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Distribution of Random Variables.

Cumulative distribution function uniquely defines a
random variable X:

F (x) = P(X ≤ x), F : R→ [0,1];

1. it is non-negative and non-decreasing function
with values from [0,1];

2. it is right-continuous and it has limit from the
left (càdlàg function);

3. limx→+∞ F (x) = 1; limx→−∞ F (x) = 0;

4. P(a < X ≤ b) = F (b)− F (a).
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(Purely) Discrete random variable.

“1 kg” of probability is concentrated on finite or
countable set of points S(X) = {x1, x2, . . . }: for any
x0 ∈ R

P(X = x0) = F (x0)− lim
x→x0−

F (x)

and for any xi ∈ S(X) the probability P(X = xi) > 0.

F (x) is discontinuous at the points xi ∈ S(X) and
constant in between:

F (x) =
∑
xi≤x

P(X = xi) =
∑
xi≤x

p(xi)

P(a < X ≤ b) =
∑

a<xi≤b

p(xi)
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(Purely) Discrete random variable.

• Bernoulli r.v. X ∼ B(p); Binomial r.v. X ∼ B(n, p);

• Poisson r.v. X ∼ Poi(λ);

• Geometric r.v. X ∼ G(p):

P(X = k) = (1− p)k−1p, k = 1,2, . . . ,E(X) =
1

p
,

P(X = k) = (1− p)kp, k = 0,1,2, . . . ,E(X) =
1− p
p

,

Var(X) =
1− p
p2

• ect.
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Absolute continuous random variable.

If F (x) is absolutely continuous, i.e. there exists a
Lebesgue-integrable function f(x) such that

F (b)− F (a) = P(a < X ≤ b) =

∫ b

a

f(x)dx,

for all real a and b. The function f is equal to the
derivative of F almost everywhere, and it is called
the probability density function of the distribution of
random variable X.
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Absolute continuous random variable.

• Unifrom r.v. X ∼ U [a, b];

• Normal r.v. X ∼ N(µ, σ2);

• Exponential r.v. X ∼ Exp(λ);

• ect.
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Mixed (absolute continuous and discrete) random variable.

Let X be a discrete r.v. with FX distribution function, and let Y
be absolute continuous r.v. with FY distribution function. Let
p ∈ (0,1) then in the course we also consider mixed random
variable Z with following distribution function FZ

FZ = pFX + (1− p)FY .

1	

0	
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Uniform random variable.

X ∼ U [0,1], with cumulative distribution function F (x) and den-
sity function f(x)

F (x) = P(X ≤ x) =

{
0, if x ≤ 0;
x, if 0 < x ≤ 1;
1, if x > 1;

f(x) =
{

0, if x /∈ [0,1];
1, if x ∈ [0,1].

1	 1	

1	 1	

f(x)	

F(x)	
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Uniform random variable simulation.

> runif (100, min=3, max=4)

will generate 100 numbers from the interval [3,4] ac-
cording uniform distribution.

[RC]: Strictly speaking, all the methods we will see
(and this includes runif) produce pseudo-random num-
bers in that there is no randomness involved – based
on an initial value u0 and a transformation D, the uni-
form generator produce a sequence (ui, i = 0,1, . . .),
where ui = Di(u0) of values on (0,1) – but the out-
come has the same statistical properties as an iid se-
quence. Further details on the random generator of
R are provided in the on-line help on RNG.
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Uniform simulation.

> set.seed(2)

> runif(5)

[1] 0.1848823 0.7023740 0.5733263 0.1680519 0.9438393

> set.seed(1)

> runif(5)

[1] 0.2655087 0.3721239 0.5728534 0.9082078 0.2016819

> set.seed(2)

> runif(5)

[1] 0.1848823 0.7023740 0.5733263 0.1680519 0.9438393
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Non-uniform random variable generation.

• The inverse transform method

• Accept-reject method

• others
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The inverse transform method.

[RC] ... it is known also as probability integral trans-
form – it allows us to transform any random variable
into a uniform random variable and, more importantly,
vice versa. For example, if X has density f and cdf
F , then we have the relation

F (x) =

∫ x

−∞
f(t)dt,

and if we set U = F (X), then U ∼ U [0,1], indeed,

P(U ≤ u) = P(F (X) ≤ F (x))
= P(F−1(F (X)) ≤ F−1(F (x))) = P(X ≤ x),

here F has an inverse because it is monotone.
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The inverse transform method.

