This paper presents the Epistemologic Profile Notion, after showing some questions about Conceptual Change Strategies. The convenience of the Piagetian Equilibration Theory and the Epistemologic Profile Notion are considered for the establishment of an alternative approach. This approach was applied in the analysis of the secondary school chemistry. Implications for teaching are examined.

Keywords: epistemologic profile notion; conceptual change strategies; chemistry teaching.

INTRODUÇÃO

Esse artigo tem por objetivo discutir a noção de perfil epistemológico, evidenciando sua utilidade para a construção de uma concepção de ensino-aprendizagem e para análise dos problemas relacionados aos programas e estratégias de ensino de química de primeiro e segundo graus. A noção de perfil epistemológico permite determinar como um conceito científico se situa em relação a diferentes correntes filosóficas, que constituem os cortes do perfil.

A noção de perfil epistemológico contribui, por outro lado, para um exame das idéias sobre o processo de mudança conceitual, que pode ser definido como "o processo pelo qual as pessoas mudam seus conceitos centrais e organizadores, desde um conjunto de conceitos a outro incompatible com o primeiro". Por isso é necessário que se discutam, neste artigo, algumas questões sobre as teorias de mudança conceitual. O objetivo dessa discussão não é abordar a questão de forma exaustiva, mas apontar para as contribuições potenciais da noção de perfil epistemológico para a revisão de alguns pressupostos teóricos das estratégias de ensino construídas segundo a perspectiva de mudança conceitual.

As pesquisas sobre os conceitos alternativos, realizadas ao longo dos últimos vinte anos, têm mostrado que os estudantes possuem uma série de idéias alternativas para diversos conceitos ensinados nas aulas de ciências, e que essas idéias são pessoais, fixas e difíceis de serem mudadas. A permanência dessas idéias, depois e apesar das lições tradicionais de ciências, colocou em evidência a necessidade de se construir uma nova perspectiva para o ensino de ciências, que levasse em consideração os resultados das pesquisas.

Segundo Driver, "é central nesta perspectiva a visão historicamente importante de que a aprendizagem se dá através de um envolvimento ativo do aprendiz na construção do conhecimento. Dentro dessa perspectiva construtivista, os estudantes vão construindo representações mentais do mundo a seu redor que são usadas para interpretar novas situações e guiar a ação nessas situações (...). Assim, a aprendizagem é vista como um processo adaptativo, no qual os esquemas conceituais do aprendiz são progressivamente reconstruídos de modo a atingirem um alcance cada vez maior em relação a idéias e experiências".

Essa nova perspectiva vem se materializando em propostas que têm a intenção de promover a substituição das idéias pré-vias dos estudantes por conceitos científicos, de modo a promover uma " Mudança conceitual". Um dos modelos mais difundidos de ensino baseado numa teoria de mudança conceitual é o de Posner e colaboradores, que sugerem a existência de algumas condições para que a mudança ocorra: a insatisfação do estudante com as suas concepções anteriores; e a nova concepção se mostrar inteligível, plausível e frutífera na solução de novas questões.

Estas propostas reflectem a visão de que as mudanças conceituais que podem ocorrer nos estudantes em uma situação de sala de aula são análogas às mudanças ocorridas na história das idéias científicas. Nussbaum, por exemplo, argumenta que essa "analogia pode contribuir para nossa tentativa de entender a dinâmica da mudança conceitual, de pré-concepções in-gênuas a concepções científicas, e de como elas podem ser feitas na sala de aula". Dentro dessa perspectiva, o autor propôs algumas questões básicas que foram formuladas no campo da história da ciência, e que podem ser formuladas de uma maneira similar em nosso campo de educação em ciências. Dentro estes questões destacamos aquela que sugere se a mudança conceitual em sala de aula é um processo "evolucionário" ou "revolucionário".

No entanto, a maioria dos autores que optam por esse paralelismo se esquece do outro lado da moeda, ou seja, do processo de desenvolvimento cognitivo dos estudantes. Rowell é um dos autores a reconhecer a importante contribuição de Piaget para essa questão, pois uma vez que "a epistemologia genética trata da dinâmica da gênese do conhecimento, esta consideração fundamental determina a necessidade de considerar sua aplicação potencial ao ensino". Concordamos com este autor, pois julgamos que, neste aspecto, a contribuição mais fecunda ainda é a de Piaget. Através da sua teoria da equilíbriação, ele responde à importante questão formulada em trabalho anterior: como se dá o aumento dos conhecimentos, ou seja, como o conhecimento humano passa de um estado insuficiente, mais pobre, para um estado reconhecido como bastante suficiente, mais rico em compreensão e extensão.

MUDANÇA CONCEITUAL E TEORIA DA EQUILIBRAÇÃO

Na teoria da equilíbriação vamos encontrar uma pista importante para a questão da natureza - revolucionária ou evolucionária - das mudanças conceituais. Esta pista foi desenvolvida a partir dos estudos sobre o desenvolvimento cognitivo, e não apenas no campo da história das mudanças científicas. Segundo Piaget, a equilíbriação é um processo individual que é acionado quando o sistema cognitivo reconhece uma lacuna ou um conflito, gerados pela previsão do sistema ou de parte dele em relação a um objeto ou evento. Em outras palavras, o processo é acionado quando a previsão de um indivíduo em relação a um determinado evento está em conflito com aquilo que realmente ocorre, ou é insuficiente para interpretar o evento por falta de elementos (que configuram lacu,
nas) no sistema cognitivo. Em resposta, o sistema cognitivo produz uma série de construções compensatórias (regulações), num processo gradual, que conduz novamente ao equilíbrio.

