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Preface

In A Call For Change: Recommendations for the Mathematical Preparation of Teachers of
Mathematics, the Mathematical Association of America’s (MAA) Committee on the Math-
ematical Education of Teachers recommends that all prospective teachers of mathematics in
schools

. . . develop an appreciation of the contributions made by various cultures to the growth and
development of mathematical ideas; investigate the contributions made by individuals, both female
and male, and from a variety of cultures, in the development of ancient, modern, and current
mathematical topics; [and] gain an understanding of the historical development of major school
mathematics concepts.

According to the MAA, knowledge of the history of mathematics shows students that
mathematics is an important human endeavor. Mathematics was not discovered in the polished
form of our textbooks, but was often developed in an intuitive and experimental fashion in
order to solve problems. The actual development of mathematical ideas can be effectively
used in exciting and motivating students today.

This textbook grew out of the conviction that both prospective school teachers of mathe-
matics and prospective college teachers of mathematics need a background in history to teach
the subject more effectively. It is therefore designed for junior or senior mathematics majors
who intend to teach in college or high school, and it concentrates on the history of those topics
typically covered in an undergraduate curriculum or in elementary or high school. Because
the history of any given mathematical topic often provides excellent ideas for teaching the
topic, there is sufficient detail in each explanation of a new concept for the future (or present)
teacher of mathematics to develop a classroom lesson or series of lessons based on history.
In fact, many of the problems ask readers to develop a particular lesson. My hope is that
students and prospective teachers will gain from this book a knowledge of how we got here
from there, a knowledge that will provide a deeper understanding of many of the important
concepts of mathematics.

Di1STINGUISHING FEATURES

FLEXIBLE ORGANIZATION

Although the text’s chief organization is by chronological period, the material is organized
topically within each period. By consulting the detailed subsection headings, the reader can
choose to follow a particular theme throughout history. For example, to study equation solving
one could consider ancient Egyptian and Babylonian methods, the geometrical solution
methods of the Greeks, the numerical methods of the Chinese, the Islamic solution methods
for cubic equations by use of conic sections, the Italian discovery of an algorithmic solution
of cubic and quartic equations, the work of Lagrange in developing criteria for methods of
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solution of higher degree polynomial equations, the work of Gauss in solving cyclotomic
equations, and the work of Galois in using permutations to formulate what is today called
Galois theory.

FOCUS ON TEXTBOOKS

It is one thing to do mathematical research and discover new theorems and techniques. It
is quite another to elucidate these in such a way that others can learn them. Thus, in many
chapters there is a discussion of one or more important texts of the time. These are the works
from which students learned the important ideas of the great mathematicians. Today’s students
will see how certain topics were treated and will be able to compare these treatments to those
in current texts and see the kinds of problems students of years ago were expected to solve.

APPLICATIONS OF MATHEMATICS

Two chapters, one for the Greek period and one for the Renaissance, are devoted entirely to
mathematical methods, the ways in which mathematics was used to solve problems in other
areas of study. A major part of both chapters deals with astronomy since in ancient times
astronomers and mathematicians were usually the same people. To understand a substantial
part of Greek mathematics, it is crucial also to understand the Greek model of the heavens
and how mathematics was used in applying this model to give predictions. Similarly, I
discuss the Copernicus-Kepler model of the heavens and consider how mathematicians of the
Renaissance applied mathematics to its study. I also look at the applications of mathematics
to geography during these two time periods.

NON-WESTERN MATHEMATICS

A special effort has been made to consider mathematics developed in parts of the world other
than Europe. Thus, there is substantial material on mathematics in China, India, and the
Islamic world. In addition, Chapter 11 discusses the mathematics of various other societies
around the world. Readers will see how certain mathematical ideas have occurred in many
places, although not perhaps in the context of what we in the West call “mathematics.”

TOPICAL EXERCISES

Each chapter contains many exercises, organized in order of the chapter’s topics. Some
exercises are simple computational ones, while others help to fill gaps in the mathematical
arguments presented in the text. For Discussion exercises are open-ended questions, which
may involve some research to find answers. Many of these ask students to think about how
they would use historical material in the classroom. Even if readers do not attempt many of
the exercises, they should at least read them to gain a fuller understanding of the material
of the chapter. (Answers to the odd numbered computational problems as well as some odd
numbered “proof” problems are included at the end of the book.)

FOCUS ESSAYS

Biographies For easy reference, many biographies of the mathematicians whose work is
discussed are in separate boxes. Although women have for various reasons not participated
in large numbers in mathematical research, biographies of several important women mathe-
maticians are included, women who succeeded, usually against heavy odds, in contributing
to the mathematical enterprise.
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Special Topics Sidebars on special topics also appear throughout the book. These include
such items as a treatment of the question of the Egyptian influence on Greek mathematics, a
discussion of the idea of a function in the work of Ptolemy, a comparison of various notions of
continuity, and several containing important definitions collected together for easy reference.

ADDITIONAL PEDAGOGY

At the start of each chapter is a relevant quotation and a description of an important math-
ematical “event.” Each chapter also contains an annotated list of references to both primary
and secondary sources from which students can obtain more information. Given that a major
audience for this text is prospective teachers of secondary or college-level mathematics, |
have provided an appendix giving suggestions for using the text material in teaching math-
ematics. It contains a detailed list to correlate the history of various topics in the secondary
and college curriculum to sections in the text; there are suggestions for organizing some of
this material for classroom use; and there is a detailed time line that helps to relate the math-
ematical discoveries to other events happening in the world. On the back inside cover there
is a chronological listing of most of the mathematicians discussed in the book. Finally, given
that students may have difficulty pronouncing the names of some mathematicians, the index
has a special feature: a phonetic pronunciation guide.

PREREQUISITES

A knowledge of calculus is sufficient to understand the first 16 chapters of the text. The
mathematical prerequisites for later chapters are somewhat more demanding, but the various
section titles indicate clearly what kind of mathematical knowledge is required. For example,
a full understanding of chapters 19 and 21 will require that students have studied abstract
algebra.

COURSE FLEXIBILITY

The text contains more material than can be included in a typical one-semester course in
the history of mathematics. In fact, it includes adequate material for a full year course, the
first half being devoted to the period through the invention of calculus in the late seventeenth
century and the second half covering the mathematics of the eighteenth, nineteenth, and twen-
tieth centuries. However, for those instructors who have only one semester, there are several
ways to use this book. First, one could cover most of the first twelve chapters and simply
conclude with calculus. Second, one could choose to follow one or two particular themes
through history. (The table in the appendix will direct one to the appropriate sections to in-
clude when dealing with a particular theme.) Among the themes that could be followed are
equation solving; ideas of calculus; concepts of geometry; trigonometry and its applications
to astronomy and surveying; combinatorics, probability, and statistics; and modern algebra
and number theory. For a thematic approach, I would suggest making every effort to include
material on mathematics in the twentieth century, to help students realize that new mathe-
matics is continually being discovered. Finally, one could combine the two approaches and
cover ancient times chronologically, and then pick a theme for the modern era.
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NEW FOR THIS EDITION

The generally friendly reception of this text’s first two editions encouraged me to maintain
the basic organization and content. Nevertheless, I have attempted to make a number of
improvements, both in clarity and in content, based on comments from many users of
those editions as well as new discoveries in the history of mathematics that have appeared
in the recent literature. To make the book somewhat easier to use, I have reorganized
some material into shorter chapters. There are minor changes in virtually every section,
but the major changes from the second edition include: new material about Archimedes
discovered in analyzing the palimpsest of the Method; anew section on Ptolemy’s Geography;
more material in the Chinese, Indian, and Islamic chapters based on my work on the new
Sourcebook dealing with the mathematics of these civilizations, as well as the ancient
Egyptian and Babylonian ones; new material on statistics in the nineteenth and twentieth
centuries; and a description of the eighteenth-century translation into the differential calculus
of some of Newton’s work in the Principia. The text concludes with a brief description of
the solution to the first Clay Institute problem, the Poincareé conjecture. I have attempted to
correct all factual errors from the earlier editions without introducing new ones, yet would
appreciate notes from anyone who discovers any remaining errors. New problems appear in
every chapter, some of them easier ones, and references to the literature have been updated
wherever possible. Also, a few new stamps were added as illustrations. One should note,
however, that any portraits on these stamps—or indeed elsewhere—purporting to represent
mathematicians before the sixteenth century are fictitious. There are no known representations
of any of these people that have credible evidence of being authentic.

ACKNOWLEDGMENTS

Like any book, this one could not have been written without the help of many people.
The following people have read large sections of the book at my request and have offered
many valuable suggestions: Marcia Ascher (Ithaca College); J. Lennart Berggren (Simon
Fraser University); Robert Kreiser (A.A.U.P.); Robert Rosenfeld (Nassau Community Col-
lege); John Milcetich (University of the District of Columbia); Eleanor Robson (Cambridge
University); and Kim Plofker (Brown University). In addition, many people made detailed
suggestions for the second and third editions. Although I have not followed every suggestion,
I'sincerely appreciate the thought they gave toward improving the book. These people include
Ivor Grattan-Guinness, Richard Askey, William Anglin, Claudia Zaslavsky, Rebekka Struik,
William Ramaley, Joseph Albree, Calvin Jongsma, David Fowler, John Stillwell, Christian
Thybo, Jim Tattersall, Judith Grabiner, Tony Gardiner, Ubi D’ Ambrosio, Dirk Struik, and
David Rowe. My heartfelt thanks to all of them.

The many reviewers of sections of the manuscript for each of the editions have also pro-
vided great help with their detailed critiques and have made this a much better book than
it otherwise could have been. For the first edition, they were Duane Blumberg (University
of Southwestern Louisiana); Walter Czarnec (Framington State University); Joseph Dauben
(Lehman College—CUNY); Harvey Davis (Michigan State University); Joy Easton (West
Virginia University); Carl FitzGerald (University of California, San Diego); Basil Gordon
(University of California, Los Angeles); Mary Gray (American University); Branko Grun-
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Diego); David Wilson (University of Florida); and Frederick Wright (University of North
Carolina at Chapel Hill).
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York, New Paltz); Bruce Crauder (Oklahoma State University); Walter Czarnec (Framing-
ham State College); William England (Mississippi State University); David Jabon (Eastern
Washington University); Charles Jones (Ball State University); Michael Lacey (Indiana Uni-
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versity); Ken Shaw (Florida State University); Svere Smalo (University of California, Santa
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Accurate reckoning. The entrance into the
knowledge of all existing things and all
obscure secrets.

—Introduction to Rhind
Mathematical Papyrus!

PART ONE Ancient Mathematics

Egypt and Mesopotamia

esopotamia: In a scribal school in Larsa some 3800 years
ago, a teacher is trying to develop mathematics problems
to assign to his students so they can practice the ideas just
introduced on the relationship among the sides of a right triangle.
The teacher not only wants the computations to be difficult enough
to show him who really understands the material but also wants the
answers to come out as whole numbers so the students will not be
frustrated. After playing for several hours with the few triples (a, b, ¢)

2 a new idea occurs to

of numbers he knows that satisfy a® + b> =c¢
him. With a few deft strokes of his stylus, he quickly does some
calculations on a moist clay tablet and convinces himself that he has
discovered how to generate as many of these triples as necessary. After
organizing his thoughts a bit longer, he takes a fresh tablet and carefully
records a table listing not only 15 such triples but also a brief indication
of some of the preliminary calculations. He does not, however, record
the details of his new method. Those will be saved for his lecture to
his colleagues. They will then be forced to acknowledge his abilities,
and his reputation as one of the best teachers of mathematics will

spread throughout the entire kingdom.
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FIGURE 1.1

Jean Champollion and a piece
of the Rosetta stone

The opening quotation from one of the few documentary sources on Egyptian mathematics
and the fictional story of the Mesopotamian scribe illustrate some of the difficulties in
giving an accurate picture of ancient mathematics. Mathematics certainly existed in virtually
every ancient civilization of which there are records. But in every one of these civilizations,
mathematics was in the domain of specially trained priests and scribes, government officials
whose job it was to develop and use mathematics for the benefit of that government in such
areas as tax collection, measurement, building, trade, calendar making, and ritual practices.
Yet, even though the origins of many mathematical concepts stem from their usefulness in
these contexts, mathematicians always exercised their curiosity by extending these ideas far
beyond the limits of practical necessity. Nevertheless, because mathematics was a tool of
power, its methods were passed on only to the privileged few, often through an oral tradition.
Hence, the written records are generally sparse and seldom provide much detail.

In recent years, however, a great deal of scholarly effort has gone into reconstructing the
mathematics of ancient civilizations from whatever clues can be found. Naturally, all scholars
do not agree on every point, but there is enough agreement so that a reasonable picture can
be presented of the mathematical knowledge of the ancient civilizations in Mesopotamia
and Egypt. We begin our discussion of the mathematics of each of these civilizations with a
brief survey of the underlying civilization and a description of the sources from which our
knowledge of the mathematics is derived.

EGYPT

Agriculture emerged in the Nile Valley in Egypt close to 7000 years ago, but the first dynasty
to rule both Upper Egypt (the river valley) and Lower Egypt (the delta) dates from about
3100 BCE. The legacy of the first pharaohs included an elite of officials and priests, a luxurious
court, and for the kings themselves, arole as intermediary between mortals and gods. This role
fostered the development of Egypt’s monumental architecture, including the pyramids, built
as royal tombs, and the great temples at Luxor and Karnak. Writing began in Egypt at about
this time, and much of the earliest writing concerned accounting, primarily of various types
of goods. There were several different systems of measuring, depending on the particular
goods being measured. But since there were only a limited number of signs, the same signs
meant different things in connection with different measuring systems. From the beginning of
Egyptian writing, there were two styles, the hieroglyphic writing for monumental inscriptions
and the hieratic, or cursive, writing, done with a brush and ink on papyrus. Greek domination
of Egypt in the centuries surrounding the beginning of our era was responsible for the
disappearance of both of these native Egyptian writing forms. Fortunately, Jean Champollion
(1790-1832) was able to begin the process of understanding Egyptian writing early in the
nineteenth century through the help of a multilingual inscription—the Rosetta stone—in
hieroglyphics and Greek as well as the later demotic writing, a form of the hieratic writing
of the papyri (Fig. 1.1).

It was the scribes who fostered the development of the mathematical techniques. These
government officials were crucial to ensuring the collection and distribution of goods, thus
helping to provide the material basis for the pharaohs’ rule (Fig. 1.2). Thus, evidence for the
techniques comes from the education and daily work of the scribes, particularly as related in



FIGURE 1.2

Amenhotep, an Egyptian high
official and scribe (fifteenth

century BCE)

FIGURE 1.3

Egyptian numerals on the
Nagqada tablets (c. 3000 BCE)

1.1 Ecver 3

two papyri containing collections of mathematical problems with their solutions, the Rhind
Mathematical Papyrus, named for the Scotsman A. H. Rhind (1833-1863) who purchased
it at Luxor in 1858, and the Moscow Mathematical Papyrus, purchased in 1893 by V. S.
Golenishchev (d. 1947) who later sold it to the Moscow Museum of Fine Arts. The former
papyrus was copied about 1650 BCE by the scribe A’h-mose from an original about 200 years
older and is approximately 18 feet long and 13 inches high. The latter papyrus dates from
roughly the same period and is over 15 feet long, but only some 3 inches high. Unfortunately,
although a good many papyri have survived the ages due to the generally dry Egyptian climate,
it is the case that papyrus is very fragile. Thus, besides the two papyri mentioned, only a few
short fragments of other original Egyptian mathematical papyri are still extant.

These two mathematical texts inform us first of all about the types of problems that needed
to be solved. The majority of problems were concerned with topics involving the administra-
tion of the state. That scribes were occupied with such tasks is shown by illustrations found
on the walls of private tombs. Very often, in tombs of high officials, scribes are depicted
working together, probably in accounting for cattle or produce. Similarly, there exist three-
dimensional models representing such scenes as the filling of granaries, and these scenes
always include a scribe to record quantities. Thus, it is clear that Egyptian mathematics was
developed and practiced in this practical context.

One other area in which mathematics played an important role was architecture. Numerous
remains of buildings demonstrate that mathematical techniques were used both in their
design and construction. Unfortunately, there are few detailed accounts of exactly how the
mathematics was used in building, so we can only speculate about many of the details. We
deal with a few of these ideas below.

111 Number Systems and Computations

The Egyptians developed two different number systems, one for each of their two writing
styles. In the hieroglyphic system, each of the first several powers of 10 was represented by a
different symbol, beginning with the familiar vertical stroke for 1. Thus, 10 was represented

by N, 100 by 9, 1000 by VQS ,and 10,000 by N (Fig. 1.3). Arbitrary whole numbers were then
represented by appropriate repetitions of the symbols. For example, to represent 12,643 the
Egyptians would write

IRAS55 33,

(Note that the usual practice was to put the smaller digits on the left.)
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The hieratic system, in contrast to the hieroglyphic, is an example of a ciphered system.
Here each number from 1 to 9 had a specific symbol, as did each multiple of 10 from 10 to
90 and each multiple of 100 from 100 to 900, and so on. A given number, for example, 37,

was written by putting the symbol for 7 next to that for 30. Since the symbol for 7 was 7

and that for 30 was ‘A, 37 was written 7N, Again, since 3 was written as {ll, 40 as =, and
200 as -+, the symbol for 243 was = /. Although a zero symbol is not necessary in a
ciphered system, the Egyptians did have such a symbol. This symbol does not occur in the
mathematical papyri, however, but in papyri dealing with architecture, where it is used to
denote the bottom leveling line in the construction of a pyramid, and accounting, where it is
used in balance sheets to indicate that the disbursements and income are equal.?

Once there is a system of writing numbers, it is only natural that a civilization devise
algorithms for computation with these numbers. For example, in Egyptian hieroglyphics,
addition and subtraction are quite simple: combine the units, then the tens, then the hundreds,
and so on. Whenever a group of ten of one type of symbol appears, replace it by one of the
next. Hence, to add 783 and 275,

NNNN2999 1INNNNog

Il NnNNNNNNNN29299
put "'"NNNN 299 and Il NNN Il

together to get Il NNNNNNN 9999 .

Since there are fifteen N’s, replace ten of them by one 9. This then gives ten of the latter.
Replace these by one V% . The final answer is

(Malelg)
non %,

or 1058. Subtraction is done similarly. Whenever “borrowing” is needed, one of the symbols
would be converted to ten of the next lower symbol. Such a simple algorithm for addition
and subtraction is not possible in the hieratic system. Probably, the scribes simply memorized
basic addition tables.

The Egyptian algorithm for multiplication was based on a continual doubling process. To
multiply two numbers a and b, the scribe would first write down the pair 1, b. He would
then double each number in the pair repeatedly, until the next doubling would cause the first
element of the pair to exceed a. Then, having determined the powers of 2 that add to a, the
scribe would add the corresponding multiples of b to get his answer. For example, to multiply
12 by 13, the scribe would set down the following lines:

‘112
2 24
‘4 48
'8 96

At this point he would stop because the next doubling would give him 16 in the first column,
which is larger than 13. He would then check off those multipliers that added to 13, namely,
1, 4, and 8, and add the corresponding numbers in the other column. The result would be
written as follows: Totals 13 156.

There is norecord of how the scribe did the doubling. The answers are simply written down.
Perhaps the scribe had memorized an extensive two times table. In fact, there is some evidence
that doubling was a standard method of computation in areas of Africa to the south of Egypt



1.1 Ecyp1 5

and that therefore the Egyptian scribes learned from their southern colleagues. In addition,
the scribes were somehow aware that every positive integer could be uniquely expressed as
the sum of powers of two. That fact provides the justification for the procedure. How was
it discovered? The best guess is that it was discovered by experimentation and then passed
down as tradition.

Because division is the inverse of multiplication, a problem such as 156 — 12 would be
stated as, “multiply 12 so as to get 156.” The scribe would then write down the same lines as
above. This time, however, he would check off the lines having the numbers in the right-hand
column that sum to 156; here that would be 12, 48, and 96. Then the sum of the corresponding
numbers on the left, namely, 1, 4, and 8, would give the answer 13. Of course, division does
not always “come out even.” When it did not, the Egyptians resorted to fractions.

The Egyptians only dealt with unit fractions or “parts” (fractions with numerator 1), with
the single exception of 2/3, perhaps because these fractions are the most “natural.” The
fraction 1/n (the nth part) is in general represented in hieroglyphics by the symbol for the
integer n with the symbol = above. In the hieratic a dot is used instead. So 1/7 is denoted in the

[—3
[

former system by 'iii and in the latter by 7 . The single exception, 2/3, had a special symbol: 7
in hieroglyphic and Y in hieratic. Two other fractions, 1/2 and 1/4, also had special symbols:
= and X, respectively. In what follows, however, the notation 77 will be used to represent 1/n
and 3 to represent 2/3.

Because fractions show up as the result of divisions that do not come out evenly, surely
there is a need to be able to deal with fractions other than unit fractions. It was in this
connection that the most intricate of the Egyptian arithmetical techniques developed, the
representation of any fraction in terms of unit fractions. The Egyptians did not view the
question this way, however. Whenever we would use a nonunit fraction, they simply wrote a
sum of unit fractions. For example, problem 3 of the Rhind Mathematical Papyrus asks how
to divide 6 loaves among 10 men. The answer is given that each man gets 2 10 loaves (that
is, 1/2 + 1/10). The scribe checks this by multiplying this value by 10. We may regard the
scribe’s answer as more cumbersome than our answer of 3/5, but in some sense the actual
division is easier to accomplish this way. We divide five of the loaves in half, the sixth one in
tenths, and then give each man one half plus one tenth. It is then clear to all that every man
has the same portion of bread. Cumbersome or not, this Egyptian method of unit fractions
was used throughout the Mediterranean basin for over 2000 years.

In multiplying whole numbers, the important step is the doubling step. So too in multiply-

ing fractions; the scribe had to be able to express the double of any unit fraction. For example,
in the problem above, the check of the solution is written as follows:

1 210
2 15

4 2315
'8 431030
10 6

How are these doubles formed? To double 2 10 is easy; because each denominator is even,
each is merely halved. In the next line, however, 5 must be doubled. It was here that the
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FIGURE 1.4

Transcription and hiero-
glyphic translation of 2 = 3,
2 =5, and 2 + 7 from the
Rhind Mathematical Papyrus
(Reston, VA: National Coun-
cil of Teachers of Mathemat-
ics, 1967, Arnold B. Chace,
ed.)

scribe had to use a table to get the answer 3 15 (that is, 2 - 1/5 = 1/3 + 1/15). In fact, the first
section of the Rhind Papyrus is a table of the division of 2 by every odd integer from 3 to 101
(Fig. 1.4), and the Egyptian scribes realized that the result of multiplying 7 by 2 is the same
as that of dividing 2 by n. It is not known how the division table was constructed, but there
are several scholarly accounts giving hypotheses for the scribes’ methods. In any case, the
solution of problem 3 depends on using that table twice, first as already indicated and second
in the next step, where the double of 15 is given as 10 30 (or 2 - 1/15 = 1/10 4 1/30). The
final step in this problem involves the addition of 15 to 4 3 10 30, and here the scribe just
gave the answer. Again, the conjecture is that for such addition problems an extensive table
existed. The Egyptian Mathematical Leather Roll, which dates from about 1600 BCE, contains
a short version of such an addition table.? There are also extant several other tables for dealing
with unit fractions and a multiplication table for the special fraction 2/3. It thus appears
that the arithmetic algorithms used by the Egyptian scribes involved extensive knowledge of
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basic tables for addition, subtraction, and doubling and then a definite procedure for reducing
multiplication and division problems into steps, each of which could be done using the tables.

Besides the basic procedures of doubling, the Egyptian scribes used other techniques in
performing arithmetic calculations. For example, they could find halves of numbers as well as
multiply by 10; they could figure out what fractions had to be added to a given mixed number
to get the next whole number; and they could determine by what fraction a given whole
number needs to be multiplied to give a given fraction. These procedures are illustrated in
problem 69 of the Rhind Papyrus, which includes the division of 80 by 3 2 and its subsequent
check:

1 32 ‘1 223721
10 35 ‘2 4534142842
20 70 2 1131442
2 7 32 80
3 23
21 6
7 2

223721 80

In the second line, the scribe took advantage of the decimal nature of his notation to give
immediately the product of 3 2 by 10. In the fifth line, he used the 2/3 multiplication table
mentioned earlier. The scribe then realized that since the numbers in the second column of the
third through the fifth lines added to 79 §, he needed to add 2 and 6 in that column to get 80.
Thus, because 6 x 32=2land 2 x 35:7, it follows that 21 x 32 =6 and 7 x 35:5, as
indicated in the sixth and seventh lines. The check shows several uses of the table of division
by 2 as well as great facility in addition.

112 Linear Equations and Proportional Reasoning

The mathematical problems the scribes could solve, as illustrated in the Rhind and Moscow
Papyri, deal with what we today call linear equations, proportions, and geometry. For exam-
ple, the Egyptian papyri present two different procedures for dealing with linear equations.

First, problem 19 of the Moscow Papyrus used our normal technique to find the number
such that if it is taken 1 1/2 times and then 4 is added, the sum is 10. In modern notation, the
equation is simply (1 1/2)x 4 4 = 10. The scribe proceeded as follows: “Calculate the excess
of this 10 over 4. The result is 6. You operate on 1 1/2 to find 1. The result is 2/3. You take 2/3
of this 6. The result is 4. Behold, 4 says it. You will find that this is correct.”™ Namely, after
subtracting 4, the scribe noted that the reciprocal of 11/2 is 2/3 and then multiplies 6 by this
quantity. Similarly, problem 35 of the Rhind Papyrus asked to find the size of a scoop that
requires 3 1/3 trips to fill a 1 hekat measure. The scribe solved the equation, which would
today be written as (3 1/3)x = 1 by dividing 1 by 3 1/3. He wrote the answer as 5 10 and
proceeded to prove that the result is correct.
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The Egyptians’ more common technique of solving a linear equation, however, was what is
usually called the method of false position, the method of assuming a convenient but probably
incorrect answer and then adjusting it by using proportionality. For example, problem 26 of
the Rhind Papyrus asked to find a quantity such that when it is added to 1/4 of itself the
result is 15. The scribe’s solution was as follows: “Assume [the answer is] 4. Then 1 4 of 4
is 5. ... Multiply 5 so as to get 15. The answer is 3. Multiply 3 by 4. The answer is 12.” In
modern notation, the problem is to solve x 4 (1/4)x = 15. The first guess is 4, because 1/4
of 4 is an integer. But then the scribe noted that 4 + 1/4 - 4 = 5. To find the correct answer,
he therefore multiplied 4 by the ratio of 15 to 5, namely, 3. The Rhind Papyrus has several
similar problems, all solved using false position. The step-by-step procedure of the scribe
can therefore be considered as an algorithm for the solution of a linear equation of this type.
There is, however, no discussion of how the algorithm was discovered or why it works. But
it is evident that the Egyptian scribes understood the basic idea of proportionality of two
quantities.

This understanding is further exemplified in the solution of more explicit proportion
problems. For example, problem 75 asked for the number of loaves of pesu 30 that can be
made from the same amount of flour as 155 loaves of pesu 20. (Pesu is the Egyptian measure
for the inverse “strength” of bread and can be expressed as pesu = [number of loaves]/[number
of hekats of grain], where a hekat is a dry measure approximately equal to 1/8 bushel.) The
problem was thus to solve the proportion x /30 = 155/20. The scribe accomplished this by
dividing 155 by 20 and multiplying the result by 30 to get 232 1/2. Similar problems occur
elsewhere in the Rhind Papyrus and in the Moscow Papyrus.

On the other hand, the method of false position is also used in the only quadratic equation
extant in the Egyptian papyri. On the Berlin Papyrus, a small fragment dating from approx-
imately the same time as the other papyri, is a problem asking to divide a square area of 100
square cubits into two other squares, where the ratio of the sides of the two squares is 1 to
3/4. The scribe began by assuming that in fact the sides of the two needed squares are 1 and
3/4, then calculated the sum of the areas of these two squares to be 12 + (3/4)> = 19/16.
But the desired sum of the areas is 100. The scribe realized that he could not compare areas
directly but must compare their sides. So he took the square root of 19/16, namely, 1%, and
compared this to the square root of 100, namely, 10. Since 10 is 8 times as large as 14—{, the
scribe concluded that the sides of the two other squares must be 8 times the original guesses,
namely, 8 and 6 cubits, respectively.

There are numerous more complicated problems in the extant papyri. For example, prob-
lem 64 of the Rhind Papyrus reads as follows: “If it is said to thee, divide 10 hekats of barley
among 10 men so that the difference of each man and his neighbor in hekats of barley is 1/8,
what is each man’s share?”% It is understood in this problem, as in similar problems else-
where in the papyrus, that the shares are to be in arithmetic progression. The average share is
1 hekat. The largest share could be found by adding 1/8 to this average share half the number
of times as there are differences. However, since there is an odd number (9) of differences,
the scribe instead added half of the common difference (1/16) a total of 9 times to get 1%
(12 16) as the largest share. He finished the problem by subtracting 1/8 from this value 9
times to get each share.

A final problem, problem 23 of the Moscow Papyrus, is what we often think of today as a
“work” problem: “Regarding the work of a shoemaker, if he is cutting out only, he can do 10
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Octagon inscribed in a square
of side 9, from problem 48
of the Rhind Mathematical
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pairs of sandals per day; but if he is decorating, he can do 5 per day. As for the number he can
both cut and decorate in a day, what will that be?”’ Here the scribe noted that the shoemaker
cuts 10 pairs of sandals in one day and decorates 10 pairs of sandals in two days, so that it
takes three days for him to both cut and decorate 10 pairs. The scribe then divided 10 by 3 to
find that the shoemaker can cut and decorate 3 1/3 pairs in one day.

11.3 Geometry

As to geometry, the Egyptian scribes certainly knew how to calculate the areas of rectangles,
triangles, and trapezoids by our normal methods. It is their calculation of the area of a circle,
however, that is particularly interesting. Problem 50 of the Rhind Papyrus reads, “Example of
around field of diameter 9. What is the area? Take away 1/9 of the diameter; the remainder is 8.
Multiply 8 times 8; it makes 64. Therefore, the area is 64.”8 In other words, the Egyptian scribe
was using a procedure described by the formula A = (d — d/9)? = [(8/9)d]*. A comparison
with the formula A = (7/4)d? shows that the Egyptian value for the constant 7 in the case
of area was 256/81 =3.16049 . . . . Where did the Egyptians get this value, and why was the
answer expressed as the square of (8/9)d rather than in modern terms as a multiple (here
64/81) of the square of the diameter?

A hint is given by problem 48 of the same papyrus, in which is shown the figure of an
octagon inscribed in a square of side 9 (Fig. 1.5). There is no statement of the problem,
however, only a bare computation of 8 x 8§ =64 and 9 x 9 = 81. If the scribe had inscribed
a circle in the same square, he would have seen that its area was approximately that of the
octagon. What is the size of the octagon? It depends on how one interprets the diagram in the
papyrus. If one believes the octagon to be formed by cutting off four corner triangles each
having area 4 1/2, then the area of the octagon is 7/9 that of the square, namely, 63. The
scribe therefore might have simply taken the area of the circle as A = (7/9)d 2[= (63 / 81)d?].
But since he wanted to find a square whose area was equal to the given circle, he may
have approximated 63/81 by (8/9)?, thus giving the area of the circle in the form [(8/9)d]*
indicated in problem 50. On the other hand, in the diagram, the octagon does not look
symmetric. So perhaps the octagon was formed by cutting off from the square of side 9
two diagonally opposite corner triangles each equal to 4 1/2 and two other corner triangles
each equal to 4. This octagon then has area 64, as explicitly written on the papyrus, and thus
this may be the square that the scribe wanted, which was equal in area to a circle.

It should be noted that problem 50 is not an isolated problem of finding the area of a
circle. In fact, there are several problems in the Rhind Papyrus where the scribe used the rule
V = Bh to calculate the volume of a cylinder where B, the area of the base, is calculated
by this circle rule. The scribes also knew how to calculate the volume of a rectangular box,
given its length, width, and height.

Because one of the prominent forms of building in Egypt was the pyramid, one might
expect to find a formula for its volume. Unfortunately, such a formula does not appear in
any extant document. The Rhind Papyrus does have several problems dealing with the seked
(slope) of a pyramid; this is measured as so many horizontal units to one vertical unit rise.
The workers building the pyramids, or at least their foremen, had to be aware of this value
as they built. Since the seked is in effect the cotangent of the angle of slope of the pyramid’s
faces, one can easily calculate the angles given the values appearing in the problems. It is
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not surprising that these calculated angles closely approximate the actual angles used in the
construction of the three major pyramids at Giza.

The Moscow Papyrus, however, does have a fascinating formula related to pyramids,
namely, the formula for the volume of a truncated pyramid (problem 14): “If someone says to
you: a truncated pyramid of 6 for the height by 4 on the base by 2 on the top, you are to square
this 4; the result is 16. You are to double 4; the result is 8. You are to square this 2; the result
is 4. You are to add the 16 and the 8 and the 4; the result is 28. You are to take 1/3 of 6; the
result is 2. You are to take 28 two times; the result is 56. Behold, the volume is 56. You will
find that this is correct.”® If this algorithm is translated into a modern formula, with the length
of the lower base denoted by a, that of the upper base by b, and the height by #, it gives the
correct result V = %(a2 + ab + b?). Although no papyrus gives the formula V = %azh for a
completed pyramid of square base a and height A, it is a simple matter to derive it from the
given formula by simply putting b = 0. We therefore assume that the Egyptians were aware
of this result. On the other hand, it takes a higher level of algebraic skill to derive the volume
formula for the truncated pyramid from that for the complete pyramid. Still, although many
ingenious suggestions involving dissection have been given, no one knows for sure how the
Egyptians found their algorithm.

No one knows either how the Egyptians found their procedure for determining the surface
area of a hemisphere. But they succeeded in problem 10 of the Moscow Papyrus: “A basket
with a mouth opening of 4 1/2 in good condition, oh let me know its surface area. First,
calculate 1/9 of 9, since the basket is 1/2 of an egg-shell. The result is 1. Calculate the
remainder as 8. Calculate 1/9 of 8. The result is 2/3 1/6 1/18 [that is, 8/9]. Calculate the
remainder from these 8 after taking away those [8/9]. The result is 7 1/9. Reckon with
7 1/9 four and one-half times. The result is 32. Behold, this is its area. You will find that
it is correct.”!? Evidently, the scribe calculated the surface area S of this basket of diameter
d =4 1/2 by first taking 8/9 of 2d, then taking 8/9 of the result, and finally multiplying by
d. As a modern formula, this result would be S = 2(%0[ )2, or, since the area A of the circular
opening of this hemispherical basket is given by A = (gd)z, we could rewrite this result as
S = 2A, the correct answer. (It should be noted that there is not universal agreement that this

calculation gives the area of a hemisphere. Some suggest that it gives the surface area of a
half-cylinder.)

MESOPOTAMIA

The Mesopotamian civilization is perhaps a bit older than the Egyptian, having developed
in the Tigris and Euphrates River valley beginning sometime in the fifth millennium BCE.
Many different governments ruled this region over the centuries. Initially, there were many
small city-states, but then the area was unified under a dynasty from Akkad, which lasted
from approximately 2350 to 2150 BCE. Shortly thereafter, the Third Dynasty of Ur rapidly
expanded until it controlled most of southern Mesopotamia. This dynasty produced a very
centralized bureaucratic state. In particular, it created a large system of scribal schools to train
members of the bureaucracy. Although the Ur Dynasty collapsed around 2000 BCE, the small
city-states that succeeded it still demanded numerate scribes. By 1700 BCE, Hammurapi, the
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ruler of Babylon, one of these city-states, had expanded his rule to much of Mesopotamia
and instituted a legal system to help regulate his empire (Fig. 1.6).

Writing began in Mesopotamia, quite possibly in the southern city of Uruk, at about the
same time as in Egypt, namely, at the end of the fourth millennium BCE. In fact, writing
began there also with the needs of accountancy, of the necessity of recording and managing
labor and the flow of goods. The temple, the home of the city’s patron god or goddess, came
to own large tracts of farming land and vast herds of sheep and goats. The scribes of the
temple managed these assets to provide for the well-being of the god(dess) and his or her
followers. Thus, in the temple of goddess Inana in Uruk, the scribes represented numbers on
small clay slabs, using various pictograms to represent the objects that were being counted
or measured. For example, five ovoids might represent five jars of oil. Or, as in the earliest
known piece of school mathematics yet discovered, the scribe who wrote tablet W 19408,76'!
used three different number signs to represent lengths as he calculated the area of a field
(Fig. 1.7). Small circles represented 10 rods; a large D-shaped impression represented a
unit of 60 rods, whereas a small circle within a large D represented 60 x 10 = 600 rods.
On this tablet, there are two other signs, a horizontal line representing width and a vertical
line representing length. The two widths of the quadrilateral field were each 2 x 600 = 1200,
while the two lengths were 600 + 5 x 60 4+ 3 x 10 =930 and 600 + 4 x 60 + 3 x 10 = 870.
The approximate area could then be found by a standard ancient method of multiplying the
average width by the average length; that is, A = ((w; + w,)/2)((l; 4+ 1) /2). In this case,
the answer was 1200 x 900 = 1,080,000. But since in the then current measurement system
1 square rod was equal to 1 sar, while 1800 sar were equal to 1 bur, the result here was 600
bur, a conspicuously “round” number, typical of answers in school tablets.

On this particular tablet, as in other situations where quantities were measured, there
were several different units of measure and different symbols for each type of unit. Here,
the largest unit was equal to 60 of the smallest unit. This was typical in the units for many
different types of objects, and at some time, the system of recording numbers developed to the
point where the digit for 1 represented 60 as well. We do not know why the Mesopotamians
decided to have one large unit represent 60 small units and then adapt this method for their
numeration system. One plausible conjecture is that 60 is evenly divisible by many small
integers. Therefore, fractional values of the “large” unit could easily be expressed as integral
values of the “small.” But eventually, they did develop a sexagesimal (base-60) place value
system, which in the third millennium BCE became the standard system used throughout
Mesopotamia. By that time, too, writing began to be used in a wide variety of contexts, all
achieved by using a stylus on a moist clay tablet (Fig. 1.8). Thousands of these tablets have
been excavated during the past 150 years. It was Henry Rawlinson (1810-1895) who, by the
mid-1850s, was first able to translate this cuneiform writing by comparing the Persian and
Mesopotamian cuneiform inscriptions of King Darius I of Persia (sixth century BCE) on a
rock face at Behistun (in modern Iran) describing a military victory.

A large number of these tablets are mathematical in nature, containing mathematical
problems and solutions or mathematical tables. Several hundreds of these have been copied,
translated, and explained. These tablets, generally rectangular but occasionally round, usually
fit comfortably into one’s hand and are an inch or so in thickness. Some, however, are as small
as a postage stamp while others are as large as an encyclopedia volume. We are fortunate that
these tablets are virtually indestructible, because they are our only source for Mesopotamian
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mathematics. The written tradition that they represent died out under Greek domination in
the last centuries BCE and was totally lost until the nineteenth century. The great majority of
the excavated tablets date from the time of Hammurapi, while small collections date from the
earliest beginnings of Mesopotamian civilization, from the centuries surrounding 1000 BCE,
and from the Seleucid period around 300 BCE. Our discussion in this section, however, will
generally deal with the mathematics of the “Old Babylonian” period (the time of Hammurapi),
but, as is standard in the history of mathematics, we shall use the adjective “Babylonian” to
refer to the civilization and culture of Mesopotamia, even though Babylon itself was the major
city of the area for only a limited time.

1.2.1 Methods of Computation

The Babylonians at various times used different systems of numbers, but the standardized
system that the scribes generally used for calculations in the “Old Babylonian” period was a
base-60 place value system together with a grouping system based on 10 to represent numbers

up to 59. Thus, a vertical stylus stroke on a clay tablet Y represented 1 and a tilted stroke <
represented 10. By grouping they would, for example, represent 37 by

«@%

For numbers greater than 59, the Babylonians used a place value system; that is, the powers of
60, the base of this system, are represented by “places” rather than symbols, while the digit in
each place represents the number of each power to be counted. Hence, 3 x 602 + 42 x 60 + 9
(or 13,329) was represented by the Babylonians as

YYY
777 <Xyy  yyy
< TYY.

(This will be written from now on as 3,42,09 rather than with the Babylonian strokes.) The
Old Babylonians did not use a symbol for 0, but often left an internal space if a given number
was missing a particular power. There would not be a space at the end of a number, making it
difficult to distinguish 3 x 60 + 42 (3,42) from 3 x 60% + 42 x 60 (3,42,00). Sometimes,
however, they would give an indication of the absolute size of a number by writing an
appropriate word, typically a metrological one, after the numeral. Thus, “3 42 sixty” would
represent 3,42, while “3 42 thirty-six hundred” would mean 3,42,00. On the other hand, the
Babylonians never used a symbol to represent zero in the context of “nothingness,” as in our
42 —42=0.

That the Babylonians used tables in the process of performing arithmetic computations is
proved by extensive direct evidence. Many of the preserved tablets are in fact multiplication
tables. No addition tables have turned up, however. Because over 200 Babylonian table texts
have been analyzed, it may be assumed that these did not exist and that the scribes knew their
addition procedures well enough so they could write down the answers when needed. On the
other hand, there are many examples of “scratch tablets,” on which a scribe has performed
various calculations in the process of solving a problem. In any case, since the Babylonian
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number system was a place value system, the actual algorithms for addition and subtraction,
including carrying and borrowing, may well have been similar to modern ones. For example,
to add 23,37 (= 1417) to 41,32 (= 2492), one first adds 37 and 32 to get 1,09 (= 69). One
writes down 09 and carries 1 to the next column. Then 23 + 41+ 1 =1, 05 (= 65), and the
final result is 1,05,09 (= 3909).

Because the place value system was based on 60, the multiplication tables were extensive.
Any given one listed the multiples of a particular number, say, 9, from 1 x 9 to 20 x 9 and
then gave 30 x 9, 40 x 9, and 50 x 9 (Fig. 1.9). If one needed the product 34 x 9, one
simply added the two results 30 x 9 =4, 30 (=270) and 4 x 9 = 36 to get 5,06 (= 306). For
multiplication of two- or three-digit sexagesimal numbers, one needed to use several such
tables. The exact algorithm the Babylonians used for such multiplications—where the partial
products are written and how the final result is obtained—is not known, but it may well have
been similar to our own.

One might think that for a complete system of tables, the Babylonians would have one for
each integer from 2 to 59. Such was not the case, however. In fact, although there are no tables

Obverse
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for 11, 13, 17, for example, there are tables for 1,15, 3,45, and 44,26,40. We do not know
precisely why the Babylonians made these choices; we do know, however, that, with the single
exception of 7, all multiplication tables so far found are for regular sexagesimal numbers,
that is, numbers whose reciprocal is a terminating sexagesimal fraction. The Babylonians
treated all fractions as sexagesimal fractions, analogous to our use of decimal fractions.
Namely, the first place after the “sexagesimal point” (which we denote by “;”) represents
60ths, the next place 3600ths, and so on. Thus, the reciprocal of 48 is the sexagesimal fraction
0;1,15, which represents 1/60 + 15/602, while the reciprocal of 1,21 (= 81) is 0;0,44,26,40,
or 44/60% + 26/60° 4 40/60*. Because the Babylonians did not indicate an initial O or the
sexagesimal point, this last number would just be written as 44,26,40. As noted, there exist
multiplication tables for this regular number. In such a table there is no indication of the
absolute size of the number, nor is one necessary. When the Babylonians used the table, of
course, they realized that, as in today’s decimal calculations, the eventual placement of the
sexagesimal point depended on the absolute size of the numbers involved, and this placement
was then done by context.

Besides multiplication tables, there are also extensive tables of reciprocals, one of which
is in part reproduced here. A table of reciprocals is a list of pairs of numbers whose product
is 1 (where the 1 can represent any power of 60). Like the multiplication tables, these tables
only contained regular sexagesimal numbers.

2 30 16 3,45 48 I, 15
320 25 2,24 1, 04 56, 15
10 6 40 1,30 1,21 44,26, 40

The reciprocal tables were used in conjunction with the multiplication tables to do division.
Thus, the multiplication table for 1,30 (= 90) served not only to give multiples of that
number but also, since 40 is the reciprocal of 1,30, to do divisions by 40. In other words, the
Babylonians considered the problem 50 - 40 to be equivalent to 50 x 1/40, or in sexagesimal
notation, to 50 x 0;1,30. The multiplication table for 1,30, part of which appears here, then
gives 1,15 (or 1,15,00) as the product. The appropriate placement of the sexagesimal point
gives 1;15(= 1 1/4) as the correct answer to the division problem.

1 1,30 10 15 30 45
2 3 11 16,30 40 1
3 4,30 12 18 50 1,15

1.2.2 Geometry

The Babylonians had a wide range of problems to which they applied their sexagesimal place
value system. For example, they developed procedures for determining areas and volumes of
various kinds of figures. They worked out algorithms to determine square roots. They solved
problems that we would interpret in terms of linear and quadratic equations, problems often
related to agriculture or building. In fact, the mathematical tablets themselves are generally
concerned with the solution of problems, to which various mathematical techniques are
applied. So we will look at some of the problems the Babylonians solved and try to figure
out what lies behind their methods. In particular, we will see that the reasons behind many of
the Babylonian procedures come from a tradition different from the accountancy traditions
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with which Babylonian mathematics began. This second tradition was the “cut-and-paste”
geometry of the surveyors, who had to measure fields and lay out public works projects. As
we will see, these manipulations of squares and rectangles not only developed into procedures
for determining square roots and finding Pythagorean triples, but they also developed into
what we can think of as “algebra.”

As we work through the Babylonian problems, we must keep in mind that, like the
Egyptians, the scribes did not have any symbolism for operations or unknowns. Thus,
solutions are presented with purely verbal techniques. We must also remember that the
Babylonians often thought about problems in ways different from the ways we do. Thus,
even though their methods are usually correct, they may seem strange to us.

As one example of the scribes’ different methods, we consider their procedures for deter-
mining lengths and areas. In general, in place of our formulas for calculating such quantities,
they presented coefficient lists, lists of constants that embody mathematical relationships be-
tween certain aspects of various geometrical figures. Thus, the number 0;52,30 (= 7/8) as the
coefficient for the height of a triangle means that the altitude of an equilateral triangle is 7/8
of the base, while the number 0;26,15 (= 7/16) as the coefficient for area means that the area
of an equilateral triangle is 7/16 times the square of a side. (Note, of course, that these results
are only approximately correct, in that they both approximate ~/3 by 7/4.) In each case, the
idea is that the “defining component” for the triangle is the side.

We too would use the length of a side as the defining component for an equilateral triangle.
But for a circle, we generally use the radius  as that component and therefore give formulas
for the circumference and area in terms of ». The Babylonians, on the other hand, took the
circumference as the defining component of a circle. Thus, they gave two coefficients for
the circle: 0;20 (= 1/3) for the diameter and 0;05 (= 1/12) for the area. The first coefficient
means that the diameter is one-third of the circumference, while the second means that the
area is one-twelfth of the square of the circumference. For example, on the tablet YBC 7302,
there is a circle with the numbers 3 and 9 written on the outside and the number 45 written
on the inside (Fig. 1.10). The interpretation of this is that the circle has circumference 3 and
that the area is found by dividing 9 = 3 by 12 to get 0;45 (= 3/4). Another tablet, Haddad
104, illustrates that circle calculations virtually always use the circumference. On this tablet,
there is a problem asking to find the area of the cross section of a log of diameter 1;40 (= 1%).
Rather than determine the radius, the scribe first multiplies by 3 to find that the circumference
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is equal to 5, then squares 5 and multiplies by 1/12 to get the area 2;05 (= 2%). Note further,
of course, that the Babylonian value for what we denote as 7, the ratio of circumference to
diameter, is 3; this value produces the value 47 = 12 as the constant by which to divide the
square of the circumference to give the area.

There are also Babylonian coefficients for other figures bounded by circular arcs. For
example, the Babylonians calculated areas of two different double bows: the “barge,” made up
of two quarter-circle arcs, and the “bull’s-eye,” composed of two third-circle arcs (Fig. 1.11).
In analogy with the circle, the defining component of these figures was the arc making up
one side. The coefficient of the area of the barge is 0;13,20 (= 2/9), while that of the bull’s-
eyeis 0;16,52,30 (= 9/32). Thus, the areas of these two figures are calculated as (2/9)a? and
(9/32)a?, respectively, where in each case a is the length of that arc. These results are accurate
under the assumptions that the area of the circle is C2/12 and that /3 = 7/4. Similarly, the
coefficient of the area of the concave square (Fig. 1.12) is 0;26,40 (= 4/9), where the defining
component is one of the four quarter-circle arcs forming the boundary of the region.!? Clearly,
the use of these coefficients shows that the scribes recognized that lengths of particular lines
in given figures were proportional to the length of the defining component, while the area
was proportional to the square of that component.

The Babylonians also dealt with volumes of solids. They realized that the volume V of
a rectangular block is V = fwh, and they also knew how to calculate the volume of prisms
given the area of the base. But just like in Egypt, there is no document that explicitly gives
the volume of a pyramid, even though the Babylonians certainly built pyramidal structures.
Nevertheless, on tablet BM 96954, there are several problems involving a grain pile in the
shape of a rectangular pyramid with an elongated apex, like a pitched roof (Fig. 1.13). The
method of solution corresponds to the modern formula

3 2

where £ is the length of the solid, w the width, & the height, and ¢ the length of the apex.
Although no derivation of this correct formula is given on the tablet, we can derive it by
breaking up the solid into a triangular prism with half a rectangular pyramid on each side.
Then the volume would be the sum of the volumes of these solids (Fig. 1.14). Thus, V =
volume of triangular prism + volume of rectangular pyramid, or

h_w+hw<ﬂ—f>_hwﬂ+w_h_w(g+z>
2 3 T3 6 3 2)’

V=

as desired.!? It therefore seems reasonable to assume from the result discussed here that the
Babylonians were aware of the correct formula for the volume of a pyramid.
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That assumption is even more convincing because there is a tablet giving a correct formula
for the volume of a truncated pyramid with square base a?, square top b2, and height 4 in
the form V = [(‘%b)2 + %(%)z]h. The complete pyramid formula, of course, follows from
this by putting » = 0. On the other hand, there are tablets where this volume is calculated
by the rule V = %(a2 + b%)h, a simple but incorrect generalization of the rule for the area
of the trapezoid. It is well to remember, however, that although this formula is incorrect, the
calculated answers would not be very different from the correct ones. It is difficult to see
how anyone would realize that the answers were wrong in any case, because there was no
accurate method for measuring the volume empirically. However, because the problems in
which these formulas occurred were practical ones, often related to the number of workmen
needed to build a particular structure, the slight inaccuracy produced by using this rule would
have little effect on the final answer.

1.2.3 Square Roots and the Pythagorean Theorem

We next consider another type of Babylonian algorithm, the square root algorithm. Usually,
when square roots are needed in solving problems, the problems are arranged so that the
square root is one that is listed in a table of square roots, of which many exist, and is a
rational number. But there are cases where an irrational square root is needed, in particular,
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V2. When this particular value occurs, the result is generally written as 1;25 (= 11—52). There
is, however, an interesting tablet, YBC 7289, on which is drawn a square with side indicated
as 30 and two numbers, 1:24,51,10 and 42;25,35, written on the diagonal (Fig. 1.15). The
product of 30 by 1;24,51,10 is precisely 42;25,35. It is then a reasonable assumption that the
last number represents the length of the diagonal and that the other number represents /2.

1,24,51,10

30

42;25,35

Whether +/2 is given as 1;25 or as 1;24,51,10, there is no record as to how the value was
calculated. But because the scribes were surely aware that the square of neither of these was
exactly 2, or that these values were not exactly the length of the side of a square of area 2,
they must have known that these values were approximations. How were they determined?
One possible method, a method for which there is some textual evidence, begins with the
algebraic identity (x + y)? = x% + 2xy + y2, whose validity was probably discovered by the
Babylonians from its geometric equivalent. Now given a square of area N for which one
wants the side \/ﬁ , the first step would be to choose a regular value a close to, but less than,
the desired result. Setting b = N — a?, the next step is to find ¢ so that 2ac + c? is as close
as possible to b (Fig. 1.16). If a? is “close enough” to N, then ¢ will be small in relation to
2ac, so ¢ can be chosen to equal (1/2)b(1/a), that is, VN=vVa>+b~a+ (1/2)b(1/a).
(In keeping with Babylonian methods, the value for ¢ has been written as a product rather
than a quotient, and, since one of the factors is the reciprocal of a, we see why a must
be regular.) A similar argument shows that ~/a? — b~ a — (1/2)b(1/a). In the particular
case of +/2, one begins with a = 1,20 (= 4/3). Then a? = 1:46,40, b = 0;13,20, and 1/a =
0;45, 50 /2 = /T;46,40 + 0;13,20 ~ 1;20 + (0;30)(0;13,20) (0:45) = 1;20 + 0:05 = 1;25 (or
17/12).

To calculate the better approximation 1;24,51,10, one would have to repeat this procedure,
with a = 1;25. Unfortunately, 1;25 is not a regular sexagesimal number. The scribes could,
however, have found an approximation to the reciprocal, say, 0;42,21,10, and then calculated

V2= Vv 1;252 — 0;00,25 ~ 1;25 — 0;30 x 0;00,25 x 0:42,21,10 = 1;24,51,10,35,25.

Because the approximation formula leads to a slight overestimate of the true value, the scribes
would have truncated this answer to the desired 1;24,51,10. There is, however, no direct
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evidence of this calculation nor even any evidence for the use of more than one step of this
approximation procedure.

One of the Babylonian square root problems was connected to the relation between the
side of a square and its diagonal. That relation is a special case of the result known as the
Pythagorean Theorem: In any right triangle, the sum of the areas of the squares on the legs
equals the area of the square on the hypotenuse. This theorem, named after the sixth-century
BCE Greek philosopher-mathematician, is arguably the most important elementary theorem
in mathematics, since its consequences and generalizations have wide-ranging application.
Nevertheless, it is one of the earliest theorems known to ancient civilizations. In fact, there
is evidence that it was known at least 1000 years before Pythagoras.

In particular, there is substantial evidence of interest in Pythagorean triples, triples of
integers (a, b, c¢) such that a?+ b? =2, inthe Babylonian tablet Plimpton 322 (Fig. 1.17).14
The extant piece of the tablet consists of four columns of numbers. Other columns were
probably broken off on the left. The numbers on the tablet are shown in Table 1.1, reproduced
in modern decimal notation with the few corrections that recent editors have made and
with one extra column, y (not on the tablet), added on the right. It was a major piece of
mathematical detective work for modern scholars, first, to decide that this was a mathematical
work rather than a list of orders from a pottery business and, second, to find a reasonable
mathematical explanation. But find one they did. The columns headed x and d (whose
headings in the original can be translated as “square-side of the short side” and “square-
side of the diagonal”) contain in each row two of the three numbers of a Pythagorean triple.
It is easy enough to subtract the square of column x from the square of column d. In each
case a perfect square results, whose square root is indicated in the added column, y. Finally,
the first column on the left represents the quotient (;—f)z.

How and why were these triples derived? One cannot find Pythagorean triples of this size
by trial and error. There have been many suggestions over the years as to how the scribe
found these as well as to the purpose of the tablet. If one considers this question as purely a
mathematical one, there are many methods that would work to generate the table. But since
this tablet was written at a particular time and place, probably in Larsa around 1800 BCE,
an understanding of its construction and meaning must come from an understanding of the
context of the time and how mathematical tablets were generally written. In particular, it
is important to note that the first column in a Babylonian table is virtually always written
in numerical order (either ascending or descending), while subsequent columns depend
on those to their left. Unfortunately, in this instance it is believed that the initial columns
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TABLE 1.1~ Numbers on the Babylonian tablet Plimpton 322, reproduced in modern decimal notation.

(The column to the right, labeled y, does not appear on the tablet.)

(%)2 x d #
1.9834028 119 169 1
1.9491586 3367 4825 2
1.9188021 4601 6649 3
1.8862479 12,709 18,541 4
1.8150077 65 97 5
1.7851929 319 481 6
1.7199837 2291 3541 7
1.6845877 799 1249 8
1.6426694 481 769 9
1.5861226 4961 8161 10
1.5625 45 75 1
1.4894168 1679 2929 12
1.4500174 161 289 13
1.4302388 1771 3229 14
1.3871605 28 53 15

120
3456
4800
13,500
72
360
2700
960
600
6480
60
2400
240
2700
45
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on the left are missing. However, some clues as to the meaning of the table reside in the
words at the top of the column we have labeled (%)2. Deciphering the words was difficult
because some of the cuneiform wedges were damaged, but it appears that the heading means
“the holding-square of the diagonal from which 1 is torn out so that the short side comes
up.” The “1” in that heading indicates that the author is dealing with reciprocal pairs, very
common in Babylonian tables. To relate reciprocals to Pythagorean triples, we note that to find
integer solutions to the equation x> + y? = d?, one can divide by y and first find solutions to
(“f)2 +1= (%)2 or, setting u = ’)—‘ andv = %, tou” + 1 = v>. This latter equation is equivalent
to (v + u)(v —u) = 1. That is, we can think of v + 1 and v — u as the sides of a rectangle
whose area is 1 (Fig. 1.18). Now split off from this rectangle one with sides # and v — u
and move it to the bottom left after a rotation of 90°. The resulting figure is an L-shaped
figure, usually called a gnomon, with long sides both equal to v, a figure that is the difference
v2 — u? = 1 of two squares. Note that the larger square is the square on the diagonal of the
right triangle with sides (u, 1, v). The area of that square, vi=(d / y)z, is the entry in the
leftmost column on the extant tablet, and furthermore, that square has a gnomon of area 1
torn out so that the remaining square is the square on the short side of the right triangle, as
the column heading actually says.

To calculate the entries on the tablet, it is possible that the author began with a value for
what we have called v 4 u. Next, he found its reciprocal v — u in a table and solved for
U= %[(v +u) — (v — u)]. The first column in the table is then the value 1+ u?. He could
then find v by taking the square root of 1+ u2. Since (u, 1, v) satisfies the Pythagorean
identity, the author could find a corresponding integral Pythagorean triple by multiplying
each of these values by a suitable number y, one chosen to eliminate “fractional” values.
For example, if v + u = 2;15 (= 2;{), the reciprocal v — u is 0;26,40 (= 4/9). We then find
u = 0;54,10 = 65/72. We would find v by taking half the sum of v 4+ u and v — u, but our
scribe found v as /1 + u2 = /1;48,54,01,40 = 1:20,50, or ~/1 + 12 = +/1.8150077 = 1%—;.
Multiplying the values for u, v, and 1 by 1,12 = 72 gives the values 65 and 97 for x and d,
respectively, shown in line 5 of the table, as well as the value 72 for y. Conversely, the value
of v + u for line 1 of the table can be found by adding 169/120 (= 1;24,30) and 119/120
(=0;59,30) to get 288/120 (= 2;24).

Why were the particular Pythagorean triples on this tablet chosen? Again, we cannot know
the answer definitively. But if we calculate the values of v + u for every line of the tablet, we
notice that they form a decreasing sequence of regular sexagesimal numbers of no more than
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four places from 2;24 to 1;48. Not all such numbers are included—there are five missing—
but it is possible that the scribe may have decided that the table was long enough without
them. He may also have begun with numbers larger than 2;24 or continued with numbers
smaller than 1;48 on tablets that have not yet been unearthed. In any case, it is likely that this
column of values for v + u, in descending numerical order, was one of the missing columns
on the original tablet. And our author, quite probably a teacher, had thus worked out a list of
integral Pythagorean triples, triples that could be used in constructing problems for students
for which he would know that the solution would be possible in integers or finite sexagesimal
fractions.

Whether or not the method presented above was the one the Babylonian scribe used to
write Plimpton 322, the fact remains that the scribes were well aware of the Pythagorean
relationship. And although this particular table offers no indication of a geometrical relation-
ship except for the headings of the columns, there are problems in Old Babylonian tablets
making explicit geometrical use of the Pythagorean Theorem. For example, in a problem from
tablet BM 85196, a beam of length 30 stands against a wall. The upper end has slipped down
a distance 6. How far did the lower end move? Namely, d = 30 and y = 24 are given, and
x is to be found. The scribe calculated x using the theorem: x = +/30% — 242 = V324 =18.
Another slightly more complicated example comes from tablet TMS 1 found at Susa in
modern Iran. The problem is to calculate the radius of a circle circumscribed about an isosce-
les triangle with altitude 40 and base 60. Applying the Pythagorean theorem to the right
triangle ABC (Fig. 1.19), whose hypotenuse is the desired radius, gives the relationship
r? =307 4 (40 — r)*. This could be easily transformed into (1, 20)(r — 20) = 15,00 and
then, by multiplying by the reciprocal 0;0,45 of 1,20, into r — 20 = (0;0,45)(15,00) = 11;15,
from which the scribe found that » = 31;15.

1.2.4 Solving Equations

The previous problem involved what we would call the solution of an equation. Such problems
were very frequent on the Babylonian tablets. Linear equations of the form ax = b are
generally solved by multiplying each side by the reciprocal of a. (Such equations often occur,
as in the previous example, in the process of solving a complex problem.) In more complicated
situations, such as systems of two linear equations, the Babylonians, like the Egyptians, used
the method of false position.

Here is an example from the Old Babylonian text VAT 8389: One of two fields yields 2/3
sila per sar, the second yields 1/2 sila per sar, where sila and sar are measures for capacity
and area, respectively. The yield of the first field was 500 sila more than that of the second;
the areas of the two fields were together 1800 sar. How large is each field? It is easy enough to
translate the problem into a system of two equations with x and y representing the unknown
areas:

2
21y 2500
37T

X +y=1800

A modern solution might be to solve the second equation for x and substitute the result in
the first. But the Babylonian scribe here made the initial assumption that x and y were both
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equal to 900. He then calculated that (2/3) - 900 — (1/2) - 900 = 150. The difference between
the desired 500 and the calculated 150 is 350. To adjust the answers, the scribe presumably
realized that every unit increase in the value of x and consequent unit decrease in the value
of y gave an increase in the “function” (2/3)x — (1/2)y of 2/3 + 1/2 =7/6. He therefore
needed only to solve the equation (7/6)s = 350 to get the necessary increase s = 300. Adding
300 to 900 gave him 1200 for x while subtracting gave him 600 for y, the correct answers.

Presumably, the Babylonians also solved complex single linear equations by false po-
sition, although the few such problems available do not reveal their method. For example,
here is a problem from tablet YBC 4652: “I found a stone, but did not weigh it; after I
added one-seventh and then one-eleventh [of the total], it weighed 1 mina [= 60 gin]. What
was the original weight of the stone?”!> We can translate this into the modern equation
(x +x/7) 4+ 1/11(x + x/7) = 60. On the tablet, the scribe just presented the answer, here
x = 48%. If he had solved the problem by false position, the scribe would first have guessed
that y =x + x/7 = 11. Since then y + (1/11)y = 12 instead of 60, the guess must be in-
creased by the factor 60/12 =5 to the value 55. Then, to solve x + x/7 = 55, the scribe
could have guessed x = 7. This value would produce 7 + 7/7 = 8 instead of 55. So the last
step would be to multiply the guess of 7 by the factor 55/8 to get 385/8 = 481, the correct
answer.

While tablets containing explicit linear problems are limited, there are very many Baby-
lonian tablets whose problems can be translated into quadratic equations. In fact, many
Old Babylonian tablets contain extensive lists of quadratic problems. And in solving these
problems, the scribes made full use of the “cut-and-paste” geometry developed by the sur-
veyors. In particular, they applied this to various standard problems such as finding the length
and width of a rectangle, given the semiperimeter and the area. For example, consider the
problem x 4+ y =64, xy = 7% from tablet YBC 4663. The scribe first halved 6% to get 3;{.

%, and then the

square root is extracted to get 1%. The length is thus 3% + 13 =5, while the width is given

Next he squared 31, getting 10%. From this is subtracted 7%, leaving 3

as 3% - 1% = 1%. A close reading of the wording of the tablets indicates that the scribe had
in mind a geometric procedure (Fig. 1.20), where for the sake of generality the sides have
been labeled in accordance with the generic system x + y = b, xy = c. The scribe began by

halving the sum b and then constructing the square on it. Since /2 =x — =% =y + 2,

the square on b/2 exceeds the original rectangle of area ¢ by the square on *52; that is,

2 2
Xty x—y>
=xy+|—2) .
( 2 ) ’ ( 2
The figure then shows that if one adds the side of this square, namely,

V /2% —c,

to b/2, one finds the length x, while if one subtracts it from b/2, one gets the width y. The

algorithm is therefore expressible in the form
—\/(b/2)* —c.

x=§+\/(b/2)2—c y=

NSRS
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Geometry is also at the base of the Babylonian solution of what we would consider a
single quadratic equation. Several such problems are given on tablet BM 13901, including
the following, where the translation shows the geometric flavor of the problem: “I summed
the area and two-thirds of my square-side and it was 0;35. You put down 1, the projection.
Two-thirds of 1, the projection, is 0;40. You combined its half, 0;20 and 0;20. You add
0;06,40 to 0;35 and 0;41,40 squares 0;50. You take away 0;20 that you combined from the
middle of 0;50 and the square-side is 0:30.°16 In modern terms, the equation to be solved
is x2 + (2/3)x = 7/12. At first glance, it would appear that the statement of the problem is
not a geometric one, since we are asked to add a multiple of a side to an area. But the word
“projection” indicates that this two-thirds multiple of a side is to be considered as two-thirds
of the rectangle of length 1 and unknown side x. For the solution, the scribe took half of 2/3
and squared it (“combine its half, 0;20 and 0;20), then took the result 1/9 (or 0;06,40) and
added it to 7/12 (0;35) to get 25/36 (0;41,40). The scribe then noted that 5/6 (0;50) is the
square root of 25/36 (“0;41,40 squares 0;50”). He then subtracted the 1/3 from 5/6 to get the
result 1/2 (“the square-side is 0;30”). The Babylonian rule exemplified by this problem is
easily translated into a modern formula for solving x> 4 bx = ¢, namely,

x=+/(b/2)>+c—b/2,

recognizable as a version of the quadratic formula. Figure 1.21 shows the geometric meaning
of the procedure in the generic case, where we start with a square of side x adjoined by a
rectangle of width x and length b. The procedure then amounts to cutting half of the rectangle
off from one side of the square and moving it to the bottom. Adding a square of side b/2
“completes the square.” It is then evident that the unknown length x is equal to the difference
between the side of the new square and b/2, exactly as the formula implies.

For the analogous problem x> — bx = ¢, the Babylonian geometric procedure is equivalent
to the formula x = /(b/2)% + ¢ + b/2. This is illustrated by another problem from BM
13901, which we would translate as x> — x = 870: “I took away my square-side from inside
the area and it was 14,30. You put down 1, the projection. You break off half of 1. You
combine 0;30 and 0;30. You add 0;15 to 14,30. 14,30;15 squares 29;30. You add 0;30 which
you combined to 29;30 so that the square-side is 30.”!7

One should, however, keep in mind that the “quadratic formula” did not mean the same
thing to the Babylonian scribes as it means to us. First, the scribes gave different procedures



FIGURE 1.21
Geometric version of the

quadratic formula for solving
2 +bx=c

1.2 MEgsorpoTAMIA 25

by, |

for solving the two types x> 4+ bx = ¢ and x> — bx = ¢ because the two problems were
different; they had different geometric meanings. To a modern mathematician, on the other
hand, these problems are the same because the coefficient of x can be taken as positive or
negative. Second, the modern quadratic formula in these two cases gives a positive and a
negative solution to each equation. The negative solution, however, makes no geometrical
sense and was completely ignored by the Babylonians.

In both of these quadratic equation problems, the coefficient of the x? term is 1. How
did the Babylonians treat the quadratic equation ax? & bx = ¢ when a # 1? Again, there
are problems on BM 13901 showing that the scribes scaled up the unknown to reduce the
problem to the case a = 1. For example, problem 7 can be translated into the modern equation
1x2 4+ 7x = 64%. The scribe multiplied by 11 to turn the equation into a quadratic equation

inllx: 1x)2+7-1lx = 68%. He then solved

2
7 37 7 1 1
1lx = (— +68- —-=+81—--=9—-3-=5-.
2 4 2 2 2 2
To find x, the scribe would normally multiply by the reciprocal of 11, but in this case, he noted
that the reciprocal of 11 “cannot be solved.” Nevertheless, he realized, probably because the
problem was manufactured to give a simple answer, that the unknown side x is equal to 1/2.

This idea of “scaling,” combined with the geometrical coefficients discussed earlier,
enabled the scribes to solve quadratic-type equations not directly involving squares. For
example, consider the problem from TMS 20: The sum of the area and side of the convex
square is 11/18. Find the side. We will translate this into the equation A 4+ s = 11/18, where
s is the quarter-circle arc forming one of the sides of the figure whose area is A. To solve this,
the scribe used the coefficient 4/9 of the convex square as his scaling factor. Thus, he turned
the equation into (4/9)A + (4/9)s = 22/81. But we know that the area A of the convex square
is equal to (4/9)s>. It follows that this equation can be rewritten as a quadratic equation for

4/9)s:
<4 >2 4 22

=5 +=-5s=—.

9 9" 8l

The scribe then solved this in the normal way to get (4/9)s = 2/9. He concluded by multi-
plying by the reciprocal 9/4 to find the answer s = 1/2.
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FIGURE 1.22
The sum of four sides and the
square surface

Although the methods described above are the standard methods for solving quadratic
equations, the scribes occasionally used other methods in particular situations. For example,
in problem 23 of BM 13901, we are told that the sum of four sides and the (square) surface
is 25/36. Although this problem is of the type x> 4 bx = c, in this case the b is four, the
number of sides of the square, which is more “natural” than the coefficients we saw earlier.
Modern scholars believe that this problem is an example of an original problem coming
directly from the surveyors, a problem that then turns up in much later manifestations of
this early tradition both in Islamic mathematics and in medieval European mathematics. The
scribe’s method here depends directly on the “four.” In the first step of the solution, he took
1/4 of the 25/36 to get 25/144. To this he added 1, giving 169/144. The square root of this
value is 13/12. Subtracting the 1 gives 1/12. Thus, the length of the side is twice that value,
namely, 1/6. This new procedure is best illustrated by another diagram (Fig. 1.22). What the
scribe intended is that the four “sides” are really projections of the actual sides of the square
into rectangles of length 1. Taking 1/4 of the entire sum means that we are only considering
the shaded gnomon, which is one-fourth of the original figure. When we add a square of side
1 to that figure, we get a square whose side we can then find. Subtracting the 1 from the side
then gives us half of the original side of the square.

Other problems on BM 13901 deal with various situations involving squares and sides,
with each of the solution procedures having a geometric interpretation. As a final example,
we consider the problem x? + y? = 13/36, x — y = 1/6. The solution to this system, which
we generalize into the system x> 4+ y> = ¢, x — y = b, was found by a procedure describable
by the modern formula

¢ (b)2 b ¢ (b)2 b
x=-=(=) += y=,=--(=) —=.
2 \2 2 2 \2 2

It appears that the Babylonians developed the solution by using the geometric idea expressed
in Figure 1.23. This figure shows that

x+y 2 x—y 2
2 2 -

x“+y = — ) +2 .
Y < 2 ) ( 2 )




FIGURE 1.23
Geometric procedure for
solving the system x — y =
b, x> +y*=c

1.3 CoNcLusION 27

X
<

~ ‘

Nb
<

N
<

It follows that

and therefore that

Because
X+y - xX+y x-—y
= 4+ ——— and = — ,
Y YT 2
the result follows.
CONCLUSION

The extant papyri and tablets containing Egyptian and Babylonian mathematics were gen-
erally teaching documents, used to transmit knowledge from one scribe to another. Their
function was to provide trainee scribes with a set of example-types, problems whose so-
lutions could be applied in other situations. Learning mathematics for these trainees was
learning how to select and perhaps modify an appropriate algorithm, and then mastering the
arithmetic techniques necessary to carry out the algorithm to solve a new problem. The rea-
soning behind the algorithms was evidently transmitted orally, so that mathematicians today
are forced to speculate as to the origins.

We note that although the long lists of quadratic problems on some of the Babylonian
tablets were given as “real-world” problems, the problems are in fact just as contrived as the
ones found in most current algebra texts. That the authors knew they were contrived is shown
by the fact that, typically, all problems of a given set have the same answer. But since often
the problems grew in complexity, it appears that the tablets were used to develop techniques
of solution. One can speculate, therefore, that the study of mathematical problem solving,
especially problems involving quadratic equations, was a method for training the minds of



28

CuApTER 1  EcypT AND MESOPOTAMIA

future leaders of the country. In other words, it was not really that important to solve quadratic
equations—there were few real situations that required them. What was important was for the
students to develop skills in solving problems in general, skills that could be used in dealing
with the everyday problems that a nation’s leaders need to solve. These skills included not
only following well-established procedures—algorithms—but also knowing how and when
to modify the methods and how to reduce more complicated problems to ones already solved.
Today’s students are often told that mathematics is studied to “train the mind.” It seems that
teachers have been telling their students the same thing for the past 4000 years.

Represent 375 and 4856 in Egyptian hieroglyphics and
Babylonian cuneiform.

Use Egyptian techniques to multiply 34 by 18 and to divide
93 by 5.

Use Egyptian techniques to multiply 2 14 by 12 4. (This is
problem 9 of the Rhind Mathematical Papyrus.)

Use Egyptian techniques to multiply 28 by 12 4. (This is
problem 14 of the Rhind Mathematical Papyrus.)

Show that the solution to the problem of dividing 7 loaves
among 10 men is that each man gets 3 30. (This is problem
4 of the Rhind Mathematical Papyrus.)

Use Egyptian techniques to divide 100 by 7 2 4 8. Show

that the answer is 12 3 42 126. (This is problem 70 of the
Rhind Mathematical Papyrus.)

Multiply 72 4 8 by 12 3 using the Egyptian multiplication
technique. Note that it is necessary to multiply each term

of the multiplicand by 3 separately.
A part of the Rhind Mathematical Papyrus table of division

by 2 follows: 2 =~ 11=666,2 + 13 =852 104,2 =~ 23 =
12 276. The calculation of 2 = 13 is given as follows:
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Perform similar calculations for the divisions of 2 by 11 and
23 to check the results.

10.

11.

12.

13.

14.

15.

Solve by the method of false position: A quantity and its 1/7
added together become 19. What is the quantity? (problem
24 of the Rhind Mathematical Papyrus)

Solve by the method of false position: A quantity and its
2/3 are added together and from the sum 1/3 of the sum is
subtracted, and 10 remains. What is the quantity? (problem
28 of the Rhind Mathematical Papyrus)

A quantity, its 1/3, and its 1/4, added together, become 2.
What is the quantity? (problem 32 of the Rhind Mathemat-
ical Papyrus)

Calculate a quantity such that if it is taken two times along
with the quantity itself, the sum comes to 9. (problem 25 of
the Moscow Mathematical Papyrus)

Problem 72 of the Rhind Mathematical Papyrus reads “100
loaves of pesu 10 are exchanged for loaves of pesu 45. How
many of these loaves are there?” The solution is given as,
“Find the excess of 45 over 10. It is 35. Divide this 35 by
10. You get 3 2. Multiply 3 2 by 100. Result: 350. Add 100
to this 350. You get 450. Say then that the exchange is 100
loaves of pesu 10 for 450 loaves of pesu 4518 Translate this
solution into modern terminology. How does this solution
demonstrate proportionality?

Solve problem 11 of the Moscow Mathematical Papyrus:
The work of a man in logs; the amount of his work is 100
logs of 5 handbreadths diameter; but he has brought them
in logs of 4 handbreadths diameter. How many logs of 4
handbreadths diameter are there?

Various conjectures have been made for the derivation of
the Egyptian formula A = (gd)2 for the area A of a circle
of diameter d. One of these uses circular counters, known
to have been used in ancient Egypt. Show by experiment
using pennies, for example, whose diameter can be taken
as 1, that a circle of diameter 9 can essentially be filled by 64
circles of diameter 1. (Begin with one penny in the center;
surround it with a circle of six pennies, and so on.) Use the
obvious fact that 64 circles of diameter 1 also fill a square



16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

of side 8 to show how the Egyptians may have derived their
formula.'”

Some scholars have conjectured that the area calculated in
problem 10 of the Moscow Mathematical Papyrus is that
of a semicylinder rather than a hemisphere. Show that the
calculation in that problem does give the correct surface
area of a semicylinder of diameter and height both equal to
43.

Convert the fractions 7/5, 13/15, 11/24, and 33/50 to sexa-
gesimal notation.

Convert the sexagesimal fractions 0;22,30, 0;08,06,
0;04,10, and 0;05,33,20 to ordinary fractions in lowest
terms.

Find the reciprocals in base 60 of 18, 32, 54, and 64 (=1,04).
(Do not worry about initial zeros, since the product of
a number with its reciprocal can be any power of 60.)
What is the condition on the integer n that ensures it is a
regular sexagesimal, that is, that its reciprocal is a finite
sexagesimal fraction?

In the Babylonian system, multiply 25 by 1,04 and 18 by
1,21. Divide 50 by 18 and 1,21 by 32 (using reciprocals).
Use our standard multiplication algorithm modified for base
60.

Show that the area of the Babylonian “barge” is given by
A = (2/9)a?, where a is the length of the arc (one-quarter of
the circumference). Also show that the length of the long
transversal of the barge is (17/18)a and the length of the
short transversal is (7/18)a. (Use the Babylonian values of
C2/12 for the area of a circle and 17/12 for +/2.)

Show that the area of the Babylonian “bull’s-eye” is given
by A = (9/32)a?, where a is the length of the arc (one-third
of the circumference). Also show that the length of the long
transversal of the bull’s-eye is (7/8)a, whereas the length of
the short transversal is (1/2)a. (Use the Babylonian values
of C2/12 for the area of a circle and 7/4 for \/3.)

For the concave square, the coefficient of the diagonal (the
line from one vertex to the opposite vertex) is given as
1;20(= 1%), while the coefficient of the tranversal (the line
from the midpoint of one arc to the midpoint of the op-
posite arc) is given as 0;33,20(= 5/9). Show that both of
these values are correct, given the normal Babylonian ap-
proximations.

Convert the Babylonian approximation 1;24,51,10 to +/2 to
decimals and determine the accuracy of the approximation.
Use the assumed Babylonian square root algorithm of the
text to show that /3 & 1:45 by beginning with the value 2.
Find a three-sexagesimal-place approximation to the recip-
rocal of 1;45 and use it to calculate a three-sexagesimal-
place approximation to /3.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

EXERCISES 29

Show that taking v + u = 1;48 (= 1%) leads to line 15 of
Plimpton 322 and that taking v + u =2;05 (= 21—12) leads
to line 9. Find the values for v + u that lead to lines 6 and
13 of that tablet.

The scribe of Plimpton 322 did not use the value v +
u =2;18,14,24, with its associated reciprocal v —u =
0;26,02,30, in his work on the tablet. Find the smallest
Pythagorean triple associated with those values.

Solve the problem from the Old Babylonian tablet BM
13901: The sum of the areas of two squares is 1525. The
side of the second square is 2/3 that of the first plus 5. Find
the sides of each square.

Solve the Babylonian problem taken from a tablet found at
Susa: Let the width of a rectangle measure a quarter less
than the length. Let 40 be the length of the diagonal. What
are the length and width? Use false position, beginning with
the assumption that 1 (or 60) is the length of the rectangle.

Solve the following problem from VAT 8391: One of two
fields yields 2/3 sila per sar, the second yields 1/2 sila per
sar. The sum of the yields of the two fields is 1100 sila;
the difference of the areas of the two fields is 600 sar. How
large is each field?

Solve the following problem from YBC 4652: I found a
stone, but did not weigh it; after I subtracted one-seventh
and then one-thirteenth [of the difference], it weighed 1
mina [= 60 gin]. What was the original weight of the stone?

Solve the following problem from YBC 4652: I found a
stone, but did not weigh it; after I subtracted one-seventh,
added one-eleventh [of the difference], and then subtracted
one-thirteenth [of the previous total], it weighed 1 mina
[= 60 gin]. What was the stone’s weight?

Give a geometric argument to justify the Babylonian “qua-
dratic formula” that solves the equation x> — ax = b.

Solve the following problem from tablet YBC 6967: A
number exceeds its reciprocal by 7. Find the number and the
reciprocal. (In this case, that two numbers are “reciprocals”
means that their product is 60.)

Solve the following Babylonian problem about a concave
square: The sum of the area, the arc, and the diagonal is
1;16,40(= 11—58). Find the length of the arc. (Recall that
the coefficient of the area is 4/9 and the coefficient of the
diagonal is 1 1/3—see Exercise 23.)

Solve the following problem from BM 13901: I added one-
third of the square-side to two-thirds of the area of the
square, and the result was 0;20 (= 1/3). Find the square-
side.
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37. Solve the following Babylonian problem from tablet IM
55357: Given the right triangle A BC with sides 0;45 and 1
and hypotenuse 1;15, as in Figure 1.24, suppose A D is per-
pendicular to BC, DE is perpendicular to AC, and EF is
perpendicular to BC. Suppose further that the area of trian-
gle ABD is 0;08,06, that of triangle ADE is 0;05,11,02,24,
that of triangle DEF is 0;03,19,03,56,09,36, and that of
EFC is 0;05,53,53,39,50,24. What are the lengths of AD,
DE,EF,BD,DF,and FC?

A E 1 c
00510224 ° 0055353395024
%
%
2,
%%
)7 F
0,45
00806
1,15
D
B
FIGURE 1.24

Tablet IM 55357 with a problem on triangles

38. Given a circle of circumference 60 and a chord of length
12, what is the perpendicular distance from the chord to the
circumference? (This problem is from tablet BM 85194.)

39. Solve the following problem from tablet AO 8862: Length
and width. I combined length and width and then I built an
area. I turned around. I added half of the length and a third
of the width to the middle of my area so that it was 15. I
returned. I summed the length and width and it was 7. What
are the length and width?

40. Construct two or three real-life division problems where
giving the answer using just unit fractions, rather than other
common fractions, makes sense.

41. Devise a lesson to teach ideas of proportionality by using
the Egyptian method of false position.

42. Devise alesson on place value using the Babylonian system
and, in particular, using the multiplication table by 9 given
in the text.

43. Devise a lesson teaching the quadratic formula using ge-
ometric arguments similar to the (assumed) Babylonian
ones.
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Thales was the first to go to Egypt and bring
back to Greece this study [geometry]; he
himself discovered many propositions, and
disclosed the underlying principles of many
others to his successors, in some cases his
method being more general, in others more
empirical.

—Proclus’s Summary (c. 450 CE) of

Eudemus’s History (c. 320 BCE)!

32

The Beginnings of

Mathematics in Greece

report from a visit to Egypt with Plato by Simmias of Thebes

in 379 BCE (from a dramatization by Plutarch of Chaeronea

(first-second century CE)): “On our return from Egypt a party
of Delians met us . .. and requested Plato, as a geometer, to solve a
problem set them by the god in a strange oracle. The oracle was
to this effect: the present troubles of the Delians and the rest of
the Greeks would be at an end when they had doubled the altar at
Delos. As they not only were unable to penetrate its meaning, but
failed absurdly in constructing the altar . . ., they called on Plato for
help in their difficulty. Plato . . . replied that the god was ridiculing
the Greeks for their neglect of education, deriding, as it were, our
ignorance and bidding us engage in no perfunctory study of geometry;
for no ordinary or near-sighted intelligence, but one well versed in
the subject, was required to find two mean proportionals, that being
the only way in which a body cubical in shape can be doubled with a
similar increment in all dimensions. This would be done for them by
Eudoxus of Cnidus. . .; they were not, however, to suppose that
it was this the god desired, but rather that he was ordering the
entire Greek nation to give up war and its miseries and cultivate
the Muses, and by calming their passions through the practice of
discussion and study of mathematics, so to live with one another that

their relationships should be not injurious, but profitable.™
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2.1 Tue EArciest GREEK MATHEMATICS

As the quotation and the (probably) fictional account indicate, a new attitude toward mathe-
matics appeared in Greece sometime before the fourth century BCE. It was no longer sufficient
merely to calculate numerical answers to problems. One now had to prove that the results
were correct. To double a cube, that is, to find a new cube whose volume was twice that of
the original one, is equivalent to determining the cube root of 2, and that was not a difficult
problem numerically. The oracle, however, was not concerned with numerical calculation,
but with geometric construction. That in turn depended on geometric proof by some logical
argument, the earliest manifestation of such in Greece being attributed to Thales.

This change in the nature of mathematics, beginning around 600 BCE, was related to the
great differences between the emerging Greek civilization and those of Egypt and Babylonia,
from whom the Greeks learned. The physical nature of Greece with its many mountains
and islands is such that large-scale agriculture was not possible. Perhaps because of this,
Greece did not develop a central government. The basic political organization was the polis,
or city-state. The governments of the city-state were of every possible variety but in general
controlled populations of only a few thousand. Whether the governments were democratic
or monarchical, they were not arbitrary. Each government was ruled by law and therefore
encouraged its citizens to be able to argue and debate. It was perhaps out of this characteristic
that there developed the necessity for proof in mathematics, that is, for argument aimed at
convincing others of a particular truth.

Because virtually every city-state had access to the sea, there was constant trade, both
in Greece itself and with other civilizations. As a result, the Greeks were exposed to many
different peoples and, in fact, themselves settled in areas all around the eastern Mediterranean.
In addition, a rising standard of living helped to attract able people from other parts of the
world. Hence, the Greeks were able to study differing answers to fundamental questions about
the world. They began to create their own answers. In many areas of thought, they learned
not to accept what had been handed down from ancient times. Instead, they began to ask, and
to try to answer, “Why?” Greek thinkers eventually came to the realization that the world
around them was knowable, that they could discover its characteristics by rational inquiry.
Hence, they were anxious to discover and expound theories in such fields as mathematics,
physics, biology, medicine, and politics. And although Western civilization owes a great debt
to Greek society in literature, art, and architecture, it is to Greek mathematics that we owe the
idea of mathematical proof, an idea at the basis of modern mathematics and, by extension, at
the foundation of our modern technological civilization.

This chapter discusses the Greek numerical system and then considers the contributions
of the earliest Greek mathematicians beginning in the sixth century BCE. It then deals with
the beginnings of the Greek approach to geometric problem solving and concludes with the
work of Plato and Aristotle in the fourth century BCE on the nature of mathematics and the
idea of logical reasoning.

THE EARLIEST GREEK MATHEMATICS

Unlike the situation with Egyptian and Babylonian mathematics, there are virtually no extant
texts of Greek mathematics that were actually written in the first millennium BCE. What we
have today are copies of copies of copies, where the actual written documents date from
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TABLE 2.1

not much earlier than 1000 CE. And even then, the earliest complete texts (of which these
are copies) are not from earlier than about 300 BCE. So to tell the story of early Greek
mathematics, we are forced to rely on works that were originally written much later than
the actual occurrences. Thus, given that these works do not always agree with each other,
there is a considerable amount of controversy about some of the early developments. We will
try to present the story as coherently as possible, but will note many areas in which scholarly
opinion varies.

211 Greek Numbers

From what fragments exist from ancient times, and even from some of the copies, we do
know that the Greeks represented numbers in a ciphered system using their alphabet, from
as far back as the sixth century BCE. The representation was as shown in Table 2.1, where
the letters ¢ (digamma) for 6, ¢ (koppa) for 90, and ™ (sampi) for 900 are letters that by
this time were no longer in use. Hence, 754 was written ¥ vé and 293 was written o? . To
represent thousands, a mark was made to the left of the letters o through 8; for example, '0
represented 9000. Larger numbers still were written using the letter M to represent myriads
(10,000), with the number of myriads written above: M 8 = 40,000, M’¢Poc =71,750,000.

Representation of a number system used by the Greeks as early as the sixth century BCE.

Letter Value Letter Value Letter Value
o 1 t 10 0 100
B 2 K 20 o 200
y 3 A 30 T 300
8 4 n 40 v 400
€ 5 v 50 1) 500
c 6 £ 60 X 600
z 7 o 70 ¥ 700
n 8 b4 80 w 800
0 9 Q 90 ™ 900

Among the earliest extant inscriptions in this alphabetic cipher were numbers inscribed
on the walls of the tunnel on the island of Samos constructed by Eupalinus around 550 BCE
to bring water from a spring outside the capital city through a mountain to a point inside the
city walls. Modern archaeological excavations of the tunnel have revealed that it was dug by
two teams that met in the middle (Fig. 2.1). There are no records as to how the construction
crews managed to keep digging in the correct direction, but there have been many theories
as to how this was done. The latest archaeological evidence leads to the conclusion that the
builders used the simplest possible mathematical techniques, such as lining up flags to make
sure that the diggers kept digging in the right direction. And evidently the numbers on the
walls, 10, 20, 30, . . ., 200 (from the south entrance) and 10, 20, 30, . . ., 300 (from the
north entrance) were written to keep tabs on the distances dug. Although most of the tunnel is
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Aegean Sea

straight, there is one clear jog in the tunnel, probably necessitated by difficult soil conditions.
Somehow, Eupalinus managed to figure out at that point how to get the digging back to the
correct direction.

The numbers in the Eupalinus tunnel are integers. But Greek merchants and accountants,
for example, needed fractions as well. Generally, in this early period, the Greeks used the
Egyptian system of “parts.” There was a special symbol /, which represented a half; ;6
represented two-thirds. For the rest, the system was standard: y represented one-third, § one-
fourth, and so on. More complicated fractions than simple parts are expressed as the sum of
an integer and different simple parts. For example, the fraction we represent as 12/17 might
be represented as /{Bi{»80&én, which in modern notation would be % + ﬁ + % + ﬁ +
5—11 + 6—18. We do not know if there was any systematic method for figuring out which unit
fractions to use, for there are many possible ways to represent 12/17, or as the Greeks would
say, the “seventeenth part of twelve.” In addition, there is clearly the possibility of confusion
between the representations of, for example, % + % and % But all those who needed to
calculate evidently had methods of determining how they would use this system and how to
avoid confusion.?

Fortunately for us, most of the early Greek mathematics we will discuss involves little
calculation. As Aristotle wrote in his Metaphysics,

At first, he who invented any art whatever that went beyond the common perceptions of man was
naturally admired by men, not only because there was something useful in the inventions, but
because he was thought wise and superior to the rest. But as more arts were invented, and some
were directed to the necessities of life, others to recreation, the inventors of the latter were naturally
always regarded as wiser than the inventors of the former, because their branches of knowledge
did not aim at utility. Hence when all such inventions were already established, the sciences which
do not aim at giving pleasure or at the necessities of life were discovered, and first in the places
where men first began to have leisure. This is why the mathematical arts were founded in Egypt;
for there the priestly caste was allowed to be at leisure.*
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Although Aristotle referred only to Egypt, he certainly believed that in Greece as well
mathematics was the province of a leisured class, people who did not deal with such mun-
dane matters as measurement or accountancy problems. Thus, in Greece as in Egypt and
Mesopotamia, mathematics of the type we will discuss in this chapter and the next was the
province of a very limited group of people, virtually all of whom were part of the ruling
groups. As we will see, this theoretical mathematics was to be a central part of the education
of the rulers of the state.

