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Chapter 1

Introduction

Did mandatory busing programs in the 1970s increase the school achievement of
disadvantaged minority youth? If so, how much of a gain was achieved? Does
obtaining a college degree increase an individual’s labor market earnings? If
S0, is this particular effect large relative to the earnings gains that could be
achieved only through on-the-job training? Did the use of a butterfly ballot in
some Florida counties in the 2000 presidential election cost Al Gore votes? If so,
was the number of miscast votes sufficiently large to have altered the election
outcome?

At their core, these types of questions are simple cause-and-effect questions
of the form, Does X cause Y7 If X causes Y, how large is the effect of X on
Y? Is the size of this effect large relative to the effects of other causes of Y7

Simple cause-and-effect questions are the motivation for much empirical work
in the social sciences, even though definitive answers to cause-and-effect ques-
tions may not always be possible to formulate given the constraints that social
scientists face in collecting data. Even so, there is reason for optimism about
our current and future abilities to effectively address cause-and-effect questions.
In the past three decades, a counterfactual model of causality has been devel-
oped, and a unified framework for the prosecution of causal questions is now
available. With this book, we aim to convince more social scientists to apply
this model to the core empirical questions of the social sciences.

In this introductory chapter, we provide a skeletal precis of the main fea-
tures of the counterfactual model. We then offer a brief and selective history
of causal analysis in quantitatively oriented observational social science. We
develop some background on the examples that we will draw on throughout
the book, concluding with an introduction to graphical causal models that also
provides a roadmap to the remaining chapters.
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1.1 The Counterfactual Model for Observational
Data Analysis

With its origins in early work on experimental design by Neyman (1990 [1923],
1935), Fisher (1935), Cochran and Cox (1950), Kempthorne (1952), and Cox
(1958), the counterfactual model for causal analysis of observational data was
formalized in a series of papers by Donald Rubin (1974, 1977, 1978, 1980a,
1981, 1986, 1990). In the statistics tradition, the model is often referred to
as the potential outcomes framework, with reference to potential yields from
Neyman’s work in agricultural statistics (see Gelman and Meng 2004; Rubin
2005). The counterfactual model also has roots in the economics literature (Roy
1951; Quandt 1972), with important subsequent work by James Heckman (see
Heckman 1974, 1978, 1979, 1989, 1992, 2000), Charles Manski (1995, 2003), and
others. Here, the model is also frequently referred to as the potential outcomes
framework. The model is now dominant in both statistics and economics, and
it is being used with increasing frequency in sociology, psychology, and political
science.

A counterfactual account of causation also exists in philosophy, which began
with the seminal 1973 article of David Lewis, titled “Causation.”' It is related
to the counterfactual model for observational data analysis that we will present
in this book, but the philosophical version, as implied by the title of Lewis’ orig-
inal article, aims to be a general model of causality. As noted by the philoso-
pher James Woodward in his 2003 book, Making Things Happen: A Theory of
Causal Ezplanation, the counterfactual approach to causality championed by
Lewis and his students has not been influenced to any substantial degree by
the potential outcomes version of counterfactual modeling that we will present
in this book. However, Woodward attempts to bring the potential outcomes
literature into dialogue with philosophical models of causality, in part by aug-
menting the important recent work of the computer scientist Judea Pearl. We
will also use Pearl’s work extensively in our presentation, drawing on his 2000
book, Causality: Models, Reasoning, and Inference. We will discuss the broader
philosophical literature in Chapters 8 and 10, as it does have some implications
for social science practice and the pursuit of explanation more generally.

Mn this tradition, causality is defined with reference to counterfactual dependence (or, as
is sometimes written, the “ancestral” to counterfactual dependence). Accordingly, and at the
risk of a great deal of oversimplification, the counterfactual account in philosophy maintains
that it is proper to declare that, for events ¢ and e, ¢ causes e if (1) ¢ and e both occur and
(2) if ¢ had not occurred and all else remained the same, then e would not have occurred.
The primary challenge of the approach is to define the counterfactual scenario in which ¢ does
not occur (which Lewis did by imagining a limited “divergence miracle” that prevents ¢ from
occurring in a closest possible hypothetical world where all else is the same except that ¢ does
not occur). The approach differs substantially from the regularity-based theories of causality
that dominated metaphysics through the 1960s, based on relations of entailment from covering
law models. For a recent collection of essays in philosophy on counterfactuals and causation,
see Collins, Hall, and Paul (2004).
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The core of the counterfactual model for observational data analysis is sim-
ple. Suppose that each individual in a population of interest can be exposed
to two alternative states of a cause. Each state is characterized by a distinct
set of conditions, exposure to which potentially affects an outcome of interest,
such as labor market earnings or scores on a standardized mathematics test. If
the outcome is earnings, the population of interest could be adults between the
ages of 30 and 50, and the two states could be whether or not an individual
has obtained a college degree. Alternatively, if the outcome is a mathematics
test score, the population of interest could be high school seniors, and the two
states could be whether or not a student has taken a course in trigonometry.
In the counterfactual tradition, these alternative causal states are referred to
as alternative treatments. When only two treatments are considered, they are
referred to as treatment and control. Throughout this book, we will conform to
this convention.

The key assumption of the counterfactual framework is that each individual
in the population of interest has a potential outcome under each treatment state,
even though each individual can be observed in only one treatment state at any
point in time. For example, for the causal effect of having a college degree
rather than only a high school degree on subsequent earnings, adults who have
completed high school degrees have theoretical what-if earnings under the state
“have a college degree,” and adults who have completed college degrees have
theoretical what-if earnings under the state “have only a high school degree.”
These what-if potential outcomes are counterfactual.

Formalizing this conceptualization for a two-state treatment, the potential
outcomes of each individual are defined as the true values of the outcome of
interest that would result from exposure to the alternative causal states. The
potential outcomes of each individual i are y} and y?, where the superscript
1 signifies the treatment state and the superscript 0 signifies the control state.
Because both y! and 3? exist in theory for each individual, an individual-level
causal effect can be defined as some contrast between y! and y?, usually the
simple difference y} — Y. Because it is impossible to observe both y} and 39 for
any individual, causal effects cannot be observed or directly calculated at the
individual level.”

By necessity, a researcher must analyze an observed outcome variable Y
that takes on values y; for each individual i that are equal to y; for those in
the treatment state and ¢ for those in the control state. We usually refer to
those in the treatment state as the treatment group and those in the control
state as the control group.” Accordingly, y? is an unobservable counterfactual

2The only generally effective strategy for estimating individual-level causal effects is a
crossover design, in which individuals are exposed to two alternative treatments in succession
and with enough time elapsed in between exposures such that the effects of the cause have
had time to dissipate (see Rothman and Greenland 1998). Obviously, such a design can be
attempted only when a researcher has control over the allocation of the treatments and only
when the treatment effects are sufficiently ephemeral. These conditions rarely exist for the
causal questions that concern social scientists.

3We assume that, for observational data analysis, an underlying causal exposure mechanism
exists in the population, and thus the distribution of individuals across the treatment and
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outcome for each individual 7 in the treatment group, and y; is an unobservable
counterfactual outcome for each individual ¢ in the control group.

In the counterfactual modeling tradition, attention is focused on estimating
various average causal effects, by analysis of the values y;, for groups of indi-
viduals defined by specific characteristics. To do so effectively, the process by
which individuals of different types are exposed to the cause of interest must
be modeled. Doing so involves introducing defendable assumptions that allow
for the estimation of the average unobservable counterfactual values for specific
groups of individuals. If the assumptions are defendable, and a suitable method
for constructing an average contrast from the data is chosen, then an average
difference in the values of y; can be given a causal interpretation.

1.2 Causal Analysis and Observational
Social Science

The challenges of using observational data to justify causal claims are con-
siderable. In this section, we present a selective history of the literature on
these challenges, focusing on the varied history of the usage of experimental
language in observational social science. We will also consider the growth of
survey research and the shift toward outcome-equation-based motivations of
causal analysis that led to the widespread usage of regression estimators. Many
useful discussions of these developments exist, and our presentation here is not
meant to be complete.” We review only the literature that is relevant for ex-
plaining the connections between the counterfactual model and other traditions
of quantitatively oriented analysis that are of interest to us here. We return to
these issues again in Chapters 8 and 10.

1.2.1 Experimental Language in Observational Social
Science

Although the word experiment has a very broad definition, in the social sciences
it is most closely associated with randomized experimental designs, such as
the double-blind clinical trials that have revolutionized the biomedical sciences
and the routine small-scale experiments that psychology professors perform on

control states exists independently of the observation and sampling process. Accordingly, the
treatment and control groups exist in the population, even though we typically observe only
samples of them in the observed data. We will not require that the labels “treatment group”
and “control group” refer only to the observed treatment and control groups.

4For a more complete synthesis of the literature on causality in observational social science,
see, for sociology, Berk (1988, 2004), Bollen (1989), Goldthorpe (2000), Lieberson (1985),
Lieberson and Lynn (2002), Marini and Singer (1988), Singer and Marini (1987), Sobel (1995,
1996, 2000), and Smith (1990, 2003). For economics, see Angrist and Krueger (1999), Heckman
(2000, 2005), Moffitt (2003), Pratt and Schlaifer (1984), and Rosenzweig and Wolpin (2000).
For political science, see Brady and Collier (2004), King, Keohane, and Verba (1994), and
Mahoney and Goertz (2006).
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their own students.” Randomized experiments have their origins in the work of
statistician Ronald A. Fisher during the 1920s, which then diffused throughout
various research communities via his widely read 1935 book, The Design of
FExperiments.

Statisticians David Cox and Nancy Reid (2000) offer a definition of an ex-
periment that focuses on the investigator’s deliberate control and that allows
for a clear juxtaposition with an observational study:

The word experiment is used in a quite precise sense to mean an
investigation where the system under study is under the control of
the investigator. This means that the individuals or material inves-
tigated, the nature of the treatments or manipulations under study
and the measurement procedures used are all selected, in their im-
portant features at least, by the investigator.

By contrast in an observational study some of these features, and
in particular the allocation of individuals to treatment groups, are
outside the investigator’s control. (Cox and Reid 2000:1)

We will maintain this basic distinction throughout this book. We will argue
in this section that the counterfactual model of causality that we introduced
in the last section is valuable precisely because it helps researchers to stipulate
assumptions, evaluate alternative data analysis techniques, and think carefully
about the process of causal exposure. Its success is a direct result of its language
of potential outcomes, which permits the analyst to conceptualize observational
studies as if they were experimental designs controlled by someone other than
the researcher — quite often, the subjects of the research. In this section, we offer
a brief discussion of other important attempts to use experimental language in
observational social science and that succeeded to varying degrees.

Samuel A. Stouffer, the sociologist and pioneering public opinion survey an-
alyst, argued that “the progress of social science depends on the development of
limited theories — of considerable but still limited generality — from which pre-
diction can be made to new concrete instances” (Stouffer 1962[1948]:5). Stouffer
argued that, when testing alternative ideas, “it is essential that we always keep
in mind the model of a controlled experiment, even if in practice we may have
to deviate from an ideal model” (Stouffer 1950:356). He followed this practice
over his career, from his 1930 dissertation that compared experimental with
case study methods of investigating attitudes, to his leadership of the team that
produced The American Soldier during World War II (see Stouffer 1949), and
in his 1955 classic Communism, Conformity, and Civil Liberties.

On his death, and in celebration of a posthumous collection of his essays,
Stouffer was praised for his career of survey research and attendant explana-
tory success. The demographer Philip Hauser noted that Stouffer “had a hand

5The Oxford English Dictionary provides the scientific definition of experiment: “An action
or operation undertaken in order to discover something unknown, to test a hypothesis, or
establish or illustrate some known truth” and also provides source references from as early as
1362.
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in major developments in virtually every aspect of the sample survey — sam-
pling procedures, problem definition, questionnaire design, field and operating
procedures, and analytic methods” (Hauser 1962:333). Arnold Rose (1962:720)
declared, “Probably no sociologist was so ingenious in manipulating data sta-
tistically to determine whether one hypothesis or another could be considered
as verified.” And Herbert Hyman portrayed his method of tabular analysis in
charming detail:

While the vitality with which he attacked a table had to be observed
in action, the characteristic strategy he employed was so calculating
that one can sense it from reading the many printed examples.. ..
Multivariate analysis for him was almost a way of life. Starting with
a simple cross-tabulation, the relationship observed was elaborated
by the introduction of a third variable or test factor, leading to a
clarification of the original relationship....But there was a special
flavor to the way Sam handled it. With him, the love of a table
was undying. Three variables weren’t enough. Four, five, six, even
seven variables were introduced, until that simple thing of beauty,
that original little table, became one of those monstrous creatures
at the first sight of which a timid student would fall out of love with
our profession forever. (Hyman 1962:324-5)

Stouffer’s method was to conceive of the experiment that he wished he could
have conducted and then to work backwards by stratifying a sample of the pop-
ulation of interest into subgroups until he felt comfortable that the remaining
differences in the outcome could no longer be easily attributed to systematic
differences within the subgroups. He never lost sight of the population of inter-
est, and he appears to have always regarded his straightforward conclusions as
the best among plausible answers. Thus, as he said, “Though we cannot always
design neat experiments when we want to, we can at least keep the experimental
model in front of our eyes and behave cautiously” (Stouffer 1950:359).

Not all attempts to incorporate experimental language into observational
social science were as well received. Most notably in sociology, F. Stuart Chapin
had earlier argued explicitly for an experimental orientation to nearly all of
sociological research, but while turning the definition of an experiment in a
direction that agitated others. For Chapin, a valid experiment did not require
that the researcher obtain control over the treatment to be evaluated, only that
observation of a causal process be conducted in controlled conditions (see Chapin
1932, 1947). He thus considered what he called “ex post facto experiments”
to be the solution to the inferential problems of the social sciences, and he
advocated matching designs to select subsets of seemingly equivalent individuals
from those who were and were not exposed to the treatment of interest. In so
doing, however, he proposed to ignore the incomparable, unmatched individuals,
thereby losing sight of the population that Stouffer the survey analyst always
kept in the foreground.

Chapin thereby ran afoul of emergent techniques of statistical inference,
and he suffered attacks from his natural allies in quantitative analysis. The
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statistician Oscar Kempthorne, whose 1952 book The Design and Analysis of
Ezperiments would later became a classic, dismissed Chapin’s work completely.
In a review of Chapin’s 1947 book, Ezxperimental Designs in Sociological Re-
search, Kempthorne wrote:

The usage of the word “experimental design” is well established by
now to mean a plan for performing a comparative experiment. This
implies that various treatments are actually applied by the investiga-
tor and are not just treatments that happened to have been applied
to particular units for some reason, known or unknown, before the
“experiment” was planned. This condition rules out practically all of
the experiments and experimental designs discussed by the author.
(Kempthorne 1948:491)

Chapin’s colleagues in sociology were often just as unforgiving. Nathan Keyfitz
(1948:260), for example, chastised Chapin for ignoring the population of interest
and accused him of using terms such as “experimental design” merely to “lend
the support of their prestige.”

In spite of the backlash against Chapin, in the end he has a recognizable
legacy in observational data analysis. The matching techniques he advocated
will be discussed later in Chapter 4. They have been reborn in the new liter-
ature, in part because the population of interest has been brought back to the
foreground. But there is an even more direct legacy. Many of Chapin’s so-called
experiments were soon taken up, elaborated, and analyzed by the psychologist
Donald T. Campbell and his colleagues under the milder and more general name
of “quasi-experiments.”®

The first widely read presentation of the Campbell’s perspective emerged in
1963 (see Campbell and Stanley 1966[1963]), in which quasi-experiments were
discussed alongside randomized and fully controlled experimental trials, with
an evaluation of their relative strengths and weaknesses in alternative settings.
In the subsequent decade, Campbell’s work with his colleagues moved closer to-
ward observational research, culminating in the volume by Cook and Campbell
(1979), Quasi-Ezxperimentation: Design & Analysis Issues for Field Settings,
wherein a whole menu of quasi-experiments was described and analyzed: from
the sort of ex post case-control matching studies advocated by Chapin (but re-
labelled more generally as nonequivalent group designs) to novel proposals for
regression discontinuity and interrupted time series designs (which we will dis-
cuss later in Chapter 9). For Cook and Campbell, the term quasi-experiment
refers to “experiments that have treatments, outcome measures, and experi-
mental units, but do not use random assignment to create the comparisons

61n his first publication on quasi-experiments, Campbell (1957) aligned himself with Stouf-
fer’s perspective on the utility of experimental language, and in particular Stouffer (1950).
Chapin is treated roughly by Campbell and Stanley (1963:70), even though his ez post facto
design is identified as “one of the most extended efforts toward quasi-experimental design.”
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from which treatment-caused change is inferred” (Cook and Campbell 1979:6).”
And, rather than advocate for a reorientation of a whole discipline as Chapin
had, they pitched the approach as a guide for field studies, especially program
evaluation studies of controlled interventions. Nonetheless, the ideas were widely
influential throughout the social sciences, as they succeeded in bringing a tamed
experimental language to the foreground in a way that permitted broad assess-
ments of the strengths and weaknesses of alternative study designs and data
analysis techniques.

1.2.2 “The Age of Regression”

Even though the quasi-experiment tradition swept through the program evalua-
tion community and gained many readers elsewhere, it lost out in both sociology
and economics to equation-based motivations of observational data analysis, un-
der the influence of a new generation of econometricians, demographers, and sur-
vey researchers who developed structural equation and path-model techniques.
Many of the key methodological advances took place in the field of economics, as
discussed by Goldberger (1972) and Heckman (2000), even though the biologist
Sewall Wright (1925, 1934) is credited with the early development of some of
the specific techniques.

In the 1960s, structural equation models spread quickly from economics
throughout the social sciences, moving first to sociology via Hubert Blalock
and Otis Dudley Duncan, each of whom is usually credited with introducing
the techniques, respectively, via Blalock’s 1964 book Causal Inferences in Non-
experimental Research and Duncan’s 1966 article, “Path Analysis: Sociological
Examples,” which was published as the lead article in that year’s American Jour-
nal of Sociology. In both presentations, caution is stressed. Blalock discusses
carefully the differences between randomized experiments and observational sur-
vey research. Duncan states explicitly in his abstract that “Path analysis focuses
on the problem of interpretation and does not purport to be a method for dis-
covering causes,” and he concludes his article with a long quotation from Sewall
Wright attesting to the same point.

A confluence of developments then pushed structural equations toward
widespread usage and then basic regression modeling toward near complete dom-
inance of observational research in some areas of social science. In sociology, the
most important impetus was the immediate substantive payoff to the techniques.
The American Occupational Structure, which Duncan cowrote with Peter Blau
and published in 1967, transformed scholarship on social stratification, offer-
ing new decompositions of the putative causal effects of parental background
and individuals’ own characteristics on later educational and occupational

"Notice that Cook and Campbell’s definition of quasi-experiments here is, in fact, consistent
with the definition of an experiment laid out by Cox and Reid, which we cited earlier. For
that definition of an experiment, control is essential but randomization is not. The text of
Cook and Campbell (1979) equivocates somewhat on these issues, but it is clear that their
intent is to discuss controlled experiments in which randomization is not feasible and that
they then label quasi-experiments.



1.2. Causal Analysis 11

attainment. Their book transformed a core subfield of the discipline of soci-
ology, leading to major theoretical and methodological redirections of many
existing lines of scholarship.®

In part because of this success, it appears undeniable that Blalock and Dun-
can became, for a time, less cautious. Blalock had already shown a predilection
toward slippage. When introducing regression equations in his 1964 book, spec-
ified as Y; = a + bX; + e;, where X is the causal variable of interest and Y is
the outcome variable of interest, Blalock then states correctly and clearly:

What if there existed a major determinant of Y, not explicitly con-
tained in the regression equation, which was in fact correlated with
some of the independent variables X;? Clearly, it would be contribut-
ing to the error term in a manner so as to make the errors system-
atically related to these particular X;. If we were in a position to
bring this unknown variable into the regression equation, we would
find that at least some of the regression coefficients (slopes) would
be changed. This is obviously an unsatisfactory state of affairs, mak-
ing it nearly impossible to state accurate scientific generalizations.
(Blalock 1964:47)

But Blalock ends his book with a set of numbered conclusions, among which
can be found a different characterization of the same issue. Instead, he implies
that the goal of causal inference should not be sacrificed even when these sorts
of assumptions are dubious:

We shall assume that error terms are uncorrelated with each other
and with any of the independent variables in a given equation ...

In nonexperimental studies involving nonisolated systems, this
kind of assumption is likely to be unrealistic. This means that dis-
turbing influences must be explicitly brought into the model. But at
some point one must stop and make the simplifying assumption that
variables left out do not produce confounding influences. Otherwise,
causal inferences cannot be made. (Blalock 1964:176)

Blalock then elevates regression models to high scientific status: “In causal
analyses our aim is to focus on causal laws as represented by regression equations
and their coefficients” (Blalock 1964:177). And he then offers the practical advice
that “The method for making causal inferences may be applied to models based
on a priori reasoning, or it may be used in exploratory fashion to arrive at models
which give closer and closer approximations to the data” (Blalock 1964:179).
Not only are these conclusions unclear — Should the exploration-augmented
model still be regarded as a causal model? — they misrepresent the first 171
pages of Blalock’s own book, in which he stressed the importance of assumptions
grounded in substantive theory and offered repeated discussion of the differences

8For example, compare the methods (and substantive motivations) in Sewell (1964), with
its nonparametric table standardization techniques, to Sewell, Haller, and Portes (1969), with
its path model of the entire stratification process.
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between regression equations embedded in recursive path models and the sorts
of randomized experiments that often yield more easily defendable causal infer-
ences. They also misrepresent the closing pages of his book, in which he returns
with caution to argue that a researcher should remain flexible, report inferences
from multiple models, and give an accounting of exploratory outcomes.

Duncan’s record is less obviously equivocal, as he never failed to mention
that assumptions about causal relationships must be grounded in theory and
cannot be revealed by data. Yet, as Abbott (2001[1998]:115) notes, “Duncan
was explicit in [The American Occupational Structure] about the extreme as-
sumptions necessary for the analysis, but repeatedly urged the reader to bear
with him while he tried something out to see what could be learned.” What Dun-
can learned transformed the field, and it was thus hard to ignore the potential
power of the techniques to move the literature.

Duncan’s 1975 methodological text, Introduction to Structural Equation Mod-
els, is appropriately restrained, with many fine discussions that echo the caution
in the abstract of his 1966 article. Yet he encourages widespread application
of regression techniques to estimate causal effects, and at times he leaves the
impression that researchers should just get on with it as he did in the The
American Occupational Structure. For example, in his Chapter 8, titled “Spec-
ification Error,” Duncan notes that “it would require no elaborate sophistry to
show that we will never have the ‘right’ model in any absolute sense” (Duncan
1975:101). But he then continues:

As the term will be used here, analysis of specification error relates
to a rhetorical strategy in which we suggest a model as the “true”
one for sake of argument, determine how our working model [the
model that has been estimated| differs from it and what the con-
sequences of the difference(s) are, and thereby get some sense of
how important the mistakes we will inevitably make may be. Some-
times it is possible to secure genuine comfort by this route. (Duncan
1975:101-2)

As is widely known, Duncan later criticized the widespread usage of regres-
sion analysis and structural equation modeling more generally, both in his 1984
book Notes on Social Measurement: Historical and Critical and in private com-
munication in which he reminded many inside and outside of sociology of his
long-standing cautionary perspective (see Xie 2006).

Finally, the emergent ease with which regression models could be estimated
with new computing power was important as well. No longer would Stouffer
have needed to concentrate on a seven-way cross tabulation. His descendants
could instead estimate and then interpret only a few estimated regression slopes,
rather than attempt to make sense of the hundred or so cells that Stouffer
often generated by subdivision of the sample. Aage Sgrensen has given the
most memorable indictment of the consequences of this revolution in computing
power:

With the advent of the high-speed computer, we certainly could
study the relationships among many more variables than before.
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More importantly, we could compute precise quantitative measures
of the strength of these relationships. The revolution in quantitative
sociology was a revolution in statistical productivity. Social scien-
tists could now calculate almost everything with little manual labor
and in very short periods of time. Unfortunately, the sociological
workers involved in this revolution lost control of their ability to see
the relationship between theory and evidence. Sociologists became
alienated from their sociological species being. (Sgrensen 1998:241)

As this quotation intimates, enthusiasm for regression approaches to causal
inference had declined dramatically by the mid-1990s. Naive usage of regression
modeling was blamed for nearly all the ills of sociology, everything from stripping
temporality, context, and the valuation of case study methodologies from the
mainstream (see Abbott 2001 for a collections of essays), the suppression of
attention to explanatory mechanisms (see Hedstrom 2005 and Goldthorpe 2001),
the denial of causal complexity (see Ragin 1987, 2000), and the destruction of
mathematical sociology (Serensen 1998).