Uma característica importante do processo de equilíbrio é que ele conduz quase sempre a um novo estado de equilíbrio, mais completo que o anterior, pois incorporou o elemento novo que antes constituía uma perturbação. Piaget dá a esse processo o nome de equilíbrio majorante. “O fato de que os estados de equilíbrio sejam sempre ultrapassados resulta, pelo contrário, de uma razão muito positiva. Qualquer conhecimento consiste em levantar problemas novos à medida que resolve os precedentes (...)” Seria muito insuficiente, portanto, conceber a equilização como uma simples marcha para o equilíbrio, porque a equilização é constantemente, além disso, uma estruturação orientada para um equilíbrio melhor (grifo do autor), pois nenhuma estrutura equilibrada se mantém num estado definitivo, ainda que mantenha depois os seus caracteres especiais sem modificações.

Há que se assinalar que a noção de equilíbrio, para Piaget, é diferente da noção de equilíbrio químico. Enquanto a equilização piagetiana descreve um processo reversível que acontece com o sistema cognitivo de um indivíduo, a noção de equilíbrio químico se refere a uma reação reversível, cujas propriedades não variam depois que o equilíbrio é atingido. A qualquer perturbação, um sistema em equilíbrio químico responde no sentido de amalga-la e restabelecer o equilíbrio com as mesmas características anteriores. Ao contrário, um sistema cognitivo não se reequilibra simplesmente amalgamando a perturbação, mas absorvendo-a. Neste sentido, o novo estado de equilíbrio é melhor que o anterior pois algo que se constituía numa perturbação deixou de sê-lo, passando a ser uma variação numa estrutura reorganizada.

Outra característica do processo de equilíbrio, que interessa diretamente à questão que estamos discutindo, é o fato de se tratar de um processo conservador, no sentido que, durante a equilização, o sistema conserva o máximo possível do esquema de assimilação anterior, numa estratégia de máximo ganho com mínimo custo. A razão disso é que “em qualquer sistema biológico e cognitivo, é necessário caracterizar o todo como primordial e fazer reunião das partes, pois estas resultam da diferenciação a partir do todo. Em virtude disso, o todo apresenta uma força de coesão e, portanto, propriedades de auto-conservação que os distinguem das totalidades físico-químicas (...). O essencial, portanto, é a conservação da totalidade que conserva sua estrutura durante a assimilação em vez de ser modificada pelos elementos assimilados. Na verdade, é uma circunstância significativa o fato de a forma total, em todos os domínios vitais e cognitivos, parecer mais estável que suas componentes”.

A partir desses argumentos da teoria piagetiana, somos levados a concluir que uma mudança conceitual em sala de aula não tem condições de ser “revolucionária”. O fato de que o sistema cognitivo avança por reequilizações graduais, que apesar de majorantes são conservadoras, nos aponta para a direção das mudanças “revolucionárias”. A tendência conservadora do processo de equilíbrio pode ser, inclusive, uma pista importante para explicar o fato das concepções alternativas dos estudantes serem fixas e resistentes à mudança.

Neste sentido, gostaríamos de introduzir uma outra pista, que pode auxiliar a repensar as estratégias de mudança conceitual. Nossa questão pode ser resumida da seguinte forma: Será que o estudante deve substituir suas idéias anteriores por idéias científicas mais avançadas, ou apenas deve aprender a lidar com diferentes idéias em diferentes contextos? Paraclarar essa questão tomemos um exemplo.

O estudante que aprendeu os conceitos científicos de calor e temperatura, deixará de afirmar, numa situação cotidiana, que “um casaco de lã evita a troca de calor de seu corpo com o ambiente”? Mesmo um cientista dedicado ao estudo da termodinâmica não continua a empregar essa noção intuitiva de calor no seu cotidiano não-profissional?

Se isso é verdade, o processo de mudança conceitual não seria precedido por uma contextualização conceitual? Não seria mais eficaz imaginar estratégias de ensino que levasses o aluno a tomar consciência de suas concepções alternativas e do domínio de suas aplicações, para depois ensinar as teorias científicas dentro dessa mesma característica? Afinal, as teorias clássicas que são ensinadas aos alunos em standby, também, restritas a determinados problemas e domínios da realidade? O que garante que uma teoria atual, abrangente, não seja futuramente substituída por uma outra ainda mais abrangente? E que esta teoria atual seja vista, então, como limitada a determinado domínio da realidade?

Com o propósito de contribuir para o avanço de algumas questões aqui levantadas, julgamos que é essencial analisar a noção de perfil epistemológico que Bachelard apresenta em sua "Filosofia do Não". Isso porque o perfil epistemológico permite a descrição de um sujeito individual no qual as noções estão distribuídas por um espectro em que cada região se refere a um determinado domínio de aplicação da noção. Neste sentido, ao propormos que o aluno tome consciência de suas concepções alternativas e de seu domínio, e a partir daí construa novas noções, científicas, estamos, de fato, tentando mudar o seu perfil epistemológico. Assim, o sujeito epistemológico descrito pelo perfil é muito próximo aos nossos sujeitos reais em processo de evolução conceitual.

No contexto desse artigo, não pretendemos discutir as implicações dessa noção para uma estratégia de ensino, o que vem sendo objeto de nossa pesquisa, assim como em fundamentar. Apenas pretendemos tirar algumas consequências mais gerais para o ensino de química e analisar criticamente os programas de química de primeiro e segundo graus a partir da noção de perfil epistemológico.

A NOÇÃO DE PERFIL EPISTEMOLÓGICO

Gaston Bachelard propõe, na Filosofia do Não, que é possível traçar um perfil epistemológico de qualquer indivíduo em relação a um determinado conceito científico (Bachelard usa a palavra noção no lugar de conceito; nesse artigo, usaremos as duas palavras com o mesmo sentido). Esse perfil se baseia nas várias correntes filosóficas das ciências da natureza. O autor defende que uma única corrente filosófica é capaz de dar conta de todas as determinações que existem em relação a um conceito em particular. Para explicar a amplitude de um conceito e sua evolução na história das ciências, é necessário descrevê-lo em relação a cada um dos cortes desse perfil.