2.12 Thales

The most complete reference to the earliest Greek mathematics is in the commentary to Book
I of Euclid’s Elements written in the fifth century CE by Proclus, some 800 to 1000 years after
the fact. This account of the early history of Greek mathematics is generally thought to be a
summary of a formal history written by Eudemus of Rhodes in about 320 BCE, the original of
which is lost. In any case, the earliest Greek mathematician mentioned is Thales (c. 624-547
BCE), from Miletus in Asia Minor (Fig. 2.2). There are many stories recorded about him, most
written down several hundred years after his death. These include his prediction of a solar
eclipse in 585 BCE and his application of the angle-side-angle criterion of triangle congruence
to the problem of measuring the distance to a ship at sea. He is said to have impressed Egyptian
officials by determining the height of a pyramid by comparing the length of its shadow to that
of the length of the shadow of a stick of known height. Thales is also credited with discovering
the theorems that the base angles of an isosceles triangle are equal and that vertical angles
are equal and with proving that the diameter of a circle divides the circle into two equal parts.
Although exactly how Thales “proved” any of these results is not known, it does seem clear
that he advanced some logical arguments.

Aristotle related the story that Thales was once reproved for wasting his time on idle
pursuits. Therefore, noticing from certain signs that a bumper crop of olives was likely in
a particular year, he quietly cornered the market on oil presses. When the large crop in fact
was harvested, the olive growers all had to come to him for presses. He thus demonstrated
that a philosopher or a mathematician could in fact make money if he thought it worthwhile.
Whether this or any of the other stories are literally true is not known. In any case, the Greeks
of the fourth century BCE and later credited Thales with beginning the Greek mathematical
tradition. In fact, he is generally credited with beginning the entire Greek scientific enterprise,
including recognizing that material phenomena are governed by discoverable laws.

2.1.3 Pythagoras and His School

There are also extensive but unreliable stories about Pythagoras (c. 572-497 BCE), including
that he spent much time not only in Egypt, where Thales was said to have visited, but also
in Babylonia (Fig. 2.3). Around 530 BCE, after having been forced to leave his native Samos,
he settled in Crotona, a Greek town in southern Italy. There he gathered around him a group
of disciples, later known as the Pythagoreans, in what was considered both a religious order
and a philosophical school. From the surviving biographies, all written centuries after his
death, we can infer that Pythagoras was probably more of a mystic than a rational thinker,
but one who commanded great respect from his followers. Since there are no extant works
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ascribed to Pythagoras or the Pythagoreans, the mathematical doctrines of his school can
only be surmised from the works of later writers, including the “neo-Pythagoreans.”

One important such mathematical doctrine was that “number was the substance of all
things,” that numbers, that is, positive integers, formed the basic organizing principle of the
universe. What the Pythagoreans meant by this was not only that all known objects have a
number, or can be ordered and counted, but also that numbers are at the basis of all physical
phenomena. For example, a constellation in the heavens could be characterized by both the
number of stars that compose it and its geometrical form, which itself could be thought of
as represented by a number. The motions of the planets could be expressed in terms of ratios
of numbers. Musical harmonies depend on numerical ratios: two plucked strings with ratio
of length 2 : 1 give an octave, with ratio 3 : 2 give a fifth, and with ratio 4 : 3 give a fourth.
Out of these intervals an entire musical scale can be created. Finally, the fact that triangles
whose sides are in the ratio of 3 : 4 : 5 are right-angled established a connection of number
with angle. Given the Pythagoreans’ interest in number as a fundamental principle of the
cosmos, it is only natural that they studied the properties of positive integers, what we would
call the elements of the theory of numbers.

The starting point of this theory was the dichotomy between the odd and the even. The
Pythagoreans probably represented numbers by dots or, more concretely, by pebbles. Hence,
an even number would be represented by a row of pebbles that could be divided into two equal
parts. An odd number could not be so divided because there would always be a single pebble
left over. It was easy enough using pebbles to verify some simple theorems. For example, the
sum of any collection of even numbers is even, while the sum of an even collection of odd
numbers is even and that of an odd collection is odd (Fig. 2.4).

© 000 o0
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00 O0O0O0oO0 oooiooo o0 0 O
00 o0oO 0 0 o ooooioooo
0 00O0O0O0OO0O0 ooooioooo o oo o
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Among other simple corollaries of the basic results above were the theorems that the square
of an even number is even, while the square of an odd number is odd. Squares themselves
could also be represented using dots, providing simple examples of “figurate” numbers. If
one represents a given square in this way, for example, the square of 4, it is easy to see that
the next higher square can be formed by adding a row of dots around two sides of the original
figure. There are 2 - 4 + 1 =9 of these additional dots. The Pythagoreans generalized this
observation to show that one can form squares by adding the successive odd numbers to 1.
For example, 14+ 3 =22, 1+3+5=23% and 1+ 3+ 5+ 7 =42 The added odd numbers
were in the L shape generally called a gnomon (Fig. 2.5). Other examples of figurate numbers
include the triangular numbers, also shown in Figure 2.5, produced by successive additions of
the natural numbers themselves. Similarly, oblong numbers, numbers of the form n(n + 1),
are produced by beginning with 2 and adding the successive even numbers (Fig. 2.6). The first
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four of these are 2, 6, 12, and 20, thatis, 1 x 2, 2 x 3, 3 x 4,and 4 x 5. Figure 2.7 provides
easy demonstrations of the results that any oblong number is the double of a triangular number
and that any square number is the sum of two consecutive triangular numbers.

Another number theoretical problem of particular interest to the Pythagoreans was the
construction of Pythagorean triples. There is evidence that they saw that for an odd number #,
the triple (n, #, #) is a Pythagorean triple, while if m is even, (m, (%)2 -1, (%)2 + 1
is such a triple. An explanation of how the Pythagoreans may have demonstrated the first of
these results from their dot configurations begins with the remark that any odd number is
the difference of two consecutive squares. Hence, if the odd number is itself a square, then
three square numbers have been found such that the sum of two equals the third (Fig. 2.8). To
find the sides of these squares, the Pythagorean triple itself, note that the side of the gnomon
is given since it is the square of an odd number. The side of the smaller square is found by
subtracting 1 from the gnomon and halving the remainder. The side of the larger square is one
more than that of the smaller. A similar proof can be given for the second result. Although
there is no explicit testimony to additional results involving Pythagorean triples, it seems
probable that the Pythagoreans considered the odd and even properties of these triples. For
example, it is not difficult to prove that in a Pythagorean triple, if one of the terms is odd,
then two of them must be odd and one even.

The geometric theorem out of which the study of Pythagorean triples grew, namely, that
in any right triangle the square on the hypotenuse is equal to the sum of the squares on the
legs, has long been attributed to Pythagoras himself, but there is no direct evidence of this.
The theorem was known in other cultures long before Pythagoras lived. Nevertheless, it was
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the knowledge of this theorem by the fifth century BCE that led to the first discovery of what
is today called an irrational number.

For the early Greeks, number always was connected with things counted. Because counting
requires that the individual units must remain the same, the units themselves can never be
divided or joined to other units. In particular, throughout formal Greek mathematics, a number
meant a “multitude composed of units,” that is, a counting number. Furthermore, since the
unit 1 was not a multitude composed of units, it was not considered a number in the same
sense as the other positive integers. Even Aristotle noted that two was the smallest “number.”

Because the Pythagoreans considered number as the basis of the universe, everything could
be counted, including lengths. In order to count a length, of course, one needed a measure. The
Pythagoreans thus assumed that one could always find an appropriate measure. Once such a
measure was found in a particular problem, it became the unit and thus could not be divided.
In particular, the Pythagoreans assumed that one could find a measure by which both the side
and diagonal of a square could be counted. In other words, there should exist a length such
that the side and diagonal were integral multiples of it. Unfortunately, this turned out not to be
true. The side and diagonal of a square are incommensurable; there is no common measure.
Whatever unit of measure is chosen such that an exact number will fit the length of one of
these lines, the other line will require some number plus a portion of the unit, and one cannot
divide the unit. (In modern terms, this result is equivalent to the statement that the square root
of two is irrational.) We do not know who discovered this result, but scholars believe that the
discovery took place in approximately 430 BCE. And although it is frequently stated that this
discovery precipitated a crisis in Greek mathematics, the only reliable evidence shows that
the discovery simply opened up the possibility of some new mathematical theories. In fact,
Aristotle wrote in his Metaphysics,

For all men begin, as we said, by wondering that things are as they are, as they do about self-moving
marionettes, or about the solstices or the incommensurability of the diagonal of a square with the
side; for it seems wonderful to all who have not yet seen the reason, that there is a thing which
cannot be measured even by the smallest unit. But we must end in the contrary and, according
to the proverb, the better state, as is the case in these instances too when men learn the cause;
for there is nothing which would surprise a geometer so much as if the diagonal turned out to be
commensurable.’

In other words, Aristotle seems to say that although the incommensurability is initially
surprising, once one finds the reason—and clearly Greek thinkers did so—it then becomes
very unsurprising.

So what is the “cause” of the incommensurability and how did a Greek thinker discover
it? The only hint is in another work of Aristotle, who notes that if the side and diagonal
are assumed commensurable, then one may deduce that odd numbers equal even numbers.
One possibility as to the form of the discovery is the following: Assume that the side BD and
diagonal D H in Figure 2.9 are commensurable, that is, that each is represented by the number
of times it is measured by their common measure. It may be assumed that at least one of these
numbers is odd, for otherwise there would be a larger common measure. Then the squares
DBHI and AGFE on the side and diagonal, respectively, represent square numbers. The
latter square is clearly double the former, so it represents an even square number. Therefore,
its side AG = DH also represents an even number and the square AG FE is a multiple of
four. Since DB H I is half of AG F E, it must be a multiple of two; that is, it represents an even
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square. Hence, its side B D must also be even. But this contradicts the original assumption,
that one of DH, B D, must be odd. Therefore, the two lines are incommensurable.

It must be realized that such a proof presupposes that by this time the notion of proof
was ingrained into the Greek conception of mathematics. Although there is no evidence that
the Greeks of the fifth century BCE possessed the entire mechanism of an axiomatic system
and had explicitly recognized that certain statements need to be accepted without proof, they
certainly had decided that some form of logical argument was necessary for determining the
truth of a particular result. Furthermore, this entire notion of incommensurability represents
a break from the Babylonian and Egyptian concepts of calculation with numbers. There is
naturally no question that one can assign a numerical value to the length of the diagonal of a
square of side one unit, as the Babylonians did, but the notion that no “exact” value can be
found is first formally recognized in Greek mathematics.

Although the Greeks could not “measure” the diagonal of a square, that line, as a geometric
object, was still significant. Plato, in his dialogue Meno, had Socrates question a slave boy
about finding a square whose area is double that of square of side two feet. The boy first
suggests that each side should be doubled. Socrates pointed out that this would give a square
of area sixteen. The boy’s second guess, that the new side should be three feet, is also evidently
incorrect. So Socrates then led him to figure out that if one draws a diagonal of the original
square and then constructs a square on that diagonal, the new square is exactly double the
old one. But Socrates’ proof of this is simply by a dissection argument (Fig. 2.10). There is
no mention of the length of this diagonal at all.®

214 Squaring the Circle and Doubling the Cube

The idea of proof and the change from numerical calculation are further exemplified in the
mid-fifth century attempts to solve two geometric problems, problems that were to occupy
Greek mathematicians for centuries: the squaring of the circle (already attempted in Egypt)
and the duplication of the cube (as noted in the oracle). The multitude of attacks on these
particular problems and the slightly later one of trisecting an arbitrary angle serve to remind
us that a central goal of Greek mathematics was geometrical problem solving, and that,
to a large extent, the great body of theorems found in the major extant works of Greek
mathematics served as logical underpinnings for these solutions. Interestingly, that these
problems apparently could not be solved via the original tools of straightedge and compass
was known to enough of the Greek public that Aristophanes could refer to “squaring the
circle” as something absurd in his play The Birds, first performed in 414 BCE.

Hippocrates of Chios (mid-fifth century BCE) (no connection to the famous physician) was
among the first to attack the cube and circle problems. As to the first of these, Hippocrates
perhaps realized that the problem was analogous to the simpler problem of doubling a square
of side a. That problem could be solved by constructing a mean proportional b between a
and 2a, a length b such that a : b = b : 2a, for then b*> = 2a>. From the fragmentary records
of Hippocrates® work, it is evident that he was familiar with performing such constructions.
In any case, ancient accounts record that Hippocrates was the first to come up with the idea
of reducing the problem of doubling the cube of side a to the problem of finding two mean
proportionals b, ¢, between a and 2a. Forifa :b =0 :c = c:2a, then

A :bP=@:b)y’=@:b)(b:c)c:2a)=a:2a=1:2
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and b3 =24°. Hippocrates was not, however, able to construct the two mean proportionals
using the geometric tools at his disposal. It was left to some of his successors to find this
construction.

Hippocrates similarly made progress in the squaring of the circle, essentially by showing
that certain lunes (figures bounded by arcs of two circles) could be “squared,” that is, that
their areas could be shown equal to certain regions bounded by straight lines. To do this, he
first had to show that the areas of circles are to one another as the squares on their diameters,
a fact evidently known to the Babylonian scribes. How he accomplished this is not known.
In any case, he could now square the lune on a quadrant of a circle.

Suppose that semicircle A BC is circumscribed about the isosceles right triangle A BC and
that around the base AC an arc ADC of a circle is drawn so that segment ADC is similar to
segments AB and BC; that is, the arcs of each are the same fraction of a circle, in this case,
one-quarter (Fig. 2.11). It follows from the result on areas of circles that similar segments are
also to one another as the squares on their chords. Therefore, segment ADC is equal to the
sum of segments AB and BC. If we add to each of these areas the part of the triangle outside
arc ADC, it follows that the lune ABC D is equal to the triangle ABC.

Although Hippocrates gave constructions for squaring other lunes or combinations of
lunes, he was unable to actually square a circle. Nevertheless, it is apparent that his attempts on
the squaring problem and the doubling problem were based on a large collection of geometric
theorems, theorems that he organized into the first recorded book on the elements of geometry.

THE TIME OF PLATO

The time of Plato (429-347 BCE) (Fig. 2.12) saw significant efforts made toward solving
the problems of doubling the cube and squaring the circle and toward dealing with incom-
mensurability and its impact on the theory of proportion. These advances were achieved
partly because Plato’s Academy, founded in Athens around 385 BCE, drew together schol-
ars from all over the Greek world. These scholars conducted seminars in mathematics and
philosophy with small groups of advanced students and also conducted research in mathe-
matics, among other fields. There is an unverifiable story, dating from some 700 years after
the school’s founding, that over the entrance to the Academy was inscribed the Greek phrase
ATEQMETRHTOX MHAEIY EIZITS2, meaning roughly, “Let no one ignorant of geome-
try enter here.” A student “ignorant of geometry” would also be ignorant of logic and hence
unable to understand philosophy.

The mathematical syllabus inaugurated by Plato for students at the Academy is described
by him in his most famous work, The Republic, in which he discussed the education that
should be received by the philosopher-kings, the ideal rulers of a state. The mathematical part
of this education was to consist of five subjects: arithmetic (that is, the theory of numbers),
plane geometry, solid geometry, astronomy, and harmonics (music). The leaders of the state
are “to practice calculation, not like merchants or shopkeepers for purposes of buying and
selling, but with a view to war and to help in the conversion of the soul itself from the world
of becoming to truth and reality. . . . It will further our intentions if it is pursued for the
sake of knowledge and not for commercial ends. . . . It has a great power of leading the
mind upwards and forcing it to reason about pure numbers, refusing to discuss collections of
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material things which can be seen and touched.”” In other words, arithmetic is to be studied
for the training of the mind (and incidentally for its military usefulness). The arithmetic of
which Plato writes includes not only the Pythagorean number theory already discussed but
also additional material that is included in Books VII-IX of Euclid’s Elements and will be
considered later.

Again, alimited amount of plane geometry is necessary for practical purposes, particularly
in war, when a general must be able to lay out a camp or extend army lines. But even though
mathematicians talk of operations in plane geometry such as squaring or adding, the object
of geometry, according to Plato, is not to do something but to gain knowledge, “knowledge,
moreover, of what eternally exists, not of anything that comes to be this or that at some time
and ceases to be.”8 So, as in arithmetic, the study of geometry—and for Plato this means
theoretical, not practical, geometry—is for “drawing the soul towards truth.” It is importanat
to mention here that Plato distinguished carefully between, for example, the real geometric
circles drawn by people and the essential or ideal circle, held in the mind, which is the true
object of geometric study. In practice, one cannot draw a circle and its tangent with only one
point in common, although this is the nature of the mathematical circle and the mathematical
tangent.

The next subject of mathematical study should be solid geometry. Plato complained in
the Republic that this subject has not been sufficiently investigated. This is because “no
state thinks [it] worth encouraging” and because “students are not likely to make discoveries
without a director, who is hard to find.”® Nevertheless, Plato felt that new discoveries would
be made in this field, and, in fact, much was done between the dramatic date of the dialogue
(about 400 BCE) and the time of Euclid, some of which is included in Books XI-XIII of the
Elements.

In any case, a decent knowledge of solid geometry was necessary for the next study, that
of astronomy, or, as Plato puts it, “solid bodies in circular motion.” Again, in this field
Plato distinguished between the stars as material objects with motions showing accidental
irregularities and variations and the ideal abstract relations of their paths and velocities
expressed in numbers and perfect figures such as the circle. It is this mathematical study of
ideal bodies that is the true aim of astronomical study. Thus, this study should take place by
means of problems and without attempting to actually follow every movement in the heavens.

Similarly, a distinction is made in the final subject, of harmonics, between material sounds
and their abstraction. The Pythagoreans had discovered the harmonies that occur when strings
are plucked together with lengths in the ratios of certain small positive integers. But in
encouraging his philosopher-kings in the study of harmonics, Plato meant for them to go
beyond the actual musical study, using real strings and real sounds, to the abstract level
of “inquiring which numbers are inherently consonant and which are not, and for what
reasons.”!” That is, they should study the mathematics of harmony, just as they should
study the mathematics of astronomy, and should not be overly concerned with real stringed
instruments or real stars. It turns out that a principal part of the mathematics necessary in
both studies is the theory of ratio and proportion, the subject matter of Euclid’s Elements,
Book V.

Although it is not known whether the entire syllabus discussed by Plato was in fact taught

at the Academy, it is certain that Plato brought in the best mathematicians of his day to teach
and do research, including Theaetetus (c. 417-369 BCE) and Eudoxus (c. 408-355 BCE), who
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we will discuss later. The most famous person associated with the Academy, however, was
Aristotle.

ARISTOTLE

Aristotle (384-322 BcE) (Fig. 2.13) studied at Plato’s Academy in Athens from the time he
was 18 until Plato’s death in 347. Shortly thereafter, he was invited to the court of Philip II
of Macedon to undertake the education of Philip’s son Alexander, who soon after his own
accession to the throne in 335 began his successful conquest of the Mediterranean world
(Fig. 2.14). Meanwhile, Aristotle returned to Athens where he founded his own school,
the Lyceum, and spent the rest of his days writing, lecturing, and holding discussions
with his advanced students. Although Aristotle wrote on many subjects, including politics,
ethics, epistemology, physics, and biology, his strongest influence as far as mathematics was
concerned was in the area of logic.

2.31 Logic

Although there is only fragmentary evidence of logical argument in mathematical works be-
fore the time of Euclid, some appearing in the work of Hippocrates already mentioned, it is
apparent that from at least the sixth century BCE, the Greeks were developing the notions of
logical reasoning. The active political life of the city-states encouraged the development of
argumentation and techniques of persuasion. And there are many examples from philosoph-
ical works, especially those of Parmenides (late sixth century BCE) and his disciple Zeno of
Elea (fifth century BCE), that demonstrate various detailed techniques of argument. In partic-
ular, there are examples of such techniques as reductio ad absurdum, in which one assumes
that a proposition to be proved is false and then derives a contradiction, and modus tollens,
in which one shows first that if A is true, then B follows, shows next that B is not true, and
concludes finally that A is not true. It was Aristotle, however, who took the ideas developed
over the centuries and first codified the principles of logical argument.

Aristotle believed that logical arguments should be built out of syllogisms, where “a
syllogism is discourse in which, certain things being stated, something other than what is
stated follows of necessity from their being so.”!! In other words, a syllogism consists of
certain statements that are taken as true and certain other statements that are then necessarily
true. For example, the argument “if all monkeys are primates, and all primates are mammals,
then it follows that all monkeys are mammals,” exemplifies one type of syllogism, whereas
the argument “if all Catholics are Christians and no Christians are Moslem, then it follows
that no Catholic is Moslem,” exemplifies a second type.

After clarifying the principles of dealing with syllogisms, Aristotle noted that syllogistic
reasoning enables one to use “old knowledge” to impart new. If one accepts the premises of
a syllogism as true, then one must also accept the conclusion. One cannot, however, obtain
every piece of knowledge as the conclusion of a syllogism. One has to begin somewhere
with truths that are accepted without argument. Aristotle distinguished between the basic
truths that are peculiar to each particular science and the ones that are common to all. The
former are often called postulates, while the latter are known as axioms. As an example
of a common truth, he gave the axiom “take equals from equals and equals remain.” His
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examples of peculiar truths for geometry are “the definitions of line and straight.” By these
he presumably meant that one postulates the existence of straight lines. Only for the most basic
ideas did Aristotle permit the postulation of the object defined. In general, however, whenever
one defines an object, one must in fact prove its existence. “For example, arithmetic assumes
the meaning of odd and even, square and cube, geometry that of incommensurable, . . .,
whereas the existence of these attributes is demonstrated by means of the axioms and from
previous conclusions as premises.”'? Aristotle also listed certain basic principles of argument,
principles that earlier thinkers had used intuitively. One such principle is that a given assertion
cannot be both true and false. A second principle is that an assertion must be either true or
false; there is no other possibility.

For Aristotle, logical argument according to his methods is the only certain way of attaining
scientific knowledge. There may be other ways of gaining knowledge, but demonstration via
a series of syllogisms is the one way by which one can be sure of the results. Because one
cannot prove everything, however, one must always be careful that the premises, or axioms,
are true and well known As Aristotle wrote, “syllogism there may indeed be without these
conditions, but such syllogism, not being productive of scientific knowledge, will not be
demonstration.”!? In other words, one can choose any axioms one wants and draw conclusions
from them, but if one wants to attain knowledge, one must start with “true” axioms. The
question then becomes, how can one be sure that one’s axioms are true? Aristotle answered
that these primary premises are learned by induction, by drawing conclusions from our own
sense perception of numerous examples. This question of the “truth” of the basic axioms
has been discussed by mathematicians and philosophers ever since Aristotle’s time. On the
other hand, Aristotle’s rules of attaining knowledge by beginning with axioms and using
demonstrations to gain new results has become the model for mathematicians to the present
day.

Although Aristotle emphasized the use of syllogisms as the building blocks of logical
arguments, Greek mathematicians apparently never used them. They used other forms, as
have most mathematicians down to the present. Why Aristotle therefore insisted on syllogisms
is not clear. The basic forms of argument actually used in mathematical proof were analyzed
in some detail in the third century BCE by the Stoics, of whom the most prominent was
Chrysippus (280-206 BCE). This form of logic is based on propositions, statements that can
be either true or false, rather than on the Aristotelian syllogisms. The basic rules of inference
dealt with by Chrysippus, with their traditional names, are the following, where p, ¢, and r
stand for propositions:

(1) Modus ponens (2) Modus tollens

If p, then g. If p, then g.

p. Not g.

Therefore, ¢. Therefore, not p.

(3) Hypothetical syllogism (4) Alternative syllogism
If p, then q. porgq.

If g, thenr. Not p.

Therefore, if p, then r. Therefore, ¢.
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For example, from the statements “if it is daytime, then it is light” and “it is daytime,” one
can conclude by modus ponens that “it is light.” From “if it is daytime, then it is light” and
“it is not light,” one concludes by modus tollens that “it is not daytime.” Adding to the first
hypothesis the statement “if it is light, then I can see well,” one concludes by the hypothetical
syllogism that “if it is daytime, then I can see well.” Finally, from “either it is daytime or it is
nighttime” and “it is not daytime,” the rule of the alternative syllogism allows us to conclude
that “it is nighttime.”

2.32 Number versus Magnitude

Another of Aristotle’s contributions was the introduction into mathematics of the distinction
between number and magnitude. The Pythagoreans had insisted that all was number, but
Aristotle rejected that idea. Although he placed number and magnitude in a single category,
“quantity,” he divided this category into two classes, the discrete (number) and the continuous
(magnitude). As examples of the latter, he cited lines, surfaces, bodies, and time. The primary
distinction between these two classes is that a magnitude is “that which is divisible into
divisibles that are infinitely divisible,” 14 while the basis of number is the indivisible unit. Thus,
magnitudes cannot be composed of indivisible elements, whereas numbers inevitably are.

Aristotle further clarified this idea in his definition of “in succession” and “continuous.”
Things are in succession if there is nothing of their own kind intermediate between them. For
example, the numbers 3 and 4 are in succession. Things are continuous when they touch and
when “the touching limits of each become one and the same.”' Line segments are therefore
continuous if they share an endpoint. Points cannot make up a line, because they would have
to be in contact and share a limit. Since points have no parts, this is impossible. It is also
impossible for points on a line to be in succession, that is, for there to be a “next point.”
For between two points on a line is a line segment, and one can always find a point on that
segment.

Today, a line segment is considered to be composed of an infinite collection of points, but
to Aristotle this would make no sense. He did not conceive of a completed or actual infinity.
Although he used the term “infinity,” he only considered it as potential. For example, one can
bisect a continuous magnitude as often as one wishes, and one can count these bisections. But
in neither case does one ever come to an end. Furthermore, mathematicians really do not need
infinite quantities such as infinite straight lines. They only need to postulate the existence of,
for example, arbitrarily long straight lines.

2.3.3 Zeno’s Paradoxes

One of the reasons Aristotle had such an extended discussion of the notions of infinity,
indivisibles, continuity, and discreteness was that he wanted to refute the famous paradoxes
of Zeno. Zeno stated these paradoxes, perhaps in an attempt to show that the then current
notions of motion were not sufficiently clear, but also to show that any way of dividing space
or time must lead to problems. The first paradox, the Dichotomy, “asserts the non-existence of
motion on the ground that that which is in locomotion must arrive at the half-way stage before
it arrives at the goal.”l6 (Of course, it must then cover the half of the half before it reaches
the middle, etc.) The basic contention here is that an object cannot cover a finite distance
by moving during an infinite sequence of time intervals. The second paradox, the Achilles,
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FIGURE 2.15
Zeno’s parardox of the
Stadium

asserts a similar point: “In a race, the quickest runner can never overtake the slowest, since
the pursuer must first reach the point whence the pursued started, so that the slower must
always hold a lead.”!” Aristotle, in refuting the paradoxes, concedes that time, like distance,
is infinitely divisible. But he is not bothered by an object covering an infinity of intervals in
a finite amount of time. For “while a thing in a finite time cannot come in contact with things
quantitatively infinite, it can come in contact with things infinite in respect to divisibility, for
in this sense time itself is also infinite.”!® In fact, given the motion in either of these paradoxes,
one can calculate when one will reach the goal or when the fastest runner will overtake the
slowest.

Zeno’s third and fourth paradoxes show what happens when one asserts that a continuous
magnitude is composed of indivisible elements. The Arrow states that “if everything when it
occupies an equal space is at rest, and if that which is in locomotion is always occupying such
a space at any moment, the flying arrow is therefore motionless.”'® In other words, if there
are such things as indivisible instants, the arrow cannot move during that instant. Since if, in
addition, time is composed of nothing but instants, then the moving arrow is always at rest.
Aristotle refutes this paradox by noting that not only are there no such things as indivisible
instants, but motion itself can only be defined in a period of time. A modern refutation, on the
other hand, would deny the first premise because motion is now defined by a limit argument.

The paradox of the Stadium supposes that there are three sets of identical objects: the A’s
at rest, the B’s moving to the right past the A’s, and the C’s moving to the left with equal
velocity. Suppose the B’s have moved one place to the right and the C’s one place to the left,
so that By, which was originally under A, is now under As, while Cy, originally under As,
is now under A4 (Fig. 2.15). Zeno supposes that the objects are indivisible elements of space
and that they move to their new positions in an indivisible unit of time. But since there must
have been a moment at which B; was directly over Cy, there are two possibilities. Either the
two objects did not cross, and so there was no motion at all, or in the indivisible instant, each
object had occupied two separate positions, so that the instant was in fact not indivisible.
Aristotle believed that he had refuted this paradox because he had already denied the original
assumption—that time is composed of indivisible instants.
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Interestingly, the four paradoxes exhaust the four possibilities of divisibility/indivisibility
of space and time. That is, in the Arrow both space and time are assumed infinitely divisible,
in the Stadium both are assumed ultimately indivisible, in the Dichotomy space is assumed
divisible and time indivisible, and in the Achilles the reverse is assumed. So Zeno has shown
each of the four possibilities leads to a contradiction.

Controversy regarding these paradoxes has lasted throughout history. The ideas contained
in Zeno’s statements and Aristotle’s attempts at refutation have been extremely fruitful in
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forcing mathematicians to the present day to think carefully about their assumptions in dealing
with the concepts of the infinite or the infinitely small. And in Greek times they were probably
a significant factor in the development of the distinction between continuous magnitude and
discrete number so important to Aristotle and ultimately to Euclid.

XERCISES

Represent 125, 62, 4821, and 23,855 in the Greek alpha-
betic notation.

Represent 8/9 as a sum of distinct unit fractions. Express
the result in the Greek notation. Note that the answer to
this problem is not unique.

Represent 200/9 as the sum of an integer and distinct unit
fractions. Express the result in Greek notation.

There are extant Greek land surveys that give measurements
of fields and then find the area so the land can be assessed
for tax purposes. In general, areas of quadrilateral fields
were approximated by multiplying together the averages
of the two pairs of opposite sides. In one document, one
pair of sides is given asa = 1/4 + 1/8 + 1/16 + 1/32 and
c=1/8+ 1/16, where the lengths are in fractions of a
schonion, a measure of approximately 150 feet. The second
pair of sides is given as b=1/24+1/4+1/8 and d = 1.
Find the average of a and c, the average of b and d, and
multiply them together to show that the area of the field is
approximately 1/4 + 1/16 square schonion. Note that the
taxman has rounded up the exact answer (presumably to
collect more taxes).

Thales is said to have invented a method of finding distances
of ships from shore by use of the angle-side-angle theorem.
Here is a possible method: Suppose A is a point on shore
and S is a ship (Fig. 2.16). Measure the distance AC along
a perpendicular to AC and bisect it at B. Draw CE at right
angles to AC and pick point E on it in a straight line with
B and S. Show that AEBC = ASBA and therefore that
SA=EC.
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FIGURE 2.16

One method Thales could have used to determine the distance
to a ship at sea

6.

10.

11.

A second possibility for Thales’ method is the following:
Suppose Thales was atop a tower on the shore with an
instrument made of a straight stick and a crosspiece AC
that could be rotated to any desired angle and then would
remain where it was put (Fig. 2.17). One rotates AC until
one sights the ship S, then turns and sights an object 7' on
shore without moving the crosspiece. Show that AAET =
AAES and therefore that SE = ET.

FIGURE 2.17
Second method Thales could have used to determine the dis-
tance to a ship at sea

Suppose Thales found that at the time a stick of length 6
feet cast a shadow of 9 feet, there was a length of 342 feet
from the edge of the pyramid’s side to the tip of its shadow.
Suppose further that the length of a side of the pyramid was
756 feet. Find the height of the pyramid. (Assuming that the
pyramid is laid out so the sides are due north-south and due
east-west, this method requires that the sun be exactly in
the south when the measurement is taken. When does this
occur?zo)

Show that the nth triangular number is represented alge-
braically as 7,, = 20t and therefore that an oblong num-
ber is double a triangular number.

Show algebraically that any square number is the sum of
two consecutive triangular numbers.

Show using dots that eight times any triangular number plus
1 makes a square. Conversely, show that any odd square
diminished by 1 becomes eight times a triangular number.
Show these results algebraically as well.

Show that in a Pythagorean triple, if one of the terms is odd,
then two of them must be odd and one even.
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12. Construct five Pythagorean triples using the formula (n,

2 2 . .
w1, 2oty where n is odd. Construct five different ones
using the formula (m, (4)* — 1, (%)? + 1), where m is
even.

13. Show that if a right triangle has one leg of length 1 and a
hypotenuse of length 2, then the second leg is incommensu-
rable with the first leg. (In modern terms, this is equivalent
to showing that +/3 is irrational.) Use an argument similar
to the proposed Pythagorean argument that the diagonal of
a unit square is incommensurable with the side.

14. Show that the areas of similar segments of circles are pro-
portional to the squares on their chords. Assume the result
that the areas of circles are proportional to the squares on
their diameters.

15. Here is another lune that was “squared” by Hippocrates:
Construct a trapezoid BAC D such that BA=AC =CD
and the square on BD is triple the square on each of the
other sides (Fig. 2.18). Then circumscribe a circle around
the trapezoid and describe on side B D a circular arc similar
to those on the other three sides, that is, an arc whose ratio
to side BD is equal to that of the arc on BA to the side
BA. Show that the segment on BD is equal to the sum
of the segments on BA, AC, and CD. Conclude that the
lune bounded by the arcs BAC D and BE D is equal to the
original trapezoid. (Note that you should first prove that
the given trapezoid can be constructed and that it can be
circumscribed by a circle.)

A c

B D
FIGURE 2.18

Hippocrates’ lune with outer arc greater than a semicircle

REFERENCES AND NOTES

16. Read the entire passage from Plato’s Meno referred to in the
text and write a short essay discussing Socrates’ method of
convincing the slave boy that he knows how to construct a
square double a given square. Consider both the “Socratic
method” that Socrates uses as well as the mathematics. (It
may be a good idea to do this as a “play” with different
students playing the various roles.?!)

17. Consider the quotation from Plato’s Republic: “It will fur-
ther our intentions if it [calculation] is pursued for the sake
of knowledge and not for commercial ends.” Discuss the
relevance of this statement to current discussions on the
purposes for studying mathematics in school.

18. Give two further examples of each of the two types of
syllogisms mentioned in the text.

19. Make up a purposely incorrect syllogism that is related to
the correct models in the text. Discuss why its conclusion
may be false.

20. Give an example of each of the four rules of inference
discussed in the text.

21. InZeno’s Achilles paradox, assume the quick runner Achil-
les is racing against a tortoise. Assume further that the tor-
toise has a 500-yard head start but that Achilles’ speed is
fifty times that of the tortoise. Finally, assume that the tor-
toise moves 1 yard in 5 seconds. Determine the time ¢ it will
take until Achilles overtakes the tortoise and the distance d
he will have traveled. Note that Achilles must first travel
500 yards to reach the point where the tortoise started. This
will take 50 seconds. But in that time the tortoise will move
10 yards farther. Continue this analysis by writing down the
sequence of distances that Achilles must travel to reach the
point where the tortoise had already been. Show that the
sum of this infinite sequence of distances is equal to the
distance d calculated first.

A good source of basic information on Greek civilization is
H. D. E Kitto, The Greeks (London: Penguin, 1951). Two excel-
lent general works on early Greek science are by G. E. R. Lloyd,
Early Greek Science: Thales to Aristotle (New York: Norton,
1970) and Magic, Reason and Experience (Cambridge: Cam-
bridge University Press, 1979). The latter work, in particular,
deals with the beginnings of logical reasoning in Greece and the

emergence of the idea of mathematical proof. The standard ref-
erence on Greek mathematics is Thomas Heath, A History of
Greek Mathematics (New York: Dover, 1981, reprinted from the
1921 original). However, many of Heath’s conclusions have been
challenged in more recent works. The two best reevaluations of
some central parts of the story of Greek mathematics are Wilbur
Knorr, The Ancient Tradition of Geometric Problems (Boston:



Birkhéuser, 1986), which argues that geometric problem solving
was the motivating factor for much of Greek mathematics, and
David Fowler’s The Mathematics of Plato’s Academy: A New
Reconstruction (Oxford: Clarendon Press, 1987; 2nd edition,
1999), which claims that the idea of anthyphairesis (reciprocal
subtraction) provides much of the impetus for the Greek develop-
ment of the ideas of ratio and proportion. A newer work, Serafina
Cuomo’s Ancient Mathematics (London: Routledge, 2001), pro-
vides an excellent survey of Greek mathematics, while claiming
that many of Heath’s (and others’) conclusions are based on
very flimsy evidence. The emergence of the deductive method
in Greek mathematics is discussed in Reviel Netz, The Shaping
of Deduction in Greek Mathematics: A Study in Cognitive His-
tory (Cambridge: Cambridge University Press, 1999). An earlier,
but still useful, work on the same topic is I. Mueller, Philosophy
and Deductive Structure in Euclid’s Elements (Cambridge: MIT
Press, 1981). Many of the available fragments from the earli-
est Greek mathematics are collected in Ivor Thomas, Selections
1llustrating the History of Greek Mathematics (Cambridge: Har-
vard University Press, 1941).

1. From Proclus’s Summary, translated in Thomas, Selections,
I p. 147.

2. Plutarch’s Moralia, translated by Phillip H. De Lang and
Benedict Einarson (Cambridge: Harvard University Press,
1959), VII, pp. 397-399.

3. See Fowler, Mathematics of Plato’s Academy, chapter 7,
for more on Greek numbers and fractions.

4. Aristotle, Metaphysics, 9817, 14-24. The translations here
and below are in the Great Books edition (Chicago: Ency-
clopedia Britannica, 1952), but the references here and to
the works of Plato are to lines in the standard Greek text
and can be checked in any modern translation.

5. Ibid., 9834, 14-20.
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Not much younger than these [Hermotimus
of Colophon and Philippus of Mende,
students of Plato] is Euclid, who put
together the Elements, collecting many
of Eudoxus’s theorems, perfecting many

of Theactetus’s, and also bringing to
irrefragable demonstration the things which
were only somewhat loosely proved by his
predecessors. This man lived in the time of
the first Ptolemy.

—Proclus’s Summary (c. 450 CE) of
Eudemus’s History (c. 320 BCE)!

Fuclid

wo legends about Euclid: Prolemy is said to have asked him
if there was any shorter way to geometry than through the
Elements, and he replied that there was “no royal road to geo-
metry.” And, according to Stobaeus (fifth century CE), a student, after
learning the first theorem, asked Euclid, “What shall I get by learning
these things?” Euclid then asked his slave to give the student a coin,

“since he must make gain out of what he learns.”
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FIGURE 3.1

Euclid (detail from Raphael’s
painting The School of
Athens). Note that there is
no evidence of Euclid’s actual
appearance.
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Since the first Ptolemy, Ptolemy I Soter, the Macedonian general of Alexander the Great who
became ruler of Egypt after the death of Alexander in 323 BCE and lived until 283 BCE, it is
generally assumed from the quotation from Proclus that Euclid flourished around 300 BCE
(Fig. 3.1). But besides this date, written down some 750 years later, there is nothing at all
known about the life of the author of the Elements. Nevertheless, most historians believe that
Euclid was one of the first scholars active at the Museum and Library at Alexandria, founded
by Ptolemy I and his successor, Ptolemy II Philadelphus. “Museum” here means a “Temple
of the Muses,” that is, a location where scholars meet and discuss philosophical and literary
ideas. The Museum was to be, in effect, a government research establishment. The Fellows
of the Museum received stipends and free board and were exempt from taxation. In this way
the rulers of Egypt hoped that men of eminence would be attracted there from the entire
Greek world. In fact, the Museum and Library soon became a focal point of the highest
developments in Greek scholarship, both in the humanities and the sciences. The Fellows
were initially appointed to carry on research, but since younger students gathered there as
well, the Fellows soon turned to teaching. The aim of the Library was to collect the entire
body of Greek literature in the best available copies and to organize it systematically. Ship
captains who sailed from Alexandria were instructed to bring back scrolls from every port
they touched until their return. The story is told that Ptolemy III, who reigned from 247-221
BCE, borrowed the authorized texts of the playwrights Aeschylus, Sophocles, and Euripides
from Athens against a large deposit. But rather than return the originals, he returned only
copies. He was quite willing to forfeit the deposit. The Library ultimately contained over
500,000 volumes in every field of knowledge. Although parts of the library were destroyed
in various wars, some of it remained intact until the fourth century CE.

This chapter will be devoted primarily to a study of Euclid’s most important work, the
Elements, but we will also consider Euclid’s Data.

INTRODUCTION TO THE ELEMENTS

The Elements of Euclid is the most important mathematical text of Greek times and probably
of all time. It has appeared in more editions than any work other than the Bible. It has been
translated into countless languages and has been continuously in print in one country or
another nearly since the beginning of printing. Yet to the modern reader the work is incredibly
dull. There are no examples; there is no motivation; there are no witty remarks; there is no
calculation. There are simply definitions, axioms, theorems, and proofs. Nevertheless, the
book has been intensively studied. Biographies of many famous mathematicians indicate
that Euclid’s work provided their initial introduction into mathematics, that it in fact excited
them and motivated them to become mathematicians. It provided them with a model of how
“pure mathematics” should be written, with well-thought-out axioms, precise definitions,
carefully stated theorems, and logically coherent proofs. Although there were earlier versions
of Elements before that of Euclid, his is the only one to survive, perhaps because it was the
first one written after both the foundations of proportion theory and the theory of irrationals
had been developed and the careful distinctions always to be made between number and
magnitude had been propounded by Aristotle. It was therefore both “complete” and well
organized. Since the mathematical community as a whole was of limited size, once Euclid’s
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work was recognized for its general excellence, there was no reason to keep another inferior
work in circulation.

Euclid wrote his text about 2300 years ago. There are, however, no copies of the work
dating from that time. The earliest extant fragments include some potsherds discovered in
Egypt dating from about 225 BCE, on which are written what appear to be notes on two
propositions from Book XIII, and pieces of papyrus containing parts of Book II dating from
about 100 BCE. Copies of the work were, however, made regularly from the time of Euclid.
Various editors made emendations, added comments, or put in new lemmas. In particular,
Theon of Alexandria (fourth century CE) was responsible for one important new edition. Most
of the extant manuscripts of Euclid’s Elements are copies of this edition. The earliest such
copy now in existence is in the Bodleian Library at Oxford University and dates from 888.
There is, however, one manuscript in the Vatican Library, dating from the tenth century, which
is not a copy of Theon’s edition but of an earlier version. It was from a detailed comparison of
this manuscript with several old manuscript copies of Theon’s version that the Danish scholar
J. L. Heiberg compiled a definitive Greek version in the 1880s, as close to what he believed
the Greek original was as possible. The extracts to be discussed here are all adapted from
Thomas Heath’s 1908 English translation of Heiberg’s Greek. (It should be noted that some
modern scholars believe that one can get closer to Euclid’s original by taking more account
of medieval Arab translations than Heiberg was able to do.)

Euclid’s Elements is a work in thirteen books. The first six books form a relatively
complete treatment of two-dimensional geometric magnitudes while Books VII-IX deal
with the theory of numbers, in keeping with Aristotle’s instructions to separate the study of
magnitude and number. In fact, Euclid included two entirely separate treatments of proportion
theory—in Book V for magnitudes and in Book VII for numbers. Book X then provides
the link between the two concepts, because it is here that Euclid introduced the notions
of commensurability and incommensurability and showed that, with regard to proportions,
commensurable magnitudes may be treated as if they were numbers. The book continues
by presenting a classification of some incommensurable magnitudes. Euclid next dealt in
Book XI with three-dimensional geometric objects and in Book XII with the method of
exhaustion applied both to two- and three-dimensional objects. Finally, in Book XIII he
constructed the five regular polyhedra and classified some of the lines involved according
to his scheme of Book X.

It is useful to note that much of the ancient mathematics discussed in Chapter 1 is in-
cluded in one form or another in Euclid’s masterwork, with the exception of actual methods
of arithmetic computation. The methodology, however, is entirely different. Namely, mathe-
matics in earlier cultures always involves numbers and measurement. Numerical algorithms
for solving various problems are prominent. The mathematics of Euclid, however, is com-
pletely nonarithmetical. There are no numbers used in the entire work aside from a few small
positive integers. There is also no measurement. Various geometrical objects are compared,
but not by use of numerical measures. There are no cubits or acres or degrees. The only
measurement standard—for angles—is the right angle. Nevertheless, the question must be
asked as to how much influence the mathematical cultures of Egypt and Mesopotamia had on
Euclidean mathematics. In this chapter we discuss certain pieces of evidence in this regard,
but a complete answer to this question cannot yet be given.



SIDEBAR 3.1

Postulates

1.
2.

To draw a straight line from any point to any point.
To produce a finite straight line continuously in a straight
line.

. To describe a circle with any center and distance.
. That all right angles are equal to one another.
. That, if a straight line intersecting two straight lines make

the interior angles on the same side less than two right
angles, the two straight lines, if produced indefinitely,
meet on that side on which the angles are less than two
right angles.
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Euclid’s Postulates and Common Notions

Common Notions (Axioms)

1.

Things which are equal to the same thing are also equal
to one another.

2. If equals are added to equals, the wholes are equal.

. If equals are subtracted from equals, the remainders are

equal.

. Things which coincide with one another are equal to one

another.

. The whole is greater than the part.

(O8]

BOOK I AND THE PYTHAGOREAN THEOREM

As Aristotle suggested, a scientific work needs to begin with definitions and axioms. Euclid
therefore prefaced several of the thirteen books with definitions of the mathematical objects
discussed, most of which are relatively standard. He also prefaced Book I with ten axioms;
five of them are geometrical postulates and five are more general truths about mathematics
called “common notions.” Euclid then proceeded to prove one result after another, each one
based on the previous results and/or the axioms. If one reads Book I from the beginning, one
never has any idea what will come next. It is only when one gets to the end of the book, where
Euclid proved the Pythagorean Theorem, that one realizes that Book I's basic purpose is to
lead to the proof of that result. Thus, in order to understand the reasons for various theorems,
we begin our discussion of Book I with the Pythagorean Theorem and work backwards. This
also enables us to see why certain unproved results must be assumed, namely, the axioms.
Sidebar 3.1 does, however, list all of Euclid’s axioms (called “postulates” and “‘common
notions”) and Sidebar 3.2 has selected definitions.

As we discuss the various propositions, the reader should keep in mind a few important
issues. First, although Euclid has modeled the overall structure of the Elements using some
of Aristotle’s ideas, he did not use syllogisms in his proofs. His proofs were written out in
natural language and generally used the notions of propositional logic. In fact, one can find
examples of all four of the basic rules of inference among Euclid’s proofs. Next, Euclid
always assumed that if he proved a result for a particular configuration representing the
hypotheses of the theorem and illustrated in a diagram, he had proved the result generally.
For example, as we will see, he proved the Pythagorean Theorem by drawing some lines
and marking some points on a particular right triangle, then arguing to his result on that
triangle, and then concluding that the result is true for any right triangle. Of course, when
mathematicians today use that strategy, they base it on explicit ideas of mathematical logic.
Euclid, in contrast, never discussed his philosophy of proof; he just went ahead and proved
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SIDEBAR 32  Selected Definitions from Euclid’s Elements, Book [
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. A point is that which has no part.

. A line is breadthless length.

. The extremities of a line are points.

. A straight line is a line which lies evenly with the points

on itself.

. A surface is that which has length and breadth only.
. The extremities of a surface are lines.
. A plane surface is a surface which lies evenly with the

straight lines on itself.

. A plane angle is the inclination to one another of two

lines in a plane which meet one another and do not lie in
a straight line.

. And when the lines containing the angle are straight, the

angle is called rectilinear.

. When a straight line meeting another straight line makes

the adjacent angles equal to one another, each of the

15.

16.
17.

18.

23.

equal angles is right, and the first straight line is called a
perpendicular to the second line.

A circleis a plane figure contained by one line such that all
the straight lines meeting it from one point among those
lying within the figure are equal to one another.

And the point is called the center of the circle.

A diameter of the circle is any straight line drawn through
the center and terminated in both directions by the circum-
ference of the circle, and such a straight line also bisects
the circle.

A semicircle is the figure contained by the diameter and
the circumference cut off by it. And the center of the
semicircle is the same as that of the circle.

Parallel straight lines are straight lines which, being in
the same plane and being produced indefinitely in both
directions, do not meet one another in either direction.

things. Of course, occasionally, he seems to have depended on the diagram more than
modern mathematicians would allow. These so-called gaps in Euclid’s logic were discussed
extensively in the nineteenth century, so we will refer to them briefly when they occur here.

We are now ready to state Euclid’s version of the Pythagorean Theorem:

PROPOSITION 147 In right-angled triangles the square on the hypotenuse is equal to the
sum of the squares on the legs.

Euclid proved the result for triangle A BC by first constructing the line AL parallel to BD
meeting the base DE of the square on the hypotenuse at L and then showing that rectangle
BL is equal to the square on A B and rectangle C L is equal to the square on AC (Fig. 3.2). To
accomplish the first equality, Euclid connected AD and C F to produce triangles AD B and
C BF. He then showed that these two triangles are equal to each other, that rectangle BL is
double triangle AB D, and that the square on A B is double triangle C B F'. His first equality
then follows. The second one is proved similarly, while the sum of the two equalities proves
the theorem, given common notion 2, that equals added to equals are equal.

We need to understand here what Euclid meant when he claimed that two plane figures
are equal. Evidently, he meant that the figures have “equal area,” but he nowhere defined this
notion, nor did he calculate any areas. His alternative was generally to decompose the regions
involved and to show that individual pieces are, in fact, identical. This process is justified by
common notion 4, that things that coincide are equal. We will look at this in more detail later.
But first, let us see what results we need to make Euclid’s proof of [-47 work. First, of course,
to make any sense of the theorem at all, we need to know how to construct a square on a given
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straight line segment. After all, the theorem states a relationship between certain squares. We
are therefore led to

PROPOSITION 1-46 On a given straight line to describe a square.

There are many ways to accomplish this construction, so Euclid had to make a choice. He
began by constructing a perpendicular AC to the given line AB and determining a point D
so that AD = AB. He then constructed a line through D parallel to A B and a line through B
parallel to A D, the two lines meeting at point E. His claim now is that quadrilateral ADE B
is the desired square (Fig. 3.3). (Note that to get this far we need to be able to construct lines
perpendicular and parallel to given lines—these constructions are given in Propositions I—
11 and I-31, respectively—as well as cut off on one line segment a line segment equal to
another one (Proposition 1-3).) To prove that his construction is correct, Euclid began by
noting that quadrilateral A D E B has two pairs of parallel sides, so it is a parallelogram. And
by Proposition 1-34, the opposite sides are equal. It follows that all four sides of ADEB
are equal. To show that it is a square, it remains to show that all the angles are right angles.
But line AD crosses the two parallel lines AB, DE. So by Proposition [-29, the two interior
angles on the same side, namely, angles BAD and ADE, are equal to two right angles. But
since we already know that angle BA D is aright angle, so is angle A D E. And since opposite
angles in parallelograms are equal according to [-34, all four angles are right, and ADE B is
a square.

So although the actual construction of a square is fairly obvious, the proof that the
construction is correct appears to require many other propositions. Before looking at some
of those propositions, let us return to the main theorem and see what else we need.

The first result is the one that allows Euclid to conclude that triangles ADE and C B F are
equal. That follows by the familiar side-angle-side theorem (SAS), proved by Euclid as

PROPOSITION I-4 [ftwo triangles have two sides equal to two sides respectively, and have
the angles contained by the equal sides also equal, then the two triangles are congruent.

The word “congruent” is used here as a modern shorthand for Euclid’s conclusion that each
part of one triangle is equal to the corresponding part of the other. Euclid proved this theorem
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FIGURE 3.4

Elements, Proposition [-41

by superposition. Namely, he imagined the first triangle being moved from its original position
and placed on the second triangle with one side placed on the corresponding equal side and
the angles also matching. Euclid here tacitly assumed that such a motion is always possible
without deformation. Rather than supply such a postulate, nineteenth-century mathematicians
tended to assume this theorem itself as a postulate.

Euclid also needed the result that a rectangle is double a triangle with the same base and
height. This follows from

PROPOSITION I-41 Ifa parallelogram has the same base with a triangle and is in the same
parallels, the parallelogram is double the triangle.

Since “in the same parallels” means from a modern point of view that the two figures have
the same height, it would seem that this proposition follows from the formulas for the areas of
atriangle and a parallelogram, namely, A = %bh and A = bh. But, as noted earlier, Euclid did
not use formulas to deal with equal area; he used decomposition. So here he showed that the
parallelogram can be divided into two triangles, each equal to the given one. In Figure 3.4, the
given parallelogram is ABC D and the given triangle is BC E. Euclid drew AC, the diagonal
of the parallelogram, then noted that triangle ABC is equal to triangle BC E because they
have the same base and are in the same parallels (Proposition I-37). But now parallelogram
ABCD is double triangle ABC (by Proposition 1-34) and therefore is double triangle BCE.

A D E

Recall that the construction of a square required the construction of both a perpendicular
to a given line and a parallel to a given line. The first of these constructions (Proposition I-11)
begins with the drawing of the equilateral triangle D F E in which the midpoint C of D E is the
point at which the perpendicular is drawn (Fig. 3.5). The construction of an equilateral triangle
is accomplished in Proposition I-1, in which Euclid drew circles of radius D E centered on
each of the points D and E and then found F as the intersection of the two circles. This
construction in turn requires the use of a compass and a straightedge. Namely, Euclid needed
to postulate that a circle can be drawn with a given center and radius and that a line can be
drawn connecting two points. These postulates are postulate 3 and postulate 1, respectively.
But even with these two postulates, modern commentators have noted that there is a logical
gap in this proof. How did Euclid know that the two circles drawn from the endpoints of
DE actually intersect? It seems obvious in the diagram, but some postulate of continuity is
necessary. This was supplied in the nineteenth century and will be discussed later. But once
the triangle is constructed, the line from the vertex F to the midpoint C of the base is the
desired perpendicular. To prove this, Euclid noted that the two triangles DCF and ECF are
congruent by side-side-side (SSS), a result proved as Proposition [-8, by superposition, like
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SAS. Since the sum of the equal angles DCF and ECF is two right angles, each of the
angles DCF and ECF is right.

To construct a line through a given point A parallel to a given line BC (Proposition
1-31), Euclid took an arbitrary point D on BC and connected A D (Fig. 3.6). By Proposition
[-23, he then constructed the angle DAE equal to the angle ADC and extended AE into
the straight line A F. That one can extend a straight line in a straight line is the substance of
another construction postulate, postulate 2. To prove that E F is now parallel to BC, Euclid
noted that the alternate interior angles DAE and ADC are equal. By Proposition I-27, the
two lines are parallel.

Let us now consider

PROPOSITIONI-27 [fa straight line falling on two straight lines makes the alternate angles
equal to one another, then the straight lines are parallel to one another.

Here Euclid argued by reductio ad absurdum, a version of modus tollens. Namely, he
assumed that even though the alternate angles AEF, EF D, formed by line E F falling on
lines AB and C D are equal, the lines themselves are not parallel (Fig. 3.7). Therefore, they
must meet at point G. It follows that in triangle E F G, the exterior angle AE F equals the
interior angle E F D. But this contradicts Proposition I-16, so the original assumption must
be false and AB is parallel to CD.
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FIGURE 3.8

Elements, Proposition I-16

This then takes us back to

PROPOSITION I-16 In any triangle, if one of the sides is produced, the exterior angle is
greater than either of the interior and opposite angles.

Suppose side BC of triangle ABC is produced to D (Fig. 3.8). Bisect AC at E and join
BE. Euclid then claimed that B E may be extended to F so that EF = BE. Unfortunately,
there is no postulate allowing him to extend a line to any arbitrary length. Of course, if that
assumption is granted, then the proof is straightforward. One connects F'C and shows that
the triangles ABE and C FE are congruent. Thus, /BAE = /ECF.But ZECF is part of
the exterior angle AC D; thus, the latter angle is greater than / BAE. This last statement also
requires a postulate, that the whole is always greater than the part (common notion 5).

An immediate corollary is Proposition I-17, that two angles of any triangle are always
less than two right angles. As will be discussed later, this proposition, based on the faulty
proof of Proposition I-16, was important in the developments leading to the discovery of
non-Euclidean geometry.

We could continue by analyzing the proof of I-23, which was used in [-31. This would
force us to analyze most of the earlier results in Book I as well. So we will leave some of those
results for the exericises and conclude this section by considering just two more important
propositions that have already been quoted several times. First, we look at

PROPOSITION 1-34 In parallelograms the opposite sides and angles are equal to one
another and the diameter bisects the areas.

Note that in the proofs of Propositions [-46 and [-41, we have used all three conclusions of
this proposition. To prove it, one thinks of the diagonal as first cutting one pair of parallel sides
and then cutting the other. In each case, Proposition I-29 implies that the alternate interior
angles are equal. It then follows (by angle-side-angle) that the two triangles into which the
diagonal cuts the parallelogram are congruent. (The angle-side-angle triangle congruence
theorem is Proposition I-26.) The congruence of the two triangles then implies that each pair
of opposite sides and each pair of opposite angles are equal. The third part of the proposition
follows immediately.

The final proposition we consider is one on which both I-34 and 1-46 depend:
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PROPOSITION I-29 A straight line falling on parallel straight lines makes the alternate
angles equal to one another; the exterior angle equal to the interior and opposite angle, and
the interior angles on the same side equal to two right angles.

It is easy enough to see that any two of the statements are simple consequences of the
third. So we need to decide which one to prove. From hints in various Greek texts, we know
that before Euclid, the situation regarding this theorem was very unclear. How do you prove
one of these results? What must you assume? It is in his answer to these questions that Euclid
showed his genius. He had already proved the converse of this theorem in Propositions I-
27 and I-28. Evidently, however, he saw no way of proving any of the statements in this
proposition directly. We can imagine that he struggled with this, but he eventually realized
that he would have to take one of these results—or its equivalent—as a postulate. And so he
decided, for reasons we cannot guess, to take the contrapositive of the third statement in the
proposition as a postulate. Thus, at the beginning of Book I, he placed

POSTULATE 5 If a straight line intersecting two straight lines make the interior angles on
the same side less than two right angles, the two straight lines, if produced indefinitely, meet
on that side on which the angles are less than two right angles.

Given this postulate, the proof of Proposition I-29 is straightforward by a reductio argu-
ment: Assume that angle AG H is greater than angle G H D (Fig. 3.9). Then the sum of angles
AGH and BGH is greater than the sum of angles GH D and BG H. The first sum equals
two right angles (by Proposition I-13), so the second one is less than two right angles. Then
by the postulate, the lines AB and C D must meet. But this contradicts the hypothesis that
those lines are parallel.

Thus, we see that the Pythagorean Theorem, the culminating theorem of Book I, besides
requiring very many of the earlier results in Book I (including all three triangle congruence
theorems), rests on the critical parallel postulate. The parallel postulate, alone among Euclid’s
postulates, has caused immense controversy over the years, because many people felt it was
not self-evident. And for Euclid, as for Aristotle, a postulate should be “self-evident.” Thus,
almost from the time the Elements appeared, people have attempted to prove this result as a
theorem, using as a basis just the other axioms and postulates. Many people thought they had
accomplished this task, but a close examination of every such proof always reveals either an
error or, more likely, another assumption—one that perhaps is more self-evident than Euclid’s
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postulate but nevertheless cannot be proved from the other nine axioms. Probably the most
familiar “other assumption” is what is now known as

PLAYFAIR’S AXIOM Through a given point outside a given line, exactly one line may be
constructed parallel to the given line.

We leave it as an exercise that this result is entirely equivalent to Euclid’s postulate, at
least under the assumption that lines of arbitrary length may be drawn and therefore that
Proposition I-16 is true.

BOOK IT AND GEOMETRIC ALGEBRA

Book I of the Elements, with its familiar geometric results, was a major component of
the Greek mathematician’s “toolbox,” a set of results that were frequently used in any
advanced geometric argument. Book II, on the other hand, is quite different. It deals with
the relationships between various rectangles and squares and has no obvious goal. In fact,
the propositions in Book II are only infrequently used elsewhere in the Elements. Thus,
the purpose of Book II has been the subject of much debate among students of Greek
mathematics. One interpretation, dating from the late nineteenth century but still common
today, is that this book, together with a few propositions in Books I and VI, can best
be interpreted as “geometric algebra,” the representation of algebraic concepts through
geometric figures. In other words, the squares of side length a can be thought of as geometric
representations of a?; rectangles with sides of length a and b can be interpreted as the products
ab; and relationships among such objects can be interpreted as equations. Of course, one of
the issues in this debate is what one means by the term “algebra.” If we think of algebra as
meaning the finding of unknown quantities, given certain relationships between those and
known quantities, regardless of how these quantities are expressed, then there is certainly
algebra in Book II, as well as elsewhere in the Elements. It is also easy enough to apply
some of Euclid’s theorems to the solution of quadratic equations—and this was, in fact, done
by medieval Islamic mathematicians. But the majority of scholars today believe that Euclid
himself really intended in Book II only to display a relatively coherent body of geometric
knowledge that could be used in the proof of further geometric theorems, if not in the Elements
themselves, then in more advanced Greek mathematics such as the study of conic sections.
We shall look at some of the arguments about geometric algebra in what follows.>

Euclid began Book II with a definition: Any rectangle is said to be contained by the
two straight lines forming the right angle. This definition shows Euclid’s geometric usage.
The statement does not mean that the area of a rectangle is the product of the length by the
width. Euclid never multiplied two lengths together, because he had no way of defining such
a process for arbitrary lengths. At various places, he multiplied lengths by numbers (that
is, positive integers), but otherwise he only wrote of rectangles contained by two lines. One
question then is whether one can interpret Euclid’s “rectangle” as meaning a “product.”

As an example of Euclid’s use of this definition, consider
PROPOSITION II-1 [fthere are two straight lines, and one of them is cut into any number

of segments whatever, the rectangle contained by the two straight lines is equal to the sum of
the rectangles contained by the uncut straight line and each of the segments.
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We can intepret this algebraically as stating that given a length / and a width w cut into
several segments, say, w = a + b + c, the area of the rectangle determined by those lines,
namely, /w, equals the sum of the areas of the rectangles determined by the length and the
segments of the width, namely, la + [b + Ic. In other words, this theorem states the familiar
distributive law: [(a + b + ¢) = la + Ib + Ic. But let us look more closely at Euclid’s proof.
Two lines A and BC are given, and the second is divided into three segments by the points D
and E (Fig. 3.10). (Euclid had no way of representing “any number” of segments, so he used
“three” as what we may call his generalizable example.) He then drew BG perpendicular
to BC and of length equal to that of A and completed the rectangles BDKG, DELK, and
ECHL. Since rectangle BC HG is “the rectangle contained by A and BC,” while BDK G,
DELK, and ECHL are the “rectangles contained by A and each of the segments,” Euclid
could conclude from the diagram that the result was true. At first glance, the proposition
seems almost a tautology. But what Euclid seems to be doing here, as well as later in this
book, is proving a result about “invisible” figures, that is, the figures stated in the theorem
with respect just to the initial two lines and the segments, by using “visible” figures, the
actual rectangles drawn. Euclid clearly believed that the “visible” result in the diagram was
a correct basis for the proof of the “invisible” result of the proposition.* Another example of
this process is in

PROPOSITION 1I-4 [f a straight line is cut at random, the square on the whole is equal to
the squares on the segments and twice the rectangle contained by the segments.

Algebraically, this proposition is simply the rule for squaring a binomial, (a + b)? =
a® + b* + 2ab, the basis for the square root algorithms discussed in Chapter 1 (Fig. 3.11).
Euclid’s proof is quite complex, since he needed to prove that the various figures in the
diagram are in fact squares and rectangles. But again, he needed to reduce the invisible
statement to a visible diagram.

The next two propositions were interpreted in the ninth century CE as geometric justifica-
tions of the standard algebraic solutions of quadratic equations.

PROPOSITION II-5  [f a straight line is cut into equal and unequal segments, the rectangle
contained by the unequal segments of the whole together with the square on the straight line
between the points of section is equal to the square on the half.

PROPOSITION 1I-6 If a straight line is bisected and a straight line is added to it, the
rectangle contained by the whole with the added straight line and the added straight line

together with the square on the halfis equal to the square on the straight line made up of the
half and the added straight line.

Figure 3.12 should help clarify these propositions. If AB is labeled in each diagram as
b, AC and BC as b/2, and DB as x, Proposition II-5 translates into (b — x)x + (b/2 —
x)% = (b/2)?, while Proposition II-6 gives (b + x)x + (b/2)?> = (b/2 + x)2. The quadratic
equation bx — x> = ¢ [or (b — x)x = ¢] can be solved using the first equality by writing
(b/2 — x)?> = (b/2)? — ¢ and then getting
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FIGURE 3.12

Elements, Propositions 1I-5
and II-6

b
b/2
—_——
A C D B A C B D
b X bz bz X
/2 / / Iy
K L H
L H M
K
E G F E G F

Similarly, the equation bx + x? = ¢ (or (b 4 x)x = c) can be solved from the second equality
by using an analogous formula. Alternatively, one can label AD as y and DB as x in each
diagram and translate the first result into the standard Babylonian systemx + y =b, xy =c,
and the second into the system y — x = b, yx = c. In any case, note that Figure 3.12 is
essentially the same as Figure 1.20, the figure representing the Babylonian scribes’ probable
method for solving the first of these systems.

Euclid, of course, did not do any of the translations indicated. He just used the construc-
tions in Figure 3.12 to prove the equalities of the appropriate squares and rectangles. He did
not indicate anywhere that these propositions are of use in solving what we call quadratic
equations.

What did these theorems then mean for Euclid? We can see how Proposition II-6 is used
in the proof of Proposition II-11, and Proposition II-5 in the proof of Proposition II-14.

PROPOSITION II-11 7o cut a given straight line so that the rectangle contained by the
whole and one of the segments is equal to the square on the remaining segment.

The goal of this proposition is to find a point H on the line so that the rectangle contained
by AB and H B equals the square on AH (Fig. 3.13). This is an algebraic problem, in terms
of the definition given earlier, since it asks to find an unknown quantity given its relationship
to certain known quantities. To translate this problem into modern notation, let the line AB
be a and let AH be x. Then H B = a — x, and the problem amounts to solving the equation

a(a—x):x2 or x>+ ax=ad".

2
a a
x=.l=) +a*-=.
<2) 2

Euclid’s proof seemingly amounts to precisely this formula. To get the square root of the
sum of two squares, the obvious method is to use the hypotenuse of a right triangle whose
sides are the given roots, in this case, a and a/2. So Euclid drew the square on A B and then
bisected AC at E. It follows that E B is the desired hypotenuse. To subtract a/2 from this
length, he drew E F equal to E B and subtracted off AE to get A F; this is the needed value
x. Since he wanted the length marked off on A B, he simply chose H so that AH = AF. To
prove that this choice of H is correct, Euclid then appealed to Proposition II-6: The line AC
has been bisected and a straight line A F' added to it. Therefore, the rectangle on FC and AF

The Babylonian solution is
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plus the square on A E equals the square on F E. But the square on F E equals the square on
E B, which in turn is the sum of the squares on AE and A B. It follows that the rectangle on
FC and AF (equal to the rectangle on F'C and F G) equals the square on A B. By subtraction
of the common rectangle AK, we get that the square on A H equals the rectangle on H B and
AB, as desired.

Euclid has thus solved what we would call a quadratic equation, albeit in geometric
dress, in the same manner as the Babylonians. Interestingly enough, he solved the same
problem again in the Elements as Proposition VI-30. There he wanted to cut a given straight
line in “extreme and mean ratio,” that is, given a line AB to find a point H such that
AB :AH = AH : HB. Naturally, this translates algebraically into the same equation as given
above. The ratio a : x from that equation, namely, («/5 + 1) : 2, is generally known as the
golden ratio. Much has been written about its importance from Greek times to today.’

Before considering an example of the use of Proposition II-5, a slight digression back to
Book I is necessary.

PROPOSITION 1-44 7o a given straight line to apply, in a given rectilinear angle, a
parallelogram equal to a given triangle.

The aim of the construction is to find a parallelogram of given area with one angle given
and one side equal to a given line segment. That is, the parallelogram is to be “applied” to the
given line segment. This notion of the “application” of areas is, according to some sources,
due to the Pythagoreans. That this too can be interpreted algebraically is easily seen if the
given angle is a right angle. If the area of the triangle is taken to be ¢ and the given line
segment to have length a, the goal of the problem is to find a line segment of length x such
that the rectangle with length a and width x has area ¢?, that is, to solve the equation ax = ¢?.
Given that Euclid did not deal with “division” of magnitudes, a solution for him amounted to
finding the fourth proportional in the proportion a : ¢ = ¢ : x. But since he could not use the
theory of proportions in Book I, he was forced to use a more complicated method involving

areas.

From a geometrical point of view, this construction enables one to compare the sizes of
two rectangles. For if rectangle A is applied to one of the sides of rectangle B, then the new
rectangle C, equal to A, will share a side with B. Thus, the ratio of the areas of C = A to
B will be equal to the ratios of the nonshared sides. Such comparisons, making use of this
proposition, are found in the works of Archimedes and Apollonius.
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FIGURE 3.14

Elements, Proposition II-14

FIGURE 3.15

Elements, Propositions VI-28
and VI-29

In Proposition I-45, Euclid demonstrated how to construct a rectangle equal to any given
rectilinear figure, by simply dividing the figure into triangles and using the result of 1-44,
among others. This proposition is then used in the first step of the solution of

PROPOSITION 11-14  To construct a square equal to a given rectilinear figure.

We can think of this construction as an algebraic problem, since we are asked to find an
unknown side of a square meeting certain conditions. In modern notation, we are asked to
solve the equation x> = cd, where c, d are the lengths of the sides of the rectangle constructed,
using [-45, equal to the given figure (Fig. 3.14). Placing the sides of the rectangle BE, E'F,
in a straight line and bisecting B F at G, Euclid constructed the semicircle BH F' of radius
G F, where H is the intersection of that semicircle with the perpendicular to B F at E. Then,
since the straight line B F has been cut into equal segments at G and into unequal segments
at E, Proposition II-5 shows that the rectangle contained by BE and E F together with the
square on EG is equal to the square on GF. But since GF = GH and the square on GH
equals the sum of the squares on GE and E H, it follows that the square on E H satisfies
the condition of the problem. Like II-11, Euclid solved this problem a second time using
proportions as Proposition VI-13, the construction of a mean proportional between two line
segments.

Additionally, in Book VI, Euclid expanded the notion of “application of areas” to appli-
cations that are “deficient” or “exceeding.” The importance of these notions will be apparent
in the discussion of conic sections later. For now, however, we note that in the following two
propositions, Euclid solved two types of quadratic equations geometrically.

PROPOSITION VI-28 To a given straight line to apply a parallelogram equal to a given
rectilinear figure and deficient by a parallelogram similar to a given one; thus the given
rectilinear figure must not be greater than the parallelogram described on the half of the
straight line and similar to the defect.

PROPOSITION VI-29 To a given straight line to apply a parallelogram equal to a given
rectilinear figure and exceeding by a parallelogram figure similar to a given one.

In the first case, Euclid proposed to construct a parallelogram of given area whose base is
less than the given line segment A B. The parallelogram on the deficiency, the line segment
SB, is to be similar to a given one. In the second case, the constructed parallelogram of given
area has base greater than the given line segment A B, while the parallelogram on the excess,
the line segment B S, is again to be similar to a given one (Fig. 3.15). To simplify matters, and
to show why we can think of Euclid’s constructions as solving quadratic equations, we will
assume that the given parallelogram in each case is a square. This implies that the constructed
parallelograms are rectangles.
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Designate AB in both cases by b, and the area of the given rectilinear figure by c.
The problems reduce to finding a point S on AB (Proposition VI-28) or on AB extended
(Proposition VI-29) so that x = BS satisfies x(b — x) = c in the first case and x (b + x) = ¢
in the second. That is, it is necessary to solve the quadratic equations bx — x> = ¢ and
bx + x? = c, respectively. In each case, Euclid found the midpoint E of AB and constructed
the square on B E, whose area is (b/ 2)2. In the first case, S was chosen so that E S is the side
of a square whose area is (b/2)? — c. That is why the condition is stated in the proposition
that in effect ¢ cannot be greater than (b/2)2. This choice for E S implies that

2
x:BS:BE—ES:l—)— <é) —c.
2 2

In the second case, S was chosen so that ES is the side of a square whose area is (b/2)* +c.
Then

2
x=BS=ES—-BE= (ZZ) + —]3.
2 2
In both cases, Euclid proved that his choice was correct by showing that the desired rect-
angle equals the gnomon X WV and that the gnomon is in turn equal to the given area c.
Algebraically, that amounts in the first case to showing that

o)y
(b4 x) = [(g)z +c} - (g)z e

There has long been a debate over whether the geometric algebra in Euclid stems from
a deliberate transformation of the Babylonian quasi-algebraic results into formal geometry.
Euclid’s solution of several construction problems mirrors the Babylonian solutions of similar
problems. One can then argue that the Greek adaptation into their geometric viewpoint, given
the necessity of proof, was related to the discovery that not every line segment could be
represented by a “number.” One can further argue that, once one has translated the material
into geometry, one might just as well state and prove certain results for parallelograms
as for rectangles, since little extra effort is required. A further argument supporting the
transmission and translation is that the original Babylonian methodology itself was couched
in a “naive” geometric form, a form well suited to a translation into the more sophisticated
Greek geometry.

and in the second that

Was there any opportunity for direct cultural contact between Babylonian mathematical
scribes and Greek mathematicians? It used to be argued that this was virtually impossible,
because there was no record of Babylonian mathematics at all during the sixth to the fourth
centuries BCE, when this contact would have had to take place, and because those in the
aristocracy to which the Greek mathematicians belonged would be disdainful of the activities
of the scribes, who in Old Babylonian times were not themselves part of the elite. However,
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recent discoveries have indicated that mathematical activity did continue in the mid-first
millennium BCE. Furthermore, by this time, the Mesopotamian languages were often being
written in ink on papyrus using a new alphabet. Cuneiform writing on clay tablets was then
restricted to important documents that needed to be preserved, and those who could perform
this service were now members of the elite, experts in traditional wisdom who were central
to the functioning of the state. Besides, from the sixth century BCE on, Mesopotamia was a
province of the Persian empire, with whom the Greeks did maintain contact.

On the other hand, despite the possibilities for contact and the logic in the argument of
how Babylonian mathematics could have been “translated” into Greek geometry, there is no
direct evidence of any transmission of Babylonian mathematics to Greece during or before
the fourth century BCE. One could then argue that although the Greeks did employ what we
think of as algebraic procedures, their mathematical thought was so geometrical that all such
procedures were automatically expressed that way. The Greeks of the period up to 300 BCE
had no algebraic notation and therefore no way of manipulating expressions that stood for
magnitudes, except by thinking of them in geometric terms. In fact, Greek mathematicians
became very proficient in manipulating geometric entities. And finally, we note that there was
no way the Greeks could express, other than geometrically, irrational solutions of quadratic
equations.

A clear answer to the question of whether Babylonian algebra was transmitted in some
form to Greece by the fourth century BCE cannot yet be given. Hopefully, further research in
the original sources will enable us to find an answer in the future.

CIRCLES AND THE PENTAGON CONSTRUCTION

Books I and II dealt with properties of rectilinear figures, that is, figures bounded by straight
line segments. In Book III, Euclid turned to the properties of the most fundamental curved
figure, the circle. The Greeks were greatly impressed with the symmetry of the circle, the
fact that no matter how you turned it, it always appeared the same. They thought of it as
the most perfect of plane figures. Similarly, they felt the three-dimensional analogue of the
circle, the sphere, was the most perfect of solid figures. These philosophical ideas provided
the basis for the Greek ideas on astronomy, which will be discussed in Chapter 5. Many of
the theorems in Books III and IV dated from the earliest period of Greek mathematics. As
such, they became part of the Greek mathematician’s toolbox for solving other problems. As
we saw, Hippocrates used results on circles in his quadrature of lunes.

If there is any organizing principle of Book III, it is to provide for the construction, in
Book IV, of polygons, both inscribed in and circumscribed about circles. In particular, most
of the propositions from the last half of Book III are used in the most difficult construction of
Book IV, the construction of the regular pentagon. The constructions of the triangle, square,
and hexagon are relatively intuitive and are probably the work of the Pythagoreans. On the
other hand, the construction of the pentagon involves more advanced concepts, including
the division of a line segment into extreme and mean ratio, and is therefore probably a later
development, perhaps due to Theaetetus in the early fourth century BCE. This construction in
turn is used in Euclid’s construction of some of the regular solids in Book XIII.
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SIDEBAR 33  Selected Definitions from Euclid’s Elements, Book II1

2. A straight line is said to touch a circle which, meeting 8. An angle in a segment is the angle which, when a point
the circle and being produced, does not cut the circle. is taken on the circumference of the segment and straight
6. A segment of a circle is the figure contained by a straight lines are joined from it to the extremities of the straight
line and a circumference of a circle. line which is the base of the segment, is contained by the

FIGURE 3.16

Elements, Propositions I1I-20,
1M1-21, and TI-22

straight lines so joined.

After presenting a few relevant definitions (Sidebar 3.3), Euclid began Book III with some
elementary constructions and propositions, including the very useful result that diameters
bisect chords to which they are perpendicular. He then showed how to construct a tangent to
a circle:

PROPOSITION III-16 The straight line drawn at right angles to the diameter of a circle
from its extremity will fall outside the circle, and into the space between the straight line and
the circumference another straight line cannot be interposed.

This proposition asserts that the line perpendicular to the diameter at its extremity is what
is today called a tangent. Euclid only remarked in a corollary that it “touches” the circle, as
in definition 2. But the statement that no straight line can be interposed between the curve
and the line ultimately became part of the definition of a tangent before the introduction of
calculus. Euclid’s proof of this result, as to be expected, was by a reductio argument.

Propositions I1I-18 and III-19 give partial converses to Proposition III-16. The former
shows that the line from the center of a circle that meets a tangent is perpendicular to the
tangent; the latter demonstrates that a perpendicular from the point of contact of a tangent
goes through the center of the circle. Propositions III-20 and I1I-21 also give familiar results,
respectively, that the angle at the center is double the angle at the circumference, if both
angles cut off the same arc, and that angles in the same segment are equal. The proofs of both
are clear from Figure 3.16 as is the proof of Proposition I1I-22, that the opposite angles of
quadrilaterals inscribed in a circle are equal to two right angles.

Proposition I1I-31 asserts that the angle in a semicircle is aright angle. One could conclude
this immediately from Proposition III-20, if one is prepared to consider a straight angle as
an angle. Then the angle in a semicircle is half of the straight angle of the diameter, which
is in turn equal to two right angles. Euclid, however, did not consider a straight angle as an
angle, so he gave a different proof.
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FIGURE 3.17
Elements, Proposition I11-32

Proposition I11-32 is more complicated, but necessary for the pentagon construction.

PROPOSITIONIII-32 [fa straight line is tangent to a circle, and from the point of tangency
there is drawn a straight line cutting the circle, the angles which that line makes with the
tangent will be equal to the angles in the alternate segments of the circle.

In other words, this proposition asserts that one of the angles formed by the tangent E F
and the secant B D, say, angle DBF, is equal to any angle in the “alternate” segment B D
of the circle, such as angle DA B (Fig. 3.17). Similarly, the other angle made by the tangent,
angle D BE, is equal to any angle in the remaining segment, such as angle DC B. (We can say
“any angle” in the segment, since by Proposition I1I-21, any two angles in the same segment
are equal to one another.) To prove this result, we draw a perpendicular A B to the tangent at
the point B of tangency. Since a perpendicular to a tangent passes through the center of the
circle (Proposition 1II-19), the angle AD B, being an angle in a semicircle, is a right angle
(Proposition I1I-31). Therefore, angles DAB and ABD sum to a right angle. But angles
DBF and ABD also sum to a right angle. It follows that angle DA B equals angle DBF, as
claimed. The equality of the other two angles can then be easily established.

A

Proposition III-36 is also necessary for the pentagon construction, but because it is
closely related to Proposition I1I-35, and because Propositions II-5 and II-6 make another
appearance in these propositions, we first move to

PROPOSITION III-35 [f in a circle two straight lines cut one another, then the rectangle
contained by the segments of the one equals the rectangle contained by the segments of the
other.

We note that the rectangles of the proposition are “invisible”; they will only make their
appearance through Proposition II-5. For the proof, Euclid first noted that if the two lines
meet at the center of the circle, then the result is obvious. Thus, we will assume that the
lines AC and B D meet at a point E different from the center F' (Fig. 3.18). Draw F'G and
F H from F perpendicular to AC and DB, and then join F'B, FC, and F E. We know that
G is then the midpoint of AC. Thus, we can apply II-5 to the line AC and conclude that
the rectangle contained by AE and EC together with the square on EG equals the square
on GC. By adding the square on G F' to both sides and applying the Pythagorean Theorem,
we conclude that the rectangle contained by AE and EC plus the square on F E equals the



FIGURE 3.18
Elements, Proposition IT1I-35

FIGURE 3.19
Elements, Proposition I1I-36
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square on FC, which in turn equals the square on F B. By the same argument, the rectangle
contained by DE and E B plus the square on F E equals the square on FB. It follows that
the rectangle contained by DE and E B equals the rectangle contained by AE and EC, as
claimed.

The next proposition deals with two lines cutting the circle that meet outside it:

PROPOSITION III-36 If from a point outside a circle we draw a tangent and a secant to the
circle, then the rectangle contained by the whole secant and that segment which is outside
the circle equals the square on the tangent.

The statement may remind the reader of Proposition II-6. And in fact that proposition is
used in the proof. We will just consider the easier case here, where the secant line DC F A goes
through the center F (Fig. 3.19). Join F B to form the right triangle F'B D. Proposition II—
6 now asserts that the rectangle contained by AD and C D, together with the square on FC,
equals the square on F D. But FC = F B, and the sum of the squares on F B and B D equals
the square on F D. Therefore, the rectangle contained by AD and C D equals the square on
DB, as claimed. The case where the secant line does not pass through the center is slightly
trickier.

)
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FIGURE 3.20

Construction of a regular
pentagon

FIGURE 3.21
Elements, Proposition IV-10

Proposition ITI-37 is a converse of I1I-36, asserting that if two straight lines are drawn to
a circle from a point outside, one a secant and one touching the circle, and if the relationship
between the rectangle and square of that proposition holds, then the second line is a tangent.
The proof involves actually drawing a tangent and then showing, using Proposition I1I-36,
that the given line equals the tangent.

The treatment of the pentagon begins in Book IV after Euclid first showed the simpler
techniques of inscribing triangles and squares in circles, inscribing circles in triangles and
squares, circumscribing triangles and squares about circles, and circumscribing circles about
triangles and squares. Euclid then divided his construction of a regular pentagon into two
steps, the first being the construction of an isosceles triangle with each of the base angles
double the vertex (IV-10), and the second being the actual inscribing of the pentagon in the
circle (IV-11). As usual, Euclid did not show how he arrived at the construction, but a close
reading of it can well give a clue to his analysis of the problem. We will therefore assume the
construction made and try to see where that assumption leads.

So suppose ABCDE is a regular pentagon inscribed in a circle (Fig. 3.20). Draw the
diagonals AC and CE. Since angles CEA and CAE each subtend an arc double that
subtended by angle ACE, it follows that triangle ACE is an isosceles triangle with base
angles double those of the vertex. We have therefore reduced the pentagon construction to the
construction of that triangle. Assume then that AC E is such an isosceles triangle and let AF
bisect angle A. It follows that triangles AF E and C E A are similar,so EF : AF = EA:CE.
But triangles AF E and AF C are both isosceles, so EA = AF = FC. Therefore, EF : FC =
FC :CE, or,in modern terminology, FC 2 — EF - CE. The construction is therefore reduced
to finding a point F on a given line segment C E such that the square on C F' is equal to the
rectangle contained by EF and CE. But this is precisely the construction of Proposition
II-11. Once F is found, the isosceles triangle with base angles double the vertex angle can
be constructed by drawing a circle centered on C with radius C E and another circle centered
on E with radius C F. The intersection A of the two circles is the third vertex of the desired
triangle.

Euclid performs this construction in Proposition IV-10 (Fig. 3.21), but could not use
similarity arguments in his proof of its validity. He therefore used alternatives. The goal is to
show that o« = 26. If it is shown that 8 = §,then 8 + Yy =8 + y = €. Also, sinceax = + y,




FIGURE 3.22

Diagonals of inner pentagon
of a pentagram
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then € = «. Butthen AE = AF, and since by construction AE = F C, it follows that triangle
AFC isisosceles and that § = y. Finally, « = B + y = § 4+ § = 26, as desired. To show that
B =4, circumscribe a circle around triangle AFC. Since the rectangle contained by CE,
FE, equals the square on FC, it follows that this rectangle also equals the square on AE.
Proposition I1I-37 then asserts that under these conditions on the lines AE and CE, AE is
tangent to the circle. Proposition I1I-32 then allowed Euclid to conclude that 8 = § as desired,
completing the proof of the construction.

Given the isosceles triangle with base angles double the vertex angle, the inscribing of
the regular pentagon in a circle is now straightforward. Euclid first inscribed the isosceles
triangle ACE in the circle. Next, he bisected the angles at A and E. The intersection of these
bisectors with the circle are points D and B, respectively. Then A, B, C, D, E are the vertices
of a regular pentagon.

Euclid completed Book IV with the construction of a regular hexagon and a regular 15-
gon in a circle, but did not mention the construction of other regular polygons. Presumably, he
was aware that the construction of a polygon of 2"k sides (k =3, 4, 5) was easy, beginning
with the constructions already made, and even that, in analogy with his 15-gon construction,
it was straightforward to construct a polygon of k!l sides (k, [ relatively prime) if one can
construct one of k sides as well as one of / sides. Whether he was aware of a construction for
the heptagon, however, is not known. In any case, that construction, the first record of which
is in the work of Archimedes, would for Euclid be part of advanced mathematics, rather than
part of the “elements,” because it requires tools other than a straightedge and compass.

RATIO AND PROPORTION

The regular pentagon is part of the pentagram, evidently one of the symbols used by the
Pythagoreans. Thus, it is believed that the Pythagoreans worked out a construction of the
pentagon, although more likely their construction used similarity rather than the method
described above. It is therefore plausible that the property of the pentagram in reproducing
itself when one connects the diagonals of the inner pentagon (Fig. 3.22) could well have
been an alternative path to the discovery of incommensurability, rather than the one described
earlier. To explain this, we need to move to Book VII, the first of the three books of number
theory in the Elements.

Book VII, like all the number theory books, deals with what we call the positive integers in
contrast to the geometrical magnitudes of the earlier books. And the first item of business for
Euclid here is the familiar process for finding the greatest common divisor of two numbers.
This algorithm, usually called the Euclidean algorithm although certainly known long
before Euclid, is presented in Propositions VII-1 and VII-2. Given two numbers, a, b, with
a > b, one subtracts b from a as many times as possible; if there is a remainder, ¢, which of
course must be less than b, one then subtracts ¢ from b as many times as possible. Continuing
in this manner, one eventually comes either to a number m, which “measures” (divides) the
one before (Proposition VII-2), or to the unit (1) (Proposition VII-1). In the first case, Euclid
proved that m is the greatest common measure (divisor) of a and b. In the second case, he
showed that a and b are prime to one another. For example, given the two numbers 18 and
80, first subtract 18 from 80. One can do this four times, with remainder 8. Next subtract 8
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BIOGRAPHY
Theaetetus (417-369 BCE)

ecause Plato dedicated a dialogue to him, something is
known about Theaetetus’s life. He was born near Athens
into a wealthy family and was educated there. A meeting with
Theodorus of Cyrene before he was 20 excited him about
studying mathematics. Theodorus showed him the demonstra-
tion that not only was the square root of 2 incommensurable

with 1 but so too were the square roots of the other nonsquare
integers up to 17. Theaetetus then began research on this issue
of incommensurability, both in Heraclea (on the Black Sea)
and after 375 BCE in Athens at the Academy. In 369 BCE, he
was drafted into the army during a war, was wounded in battle
at Corinth, and soon after died of dysentery.

A B

FIGURE 3.23

Incommensurability of
diagonal and side of a regular
pentagon

from 18; this can be done twice with remainder 2. Finally, one can subtract 2 exactly four
times from 8. It then follows that 2 is the greatest common divisor of 18 and 80. In addition,
this calculation shows that one can express the ratio of 80 to 18 in the form (4,2,4), in the
sense that the algorithm applied to any other pair a, b, such that a : b = 80 : 18, will also
give (4,2,4). As another example, take the pair 7 and 32. One can subtract 7 four times from
32 with remainder 4. One can then subtract 4 once from 7 with remainder 3. Finally, one
can subtract 3 once from 4 with remainder 1. Thus, 7 and 32 are prime to one another and
their ratio can be expressed in the form (4,1,1). (The notation (a,b,c) for ratio is, of course,
a modern one.)

It was probably Theaetetus (417-369 BCE) who investigated the possibility of applying the
Euclidean algorithm to magnitudes. The results appear as Propositions 2 and 3 of Book X,
where we learn how to determine whether two magnitudes A and B have a common measure
(are commensurable) or do not (are incommensurable). The procedure, called anthyphairesis
(reciprocal subtraction), is basically the same as for numbers.® Thus, supposing that A > B,
one first subtracts B from A as many times as possible, say, n,, getting a remainder b that
is less than B. One next subtracts b from B as many times as possible, say, n;, getting a
remainder by less than b. Euclid showed in Proposition X-2 that if this process never ends,
then the original two magnitudes are incommensurable. If, on the other hand, one of the
magnitudes of this sequence measures the previous one, then that magnitude is the greatest
common measure of the original two (Proposition X—3). A natural question here is how one
can tell whether or not the process ends. In general, that is difficult. But in certain cases, one
observes a repeated pattern in the remainders, which shows that the process cannot end.

For example, let us consider the case of the diagonal and side of the regular pentagon
(Fig. 3.23). By the properties of the pentagon, we know that CG = K G. Therefore, we can
subtract the side CG = K G once from the diagonal G D, leaving remainder K D. We now
must subtract K D from the side CG. But CG = H D, so K D can be subtracted once from
CG = H D withremainder K H. Note that K H is the side of another regular pentagon, whose
diagonal is KM = K D. Therefore, at the next stage one is again subtracting a side from a
diagonal of a pentagon. Since one can continue getting new smaller and smaller pentagons
by connecting diagonals of previous ones, it is clear that the process never ends in this case.
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BIOGRAPHY
Eudoxus (408-355 BCE)

udoxus studied medicine in his youth in Cnidus, an island
Eoff the coast of Asia Minor. On a visit to Athens, he was
attracted to the lectures at the Academy in philosophy and
mathematics and began the study of these subjects. Later, he
visited Egypt and was able to make numerous astronomical
observations and study the Egyptian calendar. Returning to his

home, he opened a school and conducted his own research.
Although he returned at least one other time to Athens, this
time with his own students, he spent most of the remainder
of his life in Cnidus. He is famous not only for his work in
geometry but also for his application of spherical geometry to
astronomy.