It is unfair to lay so much at the feet of least squares formulas, and we will
argue later that regression can be put to work quite sensibly in the pursuit of
causal questions. However, the critique of practice is largely on target. For
causal analysis, the rise of regression led to a focus on equations for outcomes,
rather than careful thinking about how the data in hand differ from what would
have been generated by the ideal experiments one might wish to have conducted.
This sacrifice of attention to experimental thinking might have been reasonable if
the outcome-equation tradition had led researchers to specify and then carefully
investigate the plausibility of alternative explanatory mechanisms that generate
the outcomes of the equations. But, instead, it seems that researchers all too
often chose not to develop fully articulated mechanisms that generate outcomes
and instead chose to simply act as if the regression equations somehow mimic
appreciably well (by a process not amenable to much analysis) the experiments
that researchers might otherwise have wished to undertake.

The counterfactual model for observational data analysis has achieved suc-
cess in the past two decades in the social sciences because it brings experimental
language back into observational data analysis. But it does so in the way that
Stouffer used it: as a framework in which to ask carefully constructed “what-if”
questions that lay bare the limitations of observational data and the need to
clearly articulate assumptions grounded in theory that is believable.

1.3 Types of Examples Used Throughout the
Book

In this section, we offer background on the main substantive examples that we
will draw on throughout the book when discussing the methods and approach
abstractly and then when demonstrating particular empirical analysis strategies.
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1.3.1 Broad Examples from Sociology, Economics,
and Political Science

We first outline three prominent classic examples that, in spite of their distinct
disciplinary origins, are related to each other: (1) the causal effects of family
background and mental ability on educational attainment, (2) the causal effects
of educational attainment and mental ability on earnings, and (3) the causal
effects of family background, educational attainment, and earnings on political
participation. These examples are classic and wide ranging, having been de-
veloped, respectively, in the formative years of observational data analysis in
sociology, economics, and political science.

The Causal Effects of Family Background and Intelligence
on Educational Attainment

In the status attainment tradition in sociology, as pioneered by Blau and Dun-
can (1967), family background and mental ability are considered to be ultimate
causes of educational attainment. This claim is grounded on the purported ex-
istence of a specific causal mechanism that relates individuals’ expectations and
aspirations for the future to the social contexts that generate them. This par-
ticular explanation is most often identified with the Wisconsin model of status
attainment, which was based on early analyses of the Wisconsin Longitudinal
Survey (see Sewell, Haller, and Portes 1969; Sewell, Haller, and Ohlendorf 1970).

According to the original Wisconsin model, the joint effects of high school
students’ family backgrounds and mental abilities on their eventual educational
attainments can be completely explained by the expectations that others hold of
them. In particular, significant others — parents, teachers, and peers — define ex-
pectations based on students’ family background and observable academic per-
formance. Students then internalize the expectations crafted by their significant
others. In the process, the expectations become individuals’ own aspirations,
which then compel achievement motivation.

The implicit theory of the Wisconsin model maintains that students are
compelled to follow their own aspirations. Accordingly, the model is powerfully
simple, as it implies that significant others can increase high school students’
future educational attainments merely by increasing their own expectations of
them.? Critics of this status attainment perspective argued that structural con-
straints embedded in the opportunity structure of society should be at the center
of all models of educational attainment, and hence that concepts such as aspi-
rations and expectations offer little or no explanatory power. Pierre Bourdieu
(1973) dismissed all work that asserts that associations between aspirations and
attainments are causal. Rather, for Bourdieu, the unequal opportunity struc-
tures of society “determine aspirations by determining the extent to which they
can be satisfied” (Bourdieu 1973:83). And, as such, aspirations have no au-
tonomous explanatory power because they are nothing other than alternative
indicators of structural opportunities and resulting attainment.

9See Hauser, Warren, Huang, and Carter (2000) for the latest update of the original model.
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The Causal Effects of Educational Attainment and Mental Ability on
Earnings

The economic theory of human capital maintains that education has a causal
effect on the subsequent labor market earnings of individuals. The theory pre-
supposes that educational training provides skills that increase the potential
productivity of workers. Because productivity is prized in the labor market,
firms are willing to pay educated workers more.

These claims are largely accepted within economics, but considerable debate
remains over the size of the causal effect of education. In reflecting on the first
edition of his book, Human Capital, which was published in 1964, Gary Becker
wrote nearly 30 years later:

Education and training are the most important investments in hu-
man capital. My book showed, and so have many other studies
since then, that high school and college education in the United
States greatly raise a person’s income, even after netting out direct
and indirect costs of schooling, and after adjusting for the better
family backgrounds and greater abilities of more educated people.
Similar evidence is now available for many points in time from over
one hundred countries with different cultures and economic systems.
(Becker 1993[1964]:17)

The complication, hinted at in this quotation, is that economists also accept
that mental ability enhances productivity as well. Thus, because those with
relatively high ability are assumed to be more likely to obtain higher educational
degrees, the highly educated are presumed to have higher innate ability and
higher natural rates of productivity. As a result, some portion of the purported
causal effect of education on earnings may instead reflect innate ability rather
than any productivity-enhancing skills provided by educational institutions (see
Willis and Rosen 1979). The degree of “ability bias” in standard estimates of
the causal effect of education on earnings has remained one of the largest causal
controversies in the social sciences since the 1970s (see Card 1999).

The Causal Effects of Family Background, Educational Attainment,
and Earnings on Political Participation

The socioeconomic status model of political participation asserts that education,
occupational attainment, and income predict strongly most measures of political
participation (see Verba and Nie 1972). Critics of this model maintain instead
that political interests and engagement determine political participation, and
these are merely correlated with the main dimensions of socioeconomic status. '’

10This interest model of participation has an equally long lineage. Lazarsfeld, Berelson,
and Gaudet (1955[1948]:157) write that, in their local sample, “the difference in deliberate
non-voting between people with more or less education can be completely accounted for by
the notion of interest.”
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In other words, those who have a predilection to participate in politics are likely
to show commitment to other institutions, such as the educational system.

Verba, Schlozman, and Brady (1995) later elaborated the socioeconomic sta-
tus model, focusing on the contingent causal processes that they argue generate
patterns of participation through the resources conferred by socioeconomic po-
sition. They claim:

... interest, information, efficacy, and partisan intensity provide the
desire, knowledge, and self-assurance that impel people to be en-
gaged by politics. But time, money, and skills provide the where-
withal without which engagement is meaningless. It is not sufficient
to know and care about politics. If wishes were resources, then beg-
gars would participate. (Verba et al. 1995:355-6)

They reach this conclusion through a series of regression models that predict
political participation. They use temporal order to establish causal order, and
they then claim to eliminate alternative theories that emphasize political in-
terests and engagement by showing that these variables have relatively weak
predictive power in their models.

Moreover, they identify education as the single strongest cause of political
participation. Beyond generating the crucial resources of time, money, and civic
skills, education shapes preadult experiences and transmits differences in family
background (see Verba et al. 1995, Figure 15.1). Education emerges as the
most powerful cause of engagement because it has the largest net association
with measures of political participation.

Nie, Junn, and Stehlik-Barry (1996) then built on the models of Verba and
his colleagues, specifying in detail the causal pathways linking education to po-
litical participation. For this work, the effects of education, family income, and
occupational prominence (again, the three basic dimensions of socioeconomic
status) on voting frequency are mediated by verbal proficiency, organizational
membership, and social network centrality. Nie et al. (1996:76) note that these
variables “almost fully explain the original bivariate relationship between edu-
cation and frequency of voting.”

Each of these first three examples, as noted earlier, is concerned with rela-
tionships that unfold over the lifecourse of the majority of individuals in most
industrialized societies. As such, these examples encompass some of the most
important substantive scholarship in sociology, economics, and political science.
At the same time, however, they pose some fundamental challenges for causal
analysis: measurement complications and potential nonmanipulability of the
causes of interest. Each of these deserves some comment before the narrower
and less complicated examples that follow are introduced.

First, the purported causal variables in these models are highly abstract
and internally heterogeneous. Consider the political science example. Polit-
ical participation takes many forms, from volunteer work to financial giving
and voting. Each of these, in turn, is itself heterogeneous, given that individ-
uals can contribute episodically and vote in only some elections. Furthermore,
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family background and socioeconomic status include at least three underlying
dimensions: family income, parental education, and occupational position. But
other dimensions of advantage, such as wealth and family structure, must also
be considered, as these are thought to be determinants of both an individual’s
educational attainment and also the resources that supposedly enable political
participation.'!

Scholars who pursue analysis of these causal effects must therefore devote
substantial energy to the development of measurement scales. Although very
important to consider, in this book we will not discuss measurement issues so
that we can focus closely on causal effect estimation strategies. But, of course,
it should always be remembered that, in the absence of agreement on issues of
how to measure a cause, few causal controversies can be resolved, no matter
what estimation strategy seems best to adopt.

Second, each of these examples concerns causal effects for individual char-
acteristics that are not easily manipulable through external intervention. Or,
more to the point, even when they are manipulable, any such induced variation
may differ fundamentally from the naturally occurring (or socially determined)
variation with which the models are most directly concerned. For example,
family background could be manipulated by somehow convincing a sample of
middle-class and working-class parents to exchange their children at particular
well-chosen ages, but the subsequent outcomes of this induced variation may
not correspond to the family background differences that the original models
attempt to use as explanatory differences.

As we will discuss later, whether nonmanipulability of a cause presents a
challenge to an observational data analyst is a topic of continuing debate in the
methodological and philosophical literature. We will discuss this complication at
several points in this book, including a section in the concluding chapter. But,
given that the measurement and manipulability concerns of the three broad
examples of this section present challenges at some level, we also draw on more
narrow examples throughout the book, as we discuss in the next section. For
these more recent and more narrow examples, measurement is generally less
controversial and potential manipulability is more plausible (and in some cases
is completely straightforward).

1.3.2 Narrow and Specific Examples

Throughout the book, we will introduce recent specific examples, most of which
can be considered more narrow causal effects that are closely related to the
broad causal relationships represented in the three examples presented in the
last section. These examples will include, for example, the causal effect of
education on mental ability, the causal effect of military service on earnings,
and the causal effect of felon disenfranchisement on election outcomes. To give
a sense of the general characteristics of these narrower examples, we describe in

HMoreover, education as a cause is somewhat ungainly as well. For economists who wish to
study the effects of learned skills on labor market earnings, simple variables measuring years
of education obtained are oversimplified representations of human capital.
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the remainder of this section four examples that we will use at multiple points
throughout the book: (1) the causal effect of Catholic schooling on learning,
(2) the causal effect of school vouchers on learning, (3) the causal effect of
manpower training on earnings, and (4) the causal effect of alternative voting
technology on valid voting.

The Causal Effect of Catholic Schooling on Learning

James S. Coleman and his colleagues presented evidence that Catholic schools
are more effective than public schools in teaching mathematics and reading to
equivalent students (see Coleman and Hoffer 1987; Coleman, Hoffer, and Kil-
gore 1982; Hoffer, Greeley, and Coleman 1985). Their findings were challenged
vigorously by other researchers who argued that public school students and
Catholic school students are insufficiently comparable, even after adjustments
for family background and measured motivation to learn (see Alexander and
Pallas 1983, 1985; Murnane, Newstead, and Olsen 1985; Noell 1982; Willms
1985; see Morgan 2001 for a summary of the debate). Although the challenges
were wide ranging, the most compelling argument raised (and that was foreseen
by Coleman and his colleagues) was that students who are most likely to benefit
from Catholic schooling are more likely to enroll in Catholic schools net of all
observable characteristics. Thus, self-selection on the causal effect itself may
generate a mistakenly large apparent Catholic school effect. If students instead
were assigned randomly to Catholic and public schools, both types of schools
would be shown to be equally effective on average.

To address the possibility that self-selection dynamics create an illusory
Catholic school effect, a later wave of studies then assessed whether or not
naturally occurring experiments were available that could be used to more ef-
fectively estimate the Catholic school effect. Using a variety of variables that
predict Catholic school attendance (e.g., share of the local population that is
Catholic) and putting forth arguments for why these variables do not directly de-
termine achievement, Evans and Schwab (1995), Hoxby (1996), and Neal (1997)
generated support for Coleman’s original conclusions.

The Causal Effect of School Vouchers on Learning

In response to a perceived crisis in public education in the United States, pol-
icymakers have introduced publicly funded school choice programs into some
metropolitan areas in an effort to increase competition among schools on the
assumption that competition will improve school performance and resulting stu-
dent achievement (see Chubb and Moe 1990; see also Fuller and Elmore 1996).
Although these school choice programs differ by school district, the prototypi-
cal design is the following. A set number of $3000 tuition vouchers redeemable
at private schools are made available to students resident in the public school
district, and all parents are encouraged to apply for one of these vouchers. The
vouchers are then randomly assigned among those who apply. Students who
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receive a voucher remain eligible to enroll in the public school to which their
residence status entitles them. But they can choose to enroll in a private school.
If they choose to do so, they hand over their $3000 voucher and pay any required
top-up fees to meet the private school tuition.

The causal effects of interest resulting from these programs are numerous.
Typically, evaluators are interested in the achievement differences between those
who attend private schools using vouchers and other suitable comparison groups.
Most commonly, the comparison group is the group of voucher applicants who
lost out in the lottery and ended up in public schools (see Howell and Peterson
2002; Hoxby 2003; Ladd 2002; Neal 2002). And, even though these sorts of
comparisons may seem entirely straightforward, the published literature shows
that considerable controversy surrounds how best to estimate these effects, es-
pecially given the real-world complexity that confronts the implementation of
randomization schemes (see Krueger and Zhu 2004; Peterson and Howell 2004).

For this example, other effects are of interest as well. A researcher might
wish to know how the achievement of students who applied for vouchers but
did not receive them changed in comparison with those who never applied for
vouchers in the first place (as this would be crucial for understanding how the
self-selecting group of voucher applicants may differ from other public school
students). More broadly, a researcher might wish to know the expected achieve-
ment gain that would be observed for a public school student who was randomly
assigned a voucher irrespective of the application process. This would necessi-
tate altering the voucher assignment mechanism, and thus it has not been an
object of research. Finally, the market competition justification for creating
these school choice policies implies that the achievement differences of primary
interest are those among public school students who attend voucher-threatened
public schools (i.e., public schools that feel as if they are in competition with
private schools but that did not feel as if they were in competition with private
schools before the voucher program was introduced).

The Causal Effect of Manpower Training on Earnings

The United States federal government has supported manpower training pro-
grams for economically disadvantaged citizens for decades (see LaLonde 1995).
Through a series of legislative renewals, these programs have evolved substan-
tially, and program evaluations have become an important area of applied work
in labor and public economics.

The services provided to trainees differ and include classroom-based
vocational education, remedial high school instruction leading to a general
equivalency degree, and on-the-job training (or retraining) for those program
participants who have substantial prior work experience. Moreover, the types
of individuals served by these programs are heterogeneous, including ex-felons,
welfare recipients, and workers displaced from jobs by foreign competition. Ac-
cordingly, the causal effects of interest are heterogeneous, varying with individ-
ual characteristics and the particular form of training provided.
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Even so, some common challenges have emerged across most program evalu-
ations. Ashenfelter (1978) discovered what has become known as “Ashenfelter’s
dip,” concluding after his analysis of training program data that

... all of the trainee groups suffered unpredicted earnings declines in
the year prior to training.... This suggests that simple before and
after comparisons of trainee earnings may be seriously misleading
evidence. (Ashenfelter 1978:55)

Because trainees tend to have experienced a downward spiral in earnings just
before receiving training, the wages of trainees would rise to some degree even
in the absence of any training. Ashenfelter and Card (1985) then pursued
models of these “mean reversion” dynamics, demonstrating that the size of
treatment effect estimates is a function of alternative assumptions about pre-
training earnings trajectories. They called for the construction of randomized
field trials to improve program evaluation.

LaLonde (1986) then used results from program outcomes for the National
Supported Work (NSW) Demonstration, a program from the mid-1970s that
randomly assigned subjects to alternative treatment conditions. Lal.onde ar-
gued that most of the econometric techniques used for similar program evalua-
tions failed to match the experimental estimates generated by the NSW data.
Since Lalonde’s 1986 paper, econometricians have continued to refine proce-
dures for evaluating both experimental and nonexperimental data from training
programs, focusing in detail on how to model the training selection mechanism
(see Heckman, LaLonde, and Smith 1999; Manski and Garfinkel 1992; Smith
and Todd 2005).

The Causal Effect of Alternative Voting Technology on Valid Voting

For specific causal effects embedded in the larger political participation debates,
we could focus on particular decision points — the effect of education on campaign
contributions, net of income, and so on. However, the politics literature is
appealing in another respect: outcomes in the form of actual votes cast and
subsequent election victories. These generate finely articulated counterfactual
scenarios.

In the contested 2000 presidential election in the United States, considerable
attention focused on the effect of voting technology on the election outcome in
Florida. Wand et al. (2001) published a refined version of their analysis that
spread like wildfire on the Internet in the week following the presidential election.
They asserted that

... the butterfly ballot used in Palm Beach County, Florida, in the
2000 presidential election caused more than 2,000 Democratic voters
to vote by mistake for Reform candidate Pat Buchanan, a number

larger than George W. Bush’s certified margin of victory in Florida.
(Wand et al. 2001:793)
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Reflecting on efforts to recount votes undertaken by various media outlets, Wand
and his colleagues identify the crucial contribution of their analysis:

Our analysis answers a counterfactual question about voter inten-
tions that such investigations [by media outlets of votes cast] can-
not resolve. The inspections may clarify the number of voters who
marked their ballot in support of the various candidates, but the
inspections cannot tell us how many voters marked their ballot for
a candidate they did not intend to choose. (Wand et al. 2001:804)

Herron and Sekhon (2003) then examined invalid votes that resulted from over-
votes (i.e., voting for more than one candidate), arguing that such overvotes
further hurt Gore’s vote tally in two crucial Florida counties. Finally, Mebane
(2004) then considered statewide voting patterns, arguing that if voters’ inten-
tions had not been thwarted by technology, Gore would have won the Florida
presidential election by 30,000 votes. One particularly interesting feature of this
example is that the precise causal effect of voting technology on votes is not of
interest, only the extent to which such causal effects aggregate to produce an
election outcome inconsistent with the preferences of those who voted.

1.4 Observational Data and Random-Sample
Surveys

When we discuss methods and examples throughout this book, we will usually
assume that the data have been generated by a relatively large random-sample
survey. We will also assume that the proportion and pattern of individuals
who are exposed to the cause are fixed in the population by whatever process
generates causal exposure.

We rely on the random-sample perspective because we feel it is the most nat-
ural framing of these methods for the typical social scientist, even though many
of the classic applications and early methodological pieces in this literature do
not reference random-sample surveys. For the examples just summarized, the
first three have been examined primarily with random-sample survey data, but
many of the others have not. Some, such as the manpower training example,
depart substantially from this sort of setup, as the study subjects for the treat-
ment in that example are a nonrandom and heterogeneous collection of welfare
recipients, ex-felons, and displaced workers.'?

12Partly for this reason, some of the recent literature (e.g., Imbens 2004) has made careful
distinctions between the sample average treatment effect (SATE) and the population average
treatment effect (PATE). In this book, we will focus most of our attention on the PATE (and
other conditional PATEs). We will generally write under the implicit assumption that a well-
defined population exists (generally a superpopulation with explicit characteristics) and that
the available data are a random sample from this population. However, much of our treatment
of these topics could be rewritten without the large random-sample perspective and focusing
only on the average treatment effect within the sample in hand. Many articles in this tradi-
tion of analysis adopt this alternative starting point (especially those relevant for small-scale
studies in epidemiology and biostatistics for which the “sample” is generated in such a way
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Pinning down the exact consequences of the data generation and sampling
scheme of each application is important for developing estimates of the expected
variability of a causal effect estimate. We will therefore generally modify the
random-sampling background when discussing what is known about the ex-
pected variability of the alternative estimators we will present. However, we
focus more in this book on parameter identification than on the expected vari-
ability of an estimator in a finite sample, as we discuss in the next section.

In fact, as the reader will notice in subsequent chapters, we often assume
that the sample is infinite. This preposterous assumption is useful for presen-
tation purposes because it simplifies matters greatly; we can then assume that
sampling error is zero and assert, for example, that the sample mean of an ob-
served variable is equal to the population expectation of that variable. But this
assumption is also an indirect note of caution: It is meant to appear preposter-
ous and unreasonable in order to reinforce the point that the consequences of
sampling error must always be considered in any empirical analysis.'?

Moreover, we will also assume for our presentation that the variables in the
data are measured without error. This perfect measurement assumption is, of
course, also entirely unreasonable. But it is commonly invoked in discussions
of causality and in many, if not most, other methodological pieces. We will
indicate in various places throughout the book when random measurement error
is especially problematic for the methods that we present. We leave it as self-
evident that nonrandom measurement error can be debilitating for all methods.

1.5 Identification and Statistical Inference

In the social sciences, identification and statistical inference are usually consid-
ered separately. In his 1995 book, Identification Problems in the Social Sciences,
the economist Charles Manski writes:

... it is useful to separate the inferential problem into statistical and
identification components. Studies of identification seek to char-
acterize the conclusions that could be drawn if one could use the
sampling process to obtain an unlimited number of observations.
Identification problems cannot be solved by gathering more of the
same kind of data. (Manski 1995:4)

He continues:

Empirical research must, of course, contend with statistical issues as
well as with identification problems. Nevertheless, the two types of

that a formal connection to a well-defined population is impossible). We discuss these issues in
substantial detail in Chapter 2, especially in the appendix on alternative population models.

13Because we will in these cases assume that the sample is infinite, we must then also assume
that the population is infinite. This assumption entails adoption of the superpopulation
perspective from statistics (wherein the finite population from which the sample is drawn is
regarded as one realization of a stochastic superpopulation). Even so, and as we will explain
in Chapter 2, we will not clutter the text of the book by making fine distinctions between the
observable finite population and its more encompassing superpopulation.
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inferential difficulties are sufficiently distinct for it to be fruitful to
study them separately. The study of identification logically comes
first. Negative identification findings imply that statistical inference
is fruitless: it makes no sense to try to use a sample of finite size to
infer something that could not be learned even if a sample of infinite
size were available. Positive identification findings imply that one
should go on to study the feasibility of statistical inference. (Manski
1995:5)

In contrast, in his 2002 book, Observational Studies, the statistician Paul
Rosenbaum sees the distinction between identification and statistical inference
as considerably less helpful:

The idea of identification draws a bright red line between two types
of problems. Is this red line useful? ... In principle, in a problem
that is formally not identified, there may be quite a bit of information
about (3, perhaps enough for some particular practical decision ....
Arguably, a bright red line relating assumptions to asymptotics is
less interesting than an exact confidence interval describing what
has been learned from the evidence actually at hand. (Rosenbaum
2002:185-6)

Rosenbaum’s objection to the bright red line of identification is issued in the
context of analyzing a particular type of estimator — an instrumental variable
estimator — that can offer an estimate of a formally identified parameter that is
so noisy in a dataset of any finite size that one cannot possibly learn anything
from the estimate. However, an alternative estimator — usually a least squares
regression estimator in this context — that does not formally identify a param-
eter because it remains asymptotically biased even in an infinite sample may
nonetheless provide sufficiently systematic information so as to remain useful,
especially if one has a sense from other aspects of the analysis of the likely
direction and size of the bias.

We accept Rosenbaum’s perspective; it is undeniable that an empirical re-
searcher who forsakes all concern with statistical inference could be led astray
by considering only estimates that are formally identified. But, for this book,
our perspective is closer to that of Manski, and we focus on identification prob-
lems almost exclusively. Nonetheless, where we feel it is important, we will offer
discussions of the relative efficiency of estimators, such as for matching estima-
tors and instrumental variable estimators. And we will discuss the utility of
comparing alternative estimators based on the criterion of mean-squared error.
Our primary goal, however, remains the clear presentation of material that can
help researchers to determine what assumptions must be maintained in order to
identify causal effects, as well as the selection of an appropriate technique that
can be used to estimate an identified causal effect from a sample of sufficient
size under whatever assumptions are justified.
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1.6 Causal Graphs as an Introduction
to the Remainder of the Book

After introducing the main pieces of the counterfactual model in Chapter 2, we
will then present conditioning techniques for causal effect estimation in Part
2 of the book. In Chapter 3, we will present a basic conditioning framework
using causal diagrams. Then, in Chapters 4 and 5, we will explain matching
and regression estimators, showing how they are complementary variants of a
more general conditioning approach.

In Part 3 of the book, we will then make the transition from “easy” to
“hard” instances of causal effect estimation, for which simple conditioning will
not suffice because relevant variables that determine causal exposure are not
observed. After presenting the general predicament in Chapter 6, we will then
offer Chapters 7 through 9 on instrumental variable techniques, mechanism-
based estimation of causal effects, and the usage of over-time data to estimate
causal effects.