É importante ressaltar que Bachelard propõe o conceito de perfil epistemológico em termos de uma psicanálise individual, ou seja, esse perfil varia de indivíduo para indivíduo, em função do seu nível de conhecimento e de sua experiência em determinada área do conhecimento. Isso não invalida que extrapolemos a noção de perfil epistemológico para a análise de conhecimento químico em função de uma situação de ensino-aprendizagem. Pelo contrário, a aplicação dessa noção de perfil ao conhecimento químico permite traçar uma linha evolutiva de cada conceito em relação à história da ciência e em relação à estrutura cognitiva do aprendiz.

A nossa proposta de perfil epistemológico é que qualquer conceito químico pode apresentar os seguintes componentes, em termos de um perfil:

<table>
<thead>
<tr>
<th>Realismo ou Senso-Comum</th>
<th>Empirismo</th>
<th>Química Clássica</th>
<th>Química Moderna</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ordem de Complexidade Crescente do Conceito</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

QUÍMICA NOVA 15(3)(1992)
Tomemos um exemplo do próprio Bachelard para clarear o que seja esse perfil. Esse autor exemplifica seu perfil, que é quase idêntico ao apresentado acima, através da noção de massa. Assim, o realismo está impregnado de senso-comum e uma noção realista de massa atribui massa apenas aquilo que é pesado. A noção de massa correspondente, então "a uma apreciação quantitativa grosseira e como que ávida de realidade. Aprecia-se a massa pela vista."15

Em relação ao empirismo, que o autor adjetiva de claro e positivista, "a noção de massa corresponde a um emprego cautelosamente empírico, a uma determinação objetiva precisa. O conceito está então ligado à utilização da balança (...) A tal conceito simples e positivo, a uma determinação simples e positiva de instrumento (mesmo que seja tecnicamente complicado) corresponde um pensamento empírico, sólido, claro, positivo e imóvel."16

Já para o que o autor chama de racionalismo clássico, "a noção de massa define-se num corpo de noções e não apenas como um elemento primitivo de uma experiência imediata e direta. Com Newton a massa será definida como o quociente da força pela aceleração. Força, aceleração, massa, estabelecem-se correlativamente numa relação claramente racional, dado que essa relação é perfeitamente analisada pelas leis racionais da dinâmica."17

O racionalismo moderno faz com que as noções se tornem mais complexas. A noção de massa, que era uma função simples, vai se tornar complexa, dependente de uma série de outras noções: Com efeito, a relatividade descobre que a massa, outrora definida como independente da velocidade, como absoluta no tempo e no espaço, como base de um sistema de unidades absolutas, é uma função complicada da velocidade. A massa de um objeto é pois relativa ao deslocamento desse objeto (...) Também é falta de significado a noção de massa absoluta (...) Mais uma complicação nocional: na física relativista, a noção de massa já não é heterogênea à energia. Em suma, a noção simples dá lugar a uma noção complexa, sem declarar o seu papel de elemento. A massa permanece uma noção de base e esta noção de base é complexa. Apenas em certos casos a noção complexa se pode simplificar. Simplifica-se na aplicação pelo abandono de determinadas sutilezas, pela eliminação de determinadas variações delicadas. Mas fora do problema da aplicação, e consequentemente ao nível das construções racionais a priori (grifo do autor), o número de funções internas da noção multiplica-se."18

É interessante notar que à medida que se percorre esse perfil epistemológico, para qualquer noção, esta vai se tornando mais complexa ao longo do perfil, e também mais racional. Além disso, a parte "realista" do espectro de noções corresponde, normalmente, às concepções espontâneas ou conceitos alternativos que as pessoas possuem, muitas vezes independentes da formação escolar. No corpo teórico da ciência este tipo de noção já não existe. Aqui o espectro começa pelo empirismo. Mas, ao se pensar no processo de ensino-aprendizagem de uma determinada disciplina, a parte realista do espectro é fundamental, pois o aluno possui uma série de conceitos alternativos que vão interferir na aquisição dos conceitos num nível científico.

Nem todas as noções têm esse espectro completo. A noção de átomo, por exemplo, nasce na química já como uma noção racional. Seu maior problema, inicialmente, foi justamente a falta de uma prova empírica, positiva, e por isso muitos químicos se recusaram a aceitá-la desde o início.

APLICAÇÃO DA NOÇÃO DE PERFIL EPistemológico A CONCEITOS QUÍMICOS

A aplicação desse perfil epistemológico aos conceitos químicos contribui para se avaliar o alcance de cada conceito, assim como suas limitações face ao desenvolvimento da química. A percepção dessa evolução dos conceitos pode contribuir para que o aluno compreenda como se dá a produção do conhecimento, percebendo inclusive as rupturas que existem entre a química clássica e a química moderna, e como as noções que eram simples na química clássica se tornaram complexas na química moderna. Essa perspectiva nega a visão da química enquanto uma ciência estática, pressa a um mundo de leis naturais imutáveis, que é tão cara ao positivismo. Um exame das teorias que os químicos foram construindo ao longo do tempo mostra como os conhecimentos físicos sobre a estrutura do átomo vão, cada vez mais, penetrando na química, subvertendo conceitos básicos, e inventando um mundo submicroscópico em que muitas das leis naturais devem ser revistas.