Thus, the diagonal and side of a regular pentagon are incommensurable. In fact, the ratio of
the diagonal to the side may be written as (1, 1, 1, .. .).

Given now the existence of incommensurable magnitudes, the Greeks realized that they
had to figure out a method of dealing with the ratios of such magnitudes. When they believed
that any pair of quantities was commensurable, it was easy enough to see when two such
pairs were proportional, or had the same ratio. Euclid in fact defined this concept in Book VII,
when he was dealing with numbers: Four numbers are proportional when the first is the same
multiple, or the same part, or the same parts, of the second that the third is of the fourth.

As an example, 3 :4 = 6 : 8, because 3 is 3 “fourth” parts of 4 while at the same time 6 is
3 “fourth” parts of 8. But for general magnitudes, one cannot use this definition. The side of
a pentagon cannot be expressed either as a multiple or as a part or as parts of the diagonal.

Thus, using the anthyphairesis procedure, Theaetetus gave a new definition of “same ratio,”
which applied to all magnitudes. Suppose there are two pairs of magnitudes A, B, and C, D.
Applying this procedure to each pair gives two sequences of equalities:

A=nyB+b (b <B) C=myD+d (d <D)
B=n1b+b1(b1<b) D=m1d+d1(d1<d)
b=n2b1+b2 (b2 <bl) d=m2d1~|—d2 (d2<dl)

If the two sequences of numbers (ng, ny, ny, . ..), (Mg, my, m,, ... ), are equal term by
term and both end at, say, n;, = my, then one can check that the ratios A : B and C : D are both
equal to the same ratio of integers. Hence, Theaetetus could give the general definition that
A : B = C: D if the (possibly never ending) sequences (1, ny, ns, . . . ), (mgy, my, my, .. .),
are equal term by term. Although in general it may be difficult to decide whether two ratios are
equal, we have seen that there are interesting cases in which the sequence n, ny, n,, . .., is
relatively simple to determine. In any case, Aristotle noted that this anthyphairesis definition
of equal ratio was the one in use in his time.

Unfortunately, it turned out that Theaetetus’s definition was very awkward to use in
practice, so the mathematicians continued to search for a better one. It is not known what
inspired Eudoxus (408-355 BCE) to give his new definition of same ratio, but a reasonable
guess can be made.” Theaetetus’s definition shows, for example, thatif A: B = C : D, then
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SIDEBAR 34 Selected Definitions from Euclid’s Elements, Book V

1

. A magnitude is a part of a magnitude, the less of the
greater, when it measures (divides) the greater.

. The greater is a multiple of the less when it is measured
by the less.

. Aratio is a sort of relation in respect to quantity between
two magnitudes of the same kind.

. Magnitudes are said to have a ratio to one another which
are capable, when multiplied, of exceeding one another.

. Let magnitudes which have the same ratio be called pro-
portional.

7.

10.

When, of the equimultiples, the multiple of the first mag-
nitude exceeds the multiple of the second, but the multiple
of the third does not exceed the multiple of the fourth, then
the first is said to have a greater ratio to the second than
the third has to the fourth.

. When three magnitudes are proportional, the first is said

to have to the third the duplicate ratio of that which it has
to the second.

When four magnitudes are continuously proportional, the
first is said to have to the fourth the triplicate ratio of that

which it has to the second.

A > nyB while C > nyD (since my = ng). Since n1A =nnyB +nb = (nny+ 1)B — by,
alson|A < (nng 4+ 1) B and similarly n,C < (nyny + 1) D. A comparison of further multiples
of A and B and corresponding multiples of C and D shows that for various pairs r, s, of
numbers, rA > s B whenever rC > sD and rA < s B whenever rC < sD. Thus, Eudoxus
took for his definition of same ratio the one now included as definition 5 of Book V (see
Sidebar 3.4 for other definitions from Book V):

5. Magnitudes are said to be in the same ratio (alternatively, proportional), the first to the second
and the third to the fourth, when, if any equal multiples whatever are taken of the first and third,
and any equal multiples whatever of the second and fourth, the former multiples alike exceed, are
alike equal to, or alike fall short of, the latter multiples respectively taken in corresponding order.

Translated into algebraic symbolism, this definition says that a : b = c : d if, given any
positive integers m, n, whenever ma > nb, also mc > nd, whenever ma = nb, alsomc = nd,
and whenever ma < nb, also mc < nd. In modern terms, this is equivalent to noting that
for every fraction -, the quotients 7 and 5 are alike greater than, equal to, or less than that
fraction.

Of course, before one can define “same ratio,” a definition of ratio itself is in order. This
is given in definitions 3 and 4. Note that Euclid was quite clear that a ratio can only exist
between magnitudes of the same kind, that is, lines, surfaces, solids, and so on. In addition,
there must be a multiple of each that is greater than the other. So, for example, because no
multiple of the angle between the circumference of a circle and a tangent line can exceed a
given rectilinear angle, there can be no ratio between these two angles.

Definition 9 is Euclid’s version of what is today called the square of a ratio, or, equiva-
lently, the ratio of the squares: If a : b = b : ¢, then a : ¢ is the duplicate of the ratio a : b.
A modern form wouldbe a :c = (a:b)(b:c) = (a:b)(a :b) = (a :b)* = a?: b2, or, in frac-
tions, % = (%)2 = Z—;. Euclid, however, did not multiply ratios, much less fractions, just as
he did not multiply magnitudes. He only multiplied magnitudes by numbers. Similarly, he
never divided magnitudes. One cannot interpret Euclid’s ratio a : b as a fraction correspond-
ing to a particular point on a number line to which can be applied the standard arithmetical
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operations. On the other hand, Euclid did use the equivalence between the duplicate ratio of
two quantities and the ratio of their squares in the cases where it made sense to speak of the
“square” of a quantity (see Proposition VI-20).

The first proposition of Book V asserts, in modern symbols, thatif ma;, ma,, . . . , ma, are
equal multiples of ay, a,, . . ., a,, then ma; + may + - - - +ma, =m(a; +ar + - - - + a,).
Similarly, Proposition V-2 asserts in effect that ma + na = (m + n)a, while the next result
can be translated as m(na) = (mn)a. In other words, these first propositions of Book V give
versions of the modern distributive and associative laws.

Proposition V—4 is the first in which the definition of same ratio is invoked. The result
states thatifa : b = c : d, then ma :nb = mc : nd, where m, n are arbitrary numbers. To show
that equality, Euclid needed to show that if p(ma), p(mc), are equal multiples of ma, mc,
and g (nb), g(nd), are equal multiples of nb, nd, then according as p(ma) >=< q(nb), so
is p(mc) >=< g(nd). But since a : b = ¢ : d, the associative law and the definition of same
ratio for the original magnitudes allowed Euclid to conclude the equality of the ratios for the
multiples.

The next two propositions repeat the first two with addition being replaced by subtraction.
Proposition V=7 shows that if a = b, then a :c =b : ¢ and c : a = ¢ : b, while Proposition
V-8 asserts thatif a > b, thena :¢ > b :c and ¢ : b > ¢ : a. The proof of the first part of the
latter shows Euclid’s use of definitions 4 and 7. Since a > b, there is an integral multiple,
say, m, of a — b that exceeds ¢ (by definition 4). Let ¢ be the first multiple of ¢ that equals
or exceeds mb. Then gc > mb > (q — 1)c. Since m(a — b) = ma — mb > c, it follows that
ma > mb + ¢ > gc. Because also mb < gc, definition 7 implies that a : ¢ > b : ¢. A similar
argument gives the second conclusion.

Among other results of Book V are Proposition V-11, which asserts the transitive law,
ifa:b=c:dandc:d=e: f,thena:b=e: f, and Proposition V-16, which states that
ifa:b=c:d,thena:c=b:d. The remaining results give other properties of magnitudes
in proportion, in particular results dealing with adding or subtracting quantities to the an-
tecedents or consequents in various proportions.

Although Book V gives numerous properties of magnitudes in proportion, the main
application of this theory for Euclid was in the treatment of similarity in Book VI. The results
of this book then became another major component of the Greek mathematician’s toolbox.
The book begins with the definition of similarity:

Similar rectilinear figures are such as have their angles respectively equal and the sides about
the equal angles proportional.

Recall that the foundation of the idea of similarity, the notion of same ratio (or proportion-
ality), was originally based on the idea that all quantities could be thought of as numbers. So
once the basis for the idea of proportionality was destroyed, the foundation for these results
no longer existed. That is not to say that mathematicians ceased to use them. Intuitively, they
knew that the concept of equal ratio made perfectly good sense, even if they could not provide
a formal definition. In Greek times as also in modern times, mathematicians often ignored
foundational questions and proceeded to discover new results. The working mathematician
knew that eventually the foundation would be strengthened. Once this occurred, the actual
similarity results could be organized into a logically acceptable treatise. It is not known who
provided this final organization. What is probably true is that there was actually very little to
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redo except for the proof of the first proposition of the book. That is the only one that depends
directly on Eudoxus’s definition.

PROPOSITION VI-1 Triangles and parallelograms which have the same height are to one
another as their bases.

Given triangles ABC, AC D, with the same height, Euclid needed to show that as BC is
to CD, so is the triangle ABC to the triangle AC D. Proceeding as required by Eudoxus’s
definition, he extended the base B D to both right and left so that he could take arbitrary
multiples of both BC and CD along that line (Fig. 3.24). As earlier, since he could not
take an “arbitrary multiple,” Euclid used a “generalizable example.” So working with two
line segments on each side, Euclid noted that because triangles with equal heights and equal
bases are equal, whatever multiple the base HC is of the base BC, the triangle AH C is the
same multiple of triangle ABC. The same holds for triangle ALC with respect to triangle
ACD. Since again triangles AHC and ALC have the same heights, the former is greater
than, equal to, or less than the latter precisely when HC is greater than, equal to, or less
than C L. Equal multiples having been taken of base BC and triangle ABC, and other equal
multiples of base C' D and triangle AC D, and the results compared as required by Eudoxus’s
definition, it follows that BC : CD = ABC : ACD as desired. The result for parallelograms
is immediate, because each parallelogram is double the corresponding triangle.

After showing in Proposition VI-2 that a line parallel to one of the sides of a triangle cuts
the other two sides proportionally and conversely, and in the following proposition that the
bisector of an angle of a triangle cuts the opposite side into segments in the same ratio as that
of the remaining sides and conversely, Euclid next gave various conditions under which two
triangles are similar. Because the definition of similarity requires both that corresponding
angles are equal and that corresponding sides are proportional, Euclid showed that one or
the other of these two conditions is sufficient. He also stated the conditions under which the
equality of only one pair of angles and the proportionality of two pairs of sides guarantees
similarity. Proposition VI-8 then shows that the perpendicular to the hypotenuse from the
right angle of aright triangle divides the triangle into two triangles, each similar to the original
one.

Among the useful constructions of Book VI are the finding of proportionals. Given line
segments a, b, ¢, Euclid showed how to determine x satisfying a : b = b : x (Proposition VI-
11),a :b = c: x (Proposition VI-12), and a : x = x : b (Proposition VI-13). This last result is
equivalent to finding a square root, that is, to solving x? = ab, and is therefore nearly identical
to the result of Proposition II-14. In fact, the constructions in the proof are the same; the only
difference is that here Euclid used similarity to prove the result, while earlier he used II-5.

Proposition VI-16 is in essence the familiar one that in a proportion the product of the
means is equal to the product of the extremes. But since Euclid never multiplied magnitudes,
he could not have stated this result in terms of Book V. In the geometry of Book VI, however,
he has the equivalent of multiplication, for line segments only:

PROPOSITION VI-16 [ffour straight lines are proportional, the rectangle contained by the
extremes is equal to the rectangle contained by the means; and if the rectangle contained by
the extremes is equal to the rectangle contained by the means, the four straight lines will be
proportional.
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Proposition VI-19 is of fundamental importance later. It also illustrates Euclid’s notion
of duplicate ratio:

PROPOSITION VI-19 Similar triangles are to one another in the duplicate ratio of the
corresponding sides.

A modern statement of this result would replace “in the duplicate ratio” by “as the square
of the ratio.” But Euclid did not multiply either magnitudes or ratios. Ratios are not quantities;
they are not to be considered as numbers in any sense of the word. Hence, for this particular
proposition, Euclid needed to construct a point G on BC so that BC: EF = EF : BG
(Fig. 3.25). The ratio BC : BG is then the duplicate of the ratio BC : E'F of the corresponding
sides. To prove the result, he showed that the triangles ABG, DEF, are equal. Because
triangle ABC is to triangle ABG as BC is to BG, the conclusion follows immediately.
Proposition VI-20 extends this result to similar polygons. In particular, the duplicate ratio of
two line segments is equal to the ratio of the squares on the segments.

A

Two parallelograms, of course, can be equiangular without being similar. Euclid was also
able to deal with the ratio of such figures, but only by using a concept not formally defined:

PROPOSITION VI-23 Equiangular parallelograms have to one another the ratio com-
pounded of the ratios of the sides.

The proof shows what Euclid means by the term “compounded,” at least in the context of
ratios of line segments. If the two ratios are a : b and c : d, one first constructs a segment e
suchthatc :d = b : e. The ratio compounded of ¢ : b and ¢ : d is then the ratio a : e. In modern
terms, the fraction ¢ is simply the product of the fractions § and 5 = g Interestingly enough,
although Euclid never considered compounding again, this notion became quite important in
later Greek times as well as in the medieval period.

NUMBER THEORY

Book VII of the Elements is the first of three dealing with the elementary theory of numbers.
There is no mention of the first six books in Books VII, VIII, and IX; these three books form
an entirely independent unit. Only in later books is there some connection made between
the three arithmetic books and the earlier geometric ones. The new start that Euclid made in
Book VIIis evidence of his desire to stick with Aristotle’s clear separation between magnitude
and number. The first six books dealt with magnitudes, in particular lengths and areas. The
fifth book dealt with the general theory of magnitudes in proportion. But in Books VII-IX
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SIDEBAR 35 Selected Definitions from Euclid’s Elements, Book VII

1.

11.

A unit is that by virtue of which each of the things that
exist is called one.

. A number is a multitude composed of units.
. A number is a part of a number, the less of the greater,

when it measures the greater;

. but parts when it does not measure it.
. The greater number is a multiple of the less when it is

measured by the less.
A prime number is that which is measured by the unit
alone.

12.

15.

20.

Numbers prime to one another are those which are mea-
sured by the unit alone as a common measure.

A number is said to multiply a number when that which
is multiplied is added to itself as many times as there are
units in the other, and thus some number is produced.
Numbers are proportional when the first is the same
multiple, or the same part, or the same parts, of the second
that the third is of the fourth.

Euclid dealt only with numbers. He did not consider these as types of magnitudes, but as
entirely separate entities. Therefore, although there are many results in Book VII that appear
to be merely special cases of results in Book V, for Euclid they are quite different. One should
not be misled by the line segments Euclid used in these books to represent numbers. He did
not use the fact of the representation in his proofs. Perhaps this representation was the only
one that occurred to him.

It is reasonably certain that many of the propositions in the arithmetic books date back to
the Pythagoreans. But from the use of Book VII in Book X, it appears that the details of the
compilation of that book are due to the same mathematician who is responsible for Book X,
namely, Theaetetus. That is, Theaetetus took the loosely structured number theory of the
Pythagoreans and made it rigorous by introducing precise definitions and detailed proofs. It
is these that Euclid included in his version of the material.

Book VII, like most of Euclid’s books, begins with definitions (Sidebar 3.5). The first
definition s, like the beginning definitions of Book I, mathematically useless in modern terms.
For Euclid, however, the definition appears as the mathematical abstraction of the concept
of “thing.” What is more interesting is the second definition, that a number is a multitude
of units. Since “multitude” means plurality, and the unit is not a plurality, it appears that for
Euclid, as for the Pythagoreans earlier, 1 is not a number.

Definitions 3 and 5 are virtual word-for-word repetitions of definitions 1 and 2 in Book V,
while definition 4 would make no sense in the context of arbitrary magnitudes. Definitions
11 and 12 are essentially modern definitions of prime and relatively prime, with the note that
for Euclid a number does not measure itself. Definition 15 is somewhat curious in that this
is the only arithmetic operation defined by Euclid. He assumes that addition and subtraction
are known. Note that there is no analogue of this definition in Book V.

Recall that the first two propositions of Book VII deal with the Euclidean algorithm.
Several of the next propositions are direct analogues of propositions in Book V. For ex-
ample, Euclid proved in Propositions VII-5 and VII-6 what amounts to the distributive law
“(b+d)=""b+ "d. He had proved this for magnitudes as Proposition V-1, except that
there the result dealt with (integral) multiples rather than the parts—here represented as
fractions—of Book VII. Even the proofs of these results are virtually identical. That Eu-
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clid did not simply quote results from Book V is evidence that for Euclid number was not a
type of magnitude.

Propositions VII-11 through VII-22 include various standard results on numbers in
proportion, several of which Euclid proved for magnitudes in Book V. Most are used again
in the following two books. In particular, Proposition VII-16 proves the commutativity of
multiplication, a nontrivial result given Euclid’s definition of multiplication. Proposition VII—-
19 gives the usual test for proportionality, that @ : b = ¢ : d if and only if ad = bc. Recall
that Euclid had already proved an analogue for line segments (Proposition VI-16). The proof
here, however, is quite different. Giventhata : b = c : d, it follows thatac :ad =c:d =a : b.
Also a : b =ac : bc. Therefore, ac :ad = ac : bc. Hence, ad = bc. The converse is proved
similarly. Proposition VII-20 shows that if a, b, are the smallest numbers in the ratio a : b,
then a and b each divide ¢, d, the same number of times, where ¢ : d = a : b. It then follows
that relatively prime numbers are the least of those in the same ratio and conversely.

Propositions VII-23 through VII-32 deal further with primes and numbers relatively prime
to one another. In particular, they present Euclid’s theory of divisibility and give, together with
Proposition IX-14, a version of the fundamental theorem of arithmetic—that every number
can be uniquely expressed as a product of prime numbers.

PROPOSITION VII-31 Any composite number is measured by some prime number.
PROPOSITION VII-32 Any number either is prime or is measured by some prime number.

The latter proposition is a direct consequence of the former. That one in turn is proved by
a technique Euclid used often in the arithmetic books, the least number principle. He began
with a composite number a, which is therefore measured (divided) by another number b. If b
were prime, the result would follow. If not, then b is in turn measured by ¢, which will then
measure a, and ¢ is in turn either prime or composite. As Euclid then said, “if the investigation
is continued in this way, some prime number will be found which will measure the number
before it, which will also measure a. For, if it is not found, an infinite series of numbers will
measure the number a, each of which is less than the other; which is impossible in numbers.”
One can again note the distinction between number and magnitude. Any decreasing sequence
of numbers has a least element, but the same is not true for magnitudes.

Although Euclid did not do so, it is straightforward to demonstrate from VII-32 that any
number can be expressed as the product of prime numbers. To prove that this expression is
unique, we need

PROPOSITION VII-30 [f a prime number measures the product of two numbers, it will
measure one of them.

Suppose the prime number p divides ab and p does not divide a. Then ab = sp, or
p:a=>b:s.Butsince p and a are relatively prime, they are the least numbers in that ratio.
It follows that b is a multiple of p, or that p divides b. Euclid used this proposition to prove
the uniqueness of any prime decomposition in

PROPOSITION IX-14 If a number is the least of those that are measured by certain prime
numbers, then no other prime number will measure it.

Book VIII primarily deals with numbers in continued proportion, that is, with sequences
a, a,, . .., a,,suchthata; :a, =a, :a; =- - - . In modern terms, such a sequence is called a
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geometric progression. It is generally thought today that much of the material in this book is
due to Archytas (fifth century BCE), the person from whom Plato received his mathematical
training. In particular, Proposition VIII-8 is a generalization of a result due to Archytas and
coming out of his interest in music. The original result is that there is no mean proportional
between two numbers whose ratio in lowest terms is equal to (rn + 1) : n. Recall that the ratio
of two strings whose sound is an octave apart is 2 : 1. This ratio is the compound of 4 : 3 and
3:2, so the octave is composed of a fifth and a fourth. Archytas’s result then states that the
octave cannot be divided into two equal musical intervals. Of course, in this case, the result is
equivalent to the incommensurability of V2 with 1. But the result also shows that one cannot
divide a whole tone, whose ratio of lengths is 9 : 8, into two equal intervals.

PROPOSITION VIII-8 [f between two numbers there are numbers in continued proportion
with them, then, however many numbers are between them in continued proportion, so many
will also be in continued proportion between numbers which are in the same ratio as the
original numbers.

Euclid concerned himself in several other propositions of Book VIII with determining
the conditions for inserting mean proportional numbers between given numbers of various
types. Proposition VIII-11 in particular is the analogue for numbers of a special case of VI-
20. Namely, Euclid showed that between two square numbers there is one mean proportional
and that the square has to the square the duplicate ratio of that which the side has to the side.
Similarly, in Proposition VIII-12, Euclid showed that between two cube numbers there are
two mean proportionals and the cube has to the cube the triplicate ratio of that which the side
has to the side. This is, of course, the analogue in numbers of Hippocrates’ reduction of the
problem of doubling the cube to that of finding two mean proportionals.

The final book on number theory is Book IX. Proposition IX-20 shows that there are
infinitely many prime numbers:

PROPOSITION IX-20 Prime numbers are more than any assigned multitude of prime
numbers.

As in earlier proofs, Euclid used the method of generalizable example. He picked just
three primes, A, B, C, and showed that one can always find an additional one. To do this,
consider the number N = ABC + 1. If N is prime, a prime other than those given has been
found. If N is composite, then it is divisible by a prime p. Euclid showed that p is distinct
from the given primes A, B, C, because none of these divides N. It follows again that a new
prime p has been found. Euclid presumably assumed that his readers were convinced that a
similar proof will work, no matter how many primes are originally picked.

Propositions IX-21 through IX-34 form a nearly independent unit of very elementary
results about even and odd numbers. They probably represent a remnant of the earliest
Pythagorean mathematical work. This section includes such results as the sum of even
numbers is even, an even sum of odd numbers is even, and an odd sum of odd numbers
is odd. These elementary results are followed by two of the most significant results of the
entire number theory section of the Elements.

PROPOSITION IX-35 If as many numbers as we please are in continued proportion, and
there is subtracted from the second and the last numbers equal to the first, then, as the excess
of the second is to the first, so will the excess of the last be to all those before it.
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In effect, this result determines the sum of a geometric progression. Represent the sequence
of numbers in “continued proportion” by a, ar, ar?, ar3, ..., ar", and the sum of “all those
before [the last]” by S, (since there are n terms before ar™). Euclid’s result states that

(ar" —a):S,=(ar —a):a.

The modern form for this sum is

s, = a(r" — 1).
r—1

The final proposition of Book IX, Proposition IX—36, shows how to find perfect numbers,
those that are equal to the sum of all their factors. The result states that if the sum of any
number of terms of the sequence 1, 2, 22 ..., 2" s prime, then the product of that sum
and 2" is perfect. For example, 1+ 2 4+ 22 =7 is prime; therefore, 7 x 4 = 28 is perfect.
And, in fact, 28 = 1 + 2 + 4 + 7 4 14. Other perfect numbers known to the Greeks were 6,
corresponding to 1 4 2; 496, corresponding to 1 + 2 + 4 4+ 8 + 16; and 8128, corresponding
tol+2+4+ 8+ 16 4+ 32 + 64. Although several other perfect numbers have been found
by using Euclid’s criterion, it is still not known whether there are any perfect numbers that
do not meet it. Leonhard Euler proved that any even perfect number meets Euclid’s criterion,
but it is not known whether there are any odd perfect numbers. It is curious, perhaps, that
Euclid devoted the culminating theorem of the number theory books to the study of a class
of numbers only four of which were known. Nevertheless, the theory of perfect numbers has
always proved a fascinating one for mathematicians.

IRRATIONAL MAGNITUDES

Many historians consider Book X the most important of the Elements. It is the longest of
the thirteen books and probably the best organized. The purpose of Book X is evidently the
classification of certain incommensurable magnitudes. One of the motivations for the book
was the desire to characterize the edge lengths of the regular polyhedra, whose construction
in Book XIII forms a fitting climax to the Elements. Euclid needed a nonnumerical way of
comparing the edges of the icosahedron and the dodecahedron to the diameter of the sphere in
which they were inscribed. In a manner familiar in modern mathematics, this simple question
was to lead to the elaborate classification scheme of Book X, far past its direct answer. Much
of this book is attributed to Theaetetus, since he is credited with some of the polyhedral
constructions of Book XIII and since it was in Plato’s dialogue bearing his name that the
question of determining which numbers have square roots incommensurable with the unit
was brought up. It is the answer to that question, given early in Book X, that then leads to
the general classification.

The introductory definitions give Euclid’s understanding of the basic terms “incommensu-
rable” and “irrational” (Sidebar 3.6). The first two definitions are relatively straightforward.
The third one, on the other hand, needs some comment. First of all, it includes a theorem,
which is proved subsequently in Book X. But secondly, note that Euclid’s use of the term
“rational” is different from the modern usage. For example, if the assigned straight line has
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SIDEBAR 36 Selected Definitions from Euclid’s Elements, Book X

1. Those magnitudes are said to be commensurable which

are measured by the same measure, and those incommen-
surable which cannot have any common measure.

. Straight lines are commensurable in square when the

squares on them are measured by the same area, and
incommensurable in square when the squares on them
cannot possibly have any area as a common measure.

3. With these hypotheses, it is proved that there exist straight

lines infinite in multitude which are commensurable and
incommensurable respectively, some in length only, and
others in square also, with an assigned straight line. Let
then the assigned straight line be called rational, and
those straight lines which are commensurable with it,
whether in length and in square or in square only, ra-
tional, but those which are incommensurable with it ir-
rational.

length 1, then not only are lines of length # called rational, but also lines of length \/% (where

a and b are positive integers).

The first proposition of Book X is fundamental, not only in that book but also in Book XII.

PROPOSITION X-1 Two unequal magnitudes being given, if from the greater there is
subtracted a magnitude greater than its half, and from that which is left a magnitude greater
than its half, and if this process is repeated continually, there will be left some magnitude less
than the lesser of the given magnitudes.

The result depends on definition 4 of Book V, the criterion that two given magnitudes
have a ratio. That definition requires that some multiple n of the lesser magnitude exceeds
the greater. Then n subtractions of magnitudes greater than half of what is left at any stage

gives the desired result.

Propositions X-2 and X-3 are the results on anthyphairesis discussed earlier. But since
Euclid used the same procedure for magnitudes as he did for numbers in Book VII, he could
now connect these two distinct concepts. Namely, Euclid showed in Propositions X-5 and
X-6 that magnitudes are commensurable precisely when their ratio is that of a number to a
number. So even though number and magnitude are distinct notions, one can now apply
the machinery of numerical proportion theory to commensurable magnitudes. The more
complicated Eudoxian definition is then only necessary for incommensurable magnitudes.

Proposition X-9 is the result attributed to Theaetetus that provides the generalization of
the Pythagorean discovery of the incommensurability of the diagonal of a square with its
side, or, in modern terms, of the irrationality of V2. Namely, Euclid showed here in effect
that the square root of every nonsquare integer is incommensurable with the unit. In Euclid’s
terminology, the theorem states that two sides of squares are commensurable in length if
and only if the squares have the ratio of a square number to a square number. The more
interesting part is the “only if”” part. Suppose the two sides a, b, are commensurable in length.
Then a : b = c : d where c, d, are numbers. Hence, the duplicates of each ratio are equal. But
Euclid already showed (VI-20) that the square on a is to the square on b in the duplicate ratio
of a to b as well as (VIII-11) that ¢2 is to d2 in the duplicate ratio of ¢ to d. The result then

follows.
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After some further preliminaries on criteria for incommensurability, Euclid proceeded to
the major task of Book X, the classification of certain irrational lengths, lengths that are
neither commensurable with a fixed unit length nor commensurable in square with it. The
entire classification is too long to discuss here, so only a few of the definitions, those that
are of use in Book XIII, will be mentioned to provide some of the flavor of this section. It is
significant to note that although each of these irrational lengths can be expressed today as a
solution of a polynomial equation, Euclid did not use any algebraic machinery. Everything
is done geometrically. Nevertheless, for ease of understanding, numerical examples of each
definition are presented.

A medial straight line is one that is the side of a square equal to the rectangle contained by
two rational straight lines commensurable in square only. For example, because the lengths
1, /5, are commensurable in square only, and because the rectangle contained by these two
lengths has an area equal to /5, the length equal to ~/5 is medial. A binomial straight line is
the sum of two rational straight lines commensurable in square only. So the length 1+ +/5 is
a binomial. Similarly, the difference of two rational straight lines commensurable in square
only is called an apotome. The length /5 — 1 provides a simple example. A final, more
complicated example is given by Euclid’s definition of a minor straight line. Such a line
is the difference x — y between two straight lines such that x, y, are incommensurable in
square, such that x4+ y2 is rational, and such that xy is a medial area, that is, equal to the
square on a medial straight line. For example, if x = v/5 4+ 2+/5 and y = v/5 — 2+/5, then
X — y is a minor.

SOLID GEOMETRY AND THE METHOD OF EXHAUSTION

Book XI of the Elements is the first of three books dealing with solid geometry. This book
contains the three-dimensional analogues of many of the two-dimensional results of Books
I and VI. The introductory definitions include such notions as pyramids, prisms, and cones
(Sidebar 3.7). The only definition that is somewhat unusual is that of a sphere, which is defined
not by analogy to the definition of a circle but in terms of the rotation of a semicircle about
its diameter. Presumably, Euclid used this definition because he did not intend to discuss the
properties of a sphere as he had discussed the properties of a circle in Book I1I. The elementary
properties of the sphere were in fact known in Euclid’s time and dealt with in other texts,
including one due to Euclid himself. In the Elements, however, Euclid considered spheres
only in Book XII, where he dealt with the volume, and in Book XIII, where he constructed
the regular polyhedra and showed how they fit into the sphere. His constructions in Book XIII,
in fact, show how these polyhedra are inscribed in a sphere by rotating a semicircle around
them, as in his definition.

The propositions of Book XI include some constructions analogous to those of Book I. For
example, Proposition XI-11 shows how to draw a straight line perpendicular to a given plane
from a point outside it, whereas Proposition XI—12 shows how to draw such a line from a point
in the plane. There is also a series of theorems on parallelepipeds. In particular, by analogy
with Proposition I-36, Euclid showed that parallelepipeds on equal bases and with the same
height are equal (Proposition XI-31), and then, in analogy with VI-1, that parallelepipeds
of the same height are to one another as their bases (Proposition XI-32). Also, in analogy
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SIDEBAR 37  Selected Definitions from Euclid’s Elements, Book XI

12.

13.

14.

A pyramid is a solid figure, contained by planes, which
is constructed from one plane to one point.

A prism is a solid figure contained by planes two of
which, namely those which are opposite, are equal, simi-
lar and parallel, while the rest are parallelograms.

When, the diameter of a semicircle remaining fixed, the
semicircle is carried round and restored again to the same

18.

position from which it began to be moved, the figure so
comprehended is a sphere.

When, one leg of a right triangle remaining fixed, the
triangle is carried around and restored again to the same
position from which it began to be moved, the figure so
comprehended is a cone. And if the fixed leg is equal to the
other leg, the cone will be right-angled; if less, obtuse-

angled; and if greater, acute-angled.

with VI-19 and VI-20, he showed in Proposition XI-33 that similar parallelepipeds are to one
another in the triplicate ratio of their sides. Hence, the volumes of two similar parallelepipeds
are in the ratio of the cubes of any pair of corresponding sides. And in Proposition XI-34,
in partial analogy with VI-14 and VI-16, he demonstrated that in equal parallelepipeds, the
bases are reciprocally proportional to the heights and conversely. As before, Euclid computed
no volumes. Nevertheless, one can easily derive from these theorems the basic results on
volumes of parallelepipeds. The “formulas™ for volumes of other solids are included in
Book XII.

The central feature of Book XII, which distinguishes it from the other books of the
Elements, is the use of a limiting process, generally known as the method of exhaustion.
This process, developed by Eudoxus, is used to deal with the area of a circle as well as the
volumes of pyramids, cones, and spheres. “Formulas” giving some of these areas and volumes
were known much earlier, but for the Greeks a proof was necessary, and Eudoxus’s method
provided a proof. What it did not provide was a way of discovering the formulas to begin
with.

The main results of Book XII are the following:
PROPOSITION XII-2 Circles are to one another as the squares on the diameters.

PROPOSITION XII-7 (COROLLARY) Any pyramid is a third part of the prism which has
the same base with it and equal height.

PROPOSITION XII-10 Any cone is a third part of the cylinder which has the same base
with it and equal height.

PROPOSITION XII-18 Spheres are to one another in the triplicate ratio of their respective
diameters.

The first of these results is Euclid’s version of the ancient result on the area of a circle,
a version already known to Hippocrates 150 years earlier. In modern terms, it states that
the area of a circle is proportional to the square on the diameter. It does not state what the
constant of proportionality is, but the proof does provide a method for approximating this.
Proposition XII-1, that similar polygons inscribed in circles are to one another as the squares
on the diameters, serves as a lemma to this proof. This result in turn is a generalization of
the result of VI-20 that similar polygons are to one another in the duplicate ratio of the
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Democritus on a Greek stamp
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corresponding sides. It is not difficult to show first of all that one can take any corresponding
lines in place of the “corresponding sides,” even the diameter of the circle, and secondly that
one can replace “duplicate ratio” by “squares.”

The main idea of the proof of XII-2 is to “exhaust” the area of a particular circle by
inscribing in it polygons of increasingly many sides. In particular, Euclid showed that one
can inscribe in the given circle a polygon whose area differs from that of the circle by less
than any given area. His proof of the theorem began by assuming that the result is not true.
That is, if the two circles C|, C,, have areas A;, A,, respectively, and diameters d;, d,, he
assumed that A|: A, # d12 :d22. Therefore, there is some area S, either greater or less than
A,, such that d12 :a’22 = A :S. (Note that Euclid has never proved the existence of a fourth
proportional to three arbitrary magnitudes, but only to three lengths. This is therefore another
unproved result in Euclid. Its truth needs to come from some kind of continuity argument,
but perhaps Euclid ignored it because he did not require the actual construction of such a
magnitude.)

Suppose first that S < A, (Fig. 3.26). Then beginning with an inscribed square and
continually bisecting the subtended arcs, inscribe in C, a polygon P, such that A, > P, > S.
In other words, P, is to differ from A, by less than the difference between A, and S. This
construction is possible by Proposition X-1, since at each bisection one is increasing the
area of the polygon by more than half of the difference between the circle and the polygon.
Next inscribe a polygon P; in C; similar to P,. By Proposition XII-1, d7 : d3 = Py : P,. By
assumption, this ratio is also equal to A : S. Therefore, P;: A; = P, : S. Butclearly, A; > P;.
It follows that S > P,, contradicting the assumption that S < P,. Therefore, S cannot be less
than A,. Euclid proved that S also is not greater than A, by reducing it to the case already
dealt with. It then follows that the ratio of the circles must be equal to the ratio of the squares
on the diameters, as asserted.

It is virtually certain that the theorem giving the volume of the pyramid was known to both
the Egyptians and the Babylonians (Sidebar 3.8). Archimedes, however, wrote that although
Eudoxus was the first to prove that theorem, the result was first discovered by Democritus
(fifth century BCE) (Fig. 3.27). Unfortunately, we have no record of how the Egyptians, the
Babylonians, or Democritus may have made their discovery. For the latter, we do have a hint
in a report given by Chrysippus, in which Democritus discussed the problem of slicing a
cone into “indivisible” sections by planes parallel to the base. He wondered whether these
indivisible circles would be unequal or equal: “If they are unequal, they will make the cone
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SIDEBAR 38 What Did the Greeks Learn from the Egyptians?

Did the Greeks learn any mathematics from the Egyptians,
or was their idea of mathematics so different from that of their
predecessors that we may as well assume that they started
from scratch? This question has been posed over the years, but
because there is no extant documentation of transmission from
Egypt to Greece before the third century BCE, we cannot give
a definitive answer. Nevertheless, there are certainly hints.

The Greeks in general stated that they had learned from
Egypt. The stories the Greeks told about many of their math-
ematicians, including Pythagoras, Thales, and Eudoxus, note
that they studied in Egypt. And many Greek documents say
that geometry was first invented by the Egyptians and then
passed on to the Greeks. But what is meant here by geome-
try? It clearly cannot mean an axiomatic treatment such as we
find in Euclid’s Elements. What it could mean, however, is the
results themselves. After all, one does not discover results by
the axiomatic method. One discovers them by experiment, by
trial and error, by induction; only after the discovery is made
does one worry about actually proving that what one has pro-
posed is correct. So it seems clear that what the Greek writers
meant about the Egyptians inventing geometry was the results,
not the method of proof. It also seems clear that the idea of
proof from a system of axioms is original to the Greeks.

What geometric results could the Greeks have learned? One
answer seems to be most of the formulas concerned with the
measurement of geometric objects, such as the volume of a
pyramid, the area of a circle, and the area of a hemisphere.
They could also have learned the basic principles of similarity,
since Egyptian sources reveal highly developed proportional

thinking connected with the use of scale models. And we are
certain that the Greeks learned the use of unit fractions from
the Egyptians, although these did not appear in formal Greek
mathematics.

Just as in the case of the Babylonians, there is no documentary
evidence of direct Egyptian influence on Greek mathematics,
but the circumstantial evidence is relatively strong. And as in
the case of Babylonian influence, we will have to await further
research to answer the question.

There has been much recent historical controversy over the
relationship of Greek civilization to Egyptian civilization and,
in particular, of the relationship of Greek mathematics to Egyp-
tian mathematics. The opening shot in this battle was the publi-
cation of Martin Bernal’s Black Athena: The Afroasiatic Roots
of Classical Civilization (New Brunswick: Rutgers University
Press, 1987). This work asserted that classical Greek civiliza-
tion has deep roots in Afroasiatic cultures, but that these in-
fluences have been systematically ignored or denied since the
eighteenth century, chiefly for racist reasons. Bernal did not
write much about science in this work, but summarized his
views on the contributions of Egyptian science to Greek sci-
ence in “Animadversions on the Origins of Western Science,”
Isis 83 (1992), 596-607. This article was answered by Robert
Palter in his “Black Athena, Afro-Centrism, and the History of
Science,” History of Science 31 (1993), 227-287. Bernal re-
sponded in “Response to Robert Palter,” History of Science 32
(1994), 445-464; and Palter answered Bernal in the same issue
on pages 464-468. The last word on this issue has not yet been
uttered.

irregular, as having many indentations, like steps, and unevennesses; but if they are equal,
the sections will be equal, and the cone will appear to have the property of the cylinder, and
to be made up of equal, not unequal, circles, which is very absurd.’®

Although we do not know what Democritus’s final conclusion was, he evidently did think
that the cone and, analogously, the pyramid were “made up” of indivisibles. If so, he could
have derived Euclid’s Proposition XII-5, that pyramids of the same height and with triangular
bases are to one another as their bases. For if one imagines the two pyramids cut respectively
by planes parallel to and at equal distances from the bases, then the corresponding sections
of the two pyramids would be in the ratio of the bases. Since Democritus conceived of
each pyramid as being “made up” of these infinitely many indivisible sections, the pyramids
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themselves would be in this same ratio. He could then have completed the demonstration of
the volume formula by noting, as in XII-7, that a prism with a triangular base can be divided
into three pyramids, all of equal height and equal bases.

Euclid, of course, proved XII-5 as well as XII-10 and XII-18 by using reductio arguments.
Assuming the falsity of the given assertion, he proceeded to construct inside the given solid
other solids, whose properties are already known, such that the difference between the given
solid and the constructed one is less than a given “small” solid, the “error” defined by the false
assumption. That is, he exhausted the solid. The known properties of the constructed figure
then led him to a contradiction as in the proof of XII-2. But the quotation from Democritus
shows us that from the earliest period of Greek mathematics there were attempts to discover
certain results by the use of infinitesimals, even though, as we have seen, Aristotle banned
such notions from formal Greek mathematics.

The final book of the Elements, Book XIII, is devoted to the construction of the five
regular polyhedra and their “comprehension” in a sphere (Fig. 3.28). This book is the
three-dimensional analogue to Book IV. The study of the five regular polyhedra—the cube,
tetrahedron, octahedron, dodecahedron, and icosahedron—and the proof that these are the
only regular polyhedra are due to Theaetetus. The first three solids were known in pre-Greek
times, and there is archaeological evidence of bronze dodecahedra dating back perhaps to the
seventh century BCE. The icosahedron, however, was evidently first studied by Theaetetus. It
was also he who recognized that these five were the only regular polyhedra, and that in fact
the properties of the regular polyhedra were something to study.

ESVAN o~

Cube Tetrahedron Octahedron Dodecahedron Icosahedron

Euclid proceeded systematically in Book XIII to construct each of the polyhedra, to
demonstrate that each may be comprehended (inscribed) in a sphere, and to compare the
edge length of the polyhedron with the diameter of the sphere. For the tetrahedron, Euclid
showed that the square on the diameter is 1% times the square on the edge. In the cube
the square on the diameter is triple the square on the edge, whereas in the octahedron
the square on the diameter is double that on the edge. The other two cases are somewhat
trickier. Euclid proved that the edge of the dodecahedron is an apotome equal in length to
the greater segment of the edge of the inscribed cube when that edge is cut in extreme and

mean ratio. Thus, if the diameter of the sphere is 1, then the edge of the cube is ¢ = ‘?
Therefore, the edge length of the dodecahedron is the positive root of x> + ¢x — ¢ =0 or
%(\/5 -1 = é(«/ 15 — +/3). Because both +/15 and /3 are rational by Euclid’s definition,

and because they are commensurable in square only, the edge length is in fact an apotome.

For the icosahedron, Euclid proved that the side is a minor straight line. In this case, the
square on the diameter of the sphere is five times the square on the radius r of the circle
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circumscribing the five upper triangles of the icosahedron. The bases of these five triangles
form a regular pentagon, each edge of which is an edge of the icosahedron. The side of a
pentagon inscribed in a circle of radius r is equal to

g\/sju—zﬁ—%\/s—zﬁzg\/lo—zfs.

If the diameter of the sphere is 1, then r = g, a rational value, and the edge length of the

icosahedron is indeed a minor straight line. In particular, this edge length is

‘1/—03\/10 —2/5= 1—10\/50 — 10V/5.

In a fitting conclusion to Book XIII and the Elements, Euclid constructed the edges of the
five regular solids in one plane figure, thereby comparing them to each other and the diameter
of the given sphere. He then demonstrated that there are no regular polyhedra other than these
five.

EUCLID’S DATA

Euclid wrote several mathematics books more advanced than the Elements. The most im-
portant of the ones that have survived is the Data. This was in effect a supplement to Books
I-VI of the Elements. Each proposition of the Data takes certain parts of a geometric con-
figuration as given, or known, and shows that therefore certain other parts are determined.
(“Data” means “given” in Latin.) Generally, in his proofs, Euclid showed that these other
parts were determined by showing exactly how to determine them. Thus, the Data in essence
transformed the synthetic purity of the Elements into a manual appropriate to one of the goals
of Greek mathematics, the solution of new problems.

As one example, consider

PROPOSITION 39 [f each of the sides of a triangle is given in magnitude, the triangle is
given in form.

In other words, this proposition claims that if the lengths of the three sides of a triangle are
known, then the triangle itself is determined, that is, not only are the sides known but also the
angles. In the demonstration, Euclid carefully constructed a triangle with sides equal to those
of the given triangle. He then used parts of the “toolbox,” in this case Proposition I-8 and
definition 1 of Book VI of the Elements, to conclude that the constructed triangle was “equal
and similar” to the given triangle. This means, then, that the original triangle was “given in
form.”

We can certainly consider several of the propositions of the Data as examples of geometric
algebra, in that Euclid showed how to find unknown lengths, given certain known ones. For
example, here are two propositions closely related to Elements VI-29.

PROPOSITION 84 [f two straight lines contain a given area in a given angle, and one of
them is greater than the other by a given straight line, each of them will be given, too.
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If, as in the discussion of VI-29, it is assumed that the given angle is a right angle—and
the diagram in the medieval manuscripts that survive shows such an angle—the problem is
related to one of the standard Babylonian problems: Find x, y, if the product and difference
are given. That is, solve the system

Xy =c, x —y=>b.

Euclid began by setting up the rectangle contained by the two straight lines AB, BC
(Fig. 3.29). He then chose point D on BC so that BD = AB. Thus, DC = b was the given
straight line. He now had a given area, the rectangle (= c) applied to a given line b, exceeding
by a square figure. He could then apply Proposition 59:

PROPOSITION 59 [fa given area be applied to a given straight line, exceeding by a figure
given in form, the length and width of the excess are given.

It is here that Euclid really solved the problem of Proposition 84, using a diagram similar
to that of Elements VI-29 (Fig. 3.30). As there, he bisected the line DE = b at Z, constructed
the square on Z E = b/2, noted that the sum of that square and the original area (the rectangle
AB = c)isequal to the squareon ZB =y + b/2 (or x — b/2), and thereby showed how either
of those quantities can be determined as the side of that square. Algebraically, this amounts
to the standard Babylonian formula

x = <[Z>2—i-c—i-é
“V\2 2

As before, Euclid dealt only with geometric figures and never actually wrote out a rule like
the above. Nevertheless, given that the problem is in fact to find two lengths satisfying certain
conditions, even its formulation is nearly identical to the Babylonian formulation. On the other
hand, as in VI-29, the statement of the result enables one to deal with parallelograms as well
as the rectangles discussed by the Babylonians. Euclid treated other similar geometric algebra
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problems in the Data. Thus, in Propositions 85 and 58 he solved the geometric equivalent of

the system
xy=c, Xx+y=b,

while in Proposition 86 he solved the system

xy=a,

Most probably, in this latter problem, Euclid was showing that if two hyperbolas each have
their axes as the asymptotes of the other, then their points of intersection are determined.’

That Euclid would present a problem useful in the study of conic sections is not surprising,
given that he is credited with a book on the subject. And, as we noted earlier, many of
the propositions in Book II have application to that subject as well. Besides his work in
conics, Euclid is also credited with works in such fields as spherical geometry, optics, and
music. Thus, whoever Euclid was, it appears from the texts attributed to him that he saw
himself as a compiler of the Greek mathematical tradition to his time. Certainly, this would
be appropriate if he was the first mathematician called to the Museum at Alexandria. It would
therefore have been his aim to demonstrate to his students not only the basic results known
to that time but also some of the methods by which new problems could be approached. The
two mathematicians in the third century BCE who most advanced the field of mathematics,
Archimedes and Apollonius, probably received their earliest mathematical training from the
students of Euclid, training that in fact enabled them to solve many problems left unsolved
by Euclid and his predecessors.

» EXERCISES

Prove Proposition I-5, that the base angles of an isosceles
triangle are equal to one another.

Solve the (modified) problem of Proposition 1-44, to ap-
ply to a given straight line A B a rectangle equal to a given
rectangle ¢. Use Figure 3.31, where BE FG is the given

2 i‘ggi:cotn(slgggggﬁigzbf_s;; tagiven angle and prove that it rectangle, D is the intersec.:tion of the. extension of the di-
agonal H B and the extension of the line FE, and ABML
3. Prove Proposition I-15, that if two straight lines cut one is the rectangle to be constructed.
another, they make the vertical angles equal to one another. F c b
4. Construct a triangle out of three given straight lines and
prove that your construction is correct. Note that it is nec-
essary that two of the straight lines taken together in any
manner should be greater than the remaining one (Proposi-
tion 1-22).
5. On a given straight line at a point on it, construct an angle G B y
equal to a given angle and prove that your construction is
correct (Proposition [-23).
H A L
6. Prove Proposition I-32, that the three interior angles of any N
FIGURE 3.31

triangle are equal to two right angles. Show that the proof
depends on I-29 and therefore on postulate 5.

Elements, Proposition 1-44
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11.

12.

14.

15.

16.

17.

18.

19.

20.

Give a proof of I-47 using similarity. Use the same diagram
as in the text (Fig. 3.2) and begin by noting that triangles
ABN, ACN, and ABC are all similar.

Show that Playfair’s Axiom—through a given point outside
a given line, exactly one line may be constructed parallel to
the given line—is equivalent to Euclid’s postulate 5, under
the assumption that lines of arbitrary length may be drawn
and therefore that Proposition I-16 is true.

Draw a geometric diagram that proves the truth of Proposi-
tion II-8: If a straight line is cut at random, four times the
rectangle contained by the whole and one of the segments
together with the square on the remaining segment is equal
to the square on the whole and the former segment taken
together. Then translate this result into algebraic notation
and verify it algebraically.

Show that Proposition 1I-13 is equivalent to the law of
cosines for an acute-angled triangle: In acute-angled trian-
gles, the square on the side opposite the acute angle is less
than the sum of the squares on the other two sides by twice
the rectangle contained by one of the sides about the acute
angle, namely, that on which the perpendicular falls, and
the line segment between the angle and the perpendicular.

Prove Proposition I1I-3, that if a diameter of a circle bisects
a chord, then it is perpendicular to the chord. And if a
diameter is perpendicular to a chord, then it bisects the
chord.

Provide the details of the proof of Proposition I1I-20: In
a circle, the angle at the center is double the angle at the
circumference, when the angles cut off the same arc.

Prove Proposition I1I-31, that the angle in a semicircle is a
right angle.

Find a construction for circumscribing a circle about an
arbitrary triangle.

Find a construction for inscribing a regular hexagon in a
circle.

Given that a pentagon and an equilateral triangle can be
inscribed in a circle, show how to inscribe a regular 15-gon
in a circle.

Prove that the last nonzero remainder in the Euclidean al-
gorithm applied to the numbers a, b, is in fact the greatest
common divisor of a and b.

Use the Euclidean algorithm to find the greatest common
divisor of 963 and 657; of 2689 and 4001.

Use Theaetetus’s definition of equal ratio to show that 46 :
6 =23 :3. Show that each can be represented by the se-
quence (7, 1, 2).

21.

22.

23.

24.

25.

26.

27.
28.

29.

30.

31.

32.

33.

34.

35.

36.

EXERCISES a1

Use Theaetetus’s definition of equal ratio to show that 33 :
12 =11 : 4 and that each can be represented by the sequence
2,1,3).

Suppose that a line of length 1 is divided in extreme and
mean ratio, that is, that the line is divided at x so that % =
77+ Show by the method of the Euclidean algorithm that 1
and x are incommensurable. In fact, show that 1 : x can be
expressed using Theaetetus’s definition as (1, 1, 1, . . .).
Show that the side and diagonal of a square are incommen-
surable by using the method of anthyphairesis. Show that
the ratio d : s can be expressed using Theaetetus’s definition
as (1, 2, 2,2, ...). Hint: Draw the diagonal of the square;
then cut off on it the side and draw a square on the remaining
segment.

Prove the second half of Proposition V-8: If a > b, then
c:b>c:a.

Prove Proposition V=12 both by using Eudoxus’s definition
and by modern methods: If any number of magnitudes are
proportional, as one of the antecedents is to one of the
consequents, so will all of the antecedents be to all of
the consequents. (In algebraic notation, this says that if
aj:by=ay:by=---=a,:b,then(a;+ay+---+a,):
(by+by+---+b)=a;:by)

Use Eudoxus’s definition to prove Proposition V-16: If
a:b=c:d,thena:c=b:d.

Construct geometrically the solution of 8 :4 =6 : x.

Solve geometrically the equation % = 3 by beginning with
a semicircle of diameter 9 + 5 = 14.

Prove Proposition VI-14, that in equal and equiangular
parallelograms, the sides about the equal angles are recip-
rocally proportional and conversely.

Prove Proposition VIII-8 and Archytas’s special case that
there is no mean proportional between n + 1 and n.

Find the one mean proportional between two squares guar-
anteed by Proposition VIII-11.

Find the two mean proportionals between two cubes guar-
anteed by Proposition VIII-12.

Prove Proposition VIII-14: If a? measures b2, then a mea-
sures b and conversely.

Use Proposition VII-30 to prove the uniqueness (up to
order) of the prime decomposition of any positive integer.
(This is essentially Proposition 1X-14.)

Give a modern proof of the result that there are infinitely
many prime numbers. Compare your proof to Euclid’s and
comment on the differences.

Use Euclid’s criterion in Proposition IX-36 to find the next
perfect number after 8128.
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37. Prove XIII-9: If the side of the hexagon and the side of the
decagon inscribed in the same circle are placed together in a
single straight line, then the meeting point divides the entire
line segment in extreme and mean ratio, with the greater
segment being the side of the hexagon. In Figure 3.32, BC
is the side of a decagon and CD the side of a hexagon
inscribed in the same circle. Show that AE B D is similar to
AEBC.

D
FIGURE 3.32
Elements, Proposition XIII-9

38. Prove XIII-10: If an equilateral pentagon, hexagon, and
decagon are each inscribed in a given circle, then the square
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on the side of the pentagon equals the sum of the squares on
the sides of the hexagon and the decagon. Do this by using
the numerical values of the sides of the given polygons
inscribed in a circle of radius 1.

39. Solve geometrically the system x — y =7, xy = 18, using
the propositions from the Data.

40. Solve the equations of Proposition 86 of the Data alge-
braically. Show that the two hyperbolas defined by the equa-
tions each have their axes as the asymptotes of the other.

41. Discuss the advantages and disadvantages of a geomet-
ric approach relative to a purely algebraic approach in the
teaching of the quadratic equation in school.

42. Prepare a lesson proving a number of simple algebraic
identities geometrically. (For example, prove (a + b)* =
a® +2ab+ b* and (a + b)(a — b) =a® — b%)

43. Discuss whether Euclid’s Elements fits Plato’s dictums that
the study of geometry is for “drawing the soul toward truth”
and that it is to gain knowledge “of what eternally exists.”

44. Should one base the study of geometry in high school on
Euclid’s Elements as was done for many years? Discuss the
pros and cons of Euclid versus a “modern” approach. '’

45. Read the Declaration of Independence. Note that Jefferson
writes, “we hold these truths to be self-evident, . . . ”” and
then gives a list of what could be called axioms. Comment
on whether Jefferson modeled the argument in the Decla-
ration after a Euclidean proof.
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Need to Rewrite the History of Greek Mathematics,” Ar-
chive for History of Exact Sciences 15 (1975), 67-114. He
was answered by several other historians over the next two
years. The most important responses were by B. L. Van der
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using algebra.
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The third book [of Conics] contains
many incredible theorems of use for the
construction of solid loci and for limits of
possibility of which the greatest part and the
most beautiful are new. And when we had
grasped these, we knew that the three-line
and four-line locus had not been constructed
by Euclid, but only a chance part of it and
that not very happily. For it was not possible
for this construction to be completed without
the additional things found by us.

—Preface to Book I of
Apollonius’s Conics!

94

Archimedes and
Apollonius

ere is a story told by Vitruvius: “It is no surprise that Hiero
H [the king of Syracuse in the third century BCE], after he

had obtained immense kingly power in Syracuse, decided,
because of the favorable turn of events, to dedicate a votive crown of
gold to the immortal gods in a certain shrine. He contracted for the
craftsman’s wages, and he [himself] weighed out the gold precisely for
the contractor. This contractor completed the work with great skill
and on schedule; it was approved by the king, and the contractor
seemed to have used up the furnished supply of gold. Later, charges
were leveled that in the making of the crown a certain amount of gold
had been removed and replaced by an equal amount of silver. Hiero,
outraged that he should have been shown so little respect, and not
knowing by what method he might expose the theft, requested that
Archimedes take the matter under consideration on his behalf. Now
Archimedes, once he had charge of this matter, chanced to go to the
baths, and there, as he stepped into the tub, he noticed that however
much he immersed his body in it, that much water spilled over the
sides of the tub. When the reason for this occurence came clear to
him, he did not hesitate, but in a transport of joy he leapt out of
the tub, and as he rushed home naked, he let one and all know that
he had truly found what he had been looking for—because as he ran
he shouted over and over in Greek: T found it! I found it! [Eureka!
Eureka!] 2
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Greek mathematics in the third and early second centuries BCE was dominated by two major
figures, Archimedes of Syracuse (c. 287-212 BCE) and Apollonius of Perga (c. 250-175 BCE),
each heir to a different aspect of fourth-century Greek mathematics. The former took over
the “limit” methods of Eudoxus and succeeded not only in applying them to determine areas
and volumes of new figures, but also in developing new techniques that enabled the results to
be discovered in the first place. Archimedes, unlike his predecessors, was neither reluctant to
share his methods of discovery nor afraid of performing numerical calculations and exhibiting
numerical results. And also, unlike Euclid, he did not write systematic treatises on a major
subject, but instead what may be considered research monographs, treatises concentrating
on the solution of a particular set of problems. These treatises were often sent originally as
letters to mathematicians Archimedes knew, so many of them include prefaces describing the
circumstances and purposes of their writing. Furthermore, several of the treatises presented
mathematical models of certain aspects of what we would call theoretical physics and applied
his physical principles to the invention of various mechanical devices.

Apollonius, on the other hand, was instrumental in extending the domain of analysis to
new and more difficult geometric construction problems. As a foundation for these new
approaches, he created his magnum opus, the Conics, a work in eight books developing
synthetically the important properties of this class of curves, properties that were central in
developing new solutions to such problems as the duplication of the cube and the trisection
of the angle.

As is the case for Euclid, there are no surviving manuscripts of the works of either Archi-
medes or Apollonius dating from anywhere near their time of composition. For Archimedes,
we know that an edition of some of his works with extensive commentaries was prepared by
Eutocius early in the sixth century somewhere near Byzantium. This edition was the basis
for some part of the three collections of Archimedes’ works, written on parchment, that were
available in Byzantium in the tenth or eleventh century. Only one of these is still extant and
will be discussed in some detail below. The second oldest extant Archimedes manuscript is
a 1260 Latin translation by Moerbeke, probably made from both of the two now missing
Byzantine copies, but such a literal translation that from it we can practically re-create the
Greek text. There are also several fifteenth- and sixteenth-century Greek copies of the miss-
ing Byzantine versions. Heiberg collated these manuscripts in the late nineteenth century and
produced the now standard Greek text of Archimedes in 1880-81, with a revised version in
1910-15. Similarly, Eutocius prepared an edition of the first four books of Apollonius’s Con-
ics of which the Greek manuscripts available in tenth-century Byzantium were copies. The
earliest surviving Greek manuscript was copied there in the twelfth or thirteenth century. But
there are two older Arabic manuscripts of seven books of the Conics, one written in Egypt in
the early eleventh century and now in Istanbul, and one written in Maragha toward the end
of that century and now in Oxford. Again, Heiberg produced a definitive Greek edition of
Books -1V in 1891-93, while a definitive Arabic edition of Books V-VII was only produced
in 1990 by Toomer.

This chapter surveys the extant works of both of these mathematicians, as well as the work
of certain others who considered similar problems.
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Archimedes and the law of the

lever

ARCHIMEDES AND PHYSICS

Archimedes was the first mathematician to derive quantitative results from the creation of
mathematical models of physical problems on earth. In particular, Archimedes is responsible
for the first proof of the law of the lever (Fig. 4.1) and its application to finding centers of
gravity, as well as the first proof of the basic principle of hydrostatics and some of its important
applications.

411 The Law of the Lever

Everyone is familiar with the principle of the lever from having played on seesaws as children.
Equal weights at equal distances from the fulcrum of the lever balance, and a lighter child
can balance a heavier one by being farther away. The ancients were aware of this principle as
well. The law even appears in writing in a work on mechanics attributed to Aristotle: “Since
the greater radius is moved more quickly than the less by an equal weight, and there are three
elements in the lever, the fulcrum . . . and two weights, that which moves and that which is
moved, therefore the ratio of the weight moved to the moving weight is the inverse ratio of
their distances from the fulcrum.”’

As far as is known, no one before Archimedes had created a mathematical model of the
lever by which one could derive a mathematical proof of the law of the lever. In general,
a difficulty in attempting to apply mathematics to physical problems is that the physical
situation is often quite complicated. Therefore, the situation needs to be idealized. One
ignores those aspects that appear less important and concentrates on only the essential
variables of the physical problem. This idealization is referred to today as the creation of
a mathematical model. The lever is a case in point. To deal with it as it actually occurs, one
would need to consider not only the weights applied to the two ends and their distances from
the fulcrum, but also the weight and composition of the lever itself. It may be heavier at one
end than the other. Its thickness may vary. It may bend slightly—or even break—when certain
weights are applied at certain points. In addition, the fulcrum is also a physical object of a
certain size. The lever may slip somewhat along the fulcrum, so it may not be clear from
what point the distance of the weights should be measured. To include all of these factors
in a mathematical analysis of the lever would make the mathematics extremely difficult.
Archimedes therefore simplified the physical situation. He assumed that the lever itself was
rigid, but weightless, and that the fulcrum and the weights were mathematical points. He was
then able to develop the mathematical principles of the lever.

Archimedes dealt with these principles at the beginning of his treatise Planes in Equilib-
rium. Being well trained in Greek geometry, he began by stating seven postulates he would
assume, four of which are reproduced here.

1. Equal weights at equal distances are in equilibrium, and equal weights at unequal
distances are not in equilibrium but incline toward the weight that is at the greater
distance.

2. If, when weights at certain distances are in equilibrium, something is added to one of the
weights, they are not in equilibrium but incline toward the weight to which the addition
was made.
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BIOGRAPHY
Archimedes (287-212 BCE)

ore biographical information about Archimedes sur-
Mvives than about any other Greek mathematician. Much
is found in Plutarch’s biography of the Roman general Mar-
cellus, who captured Syracuse, the major city of Sicily, after
a siege in 212 BCE during the Second Punic War. Other Greek
and Roman historians also discuss aspects of Archimedes’ life.
Archimedes was the son of the astronomer Phidias and per-
haps a relative of King Hiero II of Syracuse, under whose rule
from 270 to 216 BCE the city greatly flourished. It is also prob-
able that Archimedes spent time in his youth in Alexandria, for
he is credited with the invention there of what is known as the
Archimedean screw, a machine for raising water used for irri-
gation (Fig. 4.2). Moreover, the prefaces of many of his works
are addressed to scholars at Alexandria, including one of the
chief librarians, Eratosthenes. Most of his life, however, was
spent in his native Syracuse, where he was repeatedly called
upon to use his mathematical talents to solve various prac-
tical problems for Hiero and his successor. Many stories are
recorded about his intense dedication to his work. Plutarch, in
The Lives of the Noble Grecians and Romans (Great Books, 14,
Dryden translation), wrote that on many occasions his concen-

tration on mathematics “made him forget his food and neglect
his person, to that degree that when he was carried by absolute
violence to bathe or have his body anointed, he used to trace
geometrical figures in the ashes of the fire, and diagrams in the
oil on his body, being in a state of entire preoccupation, and
in the truest sense, divine possession with his love and delight
in science” (p. 254). And it was this dedication that ultimately
cost him his life.

His genius as a military engineer kept the Roman army under
Marcellus at bay for months during the siege of Syracuse. Fi-
nally, however, probably through treachery, the Romans were
able to enter the city. Marcellus gave explicit orders that Archi-
medes be spared, but Plutarch relates that, “as fate would have
it, he was intent on working out some problem with a diagram
and, having fixed his mind and his eyes alike on his investi-
gation, he never noticed the incursion of the Romans nor the
capture of the city. And when a soldier came up to him suddenly
and bade him follow to Marcellus, he refused to do so until he
had worked out his problem to a demonstration; whereat the
soldier was so enraged that he drew his sword and slew him”
(Lives, p. 252).

3. Similarly, if anything is taken away from one of the weights, they are not in equilibrium
but incline toward the weight from which nothing was taken.

6. If magnitudes at certain distances are in equilibrium, other magnitudes equal to them
will also be in equilibrium at the same distances.

These postulates come from basic experience with levers. The first postulate, in fact, is an

FIGURE 4.2
Archimedes and the Archime-
dean screw

example of what is usually called the Principle of Insufficient Reason. That is, one assumes
that equal weights at equal distances balance because there is no reason to make any other
assumption. The lever cannot incline to the right, for example, since what is the right side

from one viewpoint is the left side from another. The second and third postulates are equally
obvious. The sixth appears to be virtually meaningless. In Archimedes’ use of it, however,
it appears that the second clause means “other equal magnitudes, the centers of gravity of
which lie at the same distances from the fulcrum, will also be in equilibrium.” That is, the
influence of a magnitude on the lever depends solely on its weight and the position of its

center of gravity.
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FIGURE 4.3

Planes in Equilibrium,
Proposition 3

Although Archimedes used the term “center of gravity” in many of the book’s propositions,
he never gave a definition. Presumably, he felt that the concept was so well known to his
readers that a definition was unnecessary. There are, however, later Greek texts that do give
a definition, perhaps the one that was even used in Archimedes’ time: “We say that the
center of gravity of any body is a point within that body which is such that, if the body
be conceived to be suspended from that point, the weight carried thereby remains at rest and
preserves the original position.”* But it was also clear to Archimedes, and this is what he
expressed in postulate 6, that the downward tendency of gravitation may be thought of as
being concentrated in that one point. Note that in neither the postulates nor the theorems
is there any mention of the lever itself. It is just there. Its weight does not enter into the
calculations. Archimedes in effect assumed that the lever is weightless and rigid. Its only
motion is inclination to one side or the other.

The first two in Archimedes’ sequence of propositions leading to the law of the lever are
very easy:

PROPOSITION 1 Weights which balance at equal distances are equal.

PROPOSITION 2 Unequal weights at equal distances will not balance but will incline
toward the greater weight.

The proof of the first result is by reductio ad absurdum. For if the weights are not equal,
take away from the greater the difference between the two. By postulate 3, the remainders will
not balance. This contradicts postulate 1, since now we have equal weights at equal distances.
Our original assumption must then be false. To prove Proposition 2, again take away from the
greater weight the difference between the two. By postulate 1, the remainders will balance.
So if this difference is added back, the lever will incline toward the greater by postulate 2.

PROPOSITION 3 Suppose A and B are unequal weights with A > B which balance at point
C (Fig.4.3). Let AC =a, BC =b. Thena < b. Conversely, if the weights balance and a < b,
then A > B.

4] A El

The proof is again by contradiction. Suppose a £ b. Subtract from A the difference A — B.
By postulate 3, the lever will incline toward B. Butif a = b, the equal remainders will balance,
and if a > b, the lever will incline toward A by postulate 1. These two contradictions imply
that @ < b. The proof of the converse is equally simple.

In Propositions 4 and 5, Archimedes showed that the center of gravity of a system of two
(and three) equally spaced equal weights is at the geometric center of the system. These results
are extended in the corollaries to any system of equally spaced weights provided that those at
equal distance from the center are equal. The law of the lever itself is stated in Propositions
6 and 7:

PROPOSITION 6, 7 Two magnitudes, whether commensurable [Proposition 6] or incom-
mensurable [Proposition 7], balance at distances inversely proportional to the magnitudes.
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First assume that the magnitudes A, B, are commensurable; that is, A : B =r : s, where
r, s, are numbers. Archimedes’ claim is that if A is placed at E and B at D, and if C is
taken on DE with DC : CE = :s, then C is the center of gravity of the two magnitudes
A, B (Fig. 4.4). To prove the result, assume that units have been chosen so that DC = r and
CE =s.Choose H on DE so that HE = r and extend the line past E to L so that E'L also
equals r. Also extend the line in the opposite direction to K, making DK = HD =s. Then C
is the midpoint of L K. Now break A into 2r equal parts and B into 2s equal parts. Space the
first set equally along L H and the second along HK . Since A : B =r : s = 2r : 2s, it follows
that each part of A is equal to each part of B. From the corollary mentioned above, the center
of gravity of the parts of A will be at the midpoint E of H L, while the center of gravity of the
parts of B will be at the midpoint D of K H. By postulate 6, nothing is changed if A itself is
considered situated at £ and B at D. On the other hand, the total system consists of 2r + 2s
equal parts equally spaced along the line K L. Hence, the center of gravity of the system is
at the midpoint C of that line. Therefore, weight A placed at E and weight B placed at D
balance about the point C.
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Archimedes concluded the proof in the incommensurable case by a reductio argument
using the fact that if two magnitudes are incommensurable, one can subtract from the first
an amount smaller than any given quantity such that the remainder is commensurable with
the second. Interestingly enough, Archimedes made no use here of the Eudoxian proportion
theory for incommensurables of Elements, Book V, nor even of Theaetetus’s earlier version
based on the Euclidean algorithm. He instead made use essentially of a continuity argument.
But even so, his proof is somewhat flawed.

Nevertheless, Archimedes used the law of the lever in the remainder of the treatise to find
the centers of gravity of various geometrical figures. He proved that the center of gravity of
a parallelogram is at the intersection of its diagonals, of a triangle at the intersection of two
medians, and of a parabolic segment at a point on the diameter three-fifths of the distance
from the vertex to the base.

412 Applications to Engineering

Not only are there geometric consequences of the law of the lever, but there are also physical
consequences. In particular, given any two weights A and B and any lever, there is always a
point C at which the weights balance. If A is much heavier than B, they will balance when A
is sufficiently close to C and B is sufficiently far away. But then any additional weight added
to B will incline the lever in that direction and will cause weight A to be lifted. Archimedes
therefore was able to boast that “any weight might be moved and . . . if there were another
earth, by going into it he could move this one.”” When King Hiero heard of this boast, he
asked Archimedes to demonstrate his principles in actual experiment. Archimedes complied,
but instead of using a lever, he probably made use of some kind of pulley or tackle system,
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which also provided a great mechanical advantage. Plutarch wrote that “he fixed accordingly
upon a ship of burden out of the king’s arsenal, which could not be drawn out of the dock
without great labor and many men; and loading her with many passengers and a full freight,
sitting himself the while far off, with no great endeavor, but only holding the head of the
pulley in his hand and drawing the cords by degrees, he drew the ship in a straight line, as
smoothly and evenly as if she had been in the sea.”® Other sources give a variant of Plutarch’s
story, to the effect that Archimedes was responsible for the construction of a magnificent
ship, named the Syracusa, and singlehandedly launched this 4200-ton luxury vessel.

Archimedes enjoyed the greatest fame in antiquity, however, for his design of various
engines of war. These engines enabled Syracuse to hold off the Roman siege for many months.
Archimedes devised various missile launchers as well as huge cranes by which he was able
to lift Roman ships out of the water and dash them against the rocks or simply dump out the
crew. In fact, he was so successful that any time the Romans saw a little rope or piece of wood
come out from the walls of the city, they fled in panic.

Plutarch related that Archimedes was not particularly happy as an engineer: “‘He would not
deign to leave behind him any commentary or writing on such subjects; but, repudiating as
sordid and ignoble the whole trade of engineering, and every sort of art that lends itself to mere
use and profit, he placed his whole affection and ambition in those purer speculations where
there can be no reference to the vulgar needs of life.”” In fact, however, there is evidence that
Archimedes did write on certain mechanical subjects, including a book On Sphere Making
in which he described his planetarium, a mechanical model of the motions of the heavenly
bodies, and another one on water clocks.

The incident of the gold crown and the bath led Archimedes to the study of an entirely new
subject, that of hydrostatics, in which he discovered its basic law, that a solid heavier than
a fluid will, when weighed in the fluid, be lighter than its true weight by the weight of the
fluid displaced. It is, however, not entirely clear how Archimedes’ noticing the water being
displaced in his bath led him to the concept of weight being lessened. Perhaps he also noticed
that his body felt lighter in the water.

Asinhis study of levers, Archimedes began the mathematical development of hydrostatics,
in his treatise On Floating Bodies, by giving a simplifying postulate. He was then able to show,
among other results, that the surface of any fluid at rest is the surface of a sphere whose center
is the same as that of the earth. He could then deal with solids floating or sinking in fluids by
assuming that the fluid was part of a sphere. Archimedes was able to solve the crown problem
by using the basic law, proved as Proposition 7. One way by which he could have applied
the law is suggested by Heath, based on a description in a Latin poem of the fifth century
k.3 Suppose the crown is of weight W, composed of unknown weights w, and w, of gold
and silver, respectively. To determine the ratio of gold to silver in the crown, first weigh it in
water and let F be the loss of weight. This amount can be determined by weighing the water
displaced. Next take a weight W of pure gold and let F; be its weight loss in water. It follows
that the weight of water displaced by a weight w; of gold is %F 1. Similarly, if the weight
of water displaced by a weight W of pure silver is F5, the weight of water displaced by a
weight w, of silver is 3 F,. Therefore, 3+ Fy + 52 F, = F. Thus, the ratio of gold to silver
is given by

E_F—Fz
w, F—F
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Lemmas 1 and 2 to Measure-
ment of the Circle
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Vitruvius himself provided a somewhat different suggestion for solving the wreath prob-
lem, more clearly based on the story of the bath, but not on the basic law of hydrostatics. He
also recorded that Archimedes indeed found that the goldsmith had cheated the king. What
happened to the smith, however, is not mentioned.

ARCHIMEDES AND NUMERICAL CALCULATIONS

The brief treatise, Measurement of the Circle, contains numerical results, unlike anything
found in Euclid’s work. Its first proposition, in addition, gives Archimedes’ answer to the
question of squaring the circle, by showing that the area of a circle of given radius can be
found once the circumference is known.

PROPOSITION 1 The area A of any circle is equal to the area of a right triangle in which
one of the legs is equal to the radius and the other to the circumference.

Archimedes gave a rigorous proof, using a Eudoxian exhaustion argument. Namely, if K
is the area of the given triangle, Archimedes first supposed that A > K. By inscribing in the
circle regular polygons of successively more sides, he eventually determined a polygon of
area P suchthat A — P < A — K. Thus, P > K. Now the perpendicular from the center of
the circle to the midpoint of a side of the polygon is less than the radius, while the perimeter of
the polygon is less than the circumference. It follows that P < K, a contradiction. Similarly,
the assumption that A < K leads to another contradiction and the result is proved.

The third proposition of this treatise complements the first by giving a numerical approx-
imation to the length of the circumference:

PROPOSITION 3  The ratio of the circumference of any circle to its diameter is less than 3%
but greater than 3]7—(1).

Archimedes’ proof of this statement provided algorithms for determining the perimeter of
certain regular polygons circumscribed about and inscribed in a circle. Namely, Archimedes
began with regular hexagons, the ratios of whose perimeters to the diameter of the circle are
known from elementary geometry. He then in effect used the following lemmas (here given
in modern notation) to calculate, in turn, the ratios to the diameter of the perimeters of regular
polygons with 12, 24, 48, and 96 sides, respectively.

LEMMA 1 Suppose O A is the radius of a circle and C A is tangent to the circle at A. Let
DO bisect /CO A and intersect the tangent at D. Then DA/OA =CA/(CO + OA) and
DO?*= 0A? + DA? (Fig. 4.5).

RNAY
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LEMMA 2 Let AB be the diameter of a circle and AC B a right triangle inscribed in the
semicircle. Let AD bisect /C AB and meet the circle at D. Connect DB. Then AB*>/BD? =
1+ (AB + AC)?*/BC? and AD*> = AB* — BD”.

Archimedes used the first lemma repeatedly to develop a recursive algorithm for deter-
mining the desired ratio using circumscribed polygons. He began by assuming that ZCO A is
one-third of a right angle (30°), so C A is half of one side of a circumscribed regular hexagon.
Therefore, CA and C O are known. Since /DO A = 15°, it follows that DA is half of one
side of aregular 12-gon. DA and D O are then calculated by use of the lemma. Next, /DO A
is bisected to get an angle of 7%0. The piece of the tangent subtending that angle is then half
of one side of a regular 24-gon. Its length can be calculated as well. If 7 is the radius of the
circle, #; half of one side of a regular 3 x 2'—gon (i > 1), and u; the length of the line from the
center of the circle to a vertex of that polygon, the lemma can be translated into the recursive

formulas
rt;
fo = U Ui =12 +12 .
+1 +1
i w +r ’ i i+1

The ratio of the perimeter of the ith circumscribed polygon to the diameter of the circle is
then 6(2’)‘,-) 2r = 3(2itl~) r.

Archimedes developed a similar algorithm for inscribed polygons by use of the second
lemma, and in both cases provided explicit numerical results at each stage. For example, in
his calculations involving hexagons in both the circumscribed and inscribed cases, he needed
to evaluate the ratio /3 : 1. What he wrote indicates that he knew that this ratio is greater
than 265 : 163 and less than 1351 : 780. Although it is not known exactly how Archimedes
found these results, it is certain that he, like many great mathematicians of later times, was a
superb calculator. After four steps of both algorithms, in fact, he concluded that the ratio of
the perimeter of the circumscribed 96-sided polygon to the diameter is less than

1
667zl sl
46731 77

14,688 :4673% =3+

while the ratio of the inscribed 96-sided polygon to the diameter is greater than

6336: 20771 > 3&,
4 71

thus proving the theorem.

Archimedes’ proof is the first recorded method for actually computing 7. Once the method
was known, it was merely a matter of patience to calculate 7 to as great a degree of accuracy
as desired. Archimedes does not tell us why he stopped at 96-sided polygons. But his value
of 3% has become a standard approximation for 7 to the present day.

It was Nicomedes (late third century BCE), a successor of Archimedes, who used an entirely
new method to determine the length of the circumference of a circle and, therefore, by
Proposition 1 above, to square the circle. Namely, he used the quadratrix, a curve probably
introduced a century earlier, defined via a combination of two motions: In the square ABC D,
imagine that the ray A B rotates uniformly around A from its beginning position to the ending
position on AD, while at the same time the line BC moves parallel to itself from BC to
AD (Fig. 4.6). The quadratrix BZK is then the curve traced out by the moving intersection



FIGURE 4.6
The quadratrix
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point. It follows from this definition that a point Z on the quadratrix satisfies the proportion
ZL:BA =arc DG :arc BD, or ZL :arc DG = AB :arc BD. In modern notation, if the
polar equation of the curve is given by p = p(0), p satisfies the equation

p@)sind  a
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where a is the length of a side of the square.

If we take the limit of the left side of the equation as 6 approaches 0, we get the result

) _ _a
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Naturally, the Greeks did not present such a limit argument, but the result, in the form
AK : AB = AB :arc BD, was proved, probably by Nicomedes, through a double reductio
argument. It then follows that arc B D, a quarter of the circumference of the circle, is a third
proportional to the known lines AK and A B and thus can be constructed by Euclidean means.
(It should be noted that even in ancient times this construction was criticized, because the
actual position of the terminal point K is not determined by the definition of the curve. It can
only be approximated.)

ARCHIMEDES AND GEOMETRY

What distinguishes Archimedes’ work in geometry from that of Euclid is that Archimedes
often presented his method of discovery of the theorem and/or his analysis of the situation
before presenting a rigorous synthetic proof. The methods of discovery of several of his results
are collected in a treatise called The Method, which was unexpectedly discovered in 1899 in a
Greek monastery library in Constantinople. The manuscript, containing several other works
of Archimedes as well, is the oldest extant manuscript of Archimedes. It dates from the tenth
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century, but the writing was partially washed out in the thirteenth century and the parchment
reused for a religious work. (Parchment was a very valuable commodity in the middle ages;
a reused parchment is called a palimpsest.) Fortunately, the old writing is in large part still
readable. Heiberg deciphered much of it in 1906 and soon after published the Greek text.

Interestingly, the original palimpsest disappeared during the First World War, only to
reappear in an auction in 1998. Evidently, it had been owned by a French family for many
years, who finally decided to sell. Despite some legal challenges to the sale, the manuscript
with Archimedes’ The Method was sold for about $2 million to an anonymous buyer, who
then contracted with the Walters Art Gallery in Baltimore to preserve it and restore it where
possible. At this writing, it is still at the Gallery, but scholars have been permitted to inspect it
using modern techniques. Although it seems that Heiberg’s original reading of the manuscript
is relatively accurate, there have been a few new discoveries from the manuscript in the past
several years, including many of the original diagrams that Heath had been unable to see.
Some of these discoveries are noted below.

431 Archimedes’ Method of Discovery

In the introductory letter to The Method, written to Eratosthenes, the chief librarian at the
Library in Alexandria, Archimedes described his purpose in writing it:

Since, as I said, I know that you are diligent, an excellent teacher of philosophy, and greatly
interested in any mathematical investigations that may come your way, I thought it might be
appropriate to write down and set forth for you in this same book a certain special method, by
means of which you will be enabled to recognize certain mathematical questions with the aid of
mechanics. [ am convinced that this is no less useful for finding the proofs of these same theorems.
For some things, which first became clear to me by the mechanical method, were afterwards
proved geometrically, because their investigation by the said method does not furnish an actual
demonstration. But it is of course easier, when we have previously acquired, by the method,
some knowledge of the questions, to supply the proof than it is to find it without any previous
knowledge. . . . Inow wish to describe the method in writing, partly because I have already spoken
about it before, . . . partly because I am convinced that it will prove very useful for mathematics; in
fact, I presume there will be some among the present as well as future generations who by means
of the method here explained will be enabled to find other theorems which have not yet fallen to

our share.?

The Method contains Archimedes’ method of discovery by mechanics of many important
results on areas and volumes, most of which are rigorously proved elsewhere. The essential
features of The Method are, first, the assumption that figures are “composed” of their
indivisible cross sections and, second, the balancing of cross sections of a given figure against
corresponding cross sections of a known figure, using the law of the lever. Archimedes knew
that this method did not give a rigorous proof, because neither mechanical principles nor
“indivisible” cross sections could appear in a formal mathematical argument. Therefore, as
he noted in his preface, those proofs would have to come later.

The first proposition of The Method, that a segment of a parabola is 4/3 of the triangle
inscribed in it, is presented here in detail as a typical example of that work. By a segment A BC
of a parabola, Archimedes meant the region bounded by the curve and a line AC, where B is
the point at which the line segment through the midpoint D of AC drawn parallel to the axis
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of the parabola meets the curve (Fig. 4.7). The point B is called the vertex of the parabolic
segment. The vertex is also that point of the curve whose perpendicular distance to AC is the
greatest. Now given the parabolic segment A BC with vertex B, draw a tangent at C meeting
the axis produced at E and a line through A parallel to the axis meeting the tangent line at
F.Produce CB to meet AF in K and extend it to H so that CK = K H. Archimedes now
considered C H as a lever with midpoint K. The idea of his demonstration is to show that
triangle C F A placed where it is in the figure balances the segment A BC placed at H. He did
this, line by line, by beginning with an arbitrary line segment M O of triangle C A parallel
to E D and showing that it balances the line P O of segment ABC placed at H. To show the
balancing, two properties of the parabola are needed, first that £EB = B D, and second that
MO :PO=CA:AO. (Itis evident that Archimedes was quite familiar with the elementary
properties of parabolas.) From EB = BD, it follows that FK = KA and MN = NO, and
from the proportion and the fact that CK bisects AF, it follows from Elements VI-2 that
MO:PO=CA:AD=CK:KN=HK:KN.Ifaline TG equal to PO is placed with
its center at H, this latter proportion becomes MO : TG = HK : K N. Therefore, since N
is the center of gravity of M O, by the law of the lever, M O and T G will be in equilibrium
about K.

;
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Archimedes continued, “since the triangle C F A is made up of all the parallel lines like
M O, and the segment C BA is made up of all the straight lines like P O within the curve,
it follows that the triangle, placed where it is in the figure, is in equilibrium about K with
the segment CBA placed with its center of gravity at H.”'” Because nothing is changed
by considering the triangle as located at its center of gravity, the point W on CK two-
thirds of the way from C to K, Archimedes derived the proportion AACF : segment ABC
= HK : KW =3:1. Therefore, segment ABC = (1/3)AACF. But AACF =4AABC.
Hence, segment ABC = (4/3) AABC as asserted. Archimedes concluded this demonstration
with a warning: “Now the fact here stated is not actually demonstrated by the argument used;
but that argument has given a sort of indication that the conclusion is true. Seeing then that
the theorem is not demonstrated, but at the same time suspecting that the conclusion is true,
we shall have recourse to the geometrical demonstration which I myself discovered and have
already published.”!!
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FIGURE 4.8

A plane cutting off a segment
of a cylinder

FIGURE 4.9
Finding the volume of the
cylindrical segment

The Method contains several other similar proofs by the use of indivisibles and balancing,
where the theorems are rigorously proved elsewhere, but the final propositions in the extant
part of the work deal with a theorem that only appears in this work:

PROPOSITION 14 If a cylinder is inscribed in a rectangular parallelepiped with square
base, and if a plane is drawn through the center of the circle at the base of the cylinder and
through one side of the square forming the top of the parallelepiped, then the segment of the
cylinder cut off by this plane has a volume equal to one-sixth of the entire parallelepiped
(Fig. 4.8).1

Archimedes first gave a mechanical proof of this proposition similar to that of the other
propositions in the work, but then gave a proof only using indivisibles and followed with a
rigorous geometric proof using the method of exhaustion. We will look at the proof using
indivisibles, because it brings out some other facets of Archimedes’ mathematics. In the
diagram accompanying the proof, we have the square base ABC D of the parallelepiped,
the circle EF HG inscribed in the square forming the base of the cylinder, and a parabola
E F H cutting the circle at H and E with axis K F' (Fig. 4.9). (If we think of F as the origin
of a coordinate system, then the parabola, drawn in the diagram with straight lines, has
equation x” = £y, where £ is the length of F K , usually called the “parameter” of the parabola.
Similarly, the circle has equation X2+ y2 — 24y = 0. Of course, Archimedes himself had
nothing about coordinates, only the geometric description of the curves.) Archimedes then
noted that the plane drawn through the center of the circle and one side of the top cuts off a
prism that is one-fourth of the entire parallelepiped.

A M F B
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Archimedes’ goal was to compare the desired segment with the prism cut off by the plane.
To do this, he compared the “indivisible” right triangles in each that were above an arbitrary
line M N drawn in the rectangle ABE H parallel to K F, where M N intersects the circle at
S and the parabola at L. The triangle in the prism has one side M N, a second side the line
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drawn through M perpendicular to A B, and hypotenuse a line in the cutting plane itself. The
triangle in the segment has one side N S, a second perpendicular side in the surface of the
cylinder, and hypotenuse also in the cutting plane. Because the two triangles are similar, their
areas are in the duplicate ratio of M N to N S, that is, in modern terms, in the ratio of M N 20
N S2. But by the defining property of the parabola, we know that K N> = MN - M L. Also,

MN - -NL+ MN - -ML=MN?*=KS*>=KN?+ NS>

By subtraction, we then get that MN - NL = NS?, or that MN : NS = NS : NL. It follows
that MN?:NS?>=MN :NL, or

triangle in prism : triangle in cylinder segment =

line segment in rectangle : line segment in parabolic segment. “.n

Given that the ratio holds for any line segment M N in rectangle ABE H parallel to K F,
the aim now is somehow to “add up” all the segments and all the triangles and compare the
ratio of the “sums.” What Archimedes did was use a special case of a lemma from another
treatise, Conoids and Spheroids, which he recalled in the introduction to The Method. In
modern terms, the special case states that if there are four finite sets A = {q;}, B = {b;},
C ={c¢;}, D ={d;}, each with k elements, such thata; =a, =---=ay, by=by=---=by,
anda; :¢c; =b; :d; forall i, then Y a; : > ¢; = b; .Y d;. Archimedes applied the result
in a new way, however, to the four (infinite) sets of triangles and line segments that appear in
the basic proportionality result (4.1). Namely, let A be the set of triangles in the prism, B the
set of line segments in the rectangle, C the set of triangles in the segment of the cylinder, and
D the set of line segments in the parabolic segment. Although these sets are infinite, they are,
as Archimedes wrote, “equal in multitude,” evidently because there is an obvious one-to-one
correspondence among the elements of each of the four sets. In addition, since the elements in
set A are equal to one another as are the elements in set B, and since the basic proportion (4.1)
fits the other requirement of the lemma, Archimedes evidently believed that the conclusion
would be true, even though the sets are infinite rather than finite. As we have noted earlier,
Aristotle and Greek mathematicians in general did not deal with actual infinities, but only
with potential infinities. Yet here Archimedes has violated this injunction. Not only that, but
given that he noted that the sets involved were “equal in multitude,” it is possible that he even
conceived of infinite sets that would not be “equal in multitude” with these particular sets.

So, given the lemma, Archimedes could now “add up” his infinite sets and get a conclusion.
He noted that since the rectangle ABE H is “filled” by the lines drawn parallel to K F, the
rectangle itself is “all the lines.” Similarly, the prism is composed of “all the triangles” in
it; the segment of the cylinder is composed of “all the triangles” in it; and the parabolic
segment is composed of “all the lines” in it. It then followed that the prism is to the segment
of the cylinder as the rectangle is to the parabolic segment. The remainder of the argument
is straightforward: By the first theorem in The Method, the rectangle is 3/2 the parabolic
segment. Therefore, the prism is 3/2 the segment of the cylinder. And since the prism is one-
fourth of the entire rectangular parallelepiped, that figure is six times the segment of the
cylinder, as claimed.
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Area of a parabolic segment
by summation of a geometric
series

Interestingly, although Archimedes used indivisibles throughout The Method, he did not
explain how they are to be used, even heuristically. This leads us to believe that his con-
temporaries, and especially the mathematicians in Alexandria with whom he corresponded,
understood the use of indivisibles and, perhaps, used them in similar arguments even though
they knew that these arguments did not form a rigorous geometrical proof.!3

4.32 Sums of Series

The geometrical proof of the result on the segment of a parabola that Archimedes considered
valid occurs in his treatise Quadrature of the Parabola and is based on Eudoxus’s method of
exhaustion. The idea as before is to construct rectilinear figures inside the parabolic segment
whose total area differs from that of the segment by less than any given value. The figures
Archimedes used for this purpose are triangles. Thus, in each of the two parabolic segments
PRQ, PR'Q/, left by the original triangle P Q Q’, he constructed a triangle PRQ, PR'Q’;
in each of the four segments left by these triangles, he constructed new triangles, and so on
(Fig. 4.10).

Archimedes next calculated that the total area of the triangles constructed at each stage is
one-fourth of the area of the triangles constructed in the previous stage. The more steps taken,
the more closely the sum of the areas approaches the area of the parabolic segment. Therefore,
to complete the proof, Archimedes in effect needed to find the sum of the geometric series
a+ Zla + (%)Za + -+ (A—IL)"a + - - -, where a is the area of AP QQ’. Archimedes did not
use Euclid’s formula for the sum of a geometric progression from Elements IX-35, but instead
gave that sum in the form

a+la+<l)2a+ +<l4>na+l<l)na—ia
4 4 4 3\4 T3

He completed the argument through a double reductio ad absurdum, which began with the
assumption that K = %a is not equal to the area B of the segment. If K is less than this area,
then triangles can be inscribed as above so that B — T' < B — K, where T is the total area of
the inscribed triangles. But then 7 > K. This is impossible because the summation formula
showsthat 7 < %a = K.Onthe otherhand, if K > B, n is determined so that (%)”a < K — B.
Because also K — T = %(}‘)”a < (%)”a, it follows that B < T', which is again impossible.
Hence, K = B.