Finally, in Chapter 10 we will provide a summary of some of the objections
that others have developed against the counterfactual model. And we will con-
clude the book with a broad discussion of the complementary modes of causal
inquiry that comprise causal effect estimation in observational social science.

In part because the detailed table of contents already gives an accurate ac-
counting of the material that we will present in the remaining chapters, we will
not provide a set of detailed chapter summaries here. Instead, we will conclude
this introductory chapter with three causal diagrams and the causal effect esti-
mation strategies that they suggest. These graphs allow us to foreshadow many
of the specific causal effect estimation strategies that we will present later.

Because the remainder of the material in this chapter will be reintroduced
and more fully explained later (primarily in Chapters 3, 6, and 8), it can be
skipped now without consequence. However, our experience in teaching this
material suggests that many readers may benefit from a quick graphical intro-
duction to the basic estimation techniques before considering the details of the
counterfactual framework for observational data analysis.

Graphical Representations of Causal Relationships

Judea Pearl (2000) has developed a general set of rules for representing causal
relationships with graph theory. We will provide a more complete introduction
to Pearl’s graph-theoretic modeling of causal relationships in Chapter 3, but
for now we use the most intuitive pieces of his graphical apparatus with only
minimal explanation. That these graphs are readily interpretable and provide
insight with little introduction is testament to the clarity of Pearl’s contribution
to causal analysis.

Consider the causal relationships depicted in the graph in Figure 1.1 and
suppose that these relationships are derived from a set of theoretical proposi-
tions that have achieved consensus in the relevant scholarly community. For this
graph, each node represents an observable random variable. Each directed edge
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Figure 1.1: A causal diagram in which back-door paths from D to Y can be
blocked by observable variables and C' is an instrumental variable for D.

(i.e., single-headed arrow) from one node to another signifies that the variable
at the origin of the directed edge causes the variable at the terminus of the di-
rected edge. Each curved and dashed bidirected edge (i.e., double-headed arrow)
signifies the existence of common unobserved nodes that cause both terminal
nodes. Bidirected edges represent common causes only, not mere correlations
with unknown sources and not relationships of direct causation between the two
variables that they connect.

Now, suppose that the causal variable of primary interest is D and that the
causal effect that we wish to estimate is the effect of D on Y. The question to
consider is the following: Given the structure of causal relationships represented
in the graph, which variables must we observe and then use in a data analysis
routine to estimate the size of the causal effect of D on Y7

Before answering this question, consider some of the finer points of the graph.
In Pearl’s framework, the causal variable D has a probability distribution. The
causal effects emanating from the variables A, B, and C are explicitly repre-
sented in the graph by directed edges, but the relative sizes of these effects are
not represented in the graph. Other causes of D that are unrelated to A, B,
and C are left implicit, as it is merely asserted in Pearl’s framework that D has
a probability distribution net of the systematic effects of A, B, and C' on D.'

M There is considerable controversy over how to interpret these implicit causes. For some,
the assertion of their existence is tantamount to asserting that causality is fundamentally prob-
abilistic. For others, these implicit causes merely represent causes unrelated to the systematic
causes of interest. Under this interpretation, causality can still be considered a structural,
deterministic relation. The latter position is closest to the position of Pearl (2000; see sections
1.4 and 7.5).
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The outcome variable, Y, is likewise caused by F', G, and D, but there are other
implicit causes that are unrelated to F', G, and D that give Y its probability
distribution.

This graph is not a full causal model in Pearl’s framework because some
second-order causes of D and Y create supplemental dependence between the
observable variables in the graph.'® These common causes are represented in
the graph by bidirected edges. In particular, A and B share some common
causes that cannot be more finely specified by the state of knowledge in the
field. Likewise, A and F' share some common causes that also cannot be more
finely specified by the state of knowledge in the field.

The Three Basic Strategies to Estimate Causal Effects

Three basic strategies for estimating causal effects will be covered in this book.
First, one can condition on variables (with procedures such as stratification,
matching, weighting, or regression) that block all back-door paths from the
causal variable to the outcome variable. Second, one can use exogenous varia-
tion in an appropriate instrumental variable to isolate covariation in the causal
and outcome variables. Third, one can establish an isolated and exhaustive
mechanism that relates the causal variable to the outcome variable and then
calculate the causal effect as it propagates through the mechanism.

Consider the graph in Figure 1.1 and the opportunities it presents to estimate
the causal effect of D on Y with the conditioning estimation strategy. First note
that there are two back-door paths from D to Y in the graph that generate a
supplemental noncausal association between D and Y: (1) D to A to F to
Y and (2) D to B to A to F to Y.'® Both of these back-door paths can be
blocked in order to eliminate the supplemental noncausal association between
D and Y by observing and then conditioning on A and B or by observing and
then conditioning on F'. These two conditioning strategies are general in the
sense that they will succeed in producing consistent causal effect estimates of
the effect of D on Y under a variety of conditioning techniques and in the
presence of nonlinear effects. They are minimally sufficient in the sense that
one can observe and then condition on any subset of the observed variables in
{A,B,C, F,G} as long as the subset includes either {4, B} or {F}.!7

15Pearl would refer to this graph as a semi-Markovian causal diagram rather than a fully
Markovian causal model (see Pearl 2000, Section 5.2).

16 As we note later in Chapter 3 when more formally defining back-door paths, the two paths
labeled “back-door paths” in the main text here may represent many back-door paths because
the bidirected edges may represent more than one common cause of the variables they point
to. Even so, the conclusions stated in the main text are unaffected by this possibility because
the minimally sufficient conditioning strategies apply to all such additional back-door paths
as well.

7For the graph in Figure 1.1, one cannot effectively estimate the causal effect of D on Y
by simply conditioning only on A. We explain this more completely in Chapter 3, where we
introduce the concept of a collider variable. The basic idea is that conditioning only on A,
which is a collider, creates dependence between B and F' within the strata of A. As a result,
conditioning only on A fails to block all back-door paths from D to Y.
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(Y)

Figure 1.2: A causal diagram in which C is no longer an instrumental variable
for D.

Now, consider the second estimation strategy, which is to use an instrumental
variable for D to estimate the effect of D on Y. This strategy is completely
different from the conditioning strategy just summarized. The goal is not to
block back-door paths from the causal variable to the outcome variable but
rather to use a localized exogenous shock to both the causal variable and the
outcome variable in order to estimate indirectly the relationship between the
two. For the graph in Figure 1.1, the variable C is a valid instrument for D
because it causes D but does not have an effect on Y except though its effect
on D. As a result, one can estimate consistently the causal effect of D on Y by
taking the ratio of the relationships between C and Y and between C' and D.'®
For this estimation strategy, A, B, F', and G do not need to be observed if the
only interest of a researcher is the causal effect of D on Y.

To further consider the differences between these first two strategies, now
consider the alternative graph presented in Figure 1.2. There are five possible
strategies for estimating the causal effect of D on Y for this graph, and they
differ from those for the set of causal relationships in Figure 1.1 because a third
back-door path is now present: D to C to H to Y. For the first four strategies,
all back-door paths can be blocked by conditioning on {A, B,C}, {4, B,H},

18 Although all other claims in this section hold for all distributions of the random variables
and all types of nonlinearity of causal relationships, one must assume for IV estimation what
Pearl labels a linearity assumption. What this assumption means depends on the assumed
distribution of the variables. It would be satisfied if the causal effect of C' on D is linear and
the causal effect of D on Y is linear. Both of these would be true, for example, if both C and
D were binary variables and Y were an interval-scaled variable, and this is the most common
scenario we will consider in this book.
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Figure 1.3: A causal diagram in which M and N represent an isolated and
exhaustive mechanism for the causal effect of D on Y.

{F,C}, or {F,H}. For the fifth strategy, the causal effect can be estimated by
conditioning on H and then using C as an instrumental variable for D.

Finally, to see how the third mechanistic estimation strategy can be used
effectively, consider the alternative graph presented in Figure 1.3. For this
graph, four feasible strategies are available as well. The same three strategies
proposed for the graph in Figure 1.1 can be used. But, because the mediating
variables M and N completely account for the causal effect of D on Y, and
because M and N are not determined by anything other than D, the causal
effect of D on Y can also be calculated by estimation of the causal effect of D
on M and N and then subsequently the causal effects of M and N on Y. And,
because this strategy is available, if the goal is to obtain the causal effect of D
on Y, then the variables A, B, C, F, and G can be ignored.'’

In an ideal scenario, all three of these forms of causal effect estimation could
be used to obtain estimates, and all three would generate equivalent estimates
(subject to the expected variation produced by a finite sample from a popula-
tion). If a causal effect estimate generated by conditioning on variables that
block all back-door paths is similar to a causal effect estimate generated by a
valid instrumental variable estimator, then each estimate is bolstered.’’ Better

9Note that, for the graph in Figure 1.3, both M and N must be observed. If, instead, only
M were observed, then this mechanistic estimation strategy will not identify the full causal
effect of D on Y. However, if M and N are isolated from each other, as they are in Figure 1.3,
the portion of the causal effect that passes through M or N can be identified in the absence
of observation of the other. We discuss these issues in detail in Chapters 6 and 8.

20 As we discuss in detail in Chapter 7, estimates generated by conditioning techniques and
by valid instrumental variables will rarely be equivalent when individual-level heterogeneity
of the causal effect is present (even in an infinite sample).
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yet, if a mechanism-based strategy then generates a third equivalent estimate, all
three causal effect estimates would be even more convincing. And, in this case,
an elaborated explanation of how the causal effect comes about is also available,
as a researcher could then describe how the causal effect is propagated through
the intermediate mechanistic variables M and N.

The foregoing skeletal presentation of causal effect estimation is, of course,
inherently misleading. Rarely does a state of knowledge prevail in a field that
allows a researcher to specify causes as cleanly as in the causal diagrams in these
figures. Accordingly, estimating causal effects is a great deal more challenging.

Nonetheless, beyond introducing the basic estimation techniques, these sim-
ple graphs convey two important sets of points that we will emphasize through-
out the book. First, there is often more than one way to estimate a causal
effect, and simple rules such as “control for all other causes of the outcome vari-
able” can be poor guides for practice. For example, for the graph in Figure 1.1,
there are two completely different and plausible conditioning strategies: either
condition on F or on A and B. The strategy to “control for all other causes
of the outcome variable” is misleading because (1) it suggests that one should
condition on G as well, which is unnecessary if all one wants to obtain is the
causal effect of D on Y and (2) it does not suggest that one can estimate the
causal effect of D on Y by conditioning on a subset of the variables that cause
the causal variable of interest. In this case, one can estimate the causal effect
of D on Y without conditioning on any of the other causes of Y, but instead
by conditioning on the variables that cause D. Even so, this last conditioning
strategy should not be taken too far. One need not condition on C' when also
conditioning on both A and B. Not only is this unnecessary (just as for G with
the other conditioning strategy), in doing so one fails to use C' in its most useful
way: as an instrumental variable that can be used to consistently estimate the
causal effect of D on Y, ignoring completely A, B, F, and G.

Second, the methods we will present, as we believe is the case with all es-
timation strategies in the social sciences, are not well suited to discovering the
causes of outcomes and then comprehensively estimating the relative effects of
all alternative causes. The way in which we have presented these graphs is
telling on this point. Consider again the question that we posed after intro-
ducing the graph in Figure 1.1. We asked a simpler version of the following
question: Given the structure of causal relationships that relate A, B, C, D, F,
G, and Y to each other (represented by presupposed edges that signify causal
effects of unknown magnitude), which variables must we observe and then use in
a data analysis routine to estimate the size of the causal effect of D on Y7 This
sort of constrained question (i.e., beginning with the conditional “given” clause)
is quite a bit from different from seeking to answer the more general question:
What are the causes of Y7 The methods that we will present are not irrelevant
to this broader question, but they are designed to answer simpler subordinate
questions.

Consider Figure 1.1 again. If we had estimated the effect of D on Y by
observing only A, B, D, and Y and then conditioning on A and B, and if we
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then found that D had a trivially small effect on Y, we would then want to
observe both F' and G and think further about whether what we considered to
be common causes of both A and F' might be known and observable after all.
However, if we did not have a theory and its associated state of knowledge that
suggested that F' and G have causal effects on Y (i.e., and instead thought that
D was the only systematic cause of Y'), then determining that D has a small to
nonexistent effect on Y would not help us to find any of the other causes of Y’
that may be important.

The limited nature of the methods that we will present implies two important
features of causal effect estimation from the perspective of counterfactual mod-
eling. To offer a precise and defendable causal effect estimate, a well-specified
theory is needed to justify assumptions about underlying causal relationships.
And, if theory is poorly specified, or divergent theories exist in the relevant schol-
arly community that support alternative assumptions about underlying causal
relationships, then alternative causal effect estimates may be considered valid
conditional on the validity of alternative maintained assumptions. We discuss
these issues in depth in the concluding section of the book, after presenting the
framework and the methods that generate estimates that must then be placed
in their proper context.



Chapter 2

The Counterfactual Model

In this chapter, we introduce the foundational components of the counterfactual
model of causality, which is also known as the potential outcome model. We
first discuss causal states and the relationship between potential and observed
outcome variables. Then we introduce average causal effects and discuss the
assumption of causal effect stability, which is maintained in most applications
of the counterfactual model. We conclude with a discussion of simple estimation
techniques, in which we demonstrate the importance of considering the relation-
ship between the potential outcomes and the process of causal exposure.

2.1 Causal States and Potential Outcomes

For a binary cause, the counterfactual framework presupposes the existence
of two well-defined causal states to which all members of the population of
interest could be exposed.! These two states are usually labeled treatment and
control. When a many-valued cause is analyzed, the convention is to refer to
the alternative states as alternative treatments.

Consider the examples introduced in Section 1.3. Some of these examples
have well-defined states, and others do not. The manpower training example
is completely straightforward, and the two states are whether an individual is
enrolled in a training program or not. The Catholic school example is simi-
lar. Here, the alternative states are “Catholic school” and “public school.” The
only complication with these examples is the possibility of inherent differences
across training programs and Catholic schools. If any such treatment-site het-
erogeneity exists, then stratified analyses may be necessary, perhaps by regions

We justify the importance of carefully defining the boundaries of the population of interest
when presenting average causal effects later in this chapter. As we note there, we also provide
an appendix to this chapter, in which we explain the general superpopulation model that we
will adopt when the boundaries of the population can be clearly defined and when we have
the good fortune of having a large random sample from the population.

31
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of the country, size of the program, or whatever other dimension suggests that
variability of the causal states deserves explicit modeling.?

Other examples have less clearly defined causal states. Consider the classic
political participation line of inquiry. For the relationship between socioeco-
nomic status and political participation, there are many underlying well-defined
causal effects, such as the effect of having obtained at least a college degree on
the frequency of voting in local elections and the effect of having a family income
greater than some cutoff value on the amount of money donated to political cam-
paigns. Well-defined causal states exist for these narrow causal effects, but it is
not clear at all that well-defined causal states exist for the broad and internally
differentiated concepts of socioeconomic status and political participation.

Finally, consider a related political science example. Beyond the voting
technology effect discussed in Subsection 1.3.2 on the outcome of the 2000 pres-
idential election, a broader set of question has been asked. To what extent do
restrictions on who can vote determine who wins elections? A recent and highly
publicized variant of this question is this: What is the effect on election outcomes
of laws that forbid individuals with felony convictions from voting?® Uggen
and Manza (2002) make the straightforward claim that the 2000 presidential
election would have gone in favor of Al Gore if felons and ex-felons had been
permitted to vote:

Although the outcome of the extraordinarily close 2000 presiden-
tial election could have been altered by a large number of factors, it
would almost certainly have been reversed had voting rights been ex-
tended to any category of disenfranchised felons. (Uggen and Manza
2002:792)

Uggen and Manza (2002) then note an important limitation of their conclusion:

... our counterfactual examples rely upon a ceteris paribus assump-
tion — that nothing else about the candidates or election would
change save the voting rights of felons and ex-felons. (Uggen and
Manza 2002:795)

When thinking about this important qualification, one might surmise that a
possible world in which felons had the right to vote would probably also be a
world in which the issues (and probably candidates) of the election would be
very different. Thus, the most challenging definitional issue here is not who
counts as a felon or whether or not an individual is disenfranchised, but rather
how well the alternative causal states can be characterized.

As this example illustrates, it is important that the “what would have been”
nature of the conditionals that define the causal states of interest be carefully

2Hong and Raudenbush (2006) provide a careful analysis of retention policies in U.S. pri-
mary education, implementing this type of treatment-site stratification based on the average
level of retention in different schools.

3Behrens, Uggen, and Manza (2003), Manza and Uggen (2004), and Uggen, Behrens, and
Manza (2005) give historical perspective on this question.
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laid out. When a ceteris paribus assumption is relied on to rule out other
contrasts that are nearly certain to occur at the same time, the posited causal
states are open to the charge that they are too metaphysical to justify the
pursuit of causal analysis.*

Given the existence of well-defined causal states, causal inference in the
counterfactual tradition proceeds by stipulating the existence of potential out-
come random variables that are defined over all individuals in the population of
interest. For a binary cause, we will denote potential outcome random variables
as Y! and Y°.° We will also adopt the notational convention from statistics
in which realized values for random variables are denoted by lowercase letters.
Accordingly, y! is the potential outcome in the treatment state for individual
i, and y? is the potential outcome in the control state for individual i. The
individual-level causal effect of the treatment is then defined as

0; :yil —y?. (2.1)

Individual-level causal effects can be defined in ways other than as a linear dif-
ference in the potential outcomes. For example, the individual-level causal effect
could be defined instead as the ratio of one individual-level potential outcome
to another, as in y!/y?. In some applications, there may be advantages to
these sorts of alternative definitions at the individual level, but the overwhelm-
ing majority of the literature represents individual-level causal effects as linear
differences, as in Equation (2.1).%

4This may well be the case with the felon disenfranchisement example, but this is a matter
for scholars in political sociology and criminology to debate. Even if the charge sticks, this
particular line of research is nonetheless still an important contribution to the empirical liter-
ature on how changing laws to allow felons and ex-felons to vote could have potential effects
on election outcomes.

5There is a wide variety of notation in the potential outcome and counterfactuals literature,
and we have adopted the notation that we feel is the easiest to grasp. However, we should note
that Equation (2.1) and its elements are often written as one of the following alternatives:

A; = Y1 — Yo,
62' — }/it 7Y'icr
Ti = ¥i(l) —wi(0),

and variants thereof. We use the right-hand superscript to denote the potential treatment
state of the corresponding potential outcome variable, but other authors use the right-hand
subscript or parenthetical notation. We also use numerical values to refer to the treatment
states, but other authors (including us, see Morgan 2001, Winship and Morgan 1999, and
Winship and Sobel 2004) use values such as ¢ and ¢ for the treatment and control states,
respectively. There is also variation in the usage of uppercase and lowercase letters. We do
not claim that everyone will agree that our notation is the easiest to grasp, and it is certainly
not as general as, for example, the parenthetic notation. But it does seem to have proven
itself in our own classes, offering the right balance between specificity and compactness.
SMoreover, the individual-level causal effect could be defined as the difference between
the expectations of individual-specific random variables, as in E[Y;!] — E[Y}], where E[] is
the expectation operator from probability theory (see, for a clear example of this alternative
setup, King et al. 1994:76-82). In thinking about individuals self-selecting into alternative
treatment states, it can be useful to set up the treatment effects in this way. In many ap-
plications, individuals are thought to consider potential outcomes with some recognition of
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2.2 Treatment Groups and Observed Outcomes

For a binary cause with two causal states and associated potential outcome
variables Y and Y, the convention in the counterfactuals literature is to define
a causal exposure variable, D, which takes on two values: D is equal to 1 for
members of population who are exposed to the treatment state and equal to 0
for members of the population who are exposed to the control state. Exposure to
the alternative causal states is determined by a particular process, typically an
individuals’s decision to enter one state or another, an outside actor’s decision
to allocate individuals to one state or another, a planned random allocation
carried out by an investigator, or some combination of these alternatives.

By convention, those who are exposed to the treatment state are referred
to as the treatment group whereas those who are exposed to the control state
are referred to as the control group. Because D is defined as a population-
level random variable (at least in most cases in observational data analysis), the
treatment group and control group exist in the population as well as the observed
data. Throughout this book, we will use this standard terminology, referring
to treatment and control groups when discussing those who are exposed to
alternative states of a binary cause. If more than two causal states are of interest,
then we will shift to the semantics of alternative treatments and corresponding
treatment groups, thereby discarding the baseline labels of control state and
control group. Despite our adoption of this convention, we could rewrite all
that follows referring to members of the population as what they are: those
who are exposed to alternative causal states.

When we refer to individuals in the observed treatment and control groups,
we will again adopt the notational convention from statistics in which realized
values for random variables are denoted by lowercase letters. Accordingly, the
random variable D takes on values of d; = 1 for each individual 7 who is an
observed member of the treatment group and d; = 0 for each individual ¢ who
is an observed member of the control group.

Given these definitions of Y1, Y° and D (as well as their realizations v},
yY, d;), we can now define the observed outcome variable Y in terms of them.
We can observe values for a variable Y as y; = y} for individuals with d; = 1
and as y; = y) for individuals with d; = 0. The observable outcome variable Y’
is therefore defined as

Yy = Y'ifD=1,
Y = Y%ifD=0.

the inherent uncertainty of their beliefs, which may properly reflect true variability in their
potential outcomes. But, when data for which a potential outcome is necessarily observed
for any individual as a scalar value (via an observational outcome variable, defined later) are
analyzed, this individual-level, random-variable definition is largely redundant. Accordingly,
we will denote individual-level potential outcomes as values such as yi1 and y?, regarding
these as realizations of population-level random variables Y and Y9 while recognizing, at
least implicitly, that they could also be regarded as realizations of individual-specific random
variables Yil and YZ.O,
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Table 2.1: The Fundamental Problem of Causal Inference

Group Yyl Yo

Treatment group (D = 1) Observable as Y Counterfactual
Control group (D = 0) Counterfactual ~ Observable as Y

This paired definition is often written compactly as
Y =DY'+ (1-D)Y°. (2.2)

In words, one can never observe the potential outcome under the treatment
state for those observed in the control state, and one can never observe the
potential outcome under the control state for those observed in the treatment
state. This impossibility implies that one can never calculate individual-level
causal effects.

Holland (1986) describes this challenge as the fundamental problem of causal
inference in his widely read introduction to the counterfactual model. Table 2.1
depicts the problem. Causal effects are defined within rows, which refer to
groups of individuals in the treatment state or in the control state. However,
only the diagonal of the table is observable, thereby rendering impossible the di-
rect calculation of individual-level causal effects merely by means of observation
and then subtraction.”

As shown clearly in Equation (2.2), the outcome variable Y, even if we
could enumerate all of its individual-level values y; in the population, reveals
only half of the information contained in the underlying potential outcome vari-
ables. Individuals contribute outcome information only from the treatment state
in which they are observed. This is another way of thinking about Holland’s
fundamental problem of causal inference. The outcome variables we must ana-
lyze — labor market earnings, test scores, and so on — contain only a portion of
the information that would allow us to directly calculate causal effects for all
individuals.

2.3 The Average Treatment Effect

Because it is typically impossible to calculate individual-level causal effects, we
focus attention on the estimation of aggregated causal effects, usually alternative

7As Table 2.1 shows, we are more comfortable than some writers in using the label “coun-
terfactual” when discussing potential outcomes. Rubin (2005), for example, avoids the term
counterfactual, under the argument that potential outcomes become counterfactual only after
treatment assignment has occurred. Thus no potential outcome is ever ez ante counterfactual.
We agree, of course. But, because our focus is on observational data analysis, we find the coun-
terfactual label useful for characterizing potential outcomes that are rendered unobservable
ex post to the treatment assignment/selection mechanism.
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average causal effects. With E[.] denoting the expectation operator from prob-
ability theory, the average treatment effect in the population is

E[f] = E[Y'-Y" (2.3)
E[Y' - E[Y"].

The second line of Equation (2.3) follows from the linearity of the expectation
operator: The expectation of a difference is equal to the difference of the two
expectations.®

For Equation (2.3), the expectation is defined with reference to the popula-
tion of interest. For the political science examples in Chapter 1, the population
could be “all eligible voters” or “all eligible voters in Florida.” For other exam-
ples, such as the manpower training example, the population would be defined
similarly as “all adults eligible for training,” and eligibility would need to be
defined carefully. Thus, to define average causal effects and then interpret esti-
mates of them, it is crucial that researchers clearly define the characteristics of
the individuals in the assumed population of interest.’

Note also that the subscripting on 7 for §; has been dropped for Equation
(2.3). Even so, § is not necessarily constant in the population, as it is a random
variable just like Y and Y°. We can drop the subscript  in this equation
because the causal effect of a randomly selected individual from the population
is equal to the average causal effect across individuals in the population. We will
at times throughout this book reintroduce redundant subscripting on 7 in order
to reinforce the inherent individual-level heterogeneity of the potential outcomes
and the causal effects they define, but we will be clear when we are doing so.

