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Chapter 28

The ray model of light

Ads for one Macintosh computer bragged that it could do an arith-
metic calculation in less time than it took for the light to get from the
screen to your eye. We find this impressive because of the contrast
between the speed of light and the speeds at which we interact with
physical objects in our environment. Perhaps it shouldn’t surprise
us, then, that Newton succeeded so well in explaining the motion of
objects, but was far less successful with the study of light.

The climax of our study of electricity and magnetism was discovery
that light is an electromagnetic wave. Knowing this, however, is not
the same as knowing everything about eyes and telescopes. In fact,
the full description of light as a wave can be rather cumbersome.
We will instead spend most of our treatment of optics making use
of a simpler model of light, the ray model, which does a fine job in
most practical situations. Not only that, but we will even backtrack
a little and start with a discussion of basic ideas about light and
vision that predated the discovery of electromagnetic waves.
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28.1 The nature of light
The cause and effect relationship in vision

Despite its title, this chapter is far from your first look at light.
That familiarity might seem like an advantage, but most people have
never thought carefully about light and vision. Even smart people
who have thought hard about vision have come up with incorrect
ideas. The ancient Greeks, Arabs and Chinese had theories of light
and vision, all of which were mostly wrong, and all of which were
accepted for thousands of years.

One thing the ancients did get right is that there is a distinction
between objects that emit light and objects that don’t. When you
see a leaf in the forest, it’s because three different objects are doing
their jobs: the leaf, the eye, and the sun. But luminous objects
like the sun, a flame, or the filament of a light bulb can be seen by
the eye without the presence of a third object. Emission of light
is often, but not always, associated with heat. In modern times,
we are familiar with a variety of objects that glow without being
heated, including fluorescent lights and glow-in-the-dark toys.

How do we see luminous objects? The Greek philosophers Pythago-
ras (b. ca. 560 BC) and Empedocles of Acragas (b. ca. 492
BC), who unfortunately were very influential, claimed that when
you looked at a candle flame, the flame and your eye were both
sending out some kind of mysterious stuff, and when your eye’s stuff
collided with the candle’s stuff, the candle would become evident to
your sense of sight.

Bizarre as the Greek “collision of stuff theory” might seem, it had a
couple of good features. It explained why both the candle and your
eye had to be present for your sense of sight to function. The theory
could also easily be expanded to explain how we see nonluminous
objects. If a leaf, for instance, happened to be present at the site
of the collision between your eye’s stuff and the candle’s stuff, then
the leaf would be stimulated to express its green nature, allowing
you to perceive it as green.

Modern people might feel uneasy about this theory, since it suggests
that greenness exists only for our seeing convenience, implying a hu-
man precedence over natural phenomena. Nowadays, people would
expect the cause and effect relationship in vision to be the other way
around, with the leaf doing something to our eye rather than our eye
doing something to the leaf. But how can you tell? The most com-
mon way of distinguishing cause from effect is to determine which
happened first, but the process of seeing seems to occur too quickly
to determine the order in which things happened. Certainly there is
no obvious time lag between the moment when you move your head
and the moment when your reflection in the mirror moves.

Today, photography provides the simplest experimental evidence
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a / Light from a candle is bumped
off course by a piece of glass.
Inserting the glass causes the
apparent location of the candle
to shift. The same effect can
be produced by taking off your
eyeglasses and looking at which
you see near the edge of the
lens, but a flat piece of glass
works just as well as a lens for
this purpose.

that nothing has to be emitted from your eye and hit the leaf in
order to make it “greenify.” A camera can take a picture of a leaf
even if there are no eyes anywhere nearby. Since the leaf appears
green regardless of whether it is being sensed by a camera, your eye,
or an insect’s eye, it seems to make more sense to say that the leaf’s
greenness is the cause, and something happening in the camera or
eye is the effect.

Light is a thing, and it travels from one point to another.

Another issue that few people have considered is whether a candle’s
flame simply affects your eye directly, or whether it sends out light
which then gets into your eye. Again, the rapidity of the effect makes
it difficult to tell what’s happening. If someone throws a rock at you,
you can see the rock on its way to your body, and you can tell that
the person affected you by sending a material substance your way,
rather than just harming you directly with an arm motion, which
would be known as “action at a distance.” It is not easy to do a
similar observation to see whether there is some “stuff” that travels
from the candle to your eye, or whether it is a case of action at a
distance.

Newtonian physics includes both action at a distance (e.g., the
earth’s gravitational force on a falling object) and contact forces
such as the normal force, which only allow distant objects to exert
forces on each other by shooting some substance across the space
between them (e.g., a garden hose spraying out water that exerts a
force on a bush).

One piece of evidence that the candle sends out stuff that travels to
your eye is that as in figure a, intervening transparent substances
can make the candle appear to be in the wrong location, suggesting
that light is a thing that can be bumped off course. Many peo-
ple would dismiss this kind of observation as an optical illusion,
however. (Some optical illusions are purely neurological or psycho-
logical effects, although some others, including this one, turn out to
be caused by the behavior of light itself.)

A more convincing way to decide in which category light belongs is
to find out if it takes time to get from the candle to your eye; in
Newtonian physics, action at a distance is supposed to be instan-
taneous. The fact that we speak casually today of “the speed of
light” implies that at some point in history, somebody succeeded in
showing that light did not travel infinitely fast. Galileo tried, and
failed, to detect a finite speed for light, by arranging with a person
in a distant tower to signal back and forth with lanterns. Galileo
uncovered his lantern, and when the other person saw the light, he
uncovered his lantern. Galileo was unable to measure any time lag
that was significant compared to the limitations of human reflexes.

The first person to prove that light’s speed was finite, and to deter-
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b / An image of Jupiter and
its moon Io (left) from the Cassini
probe.

c / The earth is moving to-
ward Jupiter and Io. Since the
distance is shrinking, it is taking
less and less time for the light to
get to us from Io, and Io appears
to circle Jupiter more quickly than
normal. Six months later, the
earth will be on the opposite side
of the sun, and receding from
Jupiter and Io, so Io will appear
to revolve around Jupiter more
slowly.

mine it numerically, was Ole Roemer, in a series of measurements
around the year 1675. Roemer observed Io, one of Jupiter’s moons,
over a period of several years. Since Io presumably took the same
amount of time to complete each orbit of Jupiter, it could be thought
of as a very distant, very accurate clock. A practical and accurate
pendulum clock had recently been invented, so Roemer could check
whether the ratio of the two clocks’ cycles, about 42.5 hours to 1
orbit, stayed exactly constant or changed a little. If the process of
seeing the distant moon was instantaneous, there would be no rea-
son for the two to get out of step. Even if the speed of light was
finite, you might expect that the result would be only to offset one
cycle relative to the other. The earth does not, however, stay at a
constant distance from Jupiter and its moons. Since the distance is
changing gradually due to the two planets’ orbital motions, a finite
speed of light would make the “Io clock” appear to run faster as the
planets drew near each other, and more slowly as their separation
increased. Roemer did find a variation in the apparent speed of Io’s
orbits, which caused Io’s eclipses by Jupiter (the moments when Io
passed in front of or behind Jupiter) to occur about 7 minutes early
when the earth was closest to Jupiter, and 7 minutes late when it
was farthest. Based on these measurements, Roemer estimated the
speed of light to be approximately 2×108 m/s, which is in the right
ballpark compared to modern measurements of 3×108 m/s. (I’m not
sure whether the fairly large experimental error was mainly due to
imprecise knowledge of the radius of the earth’s orbit or limitations
in the reliability of pendulum clocks.)

Light can travel through a vacuum.

Many people are confused by the relationship between sound and
light. Although we use different organs to sense them, there are
some similarities. For instance, both light and sound are typically
emitted in all directions by their sources. Musicians even use visual
metaphors like “tone color,” or “a bright timbre” to describe sound.
One way to see that they are clearly different phenomena is to note
their very different velocities. Sure, both are pretty fast compared to
a flying arrow or a galloping horse, but as we have seen, the speed of
light is so great as to appear instantaneous in most situations. The
speed of sound, however, can easily be observed just by watching a
group of schoolchildren a hundred feet away as they clap their hands
to a song. There is an obvious delay between when you see their
palms come together and when you hear the clap.

The fundamental distinction between sound and light is that sound
is an oscillation in air pressure, so it requires air (or some other
medium such as water) in which to travel. Today, we know that
outer space is a vacuum, so the fact that we get light from the
sun, moon and stars clearly shows that air is not necessary for the
propagation of light.
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Discussion questions

A If you observe thunder and lightning, you can tell how far away the
storm is. Do you need to know the speed of sound, of light, or of both?

B When phenomena like X-rays and cosmic rays were first discovered,
suggest a way one could have tested whether they were forms of light.

C Why did Roemer only need to know the radius of the earth’s orbit,
not Jupiter’s, in order to find the speed of light?

28.2 Interaction of light with matter
Absorption of light

The reason why the sun feels warm on your skin is that the sunlight
is being absorbed, and the light energy is being transformed into
heat energy. The same happens with artificial light, so the net
result of leaving a light turned on is to heat the room. It doesn’t
matter whether the source of the light is hot, like the sun, a flame,
or an incandescent light bulb, or cool, like a fluorescent bulb. (If
your house has electric heat, then there is absolutely no point in
fastidiously turning off lights in the winter; the lights will help to
heat the house at the same dollar rate as the electric heater.)

This process of heating by absorption is entirely different from heat-
ing by thermal conduction, as when an electric stove heats spaghetti
sauce through a pan. Heat can only be conducted through matter,
but there is vacuum between us and the sun, or between us and the
filament of an incandescent bulb. Also, heat conduction can only
transfer heat energy from a hotter object to a colder one, but a cool
fluorescent bulb is perfectly capable of heating something that had
already started out being warmer than the bulb itself.

How we see nonluminous objects

Not all the light energy that hits an object is transformed into heat.
Some is reflected, and this leads us to the question of how we see
nonluminous objects. If you ask the average person how we see a
light bulb, the most likely answer is “The light bulb makes light,
which hits our eyes.” But if you ask how we see a book, they
are likely to say “The bulb lights up the room, and that lets me
see the book.” All mention of light actually entering our eyes has
mysteriously disappeared.

Most people would disagree if you told them that light was reflected
from the book to the eye, because they think of reflection as some-
thing that mirrors do, not something that a book does. They asso-
ciate reflection with the formation of a reflected image, which does
not seem to appear in a piece of paper.

Imagine that you are looking at your reflection in a nice smooth
piece of aluminum foil, fresh off the roll. You perceive a face, not a
piece of metal. Perhaps you also see the bright reflection of a lamp
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d / Two self-portraits of the
author, one taken in a mirror and
one with a piece of aluminum foil.

e / Specular and diffuse re-
flection.

over your shoulder behind you. Now imagine that the foil is just
a little bit less smooth. The different parts of the image are now
a little bit out of alignment with each other. Your brain can still
recognize a face and a lamp, but it’s a little scrambled, like a Picasso
painting. Now suppose you use a piece of aluminum foil that has
been crumpled up and then flattened out again. The parts of the
image are so scrambled that you cannot recognize an image. Instead,
your brain tells you you’re looking at a rough, silvery surface.

Mirror-like reflection at a specific angle is known as specular re-
flection, and random reflection in many directions is called diffuse
reflection. Diffuse reflection is how we see nonluminous objects.
Specular reflection only allows us to see images of objects other
than the one doing the reflecting. In top part of figure d, imagine
that the rays of light are coming from the sun. If you are looking
down at the reflecting surface, there is no way for your eye-brain
system to tell that the rays are not really coming from a sun down
below you.

Figure f shows another example of how we can’t avoid the conclusion
that light bounces off of things other than mirrors. The lamp is one
I have in my house. It has a bright bulb, housed in a completely
opaque bowl-shaped metal shade. The only way light can get out of
the lamp is by going up out of the top of the bowl. The fact that I
can read a book in the position shown in the figure means that light
must be bouncing off of the ceiling, then bouncing off of the book,
then finally getting to my eye.

This is where the shortcomings of the Greek theory of vision become
glaringly obvious. In the Greek theory, the light from the bulb and
my mysterious “eye rays” are both supposed to go to the book,
where they collide, allowing me to see the book. But we now have a
total of four objects: lamp, eye, book, and ceiling. Where does the
ceiling come in? Does it also send out its own mysterious “ceiling
rays,” contributing to a three-way collision at the book? That would
just be too bizarre to believe!

The differences among white, black, and the various shades of gray
in between is a matter of what percentage of the light they absorb
and what percentage they reflect. That’s why light-colored clothing
is more comfortable in the summer, and light-colored upholstery in
a car stays cooler that dark upholstery.
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f / Light bounces off of the
ceiling, then off of the book.

g / Discussion question C.

Numerical measurement of the brightness of light

We have already seen that the physiological sensation of loudness
relates to the sound’s intensity (power per unit area), but is not
directly proportional to it. If sound A has an intensity of 1 nW/m2,
sound B is 10 nW/m2, and sound C is 100 nW/m2, then the increase
in loudness from B to C is perceived to be the same as the increase
from A to B, not ten times greater. That is, the sensation of loudness
is logarithmic.

The same is true for the brightness of light. Brightness is related
to power per unit area, but the psychological relationship is a log-
arithmic one rather than a proportionality. For doing physics, it’s
the power per unit area that we’re interested in. The relevant unit
is W/m2. One way to determine the brightness of light is to mea-
sure the increase in temperature of a black object exposed to the
light. The light energy is being converted to heat energy, and the
amount of heat energy absorbed in a given amount of time can be
related to the power absorbed, using the known heat capacity of the
object. More practical devices for measuring light intensity, such
as the light meters built into some cameras, are based on the con-
version of light into electrical energy, but these meters have to be
calibrated somehow against heat measurements.

Discussion questions

A The curtains in a room are drawn, but a small gap lets light through,
illuminating a spot on the floor. It may or may not also be possible to see
the beam of sunshine crossing the room, depending on the conditions.
What’s going on?

B Laser beams are made of light. In science fiction movies, laser
beams are often shown as bright lines shooting out of a laser gun on a
spaceship. Why is this scientifically incorrect?

C A documentary film-maker went to Harvard’s 1987 graduation cer-
emony and asked the graduates, on camera, to explain the cause of the
seasons. Only two out of 23 were able to give a correct explanation, but
you now have all the information needed to figure it out for yourself, as-
suming you didn’t already know. The figure shows the earth in its winter
and summer positions relative to the sun. Hint: Consider the units used
to measure the brightness of light, and recall that the sun is lower in the
sky in winter, so its rays are coming in at a shallower angle.

28.3 The ray model of light
Models of light

Note how I’ve been casually diagramming the motion of light with
pictures showing light rays as lines on the page. More formally,
this is known as the ray model of light. The ray model of light
seems natural once we convince ourselves that light travels through
space, and observe phenomena like sunbeams coming through holes
in clouds. Having already been introduced to the concept of light
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as an electromagnetic wave, you know that the ray model is not the
ultimate truth about light, but the ray model is simpler, and in any
case science always deals with models of reality, not the ultimate
nature of reality. The following table summarizes three models of
light.

h / Three models of light.

The ray model is a generic one. By using it we can discuss the path
taken by the light, without committing ourselves to any specific
description of what it is that is moving along that path. We will
use the nice simple ray model for most of our treatment of optics,
and with it we can analyze a great many devices and phenomena.
Not until chapter 32 will we concern ourselves specifically with wave
optics, although in the intervening chapters I will sometimes analyze
the same phenomenon using both the ray model and the wave model.

Note that the statements about the applicability of the various mod-
els are only rough guides. For instance, wave interference effects are
often detectable, if small, when light passes around an obstacle that
is quite a bit bigger than a wavelength. Also, the criterion for when
we need the particle model really has more to do with energy scales
than distance scales, although the two turn out to be related.

The alert reader may have noticed that the wave model is required
at scales smaller than a wavelength of light (on the order of a mi-
crometer for visible light), and the particle model is demanded on
the atomic scale or lower (a typical atom being a nanometer or so in
size). This implies that at the smallest scales we need both the wave
model and the particle model. They appear incompatible, so how
can we simultaneously use both? The answer is that they are not
as incompatible as they seem. Light is both a wave and a particle,
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but a full understanding of this apparently nonsensical statement is
a topic for chapter 34.

i / Examples of ray diagrams.

Ray diagrams

Without even knowing how to use the ray model to calculate any-
thing numerically, we can learn a great deal by drawing ray dia-
grams. For instance, if you want to understand how eyeglasses help
you to see in focus, a ray diagram is the right place to start. Many
students under-utilize ray diagrams in optics and instead rely on rote
memorization or plugging into formulas. The trouble with memo-
rization and plug-ins is that they can obscure what’s really going
on, and it is easy to get them wrong. Often the best plan is to do a
ray diagram first, then do a numerical calculation, then check that
your numerical results are in reasonable agreement with what you
expected from the ray diagram.

j / 1. Correct. 2. Incorrect: im-
plies that diffuse reflection only
gives one ray from each reflecting
point. 3. Correct, but unneces-
sarily complicated

Figure j shows some guidelines for using ray diagrams effectively.
The light rays bend when they pass out through the surface of the
water (a phenomenon that we’ll discuss in more detail later). The
rays appear to have come from a point above the goldfish’s actual
location, an effect that is familiar to people who have tried spear-
fishing.

• A stream of light is not really confined to a finite number of
narrow lines. We just draw it that way. In j/1, it has been
necessary to choose a finite number of rays to draw (five),
rather than the theoretically infinite number of rays that will
diverge from that point.
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• There is a tendency to conceptualize rays incorrectly as ob-
jects. In his Optics, Newton goes out of his way to caution
the reader against this, saying that some people “consider ...
the refraction of ... rays to be the bending or breaking of them
in their passing out of one medium into another.” But a ray
is a record of the path traveled by light, not a physical thing
that can be bent or broken.

• In theory, rays may continue infinitely far into the past and
future, but we need to draw lines of finite length. In j/1, a
judicious choice has been made as to where to begin and end
the rays. There is no point in continuing the rays any farther
than shown, because nothing new and exciting is going to
happen to them. There is also no good reason to start them
earlier, before being reflected by the fish, because the direction
of the diffusely reflected rays is random anyway, and unrelated
to the direction of the original, incoming ray.

• When representing diffuse reflection in a ray diagram, many
students have a mental block against drawing many rays fan-
ning out from the same point. Often, as in example j/2, the
problem is the misconception that light can only be reflected
in one direction from one point.

• Another difficulty associated with diffuse reflection, example
j/3, is the tendency to think that in addition to drawing many
rays coming out of one point, we should also be drawing many
rays coming from many points. In j/1, drawing many rays
coming out of one point gives useful information, telling us,
for instance, that the fish can be seen from any angle. Drawing
many sets of rays, as in j/3, does not give us any more useful
information, and just clutters up the picture in this example.
The only reason to draw sets of rays fanning out from more
than one point would be if different things were happening to
the different sets.

Discussion question

A Suppose an intelligent tool-using fish is spear-hunting for humans.
Draw a ray diagram to show how the fish has to correct its aim. Note
that although the rays are now passing from the air to the water, the same
rules apply: the rays are closer to being perpendicular to the surface when
they are in the water, and rays that hit the air-water interface at a shallow
angle are bent the most.

28.4 Geometry of specular reflection
To change the motion of a material object, we use a force. Is there
any way to exert a force on a beam of light? Experiments show
that electric and magnetic fields do not deflect light beams, so ap-
parently light has no electric charge. Light also has no mass, so
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k / The geometry of specular
reflection.

until the twentieth century it was believed to be immune to gravity
as well. Einstein predicted that light beams would be very slightly
deflected by strong gravitational fields, and he was proved correct
by observations of rays of starlight that came close to the sun, but
obviously that’s not what makes mirrors and lenses work!