The important lemma to this proof shows how to find the sum of a geometric series.
Archimedes’ demonstration of this result was given for a series of five numbers, because,
like Euclid, he had no notation to express a series with arbitrarily many numbers. But since
his method generalizes easily, we will here use modern notation with n denoting an arbitrary
positive integer. Archimedes began by noting that (%)”a + %(}1)”“ = %(;{)”’la. Then he
calculated
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Subtracting equals and rearranging gives the desired result:

b (e s (e () e
4 4 4 3\4 3

Another formula for a sum led to another area result in On Spirals, a result again proved
by Eudoxian methods. In Proposition 10 of that book, Archimedes demonstrated a formula
for determining the sum of the first n integral squares,

D>+ (424 +n)=3124+22+---+n?),
as a corollary to which he showed that
3PP +22 4+ =D <nP <312 +22 4+ +1n?).

Archimedes needed the last inequality to determine the area bounded by one turn of the
“Archimedean spiral,” the curve given in modern polar coordinates by the equation » = a6.
In Proposition 24 of On Spirals, he demonstrated that the area R bounded by one complete
circuit of that curve and the radius line AL to its endpoint equals one-third of the area C of the
circle with that line as radius. Archimedes first noted that one can inscribe and circumscribe
figures about the region R whose areas differ by less than any assigned area € (Fig. 4.11). By
continued bisection (according to Elements X—1), one can determine an integer n such that
the circular sector with radius AL and angle (360/7)° has area less than €. Then, inscribing a
circular arc in and circumscribing a circular arc about the part of the spiral included in each of
the n sectors with this angle, one notes that the difference between the complete circumscribed
figure and the complete inscribed figure is equal to the area of the sector chosen initially and
thus is less than €.

The proof of the area result by a double reductio argument is now straightforward. For
suppose that R # %C . Then either R < %C or R > %C . In the first case, circumscribe a figure
F about R as described above so that FF — R < %C — R. Therefore, F < %C . From the
defining equation of the curve, it follows that the radii of the sectors making up F are in
arithmetic progression, which can be considered as 1, 2, ..., n. Because n - n? < 3(12 +
22 4+ ... +n?) and because the areas of the sectors (and the circle itself) are proportional



110 CHAPTER 4 ARCHIMEDES AND APOLLONIUS

FIGURE 4.12
On the Sphere and Cylinder
11, Proposition 3

to the squares on their radii, it follows that C < 3F or %C < F, a contradiction. A similar

argument using an inscribed figure shows that R > %C also leads to a contradiction, and the
proposition is proved.

433 Analysis

Our final examples of Archimedes’ work show again his concern that his readers learn not
only the solution to a geometric problem but also how the solution was found. Namely, he
often used the method of analysis; he assumed the problem was solved and then deduced
consequences until he reached a result or construction already known. Then, assuming that
each step was reversible, he could provide a synthetic proof by working backwards. Consider
Proposition 3 of On the Sphere and the Cylinder II:

PROBLEM 7o cut a given sphere by a plane so that the surfaces of the segments may have
to one another a given ratio.

Archimedes assumed that the plane BB’ cuts the sphere so that the surface of BAB' is
to the surface of BA’B’ as H is to K (Fig. 4.12). He had already proved in Proposition 42
of On the Sphere and the Cylinder I that the areas of such segments equal the area of the
circles on the radii AB, A’B. Hence, he concluded that AB2: A’B2 = H : K and therefore
that AM : A’M = H : K (since the areas of the similar triangles ABM, A’BM are both as
the squares on corresponding sides and as the two bases with a common altitude). But the
dividing of a line segment in a given ratio is a known procedure. Archimedes could therefore
solve the original problem by beginning with that step and proceeding in reverse. Namely,
given diameter AA’, he chose M sothat AM : MA’ = H : K. The results already quoted then
show that AM : MA’ = AB?: A’B? = (circle with radius AB) : (circle with radius A’B) =
(surface of segment BAB’) : (surface of segment BA’B’). The problem is solved.

Archimedes presented the analysis of a more complex problem in Proposition 4 of the same
book, where he proposed to cut a given sphere by a plane so that the volumes of the segments
are in a given ratio.'* In this case, his analysis reduced the problem to a special case of the
general problem: To cut a given straight line AB at a point E such that AE : AG = A : BE?,
where AG is a given line segment (here drawn perpendicular to AB) and A is a given area
(Fig. 4.13). Assuming the construction completed, we draw G E, continue it to Z, draw G H
parallel and equal to A B, and complete rectangle GT Z H. Further, we draw K E L parallel
to ZH and continue G H to M such that the rectangle on G H and H M is equal to the given
area A. Now,

A:BE?>=AE:AG =GH : HZ (by similarity) = GH> :GH - HZ,
where the multiplication in the final consequent is modern shorthand for “rectangle.” Since

BE2=KZ? wehave GH?>:GH-HZ=A:KZ* or GH-HZ:KZ?>=GH?: A. But
A =GH - HM. Therefore,

GH?>:A=GH?:GH-HM=GH:HM=GH-HZ:HM -HZ.

It follows that HM - HZ = K Z2. But this relationship, as before, defines a parabola. So
Archimedes noted that the parabola through H with axis HZ and parameter H M passes
through K. (As above, if we use a coordinate system with origin H, and set HM = ¢, then
the parabola has equation x> = £y.) Furthermore, rectangles GT K L and AG H B are equal, or
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TK - KL= AB - BH.For Archimedes, such an equality showed that the hyperbola through
B with asymptotes 7G and G H passed through K. (If AB = a and AG = d, this hyperbola
has equation (a — x)y = ad.) Archimedes thus concluded the analysis by noting that K was
on the intersection of the hyperbola and parabola. In the synthesis of the problem, Archimedes
could then construct the parabola and hyperbola, determine K as their intersection, and then
find E as in the diagram to solve the original problem.

The synthesis, however, is not complete unless we know in advance that the two curves
will intersect. Archimedes considered this issue in detail. First, he noted that the original
proportion implies that the desired solid with base the square on BE and height AE is
equal to the given solid with base the area A and height AG. But because AE and BE
are segments of line A B, the volume of the desired solid cannot be arbitrarily large. In fact,
as Archimedes showed, there is a maximum volume that occurs when BE is twice AE.
Thus, the problem cannot be solved unless the given solid is not larger than this maximum.
Furthermore, Archimedes also showed that if this condition is met, there is one solution if
the given solid equals the maximum and two if it is smaller than the maximum. Note that if
we set BE = x,50 AE =a — x, and set A = ¢2, then the relationship between the solids can
be transformed into the modern cubic equation x%(a — x) = c3d. Archimedes had therefore

shown that the maximum of x?(a — x) occurs when x = %a, and therefore that the equation
can be solved if ¢2d < gaz . %a = %a3. Finally, Archimedes found that the original sphere
problem reduced to a special case of the general problem, where A is the square on 2/3 of
the line AB, and AG is less than 1/3 of line AB. In that case, it is clear that the inequality
condition is met, so the problem is solvable. And Archimedes could also easily determine
which of the two solutions to the general problem actually split the diameter of the sphere so

that the segments were in the given ratio.

It is often stated in connection with this problem that “Archimedes solved a cubic equa-
tion.” Certainly, in terms of the definition of “algebra” given earlier, this problem is an
example of an algebraic problem. But it also seems that Archimedes did not set out to “solve
an equation,” but instead to construct the solution to an interesting geometric problem. All of
the expressions used in the solution are geometric, including the appearance of conic sections,
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FIGURE 4.14

Stamp of Archimedes from
San Marino that shows a
cylinder with base equal to a
great circle on a sphere

which earlier mathematicians, including Euclid, had defined geometrically. So whether we
can include the solution of a cubic equation as one of Archimedes’ many accomplishments
is, at least, debatable. What is not debatable is that his mathematical genius was far-reaching.
Among numerous other results from the 14 extant treatises, Archimedes proved that the vol-
ume of a sphere is four times that of the cone with base equal to a great circle of the sphere
and height equal to its radius, that the volume of a segment of a paraboloid of revolution is 3/2
that of the cone with the same base and axis, and that the surface of a sphere is four times the
greatest circle in it. There is also evidence that Archimedes dealt with combinatorial prob-
lems in the Stomachion, of which only a small part is extant, and wrote more extensive works
on balances and centers of gravity, on semiregular polyhedra, on optics, and on astronomy,
which have completely disappeared. In fact, the Roman historian Livy refers to Archimedes
as “an unrivalled observer of the heavens and the stars.”!

Archimedes was buried near one of the gates of Syracuse. He had requested that his tomb
include a cylinder circumscribing a sphere together with an inscription of what he evidently
thought one of his most important theorems, that a cylinder whose base is a great circle in the
sphere with height equal to the diameter is 3/2 of the sphere in volume and also has surface
area 3/2 of the surface area of the sphere (Fig. 4.14). The tomb was found neglected by Cicero
when he served as an official in Sicily about 75 BCE and was restored. Unfortunately, however,
it no longer exists.

CONIC SECTIONS BEFORE APOLLONIUS

We have already seen that Archimedes was quite familiar with the properties of the conic
sections, and evidently expected his readers to be so as well. There are various indications
that conics were being studied in detail a century earlier than Archimedes, but the exact
origins of the theory are somewhat hazy. One possibility is that the origin may be connected
to the problem of doubling the cube. Recall that Hippocrates in the fifth century BCE reduced
the problem of constructing a cube double the volume of a given cube of side a to the finding
of two mean proportionals x, y, between the lengths a and 2a, that is, of determining x, y,
such thata : x = x : y = y : 2a. In modern terms, this is equivalent to solving simultaneously
any two of the three equations x> = ay, y> = 2ax, and xy = 2a°, equations that represent
parabolas in the first two instances and a hyperbola in the third.

It was Menaechmus (fourth century BCE) who first constructed curves that satisfy these
algebraic properties and thus showed that the point of intersection of these curves would
give the desired two means and solve the problem of doubling the cube. It is not known
how he produced these curves, but a pointwise construction was certainly possible using
Euclidean methods. To construct the points of a curve satisfying y? = 2ax, one could just
apply repeatedly the method of Elements VI-13 (Fig. 4.15). First, put segments of length 2a
and x together into a single line. Then, draw a semicircle having that line as diameter, and erect
a perpendicular at the join of the two segments. This perpendicular has length y satisfying
the equation. If this is done for various lengths x and the endpoints of the perpendiculars are
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connected, the desired curve is drawn.!® We note that although each point of this curve has
been constructed using Euclidean tools, the completed curve is not a proper construction in
Euclid’s sense. In any case, it does appear that the conic sections were introduced as tools
for the solution of certain geometric problems.

There can be only speculation as to how the Greeks realized that curves useful in solving
the cube doubling problem could be generated as sections of a cone. Someone, perhaps
Menaechmus himself, may have noticed that the circle diagram above could be thought of
as a diagram of level curves of a certain cone, hence that the curve could be generated by a
section of such a cone. Another possibility is that these curves appeared as the path of the
moving shadow of the gnomon on a sundial as the sun traveled through its circular daily path,
which in turn was one base of a double cone whose vertex was the tip of the gnomon. In this
suggestion, the plane in which the shadow falls would be the cutting plane. It might further
have been noted that the apparent shape of a circle viewed from a point outside its plane was
an ellipse, and this shape comes from a plane cutting the cone of vision. In any case, by the
end of the fourth century, there were in existence two extensive treatises on the properties of
the curves obtained as sections of cones, one by Aristaeus (fourth century BCE) and one by
Euclid. Although neither is still available, a good deal about their contents can be inferred
from Archimedes’ extensive references to basic theorems on conic sections.

Recall that Euclid (in Book XI of the Elements) defined a cone as a solid generated by
rotating a right triangle about one of its legs. He then classified the cones in terms of their
vertex angles as right angled, acute angled, or obtuse angled. A section of such a cone can be
formed by cutting the cone by a plane at right angles to the generating line, the hypotenuse
of the given right triangle. The “section of a right-angled cone” is today called a parabola,
the “section of an acute-angled cone” an ellipse, and the “section of an obtuse-angled cone”
a hyperbola. The names in quotation marks are those generally used by Archimedes and his
predecessors.



114

CHAPTER 4 ARCHIMEDES AND APOLLONIUS

BIOGRAPHY
Apollonius (250-175 BCE)

pollonius was born in Perga, a town in southern Asia Mi-

nor, but few details are known about his life. Most of
the reliable information comes from the prefaces to the vari-
ous books of his magnum opus, the Conics (Fig. 4.16). These
indicate that he went to Alexandria as a youth to study with
successors of Euclid and probably remained there for most of
his life, studying, teaching, and writing. He became famous in
ancient times first for his work on astronomy, but later for his
mathematical work, most of which is known today only by

FIGURE 4.16

Title page of the first Latin
printed edition of Apollo-
nius’s Conics, 1566 (Source:

Smithsonian Institution Li-
braries, Photo No. 86-4346)

titles and summaries in works of later authors. Fortunately,
seven of the eight books of the Conics do survive, and these
represent in some sense the culmination of Greek mathemat-
ics. It is difficult for us today to comprehend how Apollonius
could discover and prove the hundreds of beautiful and difficult
theorems without modern algebraic symbolism. Nevertheless,
he did so, and there is no record of any later Greek mathemat-
ical work that approaches the complexity or intricacy of the
Conics.
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FIGURE 4.17
Derivation of the symptoms
of a parabola
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THE CONICS OF APOLLONIUS

Apollonius, in his Conics, decided to define the conic sections slightly differently. He decided
that it was not necessary to restrict oneself to a cutting plane perpendicular to a generator,
nor even to a right circular cone, to determine the curves. In fact, he generalized the notion
of a cone as follows:

If from a point a straight line is joined to the circumference of a circle which is not in the same
plane as the point, and the line extended in both directions, and if, with the point remaining fixed,
the straight line is rotated about the circumference of the circle . . . , then the generated surface
composed of the two surfaces lying vertically opposite one another . . . [is] a conic surface. The
fixed point [is] the vertex and the straight line drawn from the vertex to the center of the circle [is]
the axis. . . . The circle [is] the base of the cone.!”

For Apollonius, a conic surface was what is today called a double oblique cone. In general,
its axis is not perpendicular to the base circle, but in what follows, for simplicity, we will take
the axis perpendicular to the base.

To define the three curves, Apollonius first cut the cone by a plane through the axis. The
intersection of this plane with the base circle is a diameter BC of that circle. The resulting
triangle A BC is called the axial triangle. The parabola, ellipse, and hyperbola are then defined
as sections of this cone by certain planes that cut the plane of the base circle in the straight
line ST perpendicular to BC or BC produced (Figs. 4.17, 4.18, and 4.19). The straight line
EG is the intersection of the cutting plane with the axial triangle. If EG is parallel to one
side of the axial triangle, the section is a parabola. If EG intersects both sides of the axial
triangle, the section is an ellipse. Finally, if EG intersects one side of the axial triangle and
the other side produced beyond A, the section is a hyperbola. In this situation, there are two
branches of the curve, unlike in the earlier obtuse-angled cone.

For each case, Apollonius derived the “symptom” of the curve, the characteristic relation
between the ordinate and abscissa of an arbitrary point on the curve. Apollonius, of course,
presented his results in geometric language. Nevertheless, it is not difficult to “translate” his
words into modern algebraic language. We will, in general, do so, but please keep in mind
that there is no evidence that Apollonius himself used algebra of any kind in his work.

Apollonius began by picking an arbitrary point L on the section and passing a plane
through L parallel to the base circle. The section of the cone produced by the plane is a
circle with diameter P R. Let M be the intersection of this plane with the line EG. Then LM
is perpendicular to PR, and therefore LM?> = PM - MR.

If EG isparallel to AC, aside of the axial triangle, Apollonius found the standard symptom
of a parabola, the relation between EM and L M, the abscissa and ordinate, respectively, of
the point L on the curve (Proposition I-11). To do this (Fig. 4.17), he drew E H perpendicular
to EK such that

EH _ BC?
EA  BA-AC’
The right-hand side of this equation can be written as the product of BC/BA and BC/AC.
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FIGURE 4.18
Derivation of the symptoms
of an ellipse

But by similarity,
BC PR PM MR BC PR PM

BA PA EP EA " AC AR EM
It follows that
EH MR-PM
EA  EA-EM’
But also
EH EH-EM
EA  EA-EM’
Therefore, MR- PM = EH - EM and LM?*=EH - EM. If we set LM = v, EM =x,
and EH = p, we have derived the standard equation of the parabola: y*> = px. The name
“parabola” comes from the Greek word paraboli (applied), because the square on the ordinate

y is equal to the rectangle applied to the abscissa x. The constant p, which depends only on
the cutting plane that determines the curve, is called the parameter of the parabola.

In the other two cases, let D be the intersection of EG with the second side of the axial
triangle (ellipse) or with the second side produced (hyperbola) (Figs. 4.18, 4.19). Apollonius
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FIGURE 4.19
Derivation of the symptoms
of a hyperbola

proved in these cases (Propositions I-12, I-13) that the square on L M is equal to a rectangle
applied to a line E H with width equal to EM and exceeding (yperboli) or deficient (ellipsis)
by a rectangle similar to the one contained by DE and E H, thus indicating the reason for
the curves’ names. He first chose E H, drawn perpendicular to D E, so that

DE AK?
EH BK-KC
As before, the right side of this equation can be written as a product: (AK/BK) - (AK /K C),
where AK is parallel to DE. By similarity,
AK _EG _EM

AK DG DM
BK BG MP

and — = = —.
KC GC MR

Therefore,
DE _EM-DM
EH MP-MR’
But also
DE DM DM EM-DM
EH MX EO EM-EO’
It follows that MP - MR = EM - E O and therefore that LM? = EM - EO. In the case of
the hyperbola, EO = EH + H O, while for the ellipse, EO = EH — HO. In either case,
because the rectangle contained by EM (= OX) and H O is similar to the one contained
by DE and E H, Apollonius has proved his result. In modern terms, because EM/H O =

DE/EH,wehave HO = EM - EH/DE and therefore, setting LM =y, EM =x, EH =
p,and DE = 2a, Apollonius’s symptoms become the modern equations

yzzx(p—l—ﬁx) and y2=x<p—£x>
2a 2a
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for the hyperbola and ellipse, respectively. As before, the parameter p depends only on the
cutting plane determining the curve.

After giving the symptoms in this form, Apollonius, in Proposition I-21, gave a new
version of the symptoms for both ellipse and hyperbola. In terms of Figures 4.18 and 4.19, he
showed that LM?: EM - M D = E H : DE. Turning this proportion into an algebraic equation
gives us the equation for both the ellipse and hyperbola in the form y? = %xlxz, where x;
and x, are distances of the point M from the two ends, E and D, of the axis of the curve.
We note, in the case of the ellipse, that if the point (x, y) is the endpoint of the minor axis
(of length 2b), then this equation shows that b = %az or b> = %. We thus have the basic
relationship between the parameter and the lengths of the two axes. For the hyperbola, as
we will see below, the same equation holds, with b being the perpendicular distance from a

vertex to an asymptote.

Having derived the symptoms of the curves from their definitions as sections of a cone,
Apollonius showed conversely in the final propositions of Book I that given a vertex (or a pair
of vertices) at the end(s) of a given line (line segment) and a parameter, a cone and a cutting
plane can be found whose section is a parabola (ellipse or hyperbola) with the given vertex
(vertices), axis, and parameter. Henceforth, as we have already seen in some of Archimedes’
work, an ancient or medieval author could assert the “construction” of a conic section with
given vertices, axes, and parameter in the same manner as the construction of a circle with
given center and radius. New construction postulates had thus been added to the basic ones
of Euclid’s Elements.

In deriving the properties of the conics, Apollonius generally used the symptoms of the
curves, rather than the original definition, just as in modern practice these properties are
derived from the equation. Although Apollonius always used geometric language, much of
his work, including the symptoms themselves, can be easily translated into modern algebraic
notation. Therefore, in our brief survey of highlights of the Conics, algebra will be used to
simplify some of the statements and proofs.

451 Asymptotes

In Book II, Apollonius dealt with the asymptotes to a hyperbola. These are constructed in
Proposition II-1 (Fig. 4.20). Drawing a tangent to the vertex A of the hyperbola and laying
off on this tangent two segments AL, AL’ (in opposite directions from the vertex), such that
AL?=AL"? = p—z" (= b?), Apollonius showed that the lines CL, CL’, drawnto L, L', from the
center of the hyperbola do not meet either branch of the curve. (The word asymptotos in Greek
means “not capable of meeting.”) Furthermore, in Proposition 1I-14, Apollonius showed
that the distance between the curve and these asymptotes, if both are extended indefinitely,
becomes less than any given distance.

In Proposition II-4, Apollonius demonstrated how to construct a hyperbola given a point
on the hyperbola and its asymptotes, thus providing a further construction postulate. In
Proposition II-8, he then established the fact that segments cut off by a secant of a hyperbola
between the hyperbola and the two asymptotes are equal. Then in Propositions II-10 and II—
12, he showed that the symptom of a hyperbola can be expressed in terms of its asymptotes
instead of its parameter and axis. Note that since AL = b, AC = a, and we are taking A as the
origin of our coordinate system, the equation of the asymptotes can be expressed in modern
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FIGURE 4.20

Constructing asymptotes to a
hyperbola L

U

notation as y = if‘: (x + a). Now take Q, g, on the hyperbola such that Qg is perpendicular
to the diameter (Fig. 4.21). If R, r, are the intersection points of Qg with the two asymptotes,

and if we write Q = (x, y), then, since b% = %

b b b?
QR-qr:(—(x+a)—y> <—(x+a)+y)=—2(x +a)2—y2
a a a
b*x>  2b%ax 2 P 2
" " +b* — px — Zx

2 2
z(b__£>xz+(&_p>x+b2=b2,
a? 2a a

Similarly, gr - ¢ R = b. If one draws from Q, ¢, a pair of parallel lines to each of the
asymptotes, intersecting one at H, h, respectively, and the second at K, k, one sees that
RQO:Rq=HQ :hgandgr:Qr =qgk: QK.Itis then immediate that HQ :hq = gk : QK
orthat HQ - QK = hq - gk. In other words, the product of the lengths of the two lines drawn

FIGURE 4.21

The symptom of a hyperbola H F'/

using asymptotes Q

=
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FIGURE 4.22

Conics, Proposition I-33

from any point of the hyperbola in given directions to the asymptotes is a constant. In modern
notation, this result shows that a hyperbola can be defined by the equation xy = k.

4.5.2 Tangents, Minimum Lines, and Similarity

Although we do not know exactly what motivated Apollonius’s choice of particular topics
in his Conics, it does seem that among his motivations was the desire to generalize various
theorems on circles, including those proved in Elements, Book II1. For example, in Book I he
discussed the problem of drawing tangents to the conic sections. For Apollonius, as for Euclid
earlier, a “tangent” was a line that touches a curve but does not cut it. Recall that to draw a
tangent to a circle only required drawing a line perpendicular to a radius. For a parabola, the
situation was slightly more complicated:

PROPOSITION I-33  Let C be a point on the parabola C ET with C D perpendicular to the
diameter E B. If the diameter is extended to A with AE = E D, then line AC will be tangent
to the parabola at C (Fig. 4.22).

G
cLF K

Set DC =y, DE = x,and AE =t. The theorem says that if # = x, then line AC is tangent
to the curve at C. In other words, the tangent can be found by simply extending the diameter
past E a distance equal to x and connecting the point so determined with C. To prove the
result, Apollonius used a reductio argument and assumed that the line through A and C does
cut the curve again, say, at K. Then the line segment from C to K lies within the parabola.
Pick F on that segment and drop a perpendicular from F to the axis, meeting the axis at B and
the curve at G. Therefore, BG2: CD? > BF?:CD?= AB?: AD?. Also, since G and C lie
on the curve, the symptom shows that BG?> = p - EB and CD* = p - ED, so BG*:CD?* =
BE : DE. Therefore, BE : DE > AB?: AD?.Soalso4BE - EA:4DE - EA > AB?: AD?,
and therefore

ABE -EA:AB?>>4DE -EA:AD.

Now note that Elements 11-5 implies that for any lengths a, b, we have ab < ((a + b)/2)?
ordab < (a + b)2, with equality if and only if @ = b. In this case, since AE = DE, we have
4DE - EA = AD?, while since AE < BE, we have 4BE - EA < AB?. Thus, the left side
of the displayed inequality is less than 1, while the right side equals 1, a contradiction.

Drawing a tangent to an ellipse or hyperbola is more involved, but the proof is similar to
the previous one.
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Conics, Proposition 1-34

FIGURE 4.24

Conics, Proposition I1I-16
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PROPOSITION 1-34 Let C be a point on an ellipse or hyperbola, CB the perpendicular
from that point to the diameter. Let G and H be the intersections of the diameter with the
curve, and choose A on the diameter or the diameter extended so that AH : AG = BH : BG.
Then AC will be tangent to the curve at C.

This result can be stated algebraically by letting AG =t and BG = x. In the case of the
ellipse, BH = 2a — x and AH = 2a + ¢, while in the case of the hyperbola, BH =2a + x
and AH =2a —t (Fig. 4.23). Therefore, for the ellipse (2a +t)/t = (2a — x)/x and for
the hyperbola (2a — t)/t = (2a + x)/x. Solving these for ¢ gives t = ax/(a — x) for the
ellipse and r = ax/(a + x) for the hyperbola. The tangent line can now be constructed.
Apollonius completed his treatment of the tangents by proving the converses of these results
as Propositions [-35 and 1-36.

O

In Book III, Apollonius took up other properties of tangents to a conic section, for example,
this one related to Elements 111-36.

PROPOSITION I11-16 If two tangents to a conic section (parabola, ellipse, or one branch
of a hyperbola) meet, and suppose a line is drawn across the section parallel to one tangent
and meeting the other one, then as the squares on the tangents are to each other, so is the
rectangle contained by the straight lines between the curve and the tangent to the square cut
off at the point of contact (Fig. 4.24).
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FIGURE 4.25
Conics, Propositions V-8,
V-13, and V=27

In other words, if the tangents to the section at A and B meetat C, and if F D E is parallel to
CB and meets AC at E, then BC2: AC? = FE - ED : E A%. In the case of a circle, of course,
the two tangents from a point are equal and, according to Elements 111-36, EA> = FE - ED.

Book IV generally deals with the number of ways conics can intersect. Thus, Apollonius
showed, in contrast to Elements 1II-10, which proves that two circles can intersect in only
two points, that two conic sections can intersect in at most four points. And, in contrast to
Elements 111-13, which states that two circles can be tangent only at one point, Apollonius
showed that two conic sections can be tangent at most at two points.

In Book V, Apollonius considered minimal lines to conics from points on the axes. These
lines turn out to be normals to the conic. Only the parabola is considered here, where we have
combined three propositions dealing with that curve. (There are analogous propositions for
the other conics.)

PROPOSITIONS V-8, V-13, V-27 In a parabola with vertex A and symptom y* = px, let G
be a point on the axis such that AG > %. Let N be taken between A and G so that NG = %.
Then, if N P is drawn perpendicular to the axis meeting the curve in P, PG is the minimum
straight line from G to the curve. Conversely, if PG is the minimum straight line from G to the
curve, and PN is drawn perpendicular to the axis, NG = &. Finally, PG is perpendicular
to the tangent at P (Fig. 4.25)."8

For the proof, suppose P’ is another point on the parabola with abscissa AN’. By the
defining property of the parabola, we have P’N"> = p- AN’ =2NG - AN'. Also N'G* =
NN? + NG?>+2NG - NN’ (with the sign depending on the position of N’). Adding these
two equations together and using the Pythagorean Theorem gives P'G> =2NG - AN +
NN?+ NG?=PN?+ NG?+ NN?> = PG?+ NN'%. Thus, PG is the minimum straight
line from G to the curve. The converse is proved by a reductio argument. Finally, to show
that PG is perpendicular to the tangent 7' P, note that AT = AN. Therefore, NG : p = % =
AN :NT,s0 TN -NG = p - AN = PN?. Because the angle at N is a right angle, so is the
angle 7 PG as desired.

In Book VI, Apollonius took up the subject of equality and similarity of conic sections
and their segments. In particular, two conic sections AE H and aeh with axes AH and ah are
defined to be similar if whenever points B, D, F, ... are taken on AH and corresponding
points b, d, f, ... are taken on ah such that AB :ab= AD :ad = AF :af = - -, then the
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Similarity of conic sections
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ratios of the corresponding ordinates to the abscissas are equal, that is, CB : AB = c¢b : ab,
ED:AD=ed:ad,GF :AF =gf :af, ... (Fig. 4.26).

Among the theorems Apollonius proved using this definition are that all parabolas are
similar to one another (IV-11) and that hyperbolas and ellipses are similar precisely when
the figures that define them, that is, the rectangles contained by the parameter and the axis,
are similar (IV-12). In algebraic notation, this latter result says that two ellipses (hyperbolas)
with parameters p, p,, and major axes 2aj, 2a,, are similar if and only if p;:a; = p; : a,.

In Book VII, the final extant book of the Conics, Apollonius studied conjugate diameters
of conic sections. We consider two examples of results from Book VII in the exercises to this
chapter.

453 Foci

Although the notion of the foci of a conic section is an important modern concept, it was
evidently not central to Apollonius’s thinking. He dealt briefly with this topic in a series of
propositions in Book III, but did not feel it necessary even to give these points a special name.
Thus, as part of Proposition III-45, we are told to apply a rectangle equal to one-fourth of the
rectangle on the parameter N and the major axis AB to the axis AB of an ellipse (on each
side) that is deficient by a square figure. This application results in two points ' and G on the
axis “produced by the application.” It is these points that were first named foci by Johannes
Kepler in 1604. According to our algebraic translation of Elements VI-28 on applications
with deficiencies, these points are the solutions of the equation x (2a — x) = %(251 p), where
2a is the length of the axis A B, and p is the parameter of the ellipse. Because the solutions to

this equation are x = a + /a2 — ap/2 = a + \/a* — b%, where 2b is the length of the minor
axis, Apollonius has shown that the two foci are at a distance ¢ = ~/a% — b2 from the center of
the ellipse. Given this definition, Apollonius then presented a series of propositions leading to
the well-known results that the lines from the two foci to any point on the ellipse make equal
angles with the tangent to the ellipse at that point (Proposition III-48) and that the sum of
these lines equals the major axis (Proposition I1I-52). This latter proposition is the standard
textbook definition of an ellipse today.

Although Apollonius presented similar results for the hyperbola, he did not deal at all with
the focal properties of the parabola, perhaps because he had discussed these in an earlier work
now lost. In any case, the analogous property for a parabola, that any line from the focus to a
point on the parabola makes an angle with the tangent at that point equal to the one made by



124 CHAPTER 4 ARCHIMEDES AND APOLLONIUS

FIGURE 4.27

Diocles’ On Burning Mirrors

a line parallel to the axis, was probably first proved by Diocles (early second century BCE), a
contemporary of Apollonius, in a treatise On Burning Mirrors, perhaps written a few years
before the Conics. It is in fact that property of the parabola that gives this treatise its name.
The problem is to find a mirror surface such that when it is placed facing the sun, the rays
reflected from it meet at a point and thus cause burning. Diocles showed that this would be
true for a paraboloid of revolution. There are stories told about Archimedes and others that
such a mirror was used to set enemy ships on fire. However, there is no reliable evidence for
the veracity of these stories.

To complete this topic of foci, then, we consider Diocles’ proof of the focal property of the
parabola from Proposition 1 of his treatise.'® Given a parabola L BM with axis BW, lay off
BE along the axis equal to half the parameter and bisect BE at D (Fig. 4.27). It is this point
D, whose distance from the vertex is p/4, that is today called the focus of the parabola. Pick
an arbitrary point K on the parabola, draw a tangent line AK C through K meeting the axis
extended at A, draw K S parallel to the axis, and connect DK . The proposition then asserts
that /AKD = /SKC.

To prove this, first drop a perpendicular from K to the axis, meeting itat G. By Conics 1-33,
AB = BG. Next draw a line perpendicular to AK from K that meets the axis at Z. Because
KG?=AG - GZ and also KG? = p - BG, it follows that GZ = p/2. Then GZ = BE, so
GB=FEZ, AB=EZ, and finally AD = DZ. Because triangle AKZ is a right triangle
whose hypotenuse is bisected at D, wehave AD = DK = DZ. Therefore, /DZK = /DK Z.
Since K S is parallel to AZ, it also follows that /ZK S = /DK Z. Subtracting these equal
angles from the right angles ZK C and ZK A, we obtain the desired result. Diocles concluded
the proposition by showing how to construct the burning mirror by rotating L BM about the
axis AZ and covering the resulting surface with brass.

In Propositions 4 and 5 of his brief treatise, Diocles showed how to construct a parabola
with given focal length. His construction in effect uses the focus-directrix property of a
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parabola, that the points of the parabola are equally distant from the focus and a given straight
line called the directrix. There is no earlier reference in antiquity to this particular property
of the parabola, although it was discussed by the fourth-century commentator Pappus. In fact,
Pappus also noted that an ellipse is determined as the locus of a point moving so that the ratio
of its distances from a fixed point (the focus) and a fixed line (the directrix) is a constant
less than 1, while a hyperbola is described if this constant ratio is greater than 1. These latter
properties were probably also discovered around the time of Diocles and Apollonius.

454 Problem Solving Using Conic Sections

One of Apollonius’s aims in the Conics was to develop the properties of the conic sections
necessary for the application of these curves to the solution of geometric problems. We
therefore conclude this chapter with three examples of how the conics were so used in Greek
times.

We first consider the angle trisection problem. Let angle A BC be the angle to be trisected
(Fig. 4.28). Draw AC perpendicular to BC and complete the rectangle ADBC. Extend
DA to the point E, which has the property that if BE meets AC in F, then the segment
FE is equal to twice AB. It then follows that /FBC = %ZABC. For if FE is bisected at
G, then FG =GE = AG = AB. Therefore, /ABG = /AGB =2/AEG =2/FBC and
the trisection is demonstrated. To complete the proof, however, it is necessary to show
how to construct B E satisfying the given condition. Again an analysis will help. Assuming
FE =2AB,draw CH and E H parallel to FE and AC, respectively. It follows that H lies
on the circle of center = C and radius F E (= 2AB). Moreover, since DE : DB=BC :CF,
or DE:AC=DA:EH, wehave DA-AC = DE - EH, so H also lies on the hyperbola
with asymptotes DB, D E, and passing through C. Therefore, if one constructs the hyperbola
and the circle and drops a perpendicular from the intersection point H to D A extended, the
foot E of the perpendicular is the point needed to complete the solution.

D A E
G H

F

B c

Cube duplication constructions virtually all begin with Hippocrates’ reduction of the
problem to the construction of two mean proportionals between given lines AB and AC.
One of them from the time of Apollonius begins with the completion of the rectangle on
these two lines, the drawing of the diagonal AD, and the construction of the circle with
diameter AD passing through B (Fig. 4.29). Now, let F be the intersection of the circle
with a hyperbola through D with asymptotes AB and AC. Extend line DF to meet AB
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FIGURE 4.29
Doubling the cube using conic
sections

produced in E and AC produced in G. By Conics [I-8, FE = DG and therefore DE = FG.
Furthermore, since F, D, C, A, and B all lie on the same circle, Elements 11I-36 implies
that GA-GC =GF -GD and EA-EB=ED - EF. Therefore, GA-GC =EA - EB or
GA:EA=BEB:GC. By similarity, GA: EA=DB :BE = AC : BE, and also GA :
EA=GC:DC=GC :AB.Itfollows that AC : BE = BE : GC =GC : AB, so that BE,
GC, are the two desired mean proportionals.

A final problem to be dealt with here, a problem that had reverberations down to the
seventeenth century, is the three- and four-line locus problem. The problem in its most
elementary form can be stated as follows: Given three fixed straight lines, to find the locus
of a point moving so that the square of its distance to one line is in a constant ratio to the
product of its distance to the other two lines. (Here distance is to be measured at a fixed
angle to each line.) If one takes the special case where two of the lines are parallel and the
third perpendicular to the first two, it is easy to see analytically that the given locus is a conic
section. Recall that one version of the equation of the ellipse and hyperbola was y? = %xlxz,
where y is the distance of a given point from the diameter of the conic, and x{, x,, are the
distances of the abscissa of that point from the endpoints of the diameter. If tangents are
drawn to the conic at those two endpoints, the curve then provides a solution to the three-line
locus problem with respect to the diameter and the two tangents.

The problem for the Greek mathematicians was to generalize this solution, that is, to show
that the locus was a conic whatever the position of the three lines. Apollonius wrote (see the
chapter opening quotation) that the three-line locus problem had been only partially worked
out by Euclid, but that his new results in Book III would enable the problem to be completely
solved. The text of Book IIT does not mention the problem as such, but in fact one can derive
the result that a conic has the property of the three-line locus relative to two tangents to the
curve from a given point and the secant joining the two points of tangency from theorems
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in that book. Other theorems there enable one to show that a conic also solves the four-line
locus problem, to find the locus of a point such that the product of its distances to one pair of
lines is in a constant ratio to the product of its distances to the other pair. In later Greek times,
an attempt was made, without great success, to find the locus with regard to greater numbers
of lines. It was this problem that Descartes and Fermat both demonstrated they could solve
through their new method of analytic geometry in the seventeenth century, a method whose
germ came from a careful reading of Apollonius’s work. Descartes in fact was able to derive
the equations of curves that satisfied analogous conditions for various numbers of lines and
to classify the solutions. As should be evident from our description of many of the Greek
problems in modern notation, the Greek tradition of geometric problem solving, which was
carried on in the Islamic world long after its demise in the Hellenic world, ultimately led to
new advances in mathematical technique, advances that finally reduced much of this kind of
Greek mathematics to mere textbook exercises.

XERCISES
1. Find where to place the fulcrum in a lever of length 10 m 8. The proof of Proposition 2 of Archimedes’ The Method is
so that a weight of 14 kg at one end will balance a weight outlined here:
of 10 kg at the other.

PROPOSITION 2  Any sphere is (in respect of solid con-
tent) four times the cone with base equal to a great circle
of the sphere and height equal to its radius.

2. If a weight of 8 kg is placed 10 m from the fulcrum of a
lever and a weight of 12 kg is placed 8 m from the fulcrum
in the opposite direction, toward which weight will the lever
incline? Let ABC D be a great circle of a sphere with perpendic-

ular diameters AC, B D. Describe a cone with vertex A and

axis AC and extend its surface to the circle with diameter

E F.On the latter circle erect a cylinder with height and axis

3. An alternative method by which Archimedes could have
solved the crown problem is given by Vitruvius in On Archi-
tecture. Assume as in the text that the crown is of weight W,
composed of weights w; and w, of gold and silver, respec- AC. Finally, extend AC to H such that HA = AC. Certain
tively. Assume that the crown displaces a certain quantity of pieces of the figures described are to be balanced using C H
fluid, V. Furthermore, suppose that a weight W of gold dis- as the lever (Fig. 4.30).
places a volume V of fluid, while a weight W of silver dis- H

places a volume V), of fluid. Show that V = % Vi+ % Vs
Vy—V,
=

and therefore that % =

4. Prove the two lemmas (see Section 4.2) that Archimedes
used to derive his algorithms for calculating 7.

5. Use a calculator (or program a computer) to calculate 7 by L 14 A X G
iterating the algorithm of Archimedes given by Lemma 1. Y, N
How many iterations are necessary to get five-decimal- 00 R\P
place accuracy? B D

6. Translate Lemma 2 into a recursive algorithm for calculat- K
ing . Iterate this algorithm to calculate  to five-decimal-
place accuracy. How many iterations are necessary?

E w c Y F

7. Given the parabolic segment with M O parallel to the axis _
of the segment and MC tangent to the parabola, show FIGURE 4.30
analytically that MO : OP = CA : AO (see Fig. 4.7). Archimedes’ The Method, Proposition 2
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Let M N be an arbitrary line in the plane of the circle
ABCD and parallel to BD with its various intersections
marked as in the diagram. Through M N, draw a plane at
right angles to AC. This plane cuts the cylinder in a circle
with diameter M N, the sphere in a circle with diameter O P,
and the cone in a circle with diameter Q R.

a. Show that MS - SQ = 052 + SQ2.

b. Show that HA : AS = M S : SQ. Then, multiplying both
parts of the last ratioby M S, show that HA : AS = M S? :
(08?2 + S0?% = MN?:(OP?+ QR?). Show that this
last ratio equals that of the circle with diameter M N to
the sum of the circle with diameter O P and that with
diameter QR.

c. Conclude that the circle in the cylinder, placed where it
is, is in equilibrium about A with the circle in the sphere
together with the circle in the cone, if both the latter
circles are placed with their centers of gravity at H.

d. Archimedes concluded from the above that the cylinder,
placed where it is, is in equilibrium about A with the
sphere and the cone together, when both are placed with
their center of gravity at H. Show therefore that HA :
AK = (cylinder) : (sphere + cone AEF).

e. From the fact that the cylinder is three times the cone
AEF and the cone AEF is eight times the cone ABD,
conclude that the sphere is equal to four times the cone
ABD.

Derive, by the general technique of The Method, Propo-
sition 4, that the volume of a segment of a paraboloid of
revolution cut off by a plane at right angles to the axis is
3/2 the volume of a cone that has the same base and the
same height. Begin with triangle A BC inscribed in the seg-
ment BO A PC of aparabola (Fig. 4.31) with both inscribed

H
E A F
M o P N
S
B D c

FIGURE 4.31
Archimedes’ The Method, Proposition 4

10.

11.

12.

14.

15.

16.

in rectangle EFCB. Rotate the entire figure around the
axis AD to get a cone inside of a paraboloid of revolution
that is in turn inside of a cylinder. Extend DA to H so
that AD = AH; draw M N parallel to BC; and imagine
the plane through M N producing sections of the cone, the
paraboloid, and the cylinder. Finally, imagine that H D is
a lever with midpoint A and use Archimedes’ balancing
techniques to show that the circle in the cylinder of radius
M S, placed where it is, balances the circle in the paraboloid
of radius O S, if the latter is placed at H. Use the result that
the volume of a cone is 1/3 that of the inscribing cylinder
to conclude the proof of the theorem.

Use calculus to prove Archimedes’ result from The Method
that the volume of the segment of the cylinder described in
the text is 1/6 the volume of the rectangular parallelepiped
circumscribing the cylinder.

Use calculus to prove Archimedes’ result that the area of a
parabolic segment is four-thirds of the area of the inscribed
triangle.

Show analytically that the vertex of a parabolic segment
(see the definition in Section 4.3.1) is that point on the curve
whose perpendicular distance to the base of the segment is
greatest.

Use calculus to prove Archimedes’ result that a cylinder
whose base is a great circle in the sphere and whose height
is equal to the diameter of the sphere has volume 3/2 that of
the sphere and also has surface area 3/2 of the surface area
of the sphere.

Use calculus to prove Archimedes’ result that the area
bounded by one complete turn of the spiral given in po-
lar coordinates by r = a6 is one-third of the area of the
circle with radius 2 a.

Consider Proposition 1 of On the Sphere and Cylinder II:
Given a cylinder, to find a sphere equal to the cylinder.
Provide the analysis of this problem. That is, assume that
V is the given cylinder and that a new cylinder P has been
constructed of volume %V. Assume further that another
cylinder Q has been constructed equal to P but with height
equal to its diameter. The sphere whose diameter equals
the height of Q would then solve the problem, because the
volume of the sphere is % that of the cylinder. So given the
cylinder P of given diameter and height, determine how to
construct a cylinder Q of the same volume but whose height
and diameter are equal.

There is a story about Archimedes that he used a “burning
mirror” in the shape of a paraboloid of revolution to set fire
to enemy ships in the harbor. What would be the equation of
the parabola that one would rotate to form the appropriate
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19.
20.
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23.

paraboloid if it were to be designed to set fire to a ship 100 m
from the mirror? How large would the burning mirror need
to be? What is the likelihood that this story is true?

Show that in the curve y*> = px, the value p represents the
length of the latus rectum, the straight line through the
focus perpendicular to the axis.

Rewrite the equations y? = x(p + %x) and y> = x(p —
%x) for the hyperbola and ellipse, respectively, in the
current standard forms for those equations. What point is
the center of the curve? Show in the case of the ellipse,
where 2b is the length of the minor axis, that b*> = pa/2.

Use calculus to prove Conics 1-33.
Use calculus to prove Conics [-34.

Demonstrate analytically Apollonius’s result from Book IV
that two conic sections can intersect in at most four points.

Demonstrate analytically Apollonius’s result from Book IV
that two conic sections can be tangent at no more than two
points.

Apollonius stated and proved many of the properties of
conics in a more general form than we have given. Namely,
instead of restricting himself to the principal diameters of
the conic, such as the major and minor axes of the ellipse, he
dealt with any pair of conjugate diameters. For an ellipse,
given the tangent at any point, the parallel to this tangent
passing through the center of the ellipse is conjugate to the
straight line passing through the point of tangency and the
center (Fig. 4.32). (A similar definition can be given for a
hyperbola, but we restrict this problem to the case of the
ellipse.)

g R
D Q P
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/
E A
C
F
G K
L

FIGURE 4.32
Conjugate diameters in an ellipse

a. Show that if DK is conjugate to PG, then PG is also
conjugate to DK .

b. Assume the equation of the ellipse is given by h%x? +
a?y? = a®b? in rectangular coordinates x, y. Denote an-
gle PCA by 6 and angle DCA by «. Given that di-

24.

25.

26.
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ameter DK is parallel to the tangent to the ellipse at
P = (x¢, yo), show that tan 6 = y,/x, and that tan o« =
—bxo/a’y.

c. Transform the equation of the ellipse to new oblique
coordinates x’, y’, based on the conjugate diameters PG
and DK. Show that the transformation is given by

x=1x"cosf +y cosa

y=2x"sin6 + y'sin«

and that the new equation for the ellipse is Ax> +
Cy"? = a%bh?, where A = b% cos? 0 + a% sin® 6 and C =
b? cos® a + a’ sin® .

d. Let Q = (x/, y’) be a point on the ellipse, with coordi-
nates relative to the conjugate diameters PG and DK,
and let QV be drawn to diameter P G with Q'V parallel to
DK.Thenset V =y, PV =x|,GV =x}, PC=d/,
and DC = b’ and show that the equation of the ellipse
can be written in the form

thus generalizing the version of Apollonius’s Proposi-
tion I-21 given in the text.

e. Show that the parallelogram constructed on any pair
of conjugate diameters (using the angle at which they
meet) is equal to the rectangle constructed on the prin-
cipal axes (Proposition VII-31). Namely, show that the
parallelogram whose sides are PC and CD is equal
to the rectangle whose sides are AC and BC. In other
words, if P F is drawn perpendicular to DK, show that
PF xCD=AC x BC =ab.

Prove analytically Proposition VII-12, that in any ellipse
the sum of the squares on any two of its conjugate diameters
is equal to the sum of the squares on its two axes. (In
Figure 4.32, this means that PG + DK% = AE? + BL?)

Use Proposition II-8 to show that the two line segments
of a tangent to a hyperbola between the point of tangency
and the asymptotes are equal. Then show, without calculus,
that the slope of the tangent line to the curve y = 1/x at
(xo. 1/x0) equals —1/x3.

Given an ellipse with diameter AA’ = 2a, center C, and
symptom y*> = x(p — %x), let G be any point on AA’
such that AG > ‘21 (Fig. 4.33). Choose N on AG so that
NG :CN = p:2a. Prove analytically that if N P is drawn
perpendicular to the axis and meets the curve at P, then PG
is the minimum straight line from G to the curve. Also show
that PG is perpendicular to the tangent at P (Propositions
V-10, V-28).
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P
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FIGURE 433

Finding the perpendicular to an ellipse

Prove that all parabolas are similar (Proposition VI-11),
according to Apollonius’s definition.

Use Apollonius’s Proposition VI-12 to show that ellipses
are similar if and only if the ratios of the major axes to
the minor axes are equal. State and prove an analogous
proposition for hyperbolas.

Prove Proposition 11I-45 for an ellipse, namely, if AC and
B D are tangent to the ellipse at the two ends of the major
axis, and if CD is tangent to the ellipse at E, and if one
connects C, D, to the two foci F, G, respectively, then
angles CFD and DGC are right angles (Fig. 4.34). (See
section 4.5.3 for the definition of foci.)

FIGURE 4.34
Conics, Propositions I11-45, 11146, I11-47, I11-48

Prove Proposition I1I-46: Under the same assumptions as in
I1I-45, angle ACF =angle DCG and angle CDF = angle
BDG (Fig. 4.34).

Prove Proposition I11-47: Under the same assumptions as
in I1I-45 and I11-46, let H be the intersection point of GC
and FD.Join HE. Prove that E H is perpendicular to CD
(Fig. 4.34).

Prove Proposition III-48: Under the same assumptions
as in the three previous propositions, connect EF and

33.

34.

35.

36.

37.

38.

EG. Show that angle CEF = angle GE D, that is, that
the lines from an arbitrary point on the ellipse to the
two foci make equal angles with the tangent at that point
(Fig. 4.34).

Give the definition of foci of a hyperbola analogous to the
definition for an ellipse presented in the text, and state the
theorems analogous to I1I-48 and III-52 in this case.

Give a proof using calculus that the line from the focus to a
point on a parabola makes an angle with the tangent at that
point equal to that made by a line parallel to the axis.

Show analytically that the solution to the three-line locus
problem is a conic section in the case where two of the lines
are parallel and the third is perpendicular to the other two.
Characterize the curve in reference to the distance between
the two parallel lines and the given ratio.

Show analytically that the solution to the general three-line
locus problem is always a conic section.

Fill in the details of the following solution to the angle tri-
section problem (given in Pappus but probably dating from
much earlier).?® Let the given angle AOG be placed at the
center of the circle, cutting off the arc AG on the circumfer-
ence (Fig. 4.35). To trisect this angle, it is sufficient to trisect
arc AG, that is, to find a point B on the circle such that arc
BG 1is one-half of arc AB. Using the method of analysis,
suppose that this has been done. Then /BGA =2/BAG.
Draw G D to bisect ZBG A and draw DE, BZ, perpendic-
ular to AG. Use Elements VI-3 and similarity to show that
BG:EZ =AG :AE =2:1. Use the focus-directrix prop-
erty to conclude that B lies on a particular hyperbola, and
then complete the synthesis.

B
D
A G
E z
@)

FIGURE 4.35
Angle trisection by way of conic sections, second method
Design a lesson for a precalculus course that will demon-

strate the formula for the sum of a geometric series as in
Archimedes’ work.



39. Discuss whether one can adapt Archimedes’ procedure for
determining the area of a parabolic segment and/or the area
bounded by one turn of the spiral to introduce a precalculus
class (or even a calculus class) to the calculation of areas
bounded by curves.

40. Design lessons for a precalculus course deriving the equa-
tions of the conic sections from their definitions as sections
of a cone, as in the work of Apollonius. How does this
method compare to the use of the standard modern textbook
definitions?
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41. Design a series of lessons for a precalculus course that will
demonstrate the basic tangent and focal properties of the
conic sections.

42. How is Apollonius’s treatment of the conic sections using
symptoms similar to a modern analytic geometry treatment
of the same subject? Can one consider Apollonius as an
inventor of analytic geometry?

43. Can one consider Archimedes as an inventor of the integral
calculus?

Many of the books on Greek mathematics referred to in the Chap-
ter 2 references have sections on Archimedes, Apollonius, and
Ptolemy. In particular, Thomas Heath’s A History of Greek Math-
ematics and Wilbur Knorr’s The Ancient Tradition of Geometric
Problems are good sources of further reading on the material of
this chapter as is B. L. Van der Waerden’s Science Awakening,
mentioned in the Chapter 1 references. Selections from the works
of these three mathematicians as well as others discussed in this
chapter can be found in Ivor Thomas, Selections Illustrating the
History of Greek Mathematics, also mentioned in the Chapter 2
references.

The first complete English translation of the extant works of
Archimedes is now appearing: Reviel Netz, The Works of Archi-
medes: Translation and Commentary, (Cambridge: Cambridge
University Press, 2004—). The earlier English versions cannot
be considered “translations” but are detailed summaries edited
for modern readers. These two versions are Thomas Heath, The
Works of Archimedes (New York: Dover, 1953) and E. J. Di-
jksterhuis, Archimedes (Princeton: Princeton University Press,
1987). This second edition of Dijksterhuis’s work has a biblio-
graphic essay by Wilbur Knorr, which gives further information
regarding research on the work of Archimedes up to 1987. A
detailed analysis of the newly rediscovered manuscript of The
Method can be found in The Archimedes Palimpsest, published
by Christie’s, New York, in 1998, prior to the auction. A com-
plete explication of that work is in Reviel Netz and William
Noel, The Archimedes Codex (London: Weidenfeld & Nicolson,
2007).

An English translation of the first three books of Apollonius’s
Conics is available as Apollonius of Perga Conics, Books I-1I1,
R. Catesby Taliaferro, trans. (Santa Fe: Green Lion Press, 2000).
Book IV is published separately: Apollonius of Perga Conics,
Book 1V, Michael N. Fried, trans. (Santa Fe: Green Lion Press,

2002). Thomas Heath’s older work, Apollonius of Perga (Cam-
bridge: W. Heffer and Sons, 1961), contains all seven extant
books of the Conics. But since Heath modifies the order and
often combines several theorems, this cannot be considered a
translation. Books V-VII are available in English translation as
Apollonius Conics Books V to VII: The Arabic Translation of the
Lost Greek Original in the Version of the Banii Miisa, Gerald J.
Toomer, trans. (New York: Springer-Verlag, 1990). A new analy-
sis of Apollonius’s work is Michael Fried and Sabetai Unguru,
Apollonius of Perga’s Conics: Text, Context, Subtext (Leiden,
Netherlands: Brill Academic Publishers, 2001). Diocles’ work
is available in Gerald Toomer, Diocles on Burning Mirrors (New
York: Springer, 1976). This book provides a complete translation
as well as a discussion of its importance.

1. Taliaferro, Apollonius of Perga, 1.

2. Vitruvius, Ten Books on Architecture, Ingrid D. Rowland,
trans. (Cambridge: Cambridge University Press, 1999),
108.

3. A discussion of the pseudo-Aristotelian Mechanica can be
found in Thomas Heath, A History of Greek Mathematics,
I, p. 344-346, and a translation of sections of this work is
found in Thomas, Selections, 1, p. 431.

4. Dijksterhuis, Archimedes, p. 299. The reference is to a
translation of Pappus, Collectio VIII, 5, 11.

5. Plutarch, The Lives of the Noble Grecians and Romans
(Dryden translation), in the Great Books, 14, p. 252. This
reference and the succeeding ones are taken from the sec-
tion on Marcellus.

Plutarch, Lives, p. 253.
Ibid.

The discussion of the crown problem is from Heath, The
Works of Archimedes, pp. 259-260. Heath’s introduction
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provides insight into the various mathematical techniques
of Archimedes.

Heath includes as an appendix to the previous work a trans-
lation of The Method of Archimedes. The present quotation
from the introduction is found on p. 13. A valuable discus-
sion of this work is also found in Asger Aaboe, Episodes
from the Early History of Mathematics (Washington, DC:
MAA, 1964). A brief account is in S. H. Gould, “The
Method of Archimedes,” American Mathematical Monthly
62 (1955), 473-476.

Ibid., p. 17.
Tbid.

This discussion of Proposition 14 of The Method is adapted
from “A New Reading of Method Proposition 14: Prelimi-
nary Evidence from the Archimedes Palimpsest (Parts 1 and
2),” SCIAMVS, 2 (2001), 9-29, and 3 (2002), 109-125.

A discussion of the use of indivisibles in Greek mathemat-
ics is found in Wilbur Knorr, “The Method of Indivisibles
in Ancient Geometry,” in Ronald Calinger, ed., Vita Math-
ematica (Washington, DC: MAA, 1996), pp. 67-86, al-
though Knorr was not aware of the new readings of The
Method found in the recovered palimpsest and discussed in
the reference in note 12.

14.

15.

16.

17.

18.

20.

A very detailed discussion of the history of Archimedes’
problem on dividing a sphere can be found in Reviel Netz,
The Transformation of Mathematics in the Early Mediter-
ranean World: From Problems to Equations (Cambridge:
Cambridge University Press, 2004).

Livy, History of Rome (Cambridge: Harvard University
Press, 1934), XXI1V, sec. 34.

This discussion and Figure 4.15 are adapted from Wilbur
Knorr, The Ancient Tradition of Geometric Problems.
Knorr has an extensive discussion of the contributions of
Apollonius to Greek geometric problem solving.

The quotations from the first three books of Apollonius’s
Conics are taken from the R. Catesby Taliaferro translation.

These theorems can be found in the Toomer translation of
Apollonius’s Books V-VII.

The discussion of Diocles’ work is adapted from Gerald
Toomer, Diocles on Burning Mirrors.

Knorr, The Ancient Tradition, p. 128.



Plato . . . set the mathematicians the
following problem: What circular motions,
uniform and perfectly regular, are to be
admitted as hypotheses so that it might be
possible to save the appearances presented
by the planets?

—Simplicius’s Commentary on

Aristotle’s On the Heavens

1

Mathematical Methods

in Hellenistic Times

gypt (c. 150 CE): Hiring now. Calculators wanted to perform
Eextensive but routine calculations to create tables necessary
for major work on astronomy. Must be able to follow detailed
instructions with great accuracy. Compensation: Room and board plus
the gratitude of the thousands of people who will use these tables for
the next 1200 years. Contact: Claudius Ptolemy at the Observatory.

(A classified advertisement in an Alexandrian newspaper)
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FIGURE 5.1
British stamp of Stonehenge

indicating its use as an
astronomical observatory

Although such an advertisement did not actually appear, Claudius Ptolemy did write a major
work answering Plato’s challenge, a work studied, commented upon, extensively criticized,
yet never replaced for 1400 years, a work in which Ptolemy not only used earlier ideas from
plane and spherical geometry but also devised new ways to perform the extensive numerical
calculations necessary to make his book a useful one. Ptolemy’s text, and other ancient
astronomical works from Babylonia and Egypt, were heavily used in astrology. Nevertheless,
the evidence from all of these civilizations indicates that the primary reason for the study
of astronomy was the solving of problems connected with the calendar, problems such as
the determination of the seasons, the prediction of eclipses, and the establishment of the
beginning of the lunar month.

In the process of using mathematics to study astronomy, the Greeks created plane and
spherical trigonometry and also developed a mathematical model of the universe, a model
they modified many times during the five centuries between the times of Plato and Ptolemy.
Among the major contributors to the development of mathematical astronomy whose ideas
will be discussed in this chapter are Eudoxus in the fourth century BCE, Apollonius late in the
third century BCE, Hipparchus in the second century BCE, Menelaus around 100 CE, and finally
Ptolemy. The chapter then concludes with a survey of other work in “practical mathematics”
developed in the Greco-Roman world, mathematics applicable to problems on earth rather
than the heavens, including work by Roman surveyors and architects, several practical works
by Heron, and the Geography of Ptolemy.

ASTRONOMY BEFORE PTOLEMY

What did ancient peoples know about the heavens? The most important heavenly bodies
were the sun and the moon. It was obvious that both rose in the east and set in the west, but
the actual movements of each were considerably more subtle. For example, in the northern
hemisphere, the sun rises at exactly the east point on the spring equinox, well north of east
through the summer, due east again at the autumn equinox, and south of east during the winter.
It was observed everywhere that this sun cycle repeated itself at intervals. Wherever there are
records of the calculation, the length of this interval, the year, is specified to be about 365
days.

If one wants to identify the important days in this yearly calendar, one needs to be able to
observe the sun’s position. It was in part to do this that the great stone temple at Stonehenge in
England was constructed beginning in the third millennium BCE (Fig. 5.1). Many similar but
smaller such structures were built elsewhere in England and other parts of northern Europe.
Although the reasons for the construction of these structures are not entirely clear, most
scholars believe that among these reasons was the determination of the farthest north and
farthest south sunrise and sunset positions.? For example, the passage grave constructed at
Newgrange in County Meath, Ireland, about 3200 BCE is aligned so that on the three or
four days surrounding the winter solstice—and just on those days—the rays of the rising
sun shine through a slit in the roof and illuminate the rear of the structure (Fig. 5.2). In
other constructions, an alignment between stones or between a stone and a prominent natural
landmark on the horizon marks precisely the directions of the solstice sunrise or sunset.



FIGURE 5.2
Irish stamp of passage grave

at Newgrange illuminated on
the winter solstice
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In theory, one can construct a calendar based on the sunrise positions of the sun. But in
most civilizations of which records exist, it was the motions of the moon that determined
the important intervals within the year, the months. The moon, like the sun, rises at varying
positions on the eastern horizon. Patient observations over a period of many years evidently
enabled the builders of Stonehenge to mark the most northerly and southerly positions of
moonrise. They also may have noted the existence of an 18.6-year cycle of the moonrise
positions that could have been used to help predict lunar eclipses. Eclipses, both lunar and
solar, were of great significance to ancient peoples. The ability to predict such striking
phenomena and by appropriate ritual to cause the heavenly body to reappear after being
“consumed” was an important function of the priestly classes.

The most prominent feature of the moon’s appearance in the sky is not its position of
rising, however, but its phases. All early civilizations noted the times it took for the moon to
change from tiny crescent to full moon to invisibility and back to tiny crescent again, and such
observations may well have been the basis of the earliest numerical markings yet found. The
Egyptians and Babylonians both used the phases of the moon to establish the months of their
years, but in different ways. It was easy enough to determine that the time from the appearance
of the moon’s crescent in the western sky just after sunset through all the phases to the next
appearance of the crescent was about 29 1/2 days. Unfortunately, there is no integral multiple
of 29 1/2 that equals 365, the number of days in the solar year, so there was no simple way
of constructing a calendar incorporating both the moon’s phases and the sun’s control of the
seasons. The Egyptians from a fairly early period simplified matters entirely. They employed
a 12-month calendar of 30 days each with an additional 5 days tacked on at the end to give
the 365-day year. By necessity, this calendar ignored the moon’s cycles. In addition, since
the year is in fact 365 1/4 days long, eventually even the yearly calendar was out of step with
the seasons. In other words, as the Egyptian priests were well aware, the beginning of the
year would in 1460 years (4 x 365) make a complete cycle through the seasons. Thus, for
various religious purposes the priests did keep track of the actual lunar months. They also
discovered that the annual Nile flood, that most important agricultural event that brought rich
silt to the fields, always began just after the bright star Sirius first appeared in the eastern sky
shortly before dawn after a period of invisibility. They were thus able to make the accurate
predictions that helped to justify their power.

The calendrical situation in Mesopotamia was different. The priests there wanted to
accommodate the calendar to both the sun and the moon so that given agricultural events
would always occur in the same month. Hence, the months generally alternated in length
between 29 and 30 days, a new month always starting with the first appearance of the crescent
moon in the evening. Because 12 of these months equal 354 days, they decided to add an extra
month every several years. In earliest times, this was done by decree whenever it was believed
necessary, but in the middle of the eighth century BCE, the Babylonians codified the calendar
into a system of 7 leap years every 19 years, each leap year consisting of 13 months. The
lengths of the months were occasionally adjusted too so that in each 19-year cycle of 235
months there were 6940 days. In fact, the Babylonians were aware that the mean value for the
length of the moon’s cycle was equal to about 29.53 days, which is in turn equal to 6940/235.
The current Jewish calendar preserves the essence of the Babylonian calendar, with some
minor modifications to keep it in agreement with Jewish law.
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Besides keeping track of the calendar, the Babylonians were able to make relatively
accurate predictions of the recurrence of various celestial phenomena, from such simple ones
as the time of sunrise and sunset to such complicated ones as the times of lunar eclipses. But
they never apparently applied more than arithmetic and simple algebra to this study, nor did
they develop a model to connect the various celestial phenomena. The initial creation of such
a model was a product of fourth-century BCE Greece, the time of Plato’s Academy.

The basic model developed at that time contained two concentric spheres, the sphere of
the earth and the sphere of the stars (or the celestial sphere). The immediate evidence of our
senses indicates that the earth is flat, but more sophisticated observations, including the facts
that the hull of a ship sailing away disappears before the top of the mast and that the shadow
of the earth on the moon during a lunar eclipse has a circular edge, convinced the Greeks
of the earth’s sphericity. Their sense of esthetics—that a sphere was the most perfect solid
shape—added to this conviction. That the shape of the heavens should mirror the shape of
the earth was also only natural.

The evidence of the senses, and some logical argument as well, further convinced the
Greeks that the earth was stationary in the middle of the celestial sphere. The second part of
this conclusion came from the general symmetry of the major celestial phenomena, while the
first part came from the lack of any sensation of motion of the earth. The Greeks also noted
that if the earth rotated on its axis once a day, its motion would of necessity be so swift that
“objects not actually standing on the earth would appear to have the same motion, opposite to
that of the earth; neither clouds nor other flying or thrown objects would ever be seen moving
toward the east, since the earth’s motion toward the east would always outrun and overtake
them, so that all other objects would seem to move in the direction of the west and the rear.”?
With the earth considered immovable, the observed daily motion in the sky must be due to
the rotation of the celestial sphere, to which were firmly attached the so-called fixed stars,
grouped into patterns called constellations. These never change their positions with respect
to each other and form the fixed background for the wandering stars or planets (Sidebar 5.1).

The seven wanderers—the sun, the moon, Mercury, Venus, Mars, Jupiter, and Saturn—
were more loosely attached to the celestial sphere. That they were attached was obvious; in

Precursors of Copernicus

Some ancient astronomers asserted a theory contrary to the
immovable, central earth theory discussed in the text. Hera-
clides of Pontus (c. 388-310 BCE) is credited with having the
earth’s rotation account for the daily motion of the heavens,
while Aristarchus of Samos (c. 310-230 BCE), as reported by
Archimedes, hypothesized “that the fixed stars and, the sun re-
main unmoved [and] that the earth revolves about the sun in
the circumference of a circle, the sun lying in the middle of
the orbit.”* The chief objection to Aristarchus’ theory was that
it implied that the appearance of the fixed stars would change

as one viewed them from different parts of the earth’s orbit.
Aristarchus met this objection by further assuming that the dis-
tance to the fixed stars was so enormous that this effect would
be unnoticeable. Other astronomers at the time could not bring
themselves to believe that these huge distances were possible.
In addition, certain thinkers charged Aristarchus with impiety
for having “set in motion the hearth of the universe™ in order
to save the appearances. Conflicts between science and religion

evidently date back to ancient times.
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general they participated in the daily east-to-west rotation of the celestial sphere. But they
also had their own motion, usually in the opposite direction (west to east) at much slower
speeds. It is these motions that the Greek astronomers (and indeed all earlier astronomers)
attempted to make sense of. The Greeks were limited in their attempts at solution, however,
by an overriding philosophical consideration. Namely, since the universe outside the earth
was thought to be unchanging and perfect, according to Aristotle, the only movements in
the heavens were the“natural” movements of these perfect bodies. Because the bodies were
spherical, the natural movements were circular. Thus, the astronomers and mathematicians
(usually the same people) attempted to solve Plato’s problem quoted at the opening of the
chapter—that is, to develop a model that would explain the phenomena in the heavens
(“save the appearances”)—through a combination of geometrical constructs using circular
and uniform motion. It was not the business of the astronomer-mathematicians to decide if
or how such motions were physically possible, for celestial physics as we know it was never
a topic of study in ancient Greece. But they did in fact succeed in finding several different
systems that met Plato’s challenge.

Because the basic Greek model of the heavens consisted of spheres, the first element
of the study of celestial motion was the study of the properties of the sphere. Recall that
Euclid’s Elements contained virtually nothing about these properties. There were, however,
other texts written in the fourth century BCE on the general subject of spherics, including
ones by Autolycus of Pitane (c. 300 BCE) and by Euclid himself, which did cover the basics,
mostly in the context of results immediately useful in astronomy. These books contained such
definitions as that of a great circle (a section of a sphere by a plane through its center) and
its poles (the extremities of the diameter of the sphere perpendicular to this plane). The texts
also included three important theorems that prove very useful in what follows:

1. Any two points on the sphere that are not diametrically opposite determine a unique great
circle.

2. Any great circle through the poles of a second great circle is perpendicular to the original
one, and, in this case, the second circle also contains the poles of the first.

3. Any two great circles bisect one another.

There are several great circles on the celestial sphere that are important for astronomy.
For example, the sun’s path in its west-to-east movement through the stars is a great circle.
This great circle, called the ecliptic, passes through the 12 constellations of the zodiac
(Fig. 5.3). (These constellations were first mentioned in Babylonian astronomy and appear
in Greek sources as early as 300 BCE.) The diameter of the earth through the North and South
poles, extended to the heavens, is the axis around which the daily rotation of the celestial
sphere takes place. The great circle corresponding to the poles of that axis is called the
celestial equator. The equator and ecliptic intersect at two diametrically opposite points, the
vernal and autumnal equinoxes, for on those dates the sun is located on those intersections
(Fig. 5.4). The points on the ecliptic at the maximal distance north and south of the equator
are the summer and winter solstices, respectively.

Since the Greeks knew that the earth was so small that it could in effect be considered as
a point with respect to the sphere of the stars, they assumed that the horizon plane passed
through the center of the celestial sphere and hence that the horizon itself was also a great
circle. The horizon intersects the equator at the east and west points. Finally, the local
meridian is the great circle that passes through the north and south points of the horizon and
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the point directly overhead, the local zenith. Because the meridian circle is perpendicular
to both the horizon and the celestial equator, it also passes through the North and South
poles of the latter. The angle € between the equator and the ecliptic can be determined by
taking half the distance (in degrees) between the noon altitudes of the sun at the summer and
winter solstices. This value was measured to be 24° by the time of Euclid and was taken to be
23°5120” by Ptolemy. (In fact, this value is slowly decreasing and is now about 23%0.) The
angle between the horizon and the equator is 90° — ¢, where ¢ is the geographical latitude
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n

Local horizon

of the observer (Fig. 5.5). The measure of the arc between the north celestial pole and the
horizon is also given by ¢.

511 Eudoxus and Spheres

Eudoxus, famous for his work on ratios and the method of exhaustion, was the person largely
responsible for turning astronomy into a mathematical science. He was probably the inventor
of the two-sphere model as well as of the modifications necessary to account for the various
motions of the sun, moon, and planets, nevertheless keeping to Plato’s dictum to use only
circular motion. In his scheme, each of the heavenly bodies was placed on the inner sphere
of a set of two or more interconnected spheres, all centered on the earth, whose simultaneous
rotation about different axes produced the observed motion (Fig. 5.6). For example, the sun
requires two spheres to account for its two basic motions. The outer sphere represents the
sphere of the stars; it rotates westward about its axis once in a day. The inner sphere, which
contains the sun, is attached to the outer sphere so that its axis is inclined at angle € to the axis
of the outer sphere. If this sphere now rotates slowly eastward so that it makes a complete
revolution in one year, the combination of the two motions will produce the apparent motion of
the sun (Fig. 5.7). In the case of the moon, three spheres are necessary. The outer sphere again
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rotates westward about its axis once a day. The innermost sphere makes a complete eastward
revolution in 27% days, the time it takes the moon to make one complete journey through
the ecliptic. But since the moon deviates up to 5° from the ecliptic circle during its journey,
Eudoxus postulated an intermediate sphere, inclined at angle € to the outer sphere and 5° to
the inner sphere, whose slow westward motion produces, at least qualitatively, the moon’s
north and south deviation. For the even more complicated motion of the planets, including
not only their general eastward movement but also their occasional retrograde (westward)
motion, Eudoxus required four spheres.®

In all probability, Eudoxus regarded these spheres only as a computational device rather
than as objects having physical existence. And although numerical parameters could be found
to permit the system to represent the various motions of the heavenly bodies, the system
could not account for all of the observed phenomena. For example, the four-sphere theory
of the planets did not predict the obvious changes in their brightness during their motion.
Nevertheless, Aristotle took a modified version of Eudoxus’s system of spheres as a physical
reality, incorporating this system into his detailed cosmology. As such, it became part of the
general conception of the heavens in Western civilization through the sixteenth century.

512 Apollonius: Eccenters and Epicycles

About 150 years after Eudoxus, Apollonius attempted a new answer to Plato’s challenge. It
had long been known that the velocity of the sun around the ecliptic was not constant. The
Babylonians had already discovered this in connection with their attempts to determine, for
example, the time of first visibility of the moon each month. The Greeks discovered this by
determining that the seasons of the year were not equal in length; for example, the time from
the vernal equinox to the summer solstice is two days longer than the time from the summer
solstice to the autumnal equinox. Therefore, a simple model of the sun revolving in a circle
centered on the earth at constant speed, even if the sun were attached to one of Eudoxus’s
spheres, could not account for this phenomenon. Because nonuniform motion would not
satisfy Plato’s rules, Apollonius or one of his predecessors proposed the following solution:
Place the center of the sun’s orbit at a point (called the eccenter) displaced away from the
earth. Then if the sun moves uniformly around the new circle (called the deferent circle), an
observer on earth will see more than a quarter of the circle against the spring quadrant (the
upper right) than against the summer quadrant (the upper left) (Fig. 5.8a). The distance E D,
or better, the ratio of ED to DS, is known as the eccentricity of the deferent. If line ED is
extended to the deferent circle, the intersection point closest to the earth is called the perigee
of the deferent, while the one farthest from the earth is called the apogee. Assuming that one
can determine the correct parameters in this model (the length and direction of E D) so that
the seasonal lengths come out right, the question in using the model is where the sun will be
seen on a particular day. To answer this question, one needs to find angle D E S. This requires
solving triangle D E S, which in turn requires trigonometry. In fact, it was the necessity for
introducing numerical parameters into these geometric models that led to the invention of
trigonometry.

Apollonius also noticed that one can replace this eccentric model by another geometric
model, the epicyclic one. That is, instead of considering the sun as traveling on the eccentric
circle, it may be imagined as traveling on a small circle, the epicycle, whose center travels on
the original earth-centered circle (Fig. 5.8b). If the epicycle rotates once clockwise in the same
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time as its center rotates around the earth—that is, if the two motions always keep DECS a
parallelogram—the actual path of the sun will be the same as it was using the deferent circle.

It then turns out that if one combines epicycles and eccentric circles, one can produce the
more complicated motions of the planets. In fact, Apollonius initiated the study of this model.
The planet P travels uniformly counterclockwise on an epicycle with center C. This latter
point travels in the same direction on a deferent circle with center D at a distance D E from
the earth (Fig. 5.9a). If the speeds along these circles are set appropriately, the planet as seen
from the earth will in general travel eastward along the ecliptic, but during certain periods
will travel in the opposite direction (when the planet is on the inner part of the epicycle)
(Fig. 5.9b). To use this model, it is again necessary to find the various parameters involved,
such as the lengths PC and E D and their relative directions. Once these are established for a
given planet, however, the position of the planet at any time can be found by solving certain
triangles.

(a) (b)
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513 Hipparchus and the Beginning of Trigonometry

Apollonius himself did not possess the trigonometric machinery necessary to complete the
solution of these problems. It was Hipparchus of Bithynia (190-120 BCE) who systematically
carried out numerous observations of planetary positions, introduced a coordinate system for
the stellar sphere, and began the tabulation of trigonometric ratios necessary to enable one to
easily solve right triangles and successfully attack Apollonius’s questions (Fig. 5.10).

To deal quantitatively with the positions of the stars and planets, one needs both a unit
of measure for arcs and angles as well as a method of specifying where a particular body
is located on the celestial sphere—that is, a system of coordinates. Euclid’s unit of angle
measure was simply a right angle. Other angles were referred to as parts or multiples of this
angle. The Babylonians, however, sometime before 300 BCE, initiated the division of the
circumference of the circle into 360 parts, called degrees, and within the next two centuries
this measure, along with the sexagesimal division of degrees into minutes and seconds, was
adopted in the Greek world. Hipparchus was one of the first to make use of this measure,
although he also used arcs of ﬁ of a circle and 4i8 of a circle, so-called “steps” and “half-
steps,” in some of his work. Why the Babylonians divided the circle into 360 parts is not
known. Perhaps it was because 360 is easily divisible by many small integers or because it is
the closest “round” number to the number of days in the year. The latter reason gives us the
convenient approximation that the sun travels 1° along the ecliptic each day.

It was also the Babylonians who first introduced coordinates into the sky. The system
they used, later taken over by Ptolemy, is known as the ecliptic system. Positions of stars
are measured both along and perpendicular to the ecliptic. The coordinate along the ecliptic
(measured in degrees counterclockwise from the vernal point as seen from the North Pole) is
called the longitude A; the perpendicular coordinate, measured in degrees north or south of
the ecliptic, is called the latitude g (Fig. 5.11a). This coordinate system is particularly useful
when dealing with the sun, moon, and planets. The sun, since it travels along the ecliptic,
always has latitude 0°. Its longitude increases daily by approximately 1° from 0° at the vernal
equinox to 90° at the summer solstice, 180° at the autumnal equinox, and 270° at the winter
solstice. Often, however, in both the Babylonian sources and the later Greek ones, longitudes
were counted using the zodiacal signs. Namely, the ecliptic was divided into twelve intervals
of 30° each, named by the zodiacal constellations. For example, Aries included longitudes
from 0° to 30° and Taurus from 30° to 60°. Thus, if one noted that the sun had longitude
Taurus 5°, one meant it had ecliptic longitude 35°.

Ecliptic

Ecliptic Equator

(a) (b)
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In place of this ecliptic coordinate system, Hipparchus used a system based on the
celestial equator. The coordinate along the equator, also measured counterclockwise from
the vernal point, is called the right ascension «. The perpendicular coordinate, measured
north and south from the equator, is called the declination § (Fig. 5.11b). Hipparchus drew
up a catalogue of fixed stars in which he described some of their positions in terms of this
coordinate system.

To be able to relate the coordinates of a point in one coordinate system to its coordinates
in another—and this is necessary to solve astronomical problems—one needs spherical
trigonometry. But before this could be developed, it was necessary to understand plane
trigonometry. Hipparchus was evidently the first to attempt the detailed tabulation of lengths
that would enable plane triangles to be solved. Although there are no explicit documents
giving Hipparchus’s table or his method, enough has been pieced together from various
sources to give us a reasonable picture of his work.

The basic element in Hipparchus’s (and also, later, in Ptolemy’s) trigonometry was the
chord subtending a given arc (or central angle) in a circle of fixed radius. Namely, both
men gave a table listing o and chord(«) for various values of the arc «. Note that chord(w),
henceforth abbreviated crd(«), is simply a length (Fig. 5.12). If the radius of the circle is
denoted by R, then the chord is related to the sine by the equations

1 o o
—crd(a)/R =sin — or crd(e) =2R sin —.
5 (@)/ > (@) >

crd(180 — &)

crd(o)

Because the angle or arc was to be measured in degrees and minutes, Hipparchus decided
to use the same measure for the radius of the circle. Knowing that the circumference equaled
27 R, and taking for 7 the sexagesimal approximation 3;8,30 (which is close to the mean
between the two Archimedean values of 3% and 3%), he calculated the radius R as 602'73:’0 =
%;% = 57,18 = 3438 to the nearest integer. In a circle of this radius, the measure of an
angle (defined as length cut off on the circumference divided by the radius) equals its radian

measure.

To calculate a table of chords, Hipparchus began with a 60° angle. In this case, the
chord equals the radius, or crd(60°) = 3438 = 57,18. For a 90° angle, the chord is equal
to R\/E = 4862" = 81,2. (Note that the mixed decimal and sexagesimal notation used here
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is common in both Greek and modern angle measure.) To calculate chords of other angles,
Hipparchus used two geometric results. First, it is clear from Figure 5.12 that

crd(180 — &) =/ 2R)? — crd*(«).

Because crd(180 — a) = 2R cos %, this result is equivalent to sin? @ + cos? a = 1. Second,
Hipparchus calculated crd(5) from a version of the half-angle formula. (It is conjectured
that he used the method given later by Ptolemy.) Suppose a« = ZBOC is bisected by O D
(Fig. 5.13). To express crd(5) = DC in terms of crd(a) = BC, choose E on AC so that
AE = AB. Then AABD is congruent to AAED and BD = DE. Since BD = DC, also
DC = DE. If DF is drawn perpendicular to EC, then CF = %CE = %(AC — AE) =
%(AC — AB) = %(2R —crd(180 — «)). But also, triangles ACD and DCF are similar, so
AC :CD =CD :CF. Therefore,

crd? (%) =CD*=AC-CF = R2R — crd(180 — a)).

Putting this into modern notation gives

2
<2R sin 3) =R (ZR — 2R cos 5) ,
4 2

.o l—cosa
sin® — = ——,

2 2

or, replacing « by 2«,

the standard half-angle formula.

F

Hipparchus could now easily calculate the chord for every angle from 7%0 to 180° in
“half-steps” of 7%0. For example, by applying the formula three times to crd(60°), one finds

crd(7%o). By complements, one then finds crd(l72%o). This limited table enabled Hipparchus
to make some progress in solving triangles and applying the results toward completing the
models of the heavens. Because the actual works of Hipparchus are lost, however, it is
necessary to turn to the most influential astronomical work of antiquity, the Almagest of
Claudius Ptolemy.
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PTOLEMY AND THE ALMAGEST

Nothing is known of the personal life of Claudius Ptolemy (c. 100—178 cE) other than that he
made numerous observations of the heavens from locations near Alexandria and wrote several
important books (Fig. 5.14). He is most famous today, however, for the Mathematiki Syntaxis
(Mathematical Collection), a work in 13 books that contained a complete mathematical
description of the Greek model of the universe with parameters for the various motions of
the sun, moon, and planets. The book was the culmination of Greek astronomy. Like Euclid’s
Elements, it replaced all earlier works on its subject. It was the most influential astronomical
work from the time it was written until the sixteenth century, being copied and commented on
countless times. More than any other book it gave impetus to the notion that one could create
a mathematical model, that is, a quantitative description of natural phenomena that would
yield reliable predictions. Virtually all subsequent astronomical works, both in the Islamic
world and in the West, up to and including the work of Copernicus, were based on Ptolemy’s
masterpiece. Many centuries after it was written, it became known as the megisti syntaxis
(the greatest collection), to distinguish it from lesser astronomical works. Islamic scientists
then began to call the book al-magisti, and ever since it has been known as the Almagest
(Fig. 5.15).
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FIGURE 5.16
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52.1 Chord Tables

Ptolemy began the Almagest with a basic introduction to the Greek concept of the cosmos,
followed by strictly mathematical material detailing the plane and spherical trigonometry
necessary for the computation of the planetary positions. The first order of business for
Ptolemy was the construction of a table of chords more complete than that of Hipparchus. To
construct this table of chords of all arcs from %O to 180° in intervals of %o, as well as find a
scheme for interpolating between the computed values, he needed somewhat more geometry
than Hipparchus. Also, instead of taking R = 57,18, a rather difficult value to compute with,
he took R = 60, a unit in the sexagesimal system in which all of Ptolemy’s computations
were made.

Ptolemy’s first calculation established the chord of 36°, namely, the length of a side of a
regular decagon inscribed in a circle. In Figure 5.16, ADC is the diameter of the circle with
center D, BD is perpendicular to ADC, E bisects DC, and F is chosen so that EF = EB.
By Elements 11-6, wehave CF - FD + ED?= BE?. Therefore, CF - FD = BE? — ED? =
BD? = CEZ, and the line C F has been divided at D in extreme and mean ratio. Recall from
Elements XIII-9 that if the side of a hexagon and decagon inscribed in the same circle are
placed together in a straight line, then the meeting point divides the entire line segment in
extreme and mean ratio. Because C D, the radius, equals the side of a hexagon inscribed in
the circle, Ptolemy had shown that D F is the side of a decagon; that is, DF = crd(36°). To
calculate its length, he noted that

DF=EF —ED=EB—ED=+BD?+ ED? — ED = /3600 + 900 — 30 = 37:4,55.

Ptolemy next noted that since the square on the side of a regular pentagon (= crd(72°))
equals the sum of the squares on the side of a regular decagon and the side of a regular hexagon
(Elements X111-10), it followed that

crd(72°) = y/ R? + crd?(36°) = 70:32,3,

with, of course, crd(60°) = 60. Furthermore, crd(90°) = +/2R* = /7200 = 84;51,10, and
crd(120°) = v/3R?% = 103;55,23. Finally, because crd2(180 —a)=(2R)?* - crd? a, Ptolemy
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could also calculate the chord of the supplement to any arc whose chord was known. For
example, crd(144°) = 114;7,37. He was therefore well started on a chord table simply from
propositions of Euclidean geometry and the ability to calculate square roots.

Ptolemy, like Archimedes four centuries earlier, never mentioned how he calculated these
square roots, but merely presented the results. A commentary on Ptolemy’s work by Theon in
the late fourth century gave a method Ptolemy could well have used: “If we seek the square
root of any number, we take first the side of the nearest square number, double it, divide
the product into the remainder reduced to minutes, and subtract the square of the quotient;
proceeding in this way, we reduce the remainder to seconds, divide it by twice the quotient in
degrees and minutes, and we shall have the required approximation to the side of the square
area.”’

We give an example of Theon’s method by calculating +/7200. Note first that 84> = 7056
and 852 = 7225, so the answer must be of the form 84;x,y. Since 7200 — 842 = 144, we divide
144 - 60 (“the remainder reduced to minutes”) by 2 - 84 and get 51 as the nearest integer.
Therefore, the answer is now known to be of the form 84;51,y. Finally, 7200 — (84;5 1)2 =
0;28,39, which, converted to seconds, is 1719. Dividing this by 2 - 84;51 = 169;42 gives
10 to the nearest integer. The desired square root approximation is thus 84;51,10, as noted.
The relative complexity of this operation, and the fact that Ptolemy simply stated the results
of large numbers of such calculations, leads us to believe that Ptolemy must have had the
assistance of numerous “calculators” who performed these tedious but necessary calculations.
In particular, these calculators were necessary to help Ptolemy complete his chord table, using
the basic values above, the half-angle formula due to Hipparchus, and a new theorem from
which certain sum and difference formulas could be derived:

PTOLEMY’S THEOREM Given any quadrilateral inscribed in a circle, the product of the
diagonals equals the sum of the products of the opposite sides.

To prove that AC - BD = AB - CD + AD - BC in quadrilateral ABC D, choose E on
AC so that /ABE = /DBC (Fig. 5.17). Then /ABD = /EBC. Also /BDA=/BCA
since they both subtend the same arc. Therefore, AABD is similar to AEBC. Hence,
BD:AD=BC:ECorAD-BC =BD - EC.Similarly, since /BAC = /BDC, AABE is
similar to ADBC.Hence, AB:AE=BD:CDor AB-CD = BD - AE. Adding equals to
equals gives AB-CD+ AD-BC=BD-AE+BD-EC=BD(AE+ EC)=BD - AC,
and the theorem is proved.

To derive a formula for the chord of a difference of two arcs «, B, Ptolemy used the theorem
with AC =crd o and AB = crd B given. Applying the result to quadrilateral ABC D gives
AB-CD+ AD - BC = AC - BD (Fig. 5.18). Because BC = crd(« — ),

120 crd(e — B) =crd o - crd(180 — B) — crd B - crd(180 — ).
This is easily translated into the modern difference formula for the sine:
sin(a — ) = sin o cos B — cos « sin B.
A similar argument shows that

120 crd(180 — (@ + B)) = crd(180 — &) crd(180 — B) — crd B - crd «,
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a formula equivalent to the sum formula for the cosine:

cos(a + B) = cos « cos f — sin « sin .

Using the difference formula and the half-angle formula, Ptolemy then calculated
crd(12°) = crd(72° — 60°), crd(6°) = crd(4 - 12°), crd(3°), crd(11°), and crd(3"). His last
two results are crd(l%o) = 1;34,15, and crd(%o) =0:47,8. He could have used the addition
formula to build up the table in intervals of 1%0 or even %o. Because, however, he wanted
his table to be in intervals of %o, and since, “if a chord such as the chord of 1%0 is given,
the chord corresponding to an arc which is one-third of the previous one cannot be found
by geometrical methods (if this were possible we should immediately have the chord of
%O),” Ptolemy could only find crd(1°) and crd(%o) by a procedure that, although “it cannot
in general exactly determine the size [of chords], in the case of such very small quantities
can determine them with a negligibly small error.”® In other words, Ptolemy was convinced,
although he offered no proof, that Euclidean tools (“geometrical methods”) are not sufficient
to determine crd(%o), or, in general, to trisect an angle. An alternative method was therefore
necessary.

This alternative, an approximation procedure, is based on the lemma that if « < S, then
crd B :cerd @ < B : «, or, in modern notation, that sme increases as x approaches 0. Applying
this lemma first to o = %o and B = 1°, Ptolemy found crd(1°) < % crd(%o) = %(0;47,8) =
1;2,50,40. Applying it next to @ = 1° and g =11°, he found crd(1°) > 2 crd(11°) =
%(1;34, 15) = 1;2,50. Since all calculated values were rounded off to two sexagesimal places,
it appears to that number of places that crd(1°) = 1;2,50, and therefore crd(%o) =0;31,25.
The addition formula now enabled Ptolemy to build up his table in steps of %O from crd(%o)
to crd(180°). To aid in interpolation for calculating chords of any number of minutes, he
appended a third column to his table containing one-thirtieth of the increase from crd « to
crd(o + %o). A small portion of the table, whose accuracy is roughly equivalent to that of a
modern five-decimal-place table, is illustrated in Table 5.1.
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A portion of Ptolemy’s chord table.

Arcs Chords Sixtieths Arcs Chords Sixtieths
% 0;31,25 0;1,2,50 6 6;16,49 0;1,2,44
1 1;2,50 0;1,2,50 47 47;51,0 0;0,57,34
1% 1;34,15 0;1,2,50 49 49:45.,48 0;0,57,7
2 2:5,40 0;1,2,50 72 70;32,3 0;0,50,45

2% 2;37.,4 0;1,2,48 80 77,8,5 0;0,48,3

3 3;8,28 0;1,2,48 108 97:4,56 0;0,36,50
4 411,16 0;1,2,47 120 103;55,23 0;0,31,18
4% 442,40 0;1,2,47 133 110;2,50 0;0,24,56

5.2.2 Solving Plane Triangles

Given his chord table, Ptolemy could now solve plane triangles. Although he never stated a
systematic procedure for doing so, he did seem to apply fixed rules. One difference to keep
in mind when comparing Ptolemy’s method to a modern one is that Ptolemy’s table contains
lengths of chords when the radius is 60 rather than ratios. Therefore, he always had to adjust
his tabular values in a given problem to the actual length of the radius. We consider here three
examples of his procedures.

First, to calculate the length C F' of the noon shadow of a pole C E of length 60 at Rhodes
(latitude 36°) at the vernal equinox, Ptolemy began by noting that at that time the sun is 36°
below the zenith (that is, /AE B = 36°) (Fig. 5.19). Ptolemy considered C F as the chord of
the circle circumscribing triangle EC F'. Because the angle at the center is double the angle at
the circumference, C F = crd(72°) = 70;32,3. Then CE = crd(180° — 72°) = crd(108°) =
97:4,56. Since Ptolemy wanted the shadow when C E = 60, he reduced this calculated value
by the ratio % Thus, the desired shadow is % - (70;32,3) = 43;36. This calculation
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FIGURE 5.20

Calculating the parameters in
the eccentric model of the sun

for finding the leg a of a right triangle, given « and b, can be rewritten as
) crd(2ar) b, 2R sin o

crd(180 — 2a) 2R cos o

in agreement with modern procedure. It is Ptolemy’s lack of a tangent function and his need

to use actual chords in circles that forced him to calculate the chords of double both the given
angle and its complement as well as their quotient.