É importante, também, mostrar as rupturas que muitas vezes existem entre um ponto e outro do perfil epistemológico. A noção do átomo como o bloco básico de construção da matéria, tão cara à teoria atômico-molecular clássica, foi totalmente subvertida com o advento dos modelos atômicos da mecânica ondulatória. O que se imaginava como um sólido bloque de construção da matéria se revela agora um padrão difuso, constituído por partículas que têm simultaneamente características de ondas, e para as quais não se pode falar em trajetórias, mas sim em estados probabilísticos. A mesma ruptura ocorre entre uma visão realista do mundo e a visão clássica da teoria atômica. Como imaginar que a matéria que nos parece tão sólida e contínua, seja na verdade descontínua, "cheia" de vazios? A idéia introduzida pelo modelo de átomo nuclear, de que o átomo é, na sua maior parte, vazio, pode ser entendida numa perspectiva, que vê a matéria como algo pleno? Esses exemplos mostram que a história da química não é feita de uma sucessão linear de fato. Ao contrário, a maioria dos avanços é conseguida com um esforço, sendo normalmente marcados por intensos debates que vão resultar em rupturas entre as novas conceções e as conceções passadas.

CONCEITOS REALISTAS E EMPIRISTAS NA QUÍMICA

A noção de perfil epistemológico pode fornecer uma importante categoria para análise dos programas de química para 1º e 2º graus. Para estabelecê-la, vejamos como podemos distribuir o conhecimento químico por esse perfil.

O Realismo não é um componente do conhecimento químico indispensável para uma química acadêmica. No entanto, essa parte do perfil é fundamental para o processo de ensino-aprendizagem, pois compreende as noções que o aluno possui em nível de senso-comum. Para se iniciar o estudo de um determinado assunto em química seria desejável conhecer as noções que o aluno apresenta nesse nível. Um grande número de pesquisas realizadas sobre estes "conceitos alternativos" rexeia que os alunos possuem uma série de idéias alternativas sobre os diversos conceitos ensinados nas aulas de ciências, e que essas idéias são pessoais, fixas e difíceis de serem mudadas. Apesar de pessoais, é possível encontrar um padrão de idéias comuns a vários estudantes. Existem bibliografias abrangentes sobre estes estudios, uma delas intitulada "Students Alternative Frameworks and Science Education." Vários destes estudos mostram que noções aparentemente simples, como por exemplo a ideia de que a matéria é descontínua, não são plenamente assimiladas através da instrução tradicional. O aluno continua a pensar a matéria como contínua, quando colocado frente a uma situação problemática. Por exemplo, um estudo realizado com estudantes do Brasil na faixa de 13-14 anos, um ano após eles terem estudado o modelo corpuscular da matéria, mostra que a percentagem daqueles que ainda visualizam a matéria como algo contínuo, é alta, variando de 21 a 45% do universo pesquisado, conforme o tipo de teste a que os estudantes haviam se submetido.
Esse exemplo mostra a importância que as noções realistas dos alunos desempenham no processo de ensino-aprendizagem. Neste nível, os conceitos são elaborados pelos alunos de maneira intuitiva, e estão, de certa forma, muito vinculados à percepção sensorial. O professor deve procurar ter acesso a essas noções intuitivas. A lógica com que o adolescente constrói essas noções pode se revelar um caminho interessante a ser percorrido na construção dos conceitos tidos como corretos dentro da química. O desconhecimento completo dessas noções intuitivas pode levar o aluno a uma visão dupla de um mesmo conceito: a visão "escolar" que vai ser usada na resolução dos problemas que a escola propõe, e a visão "prática", que o aluno vai continuar a usar para explicar as situações práticas que se confrontar na vida. A tomada de consciência dessas duas visões e da amplitude do domínio de cada uma delas é fundamental para que o aluno possa melhorar seu perfil epistemológico no processo de ensino-aprendizagem, aumentando a parte racional do mesmo e estabelecendo limites para a aplicação de suas ideias intuitivas.

A parte puramente empírica da química é pequena. Históricamente, as leis ponderais e volumétricas, elaboradas ao final do século XVIII e começo do século XIX, talvez pudessem ser consideradas como esse componente empírico. Mas mesmo nessa formação dessas leis empíricas devemos considerar que houve a intervenção de componentes racionais. Posteriormente, com a formulação da hipótese atômica de Dalton, o racionalismo adentrou na química para nunca mais deixá-la. Apesar da resistência de muitos químicos da época, resistência que persistiu durante um século, todos os progressos da química se conduziram diretamente pela via do atonismo ou a ela foram incorporados.

A linha de demarcação entre o realismo e o empirismo é justamente a mudança de postura em relação aos fatos, fenômenos e experimentos, que, sob o empirismo, já estão submetidos a uma busca de regularidades que possam ser traduzidas em leis e princípios. A conceituação começa a adquirir um sentido que ultrapassa o senso-comum que a caracterizava no realismo. A prova experimental desempenha um papel fundamental na identificação das melhores teorias dentro da química, que, enquanto ciência da natureza, não pode viver sem essas provas empíricas.

Todos os fatos, fenômenos e experiências daquela podem ser relacionados sob o título de fatos empíricos. No entanto, a maioria delas não foi obtida sob o ponto de vista de uma doutrina empírista, pois a partir das proposições de Lapworth, e, principalmente, a partir da formulação da hipótese atômica de Dalton, os caminhos puramente empíristas dentro daquela foram se fechando cada vez mais. Desde então pode-se considerar aquela como um empreendimento completamente racional, pois a maioria das experiências é pensada antes de ser realizada. Ou seja, a parte empírica é uma conseqüência de uma elaboração racional e deve ser construída de acordo com essa elaboração.