If we investigate how light is reflected by a mirror, we will find that
the process is horrifically complex, but the final result is surprisingly
simple. What actually happens is that the light is made of electric
and magnetic fields, and these fields accelerate the electrons in the
mirror. Energy from the light beam is momentarily transformed
into extra kinetic energy of the electrons, but because the electrons
are accelerating they re-radiate more light, converting their kinetic
energy back into light energy. We might expect this to result in a
very chaotic situation, but amazingly enough, the electrons move
together to produce a new, reflected beam of light, which obeys two
simple rules:

• The angle of the reflected ray is the same as that of the incident
ray.

• The reflected ray lies in the plane containing the incident ray
and the normal (perpendicular) line. This plane is known as
the plane of incidence.

The two angles can be defined either with respect to the normal, like
angles B and C in the figure, or with respect to the reflecting surface,
like angles A and D. There is a convention of several hundred years’
standing that one measures the angles with respect to the normal,
but the rule about equal angles can logically be stated either as
B=C or as A=D.

The phenomenon of reflection occurs only at the boundary between
two media, just like the change in the speed of light that passes from
one medium to another. As we have seen in chapter 20, this is the
way all waves behave.

Most people are surprised by the fact that light can be reflected
back from a less dense medium. For instance, if you are diving and
you look up at the surface of the water, you will see a reflection of
yourself.
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self-check A
Each of these diagrams is supposed to show two different rays being
reflected from the same point on the same mirror. Which are correct,
and which are incorrect?

. Answer, p. 1016

Reversibility of light rays

The fact that specular reflection displays equal angles of incidence
and reflection means that there is a symmetry: if the ray had come
in from the right instead of the left in the figure above, the angles
would have looked exactly the same. This is not just a pointless
detail about specular reflection. It’s a manifestation of a very deep
and important fact about nature, which is that the laws of physics do
not distinguish between past and future. Cannonballs and planets
have trajectories that are equally natural in reverse, and so do light
rays. This type of symmetry is called time-reversal symmetry.

Typically, time-reversal symmetry is a characteristic of any process
that does not involve heat. For instance, the planets do not ex-
perience any friction as they travel through empty space, so there
is no frictional heating. We should thus expect the time-reversed
versions of their orbits to obey the laws of physics, which they do.
In contrast, a book sliding across a table does generate heat from
friction as it slows down, and it is therefore not surprising that this
type of motion does not appear to obey time-reversal symmetry. A
book lying still on a flat table is never observed to spontaneously
start sliding, sucking up heat energy and transforming it into kinetic
energy.

Similarly, the only situation we’ve observed so far where light does
not obey time-reversal symmetry is absorption, which involves heat.
Your skin absorbs visible light from the sun and heats up, but we
never observe people’s skin to glow, converting heat energy into vis-
ible light. People’s skin does glow in infrared light, but that doesn’t
mean the situation is symmetric. Even if you absorb infrared, you
don’t emit visible light, because your skin isn’t hot enough to glow
in the visible spectrum.

These apparent heat-related asymmetries are not actual asymme-
tries in the laws of physics. The interested reader may wish to learn
more about this from optional chapter 16 on thermodynamics.

Ray tracing on a computer example 1
A number of techniques can be used for creating artificial visual
scenes in computer graphics. Figure l shows such a scene, which
was created by the brute-force technique of simply constructing
a very detailed ray diagram on a computer. This technique re-
quires a great deal of computation, and is therefore too slow to
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be used for video games and computer-animated movies. One
trick for speeding up the computation is to exploit the reversibility
of light rays. If one was to trace every ray emitted by every illu-
minated surface, only a tiny fraction of those would actually end
up passing into the virtual “camera,” and therefore almost all of
the computational effort would be wasted. One can instead start
a ray at the camera, trace it backward in time, and see where it
would have come from. With this technique, there is no wasted
effort.

l / This photorealistic image of a nonexistent countertop was pro-
duced completely on a computer, by computing a complicated ray
diagram.
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m / Discussion question B.

n / Discussion question C.

o / The solid lines are physi-
cally possible paths for light rays
traveling from A to B and from
A to C. They obey the principle
of least time. The dashed lines
do not obey the principle of
least time, and are not physically
possible.

Discussion questions

A If a light ray has a velocity vector with components cx and cy , what
will happen when it is reflected from a surface that lies along the y axis?
Make sure your answer does not imply a change in the ray’s speed.

B Generalizing your reasoning from discussion question A, what will
happen to the velocity components of a light ray that hits a corner, as
shown in the figure, and undergoes two reflections?

C Three pieces of sheet metal arranged perpendicularly as shown in
the figure form what is known as a radar corner. Let’s assume that the
radar corner is large compared to the wavelength of the radar waves, so
that the ray model makes sense. If the radar corner is bathed in radar
rays, at least some of them will undergo three reflections. Making a fur-
ther generalization of your reasoning from the two preceding discussion
questions, what will happen to the three velocity components of such a
ray? What would the radar corner be useful for?

28.5 ? The principle of least time for reflection
We had to choose between an unwieldy explanation of reflection at
the atomic level and a simpler geometric description that was not as
fundamental. There is a third approach to describing the interaction
of light and matter which is very deep and beautiful. Emphasized
by the twentieth-century physicist Richard Feynman, it is called the
principle of least time, or Fermat’s principle.

Let’s start with the motion of light that is not interacting with
matter at all. In a vacuum, a light ray moves in a straight line.
This can be rephrased as follows: of all the conceivable paths light
could follow from P to Q, the only one that is physically possible is
the path that takes the least time.

What about reflection? If light is going to go from one point to
another, being reflected on the way, the quickest path is indeed the
one with equal angles of incidence and reflection. If the starting and
ending points are equally far from the reflecting surface, o, it’s not
hard to convince yourself that this is true, just based on symmetry.
There is also a tricky and simple proof, shown in figure p, for the
more general case where the points are at different distances from
the surface.
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p / Paths AQB and APB are
two conceivable paths that a ray
could follow to get from A to B
with one reflection, but only AQB
is physically possible. We wish
to prove that the path AQB, with
equal angles of incidence and
reflection, is shorter than any
other path, such as APB. The
trick is to construct a third point,
C, lying as far below the surface
as B lies above it. Then path
AQC is a straight line whose
length is the same as AQB’s, and
path APC has the same length as
path APB. Since AQC is straight,
it must be shorter than any other
path such as APC that connects
A and C, and therefore AQB must
be shorter than any path such as
APB.

q / Light is emitted at the center
of an elliptical mirror. There are
four physically possible paths by
which a ray can be reflected and
return to the center.

Not only does the principle of least time work for light in a vacuum
and light undergoing reflection, we will also see in a later chap-
ter that it works for the bending of light when it passes from one
medium into another.

Although it is beautiful that the entire ray model of light can be
reduced to one simple rule, the principle of least time, it may seem
a little spooky to speak as if the ray of light is intelligent, and has
carefully planned ahead to find the shortest route to its destination.
How does it know in advance where it’s going? What if we moved the
mirror while the light was en route, so conditions along its planned
path were not what it “expected?” The answer is that the principle
of least time is really a shortcut for finding certain results of the
wave model of light, which is the topic of the last chapter of this
book.

There are a couple of subtle points about the principle of least time.
First, the path does not have to be the quickest of all possible paths;
it only needs to be quicker than any path that differs infinitesimally
from it. In figure p, for instance, light could get from A to B either
by the reflected path AQB or simply by going straight from A to
B. Although AQB is not the shortest possible path, it cannot be
shortened by changing it infinitesimally, e.g., by moving Q a little
to the right or left. On the other hand, path APB is physically
impossible, because it is possible to improve on it by moving point
P infinitesimally to the right.

It’s not quite right to call this the principle of least time. In figure
q, for example, the four physically possible paths by which a ray
can return to the center consist of two shortest-time paths and two
longest-time paths. Strictly speaking, we should refer to the prin-
ciple of least or greatest time, but most physicists omit the niceties,
and assume that other physicists understand that both maxima and
minima are possible.
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Summary
Selected vocabulary
absorption . . . . what happens when light hits matter and gives

up some of its energy
reflection . . . . . what happens when light hits matter and

bounces off, retaining at least some of its en-
ergy

specular reflec-
tion . . . . . . . .

reflection from a smooth surface, in which the
light ray leaves at the same angle at which it
came in

diffuse reflection reflection from a rough surface, in which a sin-
gle ray of light is divided up into many weaker
reflected rays going in many directions

normal . . . . . . the line perpendicular to a surface at a given
point

Notation
c . . . . . . . . . . the speed of light

Summary

We can understand many phenomena involving light without having
to use sophisticated models such as the wave model or the particle
model. Instead, we simply describe light according to the path it
takes, which we call a ray. The ray model of light is useful when
light is interacting with material objects that are much larger than
a wavelength of light. Since a wavelength of visible light is so short
compared to the human scale of existence, the ray model is useful
in many practical cases.

We see things because light comes from them to our eyes. Objects
that glow may send light directly to our eyes, but we see an ob-
ject that doesn’t glow via light from another source that has been
reflected by the object.

Many of the interactions of light and matter can be understood
by considering what happens when light reaches the boundary be-
tween two different substances. In this situation, part of the light is
reflected (bounces back) and part passes on into the new medium.
This is not surprising — it is typical behavior for a wave, and light is
a wave. Light energy can also be absorbed by matter, i.e., converted
into heat.

A smooth surface produces specular reflection, in which the reflected
ray exits at the same angle with respect to the normal as that of the
incoming ray. A rough surface gives diffuse reflection, where a single
ray of light is divided up into many weaker reflected rays going in
many directions.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Draw a ray diagram showing why a small light source (a
candle, say) produces sharper shadows than a large one (e.g., a long
fluorescent bulb).

2 A Global Positioning System (GPS) receiver is a device that
lets you figure out where you are by receiving timed radio signals
from satellites. It works by measuring the travel time for the signals,
which is related to the distance between you and the satellite. By
finding the ranges to several different satellites in this way, it can
pin down your location in three dimensions to within a few meters.
How accurate does the measurement of the time delay have to be to
determine your position to this accuracy?

3 Estimate the frequency of an electromagnetic wave whose
wavelength is similar in size to an atom (about a nm). Referring
back to figure 24.5.3 on p. 695, in what part of the electromagnetic
spectrum would such a wave lie (infrared, gamma-rays, . . . )?

4 The Stealth Bomber is designed with flat, smooth surfaces.
Why would this make it difficult to detect using radar?

5 The figure on the next page shows a curved (parabolic) mir-
ror, with three parallel light rays coming toward it. One ray is
approaching along the mirror’s center line. (a) Continue the light
rays until they are about to undergo their second reflection. To get
good enough accuracy, you’ll need to photocopy the page (or down-
load the book and print the page) and draw in the normal at each
place where a ray is reflected. What do you notice? (b) Make up
an example of a practical use for this device. (c) How could you
use this mirror with a small lightbulb to produce a parallel beam of
light rays going off to the right?

6 The natives of planet Wumpus play pool using light rays on
an eleven-sided table with mirrors for bumpers, shown in the figure
on the next page. Trace this shot accurately with a ruler to reveal
the hidden message. To get good enough accuracy, you’ll need to
photocopy the page (or download the book and print the page) and
construct each reflection using a protractor.
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Problem 5.

Problem 6.
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Narcissus, by Michelangelo Car-
avaggio, ca. 1598.

Chapter 29

Images by reflection

Infants are always fascinated by the antics of the Baby in the Mirror.
Now if you want to know something about mirror images that most
people don’t understand, try this. First bring this page closer and
closer to your eyes, until you can no longer focus on it without
straining. Then go in the bathroom and see how close you can
get your face to the surface of the mirror before you can no longer
easily focus on the image of your own eyes. You will find that
the shortest comfortable eye-mirror distance is much less than the
shortest comfortable eye-paper distance. This demonstrates that
the image of your face in the mirror acts as if it had depth and
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a / An image formed by a
mirror.

existed in the space behind the mirror. If the image was like a flat
picture in a book, then you wouldn’t be able to focus on it from
such a short distance.

In this chapter we will study the images formed by flat and curved
mirrors on a qualitative, conceptual basis. Although this type of
image is not as commonly encountered in everyday life as images
formed by lenses, images formed by reflection are simpler to under-
stand, so we discuss them first. In chapter 30 we will turn to a more
mathematical treatment of images made by reflection. Surprisingly,
the same equations can also be applied to lenses, which are the topic
of chapter 31.

29.1 A virtual image

We can understand a mirror image using a ray diagram. Figure a
shows several light rays, 1, that originated by diffuse reflection at
the person’s nose. They bounce off the mirror, producing new rays,
2. To anyone whose eye is in the right position to get one of these
rays, they appear to have come from a behind the mirror, 3, where
they would have originated from a single point. This point is where
the tip of the image-person’s nose appears to be. A similar analysis
applies to every other point on the person’s face, so it looks as
though there was an entire face behind the mirror. The customary
way of describing the situation requires some explanation:

Customary description in physics: There is an image of the face
behind the mirror.

Translation: The pattern of rays coming from the mirror is exactly
the same as it would be if there were a face behind the mirror.
Nothing is really behind the mirror.

This is referred to as a virtual image, because the rays do not actu-
ally cross at the point behind the mirror. They only appear to have
originated there.

self-check A

Imagine that the person in figure a moves his face down quite a bit —
a couple of feet in real life, or a few inches on this scale drawing. The
mirror stays where it is. Draw a new ray diagram. Will there still be an
image? If so, where is it visible from? . Answer, p. 1016

The geometry of specular reflection tells us that rays 1 and 2 are
at equal angles to the normal (the imaginary perpendicular line
piercing the mirror at the point of reflection). This means that
ray 2’s imaginary continuation, 3, forms the same angle with the
mirror as ray 1. Since each ray of type 3 forms the same angles with
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c / The praxinoscope.

the mirror as its partner of type 1, we see that the distance of the
image from the mirror is the same as that of the actual face from
the mirror, and it lies directly across from it. The image therefore
appears to be the same size as the actual face.

b / Example 1.

An eye exam example 1
Figure b shows a typical setup in an optometrist’s examination
room. The patient’s vision is supposed to be tested at a distance
of 6 meters (20 feet in the U.S.), but this distance is larger than
the amount of space available in the room. Therefore a mirror is
used to create an image of the eye chart behind the wall.

The Praxinoscope example 2
Figure c shows an old-fashioned device called a praxinoscope,
which displays an animated picture when spun. The removable
strip of paper with the pictures printed on it has twice the radius
of the inner circle made of flat mirrors, so each picture’s virtual
image is at the center. As the wheel spins, each picture’s image
is replaced by the next.
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Discussion question

A The figure shows an object that is off to one side of a mirror. Draw
a ray diagram. Is an image formed? If so, where is it, and from which
directions would it be visible?
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d / An image formed by a
curved mirror.

e / The image is magnified
by the same factor in depth and
in its other dimensions.

f / Increased magnification
always comes at the expense of
decreased field of view.

29.2 Curved mirrors

An image in a flat mirror is a pretechnological example: even an-
imals can look at their reflections in a calm pond. We now pass
to our first nontrivial example of the manipulation of an image by
technology: an image in a curved mirror. Before we dive in, let’s
consider why this is an important example. If it was just a ques-
tion of memorizing a bunch of facts about curved mirrors, then you
would rightly rebel against an effort to spoil the beauty of your lib-
erally educated brain by force-feeding you technological trivia. The
reason this is an important example is not that curved mirrors are
so important in and of themselves, but that the results we derive for
curved bowl-shaped mirrors turn out to be true for a large class of
other optical devices, including mirrors that bulge outward rather
than inward, and lenses as well. A microscope or a telescope is sim-
ply a combination of lenses or mirrors or both. What you’re really
learning about here is the basic building block of all optical devices
from movie projectors to octopus eyes.

Because the mirror in figure d is curved, it bends the rays back closer
together than a flat mirror would: we describe it as converging. Note
that the term refers to what it does to the light rays, not to the
physical shape of the mirror’s surface . (The surface itself would be
described as concave. The term is not all that hard to remember,
because the hollowed-out interior of the mirror is like a cave.) It
is surprising but true that all the rays like 3 really do converge on
a point, forming a good image. We will not prove this fact, but it
is true for any mirror whose curvature is gentle enough and that
is symmetric with respect to rotation about the perpendicular line
passing through its center (not asymmetric like a potato chip). The
old-fashioned method of making mirrors and lenses is by grinding
them in grit by hand, and this automatically tends to produce an
almost perfect spherical surface.

Bending a ray like 2 inward implies bending its imaginary continu-
ation 3 outward, in the same way that raising one end of a seesaw
causes the other end to go down. The image therefore forms deeper
behind the mirror. This doesn’t just show that there is extra dis-
tance between the image-nose and the mirror; it also implies that
the image itself is bigger from front to back. It has been magnified
in the front-to-back direction.

It is easy to prove that the same magnification also applies to the
image’s other dimensions. Consider a point like E in figure e. The
trick is that out of all the rays diffusely reflected by E, we pick the
one that happens to head for the mirror’s center, C. The equal-angle
property of specular reflection plus a little straightforward geometry
easily leads us to the conclusion that triangles ABC and CDE are
the same shape, with ABC being simply a scaled-up version of CDE.
The magnification of depth equals the ratio BC/CD, and the up-
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down magnification is AB/DE. A repetition of the same proof shows
that the magnification in the third dimension (out of the page) is
also the same. This means that the image-head is simply a larger
version of the real one, without any distortion. The scaling factor
is called the magnification, M . The image in the figure is magnified
by a factor M = 1.9.

Note that we did not explicitly specify whether the mirror was a
sphere, a paraboloid, or some other shape. However, we assumed
that a focused image would be formed, which would not necessarily
be true, for instance, for a mirror that was asymmetric or very deeply
curved.

29.3 A real image
If we start by placing an object very close to the mirror, g/1, and
then move it farther and farther away, the image at first behaves
as we would expect from our everyday experience with flat mirrors,
receding deeper and deeper behind the mirror. At a certain point,
however, a dramatic change occurs. When the object is more than
a certain distance from the mirror, g/2, the image appears upside-
down and in front of the mirror.

g / 1. A virtual image. 2. A
real image. As you’ll verify in
homework problem 6, the image
is upside-down

Here’s what’s happened. The mirror bends light rays inward, but
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h / A Newtonian telescope
being used with a camera.

when the object is very close to it, as in g/1, the rays coming from a
given point on the object are too strongly diverging (spreading) for
the mirror to bring them back together. On reflection, the rays are
still diverging, just not as strongly diverging. But when the object
is sufficiently far away, g/2, the mirror is only intercepting the rays
that came out in a narrow cone, and it is able to bend these enough
so that they will reconverge.

Note that the rays shown in the figure, which both originated at
the same point on the object, reunite when they cross. The point
where they cross is the image of the point on the original object.
This type of image is called a real image, in contradistinction to the
virtual images we’ve studied before.

Definition: A real image is one where rays actually cross. A virtual
image is a point from which rays only appear to have come.

The use of the word “real” is perhaps unfortunate. It sounds as
though we are saying the image was an actual material object, which
of course it is not.