Consider the Catholic school example from Subsection 1.3.2 that demon-
strates the relationship between observed and potential outcomes and how these
are related to typical estimation of the average causal effect in Equation (2.3).
For the Catholic school effect on learning, the potential outcome under the
treatment, y}, is the what-if achievement outcome of individual i if he or she
were enrolled in a Catholic school. The potential outcome under the control, 32,
is the what-if achievement outcome of individual 7 if he or she were enrolled in
a public school. Accordingly, the individual-level causal effect, §;, is the what-if
difference in achievement that could be calculated if we could simultaneously ed-
ucate individual i in both a Catholic school and a public school.'” The average

8However, more deeply, it also follows from the assumption that the causal effect is defined
as a linear difference at the individual level, which allows the application of expectations in
this simple way to characterize population-level average effects.

9 And, regardless of the characterization of the features of the population, we will assume
throughout this book that the population is a realization of an infinite superpopulation. We
discuss our decision to adopt this underlying population model in an appendix to this chapter.
Although not essential to understanding most of the material in this book, some readers may
find it helpful to read that appendix now in order to understand how these definitional issues
are typically settled in this literature.

10However, it is a bit more complex than this. Now that we have introduced a real-world
scenario, other assumptions must also be invoked, notably the stable unit treatment value
assumption, introduced and explained in the next section.
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causal effect, F[d], is then the mean value among all students in the population
of these what-if differences in test scores. In general, the average causal effect is
equal to the expected value of the what-if difference in test scores for a randomly
selected student from the population.

2.4 The Stable Unit Treatment Value
Assumption

In most applications, the counterfactual model retains its transparency through
the maintenance of a very simple but strong assumption known as the stable
unit treatment value assumption or SUTVA (see Rubin 1980b, 1986). In eco-
nomics, this is sometimes referred to as a no-macro-effect or partial equilibrium
assumption (see Heckman 2000, 2005 and Garfinkel, Manski, and Michalopoulos
1992 for the history of these ideas and Manski and Garfinkel 1992 for examples).
SUTVA, as implied by its name, is a basic assumption of causal effect stability
that requires that the potential outcomes of individuals be unaffected by po-
tential changes in the treatment exposures of other individuals. In the words of
Rubin (1986:961), who developed the term,

SUTVA is simply the a priori assumption that the value of Y for
unit v when exposed to treatment ¢ will be the same no matter
what mechanism is used to assign treatment ¢ to unit u and no
matter what treatments the other units receive.

Consider the idealized example in Table 2.2, in which SUTVA is violated because
the treatment effect varies with treatment assignment patterns. For the idealized
example, there are three randomly drawn subjects from a population of interest,
and the study is designed such that at least one of the three study subjects
must receive the treatment and at least one must receive the control. The first
column of the table gives the six possible treatment assignment patterns.The
first row of Table 2.2 presents all three ways to assign one individual to the
treatment and the other two to the control, as well the potential outcomes for
each of the three subjects. Subtraction within the last column shows that the
individual-level causal effect is 2 for all three individuals. The second row of
Table 2.2 presents all three ways to assign two individuals to the treatment and
one to the control. As shown in the last column of the row, the individual-level
causal effects implied by the potential outcomes are now 1 instead of 2. Thus,
for this idealized example, the underlying causal effects are a function of the
treatment assignment patterns, such that the treatment is less effective when
more individuals are assigned to it. For SUTVA to hold, the potential outcomes
would need to be identical for both rows of the table.

This type of treatment effect dilution is only one way in which SUTVA can
be violated. More generally, suppose that d is an N x 1 vector of treatment
indicator variables for N individuals (analogous to the treatment assignment
vectors in the first column of Table 2.2), and define potential outcomes gen-
erally as functions of the vector d. The outcome for individual ¢ under the
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Table 2.2: A Hypothetical Example in Which SUTVA is Violated

Treatment assignment patterns Potential outcomes
_dlzl- _d1:0_ _dlzo_ y%:S y?:l
do=0 |or| do=1 |or| do=0 Ys=3 yo=1
| ds=0] | ds=0] [ ds=1] wyi=3 =1
[(di=17] [di=0] [d=1] yl=2 yi=1
dy=1 |or| do=1 |or| do=0 ys=2 yo=1
| ds=0] | ds=1] [ds=1] gj=2  yi=1

treatment is y!(d), and the outcome for individual i under the control is y?(d).
Accordingly, the individual-level causal effect for individual 7 is §;(d). SUTVA is
what allows us to write y} = y!(d) and 39 = yY(d) and, as a result, assert that
individual-level causal effects §; exist that are independent of the assignment
process itself.'!

Sometimes it is argued that SUTVA is so restrictive that we need an alter-
native conception of causality for the social sciences. We agree that SUTVA is
very sobering. However, our position is that SUTVA reveals the limitations of
observational data and the perils of immodest causal modeling rather than the
limitations of the counterfactual model itself. Rather than consider SUTVA as
overly restrictive, researchers should always reflect on the plausibility of SUTVA
in each application and use such reflection to motivate a clear discussion of the
meaning and scope of a causal effect estimate.

Consider the example of the Catholic school effect again. For SUTVA to
hold, the effectiveness of Catholic schooling cannot be a function of the number
(and/or composition) of students who enter the Catholic school sector. For
a variety of reasons — endogenous peer effects, capacity constraints, and so
on — most school effects researchers would probably expect that the Catholic
school effect would change if large numbers of public school students entered
the Catholic school sector. As a result, because there are good theoretical
reasons to believe that macro effects would emerge if Catholic school enrollments
ballooned, it may be that researchers can estimate the causal effect of Catholic
schooling only for those who would typically choose to attend Catholic schools,
but also subject to the constraint that the proportion of students educated in
Catholic schools remain relatively constant. Accordingly, it may be impossible
to determine from any data that could be collected what the Catholic school
effect on achievement would be under a new distribution of students across
school sectors that would result from a large and effective policy intervention.

HIn other words, if SUTVA is violated, then Equation (2.1) must be written in its most
general form as §;(d) = y}(d) — y?(d). In this case, individual-level treatment effects could
be different for every possible configuration of treatment exposures.
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As aresult, the implications of research on the Catholic school effect for research
on school voucher programs (see Subsection 1.3.2) may be quite limited, and
this has not been clearly enough recognized by some (see Howell and Peterson
2002, Chapter 6).

Consider also the manpower training example introduced in Subsection 1.3.2.
Here, the suitability of SUTVA may depend on the particular training program.
For small training programs situated in large labor markets, the structure of
wage offers to retrained workers may be entirely unaffected by the existence of
the training program. However, for a sizable training program in a small labor
market, it is possible that the wages on offer to retrained workers would be a
function of the way in which the price of labor in the local labor market responds
to the movement of trainees in and out of the program (as might be the case in
a small company town after the company has just gone out of business and a
training program is established). As a result, SUTVA may be reasonable only
for a subset of the training sites for which data have been collected.

Finally, consider SUTVA in the context of an example that we will not con-
sider in much detail in this book: the evaluation of the effectiveness of manda-
tory school desegregation plans in the 1970s on the subsequent achievement of
black students. Gathering together the results of a decade of research, Crain
and Mahard (1983) conducted a meta-analysis of 93 studies of the desegregation
effect on achievement. They argued that the evidence suggests an increase of
.3 standard deviations in the test scores of black students across all studies.'?
It seems undeniable that SUTVA is violated for this example, as the effect of
moving from one school to another must be a function of relative shifts in racial
composition across schools. Breaking the analysis into subsets of cities where the
compositional shifts were similar could yield average treatment effect estimates
that can be more clearly interpreted. In this case, SUTVA would be abandoned
in the collection of all desegregation events, but it could then be maintained
for some groups (perhaps in cities where the compositional shift was relatively
small).

In general, if SUTVA is maintained but there is some doubt about its validity,
then certain types of marginal effect estimates can usually still be defended.
The idea here would be to state that the estimates of average causal effects
hold only for what-if movements of a very small number of individuals from one
hypothetical treatment state to another. If more extensive what-if contrasts are
of interest, such as would be induced by a widespread intervention, then SUTVA
would need to be dropped and variation of the causal effect as a function of

12 As reviewed by Schofield (1995) and noted in Clotfelter (2004), most scholars now accept
that the evidence suggests that black students who were bused to predominantly white schools
experienced small positive reading gains but no substantial mathematics gains. Cook and
Evans (2000:792) conclude that “... it is unlikely that efforts at integrating schools have been
an important part of the convergence in academic performance [between whites and blacks],
at least since the early 1970s” (see also Armor 1995; Rossell, Armor, and Walberg 2002).
Even so, others have argued that the focus on test score gains has obscured some of the
true effectiveness of desegregation. In a review of these longer-term effects, Wells and Crain
(1994:552) conclude that “interracial contact in elementary and secondary school can help
blacks overcome perpetual segregation.”



40 Chapter 2. The Counterfactual Model

treatment assignment patterns would need to be modeled explicitly. This sort
of modeling can be very challenging and generally requires a full model of causal
effect exposure that is grounded on a believable theoretical model that sustains
subtle predictions about alternative patterns of individual behavior. But it is
not impossible, and it represents a frontier of research in many well-established
causal controversies (see Heckman 2005, Sobel 2006).

2.5 Treatment Assignment and Observational
Studies

A researcher who wishes to estimate the effect of a treatment that he or she
can control on an outcome of interest typically designs an experiment in which
subjects are randomly assigned to alternative treatment and control groups.
Other types of experiments are possible, as we described earlier in Chapter 1, but
randomized experiments are the most common research design when researchers
have control over the assignment of the treatment.

After randomization of the treatment, the experiment is run and the values
of the observed outcome, y;, are recorded for those in the treatment group and
for those in the control group. The mean difference in the observed outcomes
across the two groups is then anointed the estimated average causal effect, and
discussion (and any ensuing debate) then moves on to the particular features of
the experimental protocol and the degree to which the pool of study participants
reflects the population of interest for which one would wish to know the average
treatment effect.

Consider this randomization research design with reference to the underlying
potential outcomes defined earlier. For randomized experiments, the treatment
indicator variable D is forced by design to be independent of the potential out-
come variables Y! and Y°. (However, for any single experiment with a finite
set of subjects, the values of d; will be related to the values of y} and 3? be-
cause of chance variability.) Knowing whether or not a subject is assigned to
the treatment group in a randomized experiment yields no information what-
soever about a subject’s what-if outcome under the treatment state, yil7 or,
equivalently, about a subject’s what-if outcome under the control state, y.
Treatment status is therefore independent of the potential outcomes, and the
treatment assignment mechanism is said to be ignorable.'® This independence
assumption is usually written as

(YO, YY) 1L D, (2.4)

where the symbol Il denotes independence and where the parentheses enclosing

13Ignorability holds in the weaker situation in which S is a set of observed variables that
completely characterize treatment assignment patterns and in which (Y°, Y1) 1. D | S. Thus
treatment assignment is ignorable when the potential outcomes are independent of D, con-
ditional on S. We will offer a more complete discussion of ignorability in the next three
chapters.
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Y9 and Y! stipulate that D must be jointly independent of all functions of the
potential outcomes (such as §). For a properly run randomized experiment,
learning the treatment to which a subject has been exposed gives no information
whatsoever about the size of the treatment effect.

At first exposure, this way of thinking about randomized experiments and
potential outcomes can be confusing. The independence relationships repre-
sented by Equation (2.4) seem to imply that even a well-designed randomized
experiment cannot tell us about the causal effect of the treatment on the out-
come of interest. But, of course, this is not so, as Equation (2.4) does not imply
that D is independent of Y. If individuals are randomly assigned to both the
treatment and the control states, and individual causal effects are nonzero, then
the definition of the outcome variable, Y = DY! + (1 — D)Y" in Equation (2.2),
ensures that Y and D will be dependent.

Now consider the additional challenges posed by observational data analy-
sis. It is the challenges to causal inference that are the defining features of an
observational study according to Rosenbaum (2002:vii):

An observational study is an empiric investigation of treatments,
policies, or exposures and the effects they cause, but it differs from
an experiment in that the investigator cannot control the assignment
of treatments to subjects.

This definition is consistent with the Cox and Reid definition quoted in Chap-
ter 1 (see page 7).

Observational data analysis in the counterfactual tradition is thus defined by
a lack of control over the treatment [and, often more narrowly by the infeasibil-
ity of randomization designs that allow for the straightforward maintenance of
the independence assumption in Equation (2.4)]. An observational researcher,
hoping to estimate a causal effect, begins with observed data in the form of
values {yi,di}fv for an observed outcome variable, Y, and a treatment status
variable, D. To determine the causal of effect of D on Y, the first step in anal-
ysis is to investigate the treatment selection mechanism. Notice the switch in
language from assignment to selection. Because observational data analysis is
defined as empirical inquiry in which the researcher does not have the capac-
ity to assign individuals to treatments (or, as Rosenbaum states equivalently,
to assign treatments to individuals), researchers must instead investigate how
individuals end up in alternative treatment states.

And herein lies the challenge of much scholarship in the social sciences. Al-
though some of the process by which individuals select alternative treatments
can be examined empirically, a full accounting of treatment selection is some-
times impossible (e.g., if subjects are motivated to select on the causal effect
itself and a researcher does not have a valid measure of their expectations).
As much as this challenge may be depressing to a dispassionate policy de-
signer/evaluator, this predicament should not be depressing for social scientists
in general. On the contrary, our existential justification rests on the pervasive
need to deduce theoretically from a set of basic principles or infer from experi-
ence and knowledge of related studies the set of defendable assumptions about
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the missing components of the treatment selection mechanism. Only through
such effort can it be determined whether causal analysis can proceed or whether
further data collection and preliminary theoretical analysis are necessary.

2.6 Average Causal Effects and Naive
Estimation

As described in prior sections of this chapter, the fundamental problem of causal
inference requires that we focus on non-individual-level causal effects, maintain-
ing assumptions about treatment assignment and treatment stability that will
allow us to give causal interpretations to differences in average values of ob-
served outcomes. In the remainder of this chapter, we define average treatment
effects of varying sorts and then lay out the complications of estimating them.
In particular, we consider how average treatment effects vary across those who
receive the treatment and those who do not.

2.6.1 Conditional Average Treatment Effects

The average causal effect, known as the average treatment effect in the coun-
terfactual tradition, was defined in Equation (2.3) as E[§] = E[Y! —Y°]. This
average causal effect is the most common subject of investigation in the social
sciences, and it is the causal effect that is closest to the sorts of effects inves-
tigated in the three broad foundational examples introduced in Chapter 1: the
effects of family background and mental ability on educational attainment, the
effects of educational attainment and mental ability on earnings, and the effects
of socioeconomic status on political participation. More narrowly defined aver-
age causal effects are of interest as well in virtually all of the other examples
introduced in Chapter 1.

Two conditional average treatment effects are of particular interest. The
average treatment effect for those who typically take the treatment is

E[§|D = 1] EY'-Y°D=1] (2.5)

= EYYD=1-EY"D=1],

and the average treatment effect for those who typically do not take the treat-
ment is

E[§|D = 0] E[Y'-Y°D =] (2.6)

E[Y'|D =0] - E[Y°D = 0],

where, as for the average treatment effect in Equation (2.3), the second line of
each definition follows from the linearity of the expectation operator. These two
conditional average causal effects are often referred to by the acronyms ATT
and ATC, which signify the average treatment effect for the treated and the
average treatment effect for the controls, respectively.
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Consider the examples again. For the Catholic school example, the average
treatment effect for the treated is the average effect of Catholic schooling on the
achievement of those who typically attend Catholic schools rather than across all
students who could potentially attend Catholic schools. The difference between
the average treatment effect and the average treatment effect for the treated
can also be understood with reference to individuals. From this perspective,
the average treatment effect in Equation (2.3) is the expected what-if difference
in achievement that would be observed if we could educate a randomly selected
student in both a public school and a Catholic school. In contrast, the average
treatment effect for the treated in Equation (2.5) is the expected what-if dif-
ference in achievement that would be observed if we could educate a randomly
selected Catholic school student in both a public school and a Catholic school.

For this example, the average treatment effect among the treated is a theo-
retically important quantity, for if there is no Catholic school effect for Catholic
school students, then most reasonable theoretical arguments would maintain
that it is unlikely that there would be a Catholic school effect for students who
typically attend public schools (at least after adjustments for observable differ-
ences between Catholic and public school students). And, if policy interest were
focused on whether or not Catholic schooling is beneficial for Catholic school
students (and thus whether public support of transportation to Catholic schools
is a benevolent government expenditure, etc.), then the Catholic school effect
for Catholic school students is the only quantity we would want to estimate.
The treatment effect for the untreated would be of interest as well if the goal of
analysis is ultimately to determine the effect of a potential policy intervention,
such as a new school voucher program, designed to move more students out of
public schools and into Catholic schools. In fact, an even narrower conditional
treatment effect might be of interest: E[§|D = 0, CurrentSchool = Failing],
where of course the definition of being currently educated in a failing school
would have to be clearly specified.

The manpower training example is similar, in that the subject of first inves-
tigation is surely the treatment effect for the treated (as discussed in detail in
Heckman et al. 1999). If a cost-benefit analysis of a program is desired, then
a comparison of the aggregate net benefits for the treated to the overall costs
of the program to the funders is needed. The treatment effect for other po-
tential enrollees in the treatment program could be of interest as well, but this
effect is secondary (and may be impossible to estimate for groups of individuals
completely unlike those who have enrolled in the program in the past).

The butterfly ballot example is somewhat different as well. Here, the treat-
ment effect of interest is bound by a narrow question that was shaped by media
attention. The investigators were interested only in what actually happened
in the 2000 election, and they focused very narrowly on whether the effect of
having had a butterfly ballot rather than an optical scan ballot caused some
individuals to miscast their votes. And, in fact, they were most interested in
narrow subsets of the treated, for whom specific assumptions were more easily
asserted and defended (e.g., those who voted for Democrats in all other races
on the ballot but who voted for Pat Buchanan or Al Gore for president). In this
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case, the treatment effect for the untreated, and hence the all-encompassing
average treatment effect, was of little interest to the investigators (or to the
contestants and the media).

As these examples demonstrate, more specific average causal effects (or more
general properties of the distribution of causal effects) are often of greater inter-
est than simply the average causal effect in the population. In this book, we will
focus mostly on the three types of average causal effects represented by Equa-
tions (2.3), (2.5), and (2.6), as well as simple conditional variants of them. But,
especially when presenting instrumental variable estimators later and discussing
general heterogeneity issues, we will also focus on more narrowly defined causal
effects. Heckman (2000), Manski (1995), and Rosenbaum (2002) all give full dis-
cussions of the variety of causal effects that may be relevant for different types
of applications, such as quantiles of the distribution of individual-level causal
effects in subpopulations of interest and the probability that the individual-level
causal effect is greater than zero among the treated (see also Heckman, Smith,
and Clements 1997).

2.6.2 Naive Estimation of Average Treatment Effects

Suppose again that randomization of the treatment is infeasible and thus that
only an observational study is possible. Instead, an autonomous fixed treat-
ment selection regime prevails, where 7 is the proportion of the population of
interest that takes the treatment instead of the control. In this scenario, the
value of 7 is fixed in the population by the behavior of individuals, and it is
unknown. Suppose further that we have observed survey data from a relatively
large random sample of the population of interest.

Because we are now shifting from the population to data generated from
a random sample of the population, we must use appropriate notation to dis-
tinguish sample-based quantities from the population-based quantities that we
have considered until now. For the sample expectation of a quantity in a sam-
ple of size N, we will use a subscript on the expectation operator, as in Ex|[.].
With this notation, Fy[d;] is the sample mean of the dummy treatment vari-
able, Enl[y;|d; = 1] is the sample mean of the outcome for those observed in
the treatment group, and En[y;|d; = 0] is the sample mean of the outcome for
those observed in the control group.'* The naive estimator of the average causal
effect is then defined as

dnarve = Exlyild; = 1] — Exlyi|di = 0], (2.7)

which is simply the difference in the sample means of the observed outcome
variable Y for the observed treatment and control groups.

In observational studies, the naive estimator rarely yields a consistent
estimate of the average treatment effect because it converges to a contrast,

141n other words, the subscript N serves the same basic notational function as an overbar
on y;, as in g;. We use this sub-N notation, as it allows for greater clarity in aligning sample
and population-level conditional expectations for subsequent expressions.
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E[Y|D = 1] — E[Y|D = 0], that is not equivalent to (and usually not equal
to) any of the average causal effects defined earlier. To see why, decompose the
average treatment effect in Equation (2.3) as

E[0] = {rE[Y'|D =1]+ (1 - 7)E[Y'|D = 0]} (2.8)
—{rE[Y°|D =1+ (1 - m)E[Y"|D = 0]}.

The average treatment effect is then a function of five unknowns: the proportion
of the population that is assigned to (or self-selects into) the treatment along
with four conditional expectations of the potential outcomes. Without intro-
ducing additional assumptions, we can consistently estimate with observational
data from a random sample of the population only three of the five unknowns
on the right-hand side of Equation (2.8), as we now show.

We know that, for a very large random sample, the mean of realized values
for the dummy treatment variable D would be equal to the true proportion of
the population that would be assigned to (or would select into) the treatment.
More precisely, we know that the sample mean of the values d; converges in
probability to m, which we write as

Enld;] 2 . (2.9)

Although the notation of Equation (2.9) may appear unfamiliar, the claim is
that, as the sample size N increases, the sample mean of the values d; approaches
the true value of 7, which we assume is a fixed population parameter equal
exactly to E[D]. Thus, the notation 2, denotes convergence in probability
for a sequence of estimates over a set of samples where the sample size N is
increasing to infinity.'> We can offer similar claims about two other unknowns
in Equation (2.8):

Enlyild; = 1] == E[Y''|D =1], (2.10)
Enlyi|d; = 0] = E[Y°|D = 0], (2.11)

which indicate that the sample mean of the observed outcome in the treatment
group converges to the true average outcome under the treatment state for those
in the treatment group (and analogously for the control group and control state).

Unfortunately, however, there is no assumption-free way to effectively es-
timate the two remaining unknowns in Equation (2.8): E[Y!|D = 0] and
E[Y°|D = 1]. These are counterfactual conditional expectations: the aver-
age outcome under the treatment for those in the control group and the average
outcome under the control for those in the treatment group. Without further as-
sumptions, no estimated quantity based on observed data from a random sample
of the population of interest would converge to the true values for these unknown
counterfactual conditional expectations. For the Catholic school example, these
are the average achievement of public school students if they had instead been

15 Again, see our appendix to this chapter on our assumed superpopulation model.
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educated in Catholic schools and the average achievement of Catholic school
students if they had instead been educated in public schools.

2.6.3 Expected Bias of the Naive Estimator

In the last subsection, we noted that the naive estimator o AIVE, which is de-
fined as En[y;|d; = 1]— En|yi|d; = 0], converges to E[Y|D = 1]—E[Y°|D = 0].
In this subsection, we show why this contrast can be uninformative about
the causal effect of interest in an observational study by analyzing the ex-
pected bias in the naive estimator as an estimator of the average treatment
effect.'® Consider the following rearrangement of the decomposition in Equation
(2.8):

EY''D=1-EY° D=0 = E[] (2.12)
+{E[Y°|D=1] - E[Y°|D = 0]}
+ (1 —m){E[0|D =1] — E[§|D = 0]}.

The naive estimator converges to the left-hand side of this equation, and thus
the right-hand side shows both the true average treatment effect, E[d], plus the
expectations of two potential sources of expected bias in the naive estimator.'”
The first source of potential bias, {E[Y°|D = 1] — E[Y°|D = 0]}, is a baseline
bias equal to the difference in the average outcome in the absence of the treat-
ment between those in the treatment group and those in the control group. The
second source of potential bias, {(1 — m)E[0|D = 1] — E[§|D = 0]}, is a dif-
ferential treatment effect bias equal to the expected difference in the treatment
effect between those in the treatment and those in the control group (multiplied
by the proportion of the population under the fixed treatment selection regime
that does not select into the treatment).

To clarify this decomposition of the bias of the naive estimator, consider a
substantive example — the effect of education on an individual’s mental ability.
Assume that the treatment is college attendance. After administering a test
to a group of young adults, we find that individuals who have attended college
score higher than individuals who have not attended college. There are three
possible reasons that we might observe this finding. First, attending college
might make individuals smarter on average. This effect is the average treat-
ment effect, represented by FE[d] in Equation (2.12). Second, individuals who

16 An important point of this literature is that the bias of an estimator is a function of
what is being estimated. Because there are many causal effects that can be estimated, general
statements about the bias of particular estimators are always conditional on a clear indication
of the causal parameter of interest.