=btan«a

A second example shows how Ptolemy calculated the parameters for the eccentric model
of the sun.” The calculation amounts to solving the right triangle L DE, where D represents
the center of the sun’s orbit and E represents the earth (Fig. 5.20; compare Figure 5.8a).
Divide the ecliptic into four quadrants by perpendicular lines through E and similarly divide
the eccentric circle. To find LD and LE, one must first calculate the arcs 6 = %VV’ and
T= %VV—V\V’ using the known inequalities of the seasons. Given that the spring path of the sun
is 94.5 days while that of the summer is 92.5 days, and supposing that v is the mean daily
angular velocity of the sun, the diagram shows that 90 + 6 + v = 94.5v for the spring while
90 4+ 6 — v =92.5v for the summer. Because v equals the length of the year (observed to
be 365;14,48 days) divided by 360°, or 0°59'8” per day, it follows that 90° + 0 + t = 93°9
while 90° + 6 — 7 = 91°11’. A simple calculation then shows that & = 2°10 and T = 0°59'.

The sides of the triangle D L E can now be determined under the assumption that the radius
DX of the deferent is 60. Since DX bisects arc V' V', itis evident that LE = OV = %VV’ =
3 crd 20 = 4 crd(4°20") = 2;16. Similarly, DL = 5 crd 27 = § crd(1°58') = 1;2. By the Py-
thagorean Theorem, DE?*=LE?+ DL*= 6;12,20, and DE = 2;29,30, or, approximately,
2;30 = 2%. In modern terminology, Ptolemy has simply calculated LE = OV = R sin 6 and
DL = CW = R sin t. The necessity of calculating half the chord of double the angle so often
led later astronomers to tabulate this quantity, the modern sine function.

To complete the solution of the triangle, Ptolemy calculated /L E D by circumscribing a
circle around ALDE. Since LD = 1;2 when DE = 2;29,30, it would be 49;46 if DE were
120. Using the table of chords in reverse, Ptolemy read off that the corresponding arc is about
49°, hence /L E D is half of that, or 24°30/. Then /L DE = 65°30' and the triangle is solved.
Again, in modern terminology, Ptolemy first calculated 120a/c =2R sin« or sinax =a/c
and then used the inverse sine relation to determine «.
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Finding the position of the sun

5.2 PTOLEMY AND THE ALMAGEST 151

A final example is provided by Ptolemy’s solution of an oblique triangle. The problem here
is to find the direction /D E S of the sun, from the eccentric model, given that DE = 2;30 if
DS is arbitrarily picked to be 60 (Fig. 5.21). For a given day, the angle P D S is known from the
speed of the sun in its orbit and hence the angle E DS is known. Ptolemy made the calculation
where /P DS = 30° and ZE DS = 150°. Ptolemy first constructed the perpendicular EK to
S D extended. Considering as before the circle about triangle DK E, he concluded that arc
DK = 120°. From the table he noted that if the radius were 60 (or DE = 120), then DK
would be crd(120°) = 103;55. Since, however, DE = 2;30, by proportionality DK = 2;10.
Then SK =SD + DK =62;10.Since /K DE =30°,also EK = %DE = 1;15. Applying the
Pythagorean Theorem to ASK E gives SE = 62;11. Next, consider the circle circumscribing
ASKE.Because KE = 1;15 when SE = 62;11, it would be 2;25 if SE were 120. The chord
table is now used in reverse to find that 2;25 corresponds to an arc of 2°18'. It follows that
/K SE = 1°9 and therefore that /DES is 180° — 150° — 1°9' = 28°51’.

Ptolemy’s procedure can be translated as follows. Given AABC with a, b, and y > 90°
known, drop AD perpendicular to BC extended (Fig. 5.22). If AD =h and CD = p, then
p= w and h = w. It follows that

A =h*+(a+p)?

_ 4 crd?(360 — 2y) N crd?(2y — 180) B 2ab crd(2y — 180)
4R? 4R? 2R

crd(2y — 180)
2R

=a’+b> +2ab
or
2 =a® + b* — 2ab cos Y,

precisely the law of cosines for the case where two sides and the included angle are known.
To find the angles, Ptolemy then noted that crd(28) =& - 2R /c and found B from the table.
This translates as sin 8 = h/c = (b sin y)/c. Hence, Ptolemy has also used the equivalent of
the law of sines.

It should be noted that in giving the preceding example Ptolemy explicitly provided an
algorithm for calculating ¢ and g given values of a, b, and y. In fact, such algorithms are
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FIGURE 5.22

Ptolemy’s law of cosines

FIGURE 5.23

A Menelaus configuration
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common in the Almagest. These algorithms of plane trigonometry can therefore be translated
into modern formulas without doing injustice to Ptolemy’s own procedure.

5.2.3 Solving Spherical Triangles

Ptolemy dealt even more extensively with algorithms for solving spherical triangles. Although
spherical geometry had been studied as early as 300 BCE, the earliest work on spherical
trigonometry appears to be the Spherica of Menelaus (c. 100 CE). A major result of that
work, today known as Menelaus’s theorem, gives the relationships among the arcs of great
circles in the configuration on a spherical surface, illustrated in Figure 5.23. Two arcs AB,
AC, are cut by two other arcs BE, C D, which intersect at F'. With the arcs labeled as in
the figure, and further with AB =m, AC =n, CD = s, and BE = r, Menelaus’s theorem,
written using sines rather than chords, states that

sin(ny) _ sin(sy) sin(my) (5.1)

sin(n;)  sin(s)  sin(m)
and

sin(n) _ sin(s) sin(ry)

: == - . (5.2)
sin(ny)  sin(sy) sin(r)

Menelaus proved these results (and the same proof also appears in the Almagest) by first
proving them for a similar plane configuration and then projecting the spherical diagram onto
a plane.'? Ptolemy then used Menelaus’s theorem to solve spherical right triangles, triangles
composed of arcs of great circles where two of the arcs meet in a right angle. Given such a
triangle with the right angle at C, and the sides opposite angles C, B, A, labeled c, b, and

my n

my n,



FIGURE 5.24
Ptolemy’s double Menelaus
configuration
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a, respectively (Fig. 5.24), Ptolemy constructed a Menelaus configuration containing it. For
example, if ABC is the right triangle, construct the great circles PM, QN, which have A,
B, respectively, as poles, and extend each side of the triangle to meet both of those great
circles. There are then two Menelaus configurations, one with vertex at M, the other with
vertex at N. Since the length of an arc on a great circle subtended by an angle at a pole of
that circle is equal to the degree measure of the angle, and since P and Q are poles of QM,
P N, respectively, the two equations can be simplified considerably to get results relating the
angles and sides of the given triangle.

First, if one uses the configuration with vertex M, Equation 5.1 becomes

sm(?O —A) _ 51n(?0 —a) ) S.mb or tan A — téna. 5.3)
sin A sin a sin 90 sin b

Equation 5.2 becomes

si’n90=si.n90_ s}nc or sinA:Si.na. 5.4)
sin A sina sin 90 sin ¢

Second, if one uses the configuration with vertex N, Equation 5.1 becomes

sin a sin ¢ sin(90 — B) tan a
: =— . - or cosB= , (5.5)
sin(90 —a)  sin(90 — ¢) sin 90 tan ¢
while Equation 5.2 becomes
sin 90 sin 90 sin®0 — b) or cosc=cosa-cosb. (5.6)

sin(90 —a) _ sin(90 —c¢)  sin 90

Ptolemy’s first application of these results was to find the declination § and right ascension
« of the sun, given its longitude XA (Fig. 5.25). Here, V A is the equator, V B the ecliptic, and
V the vernal point. The angle € between the equator and ecliptic, according to Ptolemy, is
23°51'20". Suppose the sun is at H, a point with longitude A. To determine HC = § and
VC = a, the right triangle V H C must be solved. From Equation 5.4, sin € = sin §/ sin A or
sin § = sin € sin A. Ptolemy performed this calculation with both A = 30° and A = 60° to get
in the first case, § = 11°40’, and in the second, § = 20°30'9”. Having thus demonstrated
the algorithm, he presumably set his calculators to work to produce a table for §, given
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FIGURE 5.25

Method for determining

the declination and right
ascension of the sun, given its
longitude

FIGURE 5.26

Calculating the rising time
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each integral value of A from 1° to 90°. Similarly, from Equation 5.5, cos € = tan o/ tan A
or tan o = cos € tan A. Again, Ptolemy calculated the value of « corresponding to A = 30°
to be 27°50', while that corresponding to A = 60° to be 57°44’. He then listed the values
of o corresponding to other values of L. Note further that, by symmetry, a(A 4+ 180) =
a(r) 4+ 180° and (A + 180) = —35(1).

Many of the other problems solved by Ptolemy are closely related to the determination of
the rising time of an arc of the ecliptic. Namely, at a given geographical latitude, Ptolemy
wanted to determine the arc of the celestial equator, which crosses the horizon at the same
time as a given arc of the ecliptic. Since it is sufficient to determine this for arcs one
endpoint of which is the vernal point, it is only necessary to determine the length VE
of the equator, which crosses the horizon simultaneously with the given arc V H of the
ecliptic (Fig. 5.26). This arc length is called the rising time because time is measured by
the uniform motion of the equator around its axis. One complete revolution takes 24 hours,
so 15° along the equator corresponds to 1 hour, and 1° corresponds to 4 minutes. In any case,
to solve Ptolemy’s problem, it suffices to solve the triangle HCE for EC = o (A, ¢) and
then subtract that value from V C = «(A) already determined. For example, suppose that the
latitude ¢ = 36° and that A = 30°. By the calculation above, § = 11°40’. Equation 5.3 then
gives sin o = tan §/ tan(90 — ¢) = tan § tan ¢ and, therefore, o = 8°38'. Since o = 27°50/,
the rising time V E = 27°50" — 8°38' = 19°12’. Ptolemy (or his staff) calculated the rising
time p (A, ¢) for values of A in 10° intervals from 10° to 360° at eleven different latitudes ¢
and presented the results in an extensive table.

This table can now be used to calculate the length of daylight L(A, ¢) at any date at any
given latitude. If the sun is at longitude A, the point at longitude A 4 180 is rising when the
sun is setting. Hence, one simply needs to subtract the rising time of A from that of A + 180.

Equator

Ecliptic

Horizon




FIGURE 5.27
Calculation of the distance of
the sun from the zenith
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We can simplify matters somewhat by noting that, since o (A 4+ 180, ¢) = —o (A, ¢), we have

L(x, ¢)=p(A+ 180, ¢) — p(X)
=a(rA+180) —o (X + 180, ¢) —a(X) + o (X, ¢)
=180° 4+ 20 (A, ¢).
For example, when ¢ = 36° and A = 30°, L (30, 36) = 180° + 20 (30, 36) = 180° + 17°16' =
197°16', which corresponds to approximately 13 hours, 9 minutes.

By use of Figure 5.26, we can also calculate the position of the sun when it rises, that is, the
length of arc E H = B. To determine this at latitude 36° when A = 30°, one uses Equation 5.4
to get
_ siné _sin 11°40
"~ sin(90 —¢)  sin 54°
and B = 14°28'30". Therefore, on the day when A = 30°, the sun will rise at 5:25 a.m. local
time at a point 14°28"30” north of the east point on the horizon.

=0.25

sin S

As a final calculation, we determine the distance of the sun from the zenith at noon. The
sun on any given day is always at a distance § from the equator. Hence at noon, when it
crosses the meridian, it is (assuming § > 0) between the North Pole N and the intersection
T of the meridian with the equator at a distance § from that intersection (Fig. 5.27). Because
arc NT =90° and arc NY = ¢, it follows that arc SZ = 90° — (90° — ¢) — § = ¢ — 8. Note
thatif ¢ — 6 > 0, or ¢ > §, the sun will be in the south at noon and hence shadows will point
north. Because the maximum value of § is 23°5120”, this will always be the case for latitudes
greater than that value. On the other hand, when ¢ = §, the sun is directly overhead at noon.
The dates on which that occurs and also the dates when the sun is in the north at noon can
easily be calculated for a given latitude. In any case, given the angular distance of the sun
from the zenith, Ptolemy was able to calculate shadow lengths as previously described. He
presented his results in a long table. For 39 different parallels of latitude, he gave the length
of the longest day as well as the shadow lengths of a pole of length 60 at noon on the summer
solstice, the equinoxes, and the winter solstice.

Equator S

Meridian
Horizon
Y

The examples above deal only with the sun and are taken from the first three books of the
Almagest. In the remainder of the work, Ptolemy discussed the moon and the planets. For
each heavenly body, he gave first a brief qualitative sketch of the phenomena to be explained,
then an account of the postulated geometrical model, combined epicycles and eccenters, and
finally a detailed deduction of the parameters of the model from certain observations that he
had personally made or of which he had records. He generally concluded by showing that
his model with the calculated parameters in fact predicted a new planetary position, which
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was verified by observation. Ptolemy is thus the first mathematical scientist of whom there
is documented evidence of the use of mathematical models in actually “doing” science. He
began with a model and then used observations to improve it to the point that it predicted
observed phenomena to within the limits of his observational accuracy.

Ptolemy was proud of his accomplishments in “saving the appearances,” that is, in showing
that for all seven of the wandering heavenly bodies “their apparent anomalies can be repre-
sented by uniform circular motions, since these are proper to the nature of divine beings. . . .
Then it is right that we should think success in such a purpose a great thing and truly the
proper end of the mathematical part of theoretical philosophy. But, on many grounds, we
must think that it is difficult and that there is good reason why no one before us has yet suc-
ceeded in it.”!! Ptolemy, however, overcame the difficulties and gave to posterity a masterful
mathematical work that did predict the celestial phenomena, a work not superseded for 1400

years (Sidebar 5.2).

SIDEBAR 52 Ptolemy and the Idea of a Function

As a mathematical work, Ptolemy’s Almagest raises the in-
teresting question of whether one can see in it the germ of
the modern idea of a function. First, there are many examples
of tables displaying a functional relationship between sets of
quantities. The Babylonians much earlier had compiled tables
for square roots and reciprocals, for example, as well as as-
tronomical ones giving the predicted time of various celestial
phenomena. In general, however, they were only interested in
discrete values. Ptolemy took the enormous step of providing
a basis for the computational treatment of continuous phenom-
ena by not only presenting tables but also by showing how to
interpolate to provide functional values for any given value of
the “independent variable.” Thus, the chord is expressed as
a function crd(«) of the arc, the declination of the sun as a
function §(A) of the longitude, and the rising time p(A, ¢) as
a function of the two variables representing the length of arc
A along the ecliptic and the geographical latitude ¢. Ptolemy
often used his tables in reverse as well, finding, for example,
the arc from the chord, and thereby using what we would call
the inverse function.

Second, however, given that Ptolemy’s general aim was to
predict planetary positions, in many places he wrote down
an explicit algorithm describing how to do this for a par-
ticular time. For example, to calculate the sun’s position at
any given time, Ptolemy described the various steps required:
first calculate the time ¢ from epoch (the starting point for all
calculations—February 26, 747 BCE) to the desired time; next

obtain the mean motion . (¢) from the “mean motion” table;
add u () to 265°15 and subtract multiples of 360° to geta value
X less than 360°; enter A in the table of the sun’s anomaly (an
entry of which was calculated in the example of Ptolemy’s so-
lution of an oblique triangle) to get §(1); and then add 6 (1) to
X and 65°30’ to get the final result. In modern symbols, we can
write thisresultas p(1) = 6(A(1)) + A(t) + 65°30’ (mod 360°),
where A(1) = pu(¢) + 265°15 (mod 360°) and where 6, i, are
themselves defined by tables derived from functional proce-
dures. Although Ptolemy did not use modern symbolism, it
is clear that he was well aware of the modern idea of a func-
tional relationship. In many of his procedures, he even used
appropriate symmetries to simplify his calculations.

Ptolemy did not, however, discuss the general notion of func-
tion. In fact, he apparently took the procedures for dealing
with functions for granted. One concludes that such methods
may well have been familiar to his readers and must have been
used, at least by astronomers, before his time. Nevertheless,
there is no evidence that any Greek mathematician wrote on the
subject of functions, perhaps because there were no good the-
oretical methods of dealing with functions or their properties.
There were no relevant postulates. It is, however, important to
realize that behind the “geometrical facade of official Greek

mathematics”!2

there existed areas of practical mathematics,
the mathematics necessary to solve problems, both in the heav-

ens and on earth.
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PRACTICAL MATHEMATICS

By Ptolemy’s time, the entire eastern Mediterranean—and much else besides—was part
of the Roman Empire. The administrative center of the empire was, of course, in Rome,
and the official language was Latin. Nevertheless, in much of the empire there were local
rulers, and the Romans left the local language and culture intact. In particular, in the eastern
Mediterranean, including what is now Egypt, Israel, Syria, mainland Greece, and Turkey,
the prevalent “international” language remained Greek. And Alexandria itself remained an
intellectual center, where Ptolemy, among others, found it conducive to work.

5.31 Roman Mathematics

Was there “Roman mathematics,” or was all the mathematics accomplished under the aegis
of the Roman Empire part of “Greek mathematics”? The great orator Cicero admitted that the
Romans were not interested in mathematics: “The Greeks held the geometer in the highest
honor; accordingly, nothing made more brilliant progress among them than mathematics. But
we have established as the limit of this art its usefulness in measuring and counting.”'3 But
Cicero himself, as a magistrate and landowner, was certainly numerate enough to understand
accounts and detect frauds. So, although it is certainly true that there was no Roman Euclid
or Archimedes, in fact the Romans did have somewhat more to do with mathematics than
“measuring and counting.”

One person whose writings (in Latin) display a solid knowledge of mathematics is Vi-
truvius (first century BCE). In his famous work, On Architecture, he wrote that architects
needed to have a comprehensive liberal education, including topics from draftsmanship to
astronomy. In particular, he noted: “Geometry, in turn, offers many aids to architecture, and
first among them, it hands down the technique of compass and rule, which enables the on-
site layout of the plan as well as the placement of set-squares, levels, and lines. Likewise,
through knowledge of optics, windows are properly designed so as to face particular regions
of heaven. Through arithmetic the expenses of buildings are totaled up, and the principles of
measurement are developed, the difficult issues of symmetry are resolved by geometric prin-
ciples and methods.”!'# But although Vitruvius recommended such knowledge for architects,
On Architecture itself contains only a little mathematics. For example, Vitruvius showed how
to determine true north. One draws a circle on a flat space on the ground and places a sun-
dial gnomon in the center, long enough so that its shadow sometimes falls outside the circle.
One then marks where the moving shadow crosses the circle both in the morning and in
the afternoon. If one draws a straight line connecting the two points and then constructs the
perpendicular bisector of the line, that bisector will point due north and south (Fig. 5.28). Vi-
truvius also discussed the problem from Plato’s Meno of constructing a square that is double
a given square and also showed that, according to the Pythagorean Theorem, one can make a
set square out of rules of lengths 3, 4, and 5. But there was nothing in On Architecture more
advanced mathematically than this.

The Roman Empire was famous for its surveyors. They laid out roads and aqueducts
throughout a huge territory, many of which still survive. But an inspection of the extant
surveying manuals shows that the Roman surveyors used only very elementary mathematics.
Lucius Columella, a Roman gentleman farmer in the first half of the first century CE, wrote
that one who deals with fields needs to be able to work out areas. So he gave basic formulas
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for the areas of squares, rectangles, triangles, circles, and so on, including the use of

(% + %)s2 for the area of an equilateral triangle of side s, % as an approximation for 7,

and A = %(h +b)h + ﬁ(%ﬁ for the area of a circle segment of base b and height /.

A manual by Marcus Junius Nipsius displayed a method for measuring the width of a
river by using congruent triangles (Fig. 5.29). The distance BC is to be found. The point A
is sighted in line with BC, and line AD is drawn at right angles to AC and bisected at G.
Line DH is drawn perpendicular to AD to the point H from which G and C are sighted in a
straight line. Then BC is equal to DH — AB. This is obviously quite an elementary method,
but the records do not show the use of more sophisticated mathematics in surveying.

This is particularly surprising, since Greek mathematicians had developed better methods
of indirect measurement. As we have seen, Hipparchus’s and Ptolemy’s trigonometry enabled
the Greeks to “measure” triangles in the heavens as well as those on the earth related to
occurrences in the heavens. And it would appear that these same methods would enable one
to solve ordinary triangles on earth in order to make indirect measurements of distance and
height. It would seem natural that, at least after the time of Hipparchus, the Greeks and
Romans would use trigonometrical methods, that is, methods involving the table of chords.
But the available historical evidence gives us no reason to believe that they did so.
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Of course, before the time of Hipparchus one would only expect methods of indirect
measurement coming directly from the notion of similarity. And this is exactly what is found
in Euclid’s Optics. This treatise is basically a work on the geometrical principles of vision,
based on the assumption that light rays travel in straight lines. But Euclid does include several
results on indirect measurement. Thus, Proposition 18 asks “to find the magnitude of a given
height, the sun being visible.”!d In other words, with the sun at I", Euclid wanted to determine
the height of a tower AB whose shadow has length BA (Fig. 5.30). Placing an object of
known height EZ in such a way that its shadow also has tip A and therefore length EA,
Euclid concluded from the similarity of triangles ABA and ZEA that the height AB was
determined.

5.3.2 The Work of Heron

Some 350 years after Euclid, Heron of Alexandria (first century CE) wrote a detailed work
on indirect measurement, his Dioptra. (The dioptra is a sighting instrument.) Heron too used
similar triangles even though it appears from another of his books that he was familiar with a
table of chords. Thus, Heron showed how to determine the distance from the observer (at A) to
an inaccessible point B by first choosing I" so that I" A B is a straight line, then constructing the
perpendicular I'E to I’ A B, and finally sighting B from E, thereby establishing a point A on
BE suchthat AA is also perpendicularto BAT" (Fig.5.31). Since triangles ABA and " BE are
similar, 'E : AA =T'B : BA. The first ratio is known, because each length can be measured.
Therefore, the second ratio is known. ButI'B: BA=(T'A+ AB):BA=TA:BA+ 1,and
since I"A is known, B A can be determined.
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FIGURE 5.32
The angle of incidence equals
the angle of reflection

Heron used analogous methods to determine such quantities as the distance between two
inaccessible points, the height of a tower (without using shadows), and the depth of a valley.
He also showed how to use similar triangles to determine the direction to dig from each end
in order to construct a straight tunnel through a mountain. (As we noted earlier, the tunnel
on Samos was probably not constructed this way.)

Heron’s many works include other significant ideas in applied mathematics. His Catop-
trica contains an interesting proof that, for light rays impinging on a mirror, the angle of
incidence equals the angle of reflection. Although the result was known earlier, Heron based
his proof on the hypothesis that “Nature does nothing in vain,’!® that is, that the path of
the light ray from object C via the mirror to the eye D must be the shortest possible. Sup-
pose A is the point on the mirror G E, which makes /CAE = /DAG (Fig. 5.32). Extend
DA to meet CE extended at F. It follows easily that AAEF is congruent to AAEC and
therefore that the light path DA + AC is equal to the straight line DA F. Now suppose B
is any other point on the mirror. Connect BF, BD, and BC. Since BF = BC, we have
DB + BC = DB + BF > DAF. Therefore, any other proposed light ray path is longer than
the one making the angle of incidence equal the angle of reflection.
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In Heron’s Mechanics, there appears what is today called the parallelogram of velocities,
although this idea too had appeared earlier in the work on mechanics attributed to Aristotle.
Namely, suppose a point moves with uniform velocity along a straight line AB from A to B,
while at the same time the line A B moves with uniform velocity parallel to itself, ending on
the line I' A (Fig. 5.33). Suppose E Z is any intermediate position of line A B and that G is the
position of the moving point on it. Then AE : AI' = EG : EZ (by definition of the motion),
SOAE:EG=ATl': EZ = AT :T A and G therefore lies on the diagonal AA. In other words,
the diagonal is the actual path of the moving point. In modern terms, the “velocity vector”
AAN is the vector sum of the “velocity vectors” AB and AT.

Naturally, the Greeks did not themselves consider “velocity vectors.” Velocity was not
considered as an independent quantity capable of being measured. There was no such concept
as “miles per hour.” Recall that according to Elements V, definition 3, ratios can be taken
only between magnitudes of the same kind. One could not, therefore, consider the ratio of
a distance to a time. One could only compare distances or compare times. Thus, an early
definition of velocity by Autolycus states, “a point is said to be moved with equal movement



FIGURE 5.33

Parallelogram of velocities,
from Heron’s Mechanics
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when it traverses equal and similar quantities in equal time. When any point on an arc of a
circle or on a straight line traverses two lines with equal motion, the proportion of the time
in which it traverses one of the two lines to the time in which it traverses the other is as the
proportion of one of the two lines to the other.”!” In modern terms, Autolycus had stated that
the velocity of a point is uniform when it covers equal distances in equal times, and further
that if the point covers distance s; in time #; and distance s, in time #,, then sy : 5, =#; : 15. It
is from this definition that the initial proportions in the previous paragraph as well as those in
the discussion of the quadratrix in Chapter 4 stem. Archimedes in fact discussed this matter
in great detail at the beginning of his treatise On Spirals, because the spiral itself is defined
as the locus of a point moving with uniform velocity along a line segment at the same time
as the line segment revolves uniformly about one of its endpoints.

The Greeks certainly observed that falling bodies did not move with uniform velocity.
Thus, they were aware of the notion of acceleration. One of the few extant explicit comments
on accelerated motion, however, is from a sixth-century CE commentary on the lost treatise
On Motion by the physicist Strato (third century BCE). Strato asserted first of all that a
falling body “completes the last stage of its motion in the shortest time” and further that it
traverses “each successive space more swiftly.”!® In other words, accelerated motion implies
that successive equal distances are covered in shorter and shorter times and therefore with
increasing velocities. It is not clear from the brief fragment, however, whether Strato meant to
imply that the velocity of a falling body was proportional to distance fallen. A third-century
CE commentator on Aristotle did claim, however, that “bodies move downward more swiftly
in proportion to their distance from above.”!

Although the Greeks were familiar with the basic notions of kinematics, there is no
evidence that they performed numerical calculations using them, as was done in the field of
astronomy. On the other hand, the Metrica of Heron is an example of a handbook of practical
mensuration, a book that enabled its readers to learn how to measure areas and volumes of
various types of figures. Here, Heron showed how to arrive at numerical answers, even where
“irrational” quantities were involved. Heron sometimes gave proofs, but always his aim was
to calculate, even though he often quoted the work of men such as Archimedes and Eudoxus
in justifying his rules.

Book I of the Metrica gave procedures for calculating areas of plane figures and surface
areas of solids. After the easy cases of the rectangle and the right and isosceles triangles,
Heron dealt with finding the area of a scalene triangle whose sides are given. He presented
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FIGURE 5.34

Area of a triangle from Heron

two methods. The first method is based on Elements 11-12, 1I-13: Given a triangle ABC,
drop the perpendicular AD to BC (or BC extended) and use the quoted theorems to show
that > = a®> +b*> F2a - CD (Fig. 5.34). It follows that C D is known, hence that AD = h is
known. The area is then %ah.

The second method is known today as Heron’s formula. Namely, if s = %(a + b + ¢), then
the area equals /s(s — a)(s — b)(s — c). As Heron stated it, “let the sides of the triangle be
7, 8, and 9. Add together 7, 8, and 9; the result is 24. Take half of this, which gives 12. Take
away 7; the remainder is 5. Again, from 12 take away 8; the remainder is 4. And again 9;
the remainder is 3. Multiply 12 by 5; the result is 60. Multiply this by 4; the result is 240.
Multiply this by 3; the result is 720. Take the square root of this and it will be the area of the
triangle”?0

Heron gave here a correct geometrical proof of this area result. The formula and proof,
probably due originally to Archimedes, are unusual in Greek times in that they involve the
product of four lengths, a completely “ungeometrical”” concept. Heron made no special note
of this seeming aberration, so presumably it was already present in his source. Although in
the Elements only two or three lengths could be multiplied to give a rectangle or a rectangular
parallelepiped, the practical requirements of such aspects of Greek mathematics as are
discussed in this chapter led certain mathematicians to consider lengths as “numbers” and, as
such, to multiply them. Naturally, this new concept violated Aristotle’s basic philosophical
tenets as to how mathematics should be understood. It does show again, however, that there
was much going on in Greek mathematics behind its “geometrical facade.”

Heron continued in this passage to show how to calculate the necessary square roots:

Since 720 has not a rational square root, we shall make a close approximation to the root in this
manner. Since the square nearest to 720 is 729, having a root 27, divide 27 into 720; the result is
26% ;add 27; the result is 53%. Take half of this; the result is 26%. Therefore, the square root of 720

will be very nearly 26%. For 26% multiplied by itself gives 720%

we wish to make the difference less than %, instead of 729 we shall take the number now found,

7203—16, and by the same method we shall find an approximation differing by much less than 3—16.2]

; so that the difference is 3—16, If

This square root algorithm is another piece of practical mathematics that is, interestingly
enough, quite different from Theon’s description of Ptolemy’s algorithm. Perhaps Heron’s
method was the procedure when calculating in base ten, while Ptolemy’s was the method
in astronomical sexagesimal calculation. It is also quite possible that one or both of these
algorithms were used by the Babylonians.



FIGURE 5.35
Calculating the area of a
regular 9-gon

5.3 PracTicAL MATHEMATICS 163

The Metrica also contains formulas for the area A, of a regular polygon of n sides of
length a, where n ranges from 3 to 12. For example, Heron showed that A; ~ %az (the same
result as Columella), A5~ %az, and A; ~ %az. In each case he used approximations to the
various square roots that appeared in the geometrical derivations. It was in his derivation
of the formula for the regular 9-gon that Heron appealed to a “table of chords” in which
he found that the chord of a central angle of 40° is equal to one-third of the diameter of the
circle. Therefore, AC? = 9AB?, BC? = 8AB? (Fig. 5.35),and Ag =9AABO = JAABC =

9 _ 9. /R 2,9 172 _ 512
ZBC~AB—Z 8a ~g-gat=xgat.
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To find the area of a circle, Heron used Archimedes’ value % for 7, thus giving the area of
the circle as }—idz, where d is the diameter. He then quoted “the ancients” on the formula for
the area of a segment of a circle, A = %(b + h)h, where b is the base and / is the height of the
segment. A more accurate value, he said, is given by adding the extra term ﬁ (%)2. This new

formula is certainly accurate for the semicircle, given that & = %, but is only approximate
for other segments. Heron even noted that it is only “reasonably” accurate when b < 3h.

In the preface to Book II of the Metrica, Heron noted that the volume of a rectangular solid
is the product of numbers representing the measure of its length, width, and depth, because the
solid can be divided into that many unit cubes. But then he stated a more general result: If in a
solid figure, all of the sections parallel to the base are equal, while the centers of the sections
are on a straight line through the center of the base, either perpendicular or oblique to the base,
then the volume is equal to the product of the area of the base and the perpendicular height of
the figure. Heron did not justify the rule, nor could his initial explanation apply, because the
solid cannot in general be divided into an integral number of unit cubes. Presumably, Heron
understood that the justification could be given via an argument with indivisibles. If one takes
a rectangular solid whose base equals the base of the given solid and whose height equals its
height, then since each solid is “made up” of its parallel “indivisible” sections and since the
sections of one solid are equal to the sections of the other, it follows that the volumes of the
two solids are equal. Thus, because the volume of the rectangular solid is the product of its
base and height, the same is true for the given solid. As we have noted in previous chapters,
arguments by indivisibles seem to have been present in Greek mathematics for centuries,
although they were never given any formal status and hence never “published.”
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FIGURE 5.36
Eratosthenes’ determination
of the size of the earth
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In the remainder of Book II, Heron gave formulas for calculating the volumes of many
other solid figures; for some he just quoted earlier results and for others he gave elementary
arguments, though not formal proofs. Among other results here, he gave the formulas for the
volume of a torus (27 2ca?), where a is the radius of a circular section and ¢ is the distance
of the center of the section from the center of the torus, and for the volume of a regular
octahedron (%\/zcﬁ), where a is the edge length.

5.3.3 The Geography of Ptolemy

Another significant “applied mathematics” work from Alexandria during Roman times was
the Geography of Ptolemy, a work that Ptolemy himself considered as significant as his Al-
magest. Certainly, with the Romans having conquered much of the known world, they needed
maps in order to understand their domains and to know where their enemies lived. Although
some mapping was accomplished by earlier mathematicians, including Eratosthenes (285-
194 BCE; one of the first librarians at the Alexandria Library), Hipparchus, and Marinus of
Tyre (c. 100 cE), it was Ptolemy who compiled all the information known about the position
of places on the earth, combined this with some basic principles for representing the spheri-
cal earth on flat paper, and put together a work that, like his Almagest, became the standard
reference in its field for close to a millennium and a half.

Of course, one of the issues Ptolemy had to deal with in mapping the earth was its actual
size. That it was a sphere was not in question. But how large a sphere? Eratosthenes was
the first to actually attempt to measure it. He noted that at noon on the summer solstice the
sun was directly overhead at Syene, a place on the Tropic of Cancer, while at the same time
at Alexandria, approximately 5000 stades due north, the sun was at 7%0 from the zenith.

Given that the rays from the sun to the earth are all parallel, he concluded that /SO A = 7%0
(Fig. 5.36). He therefore concluded that the total circumference of the earth was 250,000
stades, though it appears that at some point he modified this figure to 252,000, probably
so that he could give the round figure of 700 stades per degree on the circumference. To
determine the accuracy of Eratosthenes’ calculation, we need to know how long a stade is in
modern measures. There has been a good deal of scholarly disagreement on this point, but the
general consensus today is that Eratosthenes’ stade was approximately 185 meters, making
the earth’s circumference 46,620 km, approximately 16.5% higher than the actual value.??

Sun

Interestingly, although it seems that Ptolemy was aware of Eratosthenes’ value, in the
Geography he used a much smaller value for the size of the earth, namely, 180,000 stades.
This value, equivalent to 500 stades per degree, is approximately 17% too small. But this is the



FIGURE 5.37

Ptolemy’s world map in
the 1552 Basel edition of
his Geography (Source:
Smithsonian Insitution
Libraries, Photo No. 90-
15779)
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value that was passed down through the centuries and was the starting point for Columbus’s
own calculation of the size of the earth in the fifteenth century.

In his actual mapping, Ptolemy limited himself to what he called the oikoumene, or the
inhabited world. This was the region about which Ptolemy knew something, from travelers’
stories and reports and from documents of earlier geographers. The northern boundary of
Ptolemy’s world is the parallel of Thule, near today’s Shetland Islands at 63° north, while the
southern boundary is at 16°25" south of the equator (Fig. 5.37). In east-west extent, Ptolemy’s
oikoumene stretched close to 180°. The westernmost part of the inhabited world was the
Islands of the Blest, identified with the Canary Islands off the coast of Spain; the meridian
through those islands was Ptolemy’s prime meridian, that is, the meridian from which degrees
east were measured. The eastern boundary of the oikoumené was somewhere on the east coast
of China. A glance at a modern map shows that the actual longitudinal distance between those
two points is about 135° rather than Ptolemy’s 180°, thus decreasing the westward distance
from Spain to China. Again, Columbus took his geographical knowledge from Ptolemy in
making his case with the Spanish monarchs that he could reach China by sailing west.

But even though Ptolemy did not get the size or extent of the Eurasian continent correct,
he did work out two different ways to map his oikoumené on flat paper, beginning with a
grid of the parallels (latitude lines) and the meridians (longitude lines). Marinus had used
straight lines to represent both of these. Noting that the length of a degree along the parallel
through Rhodes (latitude 36°) was in the ratio of 4 : 5 to the length of a degree along the
equator (because, in modern terms, the length of the parallel through Rhodes is cos 36° times
the length of the equator and cos 36° & 0.8), Marinus simply spaced his parallels so that the
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FIGURE 5.38

Beginning of the construction
of the grid for a map
projection, from Ptolemy’s
Geography

distance between two parallels separated by n degrees was 5/4 of the distance between two
meridians separated by n degrees. As Ptolemy noted, this caused distortions both to the north
and to the south of the 36th parallel.

Ptolemy’s first projection used straight lines for the meridians and circular arcs for the
parallels. But we will look more closely at this second projection, which uses circular arcs
for both sets of lines, as in Figure 5.37. About this projection, Ptolemy wrote, “we could make
the map of the oikoumene on the [planar] surface still more similar and similarly proportioned
[to the globe] if we took the meridian lines, too, in the likeness of the meridian lines on the
globe, on the hypothesis that the globe is so placed that the axis of the visual rays passed
through both the intersection nearer the eye of the meridian that bisects the longitudinal
dimension of the known world and the parallel that bisects its latitudinal dimension, and also
the globe’s center.”?3 In other words, we are to imagine that we are viewing the globe from
a point above the intersection of the central meridian (90° east of the Islands of the Blest, or
near the east coast of the Arabian Peninsula) and the central parallel, taken to be at latitude
23°50/, the Tropic of Cancer.

To determine the center of the circular arcs of the parallels, Ptolemy described a circle
JT' QV representing half of the globe with intersecting diameters V®T" and J© Q (Fig. 5.38),
and assumed that the four radii were all 90 units (representing a quarter of a circle). Since
VOT represents the parallel at latitude 23%0, he placed H, a point on the equator, 23% units
below ©®, connected V H, bisected V H at A, and chose the center L of his circles to be the
intersection of the perpendicular bisector of V H and the extension of QJ. (Since the equator
is to be a circular arc through H, V, and I', these two lines will both be perpendicular to that
circle and thus will determine its center.) It is now straightforward to determine the length
LH.Wehave VO =90, 0H = 23%, soVH = 93%. Because triangles VO H and LA H are
similar, we know that LH : AH = VH : ®H. Since we know three of these lengths, we can
determine L H to be 181%.

Now, Ptolemy could construct the grid for the projection. He set up a rectangle ABDG
with A B being twice AG, with AE = E B, and with EZ at right angles to AE B (Fig. 5.39).
Because AB represents 180°, he considered EZ to have a length of 90 units. Since the



FIGURE 5.39
Grid construction continued,
from Ptolemy’s Geography
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southernmost parallel is 16%O south of the equator, he put H at 16% units above Z. He
then put ® at 23% units farther north, and finally K, representing the latitude of Thule, at 63
units north of H (or 39% units north of ®). He now placed L on the extension of EZ so that
H L has length 181% units, as determined earlier. The arcs of circles centered at L with radii

extending to Z, ®, and K represent the parallels at 16%O south latitude, 23%O north latitude,
and 63° north latitude, respectively.

il B
F
X 10
N
Y
D

To draw the meridians, Ptolemy noted that a degree along the parallel of latitude 63° was
in the ratio of approximately 2}‘ :5 to a degree along the equator (because, in modern terms,
cos 63° ~ 0.45). Similarly, the ratio for the parallel of latitude 23%0 was 417—2 : 5 and the ratio
for the parallel of latitude 16%O was 4% :5. Since a chord of a five-degree arc is approximately
equal to the arc itself, he then marked 18 points separated by 2?11 units in each direction from
K along the arc P K R to represent five-degree intervals. The points 90° to the west and east
of K are labeled U and F. Similarly, he could mark 18 points in each direction from the
central line along each of the other two circular arcs, ending at 7 and X for the arc through
® and at S and Y for the arc through Z. The meridians were then drawn by drawing circles
through each set of three points at a given distance in degrees from the central line K Z. In
particular, the arcs STU and Y X F represented the bounding meridians of the oikoumeneé.
The remaining parallels were then filled in as well by circular arcs centered on L to get a
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complete grid upon which the map of the world could be drawn. As Ptolemy noted, this map
preserved the correct ratio of latitudinal to longitudinal dimension along the three selected
parallels and, at least “roughly” along the other parallels.

To complete his work, Ptolemy compiled a catalogue of about 8000 localities with their
latitudes and longitudes, thus enabling actual maps to be produced, not only the map of
the oikoumené, but also 26 regional maps. Although much better map projections were to
be discovered during the Renaissance, it was the editions of Ptolemy’s maps, that began to
reappear in Europe in the fourteenth century, that gave Europeans their first picture of the

entire known world.

EXERCISES

Calculate crd(30°), crd(15°), and crd(7%°) using the half-
angle formula of Hipparchus, beginning with the fact that
crd(60°) = R = 60.

Calculate crd(120°), crd(150°), crd(165°), and crd(l72%°)
using Hipparchus’s formula for crd(180° — «).

Use Theon’s method to calculate /4500 to two sexagesimal
places. The answer is 67;4,55.

Prove the sum formula,

120 crd (180 — (x + B))
=crd(180 — &) crd(180 — B) — crd « crd B,

using Ptolemy’s theorem on quadrilaterals inscribed in a
circle.

Use Ptolemy’s difference formula to calculate crd(12°)
and then apply the half-angle formula to calculate crd(6°),
crd(3°), crd(l%o), and crd(%o). Compare your results to
Ptolemy’s.

Compare the derivation of the half-angle formula of Hip-
parchus to the method used by Archimedes in Lemma 2 in
Measurement of a Circle.

sin 8

Prove thatcrd B :crd o < B : e or, equivalently, that 5=

<
gfor0<a</3.

Calculate, using Ptolemy’s methods, the length of a noon
shadow of a pole of length 60 at the vernal equinox at a
place of latitude 40°.

Explain why the angle € between the equator and the eclip-
tic can be determined by taking half the angular distance
between the noon altitudes of the sun at the summer and
winter solstices. (See Fig. 5.40.)
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FIGURE 5.40
Calculating the inclination of the ecliptic

Calculate the shadow lengths at the summer and winter
solstices of a pole of length 60 for latitude 36°. (Use the
result of Exercise 9.)

Calculate the declination and right ascension of the sun
when it is at longitude 90° (summer solstice) and longitude
45°. By symmetry, find the declination at longitudes 270°
and 315°.

Calculate the rising times p (X, ¢) for ¢ =45° and A = 60°
and 90°.

Calculate the length of daylight on a day when A = 60° at
latitude 36°. Calculate the local time of sunrise and sunset.

Suppose that the maximum length of day at a particular
location is known to be 15 hours. Calculate the latitude of



15.

17.
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25.

26.
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28.

that location and the position of the sun at sunrise on the
summer and winter solstices.

The formula sin o = tan 6 tan ¢ only makes sense if the
right-hand side is less than or equal to 1. Since the max-
imum value of § is 23%0, show that the right-hand side will
be greater than 1 whenever ¢ > 66%0. Interpret the formula
in this case in terms of the length of daylight.

Calculate the angular distance of the sun from the zenith at
latitude 45° when A = 45° and 90°.

At approximately what dates is the sun directly overhead at
noon at a place whose geographical latitude is 20°?

Calculate the sun’s maximal northerly sunrise point for
latitude 36°.

At approximately what date does the “midnight sun” begin
at latitude 75°?

Compare the formula A = (% + %)52 for the area of an
equilateral triangle of side s, used by a Roman surveyor,
with the exact formula. What approximation has the sur-
veyor used for ﬁ?

Show how to calculate the distance between two inaccessi-
ble points A, B, by the use of similar triangles. (Assume,
for example, that the two points are on the bank of a river
opposite your position.)

Calculate the area of a triangle with sides of lengths 4, 7,
and 10 using both of Heron’s methods.

Derive a formula for the area A5 of a regular pentagon
with side a (using plane geometry). Discuss the differences
between Heron’s formula A5 = %az and your formula.

Heron derived his formula for the area A; of a regular
heptagon of side a, A; = %az, by assuming that a = %r,
where r is the radius of the circumscribed circle. Use this
approximation to derive Heron’s result. What square root
approximation is necessary here?

Derive % as an approximation to +/8 to complete the proof

of Heron’s formula for Ag.

Derive Heron’s formula for the volume %«/ia3 of aregular
octahedron of edge length a.

Check Eratosthenes’ calculations on a modern map. That
is, find the actual distance between Alexandria and Syene
as well as the distance in degrees. (Note that Syene is not
exactly on the same meridian as Alexandria.) If there were
5000 stades between Alexandria and Syene, what would be
the length of a stade?

Show that the total length of the parallel at latitude « equals
cos o multiplied by the total length of the equator.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

EXERCISES 169

Confirm Ptolemy’s results that the ratio of a degree along
the parallel at latitude 23%O to that of a degree along the
equator is approximately 4% :5 and at latitude 1615—2O is
approximately 4% :5.

Outline a trigonometry course following Ptolemy’s order of
presentation. That is, begin with our modern definition of
a sine and then derive the major formulas as tools for pro-
ducing a sine table. Discuss the advantages and disadvan-
tages of this approach compared to the standard textbook
approach today.

Ptolemy must have been aware of a method of trisecting
angles by the use of conic sections. Such a method would
have enabled him to construct the chord of %O given that he

knew the chord of 1%0. Why would Ptolemy not have con-
sidered this to be a construction by “geometrical methods"?
Can one use such a construction to calculate the chord of
1

o .
5 numerically?

Discuss the potential for including some spherical trigo-
nometry in courses on trigonometry, following the general
lines of Ptolemy’s approach.

Outline a lesson using the basic formulas of spherical
trigonometry to calculate some simple astronomical phe-
nomena.

What observations would have convinced the Greeks that
the radius of the celestial sphere was so large that the earth
could in effect be considered a point with respect to that
sphere?

List evidence that convinces you that the earth (a) rotates on
its axis once a day and (b) revolves around the sun once a
year. Would this evidence have convinced the Greeks? How
would you refute the reasons Ptolemy gives for the earth’s
immovability?

Look up in an astronomy work the “equation of time,” and
discuss why the times of sunrise and sunset calculated via
the methods in the text are likely to be incorrect by several
minutes.

“Quadratic equations were totally useless in solving prob-
lems necessary to the running of the Roman Empire.” Give
arguments for and against.

The Roman Empire in fact survived for several hundred
years without apparently encouraging original mathemat-
ical research. Why do we generally believe today the op-
posite, that one of the factors on which the survival of the
United States as a great power depends is the encourage-
ment of original mathematical research?
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This tomb holds Diophantus . . . [and] tells
scientifically the measure of his life. God
granted him to be a boy for the sixth part
of his life, and adding a twelfth part to this,
He clothed his cheeks with down. He lit him
the light of wedlock after a seventh part, and
five years after his marriage He granted him
a son. Alas! late-born wretched child; after
attaining the measure of half his father’s life,
chill Fate took him. After consoling his grief
by this science of numbers for four years, He

ended his life.

—Epigram 126 of Book XIV of the
Greck Anthology (c. 500 CE)!
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arch, 415 cg, Alexandria: “A rumor was spread among the
MChristians that [Hypatia|, the daughter of Theon, was the
only obstacle to the reconciliation of the prefect [Orestes|
and the archbishop [Cyril]. On a fatal day in the holy season of Lent,
Hypatia was torn from her chariot, stripped naked, dragged to the
church, and inhumanly butchered by the hands of Peter the reader and

a troop of savage and merciless fanatics. . . . The murder of Hypatia

has imprinted an indelible stain on the character and religion of Cyril
of Alexandria.”
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Alexandria remained an important Greek mathematical center, even under the rule of Rome,
beginning in 31 BCE. In Chapter 5, we discussed the work of several prominent “applied”
mathematicians who flourished under Roman rule in Egypt. But there were other mathemati-
cians in the first centuries of the common era whose “pure” mathematical works also had
influence stretching into the Renaissance. This chapter deals with four of them.

We first discuss the works of Nicomachus of Gerasa, a Greek town in Judaea. He wrote in
the late first century an Introduction to Arithmetic, based on his understanding of Pythagorean
number philosophy. Besides Books VII-IX of Euclid’s Elements, this is the only extant
number theory work from Greek antiquity. However, there was another important work
entitled Arithmetica, written by Diophantus of Alexandria in the mid-third century, which
was destined to be of far more importance than Nicomachus’s book. Despite its title, this
was a work in algebra, consisting mostly of an organized collection of problems translatable
into what are today called indeterminate equations, all to be solved in rational numbers. Like
Heron’s Metrica, the style of the Arithmetica is that of an Egyptian or Babylonian problem
text rather than a classic Greek geometrical work. The third mathematician to be considered
is also from Alexandria, the geometer Pappus of the early fourth century. He is best known
not for his original work, but for his commentaries on various aspects of Greek mathematics
and in particular for his discussion of the Greek method of geometric analysis. The chapter
concludes with a brief discussion of the work of Hypatia, the first woman mathematician of
whom any details are known. It was her death at the hands of an enraged mob that marked
the effective end of the Greek mathematical tradition in Alexandria.

NICOMACHUS AND ELEMENTARY NUMBER THEORY

Almost nothing is known about the life of Nicomachus, but since his work is suffused with
Pythagorean ideas, it is likely that he studied in Alexandria, the center of mathematical
activity and of neo-Pythagorean philosophy. Two of his works survive, the Introduction to
Arithmetic and the Introduction to Harmonics. From other sources it appears that he also
wrote introductions to geometry and astronomy, thereby completing a series on Plato’s basic
curriculum, the so-called quadrivium.

Nicomachus’s Introduction to Arithmetic was probably one of several works written over
the years to explain Pythagorean number philosophy, but it is the only one still extant. Since no
text exists from the time of Pythagoras, it is the source of some of the ideas about Pythagorean
number theory already discussed in Chapter 2. Because the work was written some 600 years
after Pythagoras, however, it must be considered in the context of its time and compared with
the only other treatise on number theory available, Books VII-IX of Euclid’s Elements.

Nicomachus began this brief work, written in two books, with a philosophical introduction.
Like Euclid, he followed the Aristotelian separation of the continuous “magnitude” from the
discontinuous “multitude.” Like Aristotle, he noted that the latter is infinite by increasing
indefinitely, while the former is infinite by division. Continuing the distinction in terms of
the four elements of the quadrivium, he distinguished arithmetic and music, which deal with
the discrete (the former absolutely, the latter relatively), from geometry and astronomy, which
deal with the continuous (the former at rest and the latter in motion). Of these four subjects,
the one that must be learned first is arithmetic, “not solely because . . . it existed before all
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the others in the mind of the creating God like some universal and exemplary plan, relying
upon which as a design and archetypal example the creator of the universe sets in order his
material creations and makes them attain to their proper ends, but also because it is naturally
prior in birth inasmuch as it abolishes other sciences with itself, but is not abolished together
with them.” In other words, arithmetic is necessary for each of the other three subjects.

Most of Book I of Nicomachus’s Arithmetic is devoted to the classification of integers and
their relations. For example, the author divided the even integers into three classes, the even
times even (those that are powers of two), the even times odd (those that are doubles of odd
numbers), and the odd times even (all the others). The odd numbers are divided into the primes
and the composites. Nicomachus took what appears to us as an inordinate amount of space
discussing these classes and showing how the various members are formed. But it must be
remembered that he was writing an introduction for beginners, not a text for mathematicians.

Nicomachus discussed the Euclidean algorithm of repeated subtraction to find the greatest
common measure of two numbers and to determine if two numbers are relatively prime. He
also dealt with the perfect numbers, giving the Euclidean construction (Elements IX-36) and,
unlike Euclid, actually calculating the first four: 6, 28, 496, and 8128. However, also unlike
Euclid, Nicomachus presented no proofs. He just gave examples.

The final six chapters of the first book are devoted to an elaborate tenfold classification
scheme for naming ratios of unequal numbers, a scheme that probably had its origin in early
music theory. The scheme was in common use in medieval and Renaissance arithmetics and
is sometimes found in early printed editions of Euclid’s Elements. Among the classes in this
scheme of naming the ratio A : B, which reduces to lowest terms as a : b, are multiple, when
a = nb; superparticular, when a = b 4 1; and superpartient, whena = b + k(1 < k < b).

It is Book II of Nicomachus that is, however, of most interest to us, since there he
discussed plane and solid numbers, again in great detail but without proofs. This material
is not mentioned at all by Euclid. Nicomachus not only dealt with triangular and square
numbers (see Chapter 2) but also considered pentagonal, hexagonal, and heptagonal numbers
and showed how to extend this series indefinitely. For example, the pentagonal numbers are
the numbers 1, 5, 12, 22, 35, 51, . . . (although Nicomachus noted here that 1 is only the side
of a “potential” pentagon). Each of these numbers can be exhibited, using the dot notation of
Chapter 2, as a pentagon with equal sides (Fig. 6.1). Beginning with 5, each is formed from the
previous one in the sequence by adding the next number in the related sequence 4, 7, 10, . . ..
So5=1+44,12=5+7,22 =12+ 10, and so on. This is in perfect analogy to the series of

triangular numbers 1, 3, 6, 10, . .., each of which comes from the previous one by adding
numbers of the sequence 2, 3, 4, . . ., and the series of squares 1, 4, 9, 16, . . ., each of which
results from the previous one by adding numbers of the sequence 3, 5, 7, . . . . Nicomachus

continued this analogy and displayed the first 10 numbers of each of the polygonal classes
mentioned.

Nicomachus further explored the solid numbers. A pyramidal number, on a given polyg-
onal base of side n, is formed by adding together the first n polygonal numbers of that shape.
For example, the pyramidal numbers with triangular base are 1, 1 +3 =4, 14+ 3+ 6 = 10,
1+34+6+10=20, ..., while those with square base are 1, 1| +4=5,14+4+9= 14,
1444+9+16=30, . .. .One can similarly construct pyramidal numbers on any polygonal
base.



FIGURE 6.1

Pentagonal numbers
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Another form of solid number is the cubic number. Nicomachus noted, again without
proof, that the cubes are formed from odd numbers, not even. Thus, the first (potential)
cube, 1, equals the first odd number, the second cube, 8, equals the sum of the next two
odd numbers, the third cube, 27, equals the sum of the next three odd numbers, and so on.
Thus, the cubes are closely related to the squares, which are also formed by adding odd
numbers. And, Nicomachus concluded, these two facts show that the odd numbers, not the
even, are the cause of “sameness.”

The final topic of the treatise is proportion. Nicomachus, referring to pre-Euclidean
terminology, used the word “proportion” in a different sense from Euclid’s definition 2 of
Elements, Book VII. For Euclid, three numbers are in proportion if the first is the same
multiple (or part or parts) of the second that the second is of the third. Nicomachus noted
that “the ancients” considered not only this type (the type he calls geometric), but also two
others, the arithmetic and the harmonic. For Nicomachus, an arithmetic proportion of three
terms is a series in which each consecutive pair of terms differs by the same quantity. For
example, 3, 7, 11, are in arithmetic proportion. Among the properties of such a proportion
are that the product of the extremes is smaller than the square of the mean by the square of
the difference. In a geometric proportion, “the only one in the strict sense of the word to be
called a proportion,”* the greatest term is to the next greatest as that one is to the next. For
example, 3, 9, 27, are in geometric proportion. Among the properties of such a proportion
is that the product of the extremes equals the square of the mean. Nicomachus quoted two
results of Euclid in this regard, namely, that only one mean term lies between two squares
while two lie between two cubes.

The third type of proportion among three terms, the harmonic, is that in which the
greatest term is to the smallest as the difference between the greatest and mean terms is to the
difference between the mean and the smallest terms. For example, 3, 4, 6, are in harmonic
proportion because 6 : 3 = (6 — 4) : (4 — 3). Among the properties of this proportion is that
when the extremes are added together and multiplied by the mean, the result is twice the
product of the extremes. Nicomachus gave as a possible reason for the term “harmonic” that
6, 4, 3, come from the most elementary harmonies. The ratio 6 : 4 = 3 : 2 gives the musical
fifth; the ratio 4 : 3 gives the fourth, and the ratio 6 : 3 = (4 :3)(3:2) = 2: 1 gives the octave.

EEINT3

Today, it is more common to use the names “arithmetic,” “geometric,” and “harmonic” for
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means rather than for proportions. Thus, 7 is the arithmetic mean of 3 and 11, 9, is the
geometric mean of 3 and 27, and 4 is the harmonic mean of 3 and 6.

The Introduction to Arithmetic was obviously just that, a basic introduction to elementary
ideas about the positive integers. Although it has some points in common with Euclid’s
Elements, it was written at a much lower level. There are no proofs at all, just a large number
of examples. The book was therefore suitable for use by beginners in schools. It was in fact
used extensively during ancient times, was translated into Arabic in the ninth century, and was
used, in a Latin paraphrase by Boethius (c. 480-524) throughout the early Middle Ages in
Europe. For these reasons, copies still exist. That it was so popular and that no more advanced
work on the subject, including Euclid’s Elements, was studied during much of the period
in Europe, shows the level to which mathematical study there fell from its Greek heights.
These elementary number properties were for many centuries the summit of the arithmetic
curriculum.

DIOPHANTUS AND GREEK ALGEBRA

Little is known about Diophantus’s life, other than what is found in the epigram at the
beginning of the chapter, except that he lived in Alexandria. It is through his major work,
the Arithmetica, that his influence has reached modern times. Diophantus wrote in his
introduction that the Arithmetica is divided into thirteen books. Only six have survived in
Greek. Four others were recently discovered in an Arabic version. From internal references
it appears that these form the fourth through seventh books of the complete work, while
the final three Greek books come later.> We will refer to the Greek books as I-VI and the
Arabic ones as A, B, C, D. The style of the Arabic books is somewhat different from that of
the Greek in that each step in the solution of a problem is explained more fully. It is quite
possible, therefore, that the Arabic work is a translation not of Diophantus’s original, but of
a commentary on the Arithmetica, written by Hypatia around 400 CE.

Before dealing with the problems of the Arithmetica, it is worthwhile to discuss Dio-
phantus’s major advance in the solution of equations, his introduction of symbolism. The
Egyptians and Babylonians wrote out equations and solutions in words. Diophantus, on the
other hand, introduced symbolic abbreviations for the various terms involved in equations
(Sidebar 6.1). And in a clear break with traditional Greek usage, he dealt with powers higher
than the third.

Note that all of Diophantus’s symbols are abbreviations, including the final two: ¢ is a
contraction of the first two letters of aptfpog (arithmos, or number), while M stands for
wovac (monas, or unit). Thus, the manuscripts contain expressions such as ATy gtﬁM@,
which stands for 3 squares, 12 numbers, and 9 units, or, as we will write it, 3x2 4+ 12x + 9.
(Recall that the Greeks used an alphabetic cipher for representing numbers in which, for
example, y =3, (8 = 12, and 8 = 9.) Diophantus further used the symbols above with the
mark yx to designate reciprocals. For example, AT« represented x% In addition, the symbol
A, perhaps coming from an abbreviation for Aetyrig (lepsis, or wanting, or negation), is used
for “minus,” as in K TacyA AYy]l;Ia for x3 — 3x% + 3x — 1. (Negative terms are always
collected, so a single A suffices for all terms following it.) In the discussion of Diophantus’s
problems, however, we use modern notation.
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SIDEBAR 6.1 Diophantus’s Terms and Symbolism

“All numbers are made up of some multitude of units. . . .
Among them are—

squares, which are formed when any number is multiplied
by itself; the number itself is called the side of the
square;,

cubes, which are formed when squares are multiplied by
their sides;

square-squares, which are formed when squares are mul-
tiplied by themselves;

square-cubes, which are formed when squares are multi-
plied by the cubes formed from the same side;

cube-cubes, which are formed when cubes are multiplied
by themselves;

and it is from the addition, subtraction, or multiplication of
these numbers, or from the ratio which they bear one to an-
other or to their own sides, that most arithmetical problems are
formed; you will be able to solve them if you follow the method
shown below.

“Now each of these numbers, which have been given abbrevi-
ated names, is recognized as an element in arithmetical science;
the square [of the unknown quantity] is called dynamis and its
sign is A with the index Y, that is, AT, the cube is called ku-
bos and has for its sign K with the index T, that is, K T: the
square multiplied by itself is called dynamo-dynamis and its
sign is two deltas with the index Y, that is, ATA; the square
multiplied by the cube formed from the same root is called
dynamo-kubos and its sign is AK with the index T, that is,
AKY; the cube multiplied by itself is called kubo-kubos and
its sign is two kappas with the index Y, K K.

“The number which has none of these characteristics, but
merely has in it an undetermined multitude of units, is called
arithmos, and its sign is ¢. There is also another sign denoting
the invariable element in determinate numbers, the unit, and
its sign is M with the index O, that is, M> (From Thomas,
Selections, 11, pp. 519-523.)

Diophantus was also aware of the rules for multiplying with the minus: “A minus mul-
tiplied by a minus makes a plus, a minus multiplied by a plus makes a minus.”® Of course,
Diophantus was not here dealing with negative numbers, which did not exist for him. He was
simply stating the rules necessary for multiplying algebraic expressions involving subtrac-
tions. But he did not explicitly state the rules for adding and subtracting with positive and
negative terms, simply assuming they were known. Near the conclusion of his introduction,
he stated the basic rules for solving equations:

If a problem leads to an equation in which certain terms are equal to terms of the same species but
with different coefficients, it will be necessary to subtract like from like on both sides, until one
term is found equal to one term. If by chance there are on either side or on both sides any negative
terms, it will be necessary to add the negative terms on both sides, until the terms on both sides
are positive, and then again to subtract like from like until one term only is left on each side. This
should be the object aimed at in framing the hypotheses of propositions, that is to say, to reduce
the equations, if possible, until one term is left equal to one term; but I will show you later how,
in the case also where two terms are left equal to one term, such a problem is solved.”

In other words, Diophantus’s general method of solving equations was designed to lead
to an equation of the form ax” = bx™, where, in the first three books at least, m and n are no
greater than 2. On the other hand, he did know how to solve quadratic equations, for example,

of the form ax? + ¢ = bx.
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6.2.1 Linear and Quadratic Equations

Most of Diophantus’s problems are indeterminate; that is, they can be written as a set of
k equations in more than k£ unknowns. Often there are infinitely many solutions. For these
problems, Diophantus generally gave only one solution explicitly, but one can easily extend
the method to give other solutions. For determinate problems, once certain quantities are
made explicit, there is only one solution. Examples of both of these types are described in
what follows.®

PROBLEM I-1 To divide a given number into two having a given difference.

Diophantus presented the solution for the case where the given number is 100 and the given
difference is 40. If x is the smaller of the two numbers of the solution, then 2x + 40 = 100,
so x = 30, and the required numbers are 30 and 70. This problem is determinate, once the
“given” numbers are specified, but Diophantus’s method works for any pair. If a is the given
number and b < a the given difference, then the equation would be 2x 4+ b = a, and the
required numbers would be %(a — b) and %(a + b).

PROBLEM I-5 7o divide a given number into two numbers such that given fractions (not
the same) of each number when added together produce a given number.

In modern notation, we are givena, b, r, s (r < s) and asked to find u, v, such thatu + v =
a, 7” + v = b. (Diophantus here, and usually, took his fractions to be unit fractions)
Dlophantus noted that for this problem to be solvable, it is necessary that 1 sa<b< a
He then presented the solution in the case where a = 100, b = 30, r = 3, and s =35: Let the
second part (of 100) be 5x. Therefore, the first part is 3(30 — x). Hence, 90 + 2x = 100 and

x = 5. The required parts are then 75 and 25.

Like Problem I-1, once the “given” numbers are specified, this problem is determinate,
and the method works for any choice of the “givens” meeting the required condition. In the
present case, Diophantus took 1/5 of the second part for his unknown. This allowed him
to avoid fractions in the rest of his calculation because 1/3 of the first part must then equal
30 — x and the first part must be 3(30 — x). The remainder of the solution is clear. To check the
generality, let sx represent the second part of @ and r (b — x) the first. The equation becomes
sx+r(b—x)=aorbr+ (s —r)x =a.Thenx = 4= b’ is a perfectly general solution. Since

x must be positive,a — br > 0orb < rla, the first half of Diophantus’s necessary condition.
The second half, that ;la < b,ora < sb, comes from the necessity that sx < a or s(“s__br’) <a.
In this particular problem, as in most of the problems in Book I, the given values are picked
to ensure that the answers are integers. But in the other books, the only general condition on
solutions is that they be positive rational numbers. Evidently, Diophantus began with integers
merely to make these introductory problems easier. In what follows, then, the word “number”

should always be interpreted as “rational number.”

PROBLEM I-28 7o find two numbers such that their sum and the sum of their squares are
given numbers.

It is a necessary condition that double the sum of the squares exceeds the square of the
sum by a square number. In the problem presented, the given sum is 20 and the sum of the
squares is 208.
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This problem is of the general form x + y = a, x> + y? = b, atype solved by the Babyloni-
ans. Three other Babylonian types appear in [-27, [-29, and I-30; namely, x + y =a, xy =
b;x +y=a, x>—y>=hb;and x — y =a, xy=b, respectively. As we have seen, results
giving methods of solutions of these problems are also found in Euclid, Book II. Diophan-
tus’s solution to the present problem, although presented strictly algebraically, uses the same
basic procedure as the Babylonians. Namely, he took as his “unknown” z half the difference
between the two desired numbers. Therefore, since 10 is half the sum of the two numbers,
the two numbers themselves are x = 10 4 z and y = 10 — z. The Babylonian result tells us
that the sum of the squares, here 208, is twice the sum of the squares on half the sum and
half the difference. In this case, then, we get 200 + 272 =208. It follows that z = 2 and the
required two numbers are 12 and 8. Diophantus’s method, applicable to any system of the
given form, can be translated into the modern formula

+v2b—a2 V= 2b —a?

4 4
2 2 2 2

X =

His condition is then necessary to ensure that the solution is rational. Interestingly, the
answers to problems [-27, [-29, and I-30 are also 12 and 8, reminding us of the common
Babylonian practice of having the same answers to a series of related problems.

Did Diophantus have access to the Babylonian material? Or did he learn his methods
from a careful study of Euclid’s Elements or Data? These questions cannot be answered. It
is, however, apparent that there is no geometric methodology in Diophantus’s procedures.
Perhaps by this time the Babylonian algebraic methods, stripped of their geometric origins,
were known in the Greek world.

PROBLEM II-8 7o divide a given square number into two squares.
Here we quote Diophantus exactly:

Let it be required to divide 16 into two squares. And let the first square = x?; then the other will
be 16 — x?; it shall be required therefore to make 16 — x> = a square. I take a square of the form
(ax — 4)2, a being any integer and 4 the root of 16; for example, let the side be 2x — 4, and the
square itself 4x2 4 16 — 16x. Then 4x2 + 16 — 16x = 16 — x%. Add to both sides the negative

terms and take like from like. Then 5x2 = 16x, and x = %. One number will therefore be Z2, the

25°
144 400

other 55, and their sum is %5 or 216, and each is a square’ [Fig. 6.2].

This is an example of an indeterminate problem. It translates into one equation in two
unknowns, x% 4 y? = 16. This problem also demonstrates one of Diophantus’s most common
methods. In many problems from Book II onward, Diophantus required a solution, expressed
in the form of a quadratic polynomial, which must be a square. To ensure a rational solution,
he chose his square in the form (ax & b)2, with a and b selected so that either the quadratic
term or the constant term is eliminated from the equation. In this case, where the quadratic
polynomial is 16 — x2, he used b = 4 and the negative sign, so the constant term is eliminated
and the resulting solution is positive. The rest of the solution is then obvious. The method
can be used to generate as many solutions as desired to x2 + y2 = 16, or, in general, to
x2 4 y? = b?. Take any value for a and set y = ax — b. Then b?> — x> = a®x?> — 2abx + b*

or 2abx = (a® + )x2, sox = a%fl.
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FIGURE 6.2

Part of page 61 from the 1670
edition of the Arithmetica
of Diophantus. This page
contains Problem II-8 and
the note of Fermat in which
he states the impossibility
of dividing a cube into a
sum of two cubes or, in
general, any nth power

(n > 2) into a sum of two nth
powers. (Source: Smithsonian
Institution Libraries, Photo
No. 92-337)
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As another example where Diophantus needed a square, consider

PROBLEM I1-19 7o find three squares such that the difference between the greatest and the
middle has a given ratio to the difference between the middle and the least.

Diophantus assumed that the given ratio is 3 : 1. If the least square is x2, then he took
(x + 1)>=x2 4+ 2x + 1 as the middle square. Because the difference between these two
squares is 2x 4 1, the largest square must be x% 4+ 2x + 14 3(2x + 1) = x> 4+ 8x + 4. To
make that quantity a square, Diophantus set it equal to (x + 3), in this case choosing the
coefficient of x so that the x2 terms cancel. Then 8x + 4 = 6x + 9, so x = 2% and the desired

squares are 6%, 12?1& s 30}‘. One notices, however, that given his initial choice of (x + 1)2 as the

middle square, 3 is the only integer b Diophantus could use in (x + b)? that would give him
a solution. Of course, with other values of the initial ratio, there would be more possibilities
as there would with a different choice for the second square. In any case, in this problem as
in all of Diophantus’s problems, only one solution is required.

Problem II-11 introduces another general method, that of the double equation.

PROBLEM II-11 7o add the same (required) number to two given numbers so as to make
each of them a square.

Diophantus took the given numbers as 2 and 3. If his required number is x, he needed both
x 4 2 and x + 3 to be squares. He therefore had to solve x + 3 = u?, x +2 = v?, for x, u, v.
Again, this is an indeterminate problem. Diophantus described his method as follows: “Take
the difference between the two expressions and resolve it into factors. Then take either (a) the
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square of half the difference between these factors and equate it to the lesser expression or

(b) the square of half the sum and equate it to the greater.”!

Since the difference between the expressions is u> — v? and this factors as (u + v) (u — v),

the difference of the two factors is 2v while the sum is 2u. What Diophantus did not mention
explicitly is that the initial factoring must be carefully chosen so that the solution for x is
a positive rational number. In the present case, the difference between the two expressions
is 1. Diophantus factored that as 4 x 1/4. Thus, u +v=4and u — v = 1/4, so 2v = 15/4,
x 42 =v? =225/64, and x = 97/64. Note, for example, that the factorization 2 x 1/2 would
not give a positive solution, nor would the factorization 3 x 1/3. The factorization 1l =a - 1/a

2
needs to be chosen so that [% (a — 1)] > 2.

a

6.2.2 Higher-Degree Equations

Because the problems in Book A involve cubes and even higher powers, Diophantus began
with a new introduction in which he described the rules for multiplying such powers. For
example, since x2, x3, x4, xs, and x© are represented by AT, KT, ATA, AKT and KTK,
respectively, Diophantus wrote, for example, that A K ¥ multiplied by ¢ equals K ¥ multiplied
by itself, equals AT multiplied by AT A, and all equal K ' K. Similarly, if KT K is divided
by ATA, the result is AY. Thus, although Diophantus’s results are equivalent to our laws
of exponents, his notation did not allow him to express it in our familiar way of “add the
exponents” when you multiply powers and “subtract the exponents” when you divide.

Diophantus did, however, explain that, as before, his equations end up with a term in one
power equaling a term in another, that is, ax” = bx™ (n < m), where now m may be any
number up to 6. To solve, one must use the rules to divide both sides by the lesser power and
end up with one “species” equal to a number, that is, in our notation, a = bx"~". The latter
equation is easily solved. Speaking to the reader, he concluded, “when you are acquainted
with what I have presented, you will be able to find the answer to many problems which I
have not presented, since I shall have shown to you the procedure for solving a great many
problems and shall have explained to you an example of each of their types.”!!

As an example of Diophantus’s use of higher powers of x, consider

PROBLEM A-25 7o find two numbers, one a square and the other a cube, such that the sum
of their squares is a square.

The goal is to find x, y, and z such that (x2)? 4 (y*)? = z2. Thus, this is an indeterminate
problem with one equation in three unknowns. Diophantus set x equal to 2y (the 2 is arbitrary)
and performed the exponentiation to conclude that 16y* + y® must be a square, which he
took to be the square of ky?. So 16y* + y6 = k2y*, y0 = (k? — 16)y*, and y*> = k*> — 16. It
follows that k2 — 16 must be a square. Diophantus chose the easiest value, namely, k2 =25,
s0 y = 3. Therefore, the desired numbers are y> = 27 and (2y)? = 36. This solution is easily
generalized. Take x = ay for any positive a. Then k and y must be found so that k> — a* = y?
or so that k> — y> = a*. Diophantus had, however, already demonstrated in Problem II-10
that one can always find two squares whose difference is given.

Problem B-7 shows that Diophantus knew the expansion of (x 4+ y)>. As he put it,
“whenever we wish to form a cube from some side made up of the sum of, say, two different
terms—so that a multitude of terms does not make us commit a mistake—we have to take the
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cubes of the two different terms, and add to them three times the results of the multiplication
of the square of each term by the other.”!?

PROBLEM B-7 7o find two numbers such that their sum and the sum of their cubes are
equal to two given numbers.

The problem asks to solve x + y =a, x> + y> = b. This system of two equations in
two unknowns is determinate. It is a generalization of the “Babylonian™ problem I-28,
x 4+ y=a, x*>+ y* = b, and Diophantus’s method of solution generalized his method there.
Letting a = 20 and b = 2240, he began as before by letting the two numbers be 10 + z
and 10 — z. The second equation then becomes (10 + z)> + (10 — z)3 = 2240 or, using
the expansion already discussed, 2000 + 6022 = 2240, or 60z% = 240, z2 =4, and z = 2.
Diophantus gave, of course, a condition for a rational solution, namely, that (40> — a3) /3a
is a square (equivalent to the more natural condition that [b — 2(%)3]/ 3a is a square). It is
interesting that the answers here are the same as in I-28, namely, 12 and 8.

When reading through the Arithmetica, one never quite knows what to expect next. There
are a great variety of problems. Often there are several similar problems grouped together, one
involving a subtraction where the previous one involved an addition, for example. But then
one wonders why other similar ones were not included. For example, the first four problems
of Book A ask for (1) two cubes whose sum is a square, (2) two cubes whose difference is
a square, (3) two squares whose sum is a cube, and (4) two squares whose difference is a
cube. What is missing from this list is, first, to find two squares whose sum is a square—but
that had been solved in II-8—and second, to find two cubes whose sum is a cube. This latter
problem is impossible to solve, and there are records stating this impossibility dating back to
the tenth century. Probably Diophantus was also aware of the impossibility. At the very least,
he must have tried the problem and failed to solve it. But he did not mention anything about it
in his work. A similar problem with fourth powers occurs as V-29: to find three fourth powers
whose sum is a square. Although Diophantus solved that problem, he did not mention the
impossibility of finding two fourth powers whose sum is a square. Again, one assumes that
he tried the latter problem and failed to solve it.

In his discussion of Problem D-11, he finally addressed an impossibility. After solving
that problem, to divide a given square into two parts such that the addition of one part to the
square gives a square and the subtraction of the other part from the square also gives a square,
he continued, “since it is not possible to find a square number such that, dividing it into two
parts and increasing it by each of the parts, we obtain in both cases a square, we shall now
present something which is possible.”!3

PROBLEM D-12 7o divide a given square into two parts such that when we subtract each
from the given square, the remainder is (in both cases) a square.

Why is the quoted case impossible? To solve x> = a + b, x> + a = ¢2, x> + b = d*> would

imply that
2 2
d
3x2=c?+d* or 3=(£) +<—) .
x X

It is, in fact, impossible to decompose 3 into two rational squares. One can show this easily
by congruence arguments modulo 4. Diophantus himself did not give a proof, nor later, when
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he stated in VI-14 that 15 is not the sum of two squares, did he tell why. The solution of
D-12, however, is very easy.

6.2.3 The Method of False Position

In Book IV, Diophantus began use of a new technique, a technique reminiscent of the Egyptian
“false position.” Among many problems he solved using this technique, the following one
will be important in our later discussion of elliptic curves.

PROBLEM IV-24 To divide a given number into two parts such that their product is a cube
minus its side.

If a is the given number, the problem is to find x and y such that y(a — y) = x> — x. This is
an indeterminate problem. As usual, Diophantus began by choosing a particular value for a,
here a = 6. So 6y — y? must equal a cube minus its side. He chose the side x to be of the form
x =my — 1. The question is, What value should he choose for m? Diophantus picked m =2
and calculated: 6y — y2 = 2y — 1) — 2y — 1), or 6y — y?> = 8y> — 12y 4+ 4y. We note
immediately that the “1” in x = my — 1 was chosen so that there would be no constant term
in this equation. Nevertheless, this is still an equation with three separate species, not the type
Diophantus could solve most easily. So he noted that if the coefficients of y on each side were
the same, then the solution would be simple. Now the “6” on the left is the “given number,”
so that cannot be changed. But the “4” on the right comes from the calculation 3 -2 — 2,
which in turn depends on the choice m = 2 in x = my — 1. Therefore, Diophantus needed to
find m so that 3 - m — m = 6. Therefore, m = 3. We can then begin again: x = 3y — 1 and
6y —y> =@y — 1)>— 3y — 1), or 6y — y> =27y3 — 27y% + 6y. Therefore, 27y = 26y>

and y = 28, The two parts of 6, therefore, are 26 and @, while the product of those two
Yy =17 p 27 27 p

numbers is (%)3 — %. The general solution to this problem, for arbitrary a, is then given by

=6a2_8 x:3a2_4_1.

)

y a3 a2

In Problem IV-31, Diophantus found again that his original assumption did not work. But
here the problem is that a mixed quadratic equation, the first one to appear in the Arithmetica,
fails to have a rational solution.

PROBLEM IV-31 To divide unity into two parts so that, if given numbers are added to them
respectively, the product of the two sums is a square.

Diophantus set the given numbers at 3, 5, and the parts of unity as x, 1 — x. Therefore,
(x 4 3)(6 — x) = 18 + 3x — x? must be a square. Since neither of his usual techniques for
determining a square will work here (neither 18 nor —1 are squares), he tried (2x)% = 4x2
as the desired square. But the resulting quadratic equation, 18 + 3x = 5x? “does not give a
rational result.” He needed to replace 4x2 by a square of the form (mx)?, which does give a
rational solution. Thus, since 5 = 22 + 1, he noted that the quadratic equation will be solvable
if m? + 1) - 18 4+ (3/2)? is a square. This implies that 72m?> + 81 is a square, say, (8m + 9)2.
(Here, his usual technique succeeds.) Then m = 18 and, returning to the beginning, he set
18 4 3x — x2 = 324x2. He then simply presented the solution: x = 78/325 = 6/25, and the
desired numbers are 6/25, 19/25.
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FIGURE 6.3
Diophantus’s Arithmetica,
Problem V-10

Although Diophantus did not give details in IV=-31 on the solution of the quadratic, he did
give them in Problem IV-39. His words in that problem are easily translated into the formula

b Jact (4

a

X =

for solving the equation ¢ + bx = ax?. This formula translates correctly the Babylonian
procedure, which began by multiplying the equation through by a and solving for ax.
Diophantus was sufficiently familiar with this formula and its variants that he used it in various
later problems not only to solve quadratic equations but also to solve quadratic inequalities.

PROBLEM V-10 To divide unity into two parts such that, if we add different given numbers
to each, the results will be squares.

In this problem the manuscripts have, for one of only two times in the entire work,
a diagram (Fig. 6.3). Diophantus assumed that the two given numbers are 2 and 6. He
represented them, as well as 1, by setting DA =2, AB =1, and BE = 6. The point G is
chosen so that DG (= AG + DA) and GE (= BG + BE) are both squares. Since DE =9,
the problem is reduced to dividing 9 into two squares such that one of them lies between
2 and 3. If that square is x2, the other is 9 — x2. Unlike the situation in previous problems,
Diophantus could not simply put 9 — x? equal to (3 — mx)? with an arbitrary m, for he needed
x? to satisfy the inequality condition. So he set it equal to (3 — mx)? without specifying m.
Then

6m
X =—"—",
m2+1
Rather than substitute the expression for x into 2 < x2 < 3 and attempt to solve a fourth-degree
inequality, he picked two squares close to 2 and 3, respectively, namely, 289/144 = (17/12)?
and 361/144 = (19/12)2, and substituted the expression into the inequality 17/12 < x <
19/12. Therefore,
17 6m 19
— << < —.
12 m?2+1 12

The left inequality becomes 72m > 17m? 4 17. Although the corresponding quadratic equa-
tion has no rational solution, Diophantus nevertheless used the quadratic formula and showed
that since v/(72/2)2 — 172 = 4/1007 is between 31 and 32, the number m must be chosen so
that m < 67/17. The right inequality similarly shows that m > 66/19. Diophantus therefore
picked the simplest m between these two limits, namely, 3 1/2. So

2
9—x2=<3—31x> and ng.
2 53

Then x? = 7056,/2809 and the desired segments of 1 are 1438/2809 and 1371/2809.
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Diophantus’s work, the only example of a genuinely algebraic work surviving from ancient
Greece, was highly influential. Not only was it commented on in late antiquity, but it was also
studied by Islamic authors. Many of its problems were taken over by Rafael Bombelli and
published in his Algebra of 1572, while the initial printed Greek edition of Bachet, published
in 1621, was carefully studied by Pierre Fermat and led him to numerous general results
in number theory, about which Diophantus himself only hinted. Perhaps more important,
however, is the fact that this work, as a work of algebra, was in effect a treatise on the analysis
of problems. Namely, the solution of each problem began with the assumption that the answer
x, for example, had been found. The consequences of this fact were then followed to the point
where a numerical value of x could be determined by solving a simple equation. The synthesis,
which in this case is the proof that the answer satisfies the desired conditions, was never given
by Diophantus because it only amounted to an arithmetic computation. Thus, Diophantus’s
work is at the opposite end of the spectrum from the purely synthetic work of Euclid.

PAPPUS AND ANALYSIS

Although analysis and synthesis had been used by all of the major Greek mathematicians,
there was no systematic study of the methodology published, as far as is known, until the
work of Pappus, who lived in Alexandria early in the fourth century (Sidebar 6.2). Pappus
was one of the last mathematicians in the Greek tradition. He was familiar with the major
and minor works of the men already discussed, and even extended some of their work in
certain ways. He is best known for his Collection, a group of eight separate works on various
topics in mathematics, probably put together shortly after his death by an editor attempting
to preserve Pappus’s papers. The books of the collection vary greatly in quality, but most of
the material consists of surveys of certain mathematical topics collected from the works of
his predecessors.

The preface to Book 3 provides an interesting sidelight to the work. Pappus addressed
the preface to Pandrosian, a woman teacher of geometry. He complained that “some persons
professing to have learned mathematics from you lately gave me a wrong enunciation of
problems.”'* By that Pappus meant that these people attempted to solve problems by methods
that could not work, for example, to solve the problem of the two mean proportionals using
only circles and straight lines. There is no indication of how Pappus knew that such a
construction was impossible. From his remark, however, we learn that women were involved
in mathematics in Alexandria.

Book 5, the most polished book of the Collection, deals with isoperimetric figures, figures
of different shape but with the same perimeter. Pappus’s introduction provided a counterpoint
to the pure mathematics of the text as he wrote of the intelligence of bees:

[The bees], believing themselves, no doubt, to be entrusted with the task of bringing from the
gods to the more cultured part of mankind a share of ambrosia in this form, . . . do not think it
proper to pour it carelessly into earth or wood or any other unseemly and irregular material, but,
collecting the fairest parts of the sweetest flowers growing on the earth, from them they prepare
for the reception of the honey the vessels called honeycombs, [with cells] all equal, similar and
adjacent, and hexagonal in form.
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SIDEBAR 62 Who Were the Alexandrian Mathematicians?

Raphael’s painting The School of Athens depicts Ptolemy as a
prince with Italian features, while the most common “portrait”
of Hypatia, attributed to an artist named Gasparo, shows her as
Italian as well. There is nothing surprising in this; artists usu-
ally use their contemporaries as models for figures from long
ago. But the more serious question is to what extent the Alexan-
drian mathematicians of the period from the first to the fifth
centuries CE were Greek. Certainly, all of them wrote in Greek
and were part of the Greek intellectual community of Alexan-
dria. And most modern studies of Hellenistic Egypt conclude
that the Greek community and the native Egyptian community
coexisted, with little mutual influence. So do we then conclude
that Ptolemy and Diophantus, Pappus and Hypatia were ethni-
cally Greek, that their ancestors had come from Greece at some
point in the past and had remained effectively isolated from the
Egyptians for many centuries?

the common era also demonstrates that there was significant
intermarriage between the Greek and Egyptian communities,
chiefly by Greek men taking Egyptian wives. And it is known,
for example, that Greek marriage contracts increasingly re-
sembled Egyptian ones. In addition, even from the founding
of Alexandria, small numbers of Egyptians were admitted to
the privileged classes in the city to fulfill numerous civic roles.
Of course, it was essential in this case for the Egyptians to
become “Hellenized,” to adopt Greek habits and the Greek lan-
guage. Given that the Alexandrian mathematicians mentioned
above were active several hundred years after the founding of
the city, however, it would seem at least equally possible that
they were ethnically Egyptian as that they remained ethnically
Greek. In any case, it is unreasonable for us today to portray
these mathematicians with pure European features when we
have no physical descriptions of them whatsoever.

The question is, of course, not possible to answer definitively.
But the research in papyri dating from the early centuries of

That they have contrived this in accordance with a certain geometrical forethought we may
thus infer. They would necessarily think that the figures must all be adjacent one to another and
have their sides common, in order that nothing else might fall into the interstices and so defile their
work. Now there are only three rectilineal figures which would satisfy the condition, I mean regular
figures which are equilateral and equiangular, inasmuch as irregular figures would be displeasing
to the bees. . . . [These being] the triangle, the square and the hexagon, the bees in their wisdom
chose for their work that which has the most angles, perceiving that it would hold more honey than
either of the two others [Fig. 6.4].

Bees, then, know just this fact which is useful to them, that the hexagon is greater than the square
and the triangle and will hold more honey for the same expenditure of material in constructing
each. But we, claiming a greater share in wisdom than the bees, will investigate a somewhat wider
problem, namely that, of all equilateral and equiangular plane figures having an equal perimeter,
that which has the greater number of angles is always greater, and the greatest of them all is the
circle having its perimeter equal to them.'6

FIGURE 6.4

Honeycomb in hexagons on
Luxembourg stamp

The most influential book of Pappus’s Collection, however, is Book 7, On the Domain
of Analysis, which contains the most explicit discussion from Greek times of the method of
analysis, the methodology Greek mathematicians used to solve problems. The central ideas
are spelled out in the introduction to this book:

That which is called the Domain of Analysis . . . is, taken as a whole, a special resource . . . for
those who want to acquire a power in geometry that is capable of solving problems set to them; and
it is useful for this alone. It was written by three men, Euclid the writer of the Elements, Apollonius
of Perga, and Aristaeus the elder, and proceeds by analysis and synthesis.
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Analysis of Elements XIII-1
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Now analysis is the path from what one is seeking, as if it were established, by way of its
consequences, to something that is established by synthesis. . . . There are two kinds of analysis;
one of them seeks after truth and is called “theorematic,” while the other tries to find what was
demanded, and is called “problematic.” In the case of the theorematic kind, we assume what is
sought as a fact and true, then advance through its consequences, as if they are true facts according
to the hypothesis, to something established; if this thing that has been established is a truth, then that
which was sought will also be true, and its proof the reverse of the analysis; but if we should meet
with something established to be false, then the thing that was sought too will be false. In the case
of the problematic kind, we assume the proposition as something we know, then proceed through
its consequences, as if true, to something established; if the established thing is possible and
obtainable, which is what mathematicians call “given,” the required thing will also be possible, and
again the proof will be the reverse of the analysis; but should we meet with something established
to be impossible, then the problem too will be impossible.!”

According to Pappus, then, to solve a problem or prove a theorem by analysis, begin by
assuming what is required, then consider the consequences flowing from it until a result is
reached that is known to be true or “given.” That is, begin by assuming that which is required,
p, for example, and then prove that p implies q;, ¢ implies ¢, . . . , g,, implies g, where g
is something known to be true. To give the formal synthetic proof of the theorem, or solve the
problem, reverse the process beginning with ¢ implies ¢g,,. This method of reversal has always
been a controversial point; after all, not all theorems have valid converses. In fact, however,
most important theorems from Euclid and Apollonius do have at least partial converses. Thus,
the method does often provide the desired proof or solution, or at least demonstrates, when
there are only partial converses, the conditions under which a problem can be solved.

There are few examples in the extant literature of theorematic analysis, because Euclid,
for example, never shared his method of discovery of his proofs. But some of the manuscripts
of Elements, Book XIII, contain, evidently as an interpolation made in the early years of the
common era, an analysis of each of the first five propositions. Consider

PROPOSITION XIII-1 [fa straight line is cut in extreme and mean ratio, the square on the
sum of the greater segment and half of the whole is five times the square on the half.

Let AB be divided in extreme and mean ratio at C, AC being the greater segment, and
let AD = 1AB (Fig. 6.5). To perform the analysis, assume the truth of the conclusion,
namely, C D? = 5AD?, and determine its consequences. Since also C D?>=AC?+ AD?* +
2AC - AD, therefore, AC? 4+ 2AC - AD =4AD> But AB - AC =2AC - AD and, since
AB:AC = AC :BC, also AC?> = AB - BC. Therefore, AB - BC + AB - AC =4AD?, or
AB? =4AD?, or, finally, AB =2AD, a result known to be true. The synthesis can then
proceed by reversing each step: Since AB = 2AD, we have AB? = 4AD?. Since also AB? =
AB - AC + AB - BC, it follows that 4AD?> =2AD - AC + AC?. Adding to each side the
square on A D gives the result C D*> = 5AD>.
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More important for Greek mathematics than theorematic analysis is the problematic
analysis. We have already discussed several examples of this type of analysis, including the
problems of angle trisection and cube duplication and Archimedes’ problems on the division
of a sphere by a plane. And although Euclid did not present the analysis as such, one can carry
out the procedure in solving Elements VI-28, the geometric algebra problem leading to the
solution of the quadratic equation x> + ¢ = bx. The analysis there shows that an additional
condition is required for the solution, namely, that ¢ < (g)z.

Pappus’s Book 7, then, is a companion to the Domain of Analysis, which itself consists of
several geometric treatises, all written many centuries before Pappus. These works, Apollo-
nius’s Conics and six other books (all but one lost), Euclid’s Data and two other lost works,
and single works (both lost) by Aristaeus and Eratosthenes, even though the last-named au-
thor is not mentioned in Pappus’s introduction, provided the Greek mathematician with the
tools necessary to solve problems by analysis. For example, to deal with problems that result
in conic sections, one needs to be familiar with Apollonius’s work. To deal with problems
solvable by “Euclidean” methods, the material in the Data is essential.

Pappus’s work does not include the Domain of Analysis itself. It is designed only to be
read along with these treatises. Therefore, it includes a general introduction to most of the
individual books along with a large collection of lemmas that are intended to help the reader
work through the actual texts. Pappus evidently decided that the texts themselves were too
difficult for most readers of his day to understand as they stood. The teaching tradition had
been weakened through the centuries, and there were few, like Pappus, who could appreciate
these several-hundred-year-old works. Pappus’s goal was to increase the numbers who could
understand the mathematics in these classical works by helping his readers through the steps
where the authors wrote “clearly . . . I” He also included various supplementary results as
well as additional cases and alternative proofs.