The distinction between a real image and a virtual image is an im-
portant one, because a real image can be projected onto a screen
or photographic film. If a piece of paper is inserted in figure g/2
at the location of the image, the image will be visible on the paper
(provided the object is bright and the room is dark). Your eye uses
a lens to make a real image on the retina.

self-check B
Sketch another copy of the face in figure g/1, even farther from the
mirror, and draw a ray diagram. What has happened to the location of
the image? . Answer, p. 1016

29.4 Images of images
If you are wearing glasses right now, then the light rays from the
page are being manipulated first by your glasses and then by the lens
of your eye. You might think that it would be extremely difficult
to analyze this, but in fact it is quite easy. In any series of optical
elements (mirrors or lenses or both), each element works on the rays
furnished by the previous element in exactly the same manner as if
the image formed by the previous element was an actual object.

Figure h shows an example involving only mirrors. The Newtonian
telescope, invented by Isaac Newton, consists of a large curved mir-
ror, plus a second, flat mirror that brings the light out of the tube.
(In very large telescopes, there may be enough room to put a camera
or even a person inside the tube, in which case the second mirror is
not needed.) The tube of the telescope is not vital; it is mainly a
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i / A Newtonian telescope
being used for visual rather than
photographic observing. In real
life, an eyepiece lens is normally
used for additional magnification,
but this simpler setup will also
work.

structural element, although it can also be helpful for blocking out
stray light. The lens has been removed from the front of the camera
body, and is not needed for this setup. Note that the two sample
rays have been drawn parallel, because an astronomical telescope
is used for viewing objects that are extremely far away. These two
“parallel” lines actually meet at a certain point, say a crater on the
moon, so they can’t actually be perfectly parallel, but they are par-
allel for all practical purposes since we would have to follow them
upward for a quarter of a million miles to get to the point where
they intersect.

The large curved mirror by itself would form an image I, but the
small flat mirror creates an image of the image, I′. The relationship
between I and I′ is exactly the same as it would be if I was an actual
object rather than an image: I and I′ are at equal distances from
the plane of the mirror, and the line between them is perpendicular
to the plane of the mirror.

One surprising wrinkle is that whereas a flat mirror used by itself
forms a virtual image of an object that is real, here the mirror is
forming a real image of virtual image I. This shows how pointless it
would be to try to memorize lists of facts about what kinds of images
are formed by various optical elements under various circumstances.
You are better off simply drawing a ray diagram.

j / The angular size of the flower
depends on its distance from the
eye.

Although the main point here was to give an example of an image
of an image, figure i also shows an interesting case where we need
to make the distinction between magnification and angular mag-
nification. If you are looking at the moon through this telescope,
then the images I and I′ are much smaller than the actual moon.
Otherwise, for example, image I would not fit inside the telescope!
However, these images are very close to your eye compared to the
actual moon. The small size of the image has been more than com-
pensated for by the shorter distance. The important thing here is
the amount of angle within your field of view that the image covers,
and it is this angle that has been increased. The factor by which it
is increased is called the angular magnification, Ma.
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k / The person uses a mirror to
get a view of both sides of the
ladybug. Although the flat mirror
has M = 1, it doesn’t give an an-
gular magnification of 1. The im-
age is farther from the eye than
the object, so the angular magni-
fication Ma = αi/αo is less than
one.

Discussion questions

A Locate the images of you that will be formed if you stand between
two parallel mirrors.
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B Locate the images formed by two perpendicular mirrors, as in the
figure. What happens if the mirrors are not perfectly perpendicular?
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C Locate the images formed by the periscope.
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Summary
Selected vocabulary
real image . . . . a place where an object appears to be, be-

cause the rays diffusely reflected from any
given point on the object have been bent so
that they come back together and then spread
out again from the new point

virtual image . . like a real image, but the rays don’t actually
cross again; they only appear to have come
from the point on the image

converging . . . . describes an optical device that brings light
rays closer to the optical axis

diverging . . . . .
bends light rays farther from the optical axis

magnification . . the factor by which an image’s linear size is
increased (or decreased)

angular magnifi-
cation . . . . . . .

the factor by which an image’s apparent angu-
lar size is increased (or decreased)

concave . . . . . . describes a surface that is hollowed out like a
cave

convex . . . . . . describes a surface that bulges outward

Notation
M . . . . . . . . . the magnification of an image
Ma . . . . . . . . the angular magnification of an image

Summary

A large class of optical devices, including lenses and flat and curved
mirrors, operates by bending light rays to form an image. A real
image is one for which the rays actually cross at each point of the
image. A virtual image, such as the one formed behind a flat mirror,
is one for which the rays only appear to have crossed at a point on
the image. A real image can be projected onto a screen; a virtual
one cannot.

Mirrors and lenses will generally make an image that is either smaller
than or larger than the original object. The scaling factor is called
the magnification. In many situations, the angular magnification is
more important than the actual magnification.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 A man is walking at 1.0 m/s directly towards a flat mirror.
At what speed is his separation from his image decreasing?

√

2 If a mirror on a wall is only big enough for you to see your-
self from your head down to your waist, can you see your entire
body by backing up? Test this experimentally and come up with an
explanation for your observations, including a ray diagram.

Note that when you do the experiment, it’s easy to confuse yourself
if the mirror is even a tiny bit off of vertical. One way to check
yourself is to artificially lower the top of the mirror by putting a
piece of tape or a post-it note where it blocks your view of the top
of your head. You can then check whether you are able to see more
of yourself both above and below by backing up.

3 In this chapter we’ve only done examples of mirrors with
hollowed-out shapes (called concave mirrors). Now draw a ray dia-
gram for a curved mirror that has a bulging outward shape (called a
convex mirror). (a) How does the image’s distance from the mirror
compare with the actual object’s distance from the mirror? From
this comparison, determine whether the magnification is greater
than or less than one. (b) Is the image real, or virtual? Could
this mirror ever make the other type of image?

4 As discussed in question 3, there are two types of curved
mirrors, concave and convex. Make a list of all the possible com-
binations of types of images (virtual or real) with types of mirrors
(concave and convex). (Not all of the four combinations are phys-
ically possible.) Now for each one, use ray diagrams to determine
whether increasing the distance of the object from the mirror leads
to an increase or a decrease in the distance of the image from the
mirror.

Draw BIG ray diagrams! Each diagram should use up about half a
page of paper.

Some tips: To draw a ray diagram, you need two rays. For one of
these, pick the ray that comes straight along the mirror’s axis, since
its reflection is easy to draw. After you draw the two rays and locate
the image for the original object position, pick a new object position
that results in the same type of image, and start a new ray diagram,
in a different color of pen, right on top of the first one. For the two
new rays, pick the ones that just happen to hit the mirror at the
same two places; this makes it much easier to get the result right
without depending on extreme accuracy in your ability to draw the
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Problem 7.

Problem 9.

reflected rays.

5 If the user of an astronomical telescope moves her head closer
to or farther away from the image she is looking at, does the magni-
fication change? Does the angular magnification change? Explain.
(For simplicity, assume that no eyepiece is being used.)

6 In figure g/2 in on page 840, only the image of my forehead was
located by drawing rays. Either photocopy the figure or download
the book and print out the relevant page. On this copy of the figure,
make a new set of rays coming from my chin, and locate its image.
To make it easier to judge the angles accurately, draw rays from the
chin that happen to hit the mirror at the same points where the two
rays from the forehead were shown hitting it. By comparing the
locations of the chin’s image and the forehead’s image, verify that
the image is actually upside-down, as shown in the original figure.

7 The figure shows four points where rays cross. Of these, which
are image points? Explain.

8 Here’s a game my kids like to play. I sit next to a sunny
window, and the sun reflects from the glass on my watch, making a
disk of light on the wall or floor, which they pretend to chase as I
move it around. Is the spot a disk because that’s the shape of the
sun, or because it’s the shape of my watch? In other words, would
a square watch make a square spot, or do we just have a circular
image of the circular sun, which will be circular no matter what?

9 Suppose we have a polygonal room whose walls are mirrors, and
there a pointlike light source in the room. In most such examples,
every point in the room ends up being illuminated by the light source
after some finite number of reflections. A difficult mathematical
question, first posed in the middle of the last century, is whether
it is ever possible to have an example in which the whole room is
not illuminated. (Rays are assumed to be absorbed if they strike
exactly at a vertex of the polygon, or if they pass exactly through
the plane of a mirror.)

The problem was finally solved in 1995 by G.W. Tokarsky, who
found an example of a room that was not illuminable from a cer-
tain point. Figure 9 shows a slightly simpler example found two
years later by D. Castro. If a light source is placed at either of the
locations shown with dots, the other dot remains unilluminated, al-
though every other point is lit up. It is not straightforward to prove
rigorously that Castro’s solution has this property. However, the
plausibility of the solution can be demonstrated as follows.

Suppose the light source is placed at the right-hand dot. Locate
all the images formed by single reflections. Note that they form a
regular pattern. Convince yourself that none of these images illumi-
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nates the left-hand dot. Because of the regular pattern, it becomes
plausible that even if we form images of images, images of images
of images, etc., none of them will ever illuminate the other dot.

There are various other versions of the problem, some of which re-
main unsolved. The book by Klee and Wagon gives a good intro-
duction to the topic, although it predates Tokarsky and Castro’s
work.

References:
G.W. Tokarsky, “Polygonal Rooms Not Illuminable from Every Point.”
Amer. Math. Monthly 102, 867-879, 1995.
D. Castro, “Corrections.” Quantum 7, 42, Jan. 1997.
V. Klee and S. Wagon, Old and New Unsolved Problems in Plane
Geometry and Number Theory. Mathematical Association of Amer-
ica, 1991. ?
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Exercise 29: Exploring images with a curved mirror
Equipment:

concave mirrors with deep curvature

concave mirrors with gentle curvature

convex mirrors

1. Obtain a curved mirror from your instructor. If it is silvered on both sides, make sure you’re
working with the concave side, which bends light rays inward. Look at your own face in the
mirror. Now change the distance between your face and the mirror, and see what happens.
Explore the full range of possible distances between your face and the mirror.

In these observations you’ve been changing two variables at once: the distance between the
object (your face) and the mirror, and the distance from the mirror to your eye. In general,
scientific experiments become easier to interpret if we practice isolation of variables, i.e., only
change one variable while keeping all the others constant. In parts 2 and 3 you’ll form an image
of an object that’s not your face, so that you can have independent control of the object distance
and the point of view.

2. With the mirror held far away from you, observe the image of something behind you, over
your shoulder. Now bring your eye closer and closer to the mirror. Can you see the image with
your eye very close to the mirror? See if you can explain your observation by drawing a ray
diagram.

——————–> turn page
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3. Now imagine the following new situation, but don’t actually do it yet. Suppose you lay the
mirror face-up on a piece of tissue paper, put your finger a few cm above the mirror, and look
at the image of your finger. As in part 2, you can bring your eye closer and closer to the mirror.

Will you be able to see the image with your eye very close to the mirror? Draw a ray diagram
to help you predict what you will observe.

Prediction:

Now test your prediction. If your prediction was incorrect, see if you can figure out what went
wrong, or ask your instructor for help.

4. For parts 4 and 5, it’s more convenient to use concave mirrors that are more gently curved;
obtain one from your instructor. Lay the mirror on the tissue paper, and use it to create an
image of the overhead lights on a piece of paper above it and a little off to the side. What do
you have to do in order to make the image clear? Can you explain this observation using a ray
diagram?

——————–> turn page
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5. Now imagine the following experiment, but don’t do it yet. What will happen to the image
on the paper if you cover half of the mirror with your hand?

Prediction:

Test your prediction. If your prediction was incorrect, can you explain what happened?

6. Now imagine forming an image with a convex mirror (one that bulges outward), and that
therefore bends light rays away from the central axis (i.e., is diverging). Draw a typical ray
diagram.

Is the image real, or virtual? Will there be more than one type of image?

Prediction:

Test your prediction.
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Breakfast Table, by Willem Clasz. de Heda, 17th century. The painting shows a variety of images, some of
them distorted, resulting both from reflection and from refraction (ch. 31).

Chapter 30

Images, quantitatively

It sounds a bit odd when a scientist refers to a theory as “beauti-
ful,” but to those in the know it makes perfect sense. One mark
of a beautiful theory is that it surprises us by being simple. The
mathematical theory of lenses and curved mirrors gives us just such
a surprise. We expect the subject to be complex because there are
so many cases: a converging mirror forming a real image, a diverg-
ing lens that makes a virtual image, and so on for a total of six
possibilities. If we want to predict the location of the images in all
these situations, we might expect to need six different equations,
and six more for predicting magnifications. Instead, it turns out
that we can use just one equation for the location of the image and
one equation for its magnification, and these two equations work
in all the different cases with no changes except for plus and minus
signs. This is the kind of thing the physicist Eugene Wigner referred
to as “the unreasonable effectiveness of mathematics.” Sometimes
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a / The relationship between
the object’s position and the
image’s can be expressed in
terms of the angles θo and θi .

we can find a deeper reason for this kind of unexpected simplicity,
but sometimes it almost seems as if God went out of Her way to
make the secrets of universe susceptible to attack by the human
thought-tool called math.

30.1 A real image formed by a converging
mirror

Location of the image

We will now derive the equation for the location of a real image
formed by a converging mirror. We assume for simplicity that the
mirror is spherical, but actually this isn’t a restrictive assumption,
because any shallow, symmetric curve can be approximated by a
sphere. The shape of the mirror can be specified by giving the
location of its center, C. A deeply curved mirror is a sphere with a
small radius, so C is close to it, while a weakly curved mirror has
C farther away. Given the point O where the object is, we wish to
find the point I where the image will be formed.

To locate an image, we need to track a minimum of two rays coming
from the same point. Since we have proved in the previous chapter
that this type of image is not distorted, we can use an on-axis point,
O, on the object, as in figure a/1. The results we derive will also
hold for off-axis points, since otherwise the image would have to be
distorted, which we know is not true. We let one of the rays be
the one that is emitted along the axis; this ray is especially easy to
trace, because it bounces straight back along the axis again. As our
second ray, we choose one that strikes the mirror at a distance of 1
from the axis. “One what?” asks the astute reader. The answer is
that it doesn’t really matter. When a mirror has shallow curvature,
all the reflected rays hit the same point, so 1 could be expressed
in any units you like. It could, for instance, be 1 cm, unless your
mirror is smaller than 1 cm!

The only way to find out anything mathematical about the rays is
to use the sole mathematical fact we possess concerning specular
reflection: the incident and reflected rays form equal angles with
respect to the normal, which is shown as a dashed line. Therefore
the two angles shown in figure a/2 are the same, and skipping some
straightforward geometry, this leads to the visually reasonable result
that the two angles in figure a/3 are related as follows:

θi + θo = constant

(Note that θi and θo, which are measured from the image and the
object, not from the eye like the angles we referred to in discussing
angular magnification on page 842.) For example, move O farther
from the mirror. The top angle in figure a/2 is increased, so the
bottom angle must increase by the same amount, causing the image
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b / The geometrical interpre-
tation of the focal angle.

c / Example 1, an alternative
test for finding the focal angle.
The mirror is the same as in
figure b.

point, I, to move closer to the mirror. In terms of the angles shown in
figure a/3, the more distant object has resulted in a smaller angle θo,
while the closer image corresponds to a larger θi; One angle increases
by the same amount that the other decreases, so their sum remains
constant. These changes are summarized in figure a/4.

The sum θi + θo is a constant. What does this constant repre-
sent? Geometrically, we interpret it as double the angle made by
the dashed radius line. Optically, it is a measure of the strength of
the mirror, i.e., how strongly the mirror focuses light, and so we call
it the focal angle, θf ,

θi + θo = θf .

Suppose, for example, that we wish to use a quick and dirty optical
test to determine how strong a particular mirror is. We can lay
it on the floor as shown in figure c, and use it to make an image
of a lamp mounted on the ceiling overhead, which we assume is
very far away compared to the radius of curvature of the mirror,
so that the mirror intercepts only a very narrow cone of rays from
the lamp. This cone is so narrow that its rays are nearly parallel,
and θo is nearly zero. The real image can be observed on a piece of
paper. By moving the paper nearer and farther, we can bring the
image into focus, at which point we know the paper is located at
the image point. Since θo ≈ 0, we have θi ≈ θf , and we can then
determine this mirror’s focal angle either by measuring θi directly
with a protractor, or indirectly via trigonometry. A strong mirror
will bring the rays together to form an image close to the mirror,
and these rays will form a blunt-angled cone with a large θi and θf .

An alternative optical test example 1
. Figure c shows an alternative optical test. Rather than placing
the object at infinity as in figure b, we adjust it so that the image
is right on top of the object. Points O and I coincide, and the rays
are reflected right back on top of themselves. If we measure the
angle θ shown in figure c, how can we find the focal angle?

. The object and image angles are the same; the angle labeled
θ in the figure equals both of them. We therefore have θi + θo =
θ = θf . Comparing figures b and c, it is indeed plausible that the
angles are related by a factor of two.

At this point, we could consider our work to be done. Typically,
we know the strength of the mirror, and we want to find the image
location for a given object location. Given the mirror’s focal angle
and the object location, we can determine θo by trigonometry, sub-
tract to find θi = θf − θo, and then do more trig to find the image
location.

There is, however, a shortcut that can save us from doing so much
work. Figure a/3 shows two right triangles whose legs of length 1
coincide and whose acute angles are θo and θi. These can be related
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d / The object and image dis-
tances

e / Mirror 1 is weaker than
mirror 2. It has a shallower
curvature, a longer focal length,
and a smaller focal angle. It
reflects rays at angles not much
different than those that would be
produced with a flat mirror.

by trigonometry to the object and image distances shown in figure
d:

tan θo = 1/do tan θi = 1/di

Ever since chapter 2, we’ve been assuming small angles. For small
angles, we can use the small-angle approximation tanx ≈ x (for x
in radians), giving simply

θo = 1/do θi = 1/di.

We likewise define a distance called the focal length, f according to
θf = 1/f . In figure b, f is the distance from the mirror to the place
where the rays cross. We can now reexpress the equation relating
the object and image positions as

1

f
=

1

di
+

1

do
.

Figure e summarizes the interpretation of the focal length and focal
angle.1

Which form is better, θf = θi + θo or 1/f = 1/di + 1/do? The
angular form has in its favor its simplicity and its straightforward
visual interpretation, but there are two reasons why we might prefer
the second version. First, the numerical values of the angles depend
on what we mean by “one unit” for the distance shown as 1 in
figure a/1. Second, it is usually easier to measure distances rather
than angles, so the distance form is more convenient for number
crunching. Neither form is superior overall, and we will often need
to use both to solve any given problem.2

A searchlight example 2
Suppose we need to create a parallel beam of light, as in a search-
light. Where should we place the lightbulb? A parallel beam has
zero angle between its rays, so θi = 0. To place the lightbulb
correctly, however, we need to know a distance, not an angle:
the distance do between the bulb and the mirror. The problem
involves a mixture of distances and angles, so we need to get
everything in terms of one or the other in order to solve it. Since
1There is a standard piece of terminology which is that the “focal point” is

the point lying on the optical axis at a distance from the mirror equal to the focal
length. This term isn’t particularly helpful, because it names a location where
nothing normally happens. In particular, it is not normally the place where the
rays come to a focus! — that would be the image point. In other words, we
don’t normally have di = f , unless perhaps do =∞. A recent online discussion
among some physics teachers (https://carnot.physics.buffalo.edu/archives, Feb.
2006) showed that many disliked the terminology, felt it was misleading, or didn’t
know it and would have misinterpreted it if they had come across it. That is, it
appears to be what grammarians call a “skunked term” — a word that bothers
half the population when it’s used incorrectly, and the other half when it’s used
correctly.