Essa caracterização do empirismo nos conduz à conclusão de que, apesar de existirem poucos aspectos dentro daquela ministrada no 1º e 2º graus que sejam puramente empíricos, todos os assuntos daquela ensinados nestes níveis têm um componente empírico. O conjunto das propriedades físicas que as substâncias químicas, as técnicas de separação de misturas, as evidências de reações químicas e as leis ponderais e volumétricas das reações químicas são alguns exemplos de aspectos empíricos naquela de 1º e 2º graus. Esses aspectos têm seu valor a título de introduzir o aluno no mundo dos fenômenos que vão interessar ao estudo daquela. Um outro tipo de componente empírico do conhecimento químico são alguns aspectos técnicos normalmente conhecidos como regras práticas: as regras de distribuição eletrônica, de balanceamento de equações, etc. Além disso, são muitos os assuntos daquela, clássica ou moderna, que podem ser introduzidos empíricamente, forçando o aluno a fornecer suas próprias explicações antes de se formular uma explicação tida como correta pela ciência. É importante ressaltar que a maioria das leis químicas que foram elaboradas por um procedimento empírico não tinha explicação neste contexto. Essa explicação veio quando se elaborou uma hipótese teórica, como a hipótese atômica de Dalton. Desta forma, o empirismo não é bastante para a compreensão dos fenômenos daquela. No entanto, ele é um componente fundamental do conhecimento químico. O desconhecimento dos fatos empíricos pode levar a que qualquer explicação caia no vazio.

A QUÍMICA CLÁSSICA

A linha de demarcação entre o empirismo e a química clássica é dada por uma teoria que unifica um conjunto de dados e leis empíricas, a qual não existe no empirismo e passa a existir na química clássica. Assim, a hipótese atômica de Dalton marcou o começo de uma longa busca de explicações racionais dos fatos químicos. Todas as leis empíricas existentes até então ganharam uma explicação clara à luz dessas hipóteses. A hipótese atômica se desenvolveu ao longo do século XIX e foi sendo transformada por uma série de novas idéias, como a idéia de molécula, introduzida por Avogadro, a idéia de valência, introduzida por Frankland, Couper e Kekulé, e as idéias sobre a distribuição especial dos átomos na molécula, introduzidas por Le Bel e Van't Hoff. Ao final desse esforço de várias gerações de químicos, foi possível chegar a uma teoria atômico-molecular clássica, que consolidou e ampliou as proposições da hipótese atômica inicial. Ao longo desse tempo, os adversários do atonismo, positivistas que, por falta de provas empíricas não se convenciam da existência dos átomos, foram se rendendo ao sucesso da teoria atômica, que havia se revelado o caminho mais fecundo para o progresso daquela.

O conjunto de fenômenos, leis, teorias e modelos que constituem a química clássica delimitam claramente uma doutrina racional clássica dentro daquela. Paoloni (1980), chama de química clássica a doutrina que vigorou entre 1874 e 1933-1935. Ou seja, a doutrina que surge a partir do momento em que as reflexões de van't Hoff e de Le Bel sobre a distribuição tetraédrica em torno do átomo de carbono transformaram as fórmulas estruturais, que passaram de uma representação simbólica das observações químicas para uma imagem de objetos reais, e que se encerra no momento em que os sucessos da mecânica química e da difração dos raios X tornaram a estrutura molecular uma observável fisiológica. O autor asserta que essa nova realidade histórica concretou durou até os anos 50. "E hoje também a novela lógica está em crise, pois a molécula deve ser considerada como ente dinâmico e, portanto, a Química já não é somente a ciência da estrutura molecular, e sim a ciência das transformações dessa estrutura."

A doutrina da química clássica, segundo Paoloni, admite que todas as substâncias puras existem ou sob a forma simples ou composta por elementos. A definição de pureza tinha por base um critério empírico, da mesma forma que a definição de elemento. Assim, as substâncias simples eram reconhecidas pelo fato de não poderem ser decompostas por meios químicos. Essa definição tinha como conseqüência o fato de que bastava uma única prova para que uma substância, antes considerada como simples, deixasse de ser-lo. Assim, todas as substâncias tidas como elementares, nessa doutrina, poderiam vir a ser consideradas, algum dia, como compostas.

Por outro lado, a química clássica admitia que todas as substâncias, compostas e elementares, eram constituídas por moléculas, que por sua vez eram constituídas por átomos. O que identificava esses átomos e moléculas era o peso atômico.
ou molecular, medida de massa relativa que também era determinada empiricamente. A valência era vista como uma propriedade dos átomos, e medir a sua capacidade combinatoria. Ela também podia ser determinada empiricamente a partir do quociente entre o peso atômico e peso equivalente. A partir dessa noção de valência era possível representar a organização espacial dos átomos numa molécula através de fórmulas estruturais, onde os átomos adjacentes estão ligados uns aos outros. O conjunto dessas uniões resultava na estrutura molecular. Não existia uma explicação convincente para a origem e a natureza dessas uniões. Esses tipos de explicação somente se tornou possível depois do desenvolvimento de uma distinção entre as forças interatómicas, chamadas de afinidade, e as forças intermoleculares, chamadas de coesão.

As propriedades de uma dada substância, que também podiam ser definidas a partir de determinadas operações empíricas, eram vistas como manifestações de aspectos da estrutura molecular. Assim, era possível atribuir uma categoria de reatividade (ácido, base, sal, oxidante, redutor, etc.) a um grupo que identificava uma função química presente na estrutura molecular. "Cada substância pura determinada é referível a uma ou mais categorias de comportamento reativo e pode ser transformada em outras que pertençam sucessivamente a diferentes categorias." 24