"The referenced rearrangement is simply a matter of algebra. Let E[§] = e, E[Y!|D =
1] =a, BE[YYD =0] =b, E[YD = 1] = ¢, and E[Y°|D = 0] = d so that Equation (2.8)
can be written more compactly as e = {ma + (1 — m)b} — {mc + (1 — 7)d}. Rearranging this
expression as a —d = e+ a — b — wa + wb + wc — wd then simplifies to a —d = e+ {c — d} +
{1 —=7)[(a—c)— (b—d)]} . Substituting for a, b, ¢, d, and e then yields Equation (2.12).
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Table 2.3: An Example of the Bias of the Naive Estimator

Group E[Y1]] E[Y?|]
Treatment group (D = 1) 10 6
Control group (D = 0) 8 5

attend college might have been smarter in the first place. This source of bias
is the baseline difference represented by E[Y°|D = 1] — E[Y°|D = 0]. Third,
the mental ability of those who attend college may increase more than would
the mental ability of those who did not attend college if they had instead at-
tended college. This source of bias is the differential effect of the treatment,
represented by E[§|D = 1] — E[§|D = 0].

To further clarify the last term in the decomposition, consider the alternative
hypothetical example depicted in Table 2.3. Suppose, for context, that the
potential outcomes are now some form of labor market outcome, and that the
treatment is whether or not an individual has obtained a college degree. Suppose
further that 30 percent of the population obtains college degrees, such that m
is equal to .3. As shown on the main diagonal of Table 2.3, the average (or
expected) potential outcome under the treatment is 10 for those in the treatment
group, and the average (or expected) potential outcome under the control for
those in the control group is 5. Now, consider the off-diagonal elements of the
table, which represent the counterfactual average potential outcomes. According
to these values, those who have college degrees would have done better in the
labor market than those without college degrees in the counterfactual state in
which they did not in fact obtain college degrees (i.e., on average they would
have received 6 instead of 5). Likewise, those who do not obtain college degrees
would not have done as well as those who did obtain college degrees in the
counterfactual state in which they did in fact obtain college degrees (i.e., on
average they would have received only 8 instead of 10). Accordingly, the average
treatment effect for the treated is 4, whereas the average treatment effect for the
untreated is only 3. Finally, if the proportion of the population that completes
college is .3, then the average treatment effect is 3.3, which is equal to .3(10 —
6)+ (1 —.3)(8—=5).

Consider now the bias in the naive estimator. For this example, the naive
estimator, as defined in Equation (2.7), would be equal to 5, on average, across
repeated samples from the population (i.e., because E[Y!|D = 1] — E[Y°|D =
0] = 10 — 5). Thus, over repeated samples, the naive estimator would be up-
wardly biased for the average treatment effect (i.e., yielding 5 rather than 3.3),
the average treatment effect for the treated (i.e., yielding 5 rather than 4),
and the average treatment effect for the untreated (i.e., yielding 5 rather than
3). Equation (2.12) gives the components of the total expected bias of 1.7 for
the naive estimator as an estimate of the average treatment effect. The term
{E[Y°|D = 1] — E[Y°|D = 0]}, which we labeled the expected baseline bias, is
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6 —5=1. The term (1 — m){E[0|D = 1] — E[§|D = 0]}, which is the expected
differential treatment effect bias, is (1 —.3)(4 —3) = .7.18

2.6.4 Estimating Causal Effects Under Maintained
Assumptions About Potential Outcomes

What assumptions suffice to enable unbiased and consistent estimation of the
average treatment effect with the naive estimator? There are two basic classes
of assumptions: (1) assumptions about potential outcomes for subsets of the
population defined by treatment status and (2) assumptions about the treatment
assignment /selection process in relation to the potential outcomes. These two
types of assumptions are variants of each other, and each may have a particular
advantage in motivating analysis in a particular application.

In this section, we discuss only the first type of assumption, as it suffices for
the present examination of the fallibility of the naive estimator. And our point in
introducing these assumptions is simply to explain in one final way why the naive
estimator will fail in most social science applications to generate an unbiased
and consistent estimate of the average causal effect when randomization of the
treatment is infeasible.

Consider the following two assumptions:

Assumption 1: E[Y!|D = 1] E[Y'ID = 0], (2.13)
Assumption 2: E[Y°|D =1] = E[Y°D =0]. (2.14)

If one asserts these two equalities and then substitutes into Equation (2.8),
the number of unknowns is reduced from the original five parameters to the
three parameters that we know from Equations (2.9)—(2.11) can be consistently
estimated with data generated from a random sample of the population. If
both Assumptions 1 and 2 are maintained, then the average treatment effect,
the average treatment effect for the treated, and the average treatment effect
for the untreated in Equations (2.3), (2.5), and (2.6), respectively, are all equal.
And the naive estimator is consistent for all of them.

When would Assumptions 1 and 2 in Equations (2.13) and (2.14) be rea-
sonable? Clearly, if the independence of potential outcomes, as expressed in
Equation (2.4), is valid because the treatment has been randomly assigned,
then Assumptions 1 and 2 in Equations (2.13) and (2.14) are implied. But,
for observational data analysis, for which random assignment is infeasible, these
assumptions would rarely be justified.

Consider the Catholic school example introduced in Subsection 1.3.2. If
one were willing to assume that those who choose to attend Catholic schools

181n general, the amount of this expected differential treatment effect bias declines as more
of the population is characterized by the treatment effect for the treated than by the treatment
effect for the untreated (i.e., as m approaches 1).
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do so for completely random reasons, then these two assumptions could be
asserted. But we know from the applied literature that this characterization of
treatment selection is false. Nonetheless, one might be able to assert instead a
weaker narrative to warrant these two assumptions. One could maintain that
students and their parents make enrollment decisions based on tastes for an
education with a religious foundation and that this taste is unrelated to the two
potential outcomes, such that those with a taste for the religious foundations of
education would not necessarily benefit more from actually being educated in
a Catholic school than in other schools. This possibility also seems unlikely, in
part because it implies that those with a distaste for a religious education do
not attend Catholic schools and it seems reasonable to assume that they would
perform substantially worse in a Catholic school than the typical student who
does attend a Catholic school.

Thus, at least for the Catholic school example, there seems no way to justify
the naive estimator as an unbiased and consistent estimator of the average treat-
ment effect (or of the average treatment effect for the treated and the average
treatment effect for the untreated). We encourage the reader to consider all of
the examples presented in the first chapter, and we suspect that all will agree
that Assumptions 1 and 2 in Equations (2.13) and (2.14) cannot be sustained
for any of them.

But it is important to recognize that assumptions such as these can (and
should) be evaluated separately. Consider the two relevant cases for Assump-
tions 1 and 2:

1. If Assumption 1 is true but Assumption 2 is not, then E[Y!|D = 1] =
E[Y1|D = 0] whereas E[Y°|D = 1] # E[Y°|D = 0]. In this case, the naive
estimator remains biased and inconsistent for the average treatment effect,
but it is now unbiased and consistent for the average treatment effect for
the untreated. This result is true because of the same sort of substitution
we noted earlier. We know that the naive estimator En[y;|d; = 1] —
Enlyi|d; = 0] converges to E[Y!|D = 1] — E[Y°|D = 0]. If Assumption 1
is true, then one can substitute E[Y!|D = 0] for E[Y!|D = 1]. Then, one
can state that the naive estimator converges to the contrast E[Y!|D =
0] — E[Y?|D = 0] when Assumption 1 is true. This contrast is defined in
Equation (2.6) as the average treatment effect for the untreated.

2. If Assumption 2 is true but Assumption 1 is not, then E[YY|D = 1] =
E[Y°|D = 0] whereas E[Y!|D = 1] # E[Y!|D = 0]. The opposite result
to the prior case follows. One can substitute E[Y°|D = 1] for E[Y°|D = 0]
in the contrast E[Y!|D = 1] — E[Y°|D = 0]. Then, one can state that
the naive estimator converges to the contrast E[Y|D = 1] — E[Y°|D = 1]
when Assumption 2 is true. This contrast is defined in Equation (2.5) as
the average treatment effect for the treated.

Considering the validity of Assumptions 1 and 2 separately shows that the
naive estimator may be biased and inconsistent for the average treatment ef-
fect and yet may be unbiased and consistent for either the average treatment
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effect for the treated or the average treatment effect for the untreated. These
possibilities can be important in practice. For some applications, it may be the
case that we have good theoretical reason to believe that (1) Assumption 2 is
valid because those in the treatment group would, on average, do no better or
no worse under the control than those in the control group, and (2) Assump-
tion 1 is invalid because those in the control group would not do nearly as well
under the treatment as those in the treatment group. Under this scenario, the
naive estimator will deliver an unbiased and consistent estimate of the average
treatment effect for the treated, even though it is still biased and inconsistent
for both the average treatment effect for the untreated and the unconditional
average treatment effect.

Now, return to the case in which neither Assumption 1 nor Assumption 2 is
true. If the naive estimator is therefore biased and inconsistent for the typical
average causal effect of interest, what can be done? The first recourse is to at-
tempt to partition the sample into subgroups within which assumptions such as
Assumptions 1 and/or 2 can be defended. The strategy amounts to conditioning
on one or more variables that identify such strata and then asserting that the
naive estimator is unbiased and consistent within these strata for one of the
average treatment effects. One can then average estimates from these strata in
a reasonable way to generate the average causal effect estimate of interest. We
turn, in the next part of the book, to the two major conditioning strategies —
matching and regression analysis — for estimating average causal effects when
the naive estimator is biased and inconsistent.

2.7 Conclusions

In this chapter, we have introduced the main components of the counterfactual
model of causality, also known as the potential outcome model. To motivate
the presentation of matching and regression in the next part of the book, we
first reintroduce causal graphs and the notational framework for modeling the
treatment assignment mechanism in the next chapter. Although we will then
show that matching and regression share many connections, we also aim to
demonstrate that they are typically motivated in two entirely different ways,
as, in the first case, an attempt to balance the variables that predict treatment
assignment /selection and as, in the second case, an attempt to condition on
all other relevant direct causes of the outcome. The causal graphs show this
connection clearly, and hence we begin by showing how conditioning strategies
represent an attempt to eliminate all net associations between the causal variable
and the outcome variable that are produced by back-door paths that confound
the causal effect of interest.
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Appendix A: Population and Data Generation
Models

In the counterfactual tradition, no single agreed-on way to define the population
exists. In a recent piece, for example, Rubin (2005:323) introduces the primary
elements of the potential outcome model without taking any particular position
on the nature of the population, writing that “‘summary’ causal effects can
also be defined at the level of collections of units, such as the mean unit-level
causal effect for all units.” As a result, a variety of possible population-based
(and “collection”-based) definitions of potential outcomes, treatment assign-
ment patterns, and observed outcomes can be used. In this appendix, we ex-
plain the choice of population model that we will use throughout the book (and
implicitly, unless otherwise specified).

Because we introduce populations, samples, and convergence claims in this
chapter, we have placed this appendix here. Nonetheless, because we have
not yet introduced models of causal exposure, some of the fine points in the
following discussion may well appear confusing (notably how “nature” performs
randomized experiments behind our backs). For readers who wish to have a
full understanding of the implicit superpopulation model we will adopt, we
recommend a quick reading of this appendix now and then a second more careful
reading after completing Chapters 3 and 4.

Our Implicit Superpopulation Model

The most expedient population and data generation model to adopt is one in
which the population is regarded as a realization of an infinite superpopulation.
This setup is the standard perspective in mathematical statistics, in which ran-
dom variables are assumed to exist with fixed moments for an uncountable and
unspecified universe of events. For example, a coin can be flipped an infinite
number of times, but it is always a Bernoulli distributed random variable for
which the expectation of a fair coin is equal to .5 for both heads and tails. For
this example, the universe of events is infinite because the coin can be flipped
forever.

Many presentations of the potential outcome framework adopt this basic
setup, presumably following Rubin (1977) and Rosenbaum and Rubin (1983b,
1985a). For a binary cause, potential outcomes Y'! and Y are implicitly as-
sumed to have expectations E[Y!] and E[Y?] in an infinite superpopulation.
Individual realizations of Y and Y are then denoted y} and yY. These real-
izations are usually regarded as fixed characteristics of each individual i.

This perspective is tantamount to assuming a population machine that
spawns individuals forever (i.e., the analog to a coin that can be flipped for-
ever). Each individual is born as a set of random draws from the distributions
of Y1, Y9 and additional variables collectively denoted by S. These realized
values y', 4°, and s are then given individual identifiers 4, which then become
yk, vY, and s;.
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The challenge of causal inference is that nature also performs randomized
experiments in the superpopulation. In particular, nature randomizes a causal
variable D within strata defined by the values of S and then sets the value of
Y as y; equal to y} or ¥, depending on the treatment state that is assigned to
each individual. If nature assigns an individual to the state D = 1, nature then
sets y; equal to y!. If nature assigns an individual to the state D = 0, nature
then sets y; equal to 4?. The differential probability of being assigned to D = 1
instead of D = 0 may be a function in S, depending on the experiment that
nature has decided to conduct (see Chapters 3 and 4). Most important, nature
then deceives us by throwing away y} and y? and giving us only y;.

In our examples, a researcher typically obtains data from a random sample
of size N from a population, which is in the form of a dataset {y;,d;, sz}i\il
The sample that generates these data is drawn from a finite population that is
itself only one realization of a theoretical superpopulation. Based on this set-
up, the joint probability distribution in the sample Pry (Y, D, S) must converge
in probability to the true joint probability distribution in the superpopulation
Pr(Y, D, S) as the sample size approaches infinity. The main task for analysis is
to model the relationship between D and S that nature has generated in order
use observed data on Y to estimate causal effects defined by Y'! and Y.

Because of its expediency, we will usually write with this superpopulation
model in the background, even though the notions of infinite superpopulations
and sequences of sample sizes approaching infinity are manifestly unrealistic.
We leave the population and data generation model largely in the background
in the main text, so as not to distract the reader from the central goals of our
book.

Alternative Perspectives

There are two main alternative models of the population that we could adopt.
The first, which is consistent with the most common starting point of the survey
sampling literature (e.g., Kish 1965), is one in which the finite population is
recognized as such but treated as so large that is convenient to regard it as
infinite. Here, values of a sample statistic (such as a sample mean) are said to
equal population values in expectation, but now the expectation is taken over
repeated samples from the population (see Thompson 2002 for an up-to-date
accounting of this perspective). Were we to adopt this perspective, rather than
our superpopulation model, much of what we write would be the same. However,
this perspective tends to restrict attention to large survey populations (such as
all members of the U.S. population older than 18) and makes it cumbersome to
discuss some of the estimators we will consider (e.g., in Chapter 4, where we
will sometimes define causal effects only across the common support of some
random variables, thereby necessitating a redefinition of the target population).

The second alternative is almost certainly much less familiar to many empir-
ical social scientists but is a common approach within the counterfactual causal-
ity literature. It is used often when no clearly defined population exists from
which the data can be said to be a random sample (such as when a collection
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of data of some form is available and an analyst wishes to estimate the causal
effect for those appearing in the data). In this situation, a dataset exists as a
collection of individuals, and the observed individuals are assumed to have fixed
potential outcomes y;} and Y. The fixed potential outcomes have average values
for those in the study, but these average values are not typically defined with
reference to a population-level expectation. Instead, analysis proceeds by com-
parison of the average values of y; for those in the treatment and control groups
with all other possible average values that could have emerged under all possible
permutations of treatment assignment. This perspective then leads to a form
of randomization inference, which has connections to exact statistical tests of
null hypotheses most commonly associated with Fisher (1935). As Rosenbaum
(2002) shows, many of the results we present in this book can be expressed in
this framework (see also Rubin 1990, 1991). But the combinatoric apparatus
required for doing so can be cumbersome (and at times requires constraints,
such as homogeneity of treatment effects, that are restrictive). Nonetheless,
because the randomization inference perspective has some distinct advantages
in some situations, we will refer to it at several points throughout the book.
And we strongly recommend that readers consult Rosenbaum (2002) if the data
under consideration arise from a sample that has no straightforward and sys-
tematic connection to a well-defined population. In this case, sample average
treatment effects may be the only well-defined causal effects, and, if so, then
the randomization inference tradition is a clear choice.

Appendix B: Extension of the Framework
to Many-Valued Treatments

In this chapter, we have focused discussion mostly on binary causal variables,
conceptualized as dichotomous variables that indicate whether individuals are
observed in treatment and control states. As we show here, the counterfac-
tual framework can be used to analyze causal variables with more than two
categories.

Potential and Observed Outcomes for Many-Valued Treatments

Consider the more general setup, in which we replace the two-valued causal
exposure variable, D, and the two potential outcomes Y! and Y° with (1) a
set of J treatment states, (2) a corresponding set of J causal exposure dummy
variables, {Dj}j:17 and (3) a corresponding set of J potential outcome random
variables, {YPJ }3]:1. Each individual receives only one treatment, which we
denote Dj*. Accordingly, the observed outcome variable for individual 4, y;, is
then equal to ylp 7" For the other J — 1 treatments, the potential outcomes of
individual ¢ exist in theory as J — 1 other potential outcomes yiD 7 for j# g%,
but they are counterfactual.

Consider the fundamental problem of causal inference for many-value treat-
ments presented in Table 2.4 (which is simply an expansion of Table 2.1 to
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Table 2.4: The Fundamental Problem of Causal Inference for Many-Valued
Treatments

Group y Pt y P2 e y b/

Takes D1 Observable as Y Counterfactual e Counterfactual
Takes D2 Counterfactual Observable as Y Counterfactual
Takes DJ Counterfactual Counterfactual . Observable as Y

many-valued treatments). Groups exposed to alternative treatments are repre-
sented by rows with, for example, those who take treatment D2 in the second
row. For a binary treatment, we showed earlier that the observed variable Y
contains exactly half of the information contained in the underlying potential
outcome random variables. In general, for a treatment with J values, Table
2.4 shows that the observed outcome variable Y contains only 1/.J of the total
amount of information contained in the underlying potential outcome random
variables. Thus, the proportion of unknown and inherently unobservable infor-
mation increases as the number of treatment values, J, increases.

For an experimentalist, this decline in the relative amount of information in
Y is relatively unproblematic. Consider an example in which a researcher wishes
to know the relative effectiveness of three pain relievers for curing headaches.
The four treatments are “Take nothing,” “Take aspirin,” “Take ibuprofen,”
and “Take acetaminophen.” Suppose that the researcher rules out an observa-
tional study, in part because individuals have constrained choices (i.e., pregnant
women may take acetaminophen but cannot take ibuprofen; many individuals
take a daily aspirin for general health reasons). Instead, she gains access to a
large pool of subjects not currently taking any medication and not prevented
from taking any of the three medicines.'” She divides the pool randomly into
four groups, and the drug trial is run. Assuming all individuals follow the
experimental protocol, at the end of the data collection period the researcher
calculates the mean length and severity of headaches for each of the four groups.

Even though three quarters of the cells in a 4 x 4 observability table anal-
ogous to Table 2.4 are counterfactual, she can effectively estimate the relative
effectiveness of each of the drugs in comparison with each other and in compar-
ison with the take-nothing control group. Subject to random error, contrasts
such as En|y;|Take aspirin] — En[y;|Take ibuprofen] reveal all of the average
treatment effects of interest. The experimental design allows her to ignore the
counterfactual cells in the observability table by assumption. In other words,
she can assume that the average counterfactual value of YA%PIn for those who

19Note that, in selecting this group, she has adopted a definition of the population of interest
that does not include those who (1) take one of these pain relievers regularly for another reason
and (2) do not have a reason to refuse to take one of the pain relievers.
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Table 2.5: The Observability Table for Estimating how Education Increases
Earnings

Education yHS yAA yBA yMa

Obtains HS Observable as Y Counterfactual Counterfactual — Counterfactual
Obtains AA  Counterfactual Observable as Y Counterfactual — Counterfactual
Obtains BA  Counterfactual  Counterfactual Observable as Y Counterfactual
Obtains MA  Counterfactual ~ Counterfactual ~ Counterfactual Observable as Y’

took nothing, took ibuprofen, and took acetaminophen (i.e., E[YASPirin|Take
nothing], E[Y 4P| Take ibuprofen], and E[YAP'"| Take acetaminophen]) can
all be assumed to be equal to the average observable value of Y for those who
take the treatment aspirin, F[Y|Take aspirin|. She can therefore compare sam-
ple analogs of the expectations in the cells of the diagonal of the observability
table, and she does not have to build contrasts within its rows. Accordingly,
for this type of example, comparing the effects of multiple treatments with each
other is no more complicated than the bivariate case, except insofar as one
nonetheless has more treatments to assign and resulting causal effect estimates
to calculate.

Now consider a variant on the education-earnings example from the first
chapter. Suppose that a researcher hopes to estimate the causal effect of dif-
ferent educational degrees on labor market earnings, and further that only four
degrees are under consideration: a high school degree (HS), an associate’s degree
(AA), a bachelor’s degree (BA), and a master’s degree (MA). For this problem,
we therefore have four dummy treatment variables corresponding to each of the
treatment states: HS, AA, BA, and MA. Table 2.5 has the same structure as
Table 2.4. Unlike the pain reliever example, random assignment to the four
treatments is impossible. Consider the most important causal effect of interest
for policy purposes, E[YBA — Y] which is the average effect of obtaining a
bachelor’s degree instead of a high school degree.

Suppose that an analyst has survey data on a set of middle-aged individ-
uals for whom earnings at the most recent job and highest educational degree
is recorded. To estimate this effect without asserting any further assumptions,
the researcher would need to be able to consistently estimate population-level
analogs to the expectations of all of the cells of Table 2.5 in columns 1 and 3,
including six counterfactual cells off of the diagonal of the table. The goal would
be to formulate consistent estimates of E[Y B4 —YHS] for all four groups of differ-
entially educated adults. To obtain a consistent estimate of E[Y B4 — YH5] the
researcher would need to be able to consistently estimate E[YBA -YHS| S = 1],
E[YBA —YHS|AA = 1], E[YBA —YHS|BA = 1], and E[YBA — YHS|MA = 1],
after which these estimates would be averaged across the distribution of educa-
tional attainment. Notice that this requires the consistent estimation of some
doubly counterfactual contrasts, such as the effect on earnings of shifting from
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a high school degree to a bachelor’s degree for those who are observed with a
master’s degree. The researcher might boldly assert that the wages of all high
school graduates are, on average, equal to what all individuals would obtain
in the labor market if they instead had high school degrees. But this is very
likely to be a mistaken assumption if it is the case that those who carry on to
higher levels of education would have been judged more productive workers by
employers even if they had not attained more than high school degrees.

As this example shows, a many-valued treatment creates substantial addi-
tional burden on an analyst when randomization is infeasible. For any two-
treatment comparison, one must find some way to estimate a corresponding
2(J — 1) counterfactual conditional expectations, because treatment contrasts
exist for individuals in the population whose observed treatments place them
far from the diagonal of the observability table.

If estimating all of these counterfactual average outcomes is impossible,
analysis can still proceed in a more limited fashion. One might simply de-
fine the parameter of interest very narrowly, such as the average causal ef-
fect of a bachelor’s degree only for those who typically attain high school
degrees: E[YBA — YHS|HS = 1]. In this case, the causal effect of attaining
a bachelor’s degree for those who typically attain degrees other than a high
school degree are of no interest for the analyst.

Alternatively, there may be reasonable assumptions that one can invoke to
simplify the complications of estimating all possible counterfactual averages. For
this example, many theories of the relationship between education and earnings
suggest that, for each individual 4, y/S < yA < yBA < yMA In other words,
earnings never decrease as one obtains a higher educational degree. Asserting
this assumption (i.e., taking a theoretical position that implies it) may allow
one to ignore some cells of the observability table that are furthest from the
direct comparison one hopes to estimate.

Other Aspects of the Counterfactual Model for Many-Valued
Treatments

Aside from the expansion of the number of causal states, and thus also treatment
indicator variables and corresponding potential outcome variables, all other fea-
tures of the counterfactual model remain essentially the same. SUTVA must
still be maintained, and, if it is unreasonable, then more general methods must
again be used to model treatment effects that may vary with patterns of treat-
ment assignment. Modeling treatment selection remains the same, even though
the added complexity of having to model movement into and out of multiple
potential treatment states can be taxing. And the same sources of bias in
standard estimators must be considered, only here again the complexity can be
considerable when there are multiple states beneath each contrast of interest.
To avoid all of this complexity, one temptation is to assume that treatment
effects are linear additive in an ordered set of treatment states. For the effect
of education on earnings, a researcher might instead choose to move forward
under the assumption that the effect of education on earnings is linear additive
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in the years of education attained. For this example, the empirical literature
has demonstrated that this is a particularly poor idea. For the years in which
educational degrees are typically conferred, individuals appear to receive an
extra boost in earnings. When later discussing the estimation of treatment
effects using linear regression for many-valued treatments, we will discuss a
piece by Angrist and Krueger (1999) that shows very clearly how far off the mark
these methods can be when motivated by unreasonable linearity and additivity
assumptions.