2I would like to thank Fouad Ajami for pointing out the pedagogical advan-
tages of using both equations side by side.
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the goal is to find a distance, let’s figure out the image distance
corresponding to the given angle θi = 0. These are related by
di = 1/θi , so we have di = ∞. (Yes, dividing by zero gives infin-
ity. Don’t be afraid of infinity. Infinity is a useful problem-solving
device.) Solving the distance equation for do, we have

do = (1/f − 1/di )−1

= (1/f − 0)−1

= f

The bulb has to be placed at a distance from the mirror equal to
its focal point.

Diopters example 3
An equation like di = 1/θi really doesn’t make sense in terms of
units. Angles are unitless, since radians aren’t really units, so
the right-hand side is unitless. We can’t have a left-hand side
with units of distance if the right-hand side of the same equation
is unitless. This is an artifact of my cavalier statement that the
conical bundles of rays spread out to a distance of 1 from the axis
where they strike the mirror, without specifying the units used to
measure this 1. In real life, optometrists define the thing we’re
calling θi = 1/di as the “dioptric strength” of a lens or mirror,
and measure it in units of inverse meters (m−1), also known as
diopters (1 D=1 m−1).

Magnification

We have already discussed in the previous chapter how to find the
magnification of a virtual image made by a curved mirror. The
result is the same for a real image, and we omit the proof, which
is very similar. In our new notation, the result is M = di/do. A
numerical example is given in section 30.2.

30.2 Other cases with curved mirrors
The equation di = (1/f − 1/do)

−1 can easily produce a negative
result, but we have been thinking of di as a distance, and distances
can’t be negative. A similar problem occurs with θi = θf − θo for
θo > θf . What’s going on here?

The interpretation of the angular equation is straightforward. As
we bring the object closer and closer to the image, θo gets bigger and
bigger, and eventually we reach a point where θo = θf and θi = 0.
This large object angle represents a bundle of rays forming a cone
that is very broad, so broad that the mirror can no longer bend
them back so that they reconverge on the axis. The image angle
θi = 0 represents an outgoing bundle of rays that are parallel. The
outgoing rays never cross, so this is not a real image, unless we want
to be charitable and say that the rays cross at infinity. If we go on
bringing the object even closer, we get a virtual image.
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f / A graph of the image distance
di as a function of the object dis-
tance do.

To analyze the distance equation, let’s look at a graph of di as a
function of do. The branch on the upper right corresponds to the
case of a real image. Strictly speaking, this is the only part of the
graph that we’ve proven corresponds to reality, since we never did
any geometry for other cases, such as virtual images. As discussed in
the previous section, making do bigger causes di to become smaller,
and vice-versa.

Letting do be less than f is equivalent to θo > θf : a virtual image
is produced on the far side of the mirror. This is the first example
of Wigner’s “unreasonable effectiveness of mathematics” that we
have encountered in optics. Even though our proof depended on
the assumption that the image was real, the equation we derived
turns out to be applicable to virtual images, provided that we either
interpret the positive and negative signs in a certain way, or else
modify the equation to have different positive and negative signs.

self-check A
Interpret the three places where, in physically realistic parts of the graph,
the graph approaches one of the dashed lines. [This will come more
naturally if you have learned the concept of limits in a math class.] .

Answer, p. 1016

A flat mirror example 4
We can even apply the equation to a flat mirror. As a sphere gets
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bigger and bigger, its surface is more and more gently curved.
The planet Earth is so large, for example, that we cannot even
perceive the curvature of its surface. To represent a flat mirror, we
let the mirror’s radius of curvature, and its focal length, become
infinite. Dividing by infinity gives zero, so we have

1/do = −1/di ,

or

do = −di .

If we interpret the minus sign as indicating a virtual image on the
far side of the mirror from the object, this makes sense.

It turns out that for any of the six possible combinations of real or
virtual images formed by converging or diverging lenses or mirrors,
we can apply equations of the form

θf = θi + θo

and

1

f
=

1

di
+

1

do
,

with only a modification of plus or minus signs. There are two pos-
sible approaches here. The approach we have been using so far is
the more popular approach in American textbooks: leave the equa-
tion the same, but attach interpretations to the resulting negative
or positive values of the variables. The trouble with this approach
is that one is then forced to memorize tables of sign conventions,
e.g., that the value of di should be negative when the image is a
virtual image formed by a converging mirror. Positive and negative
signs also have to be memorized for focal lengths. Ugh! It’s highly
unlikely that any student has ever retained these lengthy tables in
his or her mind for more than five minutes after handing in the final
exam in a physics course. Of course one can always look such things
up when they are needed, but the effect is to turn the whole thing
into an exercise in blindly plugging numbers into formulas.

As you have gathered by now, there is another method which I think
is better, and which I’ll use throughout the rest of this book. In this
method, all distances and angles are positive by definition, and we
put in positive and negative signs in the equations depending on the
situation. (I thought I was the first to invent this method, but I’ve
been told that this is known as the European sign convention, and
that it’s fairly common in Europe.) Rather than memorizing these
signs, we start with the generic equations

θf = ±θi ± θo
1

f
= ± 1

di
± 1

do
,
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g / Example 5.

and then determine the signs by a two-step method that depends on
ray diagrams. There are really only two signs to determine, not four;
the signs in the two equations match up in the way you’d expect.
The method is as follows:

1. Use ray diagrams to decide whether θo and θi vary in the same
way or in opposite ways. (In other words, decide whether making θo
greater results in a greater value of θi or a smaller one.) Based on
this, decide whether the two signs in the angle equation are the same
or opposite. If the signs are opposite, go on to step 2 to determine
which is positive and which is negative.

2. If the signs are opposite, we need to decide which is the positive
one and which is the negative. Since the focal angle is never negative,
the smaller angle must be the one with a minus sign.

In step 1, many students have trouble drawing the ray diagram
correctly. For simplicity, you should always do your diagram for a
point on the object that is on the axis of the mirror, and let one
of your rays be the one that is emitted along the axis and reflected
straight back on itself, as in the figures in section 30.1. As shown
in figure a/4 in section 30.1, there are four angles involved: two at
the mirror, one at the object (θo), and one at the image (θi). Make
sure to draw in the normal to the mirror so that you can see the two
angles at the mirror. These two angles are equal, so as you change
the object position, they fan out or fan in, like opening or closing
a book. Once you’ve drawn this effect, you should easily be able to
tell whether θo and θi change in the same way or in opposite ways.

Although focal lengths are always positive in the method used in
this book, you should be aware that diverging mirrors and lenses
are assigned negative focal lengths in the other method, so if you
see a lens labeled f = −30 cm, you’ll know what it means.

An anti-shoplifting mirror example 5
. Convenience stores often install a diverging mirror so that the
clerk has a view of the whole store and can catch shoplifters. Use
a ray diagram to show that the image is reduced, bringing more
into the clerk’s field of view. If the focal length of the mirror is 3.0
m, and the mirror is 7.0 m from the farthest wall, how deep is the
image of the store?

. As shown in ray diagram g/1, di is less than do. The magnifica-
tion, M = di/do, will be less than one, i.e., the image is actually
reduced rather than magnified.

Apply the method outlined above for determining the plus and
minus signs. Step 1: The object is the point on the opposite
wall. As an experiment, g/2, move the object closer. I did these
drawings using illustration software, but if you were doing them
by hand, you’d want to make the scale much larger for greater
accuracy. Also, although I split figure g into two separate drawings
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in order to make them easier to understand, you’re less likely to
make a mistake if you do them on top of each other.

The two angles at the mirror fan out from the normal. Increasing
θo has clearly made θi larger as well. (All four angles got big-
ger.) There must be a cancellation of the effects of changing the
two terms on the right in the same way, and the only way to get
such a cancellation is if the two terms in the angle equation have
opposite signs:

θf = +θi − θo

or
θf = −θi + θo.

Step 2: Now which is the positive term and which is negative?
Since the image angle is bigger than the object angle, the angle
equation must be

θf = θi − θo,

in order to give a positive result for the focal angle. The signs of
the distance equation behave the same way:

1
f

=
1
di
− 1

do
.

Solving for di , we find

di =
(

1
f

+
1
do

)−1

= 2.1 m.

The image of the store is reduced by a factor of 2.1/7.0 = 0.3,
i.e., it is smaller by 70%.

A shortcut for real images example 6
In the case of a real image, there is a shortcut for step 1, the
determination of the signs. In a real image, the rays cross at
both the object and the image. We can therefore time-reverse the
ray diagram, so that all the rays are coming from the image and
reconverging at the object. Object and image swap roles. Due
to this time-reversal symmetry, the object and image cannot be
treated differently in any of the equations, and they must therefore
have the same signs. They are both positive, since they must add
up to a positive result.

30.3 ? Aberrations
An imperfection or distortion in an image is called an aberration.
An aberration can be produced by a flaw in a lens or mirror, but
even with a perfect optical surface some degree of aberration is un-
avoidable. To see why, consider the mathematical approximation
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h / A diverging mirror in the shape
of a sphere. The image is re-
duced (M < 1). This is similar
to example 5, but here the image
is distorted because the mirror’s
curve is not shallow.

we’ve been making, which is that the depth of the mirror’s curve
is small compared to do and di. Since only a flat mirror can sat-
isfy this shallow-mirror condition perfectly, any curved mirror will
deviate somewhat from the mathematical behavior we derived by
assuming that condition. There are two main types of aberration in
curved mirrors, and these also occur with lenses.

(1) An object on the axis of the lens or mirror may be imaged cor-
rectly, but off-axis objects may be out of focus or distorted. In a
camera, this type of aberration would show up as a fuzziness or
warping near the sides of the picture when the center was perfectly
focused. An example of this is shown in figure i, and in that partic-
ular example, the aberration is not a sign that the equipment was
of low quality or wasn’t right for the job but rather an inevitable
result of trying to flatten a panoramic view; in the limit of a 360-
degree panorama, the problem would be similar to the problem of
representing the Earth’s surface on a flat map, which can’t be ac-
complished without distortion.

(2) The image may be sharp when the object is at certain distances
and blurry when it is at other distances. The blurriness occurs
because the rays do not all cross at exactly the same point. If we
know in advance the distance of the objects with which the mirror
or lens will be used, then we can optimize the shape of the optical
surface to make in-focus images in that situation. For instance, a
spherical mirror will produce a perfect image of an object that is
at the center of the sphere, because each ray is reflected directly
onto the radius along which it was emitted. For objects at greater
distances, however, the focus will be somewhat blurry. In astronomy
the objects being used are always at infinity, so a spherical mirror
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i / This photo was taken using a
“fish-eye lens,” which gives an ex-
tremely large field of view.

is a poor choice for a telescope. A different shape (a parabola) is
better specialized for astronomy.

j / Spherical mirrors are the
cheapest to make, but parabolic
mirrors are better for making
images of objects at infinity.
A sphere has equal curvature
everywhere, but a parabola has
tighter curvature at its center and
gentler curvature at the sides.

One way of decreasing aberration is to use a small-diameter mirror
or lens, or block most of the light with an opaque screen with a
hole in it, so that only light that comes in close to the axis can get
through. Either way, we are using a smaller portion of the lens or
mirror whose curvature will be more shallow, thereby making the
shallow-mirror (or thin-lens) approximation more accurate. Your
eye does this by narrowing down the pupil to a smaller hole. In
a camera, there is either an automatic or manual adjustment, and
narrowing the opening is called “stopping down.” The disadvantage
of stopping down is that light is wasted, so the image will be dimmer
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or a longer exposure must be used.

k / Even though the spherical mir-
ror (solid line) is not well adapted
for viewing an object at infinity,
we can improve its performance
greatly by stopping it down. Now
the only part of the mirror be-
ing used is the central portion,
where its shape is virtually in-
distinguishable from a parabola
(dashed line).

What I would suggest you take away from this discussion for the
sake of your general scientific education is simply an understanding
of what an aberration is, why it occurs, and how it can be reduced,
not detailed facts about specific types of aberrations.

l / The Hubble Space Telescope
was placed into orbit with faulty
optics in 1990. Its main mir-
ror was supposed to have been
nearly parabolic, since it is an as-
tronomical telescope, meant for
producing images of objects at in-
finity. However, contractor Per-
kin Elmer had delivered a faulty
mirror, which produced aberra-
tions. The large photo shows as-
tronauts putting correcting mirrors
in place in 1993. The two small
photos show images produced by
the telescope before and after the
fix.
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Summary
Selected vocabulary
focal length . . . a property of a lens or mirror, equal to the

distance from the lens or mirror to the image
it forms of an object that is infinitely far away

Notation
f . . . . . . . . . . the focal length
do . . . . . . . . . the distance of the object from the mirror
di . . . . . . . . . the distance of the image from the mirror
θf . . . . . . . . . the focal angle, defined as 1/f
θo . . . . . . . . . the object angle, defined as 1/do
θi . . . . . . . . . the image angle, defined as 1/di

Other terminology and notation
f > 0 . . . . . . . describes a converging lens or mirror; in this

book, all focal lengths are positive, so there is
no such implication

f < 0 . . . . . . . describes a diverging lens or mirror; in this
book, all focal lengths are positive

M < 0 . . . . . .
indicates an inverted image; in this book, all
magnifications are positive

Summary

Every lens or mirror has a property called the focal length, which is
defined as the distance from the lens or mirror to the image it forms
of an object that is infinitely far away. A stronger lens or mirror
has a shorter focal length.

The relationship between the locations of an object and its image
formed by a lens or mirror can always be expressed by equations of
the form

θf = ±θi ± θo
1

f
= ± 1

di
± 1

do
.

The choice of plus and minus signs depends on whether we are deal-
ing with a lens or a mirror, whether the lens or mirror is converging
or diverging, and whether the image is real or virtual. A method
for determining the plus and minus signs is as follows:

1. Use ray diagrams to decide whether θi and θo vary in the same
way or in opposite ways. Based on this, decide whether the
two signs in the equation are the same or opposite. If the signs
are opposite, go on to step 2 to determine which is positive
and which is negative.

2. If the signs are opposite, we need to decide which is the positive
one and which is the negative. Since the focal angle is never
negative, the smaller angle must be the one with a minus sign.
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Once the correct form of the equation has been determined, the
magnification can be found via the equation

M =
di
do

.

This equation expresses the idea that the entire image-world is
shrunk consistently in all three dimensions.
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Problem 5.

Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Apply the equation M = di/do to the case of a flat mirror.

2 Use the method described in the text to derive the equation
relating object distance to image distance for the case of a virtual
image produced by a converging mirror. . Solution, p. 1013

3 (a) Make up a numerical example of a virtual image formed by
a converging mirror with a certain focal length, and determine the
magnification. (You will need the result of problem 2.) Make sure
to choose values of do and f that would actually produce a virtual
image, not a real one. Now change the location of the object a
little bit and redetermine the magnification, showing that it changes.
At my local department store, the cosmetics department sells hand
mirrors advertised as giving a magnification of 5 times. How would
you interpret this?

(b) Suppose a Newtonian telescope is being used for astronomical
observing. Assume for simplicity that no eyepiece is used, and as-
sume a value for the focal length of the mirror that would be rea-
sonable for an amateur instrument that is to fit in a closet. Is the
angular magnification different for objects at different distances?
For example, you could consider two planets, one of which is twice
as far as the other.

4 (a) Find a case where the magnification of a curved mirror
is infinite. Is the angular magnification infinite from any realistic
viewing position? (b) Explain why an arbitrarily large magnification
can’t be achieved by having a sufficiently small value of do.

5 The figure shows a device for constructing a realistic optical
illusion. Two mirrors of equal focal length are put against each
other with their silvered surfaces facing inward. A small object
placed in the bottom of the cavity will have its image projected in
the air above. The way it works is that the top mirror produces a
virtual image, and the bottom mirror then creates a real image of
the virtual image. (a) Show that if the image is to be positioned
as shown, at the mouth of the cavity, then the focal length of the
mirrors is related to the dimension h via the equation

1

f
=

1

h
+

1

h+
(

1
h −

1
f

)−1 .

(b) Restate the equation in terms of a single variable x = h/f , and
show that there are two solutions for x. Which solution is physically
consistent with the assumptions of the calculation? ?
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Problem 8.

Problem 12.

6 A concave surface that reflects sound waves can act just like
a converging mirror. Suppose that, standing near such a surface,
you are able to find a point where you can place your head so that
your own whispers are focused back on your head, so that they
sound loud to you. Given your distance to the surface, what is the
surface’s focal length?

7 Find the focal length of the mirror in problem 5 in chapter
28.

√

8 Rank the focal lengths of the mirrors in the figure, from short-
est to longest. Explain.

9 (a) A converging mirror is being used to create a virtual image.
What is the range of possible magnifications? (b) Do the same for
the other types of images that can be formed by curved mirrors
(both converging and diverging).

10 (a) A converging mirror with a focal length of 20 cm is used
to create an image, using an object at a distance of 10 cm. Is the
image real, or is it virtual? (b) How about f = 20 cm and do = 30
cm? (c) What if it was a diverging mirror with f = 20 cm and
do = 10 cm? (d) A diverging mirror with f = 20 cm and do = 30
cm? . Solution, p. 1013

11 A diverging mirror of focal length f is fixed, and faces down.
An object is dropped from the surface of the mirror, and falls away
from it with acceleration g. The goal of the problem is to find the
maximum velocity of the image.
(a) Describe the motion of the image verbally, and explain why we
should expect there to be a maximum velocity.
(b) Use arguments based on units to determine the form of the
solution, up to an unknown unitless multiplicative constant.
(c) Complete the solution by determining the unitless constant.∫
12 A mechanical linkage is a device that changes one type of
motion into another. The most familiar example occurs in a gasoline
car’s engine, where a connecting rod changes the linear motion of the
piston into circular motion of the crankshaft. The top panel of the
figure shows a mechanical linkage invented by Peaucellier in 1864,
and independently by Lipkin around the same time. It consists of
six rods joined by hinges, the four short ones forming a rhombus.
Point O is fixed in space, but the apparatus is free to rotate about
O. Motion at P is transformed into a different motion at P′ (or vice
versa).

Geometrically, the linkage is a mechanical implementation of the
ancient problem of inversion in a circle. Considering the case in
which the rhombus is folded flat, let the k be the distance from O
to the point where P and P′ coincide. Form the circle of radius k
with its center at O. As P and P′ move in and out, points on the
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inside of the circle are always mapped to points on its outside, such
that rr′ = k2. That is, the linkage is a type of analog computer
that exactly solves the problem of finding the inverse of a number
r. Inversion in a circle has many remarkable geometrical properties,
discussed in H.S.M. Coxeter, Introduction to Geometry, Wiley, 1961.
If a pen is inserted through a hole at P, and P′ is traced over a
geometrical figure, the Peaucellier linkage can be used to draw a
kind of image of the figure.

A related problem is the construction of pictures, like the one in
the bottom panel of the figure, called anamorphs. The drawing of
the column on the paper is highly distorted, but when the reflecting
cylinder is placed in the correct spot on top of the page, an undis-
torted image is produced inside the cylinder. (Wide-format movie
technologies such as Cinemascope are based on similar principles.)

Show that the Peaucellier linkage does not convert correctly between
an image and its anamorph, and design a modified version of the
linkage that does. Some knowledge of analytic geometry will be
helpful. ?
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Exercise 30: Object and image distances
Equipment:

optical benches

converging mirrors

illuminated objects

1. Set up the optical bench with the mirror at zero on the centimeter scale. Set up the
illuminated object on the bench as well.

2. Each group will locate the image for their own value of the object distance, by finding where
a piece of paper has to be placed in order to see the image on it. (The instructor will do one
point as well.) Note that you will have to tilt the mirror a little so that the paper on which you
project the image doesn’t block the light from the illuminated object.