No curso da programação tradicional para a primeira série do 2º grau, por exemplo, podemos considerar que, com exceção dos conteúdos das unidades de estrutura atômica, ligação química e classificação periódica, todos os outros são abordados segundo essa visão clássica da química. Toda a parte de reações químicas pode ser estudada apenas a partir dos conhecimentos da química clássica. Também o capítulo introdutório e o capítulo de funções químicas são clássicos. Isso nos impõe uma questão importante, que uma análise dos programas tradicionais deve tentar responder: se não há, nos programas e livros didáticos tradicionais, nenhuma dependência dos temas clássicos tratados no primeiro ano em relação aos temas modernos, por que eles se acham juntos na programação? Será mais justo retardar a abordagem dos temas da química moderna para mais tarde ou rever a abordagem dos temas clássicos, de modo a incorporar explicações que a química moderna permite? Exemplificando, o conhecimento da estrutura clássica dos átomos possibilita uma redefinição do conceito clássico de ácido e base, pois outras substâncias, como os ácidos e bases de Lewis, passam a fazer parte dessa categoria sem apresentarem as características funcionais clássicas (presença de hidrogênio ionizável para os ácidos e de íon hidrônio para as bases) que permitiriam sua inclusão nessa categoria de reatividade. Qual será a postura mais correta por parte do professor: ensinar a visão clássica chamando atenção para a sua parcialidade? Ou ensinar a visão moderna, uma vez que o aluno já viu a abordagem moderna de estrutura atômica e ligação química? Essas questões refletem algumas contradições da programação atual para a primeira série do 2º grau.

Podemos incluir como parte da química clássica também o modelo atômico proposto por Rutherford para interpretar os resultados da celebre experiência do bombardeamento de uma lâmina metálica com um feixe de partículas alfa. Esse modelo, proposto em 1910, apresentava o átomo como um sistema mecânico clássico, com os elétrons descrevendo órbitas em torno do núcleo, à semelhança de um sistema planetário, e, por isso, pode ser considerado como um modelo clássico. O desenvolvimento de conceitos de química moderna e de química clássica se torna significativa. Quem esperava encontrar no átomo um bloco básico da construção material, vai se mostrar surpreso com a realidade atômica revelada pela mecânica quântica. A idéia de que a luz possui uma natureza dual, de onda e partícula, é aplicada às partículas sub-atômicas com bastante sucesso. A mecânica quântica, na sua versão ondulatória, possui a partir do elétron, uma partícula

A QUÍMICA MODERNA

A transição entre a Química Clássica e a Química Moderna vai ser consequência de uma série de conhecimentos sobre a estrutura do átomo que foram desenvolvidos nos primeiros trinta anos do século XX. O átomo de Rutherford, apesar de muito bem estabelecido empiricamente, estava em contradição com a eletrodinâmica clássica, que previa a irradiação contínua por parte de partículas negativas descrevendo órbitas em torno do núcleo. Com essa irradiação, essas partículas perderiam energia e acabariam por colidir com o núcleo.

Em 1913 Niels Bohr publicou o primeiro dos três artigos denominados "Sobre a constituição dos átomos e moléculas", no qual descrevia um novo modelo para o átomo de hidrogênio. O modelo de Bohr postulava a quantização da energia no átomo. Aos elétrons estariam associados estados estacionários, onde estes não irradiam nem absorvem energia. A emissão ou absorção de radiação pelos átomos só ocorria em múltiplos inteiros de h, equivalente à transição do elétron entre dois estados estacionários.

O modelo de Bohr teve ampla repercussão, pois explicava a estabilidade do átomo nuclear. Explicava também os espectros de linha característicos do hidrogênio, e que já eram conhecidos empiricamente desde o final do século XIX. A partir do modelo era possível deduzir o valor da constante de Rydberg, que fazia parte da equação empírica para o espectro do hidrogênio. Além disso, após o trabalho fundamental de Bohr, os átomos e as moléculas passaram a ser o centro da atenção tanto dos físicos experimentalistas quanto de físicos teóricos... Antes de Bohr, a espectroscopia era uma peça quase empírica que não ia muito além da catalogação de muitas linhas espectrais e da observação das condições sob as quais elas eram produzidas... A nova teoria atômica forneceu um guia para um entendimento de muitos fenômenos e para a previsão de novos; a teoria e a prática começaram a caminhar lado a lado e a grande velocidade. 26

O modelo de Bohr, apesar de introduzir a quantização de energia como uma hipótese "ad hoc" ao modelo clássico de Rutherford, já significa uma ruptura em relação às teorias clássicas. Nas palavras do próprio Bohr "parece ser de reconhecimento geral o fato de que a eletrodinâmica clássica não consegue descrever o comportamento de sistemas de dimensões atômicas... parece necessário introduzir na lei em questão uma quantidade alheia à eletrodinâmica clássica, a constante de Planck, ou, como muitas vezes é designada, o quantum elementar de ação." 27

Dessa maneira, mesmo não rompendo totalmente com certas ideias clássicas como as que formam a base de química e clássica, o modelo de Bohr deve ser colocado, no perfil epistemológico, como pertencente à Química Moderna. Em primeiro lugar porque ele inaugura essa transição dos conceitos clássicos para os conceitos modernos, tendo sido pioneiro na aplicação das idéias quânticas aos sistemas atômicos. Em segundo lugar porque várias de suas ideias foram, de maneira significativa, acolhidas por outros modelos de química que se tornaram significativos. Quem esperava encontrar no átomo um bloco básico da construção material, vai se mostrar surpreso com a realidade atômica revelada pela mecânica quântica. A idéia de que a luz possui uma natureza dual, de onda e partícula, é aplicada às partículas sub-atômicas com bastante sucesso. A mecânica quântica, na sua versão ondulatória, possui a partir do elétron, uma partícula
material de massa definida, como uma onda. O elétron passa a ser descrito por funções de onda, uma equação matemática ondulatória. As funções de onda não têm, em si mesmas, significado físico. O quadrado de uma função de onda real ou seu produto pelo complexo conjugado, no caso geral de uma função complexa, fornece a medida da probabilidade de presença do elétron por unidade de volume (densidade de probabilidade eletrônica). Com isso, dispensa a noção mecânica de ótima, que só deu lugar à noção de onda, definindo as ondas a região com maior probabilidade de se encontrar o elétron.