Among these additional remarks is the generalization of the three- and four-line locus
problems discussed by Apollonius. Pappus noted that in that problem itself the locus is a
conic section. But, he says, if there are more than four lines, the loci are as yet unknown; that
is, “their origins and properties are not yet known.” He was disappointed that no one had given
the construction of these curves that satisfy the five- and six-line locus. The problem in these
cases is, given five (six) straight lines, to find the locus of a point such that the rectangular
parallelepiped contained by the lines drawn at given angles to three of these lines has a given
ratio to the rectangular parallelepiped contained by the remaining two lines and some given
line (remaining three lines). Pappus noted that one can even generalize the problem further
to more than six lines, but in that case, “one can no longer say ‘the ratio is given between
some figure contained by four of them to some figure contained by the remainder’ since no
figure can be contained in more than three dimensions.” Nevertheless, according to Pappus,
one can express this ratio of products by compounding the ratios that individual lines have
to one another, so that one can in fact consider the problem for any number of lines. But,
Pappus complained, “[geometers] have by no means solved [the multi-line locus problem] to
the extent that the curve can be recognized. . . . The men who study these matters are not of
the same quality as the ancients and the best writers. Seeing that all geometers are occupied
with the first principles of mathematics . . . and being ashamed to pursue such topics myself,
I have proved propositions of much greater importance and utility.”!8
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Pappus concluded Book 7 by stating one of the “important” results he had proved, that
“the ratio of solids of complete revolution is compounded of that of the revolved figures and
that of the straight lines similarly drawn to the axes from the center of gravity in them.”!” The
modern version of this theorem is that the volume of a solid formed by revolving a region 2
around an axis not intersecting €2 is the product of the area of 2 and the circumference of the
circle traversed by the center of gravity of 2. Unfortunately, there is no record of Pappus’s
proof. There is some indication that it is in one of the books of the Collection now lost.

Much of the explicit analysis in Greek mathematics has to do with material we generally
think of as algebraic. The examples from Elements XIII-1 and VI-28 are clearly such.
The examples using the conic sections are ones that today would be solved using analytic
geometry, a familiar application of algebra. It is somewhat surprising, then, that Pappus does
not mention the strictly algebraic Arithmetica of Diophantus as a prime example of analysis,
because, in effect, every problem in Diophantus’s work is solved according to Pappus’s model.
Perhaps Pappus did not include this work because it was not on the level of the classic
geometric works. In any case, it was the algebraic analysis of Diophantus and the “quasi-
algebraic” analysis of many of the other mentioned works, rather than the pure geometric
analysis, that provided the major impetus for sixteenth- and seventeenth-century European
mathematicians to expand on the notion of algebra and develop it into a major tool to solve
even purely geometric problems.?”

HYPATTA AND THE END OF GREEK MATHEMATICS

Pappus’s aim of reviving Greek mathematics was unsuccessful, probably in part because the
increasingly confused political and religious situation affected the stability of the Alexandrian
Museum and Library. In his time, Christianity was changing from a persecuted sect into
the official religion of the Roman Empire. In 313 the emperor Galerius issued an edict of
toleration in the Eastern Empire, and two years later the same was done in the West by
Constantine. The latter in fact converted to Christianity before his death in 337. Within 60
years, Christianity became the state religion of the empire and the ancient worship of the
Roman gods was banned. Of course, the banning of paganism did not cause everyone to
adopt Christianity. In fact, in the late fourth and early fifth centuries, Hypatia (c. 355-415), the
daughter of Theon of Alexandria, was a respected and eminent teacher in that city, not only of
mathematics but also of some of the philosophic doctrines dating back to Plato’s Academy.
And although she maintained her non-Christian religious beliefs, she enjoyed intellectual
independence and even had eminent Christians among her students, including Synesius of
Cyrene (in present-day Libya), who later became a bishop.

Although there is some evidence of earlier women being involved in Greek mathematics,
itis only about Hypatia that the evidence is substantial enough to give some indication of her
mathematical accomplishments. Hypatia was given a very thorough education in mathematics
and philosophy by her father. Although the only surviving documents with a clear reference
to Hypatia are Synesius’s letters to her requesting scientific advice, recent detailed textual
studies of Greek, Arabic, and medieval Latin manuscripts lead to the conclusion that she
was responsible for many mathematical works. These include several parts of her father’s
commentary on Ptolemy’s Almagest, the edition of Archimedes’ Measurement of the Circle
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SIDEBAR 63 The Decline of Greek Mathematics

Why did Greek mathematics decline so dramatically from its
height in the fourth and third centuries BCE? Among the several
answers to this question, the most important is the change in
the sociopolitical scene in the region surrounding the eastern
Mediterranean.

A consideration of mathematical development in the various
ancient societies already studied shows that mathematical cre-
ativity requires some sparks of intellectual curiosity, whether
or not these are stimulated by practical concerns. But this spark
of curiosity needs a climate of government encouragement for
its flames to spread. The Babylonians used their most advanced
techniques, not for everyday purposes, but for solving intellec-
tually challenging problems. The government encouraged the
use of these mathematical problems to help train the minds of
its future leaders. In Greek civilization, the intellectual curios-
ity ran even deeper. In the Greek homeland, the sociopolitical
system provided philosophy and mathematics with encourage-
ment. The Ptolemies continued this encouragement in Egypt
after 300 BCE.

Buteven in Greek society, the actual number of those who un-
derstood theoretical mathematics was small. There were never
many who could afford to spend their lives as mathematicians
or astronomers and persuade the rulers to provide them with
stipends. The best of the mathematicians wrote works that
were discussed and commented on in the various mathemati-
cal schools, but not everything could be learned from the texts.
An oral teaching tradition was necessary to keep mathematics

progressing because, in general, one could not master Euclid’s
Elements or Apollonius’s Conics on one’s own. A break of a
generation in this tradition thus meant that the entire process
of mathematical research would be severely damaged.

One factor certainly weakening the teaching tradition, if not
breaking it entirely, was the political strife around the east-
ern Mediterranean in the years surrounding the beginning of
the common era. More important, because the Roman imperial
government evidently decided that mathematical research was
not an important national interest, it did not support it. There
was little encouragement of mathematical studies in Rome.
Few Greek scholars were imported to teach mathematics to
the children of the elite. Soon, no one in Rome could even un-
derstand, let alone extend, the works of Euclid or Apollonius.

The Greek tradition did continue for several centuries, how-
ever, under the Roman governors of Egypt, particularly be-
cause the Alexandrian Museum and Library remained in exis-
tence. Anyone interested could continue to study and interpret
the ancient texts. With fewer and fewer teachers, however, less
and less new work was accomplished. The virtual destruction
of the great library by the late fourth century finally severed
the tenuous links with the past. Although there continued to
be some limited mathematical activity for a while in Athens
and elsewhere—wherever copies of the classic works could
be found—by the end of the fifth century, there were too few
people devoting their energies to mathematics to continue the
tradition, and Greek mathematics ceased to be.

from which most later Arabic and Latin translations stem, a work on areas and volumes
reworking Archimedean material, and a text on isoperimetric figures related to Pappus’s Book
5.21 She was also responsible for commentaries on Apollonius’s Conics and, as noted earlier,

on Diophantus’s Arithmetica.

Unfortunately, although Hypatia had many influential friends in Alexandria, including the
Roman prefect Orestes, they were primarily from the upper classes. The populace at large in
general supported the patriarch Cyril in his struggle with Orestes for control of the city. So
when Cyril spread rumors that the famous woman philosopher in reality practiced sorcery as
part of her philosophical, mathematical, and astronomical work, a group emerged that was
willing to eliminate this “satanic” figure. Hypatia’s life was thus cut short as already described.
Her death effectively ended the Greek mathematical tradition of Alexandria (Sidebar 6.3).
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10.

11.

12.

Devise a formula for the nth pentagonal number and for the
nth hexagonal number.

Derive an algebraic formula for the pyramidal numbers with
triangular base and one for the pyramidal numbers with
square base.

Show that in a harmonic proportion the sum of the extremes
multiplied by the mean is twice the product of the extremes.

Nicomachus defined a subcontrary proportion, which oc-
curs when in three terms the greatest is to the smallest as
the difference of the smaller terms is to the difference of the
greater. Show that 3, 5, 6, are in the subcontrary proportion.
Find two other sets of three terms that are in subcontrary
proportion.

Nicomachus claims that if three terms are in subcontrary
proportion, then the product of the greater and mean terms
is twice the product of the mean and smaller; for, he notes,
6 times S is twice 5 times 3. Show that Nicomachus is
incorrect in general.

Nicomachus defined a “fifth proportion” to exist whenever
among three terms the middle term is to the lesser as their
difference is to the difference between the greater and the
mean. Show that 2, 4, 5, are in fifth proportion. Find two
more triples in this proportion.

Determine Diophantus’s age at his death from his epigram
at the opening of the chapter.

Solve Diophantus’s Problem [-27 by the method of 1-28:
To find two numbers such that their sum and product are
given. Diophantus gives the sum as 20 and the product as
96.

Solve Diophantus’s Problem II-10: To find two square
numbers having a given difference. Diophantus puts the
given difference as 60. Also, give a general rule for solving
this problem given any difference.

Generalize Diophantus’s solution to II-19 by choosing an
arbitrary ratio » : 1 and the value (x + m)? for the second
square.

Solve Diophantus’s Problem II-13 by the method of the
double equation: From the same (required) number to sub-
tract two given numbers so as to make both remainders
square. (Take 6, 7, for the given numbers. Then solve x —
6=u? x —7=12)

Solve Diophantus’s Problem B—8: To find two numbers
such that their difference and the difference of their cubes
are equal to two given numbers. (Write the equations as
x —y=a, x*>—y>=b. Diophantus takes a = 10, b =

13.

14.

15.

16.

17.

18.

19.

20.

21.

2120.) Derive necessary conditions on a and b that ensure
a rational solution.

Solve Diophantus’s Problem B—9: To divide a given number
into two parts such that the sum of their cubes is a given
multiple of the square of their difference. (The equations
becomex + y =a, x>+ y> = b(x — y)%. Diophantus takes
a =20 and b = 140 and notes that the necessary condition
for a solution is that a3(b — %a) is a square.)

Solve Diophantus’s Problem D-12: To divide a given
square into two parts such that when we subtract each from
the given square, the remainder (in both cases) is a square.
Note that the solution follows immediately from I1-8.

Solve Diophantus’s Problem I'V-9: To add the same number
to a cube and its side and make the second sum the cube of
the first. (The equation is x + y = (x> + y)>. Diophantus
begins by assuming that x = 2z and y = 27z% — 2z.)

Solve Diophantus’s Problem V-10 for the two given num-
bers 3, 9.

Book VI of the Arithmetica deals with Pythagorean triples.
For example, solve Problem VI-16: To find a right triangle
with integral sides such that the length of the bisector of an
acute angle is also an integer. (Hint: Use Elements VI-3,
that the bisector of an angle of a triangle cuts the opposite
side into segments in the same ratio as that of the remaining
sides.)

Carry out the analysis of Elements VI-28: To a given
straight line to apply a parallelogram equal to a given rec-
tilinear figure and deficient by a parallelogram similar to a
given one. Just consider the case where the parallelograms
are all rectangles. Begin with the assumption that such a
rectangle has been constructed and derive the condition
that “the given rectilinear figure must not be greater than
the rectangle described on the half of the straight line and
similar to the defect.”

Provide the analysis for Elements XI1I-4: If a straight line
is cut in extreme and mean ratio, the sum of the squares on
the whole and on the lesser segment is triple the square on
the greater segment.

Write an equation for the locus described by the problem
of five lines. Assume for simplicity that all the lines are
either parallel or perpendicular to one of them and that all
the given angles are right.

Show that a regular hexagon of given perimeter has a greater
area than a square of the same perimeter.
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22. Find the volume of a torus by applying Pappus’s theorem.
Assume that the torus is formed by revolving the disk of
radius r around an axis whose distance from the center of
the diskis R > r.

23. Solve Epigram 116: Mother, why do you pursue me with
blows on account of the walnuts? Pretty girls divided them
all among themselves. For Melission took two-sevenths of
them from me, and Titane took the twelfth. Playful Asty-
oche and Philinna have the sixth and third. Thetis seized
and carried off twenty, and Thisbe twelve, and look there
at Glauce smiling sweetly with eleven in her hand. This
one nut is all that is left to me. How many nuts were there
originally???

24. Solve Epigram 130: Of the four spouts, one filled the whole
tank in a day, the second in two days, the third in three days,
and the fourth in four days. What time will all four take to
fill it?

25. Solve Epigram 145: A. Give me ten coins and I have three
times as many as you. B. And if I get the same from you, I
have five times as much as you? How many coins does each
have?

26. Devise a lesson teaching the method of problematic analy-
sis. Use problems from ancient times and more recent prob-
lems.

27. Why were there so few women involved in mathematics in
Greek times?
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PART TWOQO Medieval Mathematics

Ancient and Medieval China

Now the science of mathematics is considered
very important. This book . . . therefore will
be of great benefit to the people of the
world. The knowledge for investigation, the
development of intellectual power, the way
of controlling the kingdom and of ruling
even the whole world, can be obtained by
those who are able to make good use of the
book. Ought not those who have great desire
to be learned take this with them and study
it with great care?

—Introduction to Precious Mirror of the
Four Elements by Zhu Shijie, 1303!

report to the Throne by the Astronomical Observer, Wang
Sibian, early in the seventh century noted that the 10 com-
putational canons were riddled with mistakes and contra-
dictions. Consequently, Li Chunfeng, together with Liang Shu, an
Erudite of Mathematics, and Wang Zhenru, an Instructor from the
National University, were ordered by imperial decree to annotate these
works and remove the contradictions. Once their task was completed,
the Emperor Gaozu ordered that these books be used at the National

University.?
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CHAPTER 7/  ANCIENT AND MEDIEVAL CHINA

In the first six chapters, we discussed the mathematics of Greece as well as the mathematics
of two civilizations known to have influenced Greek mathematics, Mesopotamia and Egypt.
But mathematics was done in other parts of the world, even in ancient times. In this chapter,
we look at some mathematical ideas from ancient and medieval China, some of which may
have, through paths so far undiscovered, reached Europe.

INTRODUCTION TO MATHEMATICS IN CHINA

Although there are legends that date Chinese civilization back 5000 or more years, the earliest
solid evidence of such a civilization is provided by the excavations at Anyang, near the
Huang River, which are dated to about 1600 BCE. It is to the society centered there, the
Shang dynasty, that the “oracle bones” belong, curious pieces of bone inscribed with very
ancient writing, which were used for divination by the priests of the period. The bones are
the source of our knowledge of early Chinese number systems. Around the beginning of the
first millennium BCE, the Shang were replaced by the Zhou dynasty, which in turn dissolved
into numerous warring feudal states. In the sixth century BCE, there was a great period of
intellectual flowering during which the most famous philosopher was Confucius. Academies
of scholars were founded in several of the states. Other feudal lords hired individual scholars
to advise them in a time of technological growth caused by the development of iron.

The feudal period ended as the weaker states were gradually absorbed by the stronger,
until ultimately China was unified under the emperor Qin Shi Huangdi in 221 BCE. Under his
leadership, China was transformed into a highly centralized bureaucratic state. He enforced
a severe legal code, levied taxes evenly, and demanded the standardization of weights,
measures, money, and especially the written script. Legend holds that this emperor ordered
the burning of all books from earlier periods to suppress dissent, but there is some reason to
doubt that this was actually carried out. The emperor died in 210 BCE, and his dynasty was
soon overthrown and replaced by that of the Han, which was to last about 400 years.

At some time early in this dynasty, an official was buried in a tomb near Zhangjiashan in
Hubei Province with several of his books. The tomb was opened in early 1984, and among
the books was discovered a mathematics text written on 200 bamboo strips. This work, called
the Suan shu shu (Book of Numbers and Computation), is the earliest extant text of Chinese
mathematics. Like many later works, it consists of problems and their solutions, a few of
which we will consider below. There were two other works we know of compiled during
the Han dynasty, which may well have played a part in the education of the civil service
at the time. These are the Zhoubi suanjing (Arithmetical Classic of the Gnomon and the
Circular Paths of Heaven) and the Jiuzhang suanshu (Nine Chapters on the Mathematical
Art). The first of these has come down to us with the commentaries of Zhao Shuang (third
century CE), Zhen Luang (sixth century CE), and Li Chunfeng (seventh century CE). The
latter work, which became central to Chinese mathematical practice over the centuries, has
survived in the edition of Liu Hui (third century CE), who commented on it extensively and
even added a tenth chapter, now known as the Sea Island Mathematical Manual. Li Chunfeng
also made extensive comments, thus adding to our knowledge of the development of Chinese
mathematics between the time the book was originally written and his time. We consider the
commentaries of both of these men in what follows.



7.2  CALCULATIONS 197

The Han dynasty in China disintegrated early in the third century CE, and China broke
up into several warring kingdoms. The period of disunity lasted until 581, when the Sui
dynasty was established, followed 37 years later by the Tang dynasty, which was to last
nearly 300 years. Although another brief period of disunity followed, much of China was
again united under the Song dynasty (960-1279), a dynasty itself overthrown by the Mongols
under Ghenghis Khan. This dynasty was replaced by a native Chinese dynasty, the Ming, a
hundred years later.

Despite the numerous wars and dynastic conflicts, a true Chinese culture was developing
throughout most of east Asia, with a common language and common values. The system of
imperial examinations for entrance into the civil service, instituted during the Han dynasty,
lasted—with various short periods of disruption—into the twentieth century. Although the
examination was chiefly based on Chinese literary classics, the demands of the empire
for administrative services, including surveying, taxation, and calendar making, required
that many civil servants be competent in certain areas of mathematics. Thus, in the Tang
dynasty, as noted in the chapter opening, Li Chunfeng led the effort to collect and annotate
what became known as the Ten Mathematical Classics. These included the Arithmetical
Classic of the Gnomon, the Nine Chapters, Liun Hui’s Sea Island Mathematical Manual,
the Mathematical Classic of Master Sun (fourth century CE), and the Mathematical Classic
of Zhang Qiujuan (late fifth century CE), among others. An incomplete version of this set
exists from the Song dynasty, printed in 1213, and a more complete version from the Ming
dynasty, printed in 1403—-1407. In general, these mathematical texts studied by candidates for
the civil service were collections of problems with methods of solution. New methods were
rarely introduced. The examination system often required recitation of relevant passages from
the mathematics texts, as well as the solving of problems in the same manner as described
in these texts. Thus, even though the Chinese imperial government encouraged the study
of applicable mathematics, as indicated in the opening quotation, there was no particular
incentive for mathematical creativity.

Nevertheless, creative mathematicians did appear in China, mathematicians who applied
their talents not only to improving old methods of solution to practical problems but also
to extending these methods far beyond the requirements of practical necessity. We look at
developments in four major areas: numerical calculations, geometry, equation solving, and
the solution of linear congruences. In particular, new discoveries in the latter two areas were
being made into the thirteenth century, especially by Qin Jiushao, Li Ye, Yang Hui, and Zhi
Shijie.

CALCULATIONS

From earliest recorded times, the Chinese used a base-10 system of numbers. But the forms
of the numbers and the mode of representation changed over the years.

72.1 Number Symbols and Fractions

The Chinese of the Shang dynasty used a multiplicative system of writing numbers, based on
powers of 10. That is, they developed symbols for the numbers 1 through 9 as well as for each
of the powers of 10. Then, for example, the number 659 would be written using the symbol
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for 6 (ﬁ) attached to that for 100 (@), then the 5 (X)) attached to the symbol for 10 (/), and

finally the symbol S for o: 825 There are records dating from the fourth century BCE of a
physical system of representing numbers by counting rods, small bamboo rods about 10 cm
long. These were manipulated on a counting board in which rods were arranged in vertical
columns standing for the various powers of 10. There were two possible arrangements of the
rods to represent integers less than 10:
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To represent numbers greater than 10, the rods were set up in columns with the rightmost
column holding the units, the next the tens, the next the hundreds, and so on. A blank column
in a given arrangement represented a zero. To help one read the numbers easily, the two
arrangements of rods were alternated. The vertical arrangement was used in the units column,
the hundreds column, the ten thousands column, and so on, while the horizontal arrangement
was used in the other columns. Thus, 1156 was representedby — | = T and 6083 by~ = III.
These representations also occur in written records of counting-board computations. There is
some evidence that a dot was used in this situation to represent an empty column (intermediate
zero) as early as the eighth century CE, but it was not until the twelfth century that we have
unambiguous evidence of the use of a small circle to represent zero in these situations. Thus,
it is only by that time that we can say that Chinese number notation was in the form of
a decimal place value system. Our earliest records of fractions in China are of common
fractions, designated by symbols representing the words fen zhi. For example, 2/3 would
be written 3 fen zhi 2 and could be translated as “2 parts from a whole broken into 3 equal
parts.” By medieval times, however, the Chinese were also using decimal fractions in many
contexts.

Negative numbers, which were in use from at least the beginning of our era, were
represented on the counting board by using some feature to distinguish “negative” rods from
“positive.” One way was to use red rods for positive numbers and black ones for negative
numbers. A negative number was represented in written records by an oblique bar drawn
across one of the digits in the rod numeral notation.

Rules for calculating with fractions appear near the beginning of the Suan shu shu. For
example, the rule for reducing fractions to lowest terms is given as follows:

Take the numerator and subtract it (successively) from the denominator; also take the denominator
and subtract it (successively) from the numerator; (when) the amounts of the numerator and
denominator are equal, this will simplify it. Another rule for simplifying fractions says: If it can be
halved, halve it; if it can be (successively) divided by a certain number, divide by it. Yet another rule
says: Using the numerator of the fraction, subtract it from the denominator; using the remainder as
denominator, subtract it (successively) from the numerator; use what is equal to (both) numerator
and denominator as the divisor; then it is possible to divide both the numerator and denominator
by this number. If it is not possible to subtract but it can be halved, halve the denominator and also
halve the numerator. 162/2016, simplified, is 9/1 12.3
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In the example, we note that 162 can be subtracted 12 times from 2016, with a remainder
of 72. Then 72 can be subtracted twice from 162 with a remainder of 18. Since 72 is now
a multiple of 18, 18 is the number (the greatest common divisor) by which we divide both
2016 and 162 to reduce the fraction to 9/112. Note that this is the identical process to the
Euclidean algorithm.

The rule for addition of fractions reads as follows:

If the denominators are of the same kind, add the numerators together; if the denominators are not
of the same kind, but some can be doubled to make the denominators equal, then double them; if
some can be tripled, then triple (them); . . . likewise, the numerator should be doubled, so double
it; when multiplied by 3, 4, or 5 times like the denominators, and if the denominators are the same
amount, then add the numerators together. If the denominators are still not of the same kind, then
mutually multiply all of the denominators together as the divisor, and after cross-multiplying the
numerators with the denominators, add them together as the dividend; and then divide.*

The basic idea, illustrated in several problems, is to use as a common divisor the product of
the original divisors. Thus, the sum of 2/5, 3/6, 8/10, 7/12, and 2/3 is given as 2 57/60. Rules
are also given for the other arithmetic operations on fractions. As an example, the quotient
of 74 1/2 + 1/3 by 5 is calculated as 1 17/30.

With the basic methods set, the Suan shu shu applied the methods to solving many
interesting problems. Among these is the one called “Woman Weaving”:

There is a woman in the neighborhood who is displeased with herself, but happy that every day
she doubles her weaving. In five days she weaves five chi (= 50 cun). How much does she weave in
the first day, and how much in every day thereafter? The answer: the first day she weaves 1 38/62
cun;, then 3 and 14/62 cun; then 6 and 28/62 cun; then 12 56/62 cun; then 25 and 50/62 cun. The
method says: Put down the values 2, 4, 8, 16, 32; add these together as the divisor; taking the 5
chi, multiply this by each of them (2, 4, 8, 16, 32) as the dividend; dividing the dividend by the
divisor gives the amount of chi. If the amount in chi is not even, multiply by 10 and express the
remainder in cun. If the amount in cun is not even, use the remainder to determine the fractional
amount left over.

72.2 Roots

Another type of calculation, discussed in detail in chapter 4 of the Nine Chapters, is the
determination of square and cube roots. The square root algorithm is based on the algebraic
formula (x + y)> = x? 4 2xy + y%, but most probably the author had in mind a diagram
like Figure 7.1. We illustrate this algorithm by problem 12 of that chapter, where we are

100a 10b ¢

100a

10b
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FIGURE 72
Diagram for cube root
algorithm

asked to determine the side of a square of area 55,225. The idea is to find digits a, b, c,
so that the answer can be written as 100a 4 10b + c. First, find the largest digit a so that
(100a)? < 55,225. In this case, a = 2. The difference between the large square (55,225) and
the square on 100a (40,000) is the large gnomon in the figure. If the outer thin gnomon is
neglected, it is clear that b must satisfy 55,225 — 40,000 > 2(100a) (10b) or 15,225 > 40005b.
So certainly b < 4. To check that b =3 is correct, that is, that with the square on 10b
included, the area of the large gnomon is still less than 15,225, it is necessary to check
that 2(100a)(10b) + (10b)? < 15, 225. Because this is in fact true, the same procedure can
be repeated to find c¢: 55,225 — 40,000 — 30(2 x 200 + 30) > 2 x 230c or 2325 > 460c.
Evidently, ¢ < 6. An easy check shows that ¢ = 5 gives the correct square root: /55,225 =
235.

The Chinese algorithm for calculating square roots is similar to one that was taught
in schools in recent years. This method gives a series of answers, in this case, 200, 230,
235, each a better approximation to the true result than the one before. Although it appears
clear to a modern reader that, if the answer is not a whole number, the procedure could
continue indefinitely using decimal fractions, the Chinese author used common fractions as
a remainder in the cases where there was no integral square root.

The same chapter 4 also presents a cube root algorithm, essentially based on the binomial
expansion (r + )3 = r3 4 3r%s 4 3rs% 4 53, probably thought of geometrically as in Figure
7.2. For example, we find the cube root of 1,860,867. We begin by noting that the solution is
a three-digit number starting with 1. In other words, the closest integer solution can be writ-
ten as x = 100 4 10b + c. Ignoring temporarily the ¢, we need to find the largest b so that
(100 + 10b)% = 100% + 3 - 100% - 10b + 3 - 100 - (10b)? + (10b)3 < 1,860,867, or so that
3-100% - 10b + 3 - 100 - 100b* 4 10005 = (300,000 + 30,0005 + 10005%) < 860,867.
By trying in turn b =1, 2, 3, . . ., one discovers that b = 2 is the largest value satisfying
the inequality. Since 2(300,000 + 60,000 - 2 4 1000 - 22) = 728,000, one next subtracts this
number from 860,867 and derives a similar inequality for c: ¢(3 - 120% 43 - 120c¢ + ¢?) <
132,867. In this case, it turns out that ¢ = 3 satisfies this as an equality, so the cube root is
x =123.

100 = 100 [x;]
shi 1860867 =
20 =10 [y]
3=1[z]

Note that in both of these algorithms, the solution of a quadratic or cubic equation (or,
at least, an inequality) is part of the process. The Chinese ultimately developed these ideas
into a detailed procedure for solving polynomial equations of any degree, a procedure to be
discussed below.
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Chinese geometry was generally practical, but in certain cases Chinese mathematicians
developed important theoretical principles to enable difficult problems to be solved.

/.31 Areas and Volumes

The Chinese developed numerous formulas for calculating the areas and volumes of geomet-
rical figures. Many of them are standard formulas, such as those for the areas of rectangles
and triangles or for the volume of parallelepipeds. The Nine Chapters also gives the correct
formula for the volume of a pyramid. Here, however, we will consider the formulas for the
area of a circle and volume of a sphere.

For the area of a circle, the Chinese presented several versions. For example, consider
problem 32 from the first chapter of the Nine Chapters:®

There is a round field whose circumference is 181 yards and whose diameter is 60 1/3 yards. What
is the area of the field? Answer: 2730 1/12 square yards.

The first thing to notice is that the stated diameter of the field is 1/3 of the circumference.
In other words, at the time the Nine Chapters was written, the number used for the ratio
of circumference to diameter of a circle was always taken as 3, the same value used by the
Babylonians. Secondly, the Chinese scribe stated not one but four separate formulas by which
the calculation of area could be made:

1. The rule is: Half of the circumference and half of the diameter are multiplied together to give
the area.

2. Another rule is: The circumference and the diameter are multiplied together, then the result is
divided by 4.

3. Another rule is: The diameter is multiplied by itself. Multiply the result by 3 and then divide
by 4.

4. Another rule is: The circumference is multiplied by itself. Then divide the result by 12.

Of course, given that 7 is taken to be 3, all of the formulas are equivalent. We also note that
it is the fourth rule that is the same as the usual Babylonian rule, but, like the Babylonians,
the author of the Nine Chapters does not tell why these formulas work.

On the other hand, Liu Hui, in his own commentary, noted that the value “3” for the ratio
of circumference to diameter must be incorrect. He did it in the context of the area situation,
where the Chinese formula for the area of a circle of radius 1 is 3, but where he could easily
calculate that the area of a regular dodecagon inscribed in that circle is also 3. Thus, he
concluded, the area of the circle must be larger. In fact, Liu then proceeded to approximate
this area by an argument involving the construction of inscribed polygons with more and
more sides, an argument that reminds us of Archimedes’ own determination of 7 by using
perimeters of polygons. As he wrote, “the larger the number of sides, the smaller the difference
between the area of the circle and that of its inscribed polygons. Dividing again and again
until it cannot be divided further yields a regular polygon coinciding with the circle, with no
portion whatever left out.” That is, although he did not use a formal reductio ad absurdum
argument as in the Eudoxian method of exhaustion, he assumed that, eventually, the polygons
will in fact “exhaust” the circle.
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FIGURE 7.3
Inscribed regular n-gon in a
circle of radius r

We can describe Lui’s argument by looking at an inscribed regular n-gon in a circle
of radius r. Let ¢, be the length of the side of the inscribed n-gon, a, the length of the
perpendicular from the center of the circle to the side, and S, the total area of the n-gon
(Fig. 7.3). We start with ¢q = r. In general,

2 2
a, =.,|r?— (%’) and ¢y, = \/<%") + (r —ay)?.

1 1
Son = -ty = Enrcn.

22

Then

Can

cnl2

Liu calculated S,, for n = 96 in the case of r = 10 to be 3 14%, equivalent to a value for
of 3.141024, and then noted that it is “convenient” to take 3.14 as an approximation to 7 and
neglect the fractional part. Two centuries later, however, Zu Chongzhi (c. 429-500) decided
to carry out the calculations further. He found by use of S,457¢ that a better approximation to
7 was 3.1415926.

Chapter 4 of the Nine Chapters gave a rule for determining the diameter d of a sphere
of given volume V, which is equivalent to proposing a formula for the volume of a sphere:
“Lay down the given number (V). Multiply it by 16; divide it by 9; extract the cube root of
the result.” In other words, the rule is that d = \/(16/9)V, equivalent to the volume formula
V= %d3, orV = %r3, where r is the radius. Even taking the usual approximation that 7 = 3,
this result is incorrect—and Liu Hui described in his commentary how he knew that.

Consider a cylinder inscribed in a cube of side d and consider the cross section of this figure
by a plane perpendicular to the axis of the cylinder (Fig. 7.4). The plane cuts the cylinder in
a circle of diameter d and the cube in a square of side d. The ratio of the areas of these two
plane figures is 77 : 4. Since this is true for each cross section, the ratio of the volumes must be
the same, so the volume of the cylinder is (17 /4)d>. (This principle, similar to Archimedes’
procedure in the Method, is what is now known as Cavalieri’s principle.) Now let us consider
a sphere inscribed in the cylinder. If the ratio of the volume of the sphere to that of the cylinder
were also 77 : 4, then the volume of the sphere would be (72/16)d?, which with 7 taken equal
to 3, is exactly the value given in the Nine Chapters. But Liu knew that this was incorrect,
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Cross section of a cylinder
inscribed in a cube

FIGURE 7.5
Intersection of two cylinders
inscribed in the same cube
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that in fact the ratio of the volume of the sphere to that of the cylinder was not 7 : 4. His
argument was as follows: Inscribe a second cylinder in the cube, whose axis is perpendicular
to that of the first cylinder, and consider the intersection of the two cylinders (Fig. 7.5). He
called this intersection the “double box-lid.” Since the sphere is contained in each cylinder,
it is contained in their intersection. Now any cross section of the box-lid perpendicular to its
axis is a square, so the ratio of the volume of the sphere to that of the box-lid is & : 4. But the
box-lid is smaller than the cylinder, so the ratio of the volume of the sphere to the cylinder
must be less than 7 : 4. So to find a correct formula for the volume of a sphere, it is necessary
to find the volume of the box-lid.

Liu Hui could not find this volume; as he wrote, “Let us leave the problem to whomever
can tell the truth.” That person was Zu Geng (fifth—sixth century), the son of Zu Chongzhi. He
formalized Cavalieri’s principle as follows: “If the corresponding section areas of two solids
are equal everywhere, then their volumes cannot be unequal.” In the case of the double box-
lid, his argument went like this. Consider 1/8 of the box-lid and inscribe it in a cube of side
r =d /2 (Fig. 7.6). If we pass a plane through the box-lid at height /4, the cross section is a
square of side s, where 52 =r2 — h2. Therefore, since the plane intersects the circumscribing
cube in a square of area r2, the difference between the two cross sections is 42. But we know
that if we take an inverted pyramid of height » and square base of side  and pass through it a
plane at height 4 (from the vertex), the cross section is also a square of area 42. It follows that
the volume of that part of the inscribing cube outside of the box-lid is equal to the volume
of the pyramid, namely, (1/3)73. Subtracting this from the volume of the cube itself, we find
that the volume of 1/8 of the box-lid is (2/ 3)r3 and therefore the volume of the entire box-
lid is (16/3)r3. But the ratio of the volume of the sphere to that of the box-lid is 7 : 4. Thus,
the volume of the sphere is (4/3)r>.
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FIGURE 7.6
One-eighth of the box-lid
inscribed in a cube of side r

7.3.2 The Pythagorean Theorem and Surveying

The Nine Chapters and other ancient Chinese documents assume known the Pythagorean
Theorem. And both Zhao Shuang’s commentary on the Arithmetical Classic of the Gnomon
and Liu Hui’s commentary on chapter 9 of the Nine Chapters contain an argument for the
theorem. Both of these arguments describe a diagram, but the original ones are lost. We have
reproduced diagrams that later commentators believed to be close to those of the original
authors.

Zhao Shuang’s argument is as follows (where Figure 7.7 is what is believed to be “the
hypotenuse diagram”):

The base and altitude are each multiplied by themselves. Add to make the hypotenuse area. Take
the square root, and this is the hypotenuse. In accordance with the hypotenuse diagram, you may
further multiply the base and altitude together to make two of the red areas. Double this to make
four of the red areas. Multiply the difference of the base and the altitude by itself to make the
central yellow area. If one [such] difference area is added [to the four red areas], the hypotenuse
area is completed.”

In essence, Zhao seems to be arguing that ¢> = a” + b*> = (a — b)*> + 2ab. Liu’s argument,
at the beginning of chapter 9, is slightly different (and refers to a diagram probably similar
to Figure 7.8):

The shorter side [of the perpendicular sides] is called the gou, and the longer side the gu. The
side opposite to the right angle is called the hypotenuse. The gou is shorter than the gu. The gu is
shorter than the hypotenuse. They apply in various problems. . . . Hence I mention them here so
as to show the reader their origin. Let the square on the gou be red in color, the square on the gu
be blue. Let the deficit and excess parts be mutually substituted into corresponding positions, the
other parts remain unchanged. They are combined to form the square on the hypotenuse. Extract
the square root to obtain the hypotenuse.

Are the arguments given here proofs? To meet modern standards, it would be necessary
to show that all figures that appear to be squares are in fact squares and that all the pairs
of regions assumed to be equal are in fact equal. To the Chinese, however, and probably to
most students today, this was obvious. The Chinese had no notion of an axiomatic system
from which theorems could be derived. Here “proof” means simply a convincing argument.
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Zhao’s hypotenuse diagram

FIGURE 7.8
Possible diagram representing
Liu’s argument
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In fact, the Greek word “theorem” is derived from theorein, “to look at.” If one looks at the
diagrams, one sees the theorem at once.

Assuming knowledge of the Pythagorean Theorem, chapter 9 of the Nine Chapters con-
tains many problems involving right triangles. Thus, problem 6 concerns a square pond with
side 10 feet, with areed growing in the center whose top is 1 foot out of the water. If the reed is
pulled to the shore, the top just reaches the shore. The problem is to find the depth of the water
and the length of the reed. In Figure 7.9, y = 5 and x + a = d, where, in this case, a = 1. A
modern solution might begin by setting d> = x? + y? and substituting for d. A brief algebraic
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FIGURE 7.9 y D
Problem 6 of chapter 9 of the A e H
Nine Chapters
d\ x
BG d
2.2 . .
calculation gives x = 2 2; . With the given numerical values, x = 12 and therefore d = 13.

The Chinese rule states: “Multiply half of the side of the pond by itself; decrease this by the
product of the length of the reed above the water with itself; divide the difference by twice
the length of the reed above the water. This gives the depth. Add this to the length of the reed
above the water. This gives the length of the reed.” A translation of this rule into a formula
gives the same x = )’22; a? already derived. It is not clear, however, whether the Chinese author
found the solution algebraically as above or by the equivalent geometric method illustrated,
where y?> = AC?> = AB?> — BC> = BD? — EG*>=DE? +2 x CE x BC =a”*+ 2ax. But
what is certain is that the author was fluent in the use of the Pythagorean Theorem.

Most of the final problems in chapter 9 of the Nine Chapters deal with surveying questions.
When writing his commentary on the Nine Chapters, Liu Hui (third century CE) decided to add
an addendum on more complicated problems of that type. This addendum ultimately became
a separate mathematical work, the Haidao suanjing (Sea Island Mathematical Manual).

In the continuing tradition of problem texts, the Sea Island Mathematical Manual was sim-
ply a collection of nine problems with solutions, derivations, illustrations, and commentary.
Unfortunately, all that remains today are the problems themselves with the computational
directions for finding the solutions. No reasons are given why these particular computations
are to be performed, so the following discussion presents some possible methods by which
Liu Hui worked out his rules.

The first of the nine problems, and the one for which the text is named, shows how to find
the distance and height of a sea island. The others demonstrate how to determine such items
as the height of a tree, the depth of a valley, and the width of a river. The sea island problem
reads, “for the purpose of looking at a sea island, erect two poles of the same height, 5 feet,
the distance between the front and rear pole being 1000 feet. Assume that the rear pole is
aligned with the front pole. Move away 123 feet from the front pole and observe the peak
of the island from ground level. Move backward 127 feet from the rear pole and observe the
peak of the island from ground level again; the tip of the back pole also coincides with the
peak. What is the height of the island and how far is it from the front pole?”’8

Liu Hui’s answer is that the height of the island is 1255 feet, while its distance from the
pole is 30,750 feet. He also presents the rule for the solution (Fig. 7.10):

Multiply the distance between poles by the height of the pole, giving the shi. Take the difference
in distances from the points of observations as the fa to divide the shi. Add what is thus obtained
to the height of the pole; the result is the height of the island. [Thus, the height 4 is given by the
formula h =a + Ca_h D where a is the height of the pole, b the distance between the poles, and ¢
and d the respective distances from the poles to the observation points.] To find the distance of the
island from the front pole, multiply the distance of the backward movement from the front pole




FIGURE 7.10
Problem 1 of the Sea Island
Mathematical Manual
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by the distance between the poles, giving the shi. Take the difference in distance at the points of
observation as the fa to divide the shi. The result is the distance of the island from the pole. [The
distance s is given by s = %.]

Liu Hui called his method the method of double differences, because two differences
are used in the solution procedure. A modern derivation of the method would use similar
triangles: Construct M T parallel to EK. Then AAEM is similar to AMTR and AABM is
similar to AM N R. Therefore, ME :TR=AM : MR=AB :MN, so

_ ME-MN _FN-EF
TR TR

AB

and the height 7 (= AB + BC) of the island is

c—
as noted above. A similar argument gives Liu Hui’s result for the distance s of the island.

However, there are other ways of deriving Liu Hui’s formula. In the mid-thirteenth
century, Yang Hui commented on this particular problem and gave a justification using
only congruent triangles and area relationships, a justification more in keeping with what
is known about early Chinese mathematical techniques. Since triangles APR and ACR
are congruent, as are triangles ALM and ABM, trapezoid L P RM has the same area as
trapezoid BM RC. Subtracting off the congruent triangles M QR and M N R shows that
rectangles LP QM and BMNC are also equal in area. By a similar argument, rectangle
DG HE equals rectangle BECF . It follows that rectangle EM N F (= rectangle BMNC —
rectangle BEC F) =rectangle L P QM — rectangle DG H E. Writing each of the areas of the
rectangles as products gives

FN-EF=PQ-QM —GH -HE
=PQ-RN—PQ -FK=PQO(RN — FK)=AB(RN — FK).

Therefore, AB = 15 Ii,v_?;{ and the height 7 = AC is given by

h=AC=AB+BC=1N"EF | pp
RN — FK
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FIGURE 711
Problem 4 of the Sea Island
Mathematical Manual

as desired. The distance s = C F can then be determined by beginning with the equality of the
areas of rectangles DGHE and BCFE, thatis, with CF - BC = DE - EH, and replacing
DE = AB by the value already found.

In problem 4, Liu Hui calculated the depth of a valley from two observations made
along the valley wall. Figure 7.11 illustrates the situation, where x is the desired depth
and the measurements are in feet. A modern solution would again use similar triangles.
Namely, 6/8.5 = (y +30)/z and 6/9.1 = y/z. It follows that 6z = 8.5(y 4+ 30) =9.1y. So
0.6y =8.5(30) and y = 8.5(30)/0.6 = 425. Liu Hui gave precisely this calculation and then
noted that the valley depth is 6 feet less than this value, or 419 feet. But again, it is more likely
that Liu Hui used an area manipulation similar to that of problem 1 to justify his solution
method.

304

Calculations using similar triangles may often be thought of as “trigonometry” calcula-
tions. One can thus consider the instructions in problem 4 as instructions for finding y by
multiplying 8.5 by the tangent (30/0.6) of angle « (or angle §) in Figure 7.11. Other prob-
lems in the Haidao suanjing similarly involve multiplying lengths by tangents of angles.
However, because neither Lui Hui nor his later commentators mention angles as such, it
would be difficult to characterize the method of this text as trigonometric.

In the eighth century, however, Chinese astronomers did use genuine trigonometric meth-
ods involving tables of tangents calculated for various angles. The Chinese emperors, like
rulers elsewhere, had always been interested in problems of the calendar, that is, in predicting
various celestial events such as eclipses. Unfortunately, Chinese astronomers were not very
successful in predicting eclipses, because they did not fully understand the motions of the sun
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Yi Xing on a Chinese stamp
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and moon. Indian astronomers, because of Greek influence in the creation of a geometrical
model, were more successful. Thus, in the eighth century, when Buddhism was strong both
in India and China and there were many reciprocal visits of Buddhist monks, the Chinese
emperors of the Tang dynasty brought in Indian scholars as well to provide a new expertise.
These scholars, led by Chutan Hsita (early eighth century), prepared an astronomical work
in Chinese in 718, the Chiu-chih li (Nine Planets [sun, moon, five ordinary planets and two
invisible ones)), based on Indian sources. In particular, this work contained a description of
the construction of a sine table in steps of 3°45" using a circle radius of 3438'. (More details
will be given in Chapter 8.)

In 724, the State Astronomical Bureau of the Tang dynasty began an extensive program
of field research to determine the length of the shadows cast by a standard gnomon (of length
8 feet) at latitudes ranging from 29° to 52° along the same meridian (114° E), at the summer
and winter solstices and at the equinoxes. These observations were then analyzed by the chief
astronomer, Yi Xing (683—727), himself a Buddhist monk (Fig. 7.12). Yi Xing’s goal was to
use these and other observations, as well as various interpolation techniques, to calculate the
length of such shadows, the duration of daylight and night, and the occurrence of eclipses,
whatever the position of the observer. (Yi Xing was not aware of the sphericity of the earth
and therefore could not make use of the classic Greek model.) Among the tables Yi Xing
produced for these purposes in his Ta yen li was a shadow table based on the sun’s zenith
distance o rather than on the latitude and date. Yi Xing’s table gave the length of a shadow
of a gnomon of 8 feet for each integral value of the zenith angle & from 1 to 79. In modern
terms, this is a table of the function s(«) = 8 tan « and is the earliest recorded version of a
tangent table.”

It is not known how Yi Xing calculated the table, but a detailed comparison of Yi Xing’s
work with the standard Indian astronomical works and with the sine table in the Chiu-chih
li leads one to the tentative conclusion that he interpolated in the sine table and used the
resulting values to calculate shadow lengths by the formula s(o) = 8 Sin?gbo_‘a). In any case,
although the Ta yen [i and even the Chiu-chih li were preserved in Chinese compendia, Yi
Xing’s tangent table ideas were not continued in his own country. Trigonometric methods
do not appear again in China until after general contact with the West was opened in the
seventeenth century. On the other hand, the next appearance of a shadow (tangent) table is in
Islamic sources in the ninth century. Whether transmittal of this idea occurred across central
Asia during that century is not known.

SOLVING EQUATIONS

The Chinese used two basic algorithms to solve systems of linear equations. For equations
of higher degree, they developed various procedures for solving them numerically.

74.1 Systems of Linear Equations

The Nine Chapters contained both algorithms for solving systems. The first method, used
chiefly for solving problems we would translate into systems of two equations in two un-
knowns, is called the method of surplus and deficiency and is found in chapter 7. The
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methodology, today called the method of “double false position,” begins with the “guess-
ing” of possible solutions and concludes by adjusting the guess to get the correct solution.
Its use showed that the Chinese understood the concept of a linear relationship.

Consider problem 17: “The price of 1 acre of good land is 300 pieces of gold; the price
of 7 acres of bad land is 500. One has purchased altogether 100 acres; the price was 10,000.
How much good land was bought and how much bad?”” A modern translation of this problem
would be as a system of two equations in two unknowns:

x +y=100
500
300x + Ty = 10,000

The Chinese rule for the solution states: “Suppose there are 20 acres of good land and 80 of
bad. Then the surplusis 17 14%. If there are 10 acres of good land and 90 of bad, the deficiency
is 571%.” The solution procedure, as explained by the Chinese author, is then to multiply 20
by 571%, 10 by 17142, add the products, and finally divide this sum by the sum of 1714%
and 571%. The result, 12% acres, is the amount of good land. The amount of bad land, 87%
acres, is then easily found.

The author did not explain how he arrived at his algorithm, an algorithm that was to turn up
in the Islamic world and then in western Europe over a thousand years later. We can express
the algorithm by the formula

bl)Cz + b2x 1

b+ b,
where b is the surplus determined by the guess x; and b, is the deficiency determined by the
guess x,. One conjecture as to how this algorithm was found begins by noting that the change

from the correct but unknown x to the guessed value 20 involves a change in the value of
the “function” 300x + (500/7)y of 1714%, while a change from 10 to x involves a change in

the function value of 571%. Since linearity implies that the ratios of each pair of changes are
equal, we derive the proportion

20—x x-—10
17142 5713 °

or, in the general case,
X1 — X _ X — Xy
by by
The desired solution for x then follows.

Each of the 20 problems in chapter 7 is solved by one or another modification of this
algorithm of “surplus and deficiency.” For example, two different guesses may both give
a surplus or both give a deficiency. In every case, the author gave an explanation of the
appropriate calculation. It is certainly possible using modern symbolism to write each of these
problems in the same form and give a single (algebraic) solution. But for the Chinese author,
there were several different types of problems, each requiring its own solution procedure.
Interestingly, the scribes did not hesitate to present problems with unwieldy solutions, perhaps
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because they wanted to convince their students that a thorough mastery of the methods would
enable even difficult problems to be solved.

Chapter 8 of the Nine Chapters describes a second method of solving systems of linear
equations, again by presenting various examples with slightly different twists. In this case,
however, the modern methods are no simpler. In fact, the Chinese solution procedure is
virtually identical to the method of Gaussian elimination and is presented in matrix form
on a counting board. As an example, here is problem 1 of that chapter. “There are three
classes of grain, of which three bundles of the first class, two of the second, and one of the
third make 39 measures. Two of the first, three of the second, and one of the third make 34
measures. And one of the first, two of the second, and three of the third make 26 measures.
How many measures of grain are contained in one bundle of each class?”” The problem can
be translated into modern terms as the system

3x4+2y+2z=39
2x +3y+z=34
x 42y +43z=26.
The algorithm for the solution is then stated: “Arrange the 3, 2, and 1 bundles of the three

classes and the 39 measures of their grains at the right. Arrange other conditions at the middle
and at the left.” This arrangement is presented in the diagram below:

1 2 3

2 3 2

31 1
26 34 39

The text continues: “With the first class on the right column multiply currently the middle
column and directly leave out.” This means to multiply the middle column by 3 (the first class
on the right) and then subtract off a multiple (in this case, 2) of the right-hand column so that
the first number in the middle column becomes 0. The same operation is then performed with
respect to the left column. The results are presented as follows:

1 0 3 0 0 3

2 5 2 4 5 2

31 1 8 1 1
26 24 39 39 24 39

“Then with what remains of the second class in the middle column, directly leave out.” That
is, perform the same operations using the middle column and the left column. The result is
given below:

0 0 3
0o 5 2
36 1 1

99 24 39
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Because this diagram is equivalent to the triangular system

3x4+2y+2z=39
S5y +z=24
36z =99,

the author explained how to solve that system by what is today called “back substitution,”
beginning with z = 99/36 = 2%.

Although the original author did not explain why this algorithm worked or how it was
derived, Liu Hui did give a justification in his commentary: “If the rates in one column are
subtracted from those in another, this does not affect the proportions of the remainders.” In
other words, Liu was essentially justifying the procedure by quoting the “axiom” that when
one subtracts equals from equals, the remainders are equal.

Given this procedure of subtracting columns, one might wonder what happened when such
a matrix manipulation led to a negative quantity in one of the boxes. A glance at problem
3 of the same chapter shows that this was not a limitation. The method was carried through
perfectly correctly for the system

2x + y = 1
3y + z =1
X + 4z = 1,

a system in which negative quantities appear in the process of completing the algorithm. In
fact, the author gave here the rules for adding and subtracting with positive and negative
quantities: “For subtraction—with the same signs, take away one from the other; with
different signs, add one to the other; positive taken from nothing makes negative, negative
from nothing makes positive. For addition—with different signs, subtract one from the other;
with the same signs, add one to the other; positive and nothing makes positive; negative and
nothing makes negative.” Thus, interestingly, rules for dealing with negative numbers arose
in China not in the context of solving equations that have no positive solution, but as an
intermediate step in the use of a known algorithm designed to solve a problem that does have
positive solutions.

As an example with a different difficulty, consider finally problem 13, a system of five
equations in six unknowns:

2x +
3y + z =
4z + u =
Su + v =
X + 6v =

L o - -

The matrix method leads ultimately to the equation v = 76s/721. If s = 721, then v = 76.
This is the single answer given. Unfortunately, it is not known if the Chinese considered other
possibilities for s or considered the implications of an infinite number of solutions. In general,
the Chinese only considered problems with an equal number of equations and unknowns. And
there are no records of any discussion of why that situation produces a unique solution or
what happens in other situations.
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Yang Hui’s diagram of the
Pascal triangle (Source:
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74.2 Qin Jiushao and Polynomial Equations

Recall that the Nine Chapters contained at least some indications of the solution of quadratic
and cubic equations in the description of the procedure for finding square and cube roots.
Other polynomial equations appeared elsewhere in China through the centuries. For example,
in The Mathematical Classic of Zhang Quijian, there appeared the following: Given a segment
of a circle with chord 68% and area 5 14%, find the height. The solution is given as 12%, but
the description of the method is missing from the manuscript. Presumably, the author used
the formula A = %h(h + ¢) and converted it into a quadratic equation for 4. In this case, after
clearing fractions, the equation becomes 454> + 3087h = 46,324. Cubic equations occurred
in a work by Wang Xiaotong (early seventh century), but again no method of solution is
given other than a cryptic reference to solve according to the rule of cube root extraction.
Evidently, then, a method existed for solving such equations during the first millennium of
the common era.

It was in the mid-eleventh century that Jia Xian in a work now lost, both generalized the
square and cube root procedures of the Nine Chapters to higher roots by using the array of
numbers known today as the Pascal triangle and extended and improved the method into one
usable for solving polynomial equations of any degree. Jia Xian’s methods are discussed in
a work of Yang Hui written about 1261.

Jia’s basic idea stemmed from the original square and cube root algorithms, which made
use of the binomial expansions in degrees 2 and 3. He realized that this solution process could
be generalized to nth-order roots for n > 3 by determining the binomial expansion (r + s)". In
fact, as Yang Hui reports, not only did he write out the Pascal triangle of binomial coefficients
through the sixth row (Fig. 7.13), but he also developed the usual method of generating the
triangle: “Add the numbers in the two places above in order to find the number in the place
below.”!? Yang Hui further explained how Jia used the binomial coefficients to find higher-
order roots by a method analogous to that just described.
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Qin Jiushao (1202-1261)

in Jiushao was probably born in Sichuan during the time
Qwhen the Mongols under Ghenghis Khan were complet-
ing their conquest of North China. The Song dynasty’s capital
at this time was at Hangzhou, and it was there that Qin studied
at the Board of Astronomy, the agency responsible for calendri-
cal computations. Subsequently, Qin wrote, “I was instructed
in mathematics by a recluse scholar. At the time of troubles
with the barbarians [the mid-1230s], I spent some years at
the distant frontier; without care for my safety among the ar-
rows and stone missiles, I endured danger and unhappiness
for ten years.” To console himself, he then spent time think-
ing about mathematics. “I made inquiries among well-versed
and capable [persons] and investigated mysterious and vague
matters. . . . As for the details [of the mathematical problems],
I set them out in the form of problems and answers meant

for practical use. . . . I selected eighty-one problems and di-
vided them into nine classes; I drew up their methods and their
solutions and elucidated them by means of diagrams.’!! The
“diagrams” of his Mathematical Treatise in Nine Sections are
of the positions of the rods on the counting board as solutions
to the various problems are described.

Qin served the government later in several offices, but since
he “was extravagant and boastful [and] obsessed with his own
advancement,” he was often relieved of his duties because of
corruption. Nevertheless, he became rich. On a magnificently
situated plot of land that he obtained by trickery, he had an enor-
mous house constructed, in the back of which was a “series of
rooms for lodging beautiful female musicians and singers.”!?
In fact, he developed an impressive reputation in love affairs.

Evidently, Jia went even further. He saw that his method could be used to solve arbitrary
polynomial equations, especially since these appeared as part of the root extraction process,
but that it would be simpler on the counting board to generate the various multiples by
binomial coefficients step-by-step rather than from the triangle itself.

The first detailed account of Jia’s method for solving equations, probably somewhat
improved, appears in Qin Jiushao’s Shushu jiuzhang (Mathematical Treatise in Nine Sections)
of 1247. We consider his method in the context of a particular equation, —x* +763,200x2 —
40,642,560,000 = 0, where the equation comes from a geometrical problem of finding the
area of a pointed field (see Exercise 20). The initial steps in solving such an equation are the
same as those in the solution of the pure equation, x"” = b, namely, first, determine the number
of decimal digits in the answer and, second, guess the appropriate first digit. In the case at
hand, the answer is found, by experience or by trial and error, to be a three-digit number
beginning with 8. Qin’s approach, like that of the old cube root algorithm, was, in effect, to
set x = 800 + y, substitute this value into the equation, and then derive a new equation in
y whose solution would be only a two-digit number. One can then guess the first digit of y
and repeat the process. Given the decimal nature of the Chinese number system, the Chinese
could repeat this algorithm as often as desired to approximate the answer to any desired level
of accuracy. Qin in fact did give answers to some problems to one or two decimal places, but
in other cases where the solution is not a whole number, he stated the remainder as a fraction.
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FIGURE 714

Initial counting-board
configuration for solution
of —x* 4 763,200x2 —
40,642,560,000 = 0
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The Chinese did not, of course, use modern algebra techniques to “substitute” x = 800 + y
into the original equation as William Horner did in his essentially similar method of 1819.
The problem was set up on a counting board with each row standing for a particular power
of the unknown (Fig. 7.14). For reasons of space, however, we will write the coefficients
horizontally. Thus, for the problem at hand, the opening configuration is

-1 0 763,200 0 —40,642,560,000.

Given that the initial approximation to the root was 800, Qin described what is now called
the repeated (synthetic) division of the original polynomial by x — 800 (= y). The first step
gives the following:

800 —1 0 763200 0 —40642560000
—800 —640000 98560000 78848000000
—1 —800 123200 98560000 38205440000

Qin’s description of the counting-board process tells exactly what numbers to multiply and
add (or subtract) to give the arrangement on the third line. For example, the —1 is multiplied
by 800 and the result added to the 0. That result (—800) is then multiplied by 800 and the
product subtracted from the 763,200. In algebraic symbolism, this first step shows that the
original polynomial has been replaced by

(x — 800)(—x> — 800x2 + 123200x -+ 98560000) + 38205440000

= y(—x> — 800x2 4 123200x — 98560000) + 38205440000.

Qin repeated the procedure three more times, dividing each quotient polynomial by the
same y = x — 800. The result is finally that

0= —x* + 763200x% — 40642560000
= y{y[y(—y — 3200) — 3076800] — 826880000} + 38205440000

or
—y* — 3200y — 3076800y> — 826880000y + 38205440000 = 0.

Of course, Qin only has numbers on the counting board. His diagrams (one for each step) are
here combined into a single large diagram:
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800 -1 0
—800
800 -1 —800
—800
800 —1 —1600
—800
800 —1 —2400
—-800
800 —1 —3200
-1
40 -1 -3200
—-40
-1 —=3240

—640000

—1280000
—1156800

—3076800

—3076800
—129600
—3206400

763200

123200

1920000

the original equation is then x = 840.

follows:

100

100

100

100

20

20

20

20

1

0
100
100
100
200
100
300

300
20
320
20
340
20
360

0 —40642560000
98560000 78848000000
98560000 38205440000

—925440000

—826880000

—82688000 38205440000
—128256000 —38205440000
—955136000 0

The third line from the bottom contains the coefficients of Qin’s equation for y along with
his guess of 4 as the first digit of the two-digit answer. (This came simply from dividing
38205440000 by 826880000.) In the example, as is normally the case in our texts today, the
answer “comes out even.” The equation for y is exactly divisible by y — 40. The solution to

To see the relationship of Qin’s description to Jia’s method by the Pascal triangle and
how the binomial coefficients are generated step-by-step, consider how the equation x
1,860,867 would be solved using Qin’s procedure. The layout of the figures in this case is as

0 —1860867
10000 1000000
10000 —860867
20000
30000
30000 —860867
6400 728000
36400 —132867
6800
43200
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3 1 360 43200 -—132867
3 1089 132867
1 363 44289 0

One can easily see the binomial coefficients in this table. For example, the ninth line
implies that the equation for the second-decimal digit b is (106)3 + 3 - 100 - (106) + 3 -
100% - 106 + (100° — 1860867) = 0, exactly as specified by Jia.

Qin himself gave no theoretical justification of his procedure, nor did he mention the Pascal
triangle. But since he solved 26 different equations in the Shushu jiuzhang by the method and
since several of his contemporaries solved similar equations by the same method, it is evident
that he and the Chinese mathematical community in general were in possession of a correct
algorithm for solving these problems. This algorithm, since it was rediscovered in Europe
more than five centuries after Qin’s time, deserves a few additional comments.

First, the texts only briefly state how the guessed values for the digits of the root are found.
In some cases, it is clear that the solver simply made a trial division of the constant term by the
coefficient of the first power of the unknown, as is generally done in the square root algorithm
itself. Sometimes several trials are indicated and the author picks one that works. But in
general, one can only surmise that the Chinese mathematicians possessed extensive tables
of powers, which could be used to make the various guesses. Second, there is no mention in
the texts of multiple roots. Qin’s fourth-degree equation above, in fact, has another positive
root, 240, as well as two negative ones. The root 240 could easily have been found by the
same method, provided one had guessed 2 for the initial digit. But in this case, the geometric
problem from which the equation was derived had only one solution, 840, and Qin did not
deal with equations in the abstract. Third, operations with negative numbers were performed
as easily as those with positives. Recall that the Chinese used different-colored counting rods
to represent the two types of numbers and had long before discovered the correct arithmetic
algorithms for computations. On the other hand, negative roots do not appear, again because
the problems from which the equations arise have positive solutions. Fourth, because they
could deal with negative numbers, the Chinese generally represented equations in a form
equivalentto f(x) = 0. This represents a basic difference in approach compared to the ancient
Babylonian method or to the medieval Islamic one. Finally, it appears that the Chinese method
of solving quadratic equations is completely different from that of the Babylonians. The latter
essentially developed a formula that could only be applied to such equations. The Chinese
developed a numerical algorithm that they ultimately generalized to equations of any degree.

74.3 The Work of Li Ye, Yang Hui, and Zhu Shijie

Qin Jiushao had three contemporaries who also made significant contributions to the mathe-
matics of solving equations, Li Ye (1192-1279), Yang Hui (second half of thirteenth century),
and Zhu Shijie (late thirteenth century). But probably due to the war between the Mongols
and the two Chinese dynasties of the Jin and the Southern Song, which lasted most of the
century, there is doubt that any of these mathematicians had much influence on the others.

Li Ye wrote two major mathematical works, the Ceyuan haijing (Sea Mirror of Circle
Measurements) in 1248 and the Yigu yanduan (Old Mathematics in Expanded Sections) in
1259, as well as numerous works in other fields. The Ceyuan haijing dealt with the properties
of circles inscribed in right triangles but was chiefly concerned with the setting up and solution
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Li Ye (1192-1279)

1 Ye was born into a bureaucratic family in Zhending in Li gave up hope of an official career and devoted the rest of his

Hebei Province north of the Yellow River. In 1230 he life to scholarship. After Kublai Khan ascended the throne in
passed the civil service examination and took a government 1260, Li was asked to serve in the Mongol government, and did
post in the northern kingdom of Jin. But his district, and the so briefly. He retired for good in 1266 and returned to seclusion
entire Jin kingdom, fell to the Mongols within a few years, so in the Mt. Fenglong district of his birth.

of algebraic equations for dealing with these properties. The Yigu yanduan similarly dealt with
geometric problems on squares, circles, rectangles, and trapezoids, but again its main object
was the teaching of methods for setting up the appropriate equations, invariably quadratic,
for solving the problem.

We give one example of Li Ye’s methods from his Yigu yanduan:'3

Problem 8: There is a circular pond inside a square field and the area outside the pond is 3300 square
feet. The sum of the perimeters of the square and the circle is 300 feet. Find the two perimeters.

Li’s discussion was virtually identical to what one would find in a modern text. He set x to
be the diameter of the circle and 3x (;r = 3) to be the circumference. Then 300 — 3x is the
perimeter of the square. Squaring that value, he found 90,000 — 1800x + 9x2 as the area
of 16 square fields. Also, because % is the area of one circular pond, 12x2 is the area of
16 circular ponds. The difference of the two expressions, namely, 90,000 — 1800x — 3x2,
is equal to 16 portions of the area outside the pond, or 16 x 3300 = 52,800. The desired
equation is then 37,200 — 1800x — 3x = 0. In contrast to the work of Qin, Li Ye merely
asserted that 20 was the root, or the diameter, and therefore that 60 was the circumference of
the circle and 240 that of the square.

Itis interesting that Li Ye nearly always followed his algebraic derivation with a geometric
derivation (Fig. 7.15). Here the side of the large square is 300, the sum of the given perimeters.
The shaded areas represent 16 x 3300. Since 300x is the area of each long strip, x? the area
of each small square, and 12x? the total area of the 16 circular ponds, he derived the equation
3007 — 16 x 3300 = 6 x 300x — 9x? + 12x? = 1800x + 3x2, or 37,200 = 1800x + 3x? as
before. (Note that the diagram indicates the three small squares at the bottom right.)

The text thus provides more evidence for the development of Chinese mathematics. Not
only did the solution method originally have a geometric basis, but the very setting up of
the problems did as well. Because the numerical results were recorded and calculated on
the counting board, the Chinese scholars ultimately recognized patterns on that board and
developed them into numerical algorithms. At the same time, they probably began to abstract
the geometrical concept of, for instance, square, into simply a position on the counting board
and then into the algebraic idea of the square of an unknown numerical quantity. Once
the notion of squares of an unknown became abstract, there was no barrier to considering
equations of higher degree. Qin Jiushao’s equations were based on real and even geometric
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Problem 8 from Li Ye’s Yigu
yanduan
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problems, but he had no hesitation about using powers of the unknown, which had no
geometric meaning whatsoever.

About Yang Hui, whose reports on the work of Jia Xian were discussed earlier, little is
known other than that he lived under the Song dynasty in the south of China. Two major works
of his are still extant, the Xiangjie jiushang suanfa (A Detailed Analysis of the Arithmetical
Rules in the Nine Sections) of 1261 and the collection known as Yang Hui suanfa (Yang Hui’s
Methods of Computation) of 1275. The latter work, like the work of Li Ye, contains material
on quadratic equations. In contrast to Li’s work, however, Yang Hui gave a detailed account
of his methods. In general, Yang used the same method as Qin, but he also gave alternate
methods more reminiscent of the Chinese method of square root extraction described earlier,
namely, the explicit use of double the first approximation in deriving the second equation. In
addition, Yang presented geometric diagrams consisting of squares and rectangles illustrating
the various numerical methods used.

Little is known as well about the life of the last important thirteenth-century Chinese
mathematician, Zhu Shijie. He was probably born near present-day Beijing, but spent most
of his life as a wandering teacher, that is, as a professional mathematics educator. He wrote
two major works, the Suanxue Qimeng (Introduction to Mathematical Studies) in 1299 and the
Sijuan yujian (Precious Mirror of the Four Elements) in 1303. The first book was elementary,
probably intended for beginners or for reference in the Office of Mathematics. In general,
problems and methods are repeated, or only slightly modified, from the Nine Chapters.

In the Precious Mirror, however, we find an important new technique, Zhu’s adaptation
of Qin’s method of solving polynomial equations into a procedure for solving systems of
equations in several unknowns. In fact, he was able to work with up to four unknowns, by
associating regions of the counting board to each possible combination of powers of one or
two of the unknowns (Fig. 7.16). The coefficient of a given combination was then placed in
the region associated to that term. For example, the expression x> + y2 + z2 + u? 4+ 2xy +
2xz + 2xu 4 2yz + 2yu + 2zu would have been displayed as in Figure 7.17. Zhu then was
able to manipulate the coefficients of his equations by manipulatiing the counting rods in
such a way that the system was reduced to a single equation in one unknown. That equation
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FIGURE 716
Zhu’s counting-board
representation in four
unknowns

FIGURE 717
Representation of x” + y? +
22+ u? 4 2xy + 2xz +
2xu + 2yz + 2yu + 2zu on
Zhu’s counting board

y3u2 yar2 yu? w2 2P 22 B2
y3u vZu yu u zu 2u Bu
v ¥ y z z 2
xy® xy? xy x xz x22 xz3
x2y3 x2y2 X2y x2 x2z x2z2 X223
x3y3 x3y2 x3y x3 x3z x3z x328

could then be solved by standard procedures. We illustrate Zhu’s procedure by considering
problem 2 from the Precious Mirror:

Subtract from the square of the altitude of a right triangle the difference of the hypotenuse and the
difference of the altitude and base to equal the product of the altitude and base. It is also given that
the square of the base added to the sum of the hypotenuse and the difference of the altitude and
base equals the product of the base and hypotenuse. Find the altitude. Answer: 4 bu.'*

The problem concerns a right triangle; if the base is a, altitude b, and hypotenuse c, then
the given data produce these equations:

bz—[c—(b—a)]zba and a*+c+b—a=ac.
In addition, we have the Pythagorean Theorem equation:
a’+b* =2
Zhu’s first step was to set x =b and y = a + ¢ and then to manipulate the three given
equations into the following two:
x3+2yx2+2xy—xy2—2y2=0 (7.1)
x4 2yx —xy?+2y2=0 (7.2)

Zhu next proceeded to eliminate the y? terms. Thus, he subtracted Equation 7.2 from Equa-
tion 7.1 and simplified to get

x?—2y=0. (7.3)

Then he multiplied Equation 7.3 by x and substituted 2yx for x> in Equation 7.1. This
simplified to

2x2 +4x —xy — 2y =0. (7.4)

Finally, he proceeded to eliminate y between Equations 7.3 and 7.4 by first rewriting the
two in the form A,y + A, =0 and B,y + B, =0, where A; and B; do not contain y, then



FIGURE 718
Problem 2 from Zhu Shijie’s
Precious Mirror
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multiplying the first equation by Bj, the second equation by A;, and subtracting. What
remains is a polynomial without y: A, B; — A;B, = 0. Specifically, Equation 7.3 becomes
(=2)y 4 x> =0 and Equation 7.4 becomes (x 4 2)y — 2x> — 4x = 0. Then the equation
AyB; — AB, =0is (x> 4+ 2x?) — (4x% 4 8x) = 0, which simplifies to x> — 2x — 8 = 0. Zhu
could then solve the quadratic equation to get x = b = 4, the desired answer.

In more complicated problems, Zhu applied this elimination technique over and over,
sometimes to eliminate the square of an unknown before using it again to eliminate the
unknown itself. But he was always able eventually to reduce the given system of equations to
a single equation in one unknown, which could then be solved. Unfortunately, his description
of the method was very cryptic and, in his discussions of several problems, he only wrote out
a few of the many auxiliary equations he needed to complete his task. Thus, in Figure 7.18,
which reproduces a page of Zhu’s book, Equation 7.1 appears in columns g and h near the
top; Equation 7.2 appears in the same columns in the middle; A;B, is near the bottom of
column h; A, B, is near the top of column i; and the final quadratic equation appears near the
bottom of column i.
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Interestingly, although Zhu, Qin, and others exploited the counting board to the fullest, its
very use provided limits. Equations remained numerical, and there could be no development
of any theory of equations as was to take place several centuries later in the West. Furthermore,
the political changes in China associated with the Mongol and Ming dynasties resulted in a
decline in mathematical activity, so that soon even these thirteenth-century works were no
longer studied.
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INDETERMINATE ANALYSIS

Calendrical problems apparently led the Chinese mathematicians to the question of solving
systems of indeterminate linear equations. For example, the Chinese assumed that at a certain
point in time, the Shang yuan, there occurred simultaneously the beginning of the 60-day
cycle used in Chinese dating, the winter solstice, and the new moon. If in a certain other year,
the winter solstice occurred r days into a 60-day cycle and s days after the new moon, then
that year was N years after Shang yuan, where N satisfied the simultaneous congruences

aN =r (mod 60) and aN =s (mod b),

where a is the number of days in the year and b is the number of days from new moon to new
moon. In the extant records of ancient calendars, however, there is no indication as to how
the Chinese astronomers solved such problems.

751 The Chinese Remainder Problem

Simpler versions of congruence problems occur in various mathematical works. In fact,
probably the most famous mathematical technique coming from China is the technique long
known as the Chinese remainder theorem. This result was so named after a description of some
congruence problems appeared in one of the first reports in the West on Chinese mathematics,
articles by Alexander Wylie published in 1852 in the North China Herald, which were soon
translated into both German and French and republished in European journals. The earliest
example in Chinese mathematics of this procedure for solving systems of linear congruences
is in the Sunzi suanjing (Mathematical Classic of Master Sun), a work probably written late
in the third century: “We have things of which we do not know the number; if we count them
by threes, the remainder is 2; if we count them by fives, the remainder is 3; if we count them
by sevens, the remainder is 2. How many things are there?”” In modern notation, the problem
is to find N, which simultaneously satisfies

N=3x+2 N=5y+3 N=T7z+2
for integral values x, y, z, or, what amounts to the same thing, which satisfies the congruences

N =2 (mod 3) N =3 (mod 5) N =2 (mod 7).

Sun Zi gave the answer, 23, as well as his method of solution: “If you count by threes and
have the remainder 2, put 140. If you count by fives and have the remainder 3, put 63. If you
count by sevens and have the remainder 2, put 30. Add these numbers and you get 233. From
this subtract 210 and you get 23.” Sun Zi explains further: “For each unity as remainder when
counting by threes, put 70. For each unity as remainder when counting by fives, put 21. For
each unity as remainder when counting by sevens, put 15. If the sum is 106 or more, subtract
105 from this and you get the result.”!

In modern notation, Sun Zi apparently noted that
70 =1 (mod 3) =0 (mod 5) = 0 (mod 7),
21=1 (mod 5) =0 (mod 3) =0 (mod 7),
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and
15=1(mod 7) =0 (mod 3) = 0 (mod 5).

Hence, 2 x 70 4+ 3 x 21+ 2 x 15 =233 satisfies the desired congruences. Since any multiple
of 105 is divisible by 3, 5, and 7, one subtracts off 105 twice to get the smallest positive
value. Because this problem is the only one of its type presented by Sun Zi, it is not known
whether he had developed a general method of finding integers congruent to 1 modulo m; but
congruent to 0 modulo m > J # 1, for given integers m, m,, ms, . . ., my, the most difficult
part of the complete solution. The numbers in this particular problem are easy enough to
find by inspection, but note for future reference that 70 = w x2,21= &5’(7 x 1, and
15= 23T x|,

Perhaps two centuries after Sun Zi, Zhang Quijian’s Mathematical Manual contained the
initial appearance of the problem of the “hundred fowls,” famous because it also occurs in
various guises in mathematics texts in India, the Islamic world, and Europe. Zhang’s original
problem was as follows: “A rooster is worth 5 coins, a hen 3 coins, and 3 chicks 1 coin. With
100 coins we buy 100 of the fowls. How many roosters, hens, and chicks are there?”!® In
modern notation, with x the number of roosters, y the number of hens, and z the number of
chicks, the problem translates into two equations in three unknowns:

1
5x+3y+§z:100

x+y+z=100

Zhang gave three answers: 4 roosters, 18 hens, 78 chicks; 8 roosters, 11 hens, 81 chicks;
and 12 roosters, 4 hens, 84 chicks; but he only hinted at a method: “Increase the roosters
every time by 4, decrease the hens every time by 7, and increase the chicks every time by 3.”
Namely, he noted that changing the values this way preserves both the cost and the number
of fowls. It is possible to solve this problem by a modification of the “Gaussian elimination”
method known from the Jiuzhang suanshu and get as a general solution x = —100 4 4¢, y =
200 — 7t, z = 3t, from which Zhang’s description follows. In fact, Zhang’s answers are the
only ones in which all three values are positive. It is not known, however, if Zhang used this
method or some other one.

Several Chinese authors over the next centuries commented on this hundred fowls problem,
but none succeeded in giving a reasonable explanation of the method or a way of generalizing
it to other problems. No explanation of Sun Zi’s remainder problem appeared either, although
there is a record of a calendrical computation by Yi Xing in the early eighth century that
used indeterminate analysis to relate several astronomical cycles by solving the simultaneous
congruences

N =0 (mod 1,110,343 x 60),
N = 44,820 (mod 60 x 3040),
N = 49,107 (mod 89,773).

The answer is given as N = 96,961,740 x 1,110,343.
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75.2 Qin Jiushao and the Ta-Yen Rule

It was Qin Jiushao who first published a general method for solving systems of linear
congruences in his Mathematical Treatise in Nine Sections. Qin there described what he called
the ta-yen rule for solving simultaneous linear congruences, congruences that in modern
notation are written N =r; (mod m;) fori =1, 2, .. ., n. In fact, ten of the problems in the
Mathematical Treatise are remainder problems of this type. In particular, we will follow Qin’s
method to solve Problem I, 5. In this problem, the m; are relatively prime in pairs, although
Qin dealt with the more general case in other problems.

There are three farmers of the highest class. As for the rice they got by cultivating their fields,
when making use of full dou, the amounts are the same. All of them go to different places to sell
it. After selling his rice on the official market of his own prefecture, A is left with 3 dou and 2
sheng. After selling his rice to the villagers of Anji, B is left with 7 dou. After selling his rice to
a middleman from Pingjiang, C is left with 3 dou. How much rice did each farmer have initially
and how much did each one sell? Note: The hu [a dry measure] of the local office for A is worth
83 sheng, that of Anji is worth 110 sheng, and that of Pingjiang is worth 135 sheng. [Note: 1 dou
=10 sheng.] Answer: Total amount of rice: 7380 dou to be divided among the three men, or 2460
dou each; amount of rice sold by A, 296 hu; by B, 223 hu; by C, 182 hu. 17

This problem results in the following congruence:

N=32(mod83) N =70(mod110) N =3 (mod 27).

The first step is to determine M, the product of the moduli. In this case, M = 83 x 110 x
27 = 246,510. Since any two solutions to the system will be congruent modulo M, once
Qin found one solution, he generally found the smallest positive solution by subtracting off
sufficient copies of this value.

For the second step, Qin divided M by each of the moduli m; in turn to get values we will
designateby M;. Here M| = M +— m| = 246,510 = 83 =2970, M, = 246,510 - 110 = 2241,
and M3 = 246,510 + 27 = 9130. Each M, satisfies M; =0 (mod m ) for j # i.

In the third step, Qin subtracted from each of the M; as many copies of the corresponding
m; as possible; that is, he found the remainders of M; modulo m;. These remainders, labeled
P;, are Py =2970 — 35 x 83=165, P, =2241 —20 x 110 =41, and P;=9130 — 338 x
27 =4. Of course, P; = M; (mod m;) for each i, so P; and m; are relatively prime.

It is finally time to solve congruences, in particular, the congruences P;x; = 1 (mod m;).
Once this is done, one answer to the problem is easily seen to be

n
N = Z I"iMin',
i=1

in analogy with the solution to Sun Zi’s problem. Because each m; divides M, any multiple
of M can be subtracted from N to get other solutions.

To solve P;x; =1 (mod m;) with P; and m; relatively prime, Qin used what he called
the “technique of finding one,” essentially the Euclidean algorithm. Qin described it using
diagrams of the counting board. We can demonstrate the technique by solving Pix; =1
(mod m), thatis, 65x; = 1 (mod 83). Qin began by placing 65 in the upper right of a counting
board with four squares, 83 in the lower right, 1 at the upper left, and nothing in the lower
left. As he wrote, “first divide right bottom by right top, multiply the quotient obtained by



FIGURE 7.19
Counting-board diagrams for
solving 65x = 1 (mod 83) by
the method of Qin Jiushao
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the top left and [add it to] the bottom left [at the same time replacing the bottom right by the
remainder of the division]. And then use the right column top and bottom; using the smaller
to divide the greater, dividing alternately, immediately multiply by the quotient obtained [and
add it] successively . . . into the left column top or bottom until finally the top right is just
1, then stop. Then take the top left result [as the solution].”!® The diagrams in Figure 7.19
represent the following computations:

83=1-654+18 1-14+0=1
65=3-18+11 3-1+1=4
18=1-11+7 1-44+1=5
11=1-7+4 1-5+4=9
7=1-443 1-94+5=14
4=1-3+1 1-144+9=23

The last numbers in the second column can be thought of as representing the absolute
values of the successive coefficients of 65 obtained by substitution. Namely, begin with
18 =83 — 1 65 and substitute thisinto 11 =65—3-18toget [1=65—-3- (83 —1:65) =
4 .65 — 3 - 83, where the 4 is the result of the second calculation in the second column.
Similarly, 7=18 - 1-11=(83—-1:65) —1-(4-65—3-83) =4-83 —5-65. The final
result is that 1 =23 - 65 — 18 - 83, and x; = 23 is a solution to the congruence. (Qin always
adjusted matters so that the final coefficient is positive.)

To complete the original problem, we note that x, = 51 and x3 = 7. It follows that

3
N=Zr,-M,-x,-:32-2970'23+70-2241-51+3.9130‘7
i=1
= 2,185,920 + 8,000,370 + 191,730 = 10,378,020.
We then determine the smallest positive solution by subtracting off 42M =42 - 246,510 =

10,353,420 to get our final answer, N = 24,600 sheng. The rest of the problem is then easily
solved.

TRANSMISSION TO AND FROM CHINA

Not much is known about the possible transmission of mathematical ideas between China
and other cultures before the sixteenth century. All that is known is that there are certain
similarities in techniques in the mathematics of China, India, Europe, and the Islamic world.
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FIGURE 7.20

Matteo Ricci on a stamp from
Taiwan
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For example, the Chinese essentially used a decimal place value system on their counting
board and even represented an empty place by a dot by the seventh century. But whether the
Chinese system influenced the Indian development of our modern decimal place value system
is not known. Similarly, Indian mathematicians used a technique involving the Euclidean
algorithm to solve simultaneous congruences, while Islamic mathematicians used a technique
related to Horner’s method to solve polynomial equations numerically. Similarly, Europeans
eventually discovered a method of solving the Chinese remainder problem fully equivalent to
Qin’s method, although it took many years to prove that this method worked in the case where
the moduli are not relatively prime in pairs. However, in all these cases, there are sufficient
differences in detail to rule out direct copying from one civilization to the other. Whether the
ideas traveled, however, is much more difficult to answer.

At the end of the sixteenth century, the Jesuit priest Mateo Ricci (1552-1610) came to
China (Fig. 7.20). Ricci and one of his Chinese students, Xu Guangqi (1562—1633), translated
the first six books of Euclid’s Elements into Chinese in 1607. And although it took many
years for the Chinese to understand that the form and content of Euclidean geometry were
inseparable (to Western minds, at least), nevertheless from this time period forward, Western

mathematics began to enter China and the indigenous mathematics began to disappear.

» EXERCISES

1.

The basic Chinese symbols for numbers from the Shang
period are

1 2 3 4 5
XN+ B %

6 7 8 9 10 100 1000

in 1 day, the third channel in 2 1/2 days, the fourth one in
3 days, and the fifth one in 5 days. If all the channels are
open together, how long will it take to fill the reservoir?
(This problem is the earliest known one of this type. Sim-
ilar problems appear in later Greek, Indian, and Western
mathematics texts.)

There were compound symbols for 20, 30, 40 (namely, 7. Solve problem 28 of chapter 6 of the Nine Chapters: A
U U W), but in general notation followed the plan indicated man is carrying rice on a journey. He passes through three
\ t tati . At the first, he gi 1 f his ri t
in the text. Hence, 88 is X)) and 162 is ®71=. Write the customs statons © IS, e gIves up /.3 ot s riee. a
. the second 1/5 of what was left, and at the third, 1/7 of what
Chinese form of 56, 554, 63, and 3282. . . .
i ] remains. After passing through all three customs stations,
2. Use the Chinese square root algorithm to find the square he has left 5 pounds of rice. How much did he have when
root of 142,884 he started? (Versions of this problem occur in later sources
3. Use the Chinese cube root algorithm to find the cube root in various civilizations.)
of 12,812,904. 8. Perform the calculations in Liu Hui’s algorithm for deter-
4. Solveexplicitly the “Woman Weaving” problem of the Suan mining 7 to find S, for n =6, 12, 24, 48, and 96.
shu shu, using the method described there. Is there a modern .
. . 9. Use calculus to confirm that the volume of the box-lid, the
method that is easier? . . . . . .
intersection of two perpendicular cylinders of radius r, is
5. Solve problem 3 of chapter 3 of the Nine Chapters: Three 16,3
people, who have 560, 350, and 180 coins, respectively, are 3 .
. L . . 10. Turn Zhao Shuang’s argument into a modern proof of the
required to pay a total tax of 100 coins in proportion to their Pvih Th
wealth. How much does each pay? ythagorean Theorem.
6. Solve problem 26 of chapter 6 of the Nine Chapters: There I1. Turn Liu Hui’s argument into a modern proof of the Py-
is a reservoir with five channels bringing in water. If only thagorean Theorem.
the first channel is open, the reservoir can be filled in 1/3 12.  Solve problem 1 of chapter 7 of the Nine Chapters using the

of a day. The second channel by itself will fill the reservoir

method of surplus and deficiency: Several people purchase



13.

14.

15.

16.

17.

18.

in common one item. If each person paid 8 coins, the surplus
is 3; if each paid 7, the deficiency is 4. How many people
were there and what is the price of the item?

Solve problem 8 of chapter 9 of the Nine Chapters: The
height of a wall is 10 ck’ih. A pole of unknown length leans
against the wall so that its top is even with the top of the wall.
If the bottom of the pole is moved 1 ch’ih farther from the
wall, the pole will fall to the ground. What is the length of
the pole?

Show that the diameter D of the largest circle that can be in-
scribed in a right triangle with legs @ and b and hypotenuse
cis given by D =2ab/(a + b + ¢). (This is a generaliza-
tion of problem 16 of chapter 9 of the Nine Chapters, which
uses the specific 8-15-17 triangle.)

In the same situation as Exercise 14, show that D may be ex-
pressedas D =a — (c —b) oras D = /2(c — a)(c — b).

Solve problem 20 of chapter 9 of the Nine Chapters: A
square walled city of unknown dimensions has four gates,
one at the center of each side. A tree stands 20 pu from the
north gate. One must walk 14 pu southward from the south
gate and then turn west and walk 1775 pu before one can
see the tree. What are the dimensions of the city?

Solve problem 24 of chapter 9 of the Nine Chapters. (This
is an example of the type of elementary surveying problem
that stimulated Liu Hui to write his Sea Island Mathemati-
cal Manual.) A deep well 5 feet in diameter is of unknown
depth (to the water level). If a 5-foot post is erected at the
edge of the well, the line of sight from the top of the post
to the edge of the water surface below will pass through a
point 0.4 feet from the lip of the well below the post. What
is the depth of the well?

Solve problem 3 of the Sea Island Mathematical Manual:
To measure the size of a square walled city ABC D, we erect
two poles 10 feet apart at F and E (Fig. 7.21). By moving
northward 5 feet from E to G and sighting on D, the line
of observation intersects the line £ F' at a point H such that
HE = 3% feet. Moving to point K such that KE = 13%
feet, the line of sight to D passes through F'. Find DC and

EC.(LiuHuigets DC = 943% feet while EC = 1245 feet.)

A D

B Cc E G K
FIGURE 7.21
Problem 3 of the Sea Island Mathematical Manual

19.

20.

21.

22.
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Find the solution to problem 3 of chapter 8 of the Nine
Chapters using the Chinese method: None of the yields of
2 bundles of the best grain, 3 bundles of ordinary grain, and
4 bundles of the worst grain are sufficient to make a whole
measure. If we add to the good grain 1 bundle of the ordi-
nary, to the ordinary 1 bundle of the worst, and to the worst 1
bundle of the best, then each yield is exactly one measure.
How many measures does 1 bundle of each of the three
types of grain contain? Show that the solution according to
the Chinese method involves the use of negative numbers.

The numerical equation from Qin Jiushao’s Shushu ji-
uzhang analyzed in Section 7.4.2 came from the geomet-
rical problem of finding the area of a pointed field. If
the sides and one diagonal are labeled as in Figure 7.22,
show that the area of the lower triangle is given by B =
(c/2)4/b* — (c/2)* and that of the upper triangle by A =
(¢/2)y/a? — (c/2)2. Then the area x of the entire field is
givenby x = A + B. Show that x satisfies the fourth-degree
polynomial equation

—x*+2(A% + BHx® — (A’ = B> =0.

If a =39, b =20, and ¢ = 30, show that this equation
becomes the one solved by Qin in the text.

I
|
|
I
I
I
A
|
I
I
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T
I
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I
|
|

FIGURE 7.22
A pointed field from the Shushu jiuzhang

Solve the equation 16x> 4+ 192x — 1863.2 = 0 numerically
using Qin Jiushao’s procedure. This equation is taken from
his text.

Use Qin’s method to solve the pure cubic equation x> =

12,812,904. Compare this method with the old cube root
algorithm discussed in the text. In each case, show where
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the third-order coefficients of the Pascal triangle 33 1 ap-
pear in the solution procedures.

23. Solve the pure fourth-degree equation y* = 279,841 using
Qin’s procedure. Show how the fourth-order coefficients of
the Pascal triangle 4 6 4 1 appear in the solution procedure.

24. Provide the details for the first step of Zhu Shijie’s solution
to problem 2 of his Precious Mirror. That is, let a be the
base, b the altitude, and c the hypotenuse of a right triangle,
and assume

P—[c—(b—a)l=ba and a*+c+b—a=ac.

Then set x =b and y = a + ¢. Show that the two given
equations along with the Pythagorean Theorem imply that
the following two equations hold:

X+ 2yx2 + 2xy — xy2 - 2y2 =0 and
X+ 2yx — xy2 + 2y2 =0.

25. Solve Problem I, 1, from the Shushu jiuzhang, which is
equivalent to N =0 (mod 3), N = 1 (mod 4).
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Ancient and Medieval India

In all those transactions which relate to
worldly, Vedic, or. .. religious affairs,
calculation is of use. In the science of love,
in the science of wealth, in music and in the
drama, in the art of cooking, and similarly
in medicine and in things like the knowledge
of architecture; in prosody, in poetics and
poetry, in logic and grammar and such other
things, . . . the science of computation is held
in high esteem. In relation to movements
of the sun and other heavenly bodies, in
connection with eclipses and the conjunction
of planets . . . it is utilized. The number, the
diameter and the perimeter of islands, oceans
and mountains, the extensive dimensions of
the rows of habitations and halls belonging to
the inhabitants of the world, . . . all of these
are made out by means of computation.

—Mahavira's Ganitasarasarigraha’

230

his story, probably a myth, appears in the work of a Per-

sian commentator on the work of the Indian mathematician

Bhaskara (1114-1185). It seems that astrologers predicted that
his daughter Lilavati would not wed. But her father, being an expert
astronomer and astrologer himself, divined the one lucky moment for
her marriage. The time was kept by a water clock, but shortly be-
fore the exact hour, while Lilavati was looking into the clock, a pearl
from her headdress accidentally dropped into the clock unnoticed and
stopped the flow of water. By the time it was discovered, the desig-
nated moment had passed. To console his daughter, Bhaskara named
the chapter on arithmetic of his major work, the Siddhantasiromani,
after her.
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INTRODUCTION TO MATHEMATICS IN INDIA

A civilization called the Harappan arose in India on the banks of the Indus River in the third
millennium BCE, but there is no direct evidence of its mathematics. The earliest Indian civi-
lization for which there is such evidence was formed along the Ganges River by Aryan tribes
migrating from the Asian Steppes late in the second millennium BCE. From about the eighth
century BCE, there were monarchical states in the area that had to deal with such activities as
fortifications, administrative centralization, and large-scale irrigation works. These states had
a highly stratified social system headed by the king and the priests (brahmins). The literature
of the brahmins was oral for many generations, expressed in lengthy verses called Vedas.
Although these verses probably achieved their current form by 600 BCE, there are no written
records dating back beyond the current era.

Some of the material from the Vedic era describes the intricate sacrificial system of the
priests, the bearers of the religious traditions that grew into Hinduism. It is in these works, the
Sulbaszitras, that we find mathematical ideas. Curiously, however, although this mathematics
deals with the theoretical requirements for building altars out of bricks, as far as is known
the early Vedic civilization did not have a tradition of brick technology, while the Harappan
culture did. Thus, there is a possibility that the mathematics in the Sulbasutras was created
in the Harappan period, although the mechanism of its transmission to the later period is
currently unknown. In any case, it is the Sulbasiitras that are the sources for our knowledge
of ancient Indian mathematics.