Is the image real or virtual? How do you know? Is it inverted, or uninverted?

Draw a ray diagram.

3. Measure the image distance and write your result in the table on the board. Do the same for
the magnification.

4. What do you notice about the trend of the data on the board? Draw a second ray diagram
with a different object distance, and show why this makes sense. Some tips for doing this
correctly: (1) For simplicity, use the point on the object that is on the mirror’s axis. (2) You
need to trace two rays to locate the image. To save work, don’t just do two rays at random
angles. You can either use the on-axis ray as one ray, or do two rays that come off at the same
angle, one above and one below the axis. (3) Where each ray hits the mirror, draw the normal
line, and make sure the ray is at equal angles on both sides of the normal.

5. We will find the mirror’s focal length from the instructor’s data-point. Then, using this focal
length, calculate a theoretical prediction of the image distance, and write it on the board next
to the experimentally determined image distance.
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Three stages in the evolution of the eye. The flatworm has two eye pits. The nautilus’s eyes are pinhole
cameras. The human eye incorporates a lens.

Chapter 31

Refraction

Economists normally consider free markets to be the natural way of
judging the monetary value of something, but social scientists also
use questionnaires to gauge the relative value of privileges, disad-
vantages, or possessions that cannot be bought or sold. They ask
people to imagine that they could trade one thing for another and
ask which they would choose. One interesting result is that the av-
erage light-skinned person in the U.S. would rather lose an arm than
suffer the racist treatment routinely endured by African-Americans.
Even more impressive is the value of sight. Many prospective par-
ents can imagine without too much fear having a deaf child, but
would have a far more difficult time coping with raising a blind one.

So great is the value attached to sight that some have imbued it
with mystical aspects. Joan of Arc saw visions, and my college
has a “vision statement.” Christian fundamentalists who perceive a
conflict between evolution and their religion have claimed that the
eye is such a perfect device that it could never have arisen through
a process as helter-skelter as evolution, or that it could not have
evolved because half of an eye would be useless. In fact, the struc-
ture of an eye is fundamentally dictated by physics, and it has arisen
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a / A human eye.

b / The anatomy of the eye.

c / A simplified optical dia-
gram of the eye. Light rays are
bent when they cross from the
air into the eye. (A little of the
incident rays’ energy goes into
the reflected rays rather than the
ones transmitted into the eye.)

separately by evolution somewhere between eight and 40 times, de-
pending on which biologist you ask. We humans have a version of
the eye that can be traced back to the evolution of a light-sensitive
“eye spot” on the head of an ancient invertebrate. A sunken pit
then developed so that the eye would only receive light from one
direction, allowing the organism to tell where the light was coming
from. (Modern flatworms have this type of eye.) The top of the
pit then became partially covered, leaving a hole, for even greater
directionality (as in the nautilus). At some point the cavity became
filled with jelly, and this jelly finally became a lens, resulting in the
general type of eye that we share with the bony fishes and other
vertebrates. Far from being a perfect device, the vertebrate eye is
marred by a serious design flaw due to the lack of planning or intelli-
gent design in evolution: the nerve cells of the retina and the blood
vessels that serve them are all in front of the light-sensitive cells,
blocking part of the light. Squids and other molluscs, whose eyes
evolved on a separate branch of the evolutionary tree, have a more
sensible arrangement, with the light-sensitive cells out in front.

31.1 Refraction
Refraction

The fundamental physical phenomenon at work in the eye is that
when light crosses a boundary between two media (such as air and
the eye’s jelly), part of its energy is reflected, but part passes into
the new medium. In the ray model of light, we describe the original
ray as splitting into a reflected ray and a transmitted one (the one
that gets through the boundary). Of course the reflected ray goes in
a direction that is different from that of the original one, according
to the rules of reflection we have already studied. More surprisingly
— and this is the crucial point for making your eye focus light
— the transmitted ray is bent somewhat as well. This bending
phenomenon is called refraction. The origin of the word is the same
as that of the word “fracture,” i.e., the ray is bent or “broken.”
(Keep in mind, however, that light rays are not physical objects
that can really be “broken.”) Refraction occurs with all waves, not
just light waves.

The actual anatomy of the eye, b, is quite complex, but in essence it
is very much like every other optical device based on refraction. The
rays are bent when they pass through the front surface of the eye,
c. Rays that enter farther from the central axis are bent more, with
the result that an image is formed on the retina. There is only one
slightly novel aspect of the situation. In most human-built optical
devices, such as a movie projector, the light is bent as it passes into
a lens, bent again as it reemerges, and then reaches a focus beyond
the lens. In the eye, however, the “screen” is inside the eye, so the
rays are only refracted once, on entering the jelly, and never emerge
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d / The incident, reflected,
and transmitted (refracted) rays
all lie in a plane that includes the
normal (dashed line).

e / The angles θ1 and θ2 are
related to each other, and also
depend on the properties of the
two media. Because refraction
is time-reversal symmetric, there
is no need to label the rays with
arrowheads.

f / Refraction has time-reversal
symmetry. Regardless of whether
the light is going into or out of the
water, the relationship between
the two angles is the same, and
the ray is closer to the normal
while in the water.

again.

A common misconception is that the “lens” of the eye is what does
the focusing. All the transparent parts of the eye are made of fairly
similar stuff, so the dramatic change in medium is when a ray crosses
from the air into the eye (at the outside surface of the cornea). This
is where nearly all the refraction takes place. The lens medium
differs only slightly in its optical properties from the rest of the eye,
so very little refraction occurs as light enters and exits the lens.
The lens, whose shape is adjusted by muscles attached to it, is only
meant for fine-tuning the focus to form images of near or far objects.

Refractive properties of media

What are the rules governing refraction? The first thing to observe
is that just as with reflection, the new, bent part of the ray lies in
the same plane as the normal (perpendicular) and the incident ray,
d.

If you try shooting a beam of light at the boundary between two
substances, say water and air, you’ll find that regardless of the angle
at which you send in the beam, the part of the beam in the water
is always closer to the normal line, e. It doesn’t matter if the ray is
entering the water or leaving, so refraction is symmetric with respect
to time-reversal, f.

If, instead of water and air, you try another combination of sub-
stances, say plastic and gasoline, again you’ll find that the ray’s
angle with respect to the normal is consistently smaller in one and
larger in the other. Also, we find that if substance A has rays closer
to normal than in B, and B has rays closer to normal than in C, then
A has rays closer to normal than C. This means that we can rank-
order all materials according to their refractive properties. Isaac
Newton did so, including in his list many amusing substances, such
as “Danzig vitriol” and “a pseudo-topazius, being a natural, pellu-
cid, brittle, hairy stone, of a yellow color.” Several general rules can
be inferred from such a list:

• Vacuum lies at one end of the list. In refraction across the
interface between vacuum and any other medium, the other
medium has rays closer to the normal.

• Among gases, the ray gets closer to the normal if you increase
the density of the gas by pressurizing it more.

• The refractive properties of liquid mixtures and solutions vary
in a smooth and systematic manner as the proportions of the
mixture are changed.

• Denser substances usually, but not always, have rays closer to
the normal.
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g / The relationship between
the angles in refraction.

The second and third rules provide us with a method for measuring
the density of an unknown sample of gas, or the concentration of
a solution. The latter technique is very commonly used, and the
CRC Handbook of Physics and Chemistry, for instance, contains
extensive tables of the refractive properties of sugar solutions, cat
urine, and so on.

Snell’s law

The numerical rule governing refraction was discovered by Snell,
who must have collected experimental data something like what is
shown on this graph and then attempted by trial and error to find
the right equation. The equation he came up with was

sin θ1

sin θ2
= constant.

The value of the constant would depend on the combination of media
used. For instance, any one of the data points in the graph would
have sufficed to show that the constant was 1.3 for an air-water
interface (taking air to be substance 1 and water to be substance
2).

Snell further found that if media A and B gave a constant KAB and
media B and C gave a constant KBC , then refraction at an interface
between A and C would be described by a constant equal to the
product, KAC = KABKBC . This is exactly what one would expect
if the constant depended on the ratio of some number characterizing
one medium to the number characteristic of the second medium.
This number is called the index of refraction of the medium, written
as n in equations. Since measuring the angles would only allow him
to determine the ratio of the indices of refraction of two media, Snell
had to pick some medium and define it as having n = 1. He chose
to define vacuum as having n = 1. (The index of refraction of air
at normal atmospheric pressure is 1.0003, so for most purposes it is
a good approximation to assume that air has n = 1.) He also had
to decide which way to define the ratio, and he chose to define it so
that media with their rays closer to the normal would have larger
indices of refraction. This had the advantage that denser media
would typically have higher indices of refraction, and for this reason
the index of refraction is also referred to as the optical density.
Written in terms of indices of refraction, Snell’s equation becomes

sin θ1

sin θ2
=
n2

n1
,

but rewriting it in the form

874 Chapter 31 Refraction



h / Example 1.

n1 sin θ1 = n2 sin θ2

[relationship between angles of rays at the interface be-
tween media with indices of refraction n1 and n2; angles
are defined with respect to the normal]

makes us less likely to get the 1’s and 2’s mixed up, so this the way
most people remember Snell’s law. A few indices of refraction are
given in the back of the book.

self-check A
(1) What would the graph look like for two substances with the same
index of refraction?

(2) Based on the graph, when does refraction at an air-water interface
change the direction of a ray most strongly? . Answer, p. 1016

Finding an angle using Snell’s law example 1
. A submarine shines its searchlight up toward the surface of the
water. What is the angle α shown in the figure?

. The tricky part is that Snell’s law refers to the angles with re-
spect to the normal. Forgetting this is a very common mistake.
The beam is at an angle of 30◦ with respect to the normal in the
water. Let’s refer to the air as medium 1 and the water as 2.
Solving Snell’s law for θ1, we find

θ1 = sin−1
(

n2

n1
sin θ2

)
.

As mentioned above, air has an index of refraction very close to
1, and water’s is about 1.3, so we find θ1 = 40◦. The angle α is
therefore 50◦.

The index of refraction is related to the speed of light.

What neither Snell nor Newton knew was that there is a very simple
interpretation of the index of refraction. This may come as a relief
to the reader who is taken aback by the complex reasoning involving
proportionalities that led to its definition. Later experiments showed
that the index of refraction of a medium was inversely proportional
to the speed of light in that medium. Since c is defined as the speed
of light in vacuum, and n = 1 is defined as the index of refraction
of vacuum, we have

n =
c

v
.

[n = medium’s index of refraction, v = speed of light
in that medium, c = speed of light in a vacuum]

Many textbooks start with this as the definition of the index of re-
fraction, although that approach makes the quantity’s name some-
what of a mystery, and leaves students wondering why c/v was used
rather than v/c. It should also be noted that measuring angles of re-
fraction is a far more practical method for determining n than direct
measurement of the speed of light in the substance of interest.
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i / A mechanical model of re-
fraction.

A mechanical model of Snell’s law

Why should refraction be related to the speed of light? The mechan-
ical model shown in the figure may help to make this more plausible.
Suppose medium 2 is thick, sticky mud, which slows down the car.
The car’s right wheel hits the mud first, causing the right side of
the car to slow down. This will cause the car to turn to the right
until is moves far enough forward for the left wheel to cross into the
mud. After that, the two sides of the car will once again be moving
at the same speed, and the car will go straight.

Of course, light isn’t a car. Why should a beam of light have any-
thing resembling a “left wheel” and “right wheel?” After all, the me-
chanical model would predict that a motorcycle would go straight,
and a motorcycle seems like a better approximation to a ray of light
than a car. The whole thing is just a model, not a description of
physical reality.

j / A derivation of Snell’s law.

A derivation of Snell’s law

However intuitively appealing the mechanical model may be, light is
a wave, and we should be using wave models to describe refraction.
In fact Snell’s law can be derived quite simply from wave concepts.
Figure j shows the refraction of a water wave. The water in the
upper left part of the tank is shallower, so the speed of the waves is
slower there, and their wavelengths is shorter. The reflected part of
the wave is also very faintly visible.
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In the close-up view on the right, the dashed lines are normals to
the interface. The two marked angles on the right side are both
equal to θ1, and the two on the left to θ2.

Trigonometry gives

sin θ1 = λ1/h and

sin θ2 = λ2/h.

Eliminating h by dividing the equations, we find

sin θ1

sin θ2
=
λ1

λ2
.

The frequencies of the two waves must be equal or else they would
get out of step, so by v = fλ we know that their wavelengths are
proportional to their velocities. Combining λ ∝ v with v ∝ 1/n
gives λ ∝ 1/n, so we find

sin θ1

sin θ2
=
n2

n1
,

which is one form of Snell’s law.

Ocean waves near and far from shore example 2
Ocean waves are formed by winds, typically on the open sea, and
the wavefronts are perpendicular to the direction of the wind that
formed them. At the beach, however, you have undoubtedly ob-
served that waves tend come in with their wavefronts very nearly
(but not exactly) parallel to the shoreline. This is because the
speed of water waves in shallow water depends on depth: the
shallower the water, the slower the wave. Although the change
from the fast-wave region to the slow-wave region is gradual rather
than abrupt, there is still refraction, and the wave motion is nearly
perpendicular to the normal in the slow region.

Color and refraction

In general, the speed of light in a medium depends both on the
medium and on the wavelength of the light. Another way of saying
it is that a medium’s index of refraction varies with wavelength.
This is why a prism can be used to split up a beam of white light
into a rainbow. Each wavelength of light is refracted through a
different angle.

How much light is reflected, and how much is transmitted?

In chapter 20 we developed an equation for the percentage of the
wave energy that is transmitted and the percentage reflected at a
boundary between media. This was only done in the case of waves
in one dimension, however, and rather than discuss the full three di-
mensional generalization it will be more useful to go into some qual-
itative observations about what happens. First, reflection happens
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k / Total internal reflection in
a fiber-optic cable.

l / A simplified drawing of a
surgical endoscope. The first
lens forms a real image at
one end of a bundle of optical
fibers. The light is transmitted
through the bundle, and is finally
magnified by the eyepiece.

m / Endoscopic images of a
duodenal ulcer.

only at the interface between two media, and two media with the
same index of refraction act as if they were a single medium. Thus,
at the interface between media with the same index of refraction,
there is no reflection, and the ray keeps going straight. Continuing
this line of thought, it is not surprising that we observe very lit-
tle reflection at an interface between media with similar indices of
refraction.

The next thing to note is that it is possible to have situations where
no possible angle for the refracted ray can satisfy Snell’s law. Solving
Snell’s law for θ2, we find

θ2 = sin−1

(
n1

n2
sin θ1

)
,

and if n1 is greater than n2, then there will be large values of θ1

for which the quantity (n1/n2) sin θ is greater than one, meaning
that your calculator will flash an error message at you when you
try to take the inverse sine. What can happen physically in such
a situation? The answer is that all the light is reflected, so there
is no refracted ray. This phenomenon is known as total internal
reflection, and is used in the fiber-optic cables that nowadays carry
almost all long-distance telephone calls. The electrical signals from
your phone travel to a switching center, where they are converted
from electricity into light. From there, the light is sent across the
country in a thin transparent fiber. The light is aimed straight into
the end of the fiber, and as long as the fiber never goes through any
turns that are too sharp, the light will always encounter the edge
of the fiber at an angle sufficiently oblique to give total internal
reflection. If the fiber-optic cable is thick enough, one can see an
image at one end of whatever the other end is pointed at.

Alternatively, a bundle of cables can be used, since a single thick
cable is too hard to bend. This technique for seeing around corners
is useful for making surgery less traumatic. Instead of cutting a
person wide open, a surgeon can make a small “keyhole” incision
and insert a bundle of fiber-optic cable (known as an endoscope)
into the body.

Since rays at sufficiently large angles with respect to the normal
may be completely reflected, it is not surprising that the relative
amount of reflection changes depending on the angle of incidence,
and is greatest for large angles of incidence.
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Discussion questions

A What index of refraction should a fish have in order to be invisible to
other fish?

B Does a surgeon using an endoscope need a source of light inside
the body cavity? If so, how could this be done without inserting a light
bulb through the incision?

C A denser sample of a gas has a higher index of refraction than a
less dense sample (i.e., a sample under lower pressure), but why would
it not make sense for the index of refraction of a gas to be proportional to
density?

D The earth’s atmosphere gets thinner and thinner as you go higher in
altitude. If a ray of light comes from a star that is below the zenith, what
will happen to it as it comes into the earth’s atmosphere?

E Does total internal reflection occur when light in a denser medium
encounters a less dense medium, or the other way around? Or can it
occur in either case?

31.2 Lenses
Figures n/1 and n/2 show examples of lenses forming images. There
is essentially nothing for you to learn about imaging with lenses
that is truly new. You already know how to construct and use ray
diagrams, and you know about real and virtual images. The concept
of the focal length of a lens is the same as for a curved mirror. The
equations for locating images and determining magnifications are
of the same form. It’s really just a question of flexing your mental
muscles on a few examples. The following self-checks and discussion
questions will get you started.

n / 1. A converging lens forms an
image of a candle flame. 2. A di-
verging lens.

self-check B
(1) In figures n/1 and n/2, classify the images as real or virtual.
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p / The radii of curvature ap-
pearing in the lensmaker’s
equation.

(2) Glass has an index of refraction that is greater than that of air. Con-
sider the topmost ray in figure n/1. Explain why the ray makes a slight
left turn upon entering the lens, and another left turn when it exits.

(3) If the flame in figure n/2 was moved closer to the lens, what would
happen to the location of the image? . Answer, p. 1016

Discussion questions

A In figures n/1 and n/2, the front and back surfaces are parallel to each
other at the center of the lens. What will happen to a ray that enters near
the center, but not necessarily along the axis of the lens? Draw a BIG ray
diagram, and show a ray that comes from off axis.

In discussion questions B-F, don’t draw ultra-detailed ray diagrams
as in A.

B Suppose you wanted to change the setup in figure n/1 so that the
location of the actual flame in the figure would instead be occupied by an
image of a flame. Where would you have to move the candle to achieve
this? What about in n/2?

C There are three qualitatively different types of image formation that
can occur with lenses, of which figures n/1 and n/2 exhaust only two.
Figure out what the third possibility is. Which of the three possibilities can
result in a magnification greater than one? Cf. problem 4, p. 847.

D Classify the examples shown in figure o according to the types of
images delineated in discussion question C.

E In figures n/1 and n/2, the only rays drawn were those that happened
to enter the lenses. Discuss this in relation to figure o.

F In the right-hand side of figure o, the image viewed through the lens
is in focus, but the side of the rose that sticks out from behind the lens is
not. Why?

31.3 ? The lensmaker’s equation

The focal length of a spherical mirror is simply r/2, but we cannot
expect the focal length of a lens to be given by pure geometry, since
it also depends on the index of refraction of the lens. Suppose we
have a lens whose front and back surfaces are both spherical. (This
is no great loss of generality, since any surface with a sufficiently
shallow curvature can be approximated with a sphere.) Then if the
lens is immersed in a medium with an index of refraction of 1, its
focal length is given approximately by

f =

[
(n− 1)

∣∣∣∣ 1

r1
± 1

r2

∣∣∣∣]−1

,

where n is the index of refraction and r1 and r2 are the radii of
curvature of the two surfaces of the lens. This is known as the
lensmaker’s equation. In my opinion it is not particularly worthy
of memorization. The positive sign is used when both surfaces are
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q / Dispersion of white light
by a prism. White light is a
mixture of all the wavelengths of
the visible spectrum. Waves of
different wavelengths undergo
different amounts of refraction.

o / Two images of a rose created by the same lens and recorded with the same camera.

curved outward or both are curved inward; otherwise a negative
sign applies. The proof of this equation is left as an exercise to
those readers who are sufficiently brave and motivated.