As equações ondulatórias associadas aos elétrons de um átomo encontram soluções exatas apenas para sistemas atômicos uni-eletrônicos, como, por exemplo, o átomo de hidrogênio. Para sistemas mais complexos, atômicos ou moleculares, o modelo de interpretação construído para esses sistemas simples é ampliado e serve para a interpretação de uma série de propriedades físicas e químicas dos materiais. Essa ampliação deve ser feita de maneira cuidadosa, pois leva à visualização "clássica", através de modelos, de uma realidade cujo acesso foi dado por equações matemáticas. Essa contradição vai estar presente em toda interpretação "concreta" que damos aos conhecimentos construídos através da mecânica quântica. É o caso, por exemplo, do "spin" do elétron, que a grande maioria dos livros atuais, analisados em um trabalho anterior, definem como resultado da rotação do elétron em torno de seu eixo. Cabe a pergunta: algo que acabou de ser considerado como um misto de onda e partícula pode ser visualizado como um bolinha girando em torno de seu eixo? Não seria mais coerente que os livros mostrassem que o spin surgiu como uma primeira quântica, necessária para explicar o desdobramento das linhas espectrais dos átomos com mais de um elétron, o chamado Efeito Zeeman, ou mesmo que se omitisse a respeito do spin? Atribuir o spin ao movimento de rotação do elétron seria, no mínimo, chamar a atenção para a fragilidade desse modelo, ao estar sendo desonesto ou engenhoso.

As principais novidades introduzidas na doutrina da química clássica pela química moderna advêm, assim, dos conhecimentos sobre a estrutura do átomo. Uma mudança fundamental que resulta desse fato é a introdução de uma série de métodos físicos de análise, utilizando aparelhos de espectrometria para várias regiões do espectro eletromagnético. Esses aparelhos, juntamente com os computadores, tornaram-se a partir dos anos 60, presença rotineira em laboratórios industriais e universitários, mudaram totalmente os métodos de trabalho do químico, fazendo com que vários instrumentos, aparelhos e métodos químicos de análise se tornassem obsoletos.

A consequência disso, para o estabelecimento de uma doutrina da química moderna, é inmediata. Torna-se obrigatória toda uma revisão conceitual, pois muitas definições tinham como base aqueles métodos químicos de análise e de síntese. A primeira mudança importante é que os átomos passam a ser caracterizados por um número atômico, e admite-se a existência de diferentes espécies atômicas de um mesmo elemento químico (os isótopos). Essa nova característica muda totalmente o conceito de substância elemental. A antiga definição, operacional, que se baseava em operações de análise que podiam ser desenvolvidas em laboratoriais, dá lugar a uma nova definição, conceitual. De acordo com essa, não cabe mais a afirmação, inerente à definição operacional, de que uma substância deve ser considerada elementar até que se prove o contrário, ou seja, até que se consiga decompon-la. A nova definição, conceitual, define a substância elemental como a constituída por átomos de um mesmo elemento químico, ou seja, átomos com o mesmo número atômico. Como o número é uma grandeza física, igual à carga nuclear, a nova definição se baseia numa grandeza mensurável e não mais numa hipótese. Por outro lado, a identificação de um elemento químico pelo seu número atômico muda também o critério de classificação periódica.

Esse tipo de revisão conceitual ocorre com muitos conceitos importantes, que antes eram definidos com base em procedimentos práticos, de laboratório, e agora passam a ser definidos com base na estrutura atômica e molecular, acessível por métodos físicos baseados principalmente em interações radiação-matéria. O conceito de valência passa a ser determinado pela estrutura eletroquímica dos átomos. O mesmo acontece com a reatividade da substância química, que passa a ser associada à distribuição eletroquímica das moléculas. O conceito de molécula se restringe. Assim, não se deve considerar que a unidade estrutural NaCl seja uma molécula, uma vez que cada ion de sódio tem uma relação idêntica com seis íons cloreto adjacentes. Em todos os cristais iônicos a fórmula representa corretamente apenas a composição efequentométrica e não a disposição real dos átomos no cristal. O mesmo se pode dizer em relação aos sólidos metálicos. Aí também cada átomo do metal está em relação com vários átomos vizinhos. Não tem sentido pensar em moléculas monoatômicas num sólido metálico. Os sólidos covalentes, como o diamante e a sílica, também não apresentam moléculas individuais. Mesmo nas substâncias moleculares, não se pode esquecer que as relações de adjacência são dinâmicas. A estrutura da água, definida por duas uniões OH de comprimento 0,975 Å e aberta num ângulo de 104,5°, deve-se fazer compatível com o fato de que, misturando em fase vapor, quantidades equimolares de H2O e de D2O, depois de um tempo brevíssimo ficamos em presença de aproximadamente 50% de moléculas HDO.

IMPlicações da noção de perfil epistemológico para o ensino de química

A aplicação do perfil epistemológico, que acabamos de esboçar, no ensino de química, é imediata. São várias as maneiras como podem ser trabalhados os conceitos a partir dessa noção. Pode-se trabalhar, para cada conceito, todo o perfil. Para a estrutura atômica, por exemplo, esse tipo de opção resulta numa abordagem histórica, semelhante à que é desenvolvida atualmente pelos livros didáticos. A diferença é a postura em relação à linha evolutiva daquela. Os livros mostram uma evolução linear, sem cortes. A aplicação correta do perfil deveria acentuar as rupturas que ocorrem em relação à passagem de uma zona para a outra do perfil, além de relacionar os sucessivos modelos de estrutura atômica com os resultados experimentais disponíveis para cada época.

