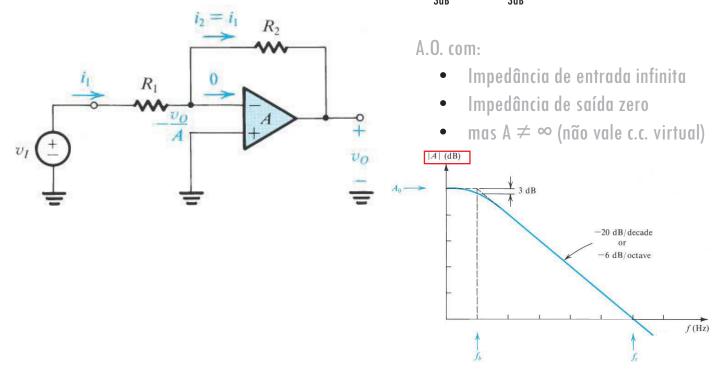
Exemplo 2.1: A Configuração Inversora

EXEMPLO 2.1

Considere a configuração inversora com $R_1 = 1 \text{ k}\Omega$ e $R_2 = 100 \text{ k}\Omega$.

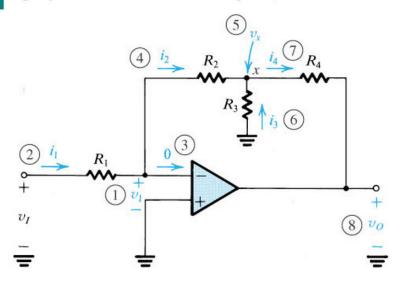
- (a) Determine o ganho em malha fechada para os casos de $A=10^3$, 10^4 , e 10^5 . Em cada caso, determine o erro percentual no valor de G relativo ao valor ideal R_2/R_1 (obtido com $A=\infty$). Calcule também a tensão v_1 que aparece no terminal da entrada inversora quando $v_1=0,1$ V.
- (b) Se o ganho em malha aberta A varia de 100.000 a 50.000, qual é a correspondente variação em porcentagem, no valor do ganho em malha fechada G?


$$\varepsilon \equiv \frac{\left|G\right| - (R_2/R_1)}{(R_2/R_1)} \times 100$$

$$G = \frac{v_O}{v_i} = -\frac{R_2 / R_1}{1 + (1 + R_2 / R_1) / A}$$

Α	G	${\cal E}$	v_1
10 ³			
10^4			
10^{5}			

Prof. Seabra


Exercício 2.35 : Um amplificador inversor com ganho nominal de -20~V/V usa um amp op com um ganho cc de 10^4 e frequência de ganho unitário de $10^6~\text{Hz}$. Qual é a frequência de 3 dB ($f_{_{3dB}}$) do amplificador em malha fechada? Qual é o ganho em 0,1 $f_{_{3dB}}$ e a $10~f_{_{3dB}}$?

Exemplo 2.2: A Configuração Inversora

EXEMPLO 2.2

Supondo o amp op ideal, deduza uma expressão para o ganho em malha fechada v_O/v_I do circuito mostrado na Figura 2.8. Use esse circuito para projetar um amplificador inversor com um ganho de_100 e impedância de entrada de 1 M Ω . Suponha que por alguma razão prática seja exigido usar resistores que não sejam maiores do que 1 M Ω . Compare seu projeto com base na configuração inversora da Figura 2.4.

rrot. searce PSI/FUISP 43