Example. [RC] If X ∼ Exp(λ), then F (x) = 1− e−λx.
Solving for x in u = 1 − e−λx gives x = −1

λ
ln(1 − u).

Therefore, if U ∼ U [0,1], then

X = −
1

λ
ln(U) ∼ Exp(λ).

(as U and 1− U are both uniform)



Aula 1. Generating random variables I. 13

The inverse transform method.

Example. [RC, Exercise 2.2] Some variables that
have explicit forms of the cdf are logistic and Cauchy.
Thus, they are well-suited to the inverse transform
method.

• Logistic: f(x) = 1
β

e−(x−µ)/β

(1+e−(x−µ)/β)2 , F (x) = 1
1+e−(x−µ)/β ;

• Cauchy: f(x) = 1
πσ

1

1+(x−µ
σ )

2 , F (x) = 1
2

+1
π
arctan

(
x−µ
σ

)
;

• Pareto(γ): f(x) = γ
(1+x)γ+1 , F (x) = 1 . . .
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The inverse transform method.

For an arbitrary random variable X with cdf F , define
the generalized inverse of F by

F−1(u) = inf{x : F (x) ≥ u}.

Lemma 1. Let U ∼ U [0,1], then F−1(U) ∼ F .

Proof. For any u ∈ [0,1], x ∈ F−1([0,1]) we have

F (F−1(u)) ≥ u, F−1(F (x)) ≥ x.
Therefore

{(u, x) : F−1(u) ≤ x} = {(u, x) : F (x) ≥ u},
and it means

P(F−1(U) ≤ x) = P(F (x) ≥ U) = F (x).
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The inverse transform method.

Example. Let X ∼ B(p).

F (x) =

{
0, if x < 0;

1− p, if 0 ≤ x < 1;
1, if 1 ≤ x <∞,

F−1(x) =
{

0, if 0 ≤ u ≤ 1− p;
1, if p < u ≤ 1,

Thus

X = F−1(U) =

{
0, if U ≤ 1− p;
1, if U > 1− p, ∼ B(p).
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The inverse transform method.

A main limitation of inverse method is that quite of-
ten F−1 is not available in explicit form. Sometimes
approximations are used.
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The inverse transform method.

Example. When F = Φ, the standard normal cdf, the
following rational polynomial approximation is stan-
dard, simple, and accurate for the normal distribu-
tion:

Φ−1(u) = y +
p0 + p1y + p2y2 + p3y3p4y4

q0 + q1y + q2y2 + q3y3q4y4
,0.5 < u < 1,

where y =
√
−2 ln(1− u) and the pk, qk are given by

table:

k pk qk
0 -0.322232431088 0.099348462606
1 -1 0.588581570495
2 -0.3422420885447 0.531103462366
3 -0.0204231210245 0.10353775285
4 0.0000453642210148 0.0038560700634
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Accept-reject method.

[RC, Ch.2.3] When the inverse method will fail, we
must turn to indirect methods; that is, methods in
which we generate a candidate random variable and
only accept it subject to passing a test... These so-
called accept-reject methods only require us to know
the functional form of the density f of interest (called
the target density) up to a multiplicative constant.
We use a simpler (to simulate) density g, called the
instrumental or candidate density, to generate the
random variable for which the simulation is actually
done.
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Accept-reject method.

[RC, Ch.2.3] Constraints:

• f and g have compatible supports (i.e. g(x) > 0
when f(x) > 0);

• there is a constant M with f(x)
g(x)
≤M for all x.

X ∼ f is simulated as follows.

• generate Y ∼ g;

• generate U ∼ U [0,1];

• if U ≤ 1
M
f(Y )
g(Y )

, then we set X = Y , otherwise we

discard Y and U and start again.
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Accept-reject method.

Aula 1. 20

Accept-reject method.

f

g

f
Mg
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Accept-reject method.

Proof.

P(Y ≤ x) = P(Y ≤ x | Y accepted)
= P(Y ≤ x | U ≤ f(Y )/Mg(Y ))

=

∫∞
−∞ P(Y ≤ x ∩ U ≤ f(Y )/Mg(Y ) | Y = y)g(y)dy

P(U ≤ f(Y )/Mg(Y ))

=

∫ x
−∞ (f(y)/Mg(y)) g(y)dy

P(U ≤ f(Y )/Mg(Y ))
=

∫ x
−∞ f(y)dy

MP(U ≤ f(Y )/Mg(Y ))

in the same way

P(U ≤ f(Y )/Mg(Y )) =

∫ ∞
−∞

P(U ≤ f(Y )/Mg(Y ) | Y = y)g(y)dy

=

∫ ∞
−∞

(f(y)/Mg(y)) g(y)dy =
1

M

∫ ∞
−∞

f(y)dy =
1

M
.