A zona realista do perfil não consta dos livros didáticos, mas tem grande importância para o processo de ensino-aprendizagem, como já tivemos oportunidade de realçar. Ela pode ser revelada e questionada através de situações problemáticas. Nestas situações, fenômenos empíricos seriam apresentados ao aluno, para que ele fizesse a explicação. Em relação à teoria atômica, por exemplo, poder-se-ia propor ao aluno que fizesse uma explicação para fenômenos como a dissolução do açúcar (solução incolor) e de permanganato de potássio (solução colorida) em água. A discussão desses e de outros problemas transformaria a noção de que a matéria é descontínua, convencional por partículas e espaços vazios. Essa noção é básica para se desenvolver uma abordagem básica e moderna da teoria atômica. O fato do ensino tradicional não considerá-la tem dado origem a uma lacuna no pensamento do aluno, que apesar de estudar os modelos mais avançados, não foi levado a reconstruir suas noções atômicas de base. O resultado dessa omissão está claro nas várias pesquisas sobre "conceitos alternativos": muitos continuam a não usar um modelo atomista, ou a usá-lo de forma incoerente, para explicar transformações físicas e químicas.

A zona empírica do perfil poderia ser desenvolvida automaticamente ou subordinada à zona racional. Numa abordagem problematizadora, as situações empíricas deveriam ser apresentadas como ponto de partida para as generalizações. No
caso de teoria atômica, as experiências clássicas que foram decisivas na reformulação dos modelos de estrutura atômica deveriam ser apresentadas para a discussão, com o objetivo de levar os alunos a tirarem suas próprias conclusões. O debate em torno dessas conclusões é que levaria à construção do modelo aceito cientificamente.

Um outro tipo de abordagem que podemos sugerir a partir do perfil é a abordagem em espiral. Aqui, cada zona do perfil seria explorada antes que se passasse à posterior. Como não faz sentido pensar no desenvolvimento de uma ciência puramente de senso comum ou puramente empírica, esse tipo de abordagem levaria à divisão do conteúdo entre uma abordagem clássica e uma abordagem moderna. Neste tipo de abordagem perderiam sentido capítulos exhaustivos dedicados à estrutura atômica ou à ligação química. Os diferentes modelos atômicos deveriam ser apresentados quando se fizesse necessário seu uso. Assim, para a abordagem clássica das reações químicas, incluindo as leis da estequiometria e os principais grupos de reatividade (funções químicas), bastaria a noção do átomo enquanto uma partícula, sem maiores considerações sobre sua estrutura, utilizando-se o modelo atômico-co-molecular clássico. Já a abordagem de reações de oxirredução exigiria o modelo do átomo com cargas elétricas, que poderia ser introduzido neste momento. A explicação de propriedades atômicas como raio atômico, potencial de ionização, etc., exigiria um modelo eletrônico de camadas, a exemplo do modelo de Bohr. A explicação para a estabilidade de sistemas de duplas conjugadas, que justifica o fato do anel de benzeno sofrer reação de substituição preferencialmente às reações de adição, exigiria a explicação do modelo de orbitais moleculares.

Essa noção de perfil implica no fato de se poder trabalhar noções parciais, que são válidas apenas para certos problemas, sem que isso signifique que se está ensinando uma coisa errada ou ultrapassada. É o caso, por exemplo, do modelo atômico de Bohr. Apesar de ser uma versão quantizada do modelo de Rutherford e, por isso mesmo, ainda conservar algumas características clássicas, o modelo de Bohr permite que seja feito todo o estudo de ligação química, classificação periódica, alguns mecanismos de reação da química orgânica, enfim, todos os tópicos do programa de 2º grau que têm como pré-requisito a estrutura do átomo. No entanto, esse modelo contém a noção de que os elétrons descrevem trajetórias definidas em torno do núcleo, noção que foi abandonada pelo modelo de mecânica ondulatória. Ora, pode-se muito bem explicar essas limitações do modelo, mostrar qualitativamente que o modelo atual não fala em trajetórias e sim em regiões de maior densidade de probabilidade eletrônicas, mostrar que a natureza dual do elétron impede que se pense em trajetórias definidas, etc. Essas ressalvas não impedem que o modelo seja usado para explicar a organização atual da tabela periódica ou as gêneses das ligações iônicas e covalentes.

Uma última conclusão que deve ser tirada dessa discussão é que o ensino de química elementar, segundo a perspectiva aqui esboçada, passa necessariamente pela história da química. Se essa perspectiva histórica, estaremos falando de ensinar teorias que adquirem o sentido de dogmas. Não há porque ensinar, num nível elementar, apenas a química moderna e contemporânea. Em primeiro lugar, em razão da sua complexidade e do seu nível de dependência em relação ao cálculo diferencial e integral, à física, etc. Em segundo lugar, porque o exercício cotidiano das atividades químicas em indústrias e laboratórios incorpora diversos conceitos químicos de outras regiões do perfil epistemológico. Por outro lado, não é válido ensinar a química clássica sem entrar em consideração sobre a limitação de suas proposições teóricas frente ao desenvolvimento atual da química. A perspectiva histórica elimina esse problema, desde que fique claro que cada explicação teórica tem validade para um contexto bem claro em que o problema foi proposto, e que cada lei ou teoria se refere aos fatos experimentais disponíveis em uma determinada época.

REFERÊNCIAS

12. idem, p. 89.
15. idem, p. 13.
16. ibidem, p. 15.
17. ibidem, p. 16.
18. ibidem, p. 18.
23. idem, p. 164.
24. ibidem, p. 165.
30. São vários os artigos que trazem resultados de pesquisas sobre as explicações dos estudantes para os estados físicos da matéria e para transformações físicas e químicas. Como exemplo, podemos citar:

Driver, R., Beyond Appearance: The Conservation of Matter under Physical and Chemical Transformations. In Driver, R.,
- Prieto, T., Blanco, A., and Rodriguez, A. The ideas of 11 to 14-years-old students about the nature of solutions.