In 327 BCE, Alexander the Great crossed the Hindu Kush mountains into northeastern
India and, during the following two years, conquered the small Indian kingdoms of the area.
Greek influence began to spread into India. Alexander came with scientists and historians in
his entourage, not just as a conqueror interested in plunder but on a mission to “civilize” the
East. Naturally, the Indians believed they were already “civilized.” Each people considered the
other “barbarians.” Alexander’s grand designs ended with his premature death in 323 BCE. His
Indian provinces were soon reconquered by Chandragupta Maurya, who had earlier become
king of Magadha, the major north Indian kingdom of the time. Chandragupta established
friendly relations with Seleucus, Alexander’s successor in western Asia, and through this
relationship there was evidently some interchange of ideas. Shortly after Chandragupta’s
death, Ashoka succeeded to the throne. He proceeded to conquer most of India but then
converted to Buddhism and sent missionaries both east and west to convert the neighboring
kingdoms. Ashoka left records of his reign in edicts carved on pillars throughout his kingdom.
These pillars contain some of the earliest written evidence of Indian numerals.

During the first century CE, northern India was conquered by Kushan invaders. The Kushan
empire soon became the center of a flourishing trade between the Roman world and the East.
Early in the fourth century, northern India was again united under a native dynasty, that of
the Guptas. Under their rule, which only lasted about a century and a half, India reached a
high point of culture with the flowering of art and medicine and the opening of universities.
It was also during this period that Indian colonists spread Hindu culture to various areas of
southeast Asia, including Burma, Malaya, and Indochina. The earliest identifiable Indian
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mathematician, Aryabhata (b. 476), wrote his chief work, the Aryabhatiya, near the Gupta
capital of Patalipura (modern Patna) on the Ganges in Bihar in northern India. This work,
although concentrating mainly on astronomy in its 123 verses in four chapters, contained a
wide range of mathematical topics, as we will see below.

A northern Indian kingdom was revived in 606 by Harsha, a remarkably tolerant and just
ruler. Two prominent mathematicians flourished during his reign, Bhaskara I (so called to
distinguish him from a later mathematician with the same name) and Brahmagupta. The first
probably came from what is now Maharashtra or Gujurat, while the second lived in what
is now Bhinmal in Rajasthan, the capital of the kingdom of the Guyaras, part of Harsha’s
empire. It is not known whether these two mathematicians knew each other, but certainly by
this time there was cultural unity in the Indian subcontinent, primarily based on the use of
Sanskrit as a common learned language, so that one could speak of Indian astronomy and
mathematics.

After Harsha’s death in 647, his empire collapsed and northern India broke up into many
small states, as was already true in the south. It was in one of these kingdoms that the ninth-
century mathematician Mahavira composed the earliest Sanskrit textbook entirely devoted
to mathematics, rather than having mathematics as an adjunct to astronomy. There were
other mathematics texts written over the next few centuries, but the most influential of all
were two works by Bhaskara II from the twelfth century, the Lilavati and the Bijaganita, on
arithmetic and algebra, respectively. Bhaskara lived in Ujjain in what is now Madhya Pradesh
and probably served the royal court of the small kingdom based there. Soon after he died,
however, northern India was conquered by a Moslem army under Mohammed Ghori, and
in 1206 the Moslem Sultanate of Delhi was established, an empire that was to last over 300
years. The sultanate even succeeded in conquering parts of the Hindu kingdoms in the south
of India, kingdoms that had generally been independent even of the earlier native kingdoms
of the north. But it was in the Vijayanagara empire in southern India, specifically in modern
Kerala, that the mathematical “school” of Madhava became established. From the fourteenth
to the sixteenth centuries, there was a sequence of transmissions from teacher to pupil in this
region, which resulted in the writing of proofs of many results that had been handed down in
India for centuries, as well as the development of infinite series, particularly those related to
the trigonometric functions.

Through the various invasions and new kingdoms, it does appear that the study of astron-
omy was always encouraged. Whoever ruled the country seemed to need astronomers to help
with calendrical questions and, of course, to give astrological advice. Thus, much of Indian
mathematics is recorded in astronomical works. Nevertheless, here, as elsewhere, creative
mathematicians went beyond the strict requirements of practical problem solving to develop
new areas of mathematics that they found of interest. We consider in this chapter the Indian
number systems and methods of calculation, then the geometry of the Sulbasiitras and later,
next the algebraic methods developed in the medieval period to solve equations (including
the so-called Pell equation), next the beginning of combinatorics, and then the development
of trigonometry and associated techniques. We conclude with a study of the development of
power series in south India during the fourteenth and fifteenth centuries.
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CALCULATIONS

The Indians, like the Chinese, used a base-10 system from as far back as records are
available. But the decimal place value system itself first appeared in the middle of the first
millennium CE.

8.2.1 The Decimal Place Value System

Our modern decimal place value system is usually referred to as the Hindu-Arabic system
because of its supposed origins in India and its transmission to the West via the Arabs.
However, the actual origins of the important components of this system, the digits 1 through 9
themselves, the notion of place value, and the use of 0, are to some extent lost to the historical
record. We present here a summary of the most recent scholarship on the beginnings and
development of these three ideas.

Symbols for the first nine numbers of our number system have their origins in the Brahmi
system of writing in India, which dates back to at least the time of King Ashoka (mid-
third century BCE). The numbers appear in various decrees of the king inscribed on pillars
throughout India. There is a fairly continuous record of the development of these forms.
Probably in the eighth century, these digits were picked up by the Moslems during the time
of the Islamic incursions into northern India and their conquest of much of the Mediterranean
world. These digits then appear a century later in Spain and still later in Italy and the rest of
Europe (Fig. 8.1).

More important than the form of the number symbols themselves, however, is the notion
of place value, and here the evidence is somewhat weaker. The Babylonians had a place
value system, but it was based on 60. Although this system was adopted by the Greeks for
astronomical purposes, it did not have much influence on the writing of numbers in other
situations. The Chinese from earliest times had a multiplicative system with base 10. This
probably was derived from the Chinese counting board, which itself contained columns
each representing a different power of 10. In India, although there were number symbols
to represent the numbers 1 through 9, there were also symbols to represent 10 through 90.
Larger numbers were represented by combining the symbol for 100 or 1000 with a symbol
for one of the first 9 numbers, except that 200 and 300 were written by adding one or two
horizontal lines to the symbol for 100. Aryabhata in fact lists names for the various powers of
10 in his Aryabhatiya : “dasa [ten], sata [hundred], sahasra [thousand], ayuta [ten thousand],
niyuta [hundred thousand]. . . . 2

Around the year 600, the Indians evidently dropped the symbols for numbers higher than
9 and began to use their symbols for 1 through 9 in our familiar place value arrangement.
The earliest dated reference to this use, however, does not come from India itself. In a
fragment of a work of Severus Sebokht, a Syrian priest, dated 662, is the remark that the
Hindus have a valuable method of calculation “done by means of nine signs.”® Severus only
wrote about nine signs; there is no mention of a sign for zero. However, in the Bakhshali
manuscript, a mathematical manuscript in fairly poor condition discovered in 1881 in the
village of Bakhshali in northwestern India, the numbers are written using the place value
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FIGURE 8.1

Development of our modern
numerals (Source: From
Number Words and Number
Symbols, A Cultural History of
Numbers, by Karl Menninger.
Translated by Paul Broneer
from the revised German
edition. English translation
copyright © 1969 by
Massachusetts Institute of
Technology. Reprinted by
permission.)
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system and with a dot to represent zero. The best evidence we have is that this manuscript
also dates from the seventh century. Perhaps Severus did not consider the dot as a “sign.” In
other Indian works from the same period, numbers were generally written in a quasi—place
value system to accommodate the poetic nature of the documents. For example, in the work
of Mahavira, certain words stand for numbers: moon for 1, eye for 2, fire for 3, and sky for
0. Then the word fire-sky-moon-eye would stand for 2103 and moon-eye-sky-fire for 3021.
Note that the place value begins on the left with the units.

Curiously, the earliest dated inscriptions using the decimal place value system including
the zero were found in Cambodia. The earliest one appeared in 683, where the 605th year
of the Saka era there was represented by three digits with a dot in the middle and the 608th
year by three digits with our modern zero in the middle. The dot as symbol for 0 as part of
a decimal place value system also appeared in the Chiu-chih li, the Chinese astronomical
work of 718 compiled by Indian scholars in the employ of the Chinese emperor. Although
the actual symbols for the other Indian digits are not known, the author did give details of
how the place value system works: “Using the [Indian] numerals, multiplication and division
are carried out. Each numeral is written in one stroke. When a number is counted to ten, it
is advanced into the higher place. In each vacant place a dot is always put. Thus the numeral
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is always denoted in each place. Accordingly there can be no error in determining the place.
With the numerals, calculation is easy. . . . 4

The question remains then as to why the Indians at the beginning of the seventh century
dropped their earlier system and introduced the place value system including a symbol for
zero. We cannot answer that definitively. It has been suggested, however, that the true origins
of the system in India come from the Chinese counting board. The counting board was a
portable object. Certainly, Chinese traders who visited India carried these along. In fact,
since southeast Asia is the border between Hindu culture and Chinese influence, it may have
well been in that area where the interchange took place. What may have happened is that the
Indians were impressed with the idea of using only nine symbols. But they naturally took
for their symbols the ones they had already been using. They then improved the Chinese
system of counting rods by using exactly the same symbols for each place value rather than
alternating two types of symbols in the various places. And because they needed to be able
to write numbers in some form, rather than just have them on the counting board, they were
forced to use a symbol, the dot and later the circle, to represent the blank column of the
counting board.’ If this theory is correct, it is somewhat ironic that Indian scientists then
returned the favor and brought this new system back to China early in the eighth century.

In any case, we can certainly put a fully developed decimal place value system for integers
in India by the eighth century, even though the earliest definitively dated decimal place value
inscription there dates to 870. Well before then, though, this system had been transmitted
not only to China but also west to Baghdad, the center of the developing Islamic culture. It
is important to note, however, that although decimal fractions were used in China, again as
places on the counting board, in India itself there is no early evidence of these. It was the
Moslems who completed the Indian written decimal place value system by introducing these
decimal fractions.

8.2.2 Arithmetic Algorithms

Even before the decimal place value system was fully developed, the Indians were adept at
calculations. For example, in the second chapter of his Aryabhatiya, Aryabhata presented
the methods of calculating square and cube roots. We look at the latter, in the rather cryptic
words necessitated partly by the limitations of Sanskrit verse:

STANZAIL 5 One should divide the second noncube [place] by three times the square of the
root of the cube. The square [of the quotient] multiplied by three and the former [quantity]
should be subtracted from the first [noncube place] and the cube from the cube [place].®

Counting from right to left, the first, fourth, and so on places of the given number are
named the cube place; the second, fifth, and so on are called the first noncube place; and the
third, sixth, and so on are called the second noncube place. We illustrate the procedure by
calculating the cube root of 12,977,875. The first step is to note that the largest cube less than
the 12 in the millions place is 8 = 23. We subtract that from the 12, leaving 49 in the second
noncube place. We now divide this by 3 x 4 = 12. The quotient is 4, but it turns out that this
is too large, so we take 3, and subtract 3 x 22 = 36 from 49, leaving 137 in the first noncube
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place. We next multiply 3% by 3 and by 2, giving 54, and subtract this from 137, leaving 837
in the next cube place. We then continue, as shown here:

9 7 7 8 71 5 )»2 First digit 2 ~ v/12
8 23
4 9 )3 12=3x22
6 3 approximates 49 - 12 (4 is too large)
37 36=3x22x3
5 4 54=3x2x 3
8 3 7
2 7 33
8 1 0 8 )5 1587 =3 x 23%
7 9 3 5 5 approximates 8108 + 1587
1 7 3 17 7935 =3 x 23> x 5
1 7 2 5 1725=3 x 23 x 5%
1 2 5
1 2 5 53

Of course, the basis for this algorithm is the expansion of (a + b)>. In this case, for

example, 23° = (20 + 3)3 =203 4+ 3 x 20% x 3+ 3 x 20 x 3% 4 3.

Brahmagupta gave many details of arithmetic calculation in his major work, the Brahma-

sphutasiddhanta (Correct Astronomical System of Brahma). Not only did he present the
standard arithmetical rules for calculating with fractions, but in chapter 18 he gave the rules
for operations on positive and negative numbers, as well as zero:

The sum of two positives is positive, of two negatives negative; of a positive and a negative the sum
is their difference; if they are equal it is zero. The sum of a negative and zero is negative, that of a
positive and zero positive, and that of two zeros, zero. If a smaller positive is to be subtracted from
a larger positive, the result is positive; if a smaller negative from a larger negative, the result is
negative; if a larger negative or positive is to be subtracted from a smaller negative or positive, the
sign of their difference is reversed—negative becomes positive and positive negative. A negative
minus zero is negative, a positive minus zero positive; zero minus zero is zero. When a positive is
to be subtracted from a negative or a negative from a positive, then it is to be added.

The product of a negative and a positive is negative, of two negatives positive, and of positives
positive; the product of zero and a negative, of zero and a positive, or of two zeros is zero. A
positive divided by a positive or a negative divided by a negative is positive; a zero divided by a
zero is zero; a positive divided by a negative is negative; a negative divided by a positive is also
negative. A negative or a positive divided by zero has that zero as its divisor, or zero divided by a
negative or a positive has that negative or positive as its divisor.’

These final rules for operating with zero sound strange to us. But Bhaskara II, after

repeating essentially the same rules in his own work, justified them using the concept of
infinity: “In this quantity also, which has zero as its divisor, there is no change even when
many quantities have entered into it or come out of it, just as at the time of destruction and
of creation, when throngs of creatures enter into and come out of him, there is no change in
the infinite and unchanging one [i.e., Visnu].

8 Nevertheless, he could still set the problem:
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“There is an unknown number whose multiplier is 0. Its own half is added. Its multiplier is 3;
its divisor 0. The given number is 63.”° Evidently, he was thinking of the equation

3 (Ox + %Ox)

=03,
0

which, by factoring out the zeros in the numerator and “canceling,” becomes 3x + %x =63,
an equation whose solution is 14.

GEOMETRY

Many important geometric ideas were expressed in the Sulbasiitras as part of their treatment
of the construction of altars. But since these literary pieces were not designed to teach
mathematics as such, there are no derivations, just assertions. On the other hand, later
commentators sometimes did give demonstrations. We will look at several results from the
Baudhayana Sulbasiitra, which probably dates to around 600 BCE. The first is the Pythagorean
Theorem:

The areas of the squares produced separately by the length and the breadth of a rectangle together
equal the area of the square produced by the diagonal. This is observed in rectangles having sides
3and4, 12 and 5, 15 and 8, 7 and 24, 12 and 35, 15 and 36."°

A proof of this result was given in the Yuktibhasa, written by Jyesthadeva (1530-1610)
in the mid-sixteenth century. The idea is to put two right triangles together, then draw the
square on each of the two sides and on the hypotenuse (Fig. 8.2). If one cuts along each of the
two lines indicated, then rotates each of the triangles outside the large square, the two pieces
together will fill up the square on the hypotenuse. Again, as in the Chinese proof, there is
no principle of beginning with axioms. One just studies the diagram, rotates the pieces, and
understands that the theorem is true. This procedure could be thought of as an “empirical”
proof.
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The Pythagorean Theorem was then used implicitly to justify each of the following
constructions:

If it is desired to remove a square from another, a rectangular part is cut off from the larger square
with the side of the smaller one to be removed; the longer side of the cut-off rectangular part is
placed across so as to touch the opposite side; by this contact the side is cut off. With the cut-off
part the difference of the two squares is obtained (Fig. 8.3).!!

FIGURE 83 D L c
Procedure for determining a
square equal to the difference
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of two squares, from the N | S R
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If it is desired to transform a rectangle into a square, its breadth is taken as the side of a square
and this square on the breadth is cut off from the rectangle. The remainder of the rectangle is divided
into two equal parts and placed on two sides (one part on each). The empty space in the corner
is filled up with a square piece. The removal of it has been stated [in the previous construction]
(Fig. 8.4).
ghl 1 2/
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Procedure for transforming a
rectangle into a square, from
the Baudhayana Sulbasiitra
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Note that this second construction uses the “completing the square” technique that we have
” seen in Babylonian mathematics. It is quite different, however, from Euclid’s construction of
the same problem found in Elements 11-14. Later in the Sulbasiitra are two results involving
circles:
B (o .. . . . . .
If it is desired to transform a square into a circle, a cord of length half the diagonal of the square is
- stretched from the center to the east, a part of it lying outside the eastern side of the square. With
FIGURE 8.5 one-third of the part lying outside added to the remainder of the half diagonal, the requisite circle
Indian procedure for “cir- is drawn (Fig. 8.5).

cling” the square
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To transform a circle into a square, the diameter is divided into eight parts; one such part, after
being divided into twenty-nine parts, is reduced by twenty-eight of them and further by the sixth
of the part left less the eighth of the sixth part. [The remainder is then the side of the required
square. ]

In the first of these constructions, M N is the radius r of the desired circle. It is straight-

forward to show that if the side of the original square is s, then r = (HT\E)S. This implies a
value for 7 of 3.088311755. In the second construction, the author means for us to take the
side of the required square equal to

7 1 1 1

8+8><29_8><29><6+8><29><6><8

of the diameter of the circle. This is equivalent to taking 3.088326491 for 7. The Indian
authors did not mention in either case that these constructions were approximations. What
seems remarkable is that the two constructions imply values for & that are equal to four
decimal places. Yet there is no indication whether one of these constructions was derived
from the other. On the other hand, a further result in the Sulbasiitra indicates an easier but
approximate construction:

Divide the diameter into fifteen parts and reduce it by two of them. This gives the approximate
side of the desired square.

In other words, the side was given here as 13/15 of the diameter. It is easy to see that this
results in a value for 7 of 4(13/15)2 =3.00444444.

Aryabhata too presented some geometric results:

STANZA 11, 16 The upright side is the distance between the tips of the two shadows
multiplied by a shadow divided by the decrease. That upright side multiplied by the gnomon,
divided by its shadow, becomes the base. 12

This stanza gives a method for finding the height of a pole with a light at the top by
measuring various shadows. In Figure 8.6, we have two gnomons of length g. The lengths s,
and s, of the shadows of the two gnomons cast by the light at height /& are known, as well as
the distance d between the shadow ends. The lengths 4 of the base and u of the upright side

Sq Sy




240 CHAPTER 8 ANCIENT AND MEDIEVAL INDIA

FIGURE 8.7

Perpendicular chord and
diameter

are to be found. (The terms “base” and “upright side” are somewhat counterintuitive here.)
Bhaskara I, an early commentator on the Aryabhatiya, presented an example:

The shadows of two equal gnomons [of height 12 arigulas] are observed to be respectively 10
and 16 arigulas and the distance between the tips of the shadows is seen as 30. . . . Procedure:
The distance between the tips of the shadows is 30; it is multiplied by the first shadow, 300; the
difference of the lengths of the shadows is 6; what has been obtained with this is the upright side,
50. Precisely this upright side is multiplied by the height of the gnomon; what has been obtained
is 600, which when divided by the first gnomon’s shadow is the base, 60.

The procedures of the stanza can be translated into the formulas

ds u
u=—>1_ and h:—g.
$2— 5 S1

Note that this problem is very similar both in form and solution method to problem 1 in the
Chinese Sea Island Mathematical Manual.

STANZA 11,17 ... In a circle, the product of both arrows is the square of the half-chord,
certainly, for two bow fields."3

Here, the “arrows” are the two segments sy, §,, of the diameter of a circle intersected at
right angles by a chord of length 24, dividing the circle into two “bows” (Fig. 8.7). Thus,
the result is that 2> = s,s,. Although this result was essentially proved by Euclid, there is
no indication of how Aryabhata discovered it. Bhaskara gave the following problem as an
example:

A hawk was resting upon a wall whose height was 12 hastas. The departed rat was seen by that
hawk at a distance of 24 hastas from the foot of the wall; and the hawk was seen by the rat. There,
because of his fear, the rat ran with increasing speed toward his own residence, which was in
the wall. On the way, the rat was killed by the hawk moving along the hypotenuse. In this case I
wish to know what is the distance not attained by the rat, and what is the distance crossed by the
hawk. . . . Procedure: The square of the height of the hawk is 144; when that is divided by the
size of the rat’s roaming ground, 24, the quotient is 6. The rat’s roaming ground, when increased
by this difference, is 30, and when decreased is 18. Their halves in due order, the path of the hawk
and the distance to the rat’s residence: 15, 9.

S
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In this case, since s, = 24 and h = 12, Bhaskara calculated that s; = 6. Thus, the diameter
of the circle was 30. The rat was killed at the center of the circle, a distance of 15 from the
hawk’s initial perch and 9 from the base of the wall.

Many other geometric formulas, some exact, some stated as exact but only approximate,
and some stated explicitly as approximate, occur in various Indian mathematical texts.
But we will conclude this section with two remarkable results of Brahmagupta dealing
with cyclic quadrilaterals (quadrilaterals inscribed in circles), given in chapter 12 of the
Brahmasphutasiddhanta. The first is the following:

The accurate area [of a cyclic quadrilateral] is the square root of the product of the halves of the
sums of the sides diminished by each side of the quadrilateral.'*

This result says thatif s = %(a + b+ c+d),wherea, b, c, d, are the sides of the quadrilat-
eral in cyclic order (Fig. 8.8), then the area S is givenby S = /(s — a)(s — b)(s — ¢)(s — d).
Heron’s formula is a special case of this result, but how Brahmagupta discovered his formula,
or whether he was aware of Heron’s result, is unknown. A complete proof first appeared in
the Yuktibhasa, based on a second result of Brahmagupta:

One should multiply the sum of the products of the arms adjacent to the diagonals, after it has been
mutually divided on either side, by the sum of the two products of the arms and the counter-arms.
In an unequal cyclic quadrilateral, the two square roots are the two diagonals.

This statement translates into formulas for the lengths of the diagonals AC and BD of
the quadrilateral. Since the “sum of the products of the arms adjacent to” diagonal AC, or
ad + bc, is “mutually divided,” that is, divided by the corresponding sum with respect to the
second diagonal, or ab + cd, and then multiplied by the “sum of the two products of the arms
and counter-arms,” or ac + bd, the result is that

(ac + bd)(ab + cd)
ad + bc '

AC — (ac + bd)(ad + bc)
ab + cd

and similarly BD = \/

A proof of this result too was in the Yuktibhasa.
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EQUATION SOLVING

The rule for solving quadratic equations seems to have been known in India from at least the
end of the fifth century. For Aryabhata, in dealing with arithmetic progressions in two stanzas
of his Aryabhati ya, provided what amounts to the quadratic formula in a special case:

STANZA 11, 19 The desired number of terms minus one, halved, . . . multiplied by the
common difference between the terms, plus the first term, is the middle term. This multiplied
by the number of terms desired is the sum of the desired number of terms. Or the sum of the
first and last terms is multiplied by half the number of terms."

This verse presents a formula for the sum S, of an arithmetic progression with initial term
a and common difference d. The formula translates to

S,,:n[(”;1>d+a}=g[a+(a+(n—1)d)]. 8.1)

STANZA 11, 20 Multiply the sum of the progression by eight times the common difference,
add the square of the difference between twice the first term and the common difference, take
the square root of this, subtract twice the first term, divide by the common difference, add
one, divide by two. The result will be the number of terms.

In the same circumstances as above, S,, is given and 7 is to be found. The formula given is

— )2 —
A [‘/gs"d +Q@a—d)” 2 1} . 8.2)

2 d

If Equation 8.1 for S, is rewritten as a quadratic equation in 7, namely, dn*> + (2a — d)n —
28, = 0, then the value for n in Equation 8.2 follows from the quadratic formula. Although
Aryabhata did not explicitly present here a general procedure for solving quadratic equations,
Brahmagupta, a century and a quarter later, did so for the equation we would write as
ax? + bx = c. Here the “middle number” is the coefficient b (and also the unknown itself);
the ripas is the constant term ¢ and the “square” is the coefficient a.

Diminish by the middle number the square root of the rijpas multiplied by four times the square
and increased by the square of the middle number; divide the remainder by twice the square. The
result is the middle number.'°

Brahmagupta’s words can easily be translated into the formula
e dac +b*—b
B 2a )
As an example, Brahmagupta presented the solution to the equation x> — 10x = —9:

Now to the ripas [—9] multiplied by four times the square [—36], and added to the square [100]
of the middle number (making 64), the square root being extracted [8], and lessened by the middle
number [—10], the remainder 18 divided by twice the square [2] yields the value of the middle
number, 9.7

Note here that although the given equation actually has a second positive solution, corre-
sponding to the negative of the square root, Brahmagupta did not mention it. Several hundred
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years later, Bhaskara II did deal with multiple roots, at least when both are positive. His ba-
sic technique for solving quadratic equations was that of completing the square. Namely, he
added an appropriate number to both sides of ax? + bx = ¢ so that the left side becomes a
perfect square: (rx — 5)? = d. He then solved the equation rx — s = +/d for x. But, he noted,
“if the root of the absolute side of the equation is less than the number, having the negative
sign, comprised in the root of the side involving the unknown, then putting it negative or pos-
itive, a twofold value is to be found of the unknown quantity.”18 In other words, if \/Z <,
then there are two values for x, namely, (s + Jd )/rand (s — Jd )/r.Bhaskara did, however,
hedge his bets. As he says, “this [holds] in some cases.” We consider two examples to see
what he meant.

The eighth part of a troop of monkeys, squared, was skipping in a grove and delighted with their
sport. Twelve remaining monkeys were seen on the hill, amused with chattering to each other.
How many were they in all?

Bhaskara wrote the equation as (%x)2 + 12 = x, then multiplied by 64, and subtracted to
get x? — 64x = —768. Adding 327 to each side produced x> — 64x + 1024 = 256. Taking
square roots: x — 32 = 16. He then noted that “the number of the root on the absolute side
is here less than the known number, with the negative sign, in the root on the side of the
unknown.” Therefore, 16 can be made positive or negative. So, he concludes, “a two-fold
value of the unknown is thence obtained, 48 and 16.”

The fifth part of the troop less three, squared, had gone to a cave; and one monkey was in sight
having climbed on a branch. Say how many they were?

The equation becomes x2 — 55x = —250, and Bhaskara found the two roots 50 and 5.
“But the second [root] is in this case not to be taken; for it is incongruous. People do not
approve a negative absolute number.”!® Here, the negative number is not from the equation
itself but from the problem. One cannot subtract three monkeys from one-fifth of five. In the
case of quadratic equations, which for us have a positive and a negative root, Bhaskara simply
found the positive root. He never gave examples of quadratic equations having two negative
roots or no real roots at all, nor did he give examples of quadratic equations having irrational
roots. In every example, the square root in the formula is a rational number.

The Indian mathematicians also handled equations in several variables. Thus, Mahavira
presented a version of the hundred fowls problem in his major treatise, the Ganitasarasarigra-
ha: “Doves are sold at the rate of 5 for 3 coins, cranes at the rate of 7 for 5, swans at the rate of
9 for 7, and peacocks at the rate of 3 for 9. A certain man was told to bring at these rates 100
birds for 100 coins for the amusement of the king’s son and was sent to do so. What amount
does he give for each?”?°

Mahavira gave a rather complex rule for the solution. Bhaskara, on the other hand,
presented the same problem with a procedure showing explicitly why the problem has
multiple solutions. He put his unknowns, which we label d, c, s, and p, equal to the number of
“sets” of doves, cranes, swans, and peacocks, respectively. From the prices and the numbers
of birds he derived the two equations

3d +5¢+7s + 9p = 100
5d +7c +9s +3p = 100
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and proceeded to solve them. He solved each equation for d, then equated the two expressions
and found the equation ¢ = 50 — 2s — 9p. Taking an arbitrary value 4 for p, he reduced the
equation to the standard indeterminate form ¢ + 2s = 14, for which the solution is s =1,
¢ = 14 — 2¢, with ¢ arbitrary. It follows that d =t — 2. Then setting ¢ = 3, he calculated that
d=1,c¢=28,s =3, and p =4, hence that the number of doves is 5, of cranes 56, of swans
27, and of peacocks 12, their prices being respectively 3, 40, 21, and 36. He noted further
that other choices of ¢ gave different values for the solution. Thus,* by means of suppositions,
a multitude of answers may be obtained.”?!

INDETERMINATE ANALYSIS

Like the Chinese, Indian mathematicians spent much effort on the solution of congruences,
originally probably for much the same reasons.

8.5.1 Linear Congruences

Although we do not know whether the Indians learned the quadratic formula somehow
from the Babylonians or from Diophantus, we are fairly certain that Indian mathematicians
originated a method for solving linear congruences, because there is no comparable method
described anywhere else. In modern notation, the problem was to find N satisfying N =
a (mod r) and N = b (mod s), or to find x and y such that N =a + rx = b + sy, or so that
a+rx =b+ sy, or finally, setting c = a — b, so that rx 4+ ¢ = sy. We first find mention of
a method for solving this problem in Aryabhata’s work, but Brahmagupta gave somewhat
clearer explanations. However, either because of faulty copying over the years or beause the
oral tradition never required that every step be written down, there are many places where
Brahmagupta’s description of his method does not match the steps of his examples. The
modern explanations to be presented do, however, convey the main ideas. Note, of course,
that Brahmagupta had nothing a modern reader would consider a proof. He just presented an
algorithm.

We accompany Brahmagupta’s description of his method of kuttaka or “pulverizer,” taken
from chapter 18 of his text, with an example he used: N = 10 (mod 137) and N = 0 (mod 60).
This problem can be rewritten as the single equation 137x + 10 = 60y.

Divide the divisor having the greatest remainder (agra) by the divisor having the least remainder;
whatever is the remainder is mutually divided; the quotients are to be placed separately one below
the other.?

Therefore, divide 137 by 60 and continue by dividing the residues. In other words, apply the
Euclidean algorithm until the final nonzero remainder is reached:

137=2-60+ 17
60=3-174+9
17=1-9438
9=1-8+1

Then list the quotients one under the other:
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—_— = W N

Brahmagupta lists O for the first quotient, evidently taking the first division as 60 =0 - 137 +
60, despite his statement of which divisor is divided into which.

Multiply the remainder by an arbitrary number such that, when increased by the difference between
the two remainders (agras), it is eliminated. The multiplier is to be set down as is also the quotient.

The final remainder is 1. Multiply that by some number v so that 1- v % 10 is exactly
divisible by the last divisor, in this case 8. Brahmagupta explained that one uses the + when
there are an even number of quotients and the — when there are an odd number. Here, because
0 is one of the quotients, the last equation becomes lv — 10 = 8w. Choose v = 18 and w = 1.
The new column of numbers is then

—_ = W N O

18
1

Beginning from the last, multiply the next to last by the one above it; the product, increased by
the last, is the end of the remainders (agranta). [Continue to the top of the column.]

Multiply 18 by 1 and add 1 to get 19. Then replace the term “above,” namely, 1, by 19,
and remove the last term. Continue in this way (as in the table below) until there are only two
terms.

0 0 0 0 0 130
2 2 2 2 297 297
3 3 3 130 130
11 37 37

I 19 19

18 18

1

The top term, the agranta, is 130. So x = 130, y =297, is a solution to the original
equation. Brahmagupta, however, wanted a smaller solution, so he first determined N:

Divide it (the agranta) by the divisor having the least remainder; multiply the remainder by the
divisor having the greatest remainder. Increase the product by the greatest remainder; the result is
the remainder of the product of the divisors.

Therefore, we divide 130 by 60 and obtain a remainder of 10. Multiplying 10 by 137
and adding the product to 10 then gives 1380 as the value for N modulo the product of 137
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and 60, or N = 1380 (mod 8220). Brahmagupta then solved for y by dividing 1380 by 60
(since N = 60y) and calculated a new value for x. Hence, y = 23, x = 10, is a solution to the
equation 137x + 10 = 60y.

Although we do not know how Brahmagupta justified his procedure to his own students, we
will present a modern explanation. Begin with the equation 60y = 137x + 10, and make step-
by-step subsitutions in accordance with the successive quotients appearing in the Euclidean
algorithm:

60y = 137x + 10 y =120 — 2y 2 137x + 10 = 60(2x + 2)
17x =60z — 10 x=w=3z+u 17(3z +u) =60z — 10
9z =17u + 10 =10 = 1y 4y 9(lu +v) = 17u + 10
8u =9v — 10 u=210 =1 +w 8(1v + w) =9v — 10
v=8w+ 10

Brahmagupta then solved this last equation by inspection: w = 1, v = 18. The remaining
variables are then found by substitution, working up the column of variables.

u=lv+w=1-184+1=19 z=lu+v=1-19418=37
x=3z4+u=3-374+19=130 y=2x+2z=2-130437=297

Although both Brahmagupta in the seventh century and various Chinese authors begin-
ning in the third century were interested in solving systems of linear congruences, a close
inspection shows that the two methods were quite different, especially since the Indian author
usually dealt with a system of two congruences, while the Chinese authors dealt with a larger
system. Even when Brahmagupta did deal with a problem similar to a “Chinese remainder
problem,” such as, “What number, divided by 6, has a remainder of 5; and divided by 5, a
remainder of 4, and by 4, a remainder of 3; and by 3, a remainder of 2?,” he solved these
congruences two at a time. Namely, he first solved N = 5 (mod 6) and N =4 (mod 5) to get
N =29 (mod 30), then solved N =29 (mod 30) and N = 3 (mod 4) and so on. It appears,
then, that the only similarity between the Indian and Chinese methods is that both made use
of the Euclidean algorithm. A more interesting question, then, unanswerable with current
evidence, is whether either culture learned the algorithm from the Greeks, whether all three
learned it from an earlier culture, or whether the two Asian cultures simply discovered the
algorithm independently.

There is good evidence, however, that Brahmagupta and Aryabhata were interested in
congruence problems for the same basic reason as the Chinese, namely, for use in astronomy.
The Indian astronomical system of the fifth and sixth century had been heavily influenced by
Greek astronomy, especially in the notion that the various planets traveled on epicycles that in
turn circled the earth. Therefore, Indian astronomers, like their Greek counterparts, needed
trigonometry to be able to calculate positions. But a significant idea of Hindu astronomy,
similar to one from ancient China but not particularly important in Greece, was that of a
large astronomical period at the beginning and end of which all the planets (including the
sun and moon) had longitude zero. It was thought that all worldly events would recur with
this same period. For Aryabhata, the fundamental period was the Mahayuga of 4,320,000
years, the last quarter of which, the Kaliyuga, began in 3102 BCE. For Brahmagupta, the
fundamental period was the Kalpa of 1000 Mahayugas.
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In any case, to do calculations with heavenly bodies, one had to know their average motion.
Since it was difficult to determine these motions empirically, it became necessary to calculate
them from current observations and the fact that all the planets were at approximately the
same place at the beginning of the period. These calculations were made by solving linear
congruences.

8.5.2 The Pell Equation

The ability to solve systems of pairs of linear congruences turned out to be important in
the solution of another type of indeterminate equation, the quadratic equation of the form
Dx? £ b = y?. Today, the special case where b = 1 is usually referred to as Pell’s equation
(mistakenly named after the seventeenth-century Englishman John Pell). But although there
are indications that the Greeks could solve a few of these equations, the general case, first
developed in India, was undoubtedly the high point of medieval Indian algebra.

Brahmagupta gave the first explanation of the method of solving these problems. And,
as in the case of the kuttaka, he introduced rules for dealing with equations of this type, in
conjunction with examples. Consider the following:

He who computes within a year the square of [a number] . . . multiplied by ninety-two . . . and
increased by one that is a square, he is a calculator.??

This equation, 92x? 4+ 1= y?, will be solved here in considerably less than a year. Brah-
magupta’s solution rule began as follows:

Put down twice the square root of a given square multiplied by a multiplier and increased or
diminished by an arbitrary number.

So set down any value, say, 1, and note that if 92 is multiplied by 1% and the product added
to 8 (the arbitrary number), then the sum is a square, namely, 100. Thus, three numbers
Xg, bg, yo have been found satisfying the equation ng +by= yg. For convenience, we
will write that (xg, yp) is a solution for additive by. In this case, (1, 10) is a solution for
additive 8. Brahmagupta next wrote this solution in two rows as

Xo Yo bo
Xo Yo bo
or
1 10 8
1 10 8.

The product of the first pair, multiplied by the multiplier, with the product of the last pair, is the
[new] last root.

Namely, a new value for the “last root” y is found by setting y; = ng + yé. In this
example, y; = 92(1) 4+ 10> = 192.

The sum of the thunderbolt products [cross multiplication] is the [new] first root. The additive is
equal to the product of the additives.

A new value for the “first root” x is determined as x; = xyYg + XY Or X; = 2x(Yo, While a
new additive is b| = bg. In other words, (x1, y;) = (20, 192) is a solution for additive b; = 64,
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or 92(20)% + 64 = 1922, This result is straightforward to verify, but Brahmagupta in fact
considered the more general result, that if (i, vy) is a solution for additive ¢y and (u, vy) is
a solution for additive ¢y, then (ugv + u vy, Dugu| + vovy) is a solution for additive cyc;.
To check this result, consider the identity

D (ugvy + uvp)* + cocy = (Do + vovy)*,

given that Du(z) +co= vé and Du% +c= v%. ‘We will call this new solution the composition
of the solutions (u(, vy) and (4, v;). Brahmagupta concluded his basic rule: “The two square
roots, divided by the [original] additive or subtractive, are the [roots for] additive unity.”
In the present example, divide 20 and 192 by 8 to get (%, 24) as a solution for additive 1.
Since, however, one of these roots is not an integer, this was not a satisfactory answer. So
Brahmagupta composed this solution with itself to get the integral solution for additive 1,
(120, 1151). In other words, 92 - 1202 + 1= 11512

This example, as well as illustrating Brahmagupta’s method, shows its limitations. The
solution for additive 1 in the general case is the pair (f}—(l), i;(‘)). There is no guarantee that these
will be integers or even that one can generate integers by combining this solution with itself.
Brahmagupta simply gave several more rules and examples, without noting the conditions
under which integral solutions exist. First, he noted that composition allows him to get other
solutions for any additive, provided he knows one solution for this additive as well as a
solution for additive 1. In general, the given equation will have infinitely many solutions.

Second, if he had found a solution (u, v) for additive 4, he showed how to find a solution
for additive 1. Namely, if v is odd or u is even, then

2_1 2_3
- ((5)(5)

is the desired solution. In the case where v is even and u is odd,

2uv Du?+v? 202 -4
(wpv)=— =

47 4 4
is an integral solution. As an example of the first case, Brahmagupta solved 3x> + 1 = y? by
beginning with the solution u = 2, v = 4, for 3u” + 4 = v>.

Brahmagupta gave a similar rule for subtractive 4, as well as rules for solving the Pell
equation in other special circumstances. Although his methods were always correct, the text
contains no proofs, nor do we learn how Brahmagupta discovered the method. Why the Indian
mathematicians were interested in this problem is also a mystery. Some of Brahmagupta’s
examples use astronomical variables for x and y, but there is no indication that the problems
actually came from real-life situations.

In any case, the Pell equation became a tradition in Indian mathematics. It was studied
through the next several centuries and was solved completely by the otherwise unknown
Acarya Jayadeva (c. 1000). The solution given by Bhaskara II is more easily followed,
however.

Bhaskara’s goal in his Lilavati was to show how any equation of the form Dx? + 1 = y?

can be solved in integers. He began by recapitulating Brahmagupta’s procedure. In particular,
he emphasized that once one had found one solution pair, indefinitely many others could be
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found by composition. More importantly, however, he discussed the so-called cyclic method
(chakravala). The basic idea is that by continued appropriate choices of solution pairs for
various additives by use of the kuttaka method, one eventually reaches one that has the desired
additive 1. We present Bhaskara’s rule for the general case Dx? + 1= y? and follow its use
in one of his examples, 67x2 4+ 1= y2.

Making the smaller and larger roots and the additive into the dividend, the additive, and the divisor,
the multiplier is to be imagined.?*

Begin as before by choosing a solution pair (#, v) for any additive b. In this example, take
(1, 8) as a solution for additive —3. Next, solve the indeterminate equation um + v = bn for
m, here 1m + 8 = —3n. The resultis m = 1 + 3¢, n = —3 — ¢, for any integer ¢.

When the square of the multiplier is subtracted from the “nature” or is diminished by the “nature”
so that the remainder is small, that divided by the additive is the new additive. It is reversed if
the square of the multiplier is subtracted from the “nature.” The quotient of the multiplier is the
smaller square root; from that is found the greatest root.

In other words, choose ¢ so that the square of m is as close to D (the “nature”) as possible,

and take b; =+ D _h’”z (which may be negative) for the new additive. The new first root is

U= ”mb+” while the new last root is v| =,/ Du% + by. In the given example, Bhaskara wants
m? close to 67, so he chooses t =2 and m = 7. Then (D — m?)/b = (67 — 49)/(—3) = —6.
But, because the subtraction is of the square from the coefficient, the new additive is 6. The
new first root is u; = @ = —5, but since these roots are always squared, u; can be taken

as positive. Then v; = /67 - 25 + 6 = +/1681 = 41, and (5, 41) is a solution for additive 6.

Then it is done repeatedly, leaving aside the previous square roots and additives. They call this
the chakravala (circle). Thus there are two integer square roots increased by four, two or one. The
supposition for the sake of an additive one is from the roots with four and two as additives.

Bhaskara here noted that if the above operation is repeated, eventually a solution for
additive or subtractive four, two, or one will be reached. As already noted, from a solution
with additive or subtractive 4, a solution for additive 1 can be found. This is also easy to do
with additive or subtractive 2 and with subtractive 1. Before continuing with the example,
however, we need to discuss two questions, neither of which are addressed by Bhaskara.
First, why does the method always give integral values at each stage? Second, why does the
repetition of the method eventually give a solution pair for additives +4, £2, or £1?

To answer the first question, note that Bhaskara’s method can be derived by composing
the first solution («, v) for additive b with the obvious solution (1, m) for additive m? — D.
It follows that (', v') = (mu + v, Du + mv) is a solution for additive b(m> — D). Dividing
the resulting equation by b? gives the solution (u1, vy) = (242, Dbmv) for additive ”‘2; D

It is then clear why m must be found so that mu 4+ v is a multiple of b. It is not difficult to

. . 2_
prove, although as usual the text does not have a proof, that if m“,f” is integral, so are *— b

and 240 = 4 [ Du? 4 b3

The reason that m? — D is chosen “small” is so that the second question can be answered.
Unfortunately, the proof that the process eventually reaches additive 1 is quite difficult; the
first published version only dates to 1929.26 It may well be that neither Bhaskara nor Jayadeva
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proved the result. They may simply have done enough examples to convince themselves of its
truth. In fact, one can show that the chakravala method leads to the smallest possible solution
of the equation and therefore to every solution.

In any case, we continue with Bhaskara’s example. Beginning with 67 - 12 — 3 = 82, we
have derived 67 - 52 + 6 = 412, The next step is to solve 5m + 41 = 6n, with |m* — 67
small. The appropriate choice is m = 5. Then (u,, v,) = (11, 90) is a solution for additive
—7, or 67- 11> —7 =90 Again, solve 11m + 90 = —7n. The value m =9 works and
(u3, v3) = (27,221) is a solution for additive —2, or 67 - 272 — 2 =2212. At this point, since
additive —2 has been reached, it is only necessary to compose (27, 221) with itself. This gives
(ug, v4) = (11934, 97684) as a solution for additive 4. Dividing by 2, Bhaskara finally found
the desired solution x = 5967, y = 48,842, to the original equation 67x* + 1 = y?.

COMBINATORICS

The earliest recorded statements of combinatorical rules appear in India, although again
without any proofs or justifications. For example, the medical treatise of Susruta, perhaps
written in the sixth century BCE, states that 63 combinations can be made out of six different
tastes—bitter, sour, salty, astringent, sweet, hot—by taking them one at a time, two at a time,
three at a time, and so on.?” In other words, there are 6 single tastes, 15 combinations of two, 20
combinations of three, and so forth. Other works from the same general time period include
similar calculations dealing with such topics as philosophical categories and senses. In all
these examples, however, the numbers are small enough that simple enumeration is sufficient
to produce the answers. We do not know whether relevant formulas had been developed.

On the other hand, a sixth-century work by Varahamihira deals with a larger value. It
plainly states that “if a quantity of 16 substances is varied in four different ways, the result
will be 1820”28 In other words, since Varahamihira was trying to create perfumes using 4
ingredients out of a total of 16, he had calculated that there were precisely 1820 ( = C iﬁ)
different ways of choosing the ingredients. It is unlikely that the author actually enumerated
these 1820 combinations, and so we assume that he knew a method to calculate that number.

In the ninth century, Mahavira gave an explicit algorithm for calculating the number of
combinations:

The rule regarding the possible varieties of combinations among given things: Beginning with one
and increasing by one, let the numbers going up to the given number of things be written down
in regular order and in the inverse order (respectively) in an upper and a lower horizontal row. If
the product of one, two, three, or more of the numbers in the upper row taken from right to left be
divided by the corresponding product of one, two, three, or more of the numbers in the lower row,
also taken from right to left, the quantity required in each such case of combination is obtained as
the result.?’

Mahavira did not, however, give any proof of this algorithm, which can be translated into
the modern formula

_nn—DHm—=2)...(n—r+1
N r! '

Cn

r




FIGURE 8.9
Finding the sum of squares
using dominoes
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He simply applied the rule to two problems, one about combinations of the tastes—as his
predecessor did—and another about combinations of jewels on a necklace, where these may
be diamonds, sapphires, emeralds, corals, and pearls.

Bhaskara gave many other calculations using this basic formula and also calculated that
the number of permutations of a set of order n was n!. He was therefore able to ask and answer
the question

How many are the variations of form of the god Sambhu by the exchange of his ten attributes held
reciprocally in his several hands: namely, the rope, the elephant’s hook, the serpent, the tabor, the
skull, the trident, the bedstead, the dagger, the arrow, and the bow?30

_ Other types of discrete problems also appeared in Indian mathematics. For example,
Aryabhata presented the following:

STANZAIL, 22 The sixth part of the triple product of the term count plus one, that sum plus
the term count, and the term count, in order, is the total of the series of squares. And the
square of the total of the series of natural numbers is the total of the series of cubes.>!

These two statements give us formulas for the sums S,f, SS, of the first n integral squares
and cubes, namely, S> = {n(n + 1)(2n + 1) and S? = (1 + 2 + - - - + n)*. The first of these
formulas was in essence known to Archimedes. The second formula is almost obvious, at
least as a hypothesis, if one tries a few numerical examples.

As usual, Aryabhata gave no indication of how he discovered or proved these results. But
Nilakantha (c. 1445-1545), a member of Madhava’s school in Kerala, gave an interesting
proof of the first result in his commentary on the Aryabhatiya:

Being that this [result on the sum of the squares] is demonstrated if there is equality of the total of
the series of squares multiplied by six and the product of the three quantities, their equality is to be
shown. A figure with height equal to the term-count, width equal to the term-count plus one, [and]
length equal to the term-count plus one plus the term-count is [equal to] the product of the three
quantities. But that figure can be made to construct the total of the series of squares multiplied
by six.

Nilakantha then described the construction of this figure. At each stage k, he used three
“dominoes” of thickness 1, width &, and length 2k (Fig. 8.9). Thus, the total volume of the
dominoes is 6k>. From the largest set, he constructed four walls of the desired figure. One of
the dominoes forms one wall, a second forms the floor. The third is broken into two pieces,

1_n 2n+ 1 n+1
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one of length n 4 1 and one of length n — 1, and these form the two ends. The total length
of the box is therefore 2n + 1; its width is n + 1; and its height is n. The inside space of the
box has length 2n — 1=2(n — 1) + 1, width n = (n — 1) + 1, and height n — 1. Thus, we
can create the walls of this new space with the three dominoes of thickness 1, width n — 1,
and length 2(n — 1). We then continue until the entire box is filled. The result follows.

TRIGONOMETRY

During the first centuries of the common era, in the period of the Kushan empire and
that of the Guptas, there is strong evidence of the transmission of Greek astronomical
knowledge to India, probably along the Roman trade routes. Curiously, Ptolemy’s astronomy
and mathematics were not transmitted but the work of some of his predecessors instead,
in particular, the work of Hipparchus. Just as the needs of Greek astronomy led to the
development of trigonometry, the needs of Indian astronomy led to Indian improvements
in this field.

8.71 Construction of Sine Tables

The earliest known Indian work containing trigonometry is the Paitamahasiddhanta, written
in the early fifth century. This is the first of several similar works dealing with astronomy
and its associated mathematics written over the next several centuries. To provide a basis
for the spherical trigonometrical calculations necessary to solve astronomical problems, the
Paitamahasiddhanta contains a table of “half-chords,” the literal translation of the Sanskrit
term jya-ardha (Sidebar 8.1). Recall that Ptolemy, in order to solve triangles using a table of
chords, often had to deal with half the chord of double the angle. It was probably an unknown
Indian mathematician who decided that it would be much simpler to tabulate the half-chords
of double the angle rather than the chords themselves. Thus, in this work, as in all later Indian
astronomical works, it is this half-chord “function” that is used. Now Ptolemy tabulated his
chords in a circle of radius 60, while Hipparchus, several centuries earlier, had used a radius of
3438. Because this latter radius was used as the basis of the table in the Paitamahasiddhanta,
we surmise that it was Hipparchus’s trigonometry rather than Ptolemy’s that first reached
India. In what follows, we generally use the word “Sine” (with a capital S) to represent the
length of the Indian half-chord, given that the half-chord is a line in a circle of radius R,
where R will always be stated. We reserve the word “sine” (with a small s) for the modern
function (or, equivalently, when the radius of the circle is 1). Thus, Sin 6 = R sin 6. (A similar
convention will be used for other trigonometric functions, here and in subsequent chapters.)

We consider an early description of the construction of a Sine table, not in the imperfectly
preserved Paitamahasiddhanta, but in the Aryabhatiya. The description of the construction
method for a Sine table is given in stanza II, 12, while a table of differences for the sines is
given in stanza I, 10.

STANZAIL 12 By what number the second Sine is less than the first Sine, and by the quotient
obtained by dividing the sum of the preceding Sines by the first Sine, by the sum of these two
quantities the following Sines are less than the first Sine.>>



SIDEBAR 81 The Etymology of “Sine”
The English word “sine” comes from a series of mistrans-
lations of the Sanskrit jyd-ardha (chord-half). Aryabhata fre-
quently abbreviated this term to jya or its synonym jiva. When
some of the Hindu works were later translated into Arabic,
the word was simply transcribed phonetically into an other-
wise meaningless Arabic word jiba. But since Arabic is written
without vowels, later writers interpreted the consonants jb as

8.7
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Jjaib, which means bosom or breast. In the twelfth century,
when an Arabic trigonometry work was translated into Latin,
the translator used the equivalent Latin word sinus, which also
meant bosom, and by extension, fold (as in a toga over a breast),
or a bay or gulf. This Latin word has now become our English
“sine.”

(O8]

The “first Sine” s, in Indian trigonometry always means the Sine of an arc of 3%0 = 3°45,
and this Sine, in a circle of radius 3438, is the same as the arc measure in minutes, namely,
s1=225. The rule in this stanza then allows us to calculate the Sines of each arc in turn
in steps of 3°45'. Thus, to calculate s,, the Sine of 7°30’, we subtract 225 from 225 to get
0 (at this stage, the first and second Sines are the same), then divide 225 by 225 to get 1,
then subtract 0 + 1 =1 from 224 to get 224. That number is the first Sine difference, so
8§, =225 + 224 = 449. To get s3, subtract 224 from 225 to get 1, then divide 449 by 225,
giving 2, then subtract 1 4 2 = 3 from 225 to get 222 as the next Sine difference. Thus, s3,
the Sine of 11°15, is given by s3 = 449 + 222 = 671. In general, then, the nth Sine s, (the
Sine of n x 3°45') is calculated as

S1+Sz+"‘5n1>

Sp =381+ |81 —
S1

All of the Sine differences are listed in

STANZA L, 10  The twenty-four Sine [differences] reckoned in minutes of arc are 225, 224,
222, 219, 215, 210, 205, 199, 191, 183, 174, 164, 154, 143, 131, 119, 106, 93, 79, 65, 51,
37,22,7.3

The values here actually show several slight discrepancies from the values calculated
according to the method given above. Perhaps the fractional values of the division process
were from time to time distributed among the Sines. In any case, it seems unlikely that the
Indians actually originally calculated the Sines by this method. More likely, they calculated
them as Hipparchus did: The Sine of 90° is equal to the radius 3438'; the Sine of 30° is half
the radius, 1719’; the Sine of 45° is % =2431’; and the Sines of the other arcs are calculated

by use of the Pythagorean Theorem and the half-angle formula.

Once the table of Sines from 3°45" to 90° in steps of 3°45" had been constructed, a table of
differences and second differences could also have been constructed. If the Indians noticed
then that the second differences were proportional to the Sines, it would not have been difficult
to construct the rule given in stanza II, 12. Similar Sine tables of roughly the same accuracy
were produced in India by many authors over the next several hundred years. Varahamihira
(sixth century) tabulated the Cosine as well as the Sine for his radius of 120 and described the
standard relationships between these functions. And the Sirya-Siddhanta, probably written
in the seventh century, may have been the source of the Chinese calculation of the Tangent
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function discussed earlier and even hints at the Secant. For although it does not tabulate these
functions, verses 21-22 of chapter 3, in discussing the shadow cast by a gnomon, read, “Of
[the sun’s meridian zenith distance] find the base Sine and the perpendicular Sine [Cosine].
If then the base Sine and radius be multiplied respectively by the measure of the gnomon in
digits, and divided by the perpendicular Sine, the results are the shadow and hypotenuse at
mid-day.”3*

8.72 Approximation Techniques

Interestingly, no Indian astronomical text until the time of Bhaskara II contained a Sine
table for arcs closer together than 3%0. Instead, Indian mathematicians developed methods
of approximation. The simplest method, of course, was linear interpolation between the
tabulated values. But as early as the seventh century, Brahmagupta had developed a somewhat
more accurate interpolation scheme using the second-order differences. In modern notation,
if A; represents the ith Sine difference (given in Aryabhata’s stanza I, 10), «; the ith arc, and
h= 3%0 the interval between these arcs, then Brahmagupta’s result is that

. : 0 6?
Sln(Oll' =+ 9) = Slll(O[i) + E(Al =+ Ai+l) — 2_]/l2(Al — Ai+])'
For example, to calculate Sin(20°), note that 20 = 18% + l;{, where 18% = x5. The formula
then gives
14 11)?
Sin(20) = Sin (18§ + 11) = Sin (18§> + 43 (2154 210) — (Iy)
4 4 4 2(39) 2(33)2

(215 - 210)
1

1 1
=11054 —(425) — —(5) =1176
6( ) 18()

to the nearest integer, where the Sine is for a circle of radius 3438.

Brahmagupta unfortunately gave no justification for this interpolation formula, but we
note that the right side of the formula is the unique quadratic polynomial in 6 that agrees
with the left side for = —33°, 0 = 0°, and @ = 33°. Curiously, Brahmagupta himself also
used an algebraic formula to approximate Sines, a formula that seems to have been first given
by Bhaskara I in Sanskrit verse in the Mahabhaskariya:

I briefly state the rule [for finding the Sine] without making use of the Sine differences 225 and so
on. Subtract the degrees of the [arc] from the degrees of half a circle. Then multiply the remainder
by the degrees of the [arc] and put down the result in two places. At one place subtract the result
from 40,500. By one-fourth of the remainder [thus obtained] divide the result at the other place as
multiplied by the radius. . . . Thus is obtained the [Sine to that radius].>

In modern notation, Bhaskara’s formula is

R6(180 — 6) ~ 4R0(180 —0)

Sin@:Rsin@:1 = .
7(40,500 — 6(180 — 0) 40,500 — 6(180 — 9)

If we use the formula to calculate the Sine of 6 = 20°, we get
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Sin20=3438. — - 20-160 1149
40,500 — 20 - 160

to the nearest integer, a value in error by approximately 0.3%.

There are two questions to ask here. First, how was this algebraic formula derived? And
second, why did the Indians use an algebraic formula for the Sine when they had an accurate
table, derived geometrically, as well as standard interpolation methods? Because as usual
the ancient sources give us little help with these questions, we will consider the simplest
modern suggestion. This idea is that the inventor noted the close resemblance of the Sine
function R sin 6 to the parabolic function P () = RO(180 — 6)/8100 in the sense that both
functions are 0 at = 0 and 6 = 180 and are equal to R at & = 90. He then noted that the
same is true for the function F(#) =60 (180 — #) Sin 8/8100. Because P(30) = (5/9)R and
F(30) = (5/18) R, he proceeded to get a formula giving the correct value R /2 for 6 = 30 by
the use of simple proportions:

R
'S

l—

P(®) —Sinf
F(©)—Sin6

|| \oren

R —
R —

D —

1

o]

This reduces to the equation

R6(180 — 6) — 8100 Sin 6 1

(180 —0) Sin6 —8100Sin 6 4

s

which in turn gives us Bhaskara’s formula.3

The apparent method of producing an approximation formula by beginning with a good
guess and then tinkering with it to make it agree with the correct result on a few selected
values appears in other parts of Indian mathematics. But since no author says that he is just
“tinkering,” it is difficult to know not only how the results were obtained but also why. It may
simply be that, as usual, mathematicians exercised their creative faculties to produce clever
and beautiful results. And because the Sine function was necessary in so many calculations
for astronomical purposes, it was a benefit to astronomers to have a very accurate rational
approximation to the Sine that saved them the labor of constantly doing interpolations in
the published Sine tables. In general, Indian mathematicians never restricted themselves to
methods based on a particular formal proof structure. Thus, even though it is certain that they
often knew how to “prove” mathematical results, the extant texts often demonstrate that once
there was sufficient plausibility to a result, it was just passed down through the generations.

8.73 Power Series

Now in the time of Bhaskara I and Brahmagupta, algebraic approximations or interpolation
schemes using differences were sufficient for the use to which these Sine values were put in
astronomy. But over the next several hundred years, the necessity grew to have more accurate
Sine tables. This necessity came out of navigation, for the sailors in the Indian Ocean needed
to be able to determine precisely their latitude and longitude. Since observation of the pole star
was difficult in the tropics, one had to determine latitude by observation of the solar altitude at
noon, . A standard formula for determining the latitude ¢, given in an astronomical work of
Bhaskara I, was R Sin § = Sin ¢ Sin p, where § is the sun’s declination (known from tables
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FIGURE 8.10

Derivation of power series for
sine and cosine

or calculations). Determination of longitude was somewhat more difficult, but this could also
be accomplished using trigonometry if one knew the distance on the earth’s surface of one
degree along a great circle. In any case, the more accurate the Sine values, the more accurately
one could determine one’s location. Thus, mathematicians in south India, in what is now the
state of Kerala, developed power series for the Sine, Cosine, and Arctangent, beginning late
in the fourteenth century. These series appear in written form in the Tantrasamgraha-vyakhya
of about 1530, a commentary on a work by Nilakantha. Derivations appear in the Yuktibhasa,
whose author credits these series to Madhava (1359-1425).

The Indian derivations of these results begin with the obvious approximations to the Cosine
and Sine for small arcs and then use a “pull yourself up by your own bootstraps” approach to
improve the approximation step-by-step. The derivations all make use of the notion of Sine
differences, an idea already used much earlier. In our discussion of the Indian method, we
will use modern notation.

We first consider the circle of radius R with a small arc « = AC ~ AC (Fig. 8.10). From
the similarity of triangles AGC and O E B, we get

X _ Y g R2TN_X

o R o R
_M—Y _ T
R y X

or

In modern terms, if /BOF =0 and /BOC = /AO B = d6, these equations amount to

Sin(6 + d6) — sin(@ — dg)y = 2= _ @x _ 2Rd6

r TR cosf =2cos b db

and
c0s(8 + df) — cos(§ — doy = 2~ ¥ _ 2 _ _2Rd6
R R2

(These results, of course, almost give the derivative of the sine and cosine.)

sinf = —2sin 6 db.
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FIGURE 8.11
Differences of y’s ‘\
Y
X

Now, suppose we have a small arc s divided into n equal subarcs, with o = s/n. For
simplicity, we take R = 1, although the Indian mathematicians did not. By applying the
previous results repeatedly, we get the following sets of differences for the y’s (Fig. 8.11)
(where y,, = y =sin s):

Apy =Yp — Yuo1 = 0xy
Ay 1Y = Ypo1 = Yn—2 = 0X,

Apy =y — y1=0axp
Ay =y;— Yo =ox;.

Similarly, the differences for the x’s can be written

Ay iX =X, — X1 =—ay,_
Apx = X3 —xp = —ay,
Ax =Xy — X1 = —ay.

‘We next consider the second differences on the y’s:

Apy — Ay =Yy — y1 — ¥+ Yo = a(xy — x)) = —a’y,.

In other words, the second difference of the sines is proportional to the negative of the sine.
But since Ay = y;, we can write this result as

Ayy =y —a’y.
In general, we find that

2 2 2
Ay=y1—ayp—ay, — - — oy
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But the sine equals the sum of its differences:
Y=y =Ay Ay + Ay
=y — i+ G+ F Gty + Gyt oDl

Also, s/n = y; & a, or ny; & s. Naturally, the larger the value of n, the better each of these
approximations is. Therefore,

2
. s
y~s— lim (—) i+Oi+y)+--+ O+t + -]
n—oo n
Next we add the differences of the x’s. We get
Xp—Xp=—a(y+y+-+y,-0)-

But x,, & x = cos s and x; ~ 1. It then follows that

n— o0

. )
x~1— lim <;> U1+t + v

To continue the calculation, the Indian mathematicians needed to approximate each y;
and use these approximations to get approximations for x = cos s and y = sin s. Each new
approximation in turn is placed back in the expressions for x and y and leads to a better
approximation. Note first that if y is small, y; can be approximated by is/n. It follows that

. s s 2s (n—1s
x~1l—lim (- ) |-+—+- -+ ——
n>oo\n/)|n n n

2
—1— lim <5> 424+ @ —1]

n—o0 n
2 2
=1— lim _|:n__z:|
n—oo p 2 2
_i-5
2

Note that in this calculation, we replaced the sum of the first n — 1 integers by a simple
expression. To go further, Jyesthadeva needed to know similar formulas for the sums of
integral squares, integral cubes, and so on. In particular, he needed to know that

-1
”Z ik B nk+1
= k+1
This result was known in India, as was the result

n—1 p n—1 n—1
D\ i) =n it =D
i=l i=1

p=1 \i=1

+ lower-order terms.

from which the earlier result was proved. Since both of these results were discovered several
hundred years earlier in the Islamic world, we postpone discussion of them until the next
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chapter. But we will use these results in what follows. In particular, the former result will be
used in the form

-1 .k
fim 2=t L
n—oo pkt+l k + 1

Thus, to get our new approximation for y, we proceed as follows:

. s\ [s s 25 s 25 (n—1s
yxs— lim (- -+{-+—)++{-+—+F+—
n—o00 \ n n non n n n

3
=s—ngngo%[1+(1+2)+(1+2+3)+--~+(1+2+--~+(n—1))]
—5— lim s—3[n(1+2—|—---(n—1))—(12+22+---+(n—1)2)]

n—oo n3

n—1 . n—1.2
. 1 . 1
=5 —5° lim [Zl:l — Lizi ]
n—oo n2 n3
B <1 _ 1)
2 3
S3
=85 — —.
6

We thus have a new approximation for y and therefore for each y;.

To improve the approximation for sine and cosine, we now assume that y; = (is/n) —
(is)3/ (6n%) in the expression for x = cos s and proceed as before. We use the two sum
formulas in the case k = 3 to get

x~1— ﬁ + ﬁ
2 24
Similarly, we get a new approximation for y = sin s:
S 3 + S 5
Ns—— 4 —.
Y 6 120

Because Jyesthadeva considered each new term in these polynomials as a correction to the
previous value, he understood that the more terms taken, the more closely the polynomials
approach the true values for the sine and cosine. The polynomial approximations can thus be
continued as far as necessary to achieve any desired approximation. The Indian authors had
therefore discovered the sine and cosine power series.

TRANSMISSION TO AND FROM INDIA

We are much better informed about Indian mathematics throughout history than we are about
the mathematics of China. We know, for example, that India learned trigonometry (and also
some astronomy) from Greek sources. We also know that Islamic scholars learned Indian
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trigonometry when Indian works were brought to Baghdad in the eighth century. And, of
course, our decimal place value system traveled from India through Islam to western Europe
over a period of several hundreds of years. On the other hand, there is no record of the
Indian solution of the Pell equation being known in Europe before European scholars solved
it themselves (and in a way different from that of the Indians). Nor do we know how the
quadratic formula reached India or whether Islamic scholars learned of it from the Indians.
We know that some Indian trigonometric ideas were transmitted to China, but whether the
double difference method of finding heights and distances traveled from one of these cultures
to the other is not known.

The most interesting question about transmission, however, relates to the power series for
the sine and cosine. There is certainly no available documentation showing that any Europeans
knew of the Indian developments in this area before the Europeans themselves worked out
the power series in the mid-seventeenth century. However, there is some circumstantial
evidence. First of all, Europeans, just like the Indians, needed precise trigonometric values
for navigation. Secondly, the texts in which these power series were described were easily
available in south India. Third, the Jesuits, in their quests to proselytize in Asia, established a
center in south India in the late sixteenth century. In general, wherever the Jesuits went, they
learned the local languages, collected and translated local texts, and then set up educational
institutions to train disciples. But the question remains as to whether, in fact, the Jesuits did
find these particular texts and bring them back in some form to Europe. As we will discuss in
the chapters on calculus, in the period from 1630 to 1680 some of the basic ideas present in
these Indian texts began to appear in European works. In the case of Newton, we can trace his
thoughts through his notebooks and therefore have no reason to believe he was aware of Indian
material. But for many of the other European mathematicians, we have little documentary
evidence of how they discovered and elaborated on their ideas. So at the moment, we can
only speculate as to whether Indian trigonometric series were transmitted in some form to
Europe by the early seventeenth century.

; EXERCISES

Use Aryabhata’s cube root algorithm to find the cube root
of 13,312,053.

find the midpoint E of LB, and draw EG parallel to LF.
Move the rectangle £ BG D from where it is to the bottom
of the diagram, forming the rectangle C F H K. Complete

2. Show that the construction given in the text for constructing the square by adding the square on F'G. Show that using
asquare equal to the difference of two squares is correct (see the result of Exercise 2 gives the result.
Fig. 8.3). Here, ABC D is the larger square with side equal
to a, and P QRS the smaller square with side equal to b. This is the method presented in the text for finding a circle
We cut off AK = b from AB and draw K L perpendicular whose area is equal to a given square: In square ABC D, let
to AK intersecting DC in L. With K as center and radius M be the intersection of the diagonals (see Fig. 8.5). Draw
K L, draw an arc meeting AD at M. Thus, show that the the circle with M as center and M A as radius; let M E be
square on AM is the required square. the radius of the circle perpendicular to the side AD and
cutting ADin G.Let GN = %GE. Then M N is the radius
3. Show that the construction given in the text for transform- of the desired circle. Show that if AB=ys and MN =r,

ing a rectangle into a square is correct (see Fig. 8.4). The
rectangle is ABCD. Find L on AB sothat AL = AC. Then

then © = 2%6‘/5. Show that this implies a value for 7 equal
to 3.088311755.



The Sulbasiitra method of “squaring a circle” of diameter
d takes the side of the desired square to be % + 8X—129 —
ngm + Wlxexs times d. Show that this is equivalent
to using a value for  equal to 3.088326491.

Solve this problem from the Lilavati: There is a hole at
the foot of a pillar nine hastas high, and a pet peacock
standing on top of it. Seeing a snake returning to the hole at
a distance from the pillar equal to three times its height, the
peacock descends upon it slantwise. Say quickly, at how
many hastas from the hole does the meeting of their two
paths occur?

Brahmagupta asserts that if ABCD is a quadrilateral in-
scribed in a circle, with side lengths a, b, ¢, d (in cyclic
order) (see Fig. 8.8), then the lengths of the diagonals AC
and B D are given by

AC — (ac + bd)(ad + bc)
ab +cd

and similarly

BD— (ac + bd)(ab + cd).
ad + bc

Prove this result as follows:

a. Let /ABC =6. Then /ADC =m — 6. Let x = AC.
Use the law of cosines on each of triangles ABC and
ADC to express x> two different ways. Then, since
cos(r — 0) = — cos 0, use these two formulas for x2 to
determine cos 6 as a function of a, b, ¢, and d.

b. Replace cos @ in your expression for x2 in terms of ¢ and
b by the value for the cosine determined in part a.

c. Show that
cd(@® + b?) + ab(c* + d?) = (ac + bd)(ad + bc).

d. Simplify the expression for x? found in part b by using
the algebraic identity found in part c. By then taking
square roots, you should get the desired expression for
x = AC. (Of course, a similar argument will then give
you the expression for y = BD.)

Brahmagupta asserts that if ABCD is a quadrilateral in-
scribed in a circle, as in Exercise 7, then if s = %(a +
b+ ¢ +d), the area of the quadrilateral is given by § =
V(s —a)(s —b)(s — c)(s — d) (Fig. 8.12). Prove this re-
sult as follows:

EXERCISES 201

FIGURE 8.12

Area of a quadrilateral inscribed in a circle

. In triangle ABC, drop a perpendicular from B to point

E on AC. Use the law of cosines applied to that triangle
to show that b* — a* = x(x — 2AE).

. Let M be the midpoint of AC, so x =2AM. Use the

result of part a to show that EM = % —a®)/2x.

. In triangle ADC, drop a perpendicular from D to point

F on AC. Use arguments similar to those in parts a and
b to show that FM = (d* — ¢*)/2x.

. Denote the area of quadrilateral ABC D by P. Show that

P= %x(BE + DF) and therefore that P2 = %xz(BE +
DF).

. Extend BE to K such that ZBK D is a right angle, and

complete the right triangle BK D. Then BE + DF =
B K. Substitute this value in your expression from part d;
then use the Pythagorean Theorem to conclude that P? =
%xz(y2 — EF2).

. Since EF = EM + FM, conclude that EF = [(b2 +

d? — (a® + cz)]/2x. Substitute this value into the ex-
pression for P2 found in part e, along with the values for
x? and y? found in Exercise 7. Conclude that

21 LT T I NP R
P _4(ac+bd) 16[(1; +d*) — @+ A
- %(4(“ +bd)? —[(B> +d>) — (@ + AP).

.Sinces:%(a—{—b—i—c—f—d),showthats—a:

jb+c+d—a),s—b=3@+c+d—b),s—c=
%(a—{—b—f—d—c),ands—d:%(a—}-b—}—c—d).

. To prove the theorem, it is necessary to show that the final

expression for P2 given in part f is equal to the product of
the four expressions in part g. It is clear that the denomi-
nators are both equal to 16. To prove that the numerators
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10.

11.

12.

13.

14.
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are equal involves a lot of algebraic manipulation. Work
carefully and show that the two numerators are in fact
equal.

Solve the following problem from the Bakhshali manu-
script: One person goes 5 yojanas a day. When he has pro-
ceeded for seven days, the second person, whose speed is
9 yojanas a day, departs. In how many days will the second
person overtake the first?

Solve the following problem from Mahavira: “One night, in
amonth of the spring season, a certain young lady . . . was
lovingly happy along with her husband on . . . the floor of a
big mansion, white like the moon, and situated in a pleasure
garden with trees bent down with the load of the bunches
of flowers and fruits, and resonant with the sweet sounds
of parrots, cuckoos and bees which were all intoxicated
with the honey obtained from the flowers therein. Then on a
love quarrel arising between the husband and the wife, that
lady’s necklace made up of pearls became sundered and fell
on the floor. One-third of that necklace of pearls reached the
maid-servant there; one-sixth fell on the bed; then one-half
of what remained (and one-half of what remained thereafter
and again one-half of what remained thereafter and so on,
counting six times in all) fell all of them everywhere; and
there were found to remain (unscattered) 1161 pearls. . . .
Give out the (numerical) measure of the pearls (in that
necklace).”3’

Solve the following problem from Mahavira: There are 4
pipes leading into a well. Among these, each fills the well
(in order) in 1/2, 1/3, 1/4, and 1/5 of a day. In how much
of a day will all of them together fill the well and each of
them to what extent?

Another problem from Mahavira: Of a collection of mango
fruits, the king took 1/6; the queen took 1/5 of the re-
mainder, and three chief princes took 1/4, 1/3, 1/2 of what
remained at each step; and the youngest child took the re-
maining three mangoes. O you, who are clever in working
miscellaneous problems on fractions, give out the measure
of that collection of mangoes.

Another problem from Mahavira: One-third of a herd of
elephants and three times the square root of the remaining
part of the herd were seen on a mountain slope; and in a lake
was seen a male elephant along with three female elephants
constituting the ultimate remainder. How many were the
elephants here?

Another problem from Mahavira: If 3 peacocks cost 2 coins,
4 pigeons cost 3 coins, 5 swans cost 4 coins, and 6 sarasa
birds cost 5 coins, and if you buy 72 birds for 56 coins, how
many of each type of bird do you have?

15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

This problem is from Brahmagupta’s work on congruences.
Given that the sun makes 30 revolutions through the eclip-
tic in 10,960 days, how many days have elapsed (since the
sun was at a given starting point) if the sun has made an
integral number of revolutions plus 8080/10,960 of a rev-
olution, that is, “when the remainder of solar revolutions
is 8080.” If y is the number of days sought and x is the
number of revolutions, then, because 30 revolutions take
10,960 days, x revolutions take (1096/3)x days. Therefore,
y = (x 4+ 808/1096)(1096/3), or 1096x + 808 = 3y. Thus,
solve N = 808 (mod 1096) and N = 0 (mod 3).

Solve the congruence N = 23 (mod 137), N =0 (mod 60)
using Brahmagupta’s procedure.

Solve 1096x + 1= 3y using Brahmagupta’s method. Given
a solution to this equation (with “additive” 1), it is easy to
find solutions to equations with other additives by simply
multiplying. For example, solve 1096x + 10 = 3y.

Prove that Brahmagupta’s procedure does give a solution
to the simultaneous congruences. Begin by noting that the
Euclidean algorithm allows one to express the greatest com-
mon divisor of two positive integers as a linear combination
of these integers. Note further that a condition for the solu-
tion procedure to exist is that this greatest common divisor
must divide the “additive.” Brahmagupta does not mention
this, but Bhaskara and others do.

Solve the problem N = 5 (mod 6) =4 (mod 5) =
3 (mod 4)) =2 (mod 3)) by the Indian procedure and by
the Chinese procedure. Compare the methods.

Solve the congruence N = 10 (mod 137) = 0 (mod 60) by
the Chinese procedure and compare your solution step-by-
step with the solution by Brahmagupta’s method. How do
the two methods compare?

Solve the indeterminate equation 177 — 1 = 75m by both
the Indian and Chinese methods explicitly using the Eu-
clidean algorithm. Compare the solutions.

Prove that D(uovl + Mlvo)z + cocp = (DM()MI + 1)0111)2
given that Dué +cp= v(z) and Du% +c = v?.

Solve 83x2 + 1= y? by Brahmagupta’s method. Begin by
noting that (1, 9) is a solution for subtractive 2.

Show that if (i, v) is a solution to Dx? — 4 = y2, then
(w1, vp) = Guo@* + D? +3), @ +2)[3 0 + D> +
3) — 1]) is a solution to Dx2 + 1= y? and that both 1y and
vy are integers regardless of the parity of u or v.

Solve 13x2 4+ 1 = y? by noting that (1, 3) is a solution for
subtractive 4 and applying the method of Exercise 24.



26. Show that if (u, v) is a solution to Dx? 4 2 = y?, then
(uy, vy) = (uv, v2 — 1) is a solution to Dx? 4 1= y2. De-
duce a similar rule if (u, v) is a solution to Dx2? — 2 = y2.

27. Solve 61x% 4+ 1= y? by Bhaskara’s process. The solution
is x =226,153,980, y = 1,766,319,049.

28. A combinatorics problem from Bhaskara: In a pleasant,
spacious, and elegant edifice, with eight doors, constructed
by a skillful architect as a palace for the lord of the land,
tell me the combinations of apertures taken one, two, three,
and so on, at a time.

29. Calculate the fourth, fifth, and sixth Sine differences by
using Aryabhata’s method. Then determine the fourth, fifth,
and sixth Sine values.

30. Use a graphing calculator and/or calculus techniques to
show that the algebraic formula of Bhaskara I approximates
the Sine between 0 and 180 degrees with an error of no more
than 1%. Find the values that are most in error.

31. Show that Bhaskara’s algebraic formula for the Sine can be
rewritten as an approximation formula for the modern sine
in the form
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16x(m — x)

sinx % ——————2
5m2 — dx(w — x)

where x is given in radians. Graph this function on a graph-
ing calculator from O to 7 and compare it with the graph of
sin x on that interval.

32. Use both the interpolation scheme of Brahmagupta and the
algebraic formula of Bhaskara I to approximate sin(16°).
Compare the two values to each other and to the exact value.
What are the respective errors?

33. Continue the process described for determining the power
series for the sine and cosine for two more steps in each
case. That is, beginning with y; ~ (is/n) — (is)3/(6n%),
show that x = cos s & 1 — s2/2 + s*/24 — s%/720 and y =
sins & s — 53/6 + 5°/120 — 57 /5040.

34. Devise a lesson for a number theory course on solving
indeterminate equations of the form rx + ¢ = sy, using the
methods of Brahmagupta.

35. Why would the Indians have thought it better to use an
algebraic approximation to the sine function rather than
calculate values using geometric methods and methods of
interpolation?
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The Mathematics of Islam

You know well . . . for which reason I began
searching for a number of demonstrations
proving a statement due to the ancient
Grecks . .. and which passion I felt for
the subject . . . so that you reproached me
my preoccupation with these chapters of
geometry, not knowing the true essence

of these subjects, which consists precisely
in going in each matter beyond what

is necessary. . .. Whatever way he [the
geometer] may go, through exercise will
he be lifted from the physical to the
divine teachings, which are little accessible
because of the difficulty to understand
their meaning . . . and because of the
circumstance that not everybody is able

to have a conception of them, especially not
the one who turns away from the art of
demonstration.

—Preface to the Book on Finding the Chords
in the Circle by al-Birtni, c. 1030!

t is told that as a student, Omar Khayyam made a compact with
two fellow students, Nizam al Mulk and Hassan ibn Sabbah, to
the effect that the one who first achieved a high position and
great fortune would help the other two. It was Nizam who in fact
became the grand vizier of the Seljuk Sultan Jalal al-Din Malik-shah
and proceeded to fulfill his promise. Hassan received the position of
court chamberlain, but after he attempted to supplant his friend in
the sultan’s favor, he was banished from the court. Omar, on the other
hand, declined a high position, accepting instead a modest salary that

permitted him to have the leisure to study and write.
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INTRODUCTION TO MATHEMATICS IN ISLAM

In the first half of the seventh century, a new civilization came out of Arabia. Under the
inspiration of the prophet Muhammad, the new monotheistic religion of Islam quickly
attracted the allegiance of the inhabitants of the Arabian Peninsula. In less than a century after
Muhammad’s capture of Mecca in 630, the Islamic armies conquered an immense territory as
they propagated the new religion first among the previously polytheistic tribes of the Middle
East and then among the adherents of other faiths. Syria and then Egypt were wrested from the
Byzantine empire. Persia was conquered by 642, and soon the victorious armies had reached
as far as India and parts of central Asia. In the west, North Africa was quickly overrun, and
in 711 Islamic forces entered Spain. Their forward progress was eventually halted at Tours
by the army of Charles Martel in 732. Already, however, the problems of conquest were
being replaced by the new problems of governing the immense new empire. Muhammad’s
successors, the caliphs, originally set up their capital in Damascus, but after about a hundred
years of wars, including great victories but also some substantial defeats, the caliphate split
up into several parts. In the eastern segment, under the Abbasid caliphs, the growth of luxury
and the cessation of wars of conquest created favorable conditions for the development of a
new culture.

In 766 the caliph al-Mansur founded his new capital of Baghdad, a city that soon became
a flourishing commercial and intellectual center. The initial impulses of Islamic orthodoxy
were soon replaced by a more tolerant atmosphere, and the intellectual accomplishments
of all residents of the caliphate were welcomed. The caliph Hariin al-Rashid, who ruled
from 786 to 809, established a library in Baghdad. Manuscripts were collected from various
academies in the Near East that had been established by scholars fleeing from the persecutions
of the ancient academies in Athens and Alexandria. These manuscripts included many of
the classic Greek mathematical and scientific texts. A program of translation into Arabic
was soon begun. Hartin’s successor, the caliph al-Ma’miin (813—833), established a research
institute, the Bayt al-Hikma (House of Wisdom), which was to last over 200 years. To this
institute were invited scholars from all parts of the caliphate to translate Greek and Indian
works as well as to conduct original research. By the end of the ninth century, many of the
principal works of Euclid, Archimedes, Apollonius, Diophantus, Ptolemy, and other Greek
mathematicians had been translated into Arabic and were available for study to the scholars
gathered in Baghdad. Islamic scholars also absorbed the ancient mathematical traditions of
the Babylonian scribes, still evidently available in the Tigris-Euphrates Valley, and in addition
learned the mathematics of the Hindus.

The Islamic scholars during the first few hundred years of Islamic rule did more than just
bring these sources together. They amalgamated them into a new whole and, in particular,
as the opening quotation indicates, infused their mathematics with what they felt was divine
inspiration. Creative mathematicians of the past had always carried investigations well beyond
the dictates of immediate necessity, but in Islam many felt that this was a requirement
of God. Islamic culture in general regarded “secular knowledge” not as in conflict with
“holy knowledge,” but as a way to it. Learning was therefore encouraged, and those who
had demonstrated sparks of creativity were often supported by the rulers (usually both
secular and religious authorities) so that they could pursue their ideas as far as possible.
The mathematicians responded by always invoking the name of God at the beginning and
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end of their works and even occasionally referring to Divine assistance throughout the texts.
Furthermore, since the rulers were naturally interested in the needs of daily life, the Islamic
mathematicians, unlike their Greek predecessors, nearly all contributed not only to theory
but also to practical applications.?

By the eleventh century, however, the status of mathematical thought in Islam was be-
ginning to change. It appears that, even when mathematics was being highly developed in
Islam, the areas of mathematics more advanced than basic arithmetic were classified as “for-
eign sciences,” in contrast to the “religious sciences,” including religious law and speculative
theology. To many Islamic religious leaders, the foreign sciences were potentially subver-
sive to the faith and certainly superfluous to the needs of life, either here or hereafter. And
although the earliest Islamic leaders encouraged the study of the foreign sciences, over the
centuries the support for such study lessened as more orthodox religious leaders came to
the fore. More and more, the institutions of higher learning throughout the Islamic world,
the madrasas, tended to concentrate on the teaching of Islamic law. A scholar in charge of
one of these schools could, of course, teach the foreign sciences, but if he did, he could be
the subject of a legal ruling from traditionalists, a ruling that would in fact be based on the
law establishing the school specifying that nothing inimical to the tenets of Islam could be
taught. Thus, although there were significant mathematical achievements in Islam through
the fifteenth century, gradually science became less important.

Given the influence of Islam on science in general, and mathematics in particular, the
mathematics of this period will be referred to here as “Islamic” rather than “Arabic,” even
though not all of the mathematicians were themselves Moslems. Nevertheless, it was the
Arabic language that was generally in use in the Islamic domains, and hence the works to be
discussed were all written in that language. A complete history of mathematics of medieval
Islam cannot yet be written, since so many of these Arabic manuscripts lie unstudied and even
unread in libraries throughout the world. The situation has been improving recently as more
and more texts are being edited and translated, but political difficulties continue to block
access to many important collections. Still, the general outline of mathematics in Islam is
known. In particular, Islamic mathematicians fully developed the decimal place value number
system to include decimal fractions, systematized the study of algebra and began to consider
the relationship between algebra and geometry, brought the rules of combinatorics from
India and reworked them into an abstract system, studied and made advances on the major
Greek geometrical treatises of Euclid, Archimedes, and Apollonius, and made significant
improvements in plane and spherical trigonometry (Fig. 9.1).

DECIMAL ARITHMETIC

The decimal place value system had spread from India at least as far as Syria by the mid-
seventh century. It was certainly available in Islamic lands by the time of the founding of the
House of Wisdom. In fact, in 773 an Indian scholar visited the court of al-Manstr in Bagh-
dad, bringing with him a copy of an Indian astronomical text, quite possibly Brahmagupta’s
Brahmasphutasiddhanta. The caliph ordered this work translated into Arabic. Besides con-
taining the Indian astronomical system, this work included at least some indication of the
Hindu number system. The Moslems, however, already had a number system with which
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SIDEBAR 91 Arabic Names

In our initial reference to a particular Islamic mathematician, (“abi” means “father of”’), and one or more appellations indi-
we give his complete name, although afterwards we abbrevi- cating some particular characteristic. For example, al-Uqlidisi
ate it for reasons of space. Note that the Arabic name not only means having to do with Euclid. Namely, the mathematician in
includes the given name of the person, but also may include question was probably a copyist of Arabic versions of Euclid’s
his lineage to one or more generations (“ibn" means “son of”), works.

the place of his or his ancestors’ birth, the name of his son

those who needed to use mathematics were quite content. In fact, there were two systems in
use. The merchants in the marketplace generally used a form of finger reckoning, which had
been handed down for generations. In this system, calculations were generally carried out
mentally. Numbers were expressed in words, and fractions were expressed in the Babylonian
scale of sixty. When numbers had to be written, a ciphered system was used in which the
letters of the Arabic alphabet denoted numbers. Many Arabic arithmetic texts in which one
or the other of these systems was discussed were written between the eighth and the thirteenth
centuries.

Gradually, the knowledge of the Hindu system began to seep into Islamic mathematics. The
earliest available arithmetic text that deals with the Hindu numbers is the Kitab al-jam ‘wal
tafriq bi hisab al-Hind (Book on Addition and Subtraction after the Method of the Indians) by
Muhammad ibn Miisa al-Khwarizmi (c. 780-850), an early member of the House of Wisdom
(Sidebar 9.1). Unfortunately, there is no extant Arabic manuscript of this work, only several
different Latin versions made in Europe in the twelfth century. In his text, al-Khwarizmi
introduced nine characters to designate the first nine numbers and, as the Latin versions tell
us, a circle to designate zero. He demonstrated how to write any number using these characters
in our familiar place value notation. He then described the algorithms of addition, subtraction,
multiplication, division, halving, doubling, and determining square roots, and gave examples
of their use. The algorithms, however, were usually set up to be performed on the dust board, a
writing surface on which sand was spread. Thus, calculations were generally designed to have
figures erased at each step as one proceeded to the final answer. Al-Khwarizmi sometimes
expressed fractions in the Egyptian mode as sums of unit fractions and other times used
sixtieths. In the latter case, he used the old Babylonian place value system for fractions,
noting, for example, that the product of 7 minutes (i.e., sixtieths) by 6 minutes will be 42
seconds (i.e., 3600ths) and the product of 7 seconds by 9 minutes will be 63 thirds (i.e.,
216,000ths). It is thus important to note that one of the most important features of our place
value system, decimal fractions, was still missing. Nevertheless, al-Khwarizmi’s work was
important not only in the Islamic world but also because it introduced many Europeans to the
basics of the decimal place value system (Sidebar 9.2).

Numerous other arithmetic works were written in Arabic over the next centuries explaining
the Indian methods, both on their own and in connection with the older systems already
mentioned. The earliest extant Arabic arithmetic, the Kitab al-fusiil fi-I-hisab al-hindi, (The
Book of Chapters on Hindu Arithmetic) of Abu 1-Hasan al-Uqlidisi, was written in 952 in
Damascus. The author made clear one of the major reasons for what he knew would be the
ultimate success of the Indian numbers:
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SIDEBAR 92 Mathematical Words from Arabic

Al-Khwarizmi’s arithmetic text was probably the source of
three English mathematical words. One of the Latin manu-
scripts of this work begins with the words “Dixit Algorismi,”
or, “al-Khwarizmi says.” The word “algorismi,” through some
misunderstanding, soon became a term referring to various

arithmetic operations and, ultimately, the English word “al-
gorithm.” Our word “zero” probably derives from the Arabic
sifr, which was Latinized into “zephirum.” The word sifr itself
was an Arabic translation of the Sanskrit word siinya, meaning
“empty.” An alternate medieval translation of sifr into “cifra”

led to our modern English “cipher.”

Most scribes will have to use it [the Indian method] because it is easy, quick and needs little
precaution, little time to get the answer, and little keeping of the heart busy with the working that
he has to see between his hands, to the extent that if he talks, that will not spoil his work; and if he
leaves it and busies himself with something else, when he turns back to it, he will find it the same
and thus proceed, saving the trouble of memorizing it and keeping the heart busy with it. This is
not the case in the other (arithmetic) which requires finger bending and other necessaries. Most
calculators will have to use it [the Indian method] with numbers that cannot be managed by the
hand because they are big.’

Al—Uqﬁdisf’s text, like that of al-Khwarizmi, dealt with the various algorithms of arith-
metic. But there were two major innovations. First, the author showed how to perform
arithmetic calculations on paper. As he noted, some think it “ugly to see the [dust board]
in the hands of the scribe . . . sitting in the market places [so] . . . we have substituted for it
something that will not require [the dust board].” For example, al-Uqlidisi gave the follow-
ing procedure for multiplying 3249 by 2735. He wrote the first number above the second,
multiplied each digit of the first by the entire second number, then added the resulting terms

together. For example, the first line of the calculationis 6 21 9 15(=2-3, 7-3, 3-3, 5-3).

3249
2735
6 21 9 15
4 14 o6 10
8§ 28 12 20

18 63 27 45

The result, 8,886,015, is found by careful adding of the columns, keeping track of the various
places. Thus, the second digit from the right in the answer comes from adding the 0 and 7
of 20 and 27 to the 4 in 45. The third digit from the right comes from adding the “carry” (1)
from the previous addition to the 2 in 20, the 2 in 27, the 0 in 10, the 2 in 12, and the 3 in 63.
In any case, all the numbers are written down and preserved so one can check them.

Second, al-Uqﬁdisi treated decimal fractions, the earliest recorded instance of these
fractions outside of China. This treatment is in al-Uqlidisi’s section on halving: “In what
is drawn on the principle of numbers, the half of one in any place is 5 before it. Accordingly,
if we halve an odd number we set the half as 5 before it, the units place being marked by a
sign " above it, to denote the place. The units place becomes tens to what is before it. Next, we
halve the five as is the custom in halving whole numbers. The units place becomes hundreds
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in the second time of halving. So it goes always.”* The central idea of decimal fractions is
clear here. In dealing with numbers less than one, one operates on them in exactly the same
manner as on whole numbers. It is only after performing the operation that one worries about
the decimal place. Al-Uglidisi provided as an example the halving of 19 five times. In order,
he gets 9’5, 475, 2375, 1’1875, and 0'59375. He read the latter number as 59,375 of a
hundred thousand. Similarly, in a section on increasing numbers, he noted that to find one-
tenth of a number, one simply repeats it “one place down.” So to increase 135 by one-tenth
of itself five times, he wrote

35

The sum is 148’5. One-tenth of this is 14’85; the new sum is 163'35. Continuing this process
another three times gives the final answer of 217'41885.

