PGF5003: Classical Electrodynamics I Problem Set 1
 Professor: Luis Raul Weber Abramo
 Monitor: Natalí Soler Matubaro de Santi
 natali.santi@usp.br
 (Due to April 13, 2021)

1 Question (1 point)

Given the following vector field $\mathbf{F}=f \vec{\nabla} g$, with f and g scalar functions, prove the first Green identity:

$$
\begin{equation*}
\int_{V} d V\left(f \nabla^{2} g+\vec{\nabla} f \cdot \vec{\nabla} g\right)=\oint_{S(V)} d \vec{S} \cdot(f \vec{\nabla} g) . \tag{1}
\end{equation*}
$$

What do we need to suppose about f and g to deduce this identity?

2 Question (1 point)

Show that

$$
\begin{equation*}
\nabla^{2}\left(\frac{1}{r}\right)=-4 \pi \delta(\mathbf{r}) \tag{2}
\end{equation*}
$$

3 Question (1 point)

Using the second Green identity:

$$
\begin{equation*}
\int_{V} d V\left(f \nabla^{2} g-g \nabla^{2} f\right)=\oint_{S(V)} d \mathbf{S} \cdot(f \vec{\nabla} g-g \vec{\nabla} f) \tag{3}
\end{equation*}
$$

taking $f=\phi\left(\mathbf{x}^{\prime}\right)($ for the electrostatic potential $\mathbf{E}=\vec{\nabla} \phi)$ and $g=1 / R=1 /\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$, show that

$$
\begin{equation*}
\phi(\mathbf{x})=\int_{V} d^{3} x^{\prime} \frac{\rho\left(\mathbf{x}^{\prime}\right)}{R}+\frac{1}{4 \pi} \oint_{S(V)} d \mathbf{S}^{\prime} \cdot\left[\frac{1}{R} \vec{\nabla}^{\prime} \phi\left(\mathbf{x}^{\prime}\right)-\phi\left(\mathbf{x}^{\prime}\right) \vec{\nabla}^{\prime} \frac{1}{R}\right] \tag{4}
\end{equation*}
$$

where $\overrightarrow{\nabla^{\prime}}$ corresponds to differential operation related to x^{\prime}.

4 Question (1 point)

Consider the electric field

$$
\begin{equation*}
\mathbf{E}=\frac{A e^{r / r_{0}}}{r} \hat{r} . \tag{5}
\end{equation*}
$$

a) Determine the density of charge.
b) Determine the total charge into a radius R.

5 Question (1 point)

Consider two infinite plates (with zero thickness) with the distributions of charge σ and $-\sigma$, respectively. The plates are orthogonal to each other.

Figure 1: Figure for the question 5.
a) Find the electric field in all the regions (I,II, III, IV and total space).
b) Draw a figure, representing the electrical field.

6 Question (1 point)

A spherical shell of radius R is made with isolating material and has a surface density of charge σ (that, in principle, we do not know). The electric potential outside the sphere is $V_{\text {out }}(r)=V_{0}\left(\frac{R}{r}\right)^{2} \cos \theta$, where V_{0} is a constant. The electric field $\mathbf{E}_{\text {ins }}(\mathbf{r})=\frac{-V_{0}}{R} \hat{z}$. Compute:
a) the electric field outside the sphere $\mathbf{E}_{\text {out }}(\mathbf{r})$ and the electric potential inside the sphere $V_{\text {ins }}$;
b) the superficial density of charge σ;
c) the force per unity of area \mathbf{f} over the surface of the sphere;

7 Question (2 points)

Consider a potential problem in the half-space defined by $z \geq 0$, with Dirichlet boundary conditions on the plane $z=0$ (and at infinity).
a) Write down the appropriate Green's function $G\left(\mathbf{r}, \mathbf{r}^{\prime}\right)$.
b) If the potential on the plane $z=0$ is specified to be $\Phi=V$ inside a circle of radius a centered at the origin, and $\Phi=0$ outside that circle, find an integral expression for the potential at a point P specified in terms of cylindrical coordinates ρ, ϕ, z.
c) Show that, along the axis of the circle $(\rho=0)$, the potential is given by

$$
\begin{equation*}
\Phi=V\left(1-\frac{z}{\sqrt{a^{2}+z^{2}}}\right) \tag{6}
\end{equation*}
$$

d) Show that at large distances $\left(\rho^{2}+z^{2} \gg a^{2}\right)$ the potential can be expanded in a power series in $\left(\rho^{2}+z^{2}\right)^{-1}$, and that the leading terms are

$$
\begin{equation*}
\Phi=\frac{V a^{2}}{2} \frac{z}{\left(\rho^{2}+z^{2}\right)^{3 / 2}}\left[1-\frac{3 a^{2}}{4\left(\rho^{2}+z^{2}\right)}+\frac{5\left(3 \rho^{2} a^{2}+a^{4}\right)}{8\left(\rho^{2}+z^{2}\right)^{2}}+\ldots\right] . \tag{7}
\end{equation*}
$$

Verify that the result of (c) is consistent with this results.

8 Question (2 points)

An infinite metallic plate has a spherical overhang of radius a. This plate is grounded. A charge $+q$ is placed over the hemisphere of the overhang, with a distance d of the center of the sphere. Show that the induced charge on the overhang is

$$
\begin{equation*}
q^{\prime}=-q\left[1-\frac{\left(d^{2}-a^{2}\right)}{d \sqrt{d^{2}+a^{2}}}\right] \tag{8}
\end{equation*}
$$

Figure 2: Figure for the question 8.