Part 2: Estimating Causal Effects
by Conditioning
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Chapter 3

Causal Graphs,
Identification, and Models
of Causal Exposure

In this chapter, we present the basic conditioning strategy for the identification
and estimation of causal effects. After introducing a methodology for building
causal graphs, we present what has become known as the back-door criterion
for sufficient conditioning to identify a causal effect. We then present models of
causal exposure, introducing the treatment assignment and treatment selection
literature from statistics and econometrics. We then return to the back-door
criterion and discuss the two basic motivations of conditioning — balancing de-
terminants of the cause of interest and adjusting for other causes of the outcome.
We conclude with a discussion of the identification and estimation of conditional
average causal effects by conditioning.

3.1 Causal Graphs and Conditioning as
Back-Door Identification

In his 2000 book titled Causality: Models, Reasoning, and Inference, Judea Pearl
lays out a powerful and extensive graphical theory of causality. Here, we present
and use only the most basic elements of his theory. To the reader familiar with
traditional linear path models, much of this material will look familiar. There
are, however, important and subtle differences between traditional path models
and Pearl’s usage of directed acyclic graphs (DAGs).

Pearl’s work provides a language and a framework for thinking about causal-
ity that differs from the potential outcome perspective presented in the last
chapter. Beyond the alternative terminology and notation, Pearl (2000, Section
7.3) proves that the fundamental concepts underlying the potential outcome
model and his more recent perspective are equivalent. In some cases, causal
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statements in the potential outcome framework can be represented concisely
by a causal graph. But it can be awkward to represent many of the compli-
cations created by causal effect heterogeneity. Accordingly, in this section we
suppress potential outcome random variables and use only observed outcome
variables.! Furthermore, we implicitly focus on only the unconditional average
treatment effect first, although we will return to a discussion of the estimation
of conditional average treatment effects in the final section of the chapter.

Even though we must suppress some of the very useful generality of the
potential outcome framework, Pearl has shown that graphs nonetheless pro-
vide a direct and powerful way of thinking about causal systems of variables
and the identification strategies that can be used to estimate the effects within
them. Thus, some of the advantage of the framework is precisely that it permits
suppression of what could be a dizzying amount of notation to reference each
potential causal state in a system of equations. In this sense, Pearl’s perspective
is a reaffirmation of the utility of graphical models in general, and its appeal
to us is similar to the general appeal of path models, which have retained their
adherents in spite of some of their known limitations.

For our purposes in this chapter, Pearl’s work is important for three different
reasons. First, his framework is completely nonparametric, and as a result it
is usually unnecessary to specify the nature of the functional dependence of
an outcome Y on the variables that cause it. Thus, X — Y simply implies
that X causes Y, without specifying whether the effect is linear, quadratic, or
some other highly nonlinear function in the values of X. This generality allows
for a theory of causality without side assumptions about functional form, such
as the linearity assumptions that became the Achilles’ heel of traditional path
models. Second, Pearl’s approach shows clearly the critical importance of what
he labels “collider” variables, which are specific types of endogenous variables
that must be treated with caution. Finally, Pearl shows that there are three
basic methods for identifying a causal effect: conditioning on variables that
block all back-door paths, conditioning on variables that allow for estimation
by a mechanism, and estimating a causal effect by an instrumental variable that
is an exogenous shock to to the cause. Each of these identification strategies
was already introduced briefly in Section 1.6. Here, we provide the foundations
of his approach and then offer a more detailed presentation of the conditioning
strategy for estimating causal effects by invoking Pearl’s back-door criterion. In
Chapter 6, we then return to the framework to discuss the estimation of causal
effects more generally when important variables are unobserved. There, we will
then more fully present the front-door and instrumental variable approaches.

3.1.1 Basic Elements

As with standard path models, the basic goal of drawing a causal system as
a DAG is to represent explicitly all causes of the outcome of interest. As we

1Nonetheless, we still maintain that the observed outcome variable is generated by a pro-
cess of causal exposure to alternative causal states with their attendant potential outcome
variables. See Pearl (2000, Chapter 7) for the formal connections between potential outcomes
and causal graphs.
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Figure 3.1: A directed graph that includes a cycle.

discussed earlier in Section 1.6, each node of a causal graph represents a random
variable and is labeled by a letter such as A, B, or C. Nodes that are repre-
sented by a solid circle e are observed random variables, whereas nodes that are
represented by a hollow circle o are unobserved random variables. Causes are
represented by directed edges — (i.e., single-headed arrows), such that an edge
from one node to another signifies that the variable at the origin of the directed
edge causes the variable at the terminus.?

Unlike standard path models, a DAG does not permit a representation of
simultaneous causation. Only directed edges are permissible, and thus direct
causation can run in only one direction, as in X — Y. Furthermore, a DAG is
defined to be an acyclic graph. Accordingly, no directed paths emanating from
a causal variable also terminate at the same causal variable. Figure 3.1 presents
a graph that includes a cycle, and as a result it is not a DAG, even though it
includes only directed edges.

Under some circumstances it is useful to use a curved and dashed bidirected
edge (as in Figures 1.1-1.3 earlier) as a shorthand device to indicate that two
variables are mutually dependent on one or more (typically unobserved) common
causes. In this shorthand, the two graphs presented in panels (a) and (b) of
Figure 3.2 are equivalent. When this shorthand representation is used, the
resulting graph is no longer a DAG by its formal definition. But, because
the bidirected edge is a mere shorthand semantic substitution, the graph can
be treated usually as if it were a DAG.? Such shorthand can be helpful in
suppressing a complex set of background causal relationships that are irrelevant
to the empirical analysis at hand. Nonetheless, these bidirected edges should
not be interpreted in any way other than as we have just stated. They are not

2In Pearl’s framework, each random variable is assumed to have an implicit probability
distribution net of the causal effects represented by the directed edges. This position is
equivalent to assuming that background causes of each variable exist that are independent of
the causes explicitly represented in the graph by directed edges.

3Pearl would refer to such a graph as a semi-Markovian causal diagram rather than a fully
Markovian causal model, but he would nonetheless treat it as if it were a full DAG when
considering the identification of causal effects that are represented by directed edges in the
graph (see Pearl 2000, Section 5.2).
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U

(a) (b)

Figure 3.2: Two representations of the joint dependence of A and B on common
causes.

indicators of mere correlations between the variables that they connect, and
they do not signify that either of the two variables has a direct cause on the
other one. Rather, they represent an unspecified set of common causes of the
two variables that they connect.

Figure 3.3 presents the three basic patterns of causal relationships that would
be observed for any three variables that are related to each other: a chain
of mediation, a fork of mutual dependence, and an inverted fork of mutual
causation. Pearl’s analysis of the first two types of relationship is conventional.
For the graph in panel (a), A affects B through A’s causal effect on C' and C’s
causal effect on B. This type of a causal chain renders the variables A and
B unconditionally associated. For the graph in panel (b), A and B are both
caused by C'. Here, A and B are also unconditionally associated, but now it is
because they mutually depend on C.*

For the third graph in panel (c), A and B are again connected by a pathway
through C. But now A and B are both causes of C. Pearl labels C' a “collider”
variable. Formally, a variable is a collider along a particular path if it has two
arrows running into it. Figuratively, the causal effects of A and B “collide” with
each other at C. Collider variables are common in social science applications:
Any endogenous variable that has two or more causes is a collider along some
path.

A path that is connected by a collider variable does not generate an uncon-
ditional association between the variables that cause the collider variable. For
the mutual causation graph in panel (c¢) of Figure 3.3, the pathway between A
and B through C' does not generate an unconditional association between A
and B. As a result, if nothing is known about the value that C' takes on, then
knowing the value that A takes on yields no information about the value that
B takes on. Pearl’s language is quite helpful here. The path A — C «— B does
not generate an association between A and B because the collider variable C'
“blocks” the possible causal effects of A and B on each other.

Even though collider variables do not generate unconditional associations
between the variables that determine them, we will show in the next subsection

4The unconditional associations between A and B for both graphs mean that knowing the
value that A takes on gives one some information on the likely value that B takes on. This
unconditional association between A and B, however, is completely indirect, as neither A nor
B has a direct causal effect on each other.
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Figure 3.3: Basic patterns of causal relationships for three variables.

that incautious handling of colliders can create conditional dependence that can
sabotage a causal analysis. The importance of considering collider variables is
a key insight of Pearl’s framework, and it is closely related to the familiar con-
cerns of selecting on the dependent variable and conditioning on an endogenous
variable. But, to understand these complications, we first must introduce basic
conditioning techniques in the context of graphical models.

3.1.2 Conditioning on Observable Variables

One of the most common modeling strategies to prosecute causal questions in
quantitative research is to analyze a putative causal relationship within groups
defined by one or more variables. Whether referred to as subgroup analysis,
subclassification, stratification, or tabular decomposition, the usual motivation
is to analyze the data after conditioning on membership in groups identified by
values of a variable that is thought to be related to both the causal variable and
the outcome variable.

From a graphical perspective, the result of such a modeling strategy is to
generate simplified subgraphs for each subgroup or stratum of the data that cor-
respond to each value of the conditioning variable. This procedure is analogous
to disconnecting the conditioning variable from all other variables that it points



66 Chapter 3. Causal Graphs and Identification

to in the original graph and rewriting the graph as many times as there are
values for the conditioning variable. In the mutual dependence graph in panel
(b) of Figure 3.3, conditioning on C' results in separate graphs for each value ¢
of C; in each of these subgraphs, A and B are disconnected. The reasoning here
should be obvious: If analysis is carried out for a group in which all individu-
als have a particular value for the variable C, then the variable C' is constant
within the group and cannot therefore be associated with A or B. Thus, from
a graphical perspective, conditioning is a means of transforming one graph into
a simpler set of component graphs where fewer causes are represented.

As a technique for estimating a causal effect, conditioning is a very powerful
and very general strategy. But one very important qualification must be noted:
Conditioning on a collider variable does not simplify the original graph but
rather adds complications by creating new associations. To see why, reconsider
the mutual causation graph in panel (¢) of Figure 3.3, where A and B are
unrelated to each other but where both cause the collider variable C. In this
case, conditioning on C' will induce a relationship between A and B for at least
one subgroup defined by the values of C.

The reasoning here is not intuitive, but it can be conveyed by a simple ex-
ample with the mutual causation graph in panel (¢) of Figure 3.3. Suppose that
the population of interest is a set of applicants to a particular selective college
and that C indicates whether applicants are admitted or rejected (i.e., C' = 1 for
admitted applicants and C' = 0 for rejected applicants). Admissions decisions
at this hypothetical college are determined entirely by two characteristics of
students that are known to be independent within the population of applicants:
SAT scores and a general rating of motivation based on an interview. These two
factors are represented by A and B in panel (c¢) of Figure 3.3. Even though SAT
score and motivation are unrelated among applicants in general, they are not
unrelated when the population is divided into admitted and rejected applicants.
Among admitted applicants, those with the highest SAT scores are on average
the least motivated, and those with the lowest SAT scores are on average the
most motivated. Thus, the college’s sorting of applicants generates a pool of
admitted students within which SAT and motivation are negatively related.”

This example is depicted in Figure 3.4 for 250 simulated applicants to this
hypothetical college. For this set of applicants, SAT and motivation have a very
small positive correlation of .035.° Offers of admission are then determined by
the sum of SAT and motivation and granted to the top 15 percent of applicants

5A negative correlation will emerge for rejected students as well if (1) SAT scores and
motivation have similarly shaped distributions and (2) both contribute equally to admissions
decisions. As these conditions are altered, other patterns can emerge for rejected students,
such as if admissions decisions are a nonlinear function of SAT and motivation.

6The values for SAT and motivation are 250 independent draws from standard normal
variables. The draws result in an SAT variable with mean of .007 and a standard deviation
of 1.01 as well as a motivation variable with mean of —.053 and a standard deviation of
1.02. Although the correlation between SAT and motivation is a small positive value for this
simulation, we could drive the correlation arbitrarily close to 0 by increasing the number of
applicants for the simulation.
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Figure 3.4: Simulation of conditional dependence within values of a collider
variable.

(as shown in the upper right-hand portion of Figure 3.4).” Among admitted

applicants, the correlation between SAT and motivation is —.641 whereas among
rejected applicants the correlation between SAT and motivation is —.232. Thus,
within values of the collider (the admissions decision), SAT and motivation are
negatively related.

As Pearl documents comprehensively with a wide range of examples, this
is a very general feature of causal relationships and is present in many real-
world applications. In the next section, we show that care must be taken when
attempting to estimate a causal effect by conditioning because conditioning on
a collider variable can spoil an analysis.

3.1.3 Point Identification by Conditioning on Variables
that Satisfy the Back-Door Criterion

Pearl elaborates three different approaches to identifying causal effects, which
we already introduced in Section 1.6 as (1) conditioning on variables that block
all back-door paths from the causal variable to the outcome variable, (2) using
exogenous variation in an appropriate instrumental variable to isolate covari-
ation in the causal variable and the outcome variable, and (3) establishing an

7Admission is offered to the 37 of 250 students (14.8 percent) whose sum of SAT and
motivation is greater than or equal to 1.5.
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Figure 3.5: A causal diagram in which the effect of D on Y is confounded
by C.

isolated and exhaustive mechanism (or set of mechanisms) that intercepts the
effect of the causal variable on the outcome variable and then calculating the
causal effect as it propagates through the mechanism. In this subsection, we
consider the first of these strategies, which motivates the basic matching and
regression techniques that we will present in the next two chapters.

Perhaps the most general concern of a researcher seeking to estimate a causal
effect is that the causal variable D and the outcome variable Y are mutually
dependent on a common third variable C'. This common but simple scenario
is represented by the DAG in Figure 3.5. In this case, the total association
between D and Y represents the genuine causal effect of D on Y and the common
dependence of D and Y on C. In this case, it is often said that the causal effect
of D on Y is confounded by C. In particular, the presence of the causal effects
C — D and C' — Y confound the causal effect D — Y.

For this example, the causal effect of D on Y can be consistently estimated by
conditioning on C'. We will explain this claim more formally and more generally
in the remainder of this section. For now, consider conditioning only as a data
analysis procedure in order to understand the end point of the discussion that
follows. As an operational data analysis routine, the effect of D on Y can
be estimated by conditioning on C' in two steps: (1) calculate the association
between D and Y for each subgroup with C' equal to ¢ and then (2) average
these c-specific associations over the marginal distribution of the values ¢ that
the variable C' takes on. The resulting weighted average is the causal effect of
D on Y in Pearl’s framework, which would be labeled the average treatment
effect in the counterfactual causality literature. In this sense, conditioning on
C identifies the causal effect of D on Y in this example.

Conditioning is a powerful strategy for estimating causal effects, and it is
both successful and completely transparent for simple examples such as this
one. But it is a much more complicated procedure in general than is suggested
by our short accounting of this example. The complications arise when col-
liders are present, and Pearl has explained systematically how to resolve these
complications.
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Before considering a complex example, consider a more formal analysis of
the example in Figure 3.5. Pearl characterizes the confounding created by both
C — D and C — Y in a novel way, using the language of back-door paths.
For Pearl, a path is any any sequence of edges pointing in any direction that
connects one variable to another. A back-door path is then defined as a path
between any causally ordered sequence of two variables that includes a directed
edge — that points to the first variable. For the DAG in Figure 3.5, there are
two paths that connect D and Y: D — Y and D « C' — Y. For the causally
ordered pair of variables D and Y, the path D <+ C — Y is a back-door path
because it includes a directed edge pointing to D. Likewise, the path D — Y is
not a back-door path because it does not include a directed edge pointing to D.

The problem with back-door paths is that they may contribute to the associ-
ation between D and Y. As a result, the observed association between D and Y
may not consistently estimate the causal effect of D on Y. In Pearl’s language,
the observed association between D and Y does not identify the causal effect
because the total association between D and Y is an unknown composite of the
true causal effect D — Y and the back-door path D «— C — Y.

With this language, Pearl then develops what he labels the “back-door cri-
terion” for determining whether or not conditioning on a given set of observed
variables will identify the causal effect of interest. If one or more back-door
paths connects the causal variable to the outcome variable, Pearl shows that
the causal effect is identified by conditioning on a set of variables Z if and only
if all back-door paths between the causal variable and the outcome variable are
blocked after conditioning on Z. He then proves that all back-door paths are
blocked by Z if and only if each back-door path

1. contains a chain of mediation A — C' — B, where the middle variable C'
isin Z, or

2. contains a fork of mutual dependence A + C' — B, where the middle
variable C'is in Z, or

3. contains an inverted fork of mutual causation A — C « B, where the
middle variable C' and all of C’s descendants are not in Z.°

Conditions 1 and 2 of the back-door criterion should be clear as stated; they
imply that back-door associations between the causal variable and the outcome
variable can be eliminated by conditioning on observed variables that block each
back-door path. Condition 3, however, is quite different and is not intuitive. It
states instead that the set of conditioning variables Z cannot include collider

8This claim is a combination of Pearl’s definition of d-separation (Pearl 2000:16-17) and his
definition of the back-door criterion (Pearl 2000:79). The back-door criterion is interpretable
only when the causal effect of interest is specified as a component of a graph that is repre-
sentable as a causal model (or at least a component of locally Markovian causal model, in
which the underspecified causal relations are irrelevant to an evaluation of the back-door crite-
rion for the particular causal effect under consideration). See Pearl’s causal Markov condition
for the existence of a causal model (Pearl 2000, Section 1.4.2, Theorem 1.4.1).
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variables that lie along back-door paths.” We will explain the importance of
condition 3, as well as the underlying rationale for it, in the examples that
follow.'”

First, return one last time to the simple example in Figure 3.5. Here, there
is a single back-door path, which is a fork of mutual dependence where C' causes
both D and Y. By Pearl’s back-door criterion, conditioning on C' blocks D «
C — Y because C is the middle variable in a fork of mutual dependence. As a
result, C' satisfies Pearl’s back-door criterion, and the causal effect of D on Y is
identified by conditioning on C'.

Consider now a more complex example, which involves the do-not-condition-
on-colliders condition 3 of the back-door criterion. A common but poorly justi-
fied practice in the social sciences is to salvage a regression model from suspected
omitted-variable bias by adjusting for an endogenous variable that can be rep-
resented as a proxy for the omitted variable that is unobserved. In many cases,
this strategy will fail because the endogenous variable is usually a collider.

To set up this example, suppose that an analyst is confronted with a basic
DAG, similar to the one in Figure 3.5, in which the causal effect of D on Y
is confounded by a variable such as C'. But suppose now that the confounder
variable is unobserved, and thus cannot be conditioned on. When in this sit-
uation, researchers often argue that the effects of the unobserved confounder
can be decomposed in principle into a lagged process, using a prior variable
for the outcome, Y;_1, and two separate unobserved variables, U and V', as in
Figure 3.6.

For the DAG in Figure 3.6, there are two back-door paths from D to Y:
D~V —-Y,1—YandD«—V —Y, 1 «— U —Y. The lagged outcome
variable Y;_; lies along both of these back-door paths, but Y;_; does not satisfy
the back-door criterion. Notice first that Y; 1 blocks the first back-door path
D «—V —Y;_ 1 — Y because, for this path, Y;_; is the middle variable of a
chain of mediation V' — Y;_; — Y. But, for the second path D «— V — Y;_; «—
U —Y ,Y;_1is a collider because it is the middle variable in an inverted fork
of mutual causation V' — Y;_; « U. And, as a result, the back-door criterion
states that, after conditioning on Y;_1, at least one back-door path from D to
Y will remain unblocked. For this example, it is the second path that includes
the collider.

Having seen how condition 3 of the back-door criterion is applied, con-
sider why it is so important. Pearl would state that, for this last example,

9Because the “or” in the back-door criterion is inclusive, one can condition on colliders
and still satisfy the back-door criterion if the back-door paths along which the colliders lie
are otherwise blocked because Z satisfies condition 1 or condition 2 with respect to another
variable on the same back-door path.

1ONote the stipulation in condition 3 that neither C' nor the descendants of C' can be in
Z. We do not make much of these “descendants” in our presentation. But, see Hernan,
Hernandez-Diaz, and Robins (2004) for a discussion of examples in epidemiology for which
the distinction is important. For their examples, the collider is “getting sick enough to be
admitted to a hospital for treatment” but the variable that is conditioned on is “in a hospi-
tal.” Conditioning on “in a hospital” (by undertaking a study of hospital patients) induces
associations between the determinants of sickness that can spoil standard analyses.
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Figure 3.6: A causal diagram in which Y;_; is a collider.

conditioning on Y;_; eliminates part of the back-door association between D
and Y because Y; 1 blocks the back-door path D «+— V — Y; 1 — Y. But, at
the same time, conditioning on Y;_; creates a new back-door association be-
tween D and Y because conditioning on Y;_; unblocks the second back-door
path D —V =Y, 1 «—U—>Y.

How can conditioning on a collider unblock a back-door path? To see the
answer to this question, recall the simple characterization of colliders and the
inverted fork of mutual causation in panel (c) of Figure 3.3. For that graph, the
path A — C < B contains a collider C. As we noted earlier, the indirect causal
effects of A and B on each other are absorbed by C', and the path A — C «— B
does not on its own generate an unconditional association between A and B.
This basic result can be applied to back-door paths between D and Y that in-
clude colliders, as in the example presented in Figure 3.6. If a back-door path
between a causal variable D and an outcome variable Y includes an intermedi-
ate variable that is a collider, that back-door path does not contribute to the
unconditional association between D and Y. Because no back-door association
between D and Y is generated, a back-door path that contains a collider does
not confound the causal effect of D on Y.

At the same time, if a collider that lies along a back-door path is conditioned
on, that conditioning will unblock the back-door path and thereby confound the
causal effect. Recall the earlier discussion of conditioning in reference to panel
(¢) of Figure 3.3 and then as demonstrated in Figure 3.4. There, with the
example of SAT and motivation effects on a hypothetical admissions decision
to a college, we explained why conditioning on a collider variable induces an
association between those variables that the collider is dependent on. That
point applies here as well, when the causal effect of D on Y in Figure 3.6 is
considered. Conditioning on a collider that lies along a back-door path unblocks
the back-door path in the sense that it creates a net association between D and
Y within at least one of the subgroups enumerated by the collider.

Consider the slightly more complex example that is presented in the DAG
in Figure 3.7 (which is similar to Figure 1.1, except that the bidirected edges
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Cc

Figure 3.7: A causal diagram in which A is a collider.

that signified unspecified common causes have been replaced with two specific
unobserved variables, U and V). Suppose, again, that we wish to estimate the
causal effect of D on Y. For this DAG, there are two back-door paths between D
andY: (1) D— A~V —-oF—-Yand(2)D—B«U—-A—V->F-=>Y.
Notice that A is a collider variable in the second back-door path but not in
the first back-door path. As a result, the first back-door path contributes to
the association between D and Y, but the second back-door path does not
contribute to the association between D and Y. We have to be careful that,
whatever conditioning we enact to eliminate the confounding effect of the back-
door path D «— A «— V — F — Y does not unblock the back-door path
D+« B« U—A«V — F —Y and thereby confound the causal effect in
another way.

For this example, there are two entirely different and effective conditioning
strategies available that will identify the causal effect (numbers 1 and 3 in the
following list) and a third one that may appear to work but that will fail (number
2 in the following list):

1. F'is the middle variable of a chain of mediation for both back-door paths,
asin V — ' — Y. As a result, F' satisfies the back-door criterion, and
conditioning on F' identifies the causal effect of D on Y.

2. A is a middle variable of a chain of mediation for the first back-door path,
asin D «— A «— V. But A is a collider variable for the second back-door
path, as in U — A «— V. As a result, A alone does not satisfy the
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back-door criterion. Conditioning on A does not identify the causal effect
of D on Y, even though A lies along both back-door paths. Conditioning
on A would unblock the second back-door path and thereby create a new
back-door association between D and Y.

3. A is a middle variable of a chain of mediation for the first back-door path,
asin D <« A « V. Likewise, B is a middle variable of a chain of mediation
for the second back-door path, as in D <« B « U. Thus, even though
A blocks only the first back-door path (and, in fact, conditioning on it
unblocks the second back-door path), conditioning on B blocks the second
back-door path. As a result, A and B together (but not alone) satisfy
the back-door criterion, and conditioning on them together identifies the
causal effect of D on Y.

In sum, for this example the causal effect can be identified by conditioning in
one of two minimally sufficient ways: either condition on F' or condition on both
A and B.!!