Although al-Uqlidisi used decimal fractions, it is not clear that he completely grasped
their meaning. The only divisions he deals with are by two and ten; he did not try to calculate
the decimal form of 14/3, for example. By contrast, al-Samaw’al ibn Yahya ibn Yahuda
al-Maghribi (c. 1125-1174), in his Treatise on Arithmetic of 1172, showed that he fully
understood decimal fractions in the context of approximation. He began by describing the
basic idea: “Given that proportional places, starting with the place of the units, follow one
another indefinitely according to the tenth proportion, we therefore suppose that on the other
side [of the units] the place of the parts [of ten follow one another] according to the same
proportion, and the place of units lies half-way between the place of the integers whose units
are transferred in the same way indefinitely, and the place of indefinitely divisible parts.”

As an example, al-Samaw’al divided 210 by 13, and noted that the division did not come
out even, but could be carried as far as desired. He wrote the result to five places as 16 plus
1 part of 10 plus 5 parts of 100 plus 3 parts of 1000 plus 8 parts of 10,000 plus 4 parts of
100,000. Similarly, he calculated the square root of 10 verbally to be 3 plus 1 part of 10 plus
6 parts of 100 plus 2 parts of 1000 plus 2 parts of 10,000 plus 7 parts of 100,000 plus 7 parts
of 1,000,000 (3.162277). Unlike his predecessor, he still used words to describe the various
places. Nevertheless, he understood the value of using decimal fractions for approximating
rational numbers or irrational numbers. In fact, when al-Samaw’al calculated higher roots
by a method similar to that used in China, he explicitly noted the purpose of the successive
steps of the algorithm: “And thus we operate to determine the side of a cube, of a square-
square, a square-cube and other [powers]. This method enables us . . . to obtain an infinite
number of answers, each one being more precise and closer to the truth than the preceding
one.”® Al-Samaw’al evidently realized that, in theory at least, one can calculate an infinite
decimal expansion of a number, and that the finite decimals of this expansion “converge” to
the exact value, a value not expressible in any finite form.

But even with this important work, the development of the place value system was not
complete. It is in the work of Ghiyath al-Din Jamshid al-Kashi (d. 1429) in the early fifteenth
century that we first see both a total command of the idea of decimal fractions and a convenient
notation for them, namely, a vertical line to separate the integer part of a number from the
decimal fraction part (Fig. 9.2). We can then say that the Hindu-Arabic place value system
was complete.
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ALGEBRA

The most important contributions of the Islamic mathematicians lie in the area of algebra.
They took the material already developed by the Babylonians, combined it with the classical
Greek heritage of geometry, and produced a new algebra, which they proceeded to extend.
By the end of the ninth century, the chief Greek mathematical classics were well known in
the Islamic world. Islamic scholars studied them and wrote commentaries on them. The most
important idea they learned from their study of these Greek works was the notion of proof.
They absorbed the idea that one could not consider a mathematical problem solved unless one
could demonstrate that the solution was valid. How does one demonstrate this, particularly
for an algebra problem? The answer seemed clear. The only real proofs were geometric.
After all, it was geometry that was found in Greek texts, not algebra. Hence, Islamic scholars
generally set themselves the tasks of justifying algebraic rules, either the ancient Babylonian
ones or new ones they themselves discovered, and justifying them through geometry.

931 The Algebra of al-Khwarizmi and ibn Turk

One of the earliest Islamic algebra texts, written about 825 by al-Khwarizmi, was entitled Al-
kitab al-muhtasar fi hisab al-jabr wa-l-mugabala (The Condensed Book on the Calculation
of al-Jabr and al-Mugabala), a book that ultimately had even more influence than his
arithmetical work. The term al-jabr can be translated as “restoring” and refers to the operation
of “transposing” a subtracted quantity on one side of an equation to the other side where it
becomes an added quantity. The word al-muqgabala can be translated as “comparing” and
refers to the reduction of a positive term by subtracting equal amounts from both sides of
the equation. Thus, the conversion of 3x 42 =4 — 2x to 5x 4+ 2 =4 is an example of al-
Jjabr, while the conversion of the latter to 5x = 2 is an example of al-muqgabala. The word
“algebra” is a corrupted form of the Arabic al-jabr. When al-Khwarizmi’s work and other
similar treatises were translated into Latin, no translation was made of the word al-jabr,
which thus came to be taken for the name of this science.

Al-Khwarizmi explained in his introduction why he came to write his text:

That fondness for science, by which God has distinguished the Imam al-Ma’miin, the Commander
of the Faithful, . . . that affability and condescension which he shows to the learned, that prompti-
tude with which he protects and supports them in the elucidation of obscurities and in the removal
of difficulties, has encouraged me to compose a short work on calculating by al-jabr and al-
mugqabala, confining it to what is easiest and most useful in arithmetic, such as men constantly
require in cases of inheritance, legacies, partition, law-suits, and trade, and in all their dealings
with one another, or where the measuring of lands, the digging of canals, geometrical computation,
and other objects of various sorts and kinds are concerned.’

Al-Khwarizmi was interested in writing a practical manual, not a theoretical one. Never-
theless, he had already been sufficiently influenced by the introduction of Greek mathematics
into the House of Wisdom that even in such a manual he felt constrained to give geometric
proofs of his algebraic procedures. The geometric proofs, however, are not Greek proofs.
They appear to be, in fact, very similar to the Babylonian geometric arguments out of which
the algebraic algorithms grew. Again, like his oriental predecessors, al-Khwarizmi gave nu-
merous examples and problems, but the Greek influence showed through in his systematic
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BIOGRAPHY
Muhammad ibn Miisa al-Khwarizmi (c. 780-850)

-Khwarizmi, or perhaps some of his ancestors, came
from Khwarizm, the region south of the Aral Sea now part
of Uzbekistan and Turkmenistan (Fig. 9.3). Al-Khwarizmi was
one of the first scholars in the House of Wisdom founded by the
caliph al-Ma’miin, and also was one of the astronomers called
to cast a horoscope for the dying caliph al-Wathiq in 847. The

would live another 50 years, in fact the caliph died 10 days
later. Perhaps al-Khwarizmi felt it was not good policy to be
the bearer of bad news to one’s ruler. Besides the contributions
to mathematics detailed in the text, al-Khwarizmi wrote a work
on geography in which he developed a map of the Islamic world
much superior to that known from the work of Ptolemy.

story is told that although al-Khwarizmi assured the caliph he

classification of the problems he intended to solve, as well as in the very detailed explanations
of his methods.

Al-Khwarizmi began by noting that “what people generally want in calculating . . . is a
number,”® the solution of an equation. Thus, the text was to be a manual for solving equations.
The quantities he dealt with were generally of three kinds, the square (of the unknown), the
root of the square (the unknown itself), and the absolute number (the constant in the equation).
He then noted that there are six types of equations that can be written using these three kinds
of quantities:

Squares are equal to roots (ax? = bx).

Squares are equal to numbers (ax? = ¢).

. Roots are equal to numbers (bx = ¢).

. Squares and roots are equal to numbers (ax> + bx = c).
. Squares and numbers are equal to roots (ax* + ¢ = bx).
. Roots and numbers are equal to squares (bx + ¢ = ax?).

FIGURE 9.3

Al-Khwarizmi on a stamp
from the former Soviet Union
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One reason for this sixfold classification is that Islamic mathematicians, unlike the Hindus,
did not deal with negative numbers at all. Coefficients, as well as the roots of the equations,
must be positive. The types listed are the only types that have positive solutions. Our standard
form ax? + bx + ¢ = 0 would make no sense for al-Khwarizmi, because if the coefficients
are all positive, the roots cannot be.

Al-Khwarizmi’s solutions to the first three types of equations were straightforward. We
only need note that 0 is not considered as a solution to the first type. His rules for the compound
types of equations were more interesting. We present his solution to type 4. Because al-
Khwarizmi used no symbols, we will follow him in writing everything out in words, including
the numbers of his example: “What must be the square which, when increased by ten of its
own roots, amounts to thirty-nine? The solution is this: you halve the number of roots, which
in the present instance yields five. This you multiply by itself; the product is twenty-five. Add
this to thirty-nine; the sum is sixty-four. Now take the root of this which is eight, and subtract
from it half the number of the roots, which is five; the remainder is three. This is the root of
the square which you sought for.”®



FIGURE 9.4
Al-Khwarizmi’s geometric
justification for the solution
of x2 + 10x = 39
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Al-Khwarizmi’s verbal description of his procedure was essentially the same as that of
the Babylonian scribes. Namely, in modern notation, the solution of x> 4 bx = ¢ is

SO
V2 2’

Al-Khwarizmi’s geometric justification of this procedure also demonstrated his Babylonian
heritage. Beginning with a square representing x2, he added two rectangles, each of width
five (“half the number of roots”) (Fig. 9.4). The sum of the area of the square and the two
rectangles is then x> 4+ 10x = 39. One now completes the square with a single square of
area 25 to make the total area 64. The solution x = 3 is then easily found. This geometric
description corresponds to the Babylonian description of the solution of x? + %x = 17—2 (See
Section 1.2.4 and Figure 1.21.)

Although al-Khwarizmi’s geometric descriptions of his method appear to have been taken
over from Babylonian sources, he or his (unknown) predecessors in this field succeeded in
changing the focus of quadratic equation solving away from the actual finding of sides of
squares into that of finding numbers satisfying certain conditions. For example, he explained
the term “root” not as a side of a square but as “anything composed of units which can be
multiplied by itself, or any number greater than unity multiplied by itself, or that which is
found to be diminished below unity when multiplied by itself.”!? Also, his procedure for
solving quadratic equations of type 4, when the coefficient of the square term is other than
one, was the arithmetical method of first multiplying or dividing appropriately to make the
initial coefficient one, and then proceeding as before. Al-Khwarizmi even admitted somewhat
later in his text, when he was discussing the addition of the “polynomials” 100 + x? — 20x
and 50 4+ 10x — 2x2, that “this does not admit of any figure, because there are three different
species, i.e., squares and roots and numbers, and nothing corresponding to them by which
they might be represented. . . . [Nevertheless], the elucidation by words is easy.”!!

Finally, al-Khwarizmi’s presentation of the method and geometric description for type 5,
squares and numbers equal to roots, shows that, unlike the Babylonians, he could deal with
an equation with two positive roots, at least numerically. In this case, x> + ¢ = bx, his verbal
description of the solution procedure easily translates into our formula

b %
=ty <5> .. ©.1)

In fact, he stated that one could employ either addition or subtraction to get a root and also
noted the condition on the solution: “If the product [of half the number of roots with itself]
is less than the number connected with the square, then the instance is impossible; but if
the product is equal to the number itself, then the root of the square is equal to half of the
number of roots alone, without either addition or subtraction.”!? The geometric demonstration
in this case, which reminds us of the Babylonian description for the system x + y = b,
xy = c (see Section 1.2.4 and Figure 1.20), only dealt with the subtraction in Equation 9.1. In
Figure 9.5, square A BC D represents x2, whereas rectangle ABN H represents c. Therefore,
HC represents b. Bisect HC at G, extend TG to K so that GK = G A, and complete the
rectangle GK M H. Finally, choose L on KM so that KL = GK and complete the square
KLRG. It is then clear that rectangle M LRH equals rectangle GAT B. Since the area of
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FIGURE 9.5
Al-Khwarizmi’s geometric
justification for the solution
of x2 +c=bx

square KM NT is (g)z, while that square less square K L RG equals rectangle ABN H or c,
it follows that square K L RG equals (%’)2 — c. Since the side of that square is equal to AG, it
follows that x = AC = CG — AG is given by Equation 9.1 using the minus sign. Although
al-Khwarizmi briefly noted that C R could also represent a solution, he did not demonstrate
this by a diagram, nor did he deal in his diagram with the special conditions mentioned in his
verbal description.

Al-Khwarizmi’s text contains the word “condensed” in the title, thus leading one to believe
that there were other books at the time discussing algebraic procedures and their attendant
geometric justifications in more detail. There is, however, only a fragment of such a work
now extant, the section “Logical Necessities in Mixed Equations” from a longer work Kitab
al-jabr wa’l mugabala by ‘Abd al-Hamid ibn Wasi ibn Turk al-Jili, a contemporary of al-
Khwarizmi about whom very little is known. The sources even differ as to whether ibn Turk
was from Iran, Afghanistan, or Syria.

In any case, the extant chapter of ibn Turk’s book deals with quadratic equations of al-
Khwarizmi’s types 1, 4, 5, and 6 and includes a much more detailed geometric description of
the method of solution than is found in al-Khwarizmi’s work. In particular, in the case of type
5, ibn Turk gave geometric versions for all possible cases. His first example is the same as al-
Khwarizmi’s, namely, x> 4+ 21 = 10x, but he began the geometrical demonstration by noting
that G, the midpoint of C H, may be either on the line segment AH, as in al-Khwarizmi’s
diagram, or on the line segment C A of Figure 9.6. In this case, squares and rectangles are
completed, similar in form to those in Figure 9.5, but the solution x = AC is now given as
CG + GA, thus using the plus sign in Equation 9.1. In addition, ibn Turk discussed what he
called the “intermediate case,” where the root of the square is exactly equal to half the number
of roots. His example for this situation is x* 4- 25 = 10x; the geometric diagram then simply
consists of a rectangle divided into two equal squares.

Ibn Turk further noted that “there is the logical necessity of impossibility in this type of
equation when the numerical quantity . . . is greater than [the square of] half the number
of roots,’!3 as, for example, in the case x2+30=10x. Again, he resorted to a geometric
argument. Assuming that G is located on the segment A H, we know as before that the square
KMNT is greater than the rectangle HABN (Fig. 9.7). But the conditions of the problem
show that the latter rectangle equals 30 while the former only equals 25. A similar argument

works in the case where G is located on CA.



FIGURE 9.6

Ibn Turk’s geometric jus-
tification for one case of
x>+ c=bx

FIGURE 9.7
Ibn Turk’s geometric justifi-

cation of the impossibility of
solving x2 4 30 = 10x
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Although the section on quadratic equations of ibn Turk’s algebra is the only part still
extant, al-Khwarizmi’s text contains much else of interest, including an introduction to ma-
nipulation with algebraic expressions, explained by reference to similar manipulations with
numbers. For example, he noted that if a & b is multiplied by ¢ & d, then four multiplica-
tions are necessary. Although none of his numbers are negative, he certainly knew the rules
for dealing with multiplication and signs. As he stated, “If the units [b and d in our nota-
tion] . . . are positive, then the last multiplication is positive; if they are both negative, then
the fourth multiplication is likewise positive. But if one of them is positive and one negative,
then the fourth multiplication is negative.”!#

Al-Khwarizmi’s text continued with a large collection of problems, many of which involve
these manipulations, and most of which result in a quadratic equation. For example, one
problem states, “T have divided ten into two parts, and having multiplied each part by itself,
I have put them together, and have added to them the difference of the two parts previously
to their multiplication, and the amount of all this is fifty-four."!3 It is not difficult to translate
this problem into the equation (10 — x)? + x2 4 (10 — x) — x = 54. The author reduced this
to the equation x2 + 28 = 11x and then used his rule for this equation of type 5 to get x = 4.
He ignored here the second root, x = 7, for then the sum of the two squares would be 58 and
the conditions of the problem could not be met. In another example, al-Khwarizmi dealt with
anonrational root: “I have divided ten into two parts; I have multiplied the one by ten and the
other by itself, and the products were the same."'® The equation here is 10x = (10 — x)? and
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FIGURE 9.8
Thabit ibn Qurra’s geometric

justification for the solution
of x> +bx =c

the solution is x = 15 — 4/125. Here he again ignored the root with the positive sign, because
15 4+ +/125 could not be a “part” of 10.

Despite al-Khwarizmi promising in his preface that he would write about what is “useful,"
very few of his problems leading to quadratic equations deal with any “practical" ideas. Many
of them are similar to the previous examples and begin with “I have divided ten into two
parts.” Among the few problems written in “real-world” terms is the following: “You divide
one dirhem among a certain number of men. Now you add one man more to them, and divide
again one dirhem among them. The quota of each is then one-sixth of a dirhem less than

at the first time.”7 If x represents the number of men, the equation becomes 1 11

X x+1 7 6°
which reduces to x2 + x = 6, for which the solution is x = 2. An entire section of the text
is devoted to elementary problems of mensuration, which will be discussed later, and a brief
section is devoted to the “rule of three,” but neither of these provides any practical uses of
quadratic equations either. Finally, the second half of the text is entirely devoted to problems
of inheritance. Dozens of complicated situations are presented, for the solution of which one
needs to be familiar with Islamic legacy laws. The actual mathematics needed, however, is
never more complicated than the solution of linear equations. One can only conclude that
although al-Khwarizmi was interested in teaching his readers how to solve mathematical
problems, and especially how to deal with quadratic equations, he could not think of any
real-life situations that required these equations. Things apparently had not changed in this
regard since the time of the Babylonians.

932 The Algebra of Thabit ibn Qurra and Abu Kamil

Within 50 years of the works by al-Khwarizmi and ibn Turk, the Islamic mathematicians
had decided that the necessary geometric foundations to the algebraic solution of quadratic
equations should be based on the work of Euclid rather than on the ancient traditions. Perhaps
the earliest of these justifications was given by Thabit ibn Qurra (836-901). Thabit was born
in Harran (now in southern Turkey), was discovered there by one of the scholars from the
House of Wisdom, and was brought to Baghdad in about 870, where he himself became
a great scholar. Among his many writings on mathematical topics is a short work entitled
Qawl fi tashih masa’il al-jabr bi l-barahin al-handasiya (On the Verification of Problems of
Algebra by Geometrical Proofs). To solve the equation x> + bx = c, for example, Thabit used
Figure 9.8, where AB represents x, square ABC D represents x2, and BE represents b. It
follows that the rectangle DE = AB x E A represents c. If W is the midpoint of B E, Euclid’s
Elements 11-6 implies that EA x AB + BW? = AW?. But since EA x AB and BW? are
known (equaling, respectively, ¢ and (b/2)?), it follows that AW? and therefore AW are
known. Thenx = AB = AW — BW is determined. Thabit noted explicitly that the geometric
procedure of Elements 11-6 is completely analogous to the procedure of “the algebraists,” that

A B

T< oS
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is, the algorithm stated by al-Khwarizmi, and therefore provides the necessary justification.
Thabit also showed how to use this same proposition to solve x> = bx + ¢ and how to use
Elements 1I-5 to solve x% + ¢ = bx.

Similar justifications of these solutions using Elements 11 were given by the Egyptian
mathematician Abii Kamil ibn Aslam (c. 850-930) in his own algebra text, Kitab fi al-
jabr wa’l-muqabala: “1 shall explain their rule using geometric figures clarified by wise
men of geometry and which are explained in the Book of Euclid.”!® Abii Kamil, however,
unlike Thabit, proved Euclid’s results anew in the course of his discussion and also presented
numerical examples, in fact, the same initial numerical examples as al-Khwarizmi. Like his
predecessor, Abu Kamil followed his discussion of the various forms of quadratic equations
by a treatment of various algebraic rules and then a large selection of problems. But he
made some advances over the earlier mathematician by considering many more complicated
identities and more complex problems, including in particular manipulations with surds.

Abii Kamil was not at all worried about dealing with “irrationals.” He used them freely in
his problems, many of which, like those of al-Khwarizmi, start with “divide 10 into 2 parts.”
For example, consider problem 37: “If one says that 10 is divided into two parts, and one part
is multiplied by itself and the other by the root of 8, and subtract the quantity of the product
of one part times the root of 8 from . . . the product of the other part multiplied by itself, it
gives 4071 The equation in this case is (10 — x)(10 — x) — x+/8 = 40. After rewriting it in
the form x2 + 60 = 20x + +/8x2(= (20 + +/8)x), Abii Kamil carried out the algorithm for
the case squares and numbers equal roots to conclude that

x =10+ /2 — /42 + /800

and that 10 — x, the “other part,” is equal to

42 + /800 — V2.

Abi Kamil even applied substitutions to simplify problems and could deal with equations
of degree higher than 2 as long as they were quadratic in form. Problem 45 illustrates both
ideas: “One says that 10 is divided into two parts, each of which is divided by the other, and
when each of the quotients is multiplied by itself and the smaller is subtracted from the larger,
then there remains 2.”2° The equation is

() () =

10—x
X

Abi Kamil made a new “thing” y equal to and derived the new equation & = y? + 2.
yZ

Multiplying both sides by y? gave him the quadratic equation in y%: (y?)? 4 2y? = 1 for
which the solution is y2 = +/2 — 1. Hence,

y=\/x/§—l.
lO—x:\/ﬁ,

X

Then
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and Abu Kamil proceeded to solve for x by first squaring both sides of this equation. The
final result is

x=10++/50 — \/50 + /20,000 — /5,000.

Abii Kamil could even solve systems of equations. Consider problem 61: “One says that
10 s divided into three parts, and if the smallest is multiplied by itself and added to the middle
one multiplied by itself, it equals the largest multiplied by itself, and when the smallest is
multiplied by the largest, it equals the middle multiplied by itself’>! In modern symbols, we
are asked to find x < y < z, where

x+y+z=10, x2+y2=22, and xz=»y>.

Presumably noticing that the three equations are all homogeneous, Abi Kamil used the
ancient method of false position. Namely, he initially ignored the first equation and set x = 1
in the second and third equations to get 1+ y? = y*. Since this is an equation in quadratic

form, he could solve it:
1 5 1 5
2
= = — —|— —_ a]‘]d = — —|— \/j
FEY TS \/; YTV2TV:

Now, returning to the first equation, he noted that the sum of his three “false” values was

11_1’_\/?4_ l_i_\/?
2 4 2 4’

instead of 10. To find the correct values, he needed to divide 10 by this value and multiply
the quotient by the “false” values. Since the false value of x was 1, this just meant that the

correct value for x was
B 10
1 5 1 5
1+ \/;-‘r Ji+ \/;

To simplify this was not a trivial procedure, but Abi Kamil began by multiplying the
denominator by x and setting the product equal to 10. He ultimately turned this equation
into a quadratic equation and succeeded in determining that

x=5—4/v3,125-50.

To find y and z by multiplying the false values by this quotient would have been even more
difficult, so he chose to find z by beginning the problem anew with the false value z = 1. Of
course, once he found z, he could determine y by subtraction.

X

When considering Abt Kamil’s algebra, remember that, like all Islamic algebra texts
of his era, it was written without symbols. Thus, the algebraic manipulation that modern
symbolism makes almost obvious is carried out completely verbally. (Of course, in our final
example, the procedure is by no means “obvious,” even with symbolism.) More importantly,
however, Abu Kamil was willing to use the algebraic algorithms that had been systematized
by the time of al-Khwarizmi with any type of positive “number.” He made no distinction
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between operating with 2 or with +/8 or even with v/+/2 — 1. Since these algorithms came
from geometry, on one level that is not surprising. After all, it was the Greek failure to find
a “numerical” representation of the diagonal of a square that was one of the reasons for their
use of the geometric algebra of line segments and areas. But in dealing with these quantities,
Abu Kamil interpreted all of them in the same way. It did not matter whether a magnitude
was technically a square or a fourth power or a root or a root of a root. For Abii Kamil, the
solution of a quadratic equation was not a line segment, as it would be in the interpretation
of the appropriate propositions of the Elements. It was a “number,” even though Abt Kamil
could not perhaps give a proper definition of that term. He therefore had no compunction
about combining the various quantities that appeared in the solutions, using general rules.
Abu Kamil’s willingness to handle all of these quantities by the same techniques helped pave
the way toward a new understanding of the concept of number that was just as important as
al-Samaw’al’s use of decimal approximations.

933 Al-Karaji, al-Samaw’al, and the Algebra of Polynomials

The process of relating arithmetic to algebra, begun by al-Khwarizmi and Abii Kamil,
continued in the Islamic world with the work of Abii Bakr al-Karaji (d. 1019) and al-Samaw’al
over the next two centuries. These latter mathematicians were instrumental in showing that
the techniques of arithmetic could be fruitfully applied in algebra and, reciprocally, that ideas
originally developed in algebra could also be important in dealing with numbers.

Little is known of the life of al-Karaji other than that he worked in Baghdad around the
year 1000 and wrote many mathematics works as well as works on engineering topics. In the
first decade of the eleventh century, he composed a major work on algebra entitled al-Fakhri
(The Marvelous). The aim of al-Fakhri, and of algebra in general according to al-Karaji, was
“the determination of unknowns starting from knowns.”?2 In pursuit of this aim, he made use
of all the techniques of arithmetic, converted into techniques of dealing with unknowns. He
began by making a systematic study of the algebra of exponents. Although earlier writers,
including Diophantus, had considered powers of the unknown greater than the third, al-Karaji
was the first to fully understand that these powers can be extended indefinitely. In fact, he
developed a method of naming the various powers x” and their reciprocals % Each power
was defined recursively as x times the previous power. It followed that there was an infinite
sequence of proportions,

1:x=x:x2=x2:x3=...,

and a similar one for reciprocals,
11 1 1 1 1
x x2 0 x27x3 X3 x4
Once the powers were understood, al-Karaji could establish general procedures for adding,
subtracting, and multiplying monomials and polynomials. In division, however, he only used
monomials as divisors, partly because he was unable to incorporate rules for negative numbers
into his theory and partly because of his verbal means of expression. Similarly, although he

developed an algorithm for calculating square roots of polynomials, it was only applicable
in limited circumstances.
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BIOGRAPHY
Al-Samaw’al (c. 1125-1174)

I-Samaw’al was born in Baghdad to well-educated Jewish

parents. His father was in fact a Hebrew poet. Besides
giving him a religious education, they encouraged him to study
medicine and mathematics. Because the House of Wisdom
no longer existed in Baghdad, he had to study mathematics
independently and therefore traveled to various other parts of
the Middle East. He wrote his major mathematical work, Al-
Bahir, when he was only nineteen. His interests later turned to

medicine, and he became a successful physician and author of
medical texts. The only extant one is entitled 7he Companion’s
Promenade in the Garden of Love, a treatise on sexology and
a collection of erotic stories. When he was about forty, he
decided to convert to Islam. To justify his conversion to the
world, he wrote an autobiography in 1167 stating his arguments
against Judaism, a work that became famous as a source of
Islamic polemics against the Jews.

Al-Karaji was more successful in continuing the work of Abli Kamil in applying arithmetic
operations to irrational quantities. In particular, he explicitly interpreted the various classes of
incommensurables in Elements X as classes of “numbers” on which the various operations
of arithmetic were defined, but then noted that there were indefinitely many other classes
composed of three or more surds. Like Abii Kamil, he gave no definition of “number,” but
just dealt with the various surd quantities using numerical rather than geometrical techniques.
As part of this process, he developed various formulas involving surds, such as

A+ A2 — B? A—A?—B?
«/A+B=\/ +
2 2

and

€/Z+<7§=§73\3/A23+3¢3AB2+A+B.

Further work in dealing with algebraic manipulation was accomplished by al-Samaw’al,
who, in particular, introduced negative coefficients. He expressed his rules for dealing with
these coefficients quite clearly in his algebra text Al-Bahir fi’l-hisab (The Shining Book of
Calculation):

If we subtract an additive number from an empty power [0x” — ax"], the same subtractive number
remains; if we subtract the subtractive number from an empty power [0x" — (—ax")], the same
additive number remains. If we subtract an additive number from a subtractive number, the
remainder is their subtractive sum; if we subtract a subtractive number from a greater subtractive
number, the result is their subtractive difference; if the number from which one subtracts is smaller
than the number subtracted, the result is their additive difference.??

Given these rules, al-Samaw’al could easily add and subtract polynomials by combining
like terms. To multiply, of course, he needed the law of exponents. Al-Karaji had in essence
used this law, as had Abu Kamil and others. However, since the product of, for example, a
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square and a cube was expressed in words as a square-cube, the numerical property of adding
exponents could not be seen. Al-Samaw’al decided that this law could best be expressed by
using a table consisting of columns, each column representing a different power of either a
number or an unknown. In fact, he also saw that he could deal with powers of Xl as easily as
with powers of x. In his work, the columns are headed by the Arabic letters standing for the
numerals, reading both ways from the central column labeled 0. We will simply use the Arabic
numerals themselves. Each column then has the name of the particular power or reciprocal
power. For example, the column headed by a 2 on the left is named “square,” that headed
by a 5 on the left is named “square-cube,” that headed by a 3 on the right is named “part of
cube,” and so on. To simplify matters we will just use powers of x. In his initial explanation
of the rules, al-Samaw’al also put a particular number under the 1 on the left, such as 2, and
then the various powers of 2 in the corresponding columns:

1 |

1 1
128 64 32 16 8 4 2 1 e e

D=
Bl
0l —

Al-Samaw’al now used the chart to explain what we call the law of exponents, x"x™ =
x™*7: “The distance of the order of the product of the two factors from the order of one of
the two factors is equal to the distance of the order of the other factor from the unit. If the
factors are in different directions then we count (the distance) from the order of the first factor
towards the unit; but, if they are in the same direction, we count away from the unit."?* So,
for example, to multiply x3 by x*, count four orders to the left of column 3 and get the result
as x”. To multiply x> by x 2, count two orders to the right from column 3 and get the answer
x!. Using these rules, al-Samaw’al could easily multiply polynomials in x and )lc as well as
divide such polynomials by monomials.

Al-Samaw’al was also able to divide polynomials by polynomials using a similar chart.
In this chart, which reminds us of the Chinese counting board as used in solving polynomial
equations, each column again stands for a given power of x or of ;1 But now the numbers
in each column represent the coefficients of the various polynomials involved in the division
process. For example, to divide 20x? + 30x by 6x> 4 12, he first set the 20 and the 30 in the
columns headed by x? and x, respectively, and the 6 and 12 below these in the columns headed
respectively by x2 and 1. Since there is an “empty order” for the divisor in the x column, he
placed a 0 there. He next divided 20x? by 6x2, getting 3 1/3, putting that number in the units
column on the answer line. The product of 3 1/3 by 6x2 + 12 is 20x% + 40. The next step is
subtraction. The remainder in the x? column is naturally 0. In the x column the remainder is
30, while in the units column the remainder is —40. Al-Samaw’al now presented a new chart
in which the 6, 0, 12, are shifted one place to the right, and the directions are given to divide
that into 30x — 40. The initial quotient of 30x by 6x21is5- 1/x, soa 5 is placed in the answer
line in the column headed by %, and the process is continued. We display here al-Samaw’al’s
first two charts for this division problem.
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¥ ox 1 % xlz x—lg
33
20 30
6 0 12
x? x 1 Xl é )%
35
30 —40
6 0 12

In this particular example, the division was not exact. Al-Samaw’al continued the process
through eight steps to get

1 1 2 (1 1 1/ 1 1 2 (1 1
3-+45(-)-62(=)-10(=)+13=(—=)+20(=)-265(—=)—-40(—=).
o3(0) =93 () o (5) o3 () +0 () =25 () 0 ()

To show his fluency with the multiplication procedure, he then checked the answer by
multiplying it by the divisor. Because the product differed from the dividend by terms only in
X—lé and %, he called the result given “the answer approximately.” Nevertheless, he also noted
that there is a pattern to the coefficients of the quotient. In fact, if a,, represents the coefficient
of X—l,l, the pattern is given by a,, ., = —2a,,. He then proudly wrote out the next 21 terms of
the quotient, ending with 54,6135 ().

Given that al-Samaw’al thought of extending division of polynomials into polynomials
in ;1, and thought of partial results as approximations, it is not surprising that he would
divide whole numbers by simply replacing x by 10. As already noted, al-Samaw’al was the
first to explicitly recognize that one could approximate fractions more and more closely by
calculating more and more decimal places. The work of al-Karaji and al-Samaw’al was thus
extremely important in developing the idea that algebraic manipulations and manipulations
with numbers are parallel. Virtually any technique that applies to one can be adapted to apply
to the other.

9.34 Induction, Sums of Powers, and the Pascal Triangle

Another important idea introduced by al-Karaji and continued by al-Samaw’al and others
was that of an inductive argument for dealing with certain arithmetic sequences. Thus, al-
Karaji used such an argument to prove the result on the sums of integral cubes already known
to Aryabhata (and even, perhaps, to the Greeks). Al-Karaji did not, however, state a general
result for arbitrary n. He stated his theorem for the particular integer 10:

P42 43+ 410°=(1+2+3+---+10)%

His proof, nevertheless, was clearly designed to be extendable to any other integer.

Consider the square ABC D with side 1 +2 + 3+ --- 4+ 10 (Fig. 9.9). Setting BB’ =
DD’ =10, and completing the gnomon BC DD'C’B’, al-Karaji calculated the area of the
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Al-Karaji’s proof of the
formula for the sum of the
integral cubes
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A D D" D' D

gnomon to be

2'10(1+2+~~+9)+102=z-10-9'2ﬁ+102=9-102+102=103.

Since the area of square ABCD is the sum of the areas of square AB'C’D’ and the
gnomon, it follows that (14+2 4 - - - +10)>2 = (14+2 + - - - + 9)% 4+ 103. A similar argument
then shows that (14+2+ - - - +9)2 = (142 + - - - + 8)2 + 9%, Continuing in this way to the
final square ABCD of area 1 = 13, al-Karaji proved his theorem from the equality of square
ABCD to square ABCD plus the sum of the gnomons of areas 23 33 ..., 10%

Al-Karaji’s argument included the two basic components of a modern argument by in-
duction, namely, the truth of the statement forn =1 (1 = 13) and the deriving of the truth for
n = k from that for n = k — 1. Of course, this second component is not explicit since, in some
sense, al-Karaji’s argument is in reverse. That is, he starts from n = 10 and goes down to 1
rather than proceeding upward. Nevertheless, his argument in al-Fakhri is the earliest extant
proof of the sum formula for integral cubes.

The formulas for the sums of the integers and their squares had long been known, while
the formula for the sum of cubes is easy to discover if one considers a few examples. To give
an argument for their validity that generalizes to enable one to find a formula for the sum of
fourth powers, however, is more difficult. Nonetheless, this was accomplished early in the
eleventh century in a work by the Egyptian mathematician Abii ‘Ali al-Hasan ibn al-Hasan
ibn al-Haytham (965-1039). That he did not generalize his result to find the sums of higher
powers is probably due to his needing only the formulas for the second and fourth powers in
his computation of the volume of a paraboloid, to be discussed in Section 9.5.5.25

The central idea in ibn al-Haytham’s proof of the sum formulas was the derivation of the
equation

n n n 4
(1Y k= "k (Z ik) . 9.2)
i=1 i=1 P

=1 \i=1

Ibn al-Haytham did not state this result in general form but only for particular integers,
namely, n =4 and k = 1, 2, 3. His proof, however, which, like al-Karaji’s, used inductive
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BIOGRAPHY
Ibn al-Haytham (965-1039)

bn al-Haytham, known in Europe as Alhazen and one of

the most influential of Islamic scientists, was born in Basra,
now in Iraq, but spent most of his life in Egypt after he was in-
vited by the caliph al-Hakim to work on a Nile control project
(Fig. 9.10). Although the project never came to fruition, ibn
al-Haytham did produce in Egypt his most important scien-
tific work, the Optics, in seven books. The Optics was trans-
lated into Latin in the early thirteenth century and was studied
and commented on in Europe for several centuries thereafter.
Ibn al-Haytham’s fame as a mathematician chiefly rests on his

on some reflecting surface at which the light from one of two
points outside that surface is reflected to the other. In the fifth
book of the Optics, he attempted to solve the problem for a va-
riety of surfaces—spherical, cylindrical, and conical, concave
and convex. Although he was not completely successful, his ac-
complishments showed him to be in full command of both the
elementary and advanced geometry of the Greeks. In the final
years of his life, ibn al-Haytham earned his living by copy-
ing annually, among others, Euclid’s Elements, Apollonius’s
Conics, and Ptolemy’s Almagest.

treatment of “Alhazen’s problem”—to find the point or points

reasoning, is immediately generalizable to any values of n and k. We consider his proof for
k=3and n =4:

G+ D+ +3F+ 4y =4+ 22+ 3P+ + P+ 27+ 3+ 47
=4- a4+ 22+ 3+ P+ 22+ 3+ 4
=4+ B+ P+ 243 P23 433+ 43

FIGURE 9.10

Ibn al-Haytham’s work on
optics is honored on a stamp
from Pakistan

But, because Equation 9.2 is assumed true for n = 3, we have
G+DP+22 43 =14 244 3 B2 43 4 (B +2% + 1%,

Thus, Equation 9.2 is proved for n = 4. It is straightforward to rewrite this argument into a
modern proof by induction on 7.

Ibn al-Haytham used Equation 9.2 to derive formulas for the sums of integral powers,
formulas that are stated in all generality. Thus, for k = 2 and k = 3, we have

ii2—<z+l>n<n+l>—n—3+n—2+2
~ \3 3 2) 3 2 6
n 4 3 2
3 n 1 n n n
i=|l-+-|nn+Dn=—+—+ —.
Yr=(Grg)roton=tp Ty
We will not consider the proofs of these results here, but only the proof of the analogous
result for fourth powers. This result, although stated (at the end) in all generality, is only
proved for the case n =4, k =3. But we can consider this to represent the method of
“generalizable example,” a method we have seen Euclid use earlier. In any case, ibn al-
Haytham proved the formula for fourth powers by substituting the formulas for cubes and
squares into Equation 9.2:
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P42 +3+a5=1" 42+ 3 44t 4 (P 427+ 37+ 49)
+@P+22 43+ +2)+ 1

44 43 42 34 33 32
:14+24+34+44+<—+—+—>+<—+—+—)
4 2 4 4 2 4

24 23 92 13 12
+{=+=+=)+—+=+—
<4 2 4) (4 2 4)

1
=14—|—24+34+44+Z(l4+24+34+44)

1 1
+§(13+23+33+43)+1(12+22+32+42)
R PV DV IR L SRS S SR

=42 43t ah (1742713 4 4)

+4—1(12+22+32+42)

14+24+34+44=‘5‘(13+23+33+43)(4+%)—§<12+22+32+42)
_4 <4+1) (‘—‘+1>4(4+1)4—1(‘—L+1)4(4+1>
5 2 4 4 5\3 3 2

4 1 1 1
14+24+34+44=<—+—)4<4+—> [4+14——].
55 7 A

and finally

From this result for the case n = 4, ibn al-Haytham simply stated his general result in words
we can translate into the modern formula:

§i4=<%+é)n<n+%> [(n—l—l)n—%].

Another inductive argument, this time in relation to the binomial theorem and the Pascal
triangle, is found in al-Samaw’al’s Al-Bahir, where he refers to al-Karaji’s treatment of these
subjects. Because the particular work of al-Karaji’s in which this discussion occurs is no
longer extant, we consider al-Samaw’al’s version. The binomial theorem is the result

n
(@+b)"=>y " Cla" b,
k=0

where n is a positive integer and the values C;’ are the binomial coefficients, the entries in the
Pascal triangle. Naturally, al-Samaw’al, having no symbolism, wrote this formula in words
in each individual instance. For example, in the case n = 4 he wrote, “For a number divided
into two parts, its square-square [fourth power] is equal to the square-square of each part, four
times the product of each by the cube of the other, and six times the product of the squares
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of each part.”?® Al-Samaw’al then provided a table of binomial coefficients to show how to
generalize this rule for greater values of n:

x2 x3 x4 xS x6 X7 x8 x9 xl() xll X12

—_ = 2
—_ DN =

28 36 45 55 66
10 20 35 56 84 120 165 220
5 15 35 70 126 210 330 495
1 6 21 56 126 252 462 792
1 7 28 84 210 462 924

1 8 36 120 330 792

9 45 165 495
1 10 55 220
1 11 66

1 12

1

1
3
3
1

—_ A N B =
—_
(=)
p—
(9]
[\e]
—

His procedure for constructing this table is the familiar one, that any entry comes from adding
the entry to the left of it to the entry just above that one. He then noted that one can use the
table to read off the expansion of any power up to the twelfth of “a number divided into two
parts.”

With this table in mind, let us see how al-Samaw’al demonstrated the quoted result for
n = 4. Assume the number ¢ is equal to a + b. Since ¢* = cc® and ¢ is already known
to be given by ¢ = (a + b)? = a® + b® + 3ab? + 3a?b, it follows that (a + b)* = (a +
b)(a + b)? = (a + b)(a® + b* 4 3ab* + 3a°b). By using repeatedly the result (r + )7 =
rs + rt, which al-Samaw’al quoted from Euclid’s Elements 1I, he found that this latter
quantity equals (a + b)a> + (a 4+ b)b> + (a + b)3ab® + (a + b)3a*b = a* + a®b + ab® +
b* +3a*b? + 3ab® + 3ab + 3a’h* = a* + b* + 4ab* + 4a’b + 6a’b>. The coefficients here
are the appropriate ones from the table, and the expansion shows that the new coefficients
are formed from the old ones exactly as stated in the table construction. Al-Samaw’al next
quoted the result for n = 5 and asserted his general result: “He who has understood what we
have just said, can prove that for any number divided into two parts, its quadrato-cube [fifth
power] is equal to the sum of the quadrato-cubes of each of its parts, five times the product
of each of its parts by the square-square of the other, and ten times the product of the square
of each of them by the cube of the other. And so on in ascending order.”?’ Like the proofs of
al-Karaji and ibn al-Haytham, al-Samaw’al’s argument contained the two basic elements of
an inductive proof. He began with a value for which the result is known, here n = 2, and then
used the result for a given integer to derive the result for the next. Although al-Samaw’al did
not have any way of stating, and therefore proving, the general binomial theorem, to modern
readers there is only a short step from al-Samaw’al’s argument to a full inductive proof of the
binomial theorem, provided that in the statement of that theorem the coefficients themselves
are defined inductively, essentially as al-Samaw’al did define them, as C) = C Z;l] +C) -1
In any case, the Pascal triangle, both in Islam and, as we have noted, in China, was used
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BIOGRAPHY
Al-Khayyami (1048-1131)

1-Khayyami was born in Nishapur, Iran, in 1048 shortly

after the area was conquered by the Seljuk Turks. He was
able during most of his life to enjoy the support of the Seljuk
rulers. In fact, he spent many years at the observatory in Isfahan
at the head of a group working to reform the calendar. At
various times, as ruler replaced ruler, he fell into disfavor, but
he was able ultimately to garner enough support to write many
mathematical and astronomical works, as well as poetry and
philosophical works. In fact, he is best known in the West for
the collection of poems known as the Rubaiyat. In the preface
of his great algebra work, he complained how difficult it had
been for him to work, but then thanks the ruler who provided
him with the necessary support:

I'had not been able to find time to complete this work, or to
concentrate my thoughts on it, hindered as I had been by
troublesome obstacles. . . . Most of our contemporaries

are pseudo-scientists who mingle truth with falsehood,
who are not above deceit and pedantry, and who use the
little that they know of the sciences for base material pur-
poses only. When they see a distinguished man intent on
seeking the truth, one who prefers honesty and does his
best to reject falsehood and lies, avoiding hypocrisy and
treachery, they despise him and make fun of him. When
God favored me with the intimate friendship of His Excel-
lency, our glorious and unique Lord, the supreme judge,
the Imam, Sayid Aba-Tahir . . . after I had despaired of
meeting such a man . . . who combined in himself pro-
found power in science with firmness of action . . . my
heart was greatly rejoiced to see him. . . . My power was
strengthened by his liberality and his favors. In order that I
might come nearer to his sublime position I found myself
obliged to take up again the work which the vicissitudes

of time had caused me to abandon in summarizing what |
28

had verified of the essence of philosophical theories.

to develop an algorithm to calculate roots of numbers. In the Islamic case, this algorithm
is documented from the time of al-Samaw’al, while there are strong indications that it was
known at least a century earlier.

9.3.5 Omar Khayyam and the Solution of Cubic Equations

There was another strand of development in algebra in the Islamic world alongside its
arithmetization and the development of inductive ideas, namely, the application of geometry.
By the end of the ninth century, Islamic mathematicians, having read the major Greek texts,
had noticed that certain geometric problems led to cubic equations, equations that could be
solved through finding the intersection of two conic sections. Such problems included the
doubling of the cube and Archimedes’ splitting of a sphere into two parts whose volumes are
in a given ratio. Several Islamic mathematicians during the tenth and eleventh centuries also
solved certain cubic equations by taking over this Greek idea of intersecting conics. But it was
the mathematician and poet ‘Umar ibn Ibrahim al-Khayyami (1048—1131) (usually known in
the West as Omar Khayyam), who first systematically classified and then proceeded to solve
all types of cubic equations by this general method.

Al-Khayyami announced his project in a brief treatise entitled On the Division of a
Quadrant of a Circle, in which he proposed to divide a quadrant A BC D at a point G such that,
with perpendiculars drawn to two diameters as in Figure 9.11, wehave AE :GH = EH : HB.
Using the method of analysis, he assumed that the problem was solved and then constructed
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FIGURE 9.11
Omar Khayyam’s quadrant
problem

I | —
[9)

the tangent G/ to the circle at G. After a few steps, he found that the right triangle EG/
had the property that its hypotenuse E was equal to the sum of one of the sides EG and the
perpendicular G H from the right angle to the hypotenuse. He concluded that if he could find
such a right triangle, he could complete the synthesis of the problem.

In order to find the right triangle, he needed algebra. So he tried a particular case, with
EH =10 and GH = x. Therefore, GE? = x> + 100. But GE> = EI - EH, so

GE? 2 El-EH
= 4 10=—— =

= El.
10 10 10

Butsince EI = EG + GH, we have % +10=EG + GH = EG + x. Therefore,
x2 2
x> +100=EG*= <E+ 10—x> .

Simplifying this equation gave him a cubic equation in x: x* 4 200x = 20x? + 2000. Noting
that this equation could not be solved by “plane geometry,” al-Khayyami proceeded to
solve it by the intersection of a hyperbola and a semicircle whose modern equations are
xy = 4/20,000 and x2—30x + y2 — \/Wy + 400 = 0, respectively. Given the solution, he
finally could construct the right triangle that enabled him to solve the original problem.

With this example in mind, al-Khayyami then analyzed all possible cubic equations in
his algebra text, the Risala fi-I-barahin ‘ala masa’il al-jabr wa’l-mugabala (Treatise on
Demonstrations of Problems of al-jabr and al-muqabala). Although the author suggested
that the reader be familiar with Euclid’s Elements and Data and the first two books of
Apollonius’s Conics, nevertheless, the text addressed algebraic, not geometric, problems.
In fact, al-Khayyami would have liked to provide algebraic algorithms for solving cubic
equations, analogous to al-Khwarizmi’s three algorithms for solving quadratic equations. As
he wrote, “When, however, the object of the problem is an absolute number, neither we, nor
any of those who are concerned with algebra, have been able to solve this equation—perhaps
others who follow us will be able to fill the gap.”?” It was not until the sixteenth century in
Italy that al-Khayyami’s hope was realized.

Al-Khayyami began his work, in the style of al-Khwarizmi, by giving a complete classifi-
cation of equations of degree up to three. Since for al-Khayyami, as for his predecessors, all
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Al-Khayyami’s construction
for the solution of x3 + cx = d
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numbers were positive, he had to list separately the various forms that might possess positive
roots. Among these were fourteen not reducible to quadratic or linear equations, including, of
course, the form analyzed by Archimedes much earlier and the form needed in the quadrant
problem. These types of equations were in three groups: one binomial equation, x* = d; six
trinomial equations, x> +cx =d, x> +d =cx, x’=cx +d, x>+ bx* =d, x>+ d = bx?,
and x3 = bx2 + d; and seven tetranomial equations, b4+ cex=d, x3+bx’+d=
cx, P 4cex+d=bx% X3=bx’+cx+d, X>+bx’=cx+d, x>+ cx =bx>+d, and
x3 + d = bx? + cx. For each of these forms, the author described the conic sections neces-
sary for its solution, proved that his solution was correct, and finally discussed the conditions
under which there may be no solutions or more than one solution.

That al-Khayyami gave this classification is strong evidence of the major change in
mathematical thinking that had happened in the over 1300 years since Archimedes. Unlike
the case with the Greek genius, al-Khayyami was no longer interested in solving a specific
geometric problem, even though his interest in the subject was sparked by such a problem.
He was interested in finding general methods for solving all sorts of problems that could be
expressed in the form of equations. Though he did not use our symbolic notation, but just
used words, there is no question that al-Khayyami was doing algebra, not geometry. And this
is true even though every one of his equations was conceived as an equation between solids.
For example, in his solution of x>+ cx=d or, as he puts it, the case where “a cube and
sides are equal to a number,” since x represents a side of a cube, ¢ must represent an area
(expressible as a square), so that cx is a solid, while d itself represents a solid.

To construct the solution to this equation, al-Khayyami set A B equal in length to a side of
the square ¢, or AB = /c (Fig. 9.12). He then constructed BC perpendicular to AB so that
BC-AB?>=d,or BC=d /c. Next, he extended A B in the direction of Z and constructed a
parabola with vertex B, axis BZ, and parameter A B. In modern notation, this parabola has
the equation x> = \/cy. Similarly, he constructed a semicircle on the line BC. Its equation is

(-2 or=(2) = o(t)
2c Y= 2c c -

The circle and the parabola intersect at a point D. It is the x coordinate of this point, here
represented by the line segment B E, which provides the solution to the equation.
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Al-Khayyami proved that his solution is correct by using the basic properties of the
parabola and the circle. If BE = DZ = xy and BZ = E D = Yy, then first,

N

xé:ﬁyo or =

X0 Yo
because D is on the parabola, and second,
d 2 X A
Xo(= — X0) = ¥ or — =7 ,
¢ Yo T —Xo

because D is on the semicircle. It follows that

2 2
Xy Yo Yo Xo X

C
2T 27 2 d T d
X5 Y (d ) =XYoo T —Xo

c %o

and then that xS =d — cxy, 0 X is the desired solution. Al-Khayyami noted here, without
any indication of a proof, that this class of equations always has a single solution. In other
words, the parabola and circle always intersect in one point other than the origin. The origin,
though, does not provide a solution to the problem. Al-Khayyami’s remark reflects the modern
statement that the equation x3 + cx = d always has exactly one positive solution.

Al-Khayyami treated each of his fourteen cases in the same manner. In those cases in which
a positive solution did not always exist, he noted that there were zero, one, or two solutions,
depending on whether the conic sections involved do not intersect or intersect at one or two
points. His one failure in this analysis is in the case of the equation x> 4 cx = bx? 4 d, where
he did not discover the possibility of three (positive) solutions. In general, however, he did
not relate the existence of one or two solutions to conditions on the coefficients. Even when
he did, in the case x> 4+ d = bx?2, it was only in a limited way. In that equation, he noted that
if J/d = b, there was no solution. For if x were a solution, then x3 + b3 = bx2, so bx? > b>
and x > b. Since x> < bx2, it is also true that x < b, a contradiction. Similarly, there was
no solution if ~/d > b. The condition v/d < b, however, does not guarantee a solution. Al-
Khayyami noted again that there may be zero, one, or two (positive) solutions, depending on
how many times the conics for this problem (a parabola and a hyperbola) intersect.

936 Sharaf al-Din al-Tiisi and Cubic Equations

Al-Khayyami’s methods were improved on by Sharaf al-Din al-Tsi (d. 1213), a mathemati-
cian born in Tus, Persia. Like his predecessor, he began by classifying the cubic equations into
several groups. His groups differed from those of al-Khayyami, because he was interested in
determining conditions on the coefficients that determine the number of solutions. Therefore,
his first group consisted of those equations that could be reduced to quadratic ones, plus the
equation x3 = d. The second group consisted of the eight cubic equations that always have
at least one (positive) solution. The third group consisted of those types that may or may not
have (positive) solutions, depending on the particular values of the coefficients. These include
XBrd=bx’,x3+d=cx,x3+bx’+d=cx,x3+cx +d=bx%and x> +d = bx?* + cx.

For the second group of equations, his method of solution was the same as al-Khayyami’s,
the determination of the intersection point of two appropriately chosen conic sections. Yet he
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Modern graphic interpretation
of Sharaf al-Din al-Tasi’s
analysis of the cubic equation
x3+d = bx?
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went beyond al-Khayyami by always giving a careful discussion as to why the two conics in
fact intersected. It is in the third group, however, that he made his most original contribution.

Consider Sharaf al-Din’s analysis of x> + d = bx?, typical of his analysis of the five
equations in this group. He began by putting the equation in the form x2(b — x) = d. He
then noted that the question of whether the equation has a solution depends on whether the
“function” f(x) = x2(b — x) reaches the value d or not (Fig. 9.13). He therefore carefully
proved that the value x, = % provides the maximum value for f (x), thatis, for any x between

0and b, x2(b — x) < (@)2(’1) = @ . It follows that if 4—"3 is less than the given d, there can
be no solutions to the equation. If == 4 — equals d, there is only one solution, x = 2. Finally, if

4b is greater than d, there are two solutlons xpand x,, where 0 < xy < % 2b and % 2b <X, <b.

4b*
27

It is curious that Sharaf al-Din did not say how he found this particular value for x;.
Perhaps he guessed it by analogy to the fact already known to the Greeks (Elements VI-28)
that x = % provides the maximum value for the expression x(b — x), or by a close study of
problem 4 of Archimedes’ On the Sphere and Cylinder I1, in which Archimedes also found
that xo = 3 pr0V1ded the maximum value for the function x?(b — x). One historian has even
suggested that Sharaf al-Din found this maximum by considering the conditions on x under
which f(x) — f(y) > 0 for both y < x and y > x, that is, in essence, by calculating a zero
of the “derivative” of f (x).30

Now, knowing the condition under which solutions exist, Sharaf al-Din proceeded to
solve the equation by reducing it to a form already known, in this case the equation x> +

bx* =k, where k = f — d. He demonstrated that if a solution X to that equation is found
geometrically by the i mtersectlon of two conic sections, then the larger solution x, to the given
equation is x, = X + . To find the remaining root x, the author provided a new method.
He found the positive solutlon Y to the quadratic equation x> + (b — x,)x = x,(b — x,) and
then demonstrated, again geometrically, that x; = Y 4 b — x, is the other positive root of the
original equation. Hence, the root of the new polynomial is related to that of the old by this
change of variable formula. It is clear, therefore, that Sharaf al-Din had a solid understanding
of the nature of cubic equations and the relationship of their roots and coefficients. Unlike
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his predecessors, he was able to see that the various types of cubic equations were related.
Solutions of one type could be conveniently used in solving a second type. Note also that
although he in effect used the discriminant of a cubic equation, here % — d, to determine
whether positive solutions existed, he was not able to use it algebraically to determine the
numerical solutions.

On the other hand, Sharaf al-Din was interested in finding numerical solutions to these
cubic equations. The example he gave in the case discussed was x> + 14,837,904 = 465x°.

By the method above, he first calculated that % = 14,895,500 and k = 42—1773 —d =57,596.
It followed that there were two solutions x4, x,, with 0 < x; < 310 and 310 < x, < 465. To
find x,, he needed to solve x3 +465x% = 57,596. He found that 11 is a solution and therefore
that x, = % + 11=310 + 11 = 321. To find x;, he needed to solve the quadratic equation
x? + 144x = 46,224. The (positive) solution is an irrational number approximately equal to
154.73, a solution he found by a numerical method related to the Chinese method discussed
in Chapter 7. The solution x; to the original equation is then 298.73.

COMBINATORICS

As we have seen, the basic formulas for combinations and permutations were known in India
by the ninth century and probably even earlier. Islamic mathematicians too were interested in
such questions. For example, al-Khalil ibn Ahmad (717-791), a lexicographer interested in
classifying the words in the Arabic language, calculated the number of words one could get
by taking 2, 3, 4, or 5 letters out of the Arabic alphabet of 28 letters. And al-Samaw’al,
in discussing methods for solving large systems of equations, actually wrote down in a
systematic fashion all 210 combinations of 10 unknowns taken 6 at a time in his Al-Bahir.
He did not, however, indicate how to calculate the number for other cases. It is only in the
thirteenth century that we see evidence of the derivation of the basic combinatorial formulas.
We will consider the contributions of several Islamic mathematicians to this work.

941 Counting Combinations

Early in the thirteenth century, Ahmad al-Ab’dari ibn Mun’im discussed the calculation of
the number of combinations of r things from a set of n by looking at this number in terms
of combinations of r — 1 things. Little is known about ibn Mun’im, but he probably lived
at the Almohade court in Marrakech (now in Morocco) during the reign of Mohammed ibn
Ya’kub al-Nasir (1199-1213). Although the Almohade dynasty originally ruled over a large
empire including much of North Africa and Spain, al-Nasir was defeated by a coalition of
Christian kings at the battle of Las Navas de Tolosa in Spain in 1212 and lost many of his
Spanish domains.

Ibn Mun’im was basically examining the old question of the number of possible words
that could be formed out of the letters of the Arabic alphabet. But before dealing with that
question, he considered a different problem: how many different pom-poms of one, two,
three, and so on, colors can one make out of ten different colors of silk. He calculated these
carefully. First of all, he noted that with only one color, there are ten possibilities, that is,
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C 110 = 10. To calculate the possibilities for two colors, ibn Mun’im listed the pairs in order
(where c; represents the ith color):

(cp, cps (3, 1), (c3, €2); ... (c1p, €1)5 (€105 €2)s - - -5 (€105 C9)-
Then he noted that
Cl=Cl+Ci+ - +C)=1+2+---+9=45

and proceeded to generalize this result for any number of colors of silk: “The number of pom-
poms of two colors is then equal to the sum of the successive whole numbers from one to the
number that is one less than the number of colors.”3!

To calculate C310, ibn Mun’im proceeded analogously.

As for determining the number of pom-poms of three colors, it is obtained by combining the
third color with the first and the second, then by combining the fourth color with each pair of
colors among the three colors preceding which are the first, the second, and the third, then by the
combination of the fifth color with each pair of colors among the four colors preceding, then by
the combination of the sixth color with each pair among the five colors preceding, and so on, until
[the combination of] the tenth color, with each pair of colors among the nine colors preceding.

In other words, for each ¢, withk =3, 4, ..., 10, ibn Mun’im considered the pairs from
the previous calculation, which have all indices less than k; for example,

(c3, (€2, €1)); (cq, (€2, €1)), (c4, (c3, €1)), (ca, (€3, €2));5 (Cs, (€2, CP)), - v ..

But each pair of colors is a pom-pom of the second line. For this reason, we write: one, in the
first case of the third line opposite the third color, and this will be the pom-pom composed of the
first, second and third color; then, we write, in the next case, which is opposite the fourth color,
the number of pom-poms obtained by the combination of the fourth color with each pair among
the colors preceding, and it is equal to the number of pom-poms of two colors composed of colors
preceding the fourth color, and it is also equal to the sum of the content of the two first cases of the
second line, and it is three. We then write three in the second case of the third line. And we write
in the third case of the third line—this case being that opposite the fifth color—[the number] of
pom-poms [obtained] by the combination of the fifth color with the pairs of colors preceding the
fifth color. And it is also the sum of the content of the three first cases of the second line. And it
is six. We [therefore] write six in the third case of the third line. . . . The sum of the cases of the
third line is then equal to the set of pom-poms of three colors each, [obtained] beginning with the
[given] colors.

The word “line” here refers to the table in which ibn Mun’im presented these results
(Fig. 9.14). The first line of the table is a row of “1s” (which we can think of as representing

C%), while the second line lists the numbers 1, 2, .. ., 10(= C/, C2, ..., C|°).Ibn Mun’im’s
argument thus showed that a given number in the third line (representing the number of
pairs with index less than a given number, that is, the numbers C’Z‘ =13,6,...,36)is

calculated by summing the numbers in the previous line up to one less than the given number.
And then, in the last sentence, he asserted that C310 isthesum 1+3+6+4+---4+36=

C% + Cg + C;‘ R Cg . Ibn Mun’im thus developed this table, the Pascal triangle, line
by line, in the process showing that

_ k=1 k k+1 -1
C/? = Ck—l + Ck—l + Ck—l +--t Cl?—l’
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FIGURE 9.14

Table for numbers of possible
pom-poms

Sum
1 1 Line of pom-poms of ten colors
10 9 1 Line of pom-poms of nine colors
45 36 8 1 Line of pom-poms of eight colors
120 84 28 7 1 Line of pom-poms of seven colors
210 126 56 21 6 1 Line of pom-poms of six colors
252 126 70 35 15 5 1 Line of pom-poms of five colors
210 84 56 35 20 10 4 1 Four colors
120 36 28 21 15 10 6 3 1 Three colors
45 9 8 7 6 5 4 3 2 1 Two colors
10 1 1 1 1 1 1 1 1 1 One color
all 10th | 9th 8th 7th 6th 5th 4th 3rd 2nd 1st

for n < 10 and k < n. In fact, he even noted that “if the number of colors you have is larger
than ten, you add columns to the table until the number of its colors is equal to that of your
colors.”32

Returning now to the question of words, ibn Mun’im first dealt with the question of
permutations without repetition:

The problem is: We want to determine a canonical procedure to determine the number of permuta-
tions of the letters of a word of which the number of letters is known and which does not repeat any
letter. If the word has two letters, it is clear that there will be two permutations, since the first letter
may be made the second and the second the first. If we augment this by one letter and consider a
three letter word, it is clear that, in each of the permutations of two letters of a two letter word,
the third letter may be before the two letters, between the two letters, or in the final position. The
letters of a three letter word therefore have six permutations. If the word is now augmented by
another letter to make a four letter word, the fourth letter will be in each of the six permutations
[in one of four positions]. The four letter word will thus have twenty four permutations.>?

Thus, ibn Mun’im noted, the number of permutations of the letters of a word of any length
is found by multiplying one by two, by three, by four, by five, and so on, up to the number
of letters of the word.

After next considering how to calculate permutations with repetitions, ibn Mun’im dealt
with the technical details of how Arabic words are created, including the use of vowel
signs. Although it is certainly not feasible to determine the total number of possible Arabic
words, given the ways such words can be constructed, he concluded his treatise with various
examples. For instance, he calculated explicitly the number of words of nine letters, each
word having two nonrepeated letters, two letters repeated twice, and one letter repeated three
times. The number turns out to have 16 decimal digits.
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942 Combinatorics and Number Theory

In the late thirteenth century, the question of the combinatorial formulas was taken up
by Kamal al-Din al-Farisi (d. 1320), who lived in Persia, this time in connection with
factorization of integers and the concept of amicable numbers. Recall that in Book IX of
the Elements, Euclid had shown how to find perfect numbers, numbers that equaled the sum
of their proper divisors. Later Greek mathematicians had generalized this idea and defined
the notion of amicable numbers, a pair of numbers each of which equaled the sum of the
proper divisors of the other. Unfortunately, the Greeks had only discovered one such pair,
220 and 284, and had not been able to find a general theorem that produced such pairs. It
was Thabit ibn Qurra who first discovered and proved such a theorem, here stated in modern
notation:

IBN QURRA’S THEOREM Forn > 1, let p,=3-2"—1,q,=9-2"""'— L. If py_1, Pw
and q,, are prime, then a =2"p, _p, and b =2"q, are amicable.

As the simplest example, we can take n = 2; then p; =35, p, = 11, and g, =71 are all
prime, and the resultant pair of numbers is 220 and 284. Although other Islamic mathemati-
cians studied ibn Qurra’s result, it was not until the late thirteenth century that a second pair
of amicable numbers, 17,296 and 18,416, was found by al-Farisi, in connection with his own
study of the theorem. (This pair is commonly attributed to Pierre Fermat in the seventeenth
century; another pair, attributed to René Descartes, was also discovered earlier by an Islamic
mathematician. See Exercise 24.)

Al-Farisi’s work on ibn Qurra’s theorem was through combinatorial analysis, in this case
the combinations of the prime divisors of a number. It is these combinations that determine
all of the proper divisors of a number. For example, if n = p;p, p3, where each p; is prime,
then the divisors of n are 1, py, p2, p3. PiP2. P1P3» P2P3, and pyp,ps. Thus, there are
CS +C f +C g +C g divisors in all. Therefore, a knowledge of the relationships among the
combinatorial numbers was necessary for a complete study of the divisors of integers.

Al-Farisi was able to work out these relationships in some detail, using an argument
similar to that of ibn Mun’im. In fact, he also developed the “Pascal” triangle and was able to
relate columns not only to numbers of combinations but also to figurate numbers—triangular,
pyramidal, and higher-order solids—while at the same time giving an algebraic proof of ibn
Qurra’s theorem.

94.3 1Ibn al-Banna and the Combinatorial Formulas

Al-Farisi, like his predecessors, developed the results for combinations by taking sums. It
was a direct successor of ibn Mun’im in Morocco, Abu-1-’ Abbas Ahmad al-Marrakushi ibn
al-Banna (1256—1321), also of Marrakech, who was able to derive the standard multiplicative
formula for finding combinations, the formula that was stated much earlier in India. In
addition, he dealt with combinatorics in the abstract, not being concerned with what kinds of
objects were being combined.

Ibn al-Banna began by using a counting argument to show that C5 =n(n — 1)/2: An
element a; is associated with each of n — 1 elements, a, is associated with each of n — 2
elements, and so on, so C;’ isthesumofn —1,n —2,n —3, ..., 2, 1. He then showed that
to find the value C}/, “we always multiply the combination that precedes the combination
sought by the number that precedes the given number, and whose distance to it is equal to the



296

CHAPTER 9  TiiE MATHEMATICS OF [sLam

number of combinations sought. From the product, we take the part that names the number

of combinations.”3* We can translate ibn al-Banna’s words into the modern formula

n— (k-1
k

To prove this result, ibn al-Banna began with C%. To each set of two elements from the n
elements, one associates one of the n — 2 remaining elements. One obtains then (n — 2)C 5’
different sets. But because CS = 3, each of these sets is repeated three times. For example,
{a, b, c} occurs as {{a, b}, c}, {{a, c}, b}, and as {{b, c}, a}. Therefore, C5 = ”—ng as
claimed. For the next step, we know that Cg‘ = 4. It follows that if we associate to each
set of three elements one of the n — 3 remaining elements, the total (n — 3) Cg’ is four times

C; = Ciy

larger than C}}, or Cj = '%3 C%. A similar argument holds for other values of k. Putting these
results together, it follows that

nn—Hmn—-=2)---(n—(k—1))

1-2-3.--k ’
the standard formula for the number of ways to pick k elements out of a set of n. Using this
result and the result of ibn Mun’im that the number of permutations of a set of n objects was

n!, ibn al-Banna showed by multiplication that the number P;' of permutations of k objects
from a set of n is

=

Pl=nn—1n~-2)...(n—(k—1).

Ibn al-Banna’s proof of the formula for C ]’: as well as ibn Mun’im’s proof of the permu-
tation rule are, like earlier proofs of al—Karaji and al-Samaw’al, in inductive style. That is,
the author began with a known result for a small value and used it to build up step-by-step
to higher values. But neither ibn al-Banna nor any of his predecessors explicitly stated an
induction principle to be used as a basis for proofs. Such a statement was first made by Levi
ben Gerson, a younger contemporary of ibn al-Banna, and will be considered in Chapter 10.

GEOMETRY

Islamic mathematicians dealt at an early stage with practical geometry, but later worked
on various theoretical aspects of the subject, including the parallel postulate of Euclid, the
concept of an irrational magnitude, and the exhaustion principle for determining volumes of
solids.

951 Practical Geometry

The earliest extant Arabic geometry, like the earliest algebra, is due to al-Khwarizmi, and
occurred as a separate section of his algebra text. A brief reading makes it clear that in his
geometry, even more so than in his geometric demonstrations in algebra, al-Khwarizmi was
not at all influenced by theoretical Greek mathematics. His text is an elementary compilation
of rules for mensuration such as might be needed by surveyors, containing no axioms or
proofs.
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We begin with al-Khwarizmi’s rules for the circle:

In any circle, the product of its diameter, multiplied by three and one-seventh, will be equal to the
circumference. This is the rule generally followed in practical life, though it is not quite exact. The
geometricians have two other methods. One of them is, that you multiply the diameter by itself,
then by ten, and hereafter take the root of the product; the root will be the circumference. The
other method is used by the astronomers among them. It is this, that you multiply the diameter
by sixty-two thousand eight hundred thirty-two and then divide the product by twenty thousand.
The quotient is the circumference. Both methods come very nearly to the same effect. . . . The
area of any circle will be found by multiplying half of the circumference by half of the diameter,
since, in every polygon of equal sides and angles, . . . the area is found by multiplying half of
the perimeter by half of the diameter of the middle circle that may be drawn through it. If you
multiply the diameter of any circle by itself, and subtract from the product one-seventh and half
of one-seventh of the same, then the remainder is equal to the area of the circle.?

The first of the approximations for 7 given here is the Archimedean one, 371, familiar to

Heron. The approximation of = by +/10, attributed to “geometricians,” was used in India.
Interestingly, however, it is less exact than the “not quite exact” value of 3 1/7. The earliest
known occurrence of the third approximation, 3.1416, was also in India, in the work of
Aryabhata. The attribution of this value to astronomers is probably connected with its use
in the Indian astronomical works that were translated into Arabic.

Al-Khwarizmi gave several other procedures for calculating areas and volumes. For
example, to calculate the area of a rhombus, the reader is instructed to multiply the length
of one diagonal by half the length of the other. To determine the volume of the frustum of
a pyramid, we are not given a formula, as in the Moscow Papyrus, but are told to calculate
the height to the top of the completed pyramid by using similar triangles, then to subtract the
volume of the upper pyramid from that of the lower. And, interestingly, rather than presenting
Heron’s formula for calculating the area of a triangle with three sides known, al-Khwarizmi
dropped a perpendicular from one vertex to the opposite side, then used the Pythagorean
Theorem twice to calculate the height of the triangle, and finally multiplied this height by
half the base.

As we noted earlier, during the generations following al-Khwarizmi, Islamic mathemati-
cians began to absorb the basic principles of Greek mathematics, including creation of correct
geometrical constructions. But since they were always interested in practical applications, in
particular in how artisans could create interesting geometrical patterns, they became proficient
in doing theoretical constructions that could easily be translated into real-life constructions.
We consider here an example taken from the Book on the Geometrical Constructions Neces-
sary to the Artisan by Muhammad Abil al-Wafa’ al-Biizjani (940-997), in which the author
was looking at the problem of constructing a large square out of three identical squares. As
he wrote, “A number of geometers and artisans have erred in the matter of these squares and
their assembling. The geometers [have erred] because they have little practice in constructing,
and the artisans [have erred] because they lack knowledge of proofs.”*® Further, he noted,
“I was present at some meetings in which a group of geometers and artisans participated.
They were asked about the construction of a square from three squares. A geometer easily
constructed a line such that the square of it is equal to the three squares, but none of the
artisans was satisfied with what he had done. The artisan wants to divide those squares into
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BIOGRAPHY
Abii al-Wafa’ (940-998)

orn in Buzjan, in the Khorasan region of what is now Iran,

Muhammad Abii al-Wafa al-Biizjani lived during the time
of the Buyid Islamic dynasty in western Iran and Iraq. The high
point of this dynasty was during the reign of * Adud ad-Dawlah,
who supported a number of mathematicians at his court in
Baghdad. His son Sharaf ad-Dawlah continued his father’s pol-
icy, and Abiu al-Wafa was employed in designing and building
an observatory. His Book on What Is Necessary from the Sci-

Interestingly, it is virtually the only book in medieval Islam in
which negative numbers appear, in the context of debts. But
Abil al-Wafa’s main contribution was in the simplification and
extension of the spherical trigonometry that Islamic scientists
had learned from Greek sources. Among his other accomplish-
ments, he was responsible for the earliest proof of the rule of
four quantities, which then served as a basis for developing the
basic ideas of spherical trigonometry. He was also the first to

ence of Arithmetic for Scribes and Businessmen provided an discover and prove the spherical law of sines as well as the law
introduction to various practical mathematical ideas, including

mensuration, taxes, units of money, and payments to soldiers.

of tangents.

pieces from which one square can be assembled.” (The geometer’s construction simply used
the Pythagorean Theorem twice to construct the square root of 3. But this construction is not
a “physical” construction.)

Abii al-Wafa’ then presented one of the incorrect methods of the artisans, in order that
“the correct ones may be distinguished from the false ones and someone who looks into this
subject will not make a mistake by accepting a false method, God willing [Fig. 9.15]. . . .
But this figure which he constructed is fanciful, and someone who has no experience in the art
or in geometry may consider it correct, but if he is informed about it he knows that it is false.”
He went on to note that the angles are correct, and that it looks like a good construction. But,
in fact, the side of the proposed large square is equal to the side of the smaller square plus

FIGURE 9.15 B
Incorrect construction by
artisans of one square from S
three by \\\
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FIGURE 9.16
Correct construction of one
square from three
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half the diagonal. A quick calculation showed that, in effect, the square of 1 4 4 is not equal
to 3.

Abii al-Wafa’ finally presented a geometrically correct construction, with proof (Fig. 9.16).
He bisected two of the squares along their diagonals. Each of those was applied to one side
of the third square; one of the angles of the triangle, which is half a right angle, is placed
at one angle of the square and the hypotenuse of the triangle at the side of the square. Then
the right angles of the triangles are connected by straight lines. These become the side of
the desired square. From each of the original triangles, a small triangle is cut off by the
straight line; these are transferred to the “empty” triangles within the square. To prove that
this construction is correct, Abul al-Wafa’ needed to prove that the triangles extending past
the square were congruent to the “vacant” triangles inside the square. But this followed by
the angle-angle-side triangle congruence theorem.
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0.5.2 Geometrical Constructions

The preceding construction was designed for the use of artisans. But Islamic geometers
were also interested in constructions that simply extended what the Greeks had done. As
we saw in Chapter 3, Euclid presented a construction of a regular pentagon in Book IV of
the Elements. Abti Kamil showed, using algebra, how to construct an equilateral pentagon
in a given square, each of whose sides is equal to 10. To construct the pentagon, he assumed
that it was accomplished and used analysis to determine what the length of a side must be
(Fig. 9.17). But rather than using the author’s words, we will use modern symbols to help
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FIGURE 9.17
Abtu Kamil’s construction of
a pentagon in a square

B A
H

M
G D

the reader understand the construction. Thus, if the pentagon is AEHZM, we set x = AE.
Then BE = 10 — x. Also, since triangle G H Z is isosceles with HZ = x, sides GH and GZ

will both equal v/x2/2. Thus, HB = 10 — \/x2/2. It follows that

2
x>=HE*>=HB>+ BE>= (10 - ,/xz/z) + (10 — x)?

_ %xz — (20 ++/200) x +200.

Abu Kamil solved this equation to get x = 20 4+ +/200 — /200 + /320, 000 as the length

of a side of the pentagon. Presumably, he could now construct this length.

Abii al-Wafa’ also gave a construction of a pentagon with a special condition, the condition
being that the compass was a “rusty compass,” one with a fixed opening. Thus, to construct a
regular pentagon on a line segment A B, he erected a perpendicular BG at B of length equal
to AB, found the midpoint D of AB, connected DG and found point S on DG such that
DS = AB (Fig. 9.18). He next constructed a perpendicular to DG at the midpoint K of DS,
which met A B extended at E. Then, using both A and E as centers, he constructed circles of
radius A B, which cut each other at M. Next, he connected BM and extended it to Z so that
MZ = AB. Finally, he joined AZ, drew circles centered on A and Z with length A B, which
met at H, and drew circles centered on B and Z with the same length, which met at 7. The
vertices A, B, T, Z, H, are now, he claimed, the vertices of an equilateral pentagon.

Islamic mathematicians also worked on constructions requiring the use of conic sections
or other devices beyond those of Euclid. For example, Ahmad ibn Muhammad ibn ’Abd
al-Jalil al-Sijzi in the late tenth century gave a detailed construction of a heptagon, and an
anonymous author a few years later wrote a treatise giving a construction of a regular 9-gon.’



FIGURE 9.18
Construction of a pentagon
with a “rusty compass”
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0.5.3 The Parallel Postulate

One of the other pure geometric ideas that recurs in Islamic geometry is that of parallel
lines and the provability of Euclid’s fifth postulate. Even in Greek times, mathematicians
were disturbed with this postulate. Many attempts were made to prove it from the others.
So too in the Islamic world. One of the attempts to deal with this question was in the work
of ibn al-Haytham entitled Magala fi sharh musadarat kitab Uqlidis (Commentary on the
Premises of Euclid’s Elements), in which he attempted to reformulate Euclid’s theory of
parallels. He began by redefining the concept of parallel lines, deciding that Euclid’s own
definition of parallel lines as two lines that never meet was inadequate. His “more evident”
definition included the assumption of the constructibility of such lines. Namely, he wrote that
if a straight line moves so that one end always lies on a second straight line and so that it
always remains perpendicular to that line, then the other end of the moving line will trace
out a straight line parallel to the second line. In effect, this definition characterized parallel
lines as lines always equidistant from one another and also introduced the concept of motion
into geometry. Later commentators, including al-Khayyami, were unhappy with this. They
doubted the “self-evidence” of a line moving and always remaining perpendicular to a given
line, and therefore they could not understand how one could base a proof on this idea. As
they knew, Euclid had only used motion in generating new objects from old, as a sphere is
generated by rotating a semicircle. Nevertheless, ibn al-Haytham used this idea in his “proof™
of the fifth postulate.

The crucial step in ibn al-Haytham’s proof is the following:

LEMMA [f two straight lines are drawn at right angles to the two endpoints of a fixed

straight line, then every perpendicular line dropped from the one line to the other is equal to
the fixed line.

InFigure9.19, GA and D B are drawn at right angles to A B, and a perpendicular is dropped
from G to the line D B. It must be proved that G D is equal to AB. Ibn al-Haytham’s proof
was by contradiction. He first assumed that GD > A B. He then extended G A past A so that
AE = AG and, similarly, BD past B. From the point E, a perpendicular is dropped to the



302 CHAPTER 9 THE MATHEMATICS OF [SLAM

FIGURE 9.19
Ibn al-Haytham’s proof of

his lemma dealing with the
parallel postulate

c D
A B
FIGURE 9.20

Al-Khayyami’s quadrilateral:
AC=BD, AC 1L AB, and
BD L AB. Are the angles
at C and D acute, obtuse, or
right?

E H G
A
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line D B extended, meeting it at 7. Then the lines G B and B E are drawn. Triangles EA B and
G AB are congruent by side-angle-side. Therefore, /GBA = /EBA,so /GBD = /EBT,
and GB = BE. It follows that the triangles £ BT and G B D are congruent and therefore that
GD = ET. Now, using his concept of motion, ibn al-Haytham imagined line £7 moving
along line 7' D and remaining always perpendicular to it. When 7" coincides with B, point E
will be outside line AB, since ET > AB. We call ET at this particular time H B. Of course,
when ET reaches G D, the two lines will coincide. It now follows from the definition of
parallelism that line G H E is a straight line parallel to DBT. By construction, GAE is also
a straight line, so there would be two different straight lines with the same endpoints, and
therefore two straight lines would enclose a space. This, of course, is impossible. A similar
contradiction resulted from the assumption that GD < A B. Hence, the proof is complete.

Because GD = AB, it follows easily that /AG D, like the three other angles of quadrilat-
eral ABDG, is aright angle. One can then easily demonstrate Euclid’s postulate. Of course,
what ibn al-Haytham did not realize was that his original definition of parallel lines already
implicitly contained that postulate. In any case, his result made clear the reciprocal relation-
ship between the parallel postulate and the fact that the angle sum of any quadrilateral is four
right angles.

Al-Khayyami was also interested in this question of parallelism. In his Sharh ma ashkala
min musadarat kitab Uglidis (Commentary on the Problematic Postulates of the Book of
Euclid), he began with the principle that two convergent straight lines intersect, and it is
impossible for them to diverge in the direction of convergence. By convergent lines, he meant
lines that approached one another. Given this postulate, al-Khayyami proceeded to prove a
series of eight propositions, culminating in Euclid’s fifth postulate. He began by constructing
a quadrilateral with two perpendiculars of equal length, AC and B D, at the two ends of a
given line segment A B and then connecting the points C and D (Fig. 9.20). He proceeded to
prove that the two angles at C and D were both right angles by showing that the two other
possibilities, that they were both acute or both obtuse, led to contradictions. If they were
acute, C D would be longer than A B, whereas if they were obtuse, C D would be shorter than
AB. In each case, he showed that the lines AC and B D would diverge or converge on both
sides of AB, and this would contradict his original postulate. Al-Khayyami was now able
to demonstrate Euclid’s fifth postulate. In some sense, his treatment was better than ibn al-
Haytham’s because he explicitly formulated a new postulate to replace Euclid’s rather than
have the latter hidden in a new definition.

About a century after al-Khayyami, another mathematician, Nasir al-Din al-Tiisi (1201
1274) subjected the works of his predecessor to detailed criticism and then attempted his own
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Nasir al-Din al-Tisi (1201-1274)

asir al-Din, from Tus in Iran, completed his formal educa-
Ntion in Nishapur, Persia, then a major center of learning,
and soon gained a great reputation as a scholar (Fig. 9.21). The
thirteenth century, however, was a time of great turmoil in Is-
lamic history. The only places of peace in Iran were the forts
controlled directly by the Isma’ili rulers. Fortunately, Nasir al-

in 1256, Nasir al-Din was able to transfer his allegiance. He
served Hiulagi as a scientific adviser and gained his approval
to construct an observatory at Maragha, a town about fifty miles
south of Tabriz. It was here that Nasir al-Din spent the rest of his
life as head of a large group of astronomers. During that time,
he computed a new set of very accurate astronomical tables and

developed an astronomical model that Copernicus may have
adapted to design his heliocentric system.

Din persuaded one of these rulers to allow him to work at such
a fort. After the Mongol leader Hiilagli defeated the Isma’ilis

proof of the fifth postulate in his book written in about 1250 entitled Al-risala al-shafiya‘an
al-shakk fi-1-khutiit al-mutawaziya (Discussion Which Removes Doubt about Parallel Lines).
He considered the same quadrilateral as al-Khayyami and also tried to derive a contradiction
from the hypotheses of the acute and obtuse angles. But in a manuscript probably written by
his son Sadr al-Din in 1298, based on Nasir al-Din’s later thoughts on the subject, there is a
new argument based on another hypothesis, also equivalent to Euclid’s, that if a line GH 1is
perpendicular to C D at H and oblique to AB at G, then the perpendiculars drawn from A B
to CD are greater than G H on the side on which G H makes an obtuse angle with AB and
less than G H on the other side (Fig. 9.22).38

FIGURE 9.21

Nasir al-Din al-Tasi

FIGURE 9.22 A—

- - - G
Nasir al-Din al-Tisi’s
hypothesis on parallels and B
perpendiculars
c H D

954 Incommensurables

Another geometric topic of interest to Islamic mathematicians was that of incommensurables.
In fact, many Arabic commentaries were written on the topic of Euclid’s Elements, Book X.
Recall that Islamic algebraists early on began to use irrational quantities in their work with
equations, ignoring the Euclidean distinction between number and magnitude. There were,
however, several commentators who made some attempt to reconcile this use and to put it
into a theoretical framework consistent with the Euclidean work.
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In the Risala fi’l-maqadir al-mushtaraka wa’l-mutabayana (Treatise on Commensurable
and Incommensurable Magnitudes), written sometime around 1000, Abu ‘Abdallah al-Hasan
ibn al-Baghdadi attempted to reconcile the operational rules already being used for irrational
quantities with the main principles of the Elements and thus to prove that the contempo-
rary methods of computation were valid. He was quite aware that these numerical meth-
ods of computation were simpler than the geometric modes of Euclid: “It is easier . . . to
assume a number and to base oneself on it than to make a similar assumption concerning a
magnitude."* Because he knew of Aristotle’s and Euclid’s fundamental distinction between
number and magnitude, he began by relating the two concepts by establishing a correspon-
dence between numbers and line segments in what appears to be a modern way. Namely,
given a unit magnitude a, each “whole number” n corresponds to an appropriate multiple
na of the unit magnitude. Parts of this magnitude, such as 7, then correspond to parts of
a number 7" Ibn al-Baghdadi considered any magnitude expressible this way as a rational
magnitude. He showed that these magnitudes relate to one another as numbers to numbers,
as in Elements X-5. Magnitudes that are not “parts” are considered irrational magnitudes. In
effect, ibn al-Baghdadi attempted to imbed the rational numbers into a number line. But he
also wanted to connect irrational magnitudes to “numbers.”

Ibn al-Baghdadi made the connection through the idea of a root. The root of a number
n was the middle term x in the continuous proportion # : x = x : 1. Such a root may or may
not exist. He then defined the root of a magnitude na similarly as the mean proportional
between the unit magnitude a and the magnitude na. This quantity is always constructible
by straightedge and compass, so it necessarily exists. It may, of course, be either rational or
irrational. Since “rational numbers” correspond to “rational magnitudes,” and since the latter
always have roots, which may or may not be rational, he could consider roots of the former to
continue this correspondence. In particular, he noted that for magnitudes, roots and squares
were of the same geometric type. In other words, the root of a magnitude expressed as a line
segment was another line segment, just as the square of a line segment could be expressed as
a line segment. Ibn al-Baghdadi, like some of his Islamic predecessors, hence moved away
from the Greek insistence on homogeneity and toward the notion that all “quantities” can be
expressed in the same way, essentially as “numbers.”

Ibn al-Baghdadi concluded his book by dealing extensively with the various types of
irrational magnitudes treated by Euclid in Book X. As a result of that discussion, he was
able to prove a result on the “density” of irrational magnitudes, namely, that between any
two rational magnitudes there exist infinitely many irrational magnitudes. For example, he
considered the magnitudes represented by the consecutive numbers 2 and 3. The squares
of these magnitudes are represented by 4 and 9. Between those magnitudes are magnitudes
represented by the numbers 5, 6, 7, and 8. Their roots, V3, v/6, /7, and /8, which ibn al-
Baghdadi called magnitudes of the first order of irrationality, lie between 2 and 3. Similarly,
the squares of 4 and 9, namely, 16 and 81, also represent magnitudes, as do the squares 25, 36,
49, and 64. Corresponding to the integers 17, 18, . . ., 24 are magnitudes of the first order of
irrationality V17,18, ..., /24 as well as magnitudes of the second order of irrationality
V17 .V \/ﬁ, ARV /24 The latter magnitudes lie between the original magnitudes 2 and
3. Ibn al-Baghdadi noted that one can continue in this way to find as many magnitudes as
one wants, of various higher orders of irrationality, between the two original ones. Ibn al-
Baghdadi’s work thus demonstrated that Islamic authors understood the arguments of their
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Greek predecessors in keeping separate the realms of magnitude and number, but also wanted
to break the bonds imposed by this dichotomy so that they could justify their increasing use
of “irrationals” in computation.

9.5.5 Volumes and the Method of Exhaustion

One final area of geometry we will discuss also demonstrates that Islamic authors understood
the works of the Greeks and wanted to go beyond them, namely, the work in calculating
volumes of solids via the method of exhaustion pioneered by Eudoxus and used so extensively
by Archimedes. It turns out that although Islamic mathematicians read Archimedes’ work On
the Sphere and the Cylinder, they did not have available his work On Conoids and Spheroids
in which Archimedes showed how to calculate the volume of the solid formed by revolving
a parabola about its axis. Thus, Thabit ibn Qurra found his own proof, which was quite long
and complicated, and some 75 years later Abii Sahl al-Kiihi (10th century), from the region
south of the Caspian Sea, simplified Thabit’s method and solved some similar problems on
volumes and analogous problems on the centers of gravity. Al-Kiihi in turn was criticized
shortly afterward by ibn al-Haytham for not solving the paraboloid problem in all generality,
that is, for not considering the volume of the solid formed by revolving a segment of a parabola
about a line perpendicular to its axis. It is this latter problem that ibn al-Haytham proceeded
to solve himself.

In modern terminology, ibn al-Haytham proved that the volume of the solid formed by
rotating the parabola x = ky? around the line x = kb* (which is perpendicular to the axis of
the parabola) is 8/15 of the volume of the cylinder of radius kb> and height b. His formal
argument was a typical exhaustion argument. Namely, he assumed that the desired volume
was greater than 8/15 of that of the cylinder and derived a contradiction, then assumed that
it was less and derived another contradiction. But the essence of ibn al-Haytham’s argument
involved “slicing” the cylinder into n disks, each of thickness 7 = %, the intersection of each
with the paraboloid providing an approximation to the volume of a slice of the paraboloid
(Fig. 9.23). The ith disk in the paraboloid has radius kb> — k(i h)?* and therefore has volume
wh(kh®n? — ki*h?)? = nk’h>(n® — i®)%. The total volume of the paraboloid is therefore
approximated by

n—1 n—1
Tk’h? Z(n2 — i =ak’h’ Z(n4 —2n%i% +i%).
i=1 i=1

Butibn al-Haytham already knew formulas for the sums of integral squares and integral fourth
powers. Using these, he could calculate that

n—1
8 1 1 8 1 1
4 2.2, -4 4 4 4 4
n=-2nit"+i)=—m-n"+—n"——n=—n-n"—-n"— —n
g( ) 15( ) 30 30 15 2 30

and therefore that

8 = 8
I_S(n — 1)n4 < X:(n2 — i2)2 < 1_5n -n*,

i=1
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FIGURE 9.23
Revolving a segment of
a parabola around a line
perpendicular to its axis

But the volume of a typical slice of the circumscribing cylinder is 7k (kb?)? = wk?hn*, and
therefore the total volume of the cylinder is 7k>h%n - n*, while the volume of the cylinder
less its “top slice” is wk>h>(n — 1)n*. Therefore, the inequality shows that the volume of the
paraboloid is bounded between 8/15 of the cylinder less its top slice and 8/15 of the entire
cylinder. Since the top slice can be made as small as desired by taking n sufficiently large, it
follows that the paraboloid is exactly 8/15 of the cylinder as asserted.

TRIGONOMETRY

An Indian Siddhanta was brought to Baghdad late in the eighth century and translated into
Arabic. Thus, Islamic scholars were made aware of the trigonometric knowledge of the
Hindus, which had earlier been adapted from the Greek version of Hipparchus. They were
also soon aware of Ptolemy’s trigonometry as detailed in his Almagest when that work was
translated into Arabic as well. As in other areas of mathematics, the Islamic mathematicians
absorbed what they found from other cultures and gradually infused the subject with new
ideas.

Like the situation in both Greece and India, trigonometry in Islam was intimately tied
to astronomy, so in general mathematical texts on trigonometry were written as chapters
of more extensive astronomical works. The mathematicians were particularly interested in
using trigonometry to solve spherical triangles because Islamic law required that Moslems
face the direction of Mecca when they prayed. To determine the appropriate direction at one’s
own location required an extensive knowledge of the solution of such triangles on the sphere
of the earth. The solution of both plane and spherical triangles was also important in the
determination of the correct time for prayers. These times were generally defined in relation
to the onset of dawn and the end of twilight as well as the length of daylight and the altitude
of the sun on a given day, notions that again required spherical trigonometry to determine
accurately.

96.1 The Trigonometric Functions

Recall that Ptolemy used only one trigonometric “function,” the chord, in his trigonomet-
ric work, while the Hindus modified that into the more convenient sine. Early in Islamic
trigonometry, both the chord and the sine were used concurrently, but eventually the sine
won out. (The Islamic sine of an arc, like that of the Hindus, was the length of a particu