31.4 Dispersion
For most materials, we observe that the index of refraction depends
slightly on wavelength, being highest at the blue end of the visible
spectrum and lowest at the red. For example, white light disperses
into a rainbow when it passes through a prism, q. Even when the
waves involved aren’t light waves, and even when refraction isn’t of
interest, the dependence of wave speed on wavelength is referred to
as dispersion. Dispersion inside spherical raindrops is responsible
for the creation of rainbows in the sky, and in an optical instrument
such as the eye or a camera it is responsible for a type of aberration
called chromatic aberration (section 30.3 and problem 2). As we’ll
see in section 35.2, dispersion causes a wave that is not a pure sine
wave to have its shape distorted as it travels, and also causes the
speed at which energy and information are transported by the wave
to be different from what one might expect from a naive calculation.
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r / The principle of least time
applied to refraction.

31.5 ? The principle of least time for refraction
We have seen previously how the rules governing straight-line mo-
tion of light and reflection of light can be derived from the principle
of least time. What about refraction? In the figure, it is indeed
plausible that the bending of the ray serves to minimize the time
required to get from a point A to point B. If the ray followed the un-
bent path shown with a dashed line, it would have to travel a longer
distance in the medium in which its speed is slower. By bending
the correct amount, it can reduce the distance it has to cover in the
slower medium without going too far out of its way. It is true that
Snell’s law gives exactly the set of angles that minimizes the time
required for light to get from one point to another. The proof of
this fact is left as an exercise (problem 9, p. 887).

31.6 ? Case study: the eye of the jumping
spider

Figure s shows an exceptionally cute jumping spider. The jumping
spider does not build a web. It stalks its prey like a cat, so it needs
excellent eyesight. In some ways, its visual system is more sophis-
ticated and more functional than that of a human, illustrating how
evolution does not progress systematically toward “higher” forms of
life.

s / Top left: A female jumping spi-
der, Phidippus mystaceus. Top
right: Cross-section in a horizon-
tal plane, viewed from above, of
the jumping spider Metaphidippus
aeneolus. The eight eyes are
shown in white. Bottom: Close-up
of one of the large principal eyes.
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One way in which the spider outdoes us is that it has eight eyes to
our two. (Each eye is simple, not compound like that of a fly.) The
reason this works well has to do with the trade-off between magnifi-
cation and field of view. The elongated principal eyes at the front of
the head have a large value of di, resulting in a large magnification
M = di/do. This high magnification is used for sophisticated visual
tasks like distinguishing prey from a potential mate. (The pretty
stripes on the legs in the photo are probably evolved to aid in mak-
ing this distinction, which is a crucial one on a Saturday night.) As
always with a high magnification, this results in a reduction in the
field of view: making the image bigger means reducing the amount
of the potential image that can actually fit on the retina. The ani-
mal has tunnel vision in these forward eyes. To allow it to glimpse
prey from other angles, it has the additional eyes on the sides of its
head. These are not elongated, and the smaller di gives a smaller
magnification but a larger field of view. When the spider sees some-
thing moving in these eyes, it turns its body so that it can take
a look with the front eyes. The tiniest pair of eyes are too small
to be useful. These vestigial organs, like the maladaptive human
appendix, are an example of the tendency of evolution to produce
unfortunate accidents due to the lack of intelligent design. The use
of multiple eyes for these multiple purposes is far superior to the
two-eye arrangement found in humans, octopuses, etc., especially
because of its compactness. If the spider had only two spherical
eyes, they would have to have the same front-to-back dimension in
order to produce the same acuity, but then the eyes would take up
nearly all of the front of the head.

Another beautiful feature of these eyes is that they will never need
bifocals. A human eye uses muscles to adjust for seeing near and
far, varying f in order to achive a fixed di for differing values of
do. On older models of H. sap., this poorly engineered feature is
usually one of the first things to break down. The spider’s front
eyes have muscles, like a human’s, that rotate the tube, but none
that vary f , which is fixed. However, the retina consists of four
separate layers at slightly different values of di. The figure only
shows the detailed cellular structure of the rearmost layer, which is
the most acute. Depending on do, the image may lie closest to any
one of the four layers, and the spider can then use that layer to get
a well-focused view. The layering is also believed to help eliminate
problems caused by the variation of the index of refraction with
wavelength (cf. problem 2, p. 886).

Although the spider’s eye is different in many ways from a human’s
or an octopus’s, it shares the same fundamental construction, be-
ing essentially a lens that forms a real image on a screen inside a
darkened chamber. From this perspective, the main difference is
simply the scale, which is miniaturized by about a factor of 102 in
the linear dimensions. How far down can this scaling go? Does an
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amoeba or a white blood cell lack an eye merely because it doesn’t
have a nervous system that could make sense of the signals? In
fact there is an optical limit on the miniaturization of any eye or
camera. The spider’s eye is already so small that on the scale of the
bottom panel in figure s, one wavelength of visible light would be
easily distinguishable — about the length of the comma in this sen-
tence. Chapter 32 is about optical effects that occur when the wave
nature of light is important, and problem 14 on p. 912 specifically
addresses the effect on this spider’s vision.
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Summary
Selected vocabulary
refraction . . . . the change in direction that occurs when a

wave encounters the interface between two me-
dia

index of refrac-
tion . . . . . . . .

an optical property of matter; the speed of
light in a vacuum divided by the speed of light
in the substance in question

Notation
n . . . . . . . . . . the index of refraction

Summary

Refraction is a change in direction that occurs when a wave en-
counters the interface between two media. Together, refraction and
reflection account for the basic principles behind nearly all optical
devices.

Snell discovered the equation for refraction,

n1 sin θ1 = n2 sin θ2,

[angles measured with respect to the normal]

through experiments with light rays, long before light was proven
to be a wave. Snell’s law can be proven based on the geometrical
behavior of waves. Here n is the index of refraction. Snell invented
this quantity to describe the refractive properties of various sub-
stances, but it was later found to be related to the speed of light in
the substance,

n =
c

v
,

where c is the speed of light in a vacuum. In general a material’s
index of refraction is different for different wavelengths of light.

As discussed in chapter 20, any wave is partially transmitted and
partially reflected at the boundary between two media in which its
speeds are different. It is not particularly important to know the
equation that tells what fraction is transmitted (and thus refracted),
but important technologies such as fiber optics are based on the fact
that this fraction becomes zero for sufficiently oblique angles. This
phenomenon is referred to as total internal reflection. It occurs when
there is no angle that satisfies Snell’s law.
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Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Suppose a converging lens is constructed of a type of plastic
whose index of refraction is less than that of water. How will the
lens’s behavior be different if it is placed underwater?

2 There are two main types of telescopes, refracting (using a
lens) and reflecting (using a mirror, as in figure i on p. 842). (Some
telescopes use a mixture of the two types of elements: the light first
encounters a large curved mirror, and then goes through an eyepiece
that is a lens. To keep things simple, assume no eyepiece is used.)
What implications would the color-dependence of focal length have
for the relative merits of the two types of telescopes? Describe the
case where an image is formed of a white star. You may find it
helpful to draw a ray diagram.

3 Based on Snell’s law, explain why rays of light passing through
the edges of a converging lens are bent more than rays passing
through parts closer to the center. It might seem like it should
be the other way around, since the rays at the edge pass through
less glass — shouldn’t they be affected less? In your answer:

• Include a ray diagram showing a huge, full-page, close-up view
of the relevant part of the lens.

• Make use of the fact that the front and back surfaces aren’t
always parallel; a lens in which the front and back surfaces are
always parallel doesn’t focus light at all, so if your explanation
doesn’t make use of this fact, your argument must be incorrect.

• Make sure your argument still works even if the rays don’t
come in parallel to the axis.

4 When you take pictures with a camera, the distance between
the lens and the film has to be adjusted, depending on the distance
at which you want to focus. This is done by moving the lens. If
you want to change your focus so that you can take a picture of
something farther away, which way do you have to move the lens?
Explain using ray diagrams. [Based on a problem by Eric Mazur.]

5 (a) Light is being reflected diffusely from an object 1.000 m
underwater. The light that comes up to the surface is refracted at
the water-air interface. If the refracted rays all appear to come from
the same point, then there will be a virtual image of the object in
the water, above the object’s actual position, which will be visible
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Problem 6.

Problem 8.

to an observer above the water. Consider three rays, A, B and C,
whose angles in the water with respect to the normal are θi = 0.000◦,
1.000◦ and 20.000◦ respectively. Find the depth of the point at which
the refracted parts of A and B appear to have intersected, and do
the same for A and C. Show that the intersections are at nearly the
same depth, but not quite. [Check: The difference in depth should
be about 4 cm.]

(b) Since all the refracted rays do not quite appear to have come
from the same point, this is technically not a virtual image. In
practical terms, what effect would this have on what you see?

(c) In the case where the angles are all small, use algebra and trig to
show that the refracted rays do appear to come from the same point,
and find an equation for the depth of the virtual image. Do not put
in any numerical values for the angles or for the indices of refraction
— just keep them as symbols. You will need the approximation
sin θ ≈ tan θ ≈ θ, which is valid for small angles measured in radians.

?

6 The drawing shows the anatomy of the human eye, at twice life
size. Find the radius of curvature of the outer surface of the cornea
by measurements on the figure, and then derive the focal length of
the air-cornea interface, where almost all the focusing of light occurs.
You will need to use physical reasoning to modify the lensmaker’s
equation for the case where there is only a single refracting surface.
Assume that the index of refraction of the cornea is essentially that
of water. ?

7 When swimming underwater, why is your vision made much
clearer by wearing goggles with flat pieces of glass that trap air
behind them? [Hint: You can simplify your reasoning by considering
the special case where you are looking at an object far away, and
along the optic axis of the eye.]

8 The figure shows four lenses. Lens 1 has two spherical surfaces.
Lens 2 is the same as lens 1 but turned around. Lens 3 is made by
cutting through lens 1 and turning the bottom around. Lens 4 is
made by cutting a central circle out of lens 1 and recessing it.

(a) A parallel beam of light enters lens 1 from the left, parallel to
its axis. Reasoning based on Snell’s law, will the beam emerging
from the lens be bent inward, or outward, or will it remain parallel
to the axis? Explain your reasoning. As part of your answer, make
a huge drawing of one small part of the lens, and apply Snell’s law
at both interfaces. Recall that rays are bent more if they come to
the interface at a larger angle with respect to the normal.

(b) What will happen with lenses 2, 3, and 4? Explain. Drawings
are not necessary.

9 Prove that the principle of least time leads to Snell’s law. ?
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Problem 13.

10 An object is more than one focal length from a converging
lens. (a) Draw a ray diagram. (b) Using reasoning like that devel-
oped in chapter 30, determine the positive and negative signs in the
equation 1/f = ±1/di ± 1/do. (c) The images of the rose in section
4.2 were made using a lens with a focal length of 23 cm. If the lens
is placed 80 cm from the rose, locate the image.

√

11 An object is less than one focal length from a converging lens.
(a) Draw a ray diagram. (b) Using reasoning like that developed in
chapter 30, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) The images of the rose in section 4.2 were
made using a lens with a focal length of 23 cm. If the lens is placed
10 cm from the rose, locate the image.

√

12 Nearsighted people wear glasses whose lenses are diverging.
(a) Draw a ray diagram. For simplicity pretend that there is no
eye behind the glasses. (b) Using reasoning like that developed in
chapter 30, determine the positive and negative signs in the equation
1/f = ±1/di ± 1/do. (c) If the focal length of the lens is 50.0 cm,
and the person is looking at an object at a distance of 80.0 cm,
locate the image.

√

13 Two standard focal lengths for camera lenses are 50 mm
(standard) and 28 mm (wide-angle). To see how the focal lengths
relate to the angular size of the field of view, it is helpful to visualize
things as represented in the figure. Instead of showing many rays
coming from the same point on the same object, as we normally do,
the figure shows two rays from two different objects. Although the
lens will intercept infinitely many rays from each of these points, we
have shown only the ones that pass through the center of the lens,
so that they suffer no angular deflection. (Any angular deflection at
the front surface of the lens is canceled by an opposite deflection at
the back, since the front and back surfaces are parallel at the lens’s
center.) What is special about these two rays is that they are aimed
at the edges of one 35-mm-wide frame of film; that is, they show
the limits of the field of view. Throughout this problem, we assume
that do is much greater than di. (a) Compute the angular width
of the camera’s field of view when these two lenses are used. (b)
Use small-angle approximations to find a simplified equation for the
angular width of the field of view, θ, in terms of the focal length,
f , and the width of the film, w. Your equation should not have
any trig functions in it. Compare the results of this approximation
with your answers from part a. (c) Suppose that we are holding
constant the aperture (amount of surface area of the lens being
used to collect light). When switching from a 50-mm lens to a 28-
mm lens, how many times longer or shorter must the exposure be
in order to make a properly developed picture, i.e., one that is not
under- or overexposed? [Based on a problem by Arnold Arons.]

. Solution, p. 1013
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14 A nearsighted person is one whose eyes focus light too
strongly, and who is therefore unable to relax the lens inside her
eye sufficiently to form an image on her retina of an object that is
too far away.

(a) Draw a ray diagram showing what happens when the person
tries, with uncorrected vision, to focus at infinity.

(b) What type of lenses do her glasses have? Explain.

(c) Draw a ray diagram showing what happens when she wears
glasses. Locate both the image formed by the glasses and the fi-
nal image.

(d) Suppose she sometimes uses contact lenses instead of her glasses.
Does the focal length of her contacts have to be less than, equal to,
or greater than that of her glasses? Explain.

15 Diamond has an index of refraction of 2.42, and part of
the reason diamonds sparkle is that this encourages a light ray to
undergo many total internal reflections before it emerges. (a) Cal-
culate the critical angle at which total internal reflection occurs in
diamond. (b) Explain the interpretation of your result: Is it mea-
sured from the normal, or from the surface? Is it a minimum angle
for total internal reflection, or is it a maximum? How would the
critical angle have been different for a substance such as glass or
plastic, with a lower index of refraction?

√

16 Fred’s eyes are able to focus on things as close as 5.0 cm.
Fred holds a magnifying glass with a focal length of 3.0 cm at a
height of 2.0 cm above a flatworm. (a) Locate the image, and find
the magnification. (b) Without the magnifying glass, from what
distance would Fred want to view the flatworm to see its details
as well as possible? With the magnifying glass? (c) Compute the
angular magnification.
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Problem 17.

17 Panel 1 of the figure shows the optics inside a pair of binoc-
ulars. They are essentially a pair of telescopes, one for each eye.
But to make them more compact, and allow the eyepieces to be the
right distance apart for a human face, they incorporate a set of eight
prisms, which fold the light path. In addition, the prisms make the
image upright. Panel 2 shows one of these prisms, known as a Porro
prism. The light enters along a normal, undergoes two total internal
reflections at angles of 45 degrees with respect to the back surfaces,
and exits along a normal. The image of the letter R has been flipped
across the horizontal. Panel 3 shows a pair of these prisms glued
together. The image will be flipped across both the horizontal and
the vertical, which makes it oriented the right way for the user of
the binoculars.
(a) Find the minimum possible index of refraction for the glass used
in the prisms.
(b) For a material of this minimal index of refraction, find the frac-
tion of the incoming light that will be lost to reflection in the four
Porro prisms on a each side of a pair of binoculars. (See ch. 20.) In
real, high-quality binoculars, the optical surfaces of the prisms have
antireflective coatings, but carry out your calculation for the case
where there is no such coating.
(c) Discuss the reasons why a designer of binoculars might or might
not want to use a material with exactly the index of refraction found
in part a. ?

18 It would be annoying if your eyeglasses produced a magnified
or reduced image. Prove that when the eye is very close to a lens,
and the lens produces a virtual image, the angular magnification is
always approximately equal to 1 (regardless of whether the lens is
diverging or converging).
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Problem 20.

19 A typical mirror consists of a pane of glass of thickness t
and index of refraction n, “silvered” on the back with a reflective
coating. Let do and di be measured from the back of the mirror.
Show that di = do − 2(1 − 1/n)t. Use the result of, and make the
approximation employed in, problem 5c. As a check on your result,
consider separately the special values of n and t that would recover
the case without any glass.

20 The figure shows a lens with surfaces that are curved, but
whose thickness is constant along any horizontal line. Use the lens-
maker’s equation to prove that this “lens” is not really a lens at
all. . Solution, p. 1014

21 Estimate the radii of curvature of the two optical surfaces in
the eye of the jumping spider in in figure s on p. 882. Use physical
reasoning to modify the lensmaker’s equation for a case like this
one, in which there are three indices of refraction n1 (air), n2 (lens),
and n3 (the material behind the lens), and n1 6= n3. Show that the
interface between n2 and n3 contributes negligibly to focusing, and
verify that the image is produced at approximately the right place
in the eye when the object is far away. As a check on your result,
direct optical measurements by M.F. Land in 1969 gave f = 512 µm.√

Problems 891



Exercise 31: How strong are your glasses?
This exercise was created by Dan MacIsaac.

Equipment:

eyeglasses

diverging lenses for students who don’t wear glasses, or who use converging glasses

rulers and metersticks

scratch paper

marking pens

Most people who wear glasses have glasses whose lenses are diverging, which allows them to
focus on objects far away. Such a lens cannot form a real image, so its focal length cannot be
measured as easily as that of an converging lens. In this exercise you will determine the focal
length of your own glasses by taking them off, holding them at a distance from your face, and
looking through them at a set of parallel lines on a piece of paper. The lines will be reduced
(the lens’s magnification is less than one), and by adjusting the distance between the lens and
the paper, you can make the magnification equal 1/2 exactly, so that two spaces between lines
as seen through the lens fit into one space as seen simultaneously to the side of the lens. This
object distance can be used in order to find the focal length of the lens.

1. Does this technique really measure magnification or does it measure angular magnification?
What can you do in your experiment in order to make these two quantities nearly the same, so
the math is simpler?

2. Before taking any numerical data, use algebra to find the focal length of the lens in terms of
do, the object distance that results in a magnification of 1/2.

3. Use a marker to draw three evenly spaced parallel lines on the paper. (A spacing of a few cm
works well.) Measure the object distance that results in a magnification of 1/2, and determine
the focal length of your lens.
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This image of the Pleiades star cluster shows haloes around the stars due to the wave nature of light.

Chapter 32

Wave optics

Electron microscopes can make images of individual atoms, but why
will a visible-light microscope never be able to? Stereo speakers
create the illusion of music that comes from a band arranged in
your living room, but why doesn’t the stereo illusion work with bass
notes? Why are computer chip manufacturers investing billions of
dollars in equipment to etch chips with x-rays instead of visible
light?

The answers to all of these questions have to do with the subject
of wave optics. So far this book has discussed the interaction of
light waves with matter, and its practical applications to optical
devices like mirrors, but we have used the ray model of light almost
exclusively. Hardly ever have we explicitly made use of the fact that
light is an electromagnetic wave. We were able to get away with the
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a / In this view from overhead, a
straight, sinusoidal water wave
encounters a barrier with two
gaps in it. Strong wave vibration
occurs at angles X and Z, but
there is none at all at angle Y.
(The figure has been retouched
from a real photo of water waves.
In reality, the waves beyond the
barrier would be much weaker
than the ones before it, and they
would therefore be difficult to
see.)

b / This doesn’t happen.

simple ray model because the chunks of matter we were discussing,
such as lenses and mirrors, were thousands of times larger than a
wavelength of light. We now turn to phenomena and devices that
can only be understood using the wave model of light.