The key point of this section is that conditioning on variables that lie along
back-door paths can be an effective strategy to identify a causal effect. If
all back-door paths between the causal variable and the outcome variable are
blocked after the conditioning is enacted, then back-door paths do not con-
tribute to the association between the causal variable and the outcome variable.
And, as a result, the remaining association between the causal variable and
outcome variable identifies the causal effect. Even so, it must be kept in mind
that conditioning on a collider variable has the opposite effect. It unblocks an
already blocked back-door path. And thus, as the last two examples show, when
a conditioning strategy is evaluated, each back-door path must be assessed care-
fully because a variable can be a collider along one back-door path but not a
collider along another.

Pearl’s back-door criterion for evaluating conditioning strategies is a gen-
eralization (and therefore a unification) of various traditions for how to solve
problems that are frequently attributed to omitted-variable bias. From our per-
spective, Pearl’s framework is particularly helpful in two respects. It shows
clearly that researchers do not need to condition on all omitted direct causes of
an outcome variable in order to solve an omitted-variable bias problem. This
claim is not new, of course, but Pearl’s back-door criterion shows clearly why
researchers need to condition on only a minimally sufficient set of variables that
renders all back-door paths blocked. Moreover, Pearl’s framework shows how
to think clearly about the appropriateness of conditioning on endogenous vari-
ables. Writing down each back-door path and then determining whether or not
each endogenous variable is a collider along any of these back-door paths is a
much simpler way to begin to consider the full complications of a conditioning
strategy than prior approaches.

1 One can of course condition in three additional ways that also satisfy the back-door
criterion: F' and A, F and B, and F', A, and B. These conditioning sets include unnecessary
and redundant conditioning.
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In the next section, we consider models of causal exposure that have been
used in the counterfactual tradition, starting first with the statistics literature
and carrying on to the econometrics literature. We will show that the assump-
tions often introduced in these two traditions to justify conditioning estima-
tion strategies — namely, ignorability and selection on the observables — can
be thought of as more specific assertions of the general point that the average
causal effect is identified when all back-door paths are blocked.

3.2 Models of Causal Exposure in the
Counterfactual Tradition

With this general presentation of the conditioning strategy in mind, return to
the familiar case of a binary cause D and an observed outcome variable Y. As
discussed in Chapter 2, in the counterfactual tradition we consider Y to have
been generated by a switching process between two potential outcome variables,
asin Y = DY'! + (1 — D)Y?, where the causal variable D is the switch. To
model variation in Y and relate it to the individual-level causal effects defined
by the potential outcome variables Y! and Y, a model for the variation in D
must be adopted. This is known, in the counterfactual framework, as modeling
the treatment assignment mechanism or as modeling the treatment selection
mechanism, based on which tradition of analysis is followed.

In this section, we first consider the notation and language developed by
statisticians, and we then turn to the alternative notation and language devel-
oped by econometricians. Although both sets of ideas are equivalent, they each
have some distinct conceptual advantages. In showing both, we hope to deepen
the understanding of each.

3.2.1 Treatment Assignment Modeling in Statistics

The statistics literature on modeling the treatment assignment mechanism is
an outgrowth of experimental methodology and the implementation of random-
ization research designs. Accordingly, we begin by considering a randomized
experiment for which the phrase treatment assignment remains entirely appro-
priate.

As discussed earlier, if treatment assignment is completely random, then
the treatment indicator variable D is completely independent of the potential
outcomes Y° and Y'! as well as any function of them, such as the distribution
of 0 [see the earlier discussion of Equation (2.4)]. In this case, the treatment
assignment mechanism can be specified completely if Pr[D = 1] is set to a
constant between 0 and 1. If a researcher desires treatment and control groups
of approximately the same size, then Pr[D = 1] can be set to .5. Individual
realized values of D for those in the study, denoted d; generically, are then
equal to 1 or 0. The values for d; can be thought of as realized outcomes of a
Bernoulli trial for the random variable D.
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For more complex randomization schemes, more elaborate statements are
required. If, for example, study subjects are stratified first by gender and then
assigned with disproportionate probability to the treatment group if female,
then the treatment assignment mechanism might instead be

Pr[D = 1|Gender = Female] = .7 (3.1)
Pr[D = 1|Gender = Male] =

These conditional probabilities are often referred to as propensity scores, as
they indicate the propensity that an individual with specific characteristics will
be observed in the treatment group. Accordingly, for this example, Equations
(3.1) are equivalent to stating that the propensity score for the treatment is .7
for females and .5 for males. In randomized experiments, the propensity scores
are known to the researcher.

In contrast, a researcher with observational data only does not possess a
priori knowledge of the propensity scores that apply to different types of in-
dividuals. However, she may know the characteristics of individuals that sys-
tematically determine their propensity scores. In this case, treatment selection
patterns are represented by the general conditional probability distribution:

Pr[D =1|8], (3.2)

where S now denotes all variables that systematically determine treatment as-
signment/selection. An observational researcher may know and have measures
of all of the variables in S, even though he or she may not know the specific val-
ues of the propensity scores, which are defined as the values that Pr[D = 1|5] is
equal to under different realized values s of the variables in S. Complete obser-
vation of S allows a researcher to assert that treatment selection is “ignorable”
and then consistently estimate the average treatment effect, as we now explain.

The general idea here is that, within strata defined by S, the remaining
variation in the treatment D is completely random and hence the process that
generates this remaining variation is ignorable. The core of the concept of ignor-
ability is the independence assumption that was introduced earlier in Equation
(2.4):

(YOvhH 1L D

where the symbol 1L denotes independence. As defined by Rubin (1978), ignor-
ability of treatment assignment holds when the potential outcomes are indepen-
dent of the treatment dummy indicator variable, as in this case all variation in
D is completely random. But ignorability also holds in the weaker case,

Yo vh 1L DS, (3.3)

and when S is fully observed. The treatment assignment mechanism is ignor-
able when the potential outcomes (and any function of them, such as ¢) are
independent of the treatment variable within strata defined by all combinations
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of values on the observed variables in S that determine treatment selection.'?

If ignorability of treatment assignment is asserted for an observational study,
then a researcher must (1) determine from related studies and supportable as-
sumptions grounded in theory what the components of S are, (2) measure each
of the component variables in S, and (3) collect enough data to be able to con-
sistently estimate outcome differences on the observed variable Y within strata
defined by S.'? A researcher does not need to know the exact propensity scores
(i.e., what Pr[D = 1|S = s] is equal to for all s), only that the systematic
features of treatment selection can be exhaustively accounted for by the data
in hand on the characteristics of individuals. The naive estimator can then be
calculated within strata defined by values of the variables in S, and a weighted
average of these stratified estimates can be formed as a consistent estimate of
the average treatment effect.

Consider the Catholic school example. It is well known that students whose
parents self-identify as Catholic are more likely to be enrolled in Catholic schools
than students whose parents self-identify as non-Catholic. Suppose that par-
ents’ religious identity is the only characteristic of students that systematically
determines whether they attend Catholic schools instead of public schools. In
this case, a researcher can consistently estimate the average treatment effect by
collecting data on test scores, students’ school sector attendance, and parent’s
religious identification. A researcher would then estimate the effect of Catholic
schooling separately by using the naive estimator within groups of students de-
fined by parents’ religious identification and then take a weighted average of
these estimates based on the proportion of the population of interest whose
parents self-identify as Catholic and as non-Catholic. This strategy is exactly
the conditioning strategy introduced in the last section: Parents’ religious iden-
tification blocks all back-door paths from Catholic school attendance to test
scores.

Ignorability is thus directly related to conditioning on variables that satisfy
the back-door criterion of Pearl. Suppose that we are confronted with the causal
diagram in panel (a) of Figure 3.8, which includes the causal effect D — Y but
also the bidirected edge D «----+Y. The most common solution is to build an
explicit causal model that represents the variables that generate the bidirected
edge between D and Y in panel (a) of Figure 3.8. The simplest such model is
presented in panel (b) of Figure 3.8, where D «----» Y has been replaced with

12Rosenbaum and Rubin (1983a) defined strong ignorability to develop the matching lit-
erature, which we will discuss later. To Rubin’s ignorability assumption, Rosenbaum and
Rubin (1983a) required for strong ignorability that each subject have a nonzero probability of
being assigned to both the treatment and the control groups. Despite these clear definitions,
the term ignorability is often defined in different ways in the literature. We suspect that this
varied history of usage explains why Rosenbaum (2002) rarely uses the term in his monograph
on observational data analysis, even though he is generally credited, along with Rubin, with
developing the ignorability semantics in this literature. And it also explains why some of the
most recent econometrics literature uses the words unconfoundedness and exogeneity for the
same set of independence and conditional-independence assumptions (see Imbens 2004).

13This third step can be weakened if the data are merely sparse, as we discuss later when
presenting propensity score techniques.
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(a) (b)

Figure 3.8: Causal diagrams in which treatment assignment is (a) nonignorable
and (b) ignorable.

the back-door path D <« S — Y. Thus, if S is observed, then conditioning
on S will solve the causal inference problem. When identification by back-door
conditioning is feasible, then treatment selection is ignorable.'

We will discuss these techniques in detail in Chapter 4, where we present
matching estimators of causal effects. But the immediate complications of un-
dertaking this strategy for the Catholic school example should be clear. How
do we determine all of the factors that systematically determine whether a stu-
dent enrolls in a Catholic school instead of a public school? And can we obtain
measures of all of these factors? Attendance at a Catholic school is determined
by more than just parents’ religious self-identification, and some of these de-
terminants are likely unmeasured. If this is the case, the treatment selection
mechanism remains nonignorable, as treatment selection is then a function of
unobserved characteristics of students.

3.2.2 Treatment Selection Modeling in Econometrics

The econometrics literature also has a long tradition of analyzing causal effects
of these forms, and this literature may be more familiar to social scientists.
Whereas concepts such as ignorability are used infrequently in the social sci-
ences, the language of selection bias is commonly used throughout the social
sciences. This usage is due, in large part, to the energy that economists have
devoted to exploring the complications of self-selection bias.

14The potential outcome random variables are not represented in Figure 3.8. Pearl intro-
duces the causal states in a different way, using the semantics of an intervention and introduc-
ing the do(.) operator. For the causal diagram in panel (a) of Figure 3.8, the average values
of Y that accompany the two values of D do not correspond to the two values of Y that one
would obtain by calculating the average values of Y that would result from intervening to set
D to its two possible values. For the causal diagram in panel (a) of Figure 3.8, E[Y|D = 1]—
E[Y|D = 0] does not equal E[Y|do(D = 1]— E[Y|do(D = 0)]. As should be clear, holding
all semantic issues aside, this last statement is equivalent to saying that, for observations of
variables D and Y for the model in panel (a) of Figure 3.8, the naive estimator does not equal
the average difference in potential outcomes. Thus, the do(.) operator is equivalent to the
assertion of well-defined causal states, and that assertion is attached to the causal variable
rather than to potential outcomes for each causal state. Thus, for Pearl, E[Y!] — E[Y?] is
equal to E[Y|do(D = 1)] — E[Y|do(D = 0)].
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The selection-bias literature in econometrics is vast, but the most relevant
piece that we focus on here is James Heckman’s specification of the random-
coefficient model for the treatment effects of training programs (which he at-
tributes, despite the difference in substance, to Roy 1951). The clearest specifi-
cation of this model was presented in a series of papers that Heckman wrote with
Richard Robb (see Heckman and Robb 1985, 1986, 1989), but Heckman worked
out many of these ideas in the 1970s. Using the notation we have adopted in
this book, take Equation (2.2),

Y =DY'+ (1-D)Y?,

and then rearrange and relabel terms as follows:

Y = Y4+ ' -Y9D (3.4)
= Y°+4D
= 0 +6D+°,

where ° = E[YY] and v° = Y° — E[Y?]. The standard outcome model from
the econometrics of treatment evaluation simply reexpresses Equation (3.4) so
that potential variability of § across individuals in the treatment and control
groups is relegated to the error term, as in

Y =+ (u = p°)D + {v° + D(v! = %)}, (3.5)
where p! = E[Y!], v! = Y! — E[Y!], and all else is as defined for Equa-
tion (3.4).'% Note that, in evolving from Equation (2.2) to Equation (3.5), the

15The original notation is a bit different, but the ideas are the same. Without much usage
of the language of potential outcomes, Heckman and Robb (1985; Section 1.4) offered the
following setup for the random coefficient model of treatment effects to analyze posttreatment
earnings differences for a fictitious manpower training example. For each individual 4, the
earnings of individual 7 if trained are

yli =B+ U},

and the earnings of individual ¢ in the absence of training are

v =p°+ U7,
(where we have suppressed subscripting on ¢ for time from the original presentation and also
shifted the treatment state descriptors from subscript to superscript position). With observed
training status represented by a binary variable, d;, Heckman and Robb then substitute the
right-hand sides of these equations into the definition of the observed outcome in Equation
(2.2) and rearrange terms to obtain

yi = B0 + (8 = 8)di + U + (U] = UP)ds,
which they then collapse into

yi = B° + ad; + {U} + eidi},

where @ = 8! — 8% and ¢; = Ui1 - U%-0 (see Heckman and Robb 1985, Equation 1.13). As a
result, @ is the average treatment effect, which we defined as E[d] in Equation (2.3), and &;
is the individual-level departure of §; from the average treatment effect E[6]. Although the
notation in this last equation differs from the notation in Equation (3.5), the two equations are
equivalent. Heckman and Vytlacil (2005) give a fully nonparametric version of this treatment
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definition of the observed outcome variable Y has taken on the look and feel of
a regression model.'® The first ;¥ term is akin to an intercept, even though it
is defined as E[Y]. The term (u* — 1%) that precedes the first appearance of D
is akin to a coefficient on the primary causal variable of interest D, even though
(ut — 10 is defined as the true average causal effect E[§]. Finally, the term in
braces, {v° + D(v! —v?)}, is akin to an error term, even though it represents
both heterogeneity of the baseline no-treatment potential outcome and of the
causal effect, §, and even though it includes within it the observed variable D.'"

Heckman and Robb use the specification of the treatment evaluation problem
in Equation (3.5), and many others similar to it, to demonstrate all of the major
problems created by selection bias in program evaluation contexts when simple
regression estimators are used. Heckman and Robb show why a regression of
Y on D does not in general identify the average treatment effect [in this case
(u* — p0)] when D is correlated with the population-level variant of the error
term in braces in Equation (3.5), as would be the case when the size of the
individual-level treatment effect [in this case (p' — p°) + {09 + d;(v} — v9)}]
differs among those who select the treatment and those who do not.

The standard regression strategy that prevailed in the literature at the time
was to include additional variables in a regression model of the form of Equation
(3.5), hoping to break the correlation between D and the error term.'® Heckman
and Robb show that this strategy is generally ineffective with the data available
on manpower training programs because (1) some individuals are thought to
enter the programs based on anticipation of the treatment effect itself and (2)
none of the available data sources have measures of such anticipation. We
will return to this case in detail in Chapter 5, where we discuss regression
models.

To explain these complications, Heckman and Robb explore how effectively
the dependence between D and the error term in Equation (3.5) can be broken.
They proceed by proposing that treatment selection be modeled by specifying
a latent continuous variable D:

D=2Z¢+U, (3.6)

where Z represents all observed variables that determine treatment selection,
¢ is a coefficient (or a vector of coefficients if Z includes more than one vari-

selection framework, which we draw on later.
163ometimes, Equation (3.5) is written as

Y =0 +[(u" = p) + (0" =)D +°

in order to preserve its random-coefficient interpretation. This alternative representation is
nothing other than a fully articulated version of Equation (3.4).

17Statisticians sometimes object to the specification of “error terms” because, among other
things, they are said to represent a hidden assumption of linearity. In this case, however, the
specification of this error term is nothing other than an expression of the definition of the
individual-level causal effect as the linear difference between yi1 and y?.

8Barnow, Cain, and Goldberger (1980:52) noted that “the most common approach” is to
“simply assume away the selection bias after a diligent attempt to include a large number of
variables” in the regression equation.
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able), and U represents both systematic unobserved determinants of treatment
selection and completely random idiosyncratic determinants of treatment selec-
tion. The latent continuous variable D in Equation (3.6) is then related to the
treatment selection dummy, D, by

D
D

1if D >0,
0if D <0,

where the threshold 0 is arbitrary because the term U has no inherent metric
(because it is composed of unobserved and possibly unknown variables).

To see the connection between this econometric specification and the one
from the statistics literature introduced in the last section, first recall that
statisticians typically specify the treatment selection mechanism as the general
conditional probability distribution Pr[D = 1|S], where S is a vector of all
systematic observed determinants of treatment selection.'” This is shown in
the DAG in panel (b) of Figure 3.8. The corresponding causal diagram for the
econometric selection equation is presented in two different graphs in Figure
3.9, as there are two scenarios corresponding to whether or not all elements of
S have been observed as Z.

For the case in which Z in Equation (3.6) is equivalent to the set of variables
in S in Equation (3.2), treatment selection is ignorable, as defined in Equation
(3.3), because conditioning on Z is exactly equivalent to conditioning on S.
In the econometric tradition, this situation would not, however, be referred
to as a case for which treatment assignment/selection is ignorable. Rather,
treatment selection would be characterized as “selection on the observables”
because all systematic determinants of treatment selection are included in the
observed treatment selection variables Z. This phrase is widely used by social
scientists because it conveys the essential content of the ignorability assumption:
All systematic determinants of treatment selection have been observed.

The scenario of selection on the observables is depicted in panel (a) of Figure
3.9. The variable S in panel (b) of Figure 3.8 is simply relabeled Z, and there are
no back-door paths from D to Y other than the one that is blocked by Z. The
remaining idiosyncratic random variation in D is attributed in the econometric
tradition to a variable U, which is presented in panel (a) of Figure 3.9 as a
cause of D that is conditionally independent of both Z and Y. This error
term U represents nothing other than completely idiosyncratic determinants of
treatment selection. It could therefore be suppressed in panel (a) of Figure 3.9,
which would render this DAG the same as the one in panel (b) of Figure 3.8.%°

Now consider the case in which the observed treatment selection variables
in Z are only a subset of the variables in S. In this case, some components of

9When more specific, the basic model is usually a Bernoulli trial, in which Pr[D = 1|S = s]
gives the specific probability of drawing a 1 and the complement of drawing a 0 for individuals
with S equal to s.

20The latent variable specification in the econometric tradition can be made equivalent to
almost all particular specifications of the statement Pr[D = 1|S] in the statistics tradition by
the choice of an explicit probability distribution for U.
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Z Z
f D Y f D Y
U Uder
(a) Selection on the observables (b) Selection on the unobservables

Figure 3.9: Causal diagrams for the terminology from econometric modeling of
treatment selection.

S enter into the treatment selection latent variable D through the error term,
U, of Equation (3.6). In this case, treatment selection is nonignorable. Or, in
the words of econometricians, “selection is on the unobservables.” The scenario
of selection on the unobservables is depicted in panel (b) of Figure 3.9, where
there is now a back-door path from D to Y: D «— U «----» Y. Conditioning
on Z for this causal diagram does not block all back-door paths.

In spite of differences in language and notation, there is little that differen-
tiates the statistics and econometrics models of treatment selection, especially
now that the outcome equations used by economists are often completely gen-
eral nonparametric versions of Equation (3.5) (see Heckman and Vytlacil 2005,
which we will discuss later). For now, the key point is that both the statis-
tics and econometric specifications consider the treatment indicator variable,
D, to be determined by a set of systematic treatment selection variables in S.
When all of these variables are observed, the treatment selection mechanism is
ignorable and selection is on the observables only. When some of the variables
in S are unobserved, the treatment selection mechanism is nonignorable and
selection is on the unobservables.

3.3 Conditioning to Balance versus
Conditioning to Adjust

When presenting Pearl’s back-door criterion for determining a sufficient set
of conditioning variables, we noted that for some applications more than one
set of conditioning variables is sufficient. In this section, we return to this
point as a bridge to the following two chapters that present both matching and
regression implementations of conditioning. Although we will show that both
sets of techniques can be considered variants of each other, here we point to the
different ways in which they are usually invoked in applied research. Matching
is most often considered a technique to balance the determinants of the causal



82 Chapter 3. Causal Graphs and Identification

Figure 3.10: A causal diagram in which sufficient conditioning can be performed
with respect to S or X.

variable, and regression is most often considered a technique to adjust for other
causes of the outcome.

To frame this discussion, consider first the origins of the balancing approach
in the randomized experiment tradition. Here, the most familiar approach is a
randomized experiment that ensures that treatment status is unassociated with
all observed and unobserved variables that determine the outcome (although
only in expectation). When treatment status is unassociated with an observed
set of variables W, the data are balanced with respect to W. More formally,
the data are balanced if

Pr[W|D = 1] = Pr[W|D = 0], (3.7)

which requires that the probability distribution of W be the same within the
treatment and control groups.

Now consider the graph presented in Figure 3.10. A back-door path D «
S «----» X — Y is present from D to Y, where S represents the complete set of
variables that are direct causes of treatment assignment /selection, X represents
the complete set of variables other than D that are direct causes of Y, and the
bidirected edge between S and X signifies that they are mutually caused by
some set of common unobserved causes.?!

Because neither S nor X is a collider, all back-door paths in the graph can
be blocked by conditioning on either S or X (and we write “paths” because
there may be many paths signified by the bidirected edge between S and X).
Conditioning on S is considered a balancing conditioning strategy whereas con-
ditioning on X is considered an adjustment-for-other-causes conditioning strat-
egy. If one observes and then conditions on S, the variables in S and D are no
longer associated within the subgroups defined by the conditioning. The treat-
ment and control groups are thereby balanced with respect to the distribution
of S. Alternatively, if one conditions on X, the resulting subgroup differences

21For this example, we could have motivated the same set of conclusions with other types
of causal graphs. The same basic conclusions would hold even if X and S include several
variables within them in which some members of X cause D directly and some members of S
cause Y directly. In other words, all that we need to make the distinction between balancing
and adjustment for other direct causes is two sets of variables that are related to each other,
with at least one variable in one set that causes D but not Y and at least one variable in the
other set that causes Y but not D.
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in Y across D within X can be attributed to D alone. In this case, the goal is
not to balance X but rather to partial out its effects on Y in order to isolate
the net effect of D on Y.

The distinction between balancing and adjustment for other causes is some-
what artificial. For the graph in Figure 3.10, balancing X identifies the causal
effect. Thus it is technically valid to say that one can identify a causal effect by
balancing a sufficient set of other causes of Y. Nonetheless, the graph in Figure
3.10 demonstrates why the distinction is important. The ultimate set of sys-
tematic causes that generates the relationship between S and X is unobserved,
as it often is in many applied research situations. Because one cannot condition
on these unobserved variables, one must condition on either S or X in order to
identify the causal effect. These two alternatives may be quite different in their
practical implementation.

Should one balance the determinants of a cause, or should one adjust for
other causes of the outcome? The answer to this question is situation specific,
and it depends on the quality of our knowledge and measurement of the deter-
minants of D and Y. Perhaps the best answer is that one should do both.?
Nonetheless, there is a specific advantage of balancing that may tip the scales
in its favor if both strategies are feasible: It diminishes the inferential prob-
lems that can be induced by data-driven specification searches. We will discuss
these issues in the course of presenting matching and regression conditioning
strategies in the next two chapters.

3.4 Point Identification of Conditional Average
Treatment Effects by Conditioning

At the beginning of this chapter, we indicated that we would implicitly focus
our presentation of graphical causal models and identification issues on the
estimation of the unconditional average treatment effect. This narrow focus is
entirely consistent with the graphical tradition, in which parameters such as
the average treatment effect for the treated in Equation (2.5) and the average
treatment effect for the untreated in Equation (2.6) are given considerably less
attention than in the counterfactual modeling tradition in both statistics and
econometrics. Some comments on the connections may be helpful at this point
to foreshadow some of the specific material on causal effect heterogeneity that
we will present in the next two chapters.

Identification When the Unconditional Average Treatment Effect is
Identified

If one can identify and consistently estimate the unconditional average treatment
effect with conditioning techniques, then one can usually estimate some of the

22 As we discuss in Subsection 5.3.4, many scholars have argued for conditioning on both S
and X. Robins, for example, argues for this option as a double protection strategy that offers
two chances to effectively break the back-door path between Y and D.
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conditional average treatment effects that may be of interest as well. As we
will show in the next two chapters, consistent estimates of conditional average
treatment effects can usually be formed by specification of alternative weighted
averages of the average treatment effects for subgroups defined by values of
the conditioning variables. Thus, calculating average effects other than the
unconditional average treatment effect may be no more complicated than simply
adding one step to the more general conditioning strategy we have presented in
this chapter.

