4}{4}$$
 e $y_c = \frac{10}{\sin 60}$ $\to y_R = 11,6$ m

$$y_R - y_c = 11,6 - \frac{10}{\sin 60} = 0,0866$$
 , um pouco abaixo do centróide, o que implica que o batente está forçado.

Para dimensionar o motor/redutor para abrir a comporta e sangrar o reservatório, calcula-se o momento ou torque

$$\sum M_c = 0$$
 e portanto $F_R * (y_R - y_c) = 1,23.10^6.0,0866 = 1,07.10^5 Nm$

 O momento necessário para abrir a comporta vem do balanço de momentos no eixo da comporta

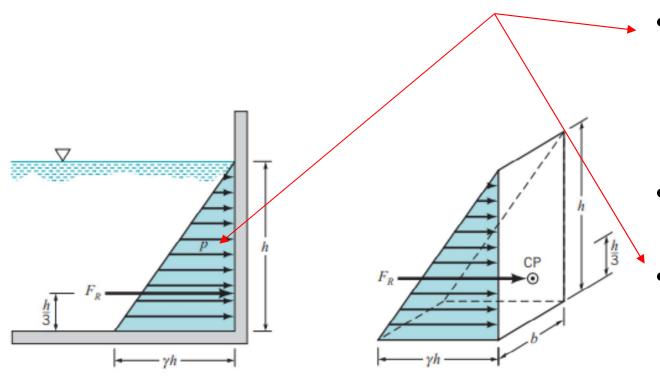


$$\Sigma M_c = M_{abertura} - M_{F_R} = 0$$

$$M_{abertura} = F_R(y_R - y_c) = 1,23 \times 10^6 (0,0866)$$

$$M_{abertura} = 1,07 \times 10^5$$
 N.m

- Método do prisma de pressões
 - mais simples para superfícies retangulares

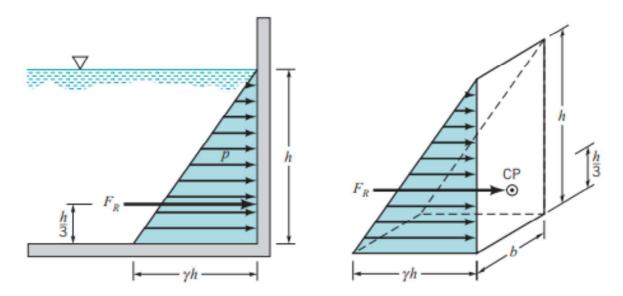


- P varia linearmente com profundidade (p= γh)
- $p_{efet} = 0$ na superfície
 - p_{media} ocorre em plano h/3 na distribuiçãotriangular

- Método do prisma de pressões
 - Força que atua na área

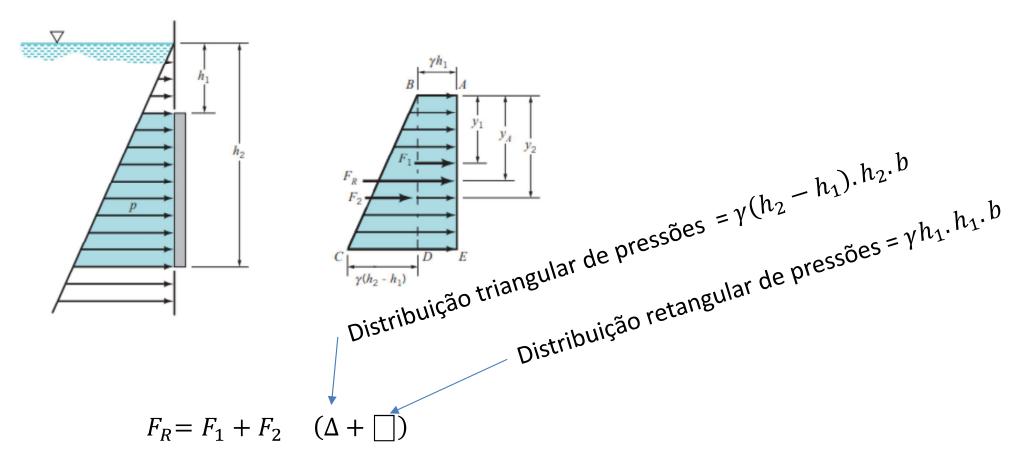
$$F_R = p_{m\acute{e}dia} \times \text{área} = \frac{\gamma h}{2} \times bh$$