32.1 Diffraction

Figure a shows a typical problem in wave optics, enacted with water
waves. It may seem surprising that we don’t get a simple pattern like
figure b, but the pattern would only be that simple if the wavelength
was hundreds of times shorter than the distance between the gaps
in the barrier and the widths of the gaps.

Wave optics is a broad subject, but this example will help us to pick
out a reasonable set of restrictions to make things more manageable:

(1) We restrict ourselves to cases in which a wave travels through
a uniform medium, encounters a certain area in which the medium
has different properties, and then emerges on the other side into a
second uniform region.

(2) We assume that the incoming wave is a nice tidy sine-wave pat-
tern with wavefronts that are lines (or, in three dimensions, planes).

(3) In figure a we can see that the wave pattern immediately beyond
the barrier is rather complex, but farther on it sorts itself out into a
set of wedges separated by gaps in which the water is still. We will
restrict ourselves to studying the simpler wave patterns that occur
farther away, so that the main question of interest is how intense
the outgoing wave is at a given angle.

The kind of phenomenon described by restriction (1) is called diffrac-
tion. Diffraction can be defined as the behavior of a wave when it
encounters an obstacle or a nonuniformity in its medium. In general,
diffraction causes a wave to bend around obstacles and make pat-
terns of strong and weak waves radiating out beyond the obstacle.
Understanding diffraction is the central problem of wave optics. If
you understand diffraction, even the subset of diffraction problems
that fall within restrictions (2) and (3), the rest of wave optics is
icing on the cake.

Diffraction can be used to find the structure of an unknown diffract-
ing object: even if the object is too small to study with ordinary
imaging, it may be possible to work backward from the diffraction
pattern to learn about the object. The structure of a crystal, for
example, can be determined from its x-ray diffraction pattern.

Diffraction can also be a bad thing. In a telescope, for example,
light waves are diffracted by all the parts of the instrument. This
will cause the image of a star to appear fuzzy even when the focus has
been adjusted correctly. By understanding diffraction, one can learn
how a telescope must be designed in order to reduce this problem
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c / A practical, low-tech setup for
observing diffraction of light.

d / The bottom figure is sim-
ply a copy of the middle portion
of the top one, scaled up by a
factor of two. All the angles are
the same. Physically, the angular
pattern of the diffraction fringes
can’t be any different if we scale
both λ and d by the same factor,
leaving λ/d unchanged.

— essentially, it should have the biggest possible diameter.

There are two ways in which restriction (2) might commonly be
violated. First, the light might be a mixture of wavelengths. If we
simply want to observe a diffraction pattern or to use diffraction as
a technique for studying the object doing the diffracting (e.g., if the
object is too small to see with a microscope), then we can pass the
light through a colored filter before diffracting it.

A second issue is that light from sources such as the sun or a light-
bulb does not consist of a nice neat plane wave, except over very
small regions of space. Different parts of the wave are out of step
with each other, and the wave is referred to as incoherent. One way
of dealing with this is shown in figure c. After filtering to select a
certain wavelength of red light, we pass the light through a small
pinhole. The region of the light that is intercepted by the pinhole is
so small that one part of it is not out of step with another. Beyond
the pinhole, light spreads out in a spherical wave; this is analogous
to what happens when you speak into one end of a paper towel roll
and the sound waves spread out in all directions from the other end.
By the time the spherical wave gets to the double slit it has spread
out and reduced its curvature, so that we can now think of it as a
simple plane wave.

If this seems laborious, you may be relieved to know that modern
technology gives us an easier way to produce a single-wavelength,
coherent beam of light: the laser.

The parts of the final image on the screen in c are called diffraction
fringes. The center of each fringe is a point of maximum brightness,
and halfway between two fringes is a minimum.

Discussion question

A Why would x-rays rather than visible light be used to find the structure
of a crystal? Sound waves are used to make images of fetuses in the
womb. What would influence the choice of wavelength?

32.2 Scaling of diffraction
This chapter has “optics” in its title, so it is nominally about light,
but we started out with an example involving water waves. Water
waves are certainly easier to visualize, but is this a legitimate com-
parison? In fact the analogy works quite well, despite the fact that
a light wave has a wavelength about a million times shorter. This
is because diffraction effects scale uniformly. That is, if we enlarge
or reduce the whole diffraction situation by the same factor, includ-
ing both the wavelengths and the sizes of the obstacles the wave
encounters, the result is still a valid solution.

This is unusually simple behavior! In section 1.2 we saw many ex-
amples of more complex scaling, such as the impossibility of bacteria
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e / Christiaan Huygens (1629-
1695).

the size of dogs, or the need for an elephant to eliminate heat through
its ears because of its small surface-to-volume ratio, whereas a tiny
shrew’s life-style centers around conserving its body heat.

Of course water waves and light waves differ in many ways, not just
in scale, but the general facts you will learn about diffraction are
applicable to all waves. In some ways it might have been more ap-
propriate to insert this chapter after chapter 20 on bounded waves,
but many of the important applications are to light waves, and you
would probably have found these much more difficult without any
background in optics.

Another way of stating the simple scaling behavior of diffraction is
that the diffraction angles we get depend only on the unitless ratio
λ/d, where λ is the wavelength of the wave and d is some dimension
of the diffracting objects, e.g., the center-to-center spacing between
the slits in figure a. If, for instance, we scale up both λ and d by a
factor of 37, the ratio λ/d will be unchanged.

32.3 The correspondence principle
The only reason we don’t usually notice diffraction of light in ev-
eryday life is that we don’t normally deal with objects that are
comparable in size to a wavelength of visible light, which is about a
millionth of a meter. Does this mean that wave optics contradicts
ray optics, or that wave optics sometimes gives wrong results? No.
If you hold three fingers out in the sunlight and cast a shadow with
them, either wave optics or ray optics can be used to predict the
straightforward result: a shadow pattern with two bright lines where
the light has gone through the gaps between your fingers. Wave op-
tics is a more general theory than ray optics, so in any case where
ray optics is valid, the two theories will agree. This is an example
of a general idea enunciated by the physicist Niels Bohr, called the
correspondence principle: when flaws in a physical theory lead to
the creation of a new and more general theory, the new theory must
still agree with the old theory within its more restricted area of ap-
plicability. After all, a theory is only created as a way of describing
experimental observations. If the original theory had not worked in
any cases at all, it would never have become accepted.

In the case of optics, the correspondence principle tells us that when
λ/d is small, both the ray and the wave model of light must give
approximately the same result. Suppose you spread your fingers and
cast a shadow with them using a coherent light source. The quantity
λ/d is about 10−4, so the two models will agree very closely. (To be
specific, the shadows of your fingers will be outlined by a series of
light and dark fringes, but the angle subtended by a fringe will be
on the order of 10−4 radians, so they will be too tiny to be visible.

896 Chapter 32 Wave optics



f / Double-slit diffraction.

g / A wavefront can be analyzed
by the principle of superposition,
breaking it down into many small
parts.

h / If it was by itself, each of
the parts would spread out as a
circular ripple.

i / Adding up the ripples pro-
duces a new wavefront.

self-check A
What kind of wavelength would an electromagnetic wave have to have
in order to diffract dramatically around your body? Does this contradict
the correspondence principle? . Answer, p. 1017

32.4 Huygens’ principle

Returning to the example of double-slit diffraction, f, note the strong
visual impression of two overlapping sets of concentric semicircles.
This is an example of Huygens’ principle, named after a Dutch physi-
cist and astronomer. (The first syllable rhymes with “boy.”) Huy-
gens’ principle states that any wavefront can be broken down into
many small side-by-side wave peaks, g, which then spread out as
circular ripples, h, and by the principle of superposition, the result
of adding up these sets of ripples must give the same result as al-
lowing the wave to propagate forward, i. In the case of sound or
light waves, which propagate in three dimensions, the “ripples” are
actually spherical rather than circular, but we can often imagine
things in two dimensions for simplicity.

In double-slit diffraction the application of Huygens’ principle is
visually convincing: it is as though all the sets of ripples have been
blocked except for two. It is a rather surprising mathematical fact,
however, that Huygens’ principle gives the right result in the case of
an unobstructed linear wave, h and i. A theoretically infinite number
of circular wave patterns somehow conspire to add together and
produce the simple linear wave motion with which we are familiar.

Since Huygens’ principle is equivalent to the principle of superposi-
tion, and superposition is a property of waves, what Huygens had
created was essentially the first wave theory of light. However, he
imagined light as a series of pulses, like hand claps, rather than as
a sinusoidal wave.

The history is interesting. Isaac Newton loved the atomic theory of
matter so much that he searched enthusiastically for evidence that
light was also made of tiny particles. The paths of his light particles
would correspond to rays in our description; the only significant
difference between a ray model and a particle model of light would
occur if one could isolate individual particles and show that light
had a “graininess” to it. Newton never did this, so although he
thought of his model as a particle model, it is more accurate to say
he was one of the builders of the ray model.

Almost all that was known about reflection and refraction of light
could be interpreted equally well in terms of a particle model or a
wave model, but Newton had one reason for strongly opposing Huy-
gens’ wave theory. Newton knew that waves exhibited diffraction,
but diffraction of light is difficult to observe, so Newton believed
that light did not exhibit diffraction, and therefore must not be
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j / Thomas Young

k / Double-slit diffraction.

l / Use of Huygens’ principle.

m / Constructive interference
along the center-line.

a wave. Although Newton’s criticisms were fair enough, the de-
bate also took on the overtones of a nationalistic dispute between
England and continental Europe, fueled by English resentment over
Leibniz’s supposed plagiarism of Newton’s calculus. Newton wrote
a book on optics, and his prestige and political prominence tended
to discourage questioning of his model.

Thomas Young (1773-1829) was the person who finally, a hundred
years later, did a careful search for wave interference effects with
light and analyzed the results correctly. He observed double-slit
diffraction of light as well as a variety of other diffraction effects, all
of which showed that light exhibited wave interference effects, and
that the wavelengths of visible light waves were extremely short.
The crowning achievement was the demonstration by the experi-
mentalist Heinrich Hertz and the theorist James Clerk Maxwell that
light was an electromagnetic wave. Maxwell is said to have related
his discovery to his wife one starry evening and told her that she was
the only other person in the world who knew what starlight was.

32.5 Double-slit diffraction
Let’s now analyze double-slit diffraction, k, using Huygens’ princi-
ple. The most interesting question is how to compute the angles
such as X and Z where the wave intensity is at a maximum, and
the in-between angles like Y where it is minimized. Let’s measure
all our angles with respect to the vertical center line of the figure,
which was the original direction of propagation of the wave.

If we assume that the width of the slits is small (on the order of
the wavelength of the wave or less), then we can imagine only a
single set of Huygens ripples spreading out from each one, l. White
lines represent peaks, black ones troughs. The only dimension of the
diffracting slits that has any effect on the geometric pattern of the
overlapping ripples is then the center-to-center distance, d, between
the slits.

We know from our discussion of the scaling of diffraction that there
must be some equation that relates an angle like θZ to the ratio λ/d,

λ

d
↔ θZ .

If the equation for θZ depended on some other expression such as
λ+ d or λ2/d, then it would change when we scaled λ and d by the
same factor, which would violate what we know about the scaling
of diffraction.

Along the central maximum line, X, we always have positive waves
coinciding with positive ones and negative waves coinciding with
negative ones. (I have arbitrarily chosen to take a snapshot of the
pattern at a moment when the waves emerging from the slit are
experiencing a positive peak.) The superposition of the two sets of
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n / The waves travel distances L
and L′ from the two slits to get
to the same point in space, at an
angle θ from the center line.

o / A close-up view of figure
n, showing how the path length
difference L − L′ is related to d
and to the angle θ.

ripples therefore results in a doubling of the wave amplitude along
this line. There is constructive interference. This is easy to explain,
because by symmetry, each wave has had to travel an equal number
of wavelengths to get from its slit to the center line, m: Because
both sets of ripples have ten wavelengths to cover in order to reach
the point along direction X, they will be in step when they get there.

At the point along direction Y shown in the same figure, one wave
has traveled ten wavelengths, and is therefore at a positive extreme,
but the other has traveled only nine and a half wavelengths, so it at
a negative extreme. There is perfect cancellation, so points along
this line experience no wave motion.

But the distance traveled does not have to be equal in order to get
constructive interference. At the point along direction Z, one wave
has gone nine wavelengths and the other ten. They are both at a
positive extreme.

self-check B
At a point half a wavelength below the point marked along direction X,
carry out a similar analysis. . Answer, p. 1017

To summarize, we will have perfect constructive interference at any
point where the distance to one slit differs from the distance to the
other slit by an integer number of wavelengths. Perfect destruc-
tive interference will occur when the number of wavelengths of path
length difference equals an integer plus a half.

Now we are ready to find the equation that predicts the angles of
the maxima and minima. The waves travel different distances to
get to the same point in space, n. We need to find whether the
waves are in phase (in step) or out of phase at this point in order to
predict whether there will be constructive interference, destructive
interference, or something in between.

One of our basic assumptions in this chapter is that we will only be
dealing with the diffracted wave in regions very far away from the
object that diffracts it, so the triangle is long and skinny. Most real-
world examples with diffraction of light, in fact, would have triangles
with even skinner proportions than this one. The two long sides are
therefore very nearly parallel, and we are justified in drawing the
right triangle shown in figure o, labeling one leg of the right triangle
as the difference in path length , L−L′, and labeling the acute angle
as θ. (In reality this angle is a tiny bit greater than the one labeled
θ in figure n.)

The difference in path length is related to d and θ by the equation

L− L′

d
= sin θ.

Constructive interference will result in a maximum at angles for
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p / Cutting d in half doubles
the angles of the diffraction
fringes.

q / Double-slit diffraction pat-
terns of long-wavelength red light
(top) and short-wavelength blue
light (bottom).

which L− L′ is an integer number of wavelengths,

L− L′ = mλ. [condition for a maximum;

m is an integer]

Here m equals 0 for the central maximum, −1 for the first maximum
to its left, +2 for the second maximum on the right, etc. Putting
all the ingredients together, we find mλ/d = sin θ, or

λ

d
=

sin θ

m
. [condition for a maximum;

m is an integer]

Similarly, the condition for a minimum is

λ

d
=

sin θ

m
. [condition for a minimum;

m is an integer plus 1/2]

That is, the minima are about halfway between the maxima.

As expected based on scaling, this equation relates angles to the
unitless ratio λ/d. Alternatively, we could say that we have proven
the scaling property in the special case of double-slit diffraction. It
was inevitable that the result would have these scaling properties,
since the whole proof was geometric, and would have been equally
valid when enlarged or reduced on a photocopying machine!

Counterintuitively, this means that a diffracting object with smaller
dimensions produces a bigger diffraction pattern, p.

Double-slit diffraction of blue and red light example 1
Blue light has a shorter wavelength than red. For a given double-
slit spacing d , the smaller value of λ/d for leads to smaller values
of sin θ, and therefore to a more closely spaced set of diffraction
fringes, (g)

The correspondence principle example 2
Let’s also consider how the equations for double-slit diffraction
relate to the correspondence principle. When the ratio λ/d is very
small, we should recover the case of simple ray optics. Now if λ/d
is small, sin θ must be small as well, and the spacing between
the diffraction fringes will be small as well. Although we have not
proven it, the central fringe is always the brightest, and the fringes
get dimmer and dimmer as we go farther from it. For small values
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r / Interpretation of the angu-
lar spacing ∆θ in example 3.
It can be defined either from
maximum to maximum or from
minimum to minimum. Either way,
the result is the same. It does not
make sense to try to interpret ∆θ
as the width of a fringe; one can
see from the graph and from the
image below that it is not obvious
either that such a thing is well
defined or that it would be the
same for all fringes.

of λ/d , the part of the diffraction pattern that is bright enough to
be detectable covers only a small range of angles. This is exactly
what we would expect from ray optics: the rays passing through
the two slits would remain parallel, and would continue moving
in the θ = 0 direction. (In fact there would be images of the two
separate slits on the screen, but our analysis was all in terms of
angles, so we should not expect it to address the issue of whether
there is structure within a set of rays that are all traveling in the
θ = 0 direction.)

Spacing of the fringes at small angles example 3
At small angles, we can use the approximation sin θ ≈ θ, which
is valid if θ is measured in radians. The equation for double-slit
diffraction becomes simply

λ

d
=
θ

m
,

which can be solved for θ to give

θ =
mλ
d

.

The difference in angle between successive fringes is the change
in θ that results from changing m by plus or minus one,

∆θ =
λ

d
.

For example, if we write θ7 for the angle of the seventh bright
fringe on one side of the central maximum and θ8 for the neigh-
boring one, we have

θ8 − θ7 =
8λ
d
− 7λ

d

=
λ

d
,

and similarly for any other neighboring pair of fringes.

Although the equation λ/d = sin θ/m is only valid for a double slit,
it is can still be a guide to our thinking even if we are observing
diffraction of light by a virus or a flea’s leg: it is always true that

(1) large values of λ/d lead to a broad diffraction pattern, and

(2) diffraction patterns are repetitive.

In many cases the equation looks just like λ/d = sin θ/m but with
an extra numerical factor thrown in, and with d interpreted as some
other dimension of the object, e.g., the diameter of a piece of wire.
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s / A triple slit.

t / A double-slit diffraction pattern
(top), and a pattern made by five
slits (bottom).

32.6 Repetition
Suppose we replace a double slit with a triple slit, s. We can think
of this as a third repetition of the structures that were present in
the double slit. Will this device be an improvement over the double
slit for any practical reasons?

The answer is yes, as can be shown using figure u. For ease of visu-
alization, I have violated our usual rule of only considering points
very far from the diffracting object. The scale of the drawing is
such that a wavelengths is one cm. In u/1, all three waves travel an
integer number of wavelengths to reach the same point, so there is a
bright central spot, as we would expect from our experience with the
double slit. In figure u/2, we show the path lengths to a new point.
This point is farther from slit A by a quarter of a wavelength, and
correspondingly closer to slit C. The distance from slit B has hardly
changed at all. Because the paths lengths traveled from slits A and
C differ by half a wavelength, there will be perfect destructive in-
terference between these two waves. There is still some uncanceled
wave intensity because of slit B, but the amplitude will be three
times less than in figure u/1, resulting in a factor of 9 decrease in
brightness. Thus, by moving off to the right a little, we have gone
from the bright central maximum to a point that is quite dark.

u / 1. There is a bright central maximum. 2. At this point just off the central maximum, the path lengths traveled
by the three waves have changed.

Now let’s compare with what would have happened if slit C had been
covered, creating a plain old double slit. The waves coming from
slits A and B would have been out of phase by 0.23 wavelengths,
but this would not have caused very severe interference. The point
in figure u/2 would have been quite brightly lit up.

To summarize, we have found that adding a third slit narrows down
the central fringe dramatically. The same is true for all the other
fringes as well, and since the same amount of energy is concentrated
in narrower diffraction fringes, each fringe is brighter and easier to
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v / Single-slit diffraction of
water waves.

w / Single-slit diffraction of
red light. Note the double width
of the central maximum.

x / A pretty good simulation
of the single-slit pattern of figure
v, made by using three motors to
produce overlapping ripples from
three neighboring points in the
water.

see, t.

This is an example of a more general fact about diffraction: if some
feature of the diffracting object is repeated, the locations of the
maxima and minima are unchanged, but they become narrower.

Taking this reasoning to its logical conclusion, a diffracting object
with thousands of slits would produce extremely narrow fringes.
Such an object is called a diffraction grating.