�
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Accept-reject method.

The fact that

P

(
U ≤

f(Y )

Mg(Y )

)
=

1

M
,

means that the number of iterations until an accep-
tance will be geometric random variable with mean
M . Thus it is important to choose g so that M is
small.
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Accept-reject method.

Example. Let X ∼ G(3
2
,1), i.e.

f(x) =
1

Γ(3/2)
x1/2e−x =

2
√
π
x1/2e−x, x > 0.

And let instrumental variable be Y ∼ Exp(λ)

f(x)

g(x)
=
Kx1/2e−x

λe−λx
=
K

λ
x1/2e−(x−λx) → max

x
.

The maximum is attained at x = 1
2(1−λ)

, and

M = max
x

f(x)

g(x)
=
K

λ
·

e−1/2

(2(1− λ))1/2
→ min

λ

Thus, λ(1− λ)1/2 → max, which provide λ = 2
3
.
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Accept-reject method.

Example. Let X ∼ f(x) =
√

2√
π
e−x

2/2, x > 0. And let

instrumental variable be Y ∼ Exp(1)

M = max
x

f(x)

g(x)
=
f(1)

g(1)
=

√
2e

π
≈ 1.32

f(x)

Mg(x)
= exp

(
x−

x2

2
−

1

2

)
= exp

(
−

(1− x)2

2

)
.

Thus, the algorithm:

• generate Y ∼ Exp(1), U ∼ U [0,1];

• accept Y , if U ≤ exp
(
−(Y−1)2

2

)
.

Addition of a choice of sign with 1/2 probability pro-
vides a method to generate normal distributed r.v.
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References:

[RC ] Cristian P. Robert and George Casella. Intro-
ducing Monte Carlo Methods with R. Series “Use R!”.
Springer
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Some trick methods. Generation of Poisson(λ).

Let ξi ∼ Exp(λ). Let Sn = ξ1 + · · ·+ ξn.

N(1) = max{n : Sn ≤ 1},
N(1) ∼ Poi(λ),

and

N(1) = max{n :
n∑
i=1

−
1

λ
lnUi ≤ 1}

= max{n :
n∑
i=1

lnUi ≥ −λ}

= max{n : ln(U1 . . . Un) ≥ −λ}
= max{n : U1 . . . Un ≥ e−λ}

N(1) = max{n : U1 . . . Un < e−λ}+ 1.
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Some trick methods. Generation of Gamma Γ(n, λ).

X ∼ Γ(n, λ) if X = ξ1 + · · ·+ ξn, where ξi ∼ Exp(λ).

By inverse transformation method generate exponen-
tial, and

X = −
1

λ
ln(U1 · · · · · Un).
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Some methods. Generation of B(a, b), a, b ∈ N.

X ∼ B(a, b), a, b ∈ N = {1,2, . . . }, if

X =

∑a
i=1 ξi∑a+b
i=1 ξi

,

where ξi ∼ Exp(1).

By inverse transformation method generate exponen-
tial r.v.s, and

X =
ln(U1 . . . Ua)

ln(U1 . . . Ua · Ua+1 . . . Ua+b)
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Some trick methods. Mixture representation.

[RC] It is sometimes the case that a distribution can
be naturally represented as mixture distribution; that
is we can write it in the form

f(x) =

∫
Y
g(x | y)p(y)dy or f(x) =

∑
i∈Y

pifi(x).

To generate a r.v. X using such representation, we
can first generate a variable Y from mixing distribu-
tion and then generate X from selected conditional
distribution. That is,

if Y ∼ p(·) and X ∼ g(· | Y ), then X ∼ f(·)
(continuous);

if Y ∼ P(Y = i) = pi and X ∼ fY (·), then X ∼ f(·)
(discrete).
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Some trick methods. Mixture representation.

Example. Students density with ν degree of freedom
can be represented as mixture, where

X | y ∼ N(0, ν/y), and Y ∼ χ2
ν .