= volume do prisma de pressão



- P varia linearmente com profundidade $(p = \gamma h)$
- $p_{efet} = 0$ na superfície
- p_{media} ocorre em plano h/3na distribuição triangular

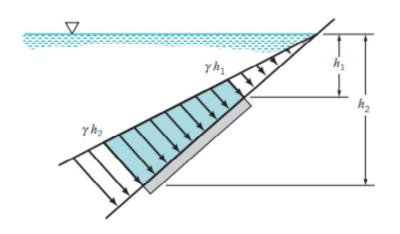
- Método do prisma de pressões
 - abordagem tb vale quando a superfície está toda submersa



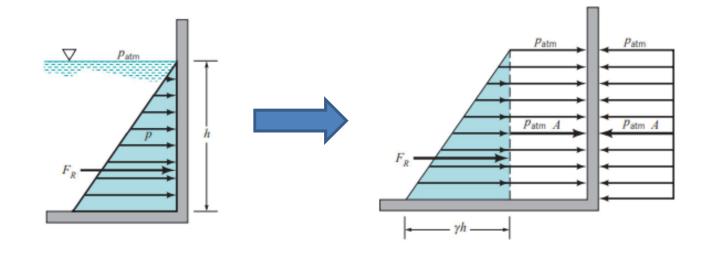
A localização de F_R é determinada a partir do momento em relação a um eixo

$$F_R y_R = F_1 y_1 + F_2 y_2$$

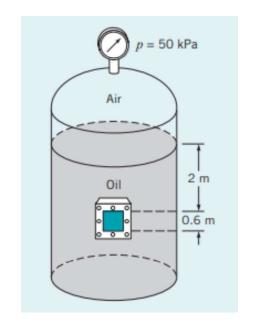
Superfícies inclinadas

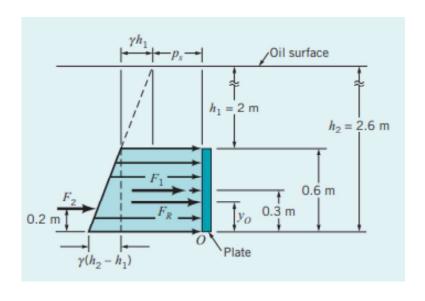


• Efeito de p_{atm}



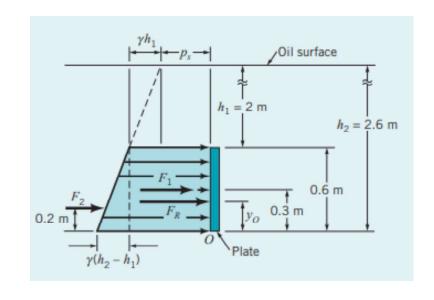
 Tanque pressurizado com ar contém óleo (densidade = 0,9) e possui uma vigia para limpeza e inspeção com^{0,6} x ^{0,6} m². Qual a magnitude e localização da força nesta placa?





Como
$$d_{\acute{o}leo} = 0.9$$

$$\Rightarrow \rho_{\acute{o}leo} = 0.9 \times 10^{3} \text{kg/m}^{3}$$



Cálculo da força:

$$F_{1} = \left(p_{g\acute{a}s} + \rho g h_{1}\right) A = \left(50 \times 10^{3} + 0.9 \times 10^{3} \cdot 9.81 \cdot 2\right) \cdot 0.36 = 24.4 \times 10^{3} \, \text{N}$$

$$F_{2} = \rho g \left(\frac{h_{1} - h_{2}}{2}\right) A = 0.9 \times 10^{3} \cdot 9.81 \cdot \frac{0.6}{2} \cdot 0.36 = 0.95 \times 10^{3} \, \text{N}$$

$$F_{R} = F_{1} + F_{2} = 25.35 \times 10^{3} \, \text{N}$$

A localização vertical do ponto de aplicação da força F_R é obtida a partir da soma dos momentos em relação ao eixo que passa pelo ponto O:

$$F_R y_R = F_1 y_1 + F_2 y_2$$

$$\therefore y_R = \frac{24,4 \times 10^3 \cdot 0,3 + 0,95 \times 10^3 \cdot 0,2}{25,35 \times 10^3}$$
$$y_R = 0,296\text{m}$$