32.7 Single-slit diffraction

If we use only a single slit, is there diffraction? If the slit is not
wide compared to a wavelength of light, then we can approximate
its behavior by using only a single set of Huygens ripples. There
are no other sets of ripples to add to it, so there are no constructive
or destructive interference effects, and no maxima or minima. The
result will be a uniform spherical wave of light spreading out in all
directions, like what we would expect from a tiny lightbulb. We
could call this a diffraction pattern, but it is a completely feature-
less one, and it could not be used, for instance, to determine the
wavelength of the light, as other diffraction patterns could.

All of this, however, assumes that the slit is narrow compared to a
wavelength of light. If, on the other hand, the slit is broader, there
will indeed be interference among the sets of ripples spreading out
from various points along the opening. Figure v shows an example
with water waves, and figure w with light.

self-check C
How does the wavelength of the waves compare with the width of the
slit in figure v? . Answer, p. 1017

We will not go into the details of the analysis of single-slit diffrac-
tion, but let us see how its properties can be related to the general
things we’ve learned about diffraction. We know based on scaling
arguments that the angular sizes of features in the diffraction pat-
tern must be related to the wavelength and the width, a, of the slit
by some relationship of the form

λ

a
↔ θ.

This is indeed true, and for instance the angle between the maximum
of the central fringe and the maximum of the next fringe on one side
equals 1.5λ/a. Scaling arguments will never produce factors such as
the 1.5, but they tell us that the answer must involve λ/a, so all the
familiar qualitative facts are true. For instance, shorter-wavelength
light will produce a more closely spaced diffraction pattern.

An important scientific example of single-slit diffraction is in tele-
scopes. Images of individual stars, as in figure y, are a good way to
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y / An image of the Pleiades
star cluster. The circular rings
around the bright stars are due to
single-slit diffraction at the mouth
of the telescope’s tube.

z / A radio telescope.

examine diffraction effects, because all stars except the sun are so
far away that no telescope, even at the highest magnification, can
image their disks or surface features. Thus any features of a star’s
image must be due purely to optical effects such as diffraction. A
prominent cross appears around the brightest star, and dimmer ones
surround the dimmer stars. Something like this is seen in most tele-
scope photos, and indicates that inside the tube of the telescope
there were two perpendicular struts or supports. Light diffracted
around these struts. You might think that diffraction could be elim-
inated entirely by getting rid of all obstructions in the tube, but the
circles around the stars are diffraction effects arising from single-
slit diffraction at the mouth of the telescope’s tube! (Actually we
have not even talked about diffraction through a circular opening,
but the idea is the same.) Since the angular sizes of the diffracted
images depend on λ/a, the only way to improve the resolution of
the images is to increase the diameter, a, of the tube. This is one
of the main reasons (in addition to light-gathering power) why the
best telescopes must be very large in diameter.

self-check D
What would this imply about radio telescopes as compared with visible-
light telescopes? . Answer, p.
1017

Double-slit diffraction is easier to understand conceptually than
single-slit diffraction, but if you do a double-slit diffraction experi-
ment in real life, you are likely to encounter a complicated pattern
like figure aa/1, rather than the simpler one, 2, you were expecting.
This is because the slits are fairly big compared to the wavelength
of the light being used. We really have two different distances in
our pair of slits: d, the distance between the slits, and w, the width
of each slit. Remember that smaller distances on the object the
light diffracts around correspond to larger features of the diffraction
pattern. The pattern 1 thus has two spacings in it: a short spac-
ing corresponding to the large distance d, and a long spacing that
relates to the small dimension w.

Discussion question

A Why is it optically impossible for bacteria to evolve eyes that use
visible light to form images?

32.8
∫
? The principle of least time

In section 28.5 and 31.5, we saw how in the ray model of light,
both refraction and reflection can be described in an elegant and
beautiful way by a single principle, the principle of least time. We
can now justify the principle of least time based on the wave model
of light. Consider an example involving reflection, ab. Starting at

904 Chapter 32 Wave optics



ab / Light could take many
different paths from A to B.

aa / 1. A diffraction pattern formed by a real double slit. The width of each slit is fairly big compared to
the wavelength of the light. This is a real photo. 2. This idealized pattern is not likely to occur in real life. To get
it, you would need each slit to be so narrow that its width was comparable to the wavelength of the light, but
that’s not usually possible. This is not a real photo. 3. A real photo of a single-slit diffraction pattern caused by
a slit whose width is the same as the widths of the slits used to make the top pattern.

point A, Huygens’ principle for waves tells us that we can think of
the wave as spreading out in all directions. Suppose we imagine all
the possible ways that a ray could travel from A to B. We show
this by drawing 25 possible paths, of which the central one is the
shortest. Since the principle of least time connects the wave model
to the ray model, we should expect to get the most accurate results
when the wavelength is much shorter than the distances involved —
for the sake of this numerical example, let’s say that a wavelength is
1/10 of the shortest reflected path from A to B. The table, 2, shows
the distances traveled by the 25 rays.

Note how similar are the distances traveled by the group of 7 rays,
indicated with a bracket, that come closest to obeying the principle
of least time. If we think of each one as a wave, then all 7 are again
nearly in phase at point B. However, the rays that are farther from
satisfying the principle of least time show more rapidly changing
distances; on reuniting at point B, their phases are a random jumble,
and they will very nearly cancel each other out. Thus, almost none
of the wave energy delivered to point B goes by these longer paths.
Physically we find, for instance, that a wave pulse emitted at A
is observed at B after a time interval corresponding very nearly
to the shortest possible path, and the pulse is not very “smeared
out” when it gets there. The shorter the wavelength compared to
the dimensions of the figure, the more accurate these approximate
statements become.

Instead of drawing a finite number of rays, such 25, what happens
if we think of the angle, θ, of emission of the ray as a continuously
varying variable? Minimizing the distance L requires

dL

dθ
= 0.
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Because L is changing slowly in the vicinity of the angle that satisfies
the principle of least time, all the rays that come out close to this
angle have very nearly the same L, and remain very nearly in phase
when they reach B. This is the basic reason why the discrete table,
ab/2, turned out to have a group of rays that all traveled nearly the
same distance.

As discussed in section 28.5, the principle of least time is really a
principle of least or greatest time. This makes perfect sense, since
dL/dθ = 0 can in general describe either a minimum or a maximum

The principle of least time is very general. It does not apply just to
refraction and reflection — it can even be used to prove that light
rays travel in a straight line through empty space, without taking
detours! This general approach to wave motion was used by Richard
Feynman, one of the pioneers who in the 1950’s reconciled quantum
mechanics with relativity. A very readable explanation is given in
a book Feynman wrote for laypeople, QED: The Strange Theory of
Light and Matter.
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Summary
Selected vocabulary
diffraction . . . . the behavior of a wave when it encounters an

obstacle or a nonuniformity in its medium;
in general, diffraction causes a wave to bend
around obstacles and make patterns of strong
and weak waves radiating out beyond the ob-
stacle.

coherent . . . . . a light wave whose parts are all in phase with
each other

Other terminology and notation
wavelets . . . . . the ripples in Huygens’ principle

Summary

Wave optics is a more general theory of light than ray optics. When
light interacts with material objects that are much larger then one
wavelength of the light, the ray model of light is approximately
correct, but in other cases the wave model is required.

Huygens’ principle states that, given a wavefront at one moment in
time, the future behavior of the wave can be found by breaking the
wavefront up into a large number of small, side-by-side wave peaks,
each of which then creates a pattern of circular or spherical ripples.
As these sets of ripples add together, the wave evolves and moves
through space. Since Huygens’ principle is a purely geometrical con-
struction, diffraction effects obey a simple scaling rule: the behavior
is unchanged if the wavelength and the dimensions of the diffract-
ing objects are both scaled up or down by the same factor. If we
wish to predict the angles at which various features of the diffraction
pattern radiate out, scaling requires that these angles depend only
on the unitless ratio λ/d, where d is the size of some feature of the
diffracting object.

Double-slit diffraction is easily analyzed using Huygens’ principle if
the slits are narrower than one wavelength. We need only construct
two sets of ripples, one spreading out from each slit. The angles
of the maxima (brightest points in the bright fringes) and minima
(darkest points in the dark fringes) are given by the equation

λ

d
=

sin θ

m
,

where d is the center-to-center spacing of the slits, and m is an
integer at a maximum or an integer plus 1/2 at a minimum.

If some feature of a diffracting object is repeated, the diffraction
fringes remain in the same places, but become narrower with each
repetition. By repeating a double-slit pattern hundreds or thou-
sands of times, we obtain a diffraction grating.

A single slit can produce diffraction fringes if it is larger than one
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wavelength. Many practical instances of diffraction can be inter-
preted as single-slit diffraction, e.g., diffraction in telescopes. The
main thing to realize about single-slit diffraction is that it exhibits
the same kind of relationship between λ, d, and angles of fringes as
in any other type of diffraction.

908 Chapter 32 Wave optics



Problems
Key√

A computerized answer check is available online.∫
A problem that requires calculus.

? A difficult problem.

1 Why would blue or violet light be the best for microscopy?

2 Match gratings A-C with the diffraction patterns 1-3 that they
produce. Explain.

3 The beam of a laser passes through a diffraction grating, fans
out, and illuminates a wall that is perpendicular to the original
beam, lying at a distance of 2.0 m from the grating. The beam
is produced by a helium-neon laser, and has a wavelength of 694.3
nm. The grating has 2000 lines per centimeter. (a) What is the
distance on the wall between the central maximum and the maxima
immediately to its right and left? (b) How much does your answer
change when you use the small-angle approximations θ ≈ sin θ ≈
tan θ?

√

4 When white light passes through a diffraction grating, what
is the smallest value of m for which the visible spectrum of order m
overlaps the next one, of order m + 1? (The visible spectrum runs
from about 400 nm to about 700 nm.)
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5 Ultrasound, i.e., sound waves with frequencies too high to be
audible, can be used for imaging fetuses in the womb or for break-
ing up kidney stones so that they can be eliminated by the body.
Consider the latter application. Lenses can be built to focus sound
waves, but because the wavelength of the sound is not all that small
compared to the diameter of the lens, the sound will not be concen-
trated exactly at the geometrical focal point. Instead, a diffraction
pattern will be created with an intense central spot surrounded by
fainter rings. About 85% of the power is concentrated within the
central spot. The angle of the first minimum (surrounding the cen-
tral spot) is given by sin θ = λ/b, where b is the diameter of the lens.
This is similar to the corresponding equation for a single slit, but
with a factor of 1.22 in front which arises from the circular shape of
the aperture. Let the distance from the lens to the patient’s kidney
stone be L = 20 cm. You will want f > 20 kHz, so that the sound
is inaudible. Find values of b and f that would result in a usable
design, where the central spot is small enough to lie within a kidney
stone 1 cm in diameter.

6 For star images such as the ones in figure y, estimate the
angular width of the diffraction spot due to diffraction at the mouth
of the telescope. Assume a telescope with a diameter of 10 meters
(the largest currently in existence), and light with a wavelength in
the middle of the visible range. Compare with the actual angular
size of a star of diameter 109 m seen from a distance of 1017 m.
What does this tell you?

7 Under what circumstances could one get a mathematically
undefined result by solving the double-slit diffraction equation for θ?
Give a physical interpretation of what would actually be observed.

8 When ultrasound is used for medical imaging, the frequency
may be as high as 5-20 MHz. Another medical application of ultra-
sound is for therapeutic heating of tissues inside the body; here, the
frequency is typically 1-3 MHz. What fundamental physical reasons
could you suggest for the use of higher frequencies for imaging?
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9 The figure below shows two diffraction patterns, both made
with the same wavelength of red light. (a) What type of slits made
the patterns? Is it a single slit, double slits, or something else?
Explain. (b) Compare the dimensions of the slits used to make the
top and bottom pattern. Give a numerical ratio, and state which
way the ratio is, i.e., which slit pattern was the larger one. Explain.

10 The figure below shows two diffraction patterns. The top one
was made with yellow light, and the bottom one with red. Could
the slits used to make the two patterns have been the same?
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Problems 12 and 13.

11 The figure below shows three diffraction patterns. All were
made under identical conditions, except that a different set of double
slits was used for each one. The slits used to make the top pattern
had a center-to-center separation d = 0.50 mm, and each slit was
w = 0.04 mm wide. (a) Determine d and w for the slits used to
make the pattern in the middle. (b) Do the same for the slits used
to make the bottom pattern.

12 The figure shows a diffraction pattern made by a double slit,
along with an image of a meter stick to show the scale. The slits
were 146 cm away from the screen on which the diffraction pattern
was projected. The spacing of the slits was 0.050 mm. What was
the wavelength of the light?

√

13 The figure shows a diffraction pattern made by a double
slit, along with an image of a meter stick to show the scale. Sketch
the diffraction pattern from the figure on your paper. Now consider
the four variables in the equation λ/d = sin θ/m. Which of these
are the same for all five fringes, and which are different for each
fringe? Which variable would you naturally use in order to label
which fringe was which? Label the fringes on your sketch using the
values of that variable.

14 Figure s on p. 882 shows the anatomy of a jumping spider’s
principal eye. The smallest feature the spider can distinguish is
limited by the size of the receptor cells in its retina. (a) By making
measurements on the diagram, estimate this limiting angular size
in units of minutes of arc (60 minutes = 1 degree).(b) Show that
this is greater than, but roughly in the same ballpark as, the limit
imposed by diffraction for visible light.

Remark: Evolution is a scientific theory that makes testable predictions, and if
observations contradict its predictions, the theory can be disproved. It would
be maladaptive for the spider to have retinal receptor cells with sizes much
less than the limit imposed by diffraction, since it would increase complexity
without giving any improvement in visual acuity. The results of this problem
confirm that, as predicted by Darwinian evolution, this is not the case. Work
by M.F. Land in 1969 shows that in this spider’s eye, aberration is a somewhat
bigger effect than diffraction, so that the size of the receptors is very nearly at
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an evolutionary optimum.
√ √
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Exercise 32A: Double-source interference
1. Two sources separated by a distance d = 2 cm make circular ripples with a wavelength of
λ = 1 cm. On a piece of paper, make a life-size drawing of the two sources in the default setup,
and locate the following points:

A. The point that is 10 wavelengths from source #1 and 10 wavelengths from source #2.

B. The point that is 10.5 wavelengths from #1 and 10.5 from #2.

C. The point that is 11 wavelengths from #1 and 11 from #2.

D. The point that is 10 wavelengths from #1 and 10.5 from #2.

E. The point that is 11 wavelengths from #1 and 11.5 from #2.

F. The point that is 10 wavelengths from #1 and 11 from #2.

G. The point that is 11 wavelengths from #1 and 12 from #2.

You can do this either using a compass or by putting the next page under your paper and
tracing. It is not necessary to trace all the arcs completely, and doing so is unnecessarily time-
consuming; you can fairly easily estimate where these points would lie, and just trace arcs long
enough to find the relevant intersections.

What do these points correspond to in the real wave pattern?

2. Make a fresh copy of your drawing, showing only point F and the two sources, which form a
long, skinny triangle. Now suppose you were to change the setup by doubling d, while leaving λ
the same. It’s easiest to understand what’s happening on the drawing if you move both sources
outward, keeping the center fixed. Based on your drawing, what will happen to the position of
point F when you double d? Measure its angle with a protractor.

3. What would happen if you doubled both λ and d compared to the standard setup?

4. Combining the ideas from parts 2 and 3, what do you think would happen to your angles if,
starting from the standard setup, you doubled λ while leaving d the same?

5. Suppose λ was a millionth of a centimeter, while d was still as in the standard setup. What
would happen to the angles? What does this tell you about observing diffraction of light?
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Exercise 32B: Single-slit diffraction
Equipment:

rulers

computer with web browser

The following page is a diagram of a single slit and a screen onto which its diffraction pattern
is projected. The class will make a numerical prediction of the intensity of the pattern at the
different points on the screen. Each group will be responsible for calculating the intensity at
one of the points. (Either 11 groups or six will work nicely – in the latter case, only points a,
c, e, g, i, and k are used.) The idea is to break up the wavefront in the mouth of the slit into
nine parts, each of which is assumed to radiate semicircular ripples as in Huygens’ principle.
The wavelength of the wave is 1 cm, and we assume for simplicity that each set of ripples has
an amplitude of 1 unit when it reaches the screen.

1. For simplicity, let’s imagine that we were only to use two sets of ripples rather than nine.
You could measure the distance from each of the two points inside the slit to your point on
the screen. Suppose the distances were both 25.0 cm. What would be the amplitude of the
superimposed waves at this point on the screen?

Suppose one distance was 24.0 cm and the other was 25.0 cm. What would happen?

What if one was 24.0 cm and the other was 26.0 cm?

What if one was 24.5 cm and the other was 25.0 cm?

In general, what combinations of distances will lead to completely destructive and completely
constructive interference?

Can you estimate the answer in the case where the distances are 24.7 and 25.0 cm?

2. Although it is possible to calculate mathematically the amplitude of the sine wave that results
from superimposing two sine waves with an arbitrary phase difference between them, the algebra
is rather laborious, and it become even more tedious when we have more than two waves to super-
impose. Instead, one can simply use a computer spreadsheet or some other computer program to
add up the sine waves numerically at a series of points covering one complete cycle. This is what
we will actually do. You just need to enter the relevant data into the computer, then examine the
results and pick off the amplitude from the resulting list of numbers. You can run the software
through a web interface at http://lightandmatter.com/cgi-bin/diffraction1.cgi.

3. Measure all nine distances to your group’s point on the screen, and write them on the board
- that way everyone can see everyone else’s data, and the class can try to make sense of why the
results came out the way they did. Determine the amplitude of the combined wave, and write
it on the board as well.

The class will discuss why the results came out the way they did.
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Exercise 32C: Diffraction of light
Equipment:

slit patterns, lasers, straight-filament bulbs

station 1
You have a mask with a bunch of different double slits cut out of it. The values of w and d are
as follows:

pattern A w=0.04 mm d=.250 mm
pattern B w=0.04 mm d=.500 mm
pattern C w=0.08 mm d=.250 mm
pattern D w=0.08 mm d=.500 mm

Predict how the patterns will look different, and test your prediction. The easiest way to get
the laser to point at different sets of slits is to stick folded up pieces of paper in one side or the
other of the holders.

station 2
This is just like station 1, but with single slits:

pattern A w=0.02 mm
pattern B w=0.04 mm
pattern C w=0.08 mm
pattern D w=0.16 mm

Predict what will happen, and test your predictions. If you have time, check the actual numerical
ratios of the w values against the ratios of the sizes of the diffraction patterns

station 3
This is like station 1, but the only difference among the sets of slits is how many slits there are:

pattern A double slit
pattern B 3 slits
pattern C 4 slits
pattern D 5 slits

station 4
Hold the diffraction grating up to your eye, and look through it at the straight-filament light
bulb. If you orient the grating correctly, you should be able to see the m = 1 and m = −1
diffraction patterns off the left and right. If you have it oriented the wrong way, they’ll be above
and below the bulb instead, which is inconvenient because the bulb’s filament is vertical. Where
is the m = 0 fringe? Can you see m = 2, etc.?

Station 5 has the same equipment as station 4. If you’re assigned to station 5 first, you should
actually do activity 4 first, because it’s easier.

station 5
Use the transformer to increase and decrease the voltage across the bulb. This allows you to
control the filament’s temperature. Sketch graphs of intensity as a function of wavelength for
various temperatures. The inability of the wave model of light to explain the mathematical
shapes of these curves was historically one of the reasons for creating a new model, in which
light is both a particle and a wave.
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