Consider again the graph presented in Figure 3.10. The back-door path from
D to Y is blocked by both S and X. As a result, a consistent estimate of the
average treatment effect in Equation (2.3) can be obtained by conditioning on
either S or X. But, in addition, consistent estimates of the average treatment
effect for the treated in Equation (2.5) and the average treatment effect for the
untreated in Equation (2.6) can be obtained by properly weighting conditional
differences in the observed values of Y. In particular, if conditioning is per-
formed with respect to S, first calculate the sample analogs to the differences
EY|D =1,S = s] — E[Y|D = 0,8 = s] for all values s of S. Then, weight
these differences by the conditional distributions Pr[S|D = 1] and Pr[S|D = 0]
to calculate the average treatment effect for the treated and the average treat-
ment effect for the untreated, respectively. If, on the other hand, conditioning
is performed with respect to X, then alternative quantities are calculated as
sample analogs to E[Y|D = 1,X = z| - E[Y|D = 0,X = z|, Pr[X|D = 1],
and Pr[X|D = 0]. These estimated quantities will differ from those that are
generated by conditioning on S, but they can still be used in an analogous
way to form consistent estimates of the average treatment effect for the treated
and the average treatment effect for the untreated. We will present examples of
these sorts of stratification and weighting estimators in the next chapter.

But note that the ingredients utilized to estimate the average treatment
effect for the treated and the average treatment effect for the untreated in these
two conditioning routines are quite different. If S is observed, then conditional
average treatment effects can be calculated for those who are subject to the
cause for different reasons, based on the values of S that determine D. If X is
observed, then conditional average treatment effects can be calculated holding
other causes of Y at chosen values of X. Each of these sets of conditional average
treatment effects has its own appeal, with the relative appeal of each depending
on the application. In the counterfactual tradition, average treatment effects
conditional on S would likely be of more interest than average treatment effects
conditional on X. But for those who are accustomed to working within an
all-cause regression tradition, then average treatments effects conditional on X
might be more appealing.

Identification When the Unconditional Average Treatment Effect is
Not Identified

If selection is on the unobservables, conditioning strategies will generally fail
to identify unconditional average treatment effects. Nonetheless, weaker as-
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sumptions may still allow for the identification and subsequent estimation by
conditioning of various conditional average treatment effects. We will present
these specific weaker assumptions in the course of explaining matching and re-
gression techniques in the next two chapters, but for now we give a brief overview
of the identification issues in relation to the graphical models presented in this
chapter. (See also the prior discussion in Subsection 2.6.4 of similar issues with
regard to the bias of the naive estimator.)

Suppose, for example, that the graph in panel (b) of Figure 3.9 now obtains,
and hence that a back-door path from D to Y exists via unobserved determi-
nants of the cause, U. In this case, conditioning on Z will not identify the
unconditional average treatment effect. Nonetheless, conditioning on Z may
still identify a conditional average treatment effect of interest, as narrower ef-
fects can be identified if weaker assumptions can be maintained even though
unblocked back-door paths may still exist between D and Y.

Consider a case for which partial ignorability holds, such that Y° 1L DIS is
true but (Y9, Y1) 1L D | S is not. Here, conditioning on S generates a consistent
estimate of the average treatment effect for the treated even though S does not
block the back-door path from D to Y. The opposite is, of course, also true. If
partial ignorability holds in the other direction, such that Y! 1 D|S holds but
(YO Y1) UL D | S does not, then the average treatment effect for the untreated
can be estimated consistently.??

Consider the first case, in which only Y° 1 D | S holds. Even after con-
ditioning on S, a back-door path remains between D and Y because Y still
differs systematically between those in the treatment and control groups and
Y is determined in part by Y [see Equation (2.2)]. Nonetheless, if, after con-
ditioning on S, the outcome under the no-treatment-state, Y9, is independent
of exposure to the treatment, then the average treatment effect for the treated
can be estimated consistently. The average values of Y, conditional on S, can
be used to consistently estimate the average what-if values for the treated if
they were instead in the control state. This type of partial ignorability is akin
to Assumption 2 in Equation (2.14), except that it is conditional on S. We
will give a full explanation of the utility of such assumptions when discussing
matching estimates of the treatment effect for the treated and the treatment
effect for the untreated in the next chapter.

3.5 Conclusions

In the next two chapters, we present details and connections between the two
main types of conditioning estimation strategies: matching and regression. We
show how they generally succeed when selection is on the observables and fail
when selection is on the unobservables. We lay out the specific assumptions that

23And, as we will show later, the required assumptions are even simpler, as the entire
distributions of Y? and Y need not be conditionally independent of D. As long as SUT'VA
holds, only mean independence must be maintained.
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allow for the identification of unconditional average treatment effects, as well as
the weaker assumptions that allow for the identification of narrower conditional
average treatment effects. In later chapters, we then present more complex
methods for identifying and estimating causal effects when simple conditioning
methods are insufficient.



Chapter 4

Matching Estimators of
Causal Effects

Written with David Harding:

The rise of the counterfactual model to prominence has increased the popularity
of data analysis routines that are most clearly useful for estimating the effects
of causes. The matching estimators that we will review and explain in this
chapter are perhaps the best example of a classic technique that has reemerged
in the past two decades as a promising procedure for estimating causal effects.”
Matching represents an intuitive method for addressing causal questions, pri-
marily because it pushes the analyst to confront the process of causal exposure
as well as the limitations of available data. Accordingly, among social scientists
who adopt a counterfactual perspective, matching methods are fast becoming
an indispensable technique for prosecuting causal questions, even though they
usually prove to be the beginning rather than the end of causal analysis on any
particular topic.

We begin with a brief discussion of the past use of matching methods. Then,
we present the fundamental concepts underlying matching, including stratifica-
tion of the data, weighting to achieve balance, and propensity scores. Thereafter,
we discuss how matching is usually undertaken in practice, including an overview
of various matching algorithms. Finally, we discuss how the assumptions behind
matching estimators often break down in practice, and we introduce some of the
remedies that have been proposed to address the resulting problems.

IThis chapter is based on Morgan and Harding (2006).

2Matching techniques can be motivated as estimators without invoking causality. Just as
with regression modeling, which we discuss in detail in the next chapter, matching can be
used to adjust the data in search of a meaningful descriptive fit to the data in hand. Given
the nature of this book, we will focus on matching as an estimator of causal effects. We will,
however, discuss the descriptive motivation for regression estimators in the next chapter.

87
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In the course of presentation, we will offer four hypothetical examples that
demonstrate some of the essential claims of the matching literature, progressing
from idealized examples of stratification and weighting to the implementation
of alternative matching algorithms on simulated data for which the treatment
effects of interest are known by construction. As we offer these examples, we
add real-world complexity in order to demonstrate how such complexity can
overwhelm the power of the techniques.

4.1 Origins of and Motivations for Matching

Matching techniques have origins in experimental work from the first half of
the twentieth century. Relatively sophisticated discussions of matching as a re-
search design can be found in early methodological texts in the social sciences
(e.g., Greenwood 1945) and also in attempts to adjudicate between compet-
ing explanatory accounts in applied demography (Freedman and Hawley 1949).
This early work continued in sociology (e.g., Althauser and Rubin 1970, 1971;
Yinger, Tkeda, and Laycock 1967) right up to the key foundational literature
in statistics (Rubin 1973a, 1973b, 1976, 1977, 1979, 1980a) that provided the
conceptual foundation for the new wave of matching techniques that we will
present in this chapter.

In the early 1980s, matching techniques, as we conceive of them now, were
advanced in a set of papers by Rosenbaum and Rubin (1983a, 1984, 1985a,
1985b) that offered solutions to a variety of practical problems that had limited
matching techniques to very simple applications in the past. Variants of these
new techniques found some use immediately in sociology (Berk and Newton
1985; Berk, Newton, and Berk 1986; Hoffer et al. 1985), continuing with work
by Smith (1997). In the late 1990s, economists and political scientists joined in
the development of matching techniques (e.g., Heckman et al. 1999; Heckman,
Ichimura, Smith, and Todd 1998; Heckman, Ichimura, and Todd 1997, 1998 in
economics and Ho, Imai, King, and Stuart 2005 and Diamond and Sekhon 2005
in political science). Given the growth of this literature, and the applications
that are accumulating, we expect that matching will complement other types of
modeling in the social sciences with greater frequency in the future.

In the methodological literature, matching is usually introduced in one of
two ways: (1) as a method to form quasi-experimental contrasts by sampling
comparable treatment and control cases from among two larger pools of such
cases or (2) as a nonparametric method of adjustment for treatment assign-
ment patterns when it is feared that ostensibly simple parametric regression
estimators cannot be trusted.

For the first motivation, the archetypical example is an observational biomed-
ical study in which a researcher is called on to assess what can be learned about
a particular treatment. The investigator is given access to two sets of data,
one for individuals who have been treated and one for individuals who have
not. Each dataset includes a measurement of current symptoms, Y, and a set
of characteristics of individuals, as a vector of variables X, that are drawn from
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demographic profiles and health histories. Typically, the treatment cases are
not drawn from a population by means of any known sampling scheme. In-
stead, they emerge as a result of the distribution of initial symptoms, patterns
of access to the health clinic, and then decisions to take the treatment. The
control cases, however, may represent a subsample of health histories from some
known dataset. Often, the treatment is scarce, and the control dataset is much
larger than the treatment dataset.

In this scenario, matching is a method of strategic subsampling from among
treated and control cases. The investigator selects a nontreated control case
for each treated case based on the characteristics observed as z;. All treated
cases and matched control cases are retained, and all nonmatched control cases
are discarded. Differences in the observed y; are then calculated for treated
and matched cases, with the average difference serving as the treatment effect
estimate for the group of individuals given the treatment.

The second motivation has no archetypical substantive example, as it is
similar in form to any attempt to use regression to estimate causal effects with
survey data. Suppose, for a general example, that an investigator is interested in
the causal effect of an observed dummy variable, D, on an observed outcome, Y.
For this example, it is known that a simple bivariate regression, Y = a+9dD +¢,
will yield an estimated coefficient § that is a biased and inconsistent estimate
of the causal effect of interest because the causal variable D is associated with
variables included in the error term, . For a particular example, if D is the
receipt of a college degree and Y is a measure of economic success, then the
estimate of interest is the causal effect of obtaining a college degree on subse-
quent economic success. However, family background variables are present in &
that are correlated with D, and this relationship produces omitted-variable bias
for a college-degree coeflicient estimated from a bivariate ordinary least squares
(OLS) regression of Y on D.

In comparison with the biomedical example just presented, this motivation
differs in two ways: (1) In most applications of this type, the data represent a
random sample from a well-defined population and (2) the common practice in
the applied literature is to use regression to estimate effects. For the education
example, a set of family background variables in X is assumed to predict both D
and Y. The standard regression solution is to estimate an expanded regression
equation: Y = a+ 0D + X3 + ¢*. With this strategy (which we will discuss
in detail in the next chapter), the goal is to estimate simultaneously the causal
effects of X and D on the outcome, Y.

In contrast, a matching estimator nonparametrically balances the variables
in X across D solely in the service of obtaining the best possible estimate of
the causal effect of D on Y. The most popular technique is to estimate the
probability of D for each individual ¢ as a function of X and then to select

3A virtue of matching, as developed in this tradition, is cost effectiveness for prospective
studies. If the goal of a study is to measure the evolution of a causal effect over time by mea-
suring symptoms at several points in the future, then discarding nontreated cases unlike any
treated cases can cut expenses without substantially affecting the quality of causal inferences
that a study can yield.
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for further analysis only matched sets of treatment and control cases that con-
tain individuals with equivalent values for these predicted probabilities. This
procedure results in a subsampling of cases, comparable with the matching pro-
cedure described for the biomedical example, but for a single dimension that is a
function of the variables in X. In essence, the matching procedure throws away
information from the joint distribution of X and Y that is unrelated to variation
in the treatment variable D until the remaining distribution of X is equivalent
for both the treatment and control cases. When this equivalence is achieved, the
data are said to be balanced with respect to X.* Under specific assumptions,
the remaining differences in the observed outcome between the treatment and
matched control cases can then be regarded as attributable solely to the effect
of the treatment.”

For the remainder of this chapter, we will adopt this second scenario because
research designs in which data are drawn from random-sample surveys are much
more common in the social sciences.® Thus, we will assume that the data in
hand were generated by a relatively large random-sample survey (in some cases
an infinite sample to entirely remove sampling error from consideration), in
which the proportion and pattern of individuals who are exposed to the cause
are fixed in the population by whatever process generates causal exposure.

4.2 Matching as Conditioning via Stratification

In this section we introduce matching estimators in idealized research conditions,
drawing connections with the broad perspective on conditioning introduced in
Chapter 3. Thereafter, we proceed to a discussion of matching in more realistic
scenarios, which is where we explain the developments of matching techniques
that have been achieved in the past three decades.

4.2.1 Estimating Causal Effects by Stratification

Suppose that those who take the treatment and those who do not are very
much unlike each other, and yet the ways in which they differ are captured
exhaustively by a set of observed treatment assignment/selection variables S.
For the language we will adopt in this chapter, knowledge and observation of .S
allow for a “perfect stratification”of the data. By “perfect,”we mean precisely
that individuals within groups defined by values on the variables in S are entirely
indistinguishable from each other in all ways except for (1) observed treatment

4As we will discuss later, in many applications balance can be hard to achieve without
some subsampling from among the treatment cases. In this case, the causal parameter that
is identified is narrower even than the average treatment effect for the treated (and is usually
a type of marginal treatment effect pinned to the common support of treatment and control
cases).

5 A third motivation, which is due to Ho, Imai, King, and Stuart (2005), has now emerged.
Matching can be used as a data preprocessor that prepares a dataset for further causal mod-
eling with a parametric model. We discuss this perspective along with others that seek to
combine matching and regression approaches later, especially in Chapter 5.

6See our earlier discussion in Section 1.4 of this random-sample setup.
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status and (2) differences in the potential outcomes that are independent of
treatment status. Under such a perfect stratification of the data, even though
we would not be able to assert Assumptions 1 and 2 in Equations (2.13) and
(2.14), we would be able to assert conditional variants of those assumptions:

Assumption 1-S: E[YYYD=1,S] = E[Y'D=0,9], (4.1)
Assumption 2-S:  E[Y°|D=1,5] = E[Y°D=0,5]. (4.2)

These assumptions would suffice to enable consistent estimation of the average
treatment effect, as the treatment can be considered randomly assigned within
groups defined by values on the variables in S.

When in this situation, researchers often assert that the naive estimator in
Equation (2.7) is subject to bias (either generic omitted-variable bias or individ-
ually generated selection bias). But, because a perfect stratification of the data
can be formulated, treatment assignment is ignorable [see the earlier discussion
of Equation (3.2)] or treatment selection is on the observable variables S only
[see the earlier discussion of Equation (3.6)]. This is a bit imprecise, however,
because Assumptions 1-S and 2-S are implied by ignorability and selection on
the observables (assuming S is observed). For ignorability and selection on the
observables to hold more generally, the full distributions of Y' and Y° (and
any functions of them) must be independent of D conditional on S [see the
discussion of Equation (3.3)]. Thus Assumptions 1-S and 2-S are weaker than
assumptions of ignorability and selection on the observables, but they are suffi-
cient to identify the three average causal effects of primary interest.

Recall the DAG in panel (b) of Figure 3.8, where S lies along the only
back-door path from D to Y. As discussed there, conditioning on S allows for
consistent estimation of the unconditional average treatment effect, as well as
the average treatment effects for the treated and for the untreated. Although
we gave a conceptual discussion in Chapter 3 of why conditioning works in this
scenario, we will now explain more specifically with a demonstration. First note
why everything works out so cleanly when a set of perfect stratifying variables
is available. If Assumption 1-S is valid, then

E[6|D=0,8] = E[Y'-Y°D=0,9] (4.3)
= EY'D=0,5-E[Y°D=0,5]
ElY'D=1,8]-E[Y"D=0,9]
If Assumption 2-S is valid, then
E[§|lD=1,8] = E[Y'-Y"D=1,89] (4.4)
= EY'D=1,8-E[Y°D=1,5]
EY'D=1,8]-E[Y"D=0,9]

The last line of Equation (4.3) is identical to the last line of Equation (4.4), and
neither line includes counterfactual conditional expectations. Accordingly, one
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can consistently estimate the difference in the last line of Equation (4.3) and
the last line of Equation (4.4) for each value of S. To then form consistent esti-
mates of alternative average treatment effects, one simply averages the stratified
estimates over the distribution of S, as we show in the following demonstration.

Matching Demonstration 1

Consider a completely hypothetical example in which Assumptions 1 and 2 in
Equations (2.13) and (2.14) cannot be asserted because positive self-selection
ensures that those who are observed in the treatment group are more likely to
benefit from the treatment than those who are not. But assume that a three-
category perfect stratifying variable S is available that allows one to assert
Assumptions 1-S and 2-S in Equations (4.1) and (4.2). Moreover, suppose for
simplicity of exposition that our sample is infinite so that sampling error is
zero. In this case, we can assume that the sample moments in our data equal
the population moments (i.e., Enly;|d; = 1] = E[Y|D = 1] and so on).

If it is helpful, think of Y as a measure of an individual’s economic success at
age 40, D as an indicator of receipt of a college degree, and S as a mixed family-
background and preparedness-for-college variable that completely accounts for
the pattern of self-selection into college that is relevant for lifetime economic
success. Note, however, that no one has ever discovered such a variable as S for
this particular causal effect.

Suppose now that, for our infinite sample, the sample mean of the outcome
for those observed in the treatment group is 10.2 whereas the sample mean of
the outcome for those observed in the control group is 4.4. In other words, we
have data that yield En[y;|d; = 1] = 10.2 and En[y;|d; = 0] = 4.4, and for
which the naive estimator would yield a value of 5.8 (i.e., 10.2 — 4.4).

Consider, now, an underlying set of potential outcome variables and treat-
ment assignment patterns that could give rise to a naive estimate of 5.8. Table
4.1 presents the joint probability distribution of the treatment variable D and
the stratifying variable S in its first panel as well as expectations, conditional
on S, of the potential outcomes under the treatment and control states. The
joint distribution in the first panel shows that individuals with S equal to 1
are more likely to be observed in the control group, individuals with S equal
to 2 are equally likely to be observed in the control group and the treatment
group, and individuals with S equal to 3 are more likely to be observed in the
treatment group.

As shown in the second panel of Table 4.1, the average potential outcomes
conditional on S and D imply that the average causal effect is 2 for those with
S equal to 1 or S equal to 2 but 4 for those with S equal to 3 (see the last
column). Moreover, as shown in the last row of the table, where the potential
outcomes are averaged over the within-D distribution of S, E[Y|D = 0] = 44
and E[Y|D = 1] = 10.2, matching the initial setup of the example based on a
naive estimate of 5.8 from an infinite sample.

Table 4.2 shows what can be calculated from the data, assuming that S
offers a perfect stratification of the data. The first panel presents the sample
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Table 4.1: The Joint Probability Distribution and Conditional Population Ex-
pectations for Matching Demonstration 1

Joint probability distribution of S" and D

D=0 D=1

S=1 Pr[S=1,D=0]=.36 Pr[S=1,D=1]=.08 Pr[S=1]=.44

$=2 Pr[§=2,D=0/=.12 Pr[S=2D=1]=.12 Pr[$=2=.24

$=3 Pr[S=3D=0=.12 Pr[§=3D=1]=.2 Pr[S =3]=.32
Pr[D =0]=.6 Pr(D=1]=.4

Potential outcomes
Under the control state Under the treatment state

S=1 EY’S=1]= EY'S=1]=4 EY'-y%s=1]=2
S=2 E[Y's=2]= E[Y'S=2]=38 ElY'-Y%§=2] =2
S=3 E[Y’S=31=10 E[Y'S=3=14 EY'-y%s=3=4
E[Y’|D =0 E[Y'|D=1]
=22(2) + =£(6) =0 4)+=2(8)
+=2(10) +4(14)
=44 =10.2

expectations of the observed outcome variable conditional on D and S. The
second panel of Table 4.2 presents corresponding sample estimates of the con-
ditional probabilities of S given D.

The existence of a perfect stratification (and the supposed availability of data
from an infinite sample) ensures that the estimated conditional expectations in
the first panel of Table 4.2 equal the population-level conditional expectations
of the second panel of Table 4.1. When stratifying by S, the average observed
outcome for those in the control/treatment group with a particular value of S
is equal to the average potential outcome under the control/treatment state for
those with a particular value of S. Conversely, if S were not a perfect stratifying
variable, then the sample means in the first panel of Table 4.2 would not equal
the expectations of the potential outcomes in the second panel of Table 4.1.
The sample means would be based on heterogeneous groups of individuals who
differ systematically within the strata defined by S in ways that are correlated
with individual-level treatment effects.

If S offers a perfect stratification of the data, then one can estimate from the
numbers in the cells of the two panels of Table 4.2 both the average treatment
effect among the treated as

(4—2)(.2) + (8 — 6)(.3) + (14— 10)(.5) = 3
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Table 4.2: Estimated Conditional Expectations and Probabilities for Matching
Demonstration 1

Estimated mean observed outcome conditional on s;and d;

Control group Treatment group
s;i=1 Enly;ls,=1,d;=0] =2 Enly,ls,=1,d;=1] =4
8= 2 Enly,;|s;=2,d;=0] =6 Enly;|s;=2,d;=1] =8
S$i=3 Enly,|s;= 3,d;= 0] = 10 Enly,|s;=3,d;=1] = 14

Estimated probability of S conditional on D
si=1 Pry[s,= 1|d,= 0] = .6 Pry[s,=1|d,=1] = .2
5;=2 Pry [s,=2|d,= 0] = .2 Pry[s,=2|d,=1] = .3
s5;=3 Pry [s,= 3|d,= 0] = .2 Pry[s,=3|d,=1]=.5

and the average treatment effect among the untreated as
(4—-2)(.6)+ (8—6)(.2) + (14 — 10)(.2) = 2.4.

Finally, if one calculates the appropriate marginal distributions of S and D
(using sample analogs for the marginal distribution from the first panel of Table
4.1), one can perfectly estimate the unconditional average treatment effect either
as

(4—2)(.44) + (8 — 6)(.24) + (14 — 10)(.32) = 2.64

or as
3(.6) + 2.4(.4) = 2.64.

Thus, for this hypothetical example, the naive estimator would be (asymptoti-
cally) upwardly biased for the average treatment effect among the treated, the
average treatment effect among the untreated, and the unconditional average
treatment effect. But, by appropriately weighting stratified estimates of the
treatment effect, one can obtain unbiased and consistent estimates of these av-
erage treatment effects.

In general, if a stratifying variable S completely accounts for all systematic
differences between those who take the treatment and those who do not, then
conditional-on-S estimators yield consistent estimates of the average treatment
effect conditional on a particular value s of S:

{EN[yl|d1:1,81:S] — EN[yz|d1: 0781‘28} L) E[Yl — YO|S:S]ZE[5|S=S]
(4.5)
Weighted sums of these stratified estimates can then be taken, such as for the
unconditional average treatment effect:

Z{EN[:%'dl = 1,5i = S] — EN[yi|di = O,Si = 8}}PI‘N[SZ' = S] i) E[(ﬂ (46)
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Substituting into this last expression the distributions of S conditional on the
two possible values of D (i.e., Pry[s; = s|d; = 1] or Pry[s; = s|d; = 0]),
one can obtain consistent estimates of the average treatment effect among the
treated and the average treatment effect among the untreated.

The key to using stratification to solve the causal inference problem for all
three causal effects of primary interest is twofold: finding the stratifying vari-
able and then obtaining the marginal probability distribution Pr[S] as well as
the conditional probability distribution Pr[S|D]. Once these steps are accom-
plished, obtaining consistent estimates of the within-strata treatment effects
is straightforward. Then, consistent estimates of other average treatment ef-
fects can be formed by taking appropriate weighted averages of the stratified
estimates.

This simple example shows all of the basic principles of matching estima-
tors. Treatment and control subjects are matched together in the sense that
they are grouped together into strata. Then, an average difference between the
outcomes of treatment and control subjects is estimated, based on a weighting
of the strata (and thus the individuals within them) by a common distribution.
The imposition of the same set of stratum-level weights for those in both the
treatment and control groups ensures that the data are balanced with respect
to the distribution of S across treatment and control cases.

4.2.2 Overlap Conditions for Stratifying Variables

Suppose now that a perfect stratification of the data is available, but that there
is a stratum in which no member of the population ever receives the treatment.
Here, the average treatment effect is undefined. A hidden stipulation is built
into Assumptions 1-S and 2-S if one wishes to be able to estimate the average
treatment effect for the entire population. The “perfect” stratifying variables
must not be so perfect that they sort deterministically individuals into either
the treatment or the control. If so, the range of the stratifying variables will
differ fundamentally for treatment and control cases, necessitating a redefinition
of the causal effect of interest.”

Matching Demonstration 2

For the example depicted in Tables 4.3 and 4.4, S again offers a perfect stratifi-
cation of the data. The setup of these two tables is exactly equivalent to that of
the prior Tables 4.1 and 4.2 for Matching Demonstration 1. We again assume
that the data are generated by a random sample of a well-defined population,
and for simplicity of exposition that the sample is infinite. The major difference
is evident in the joint distribution of S and D presented in the first panel of
Table 4.3. As shown in the first cell of the second column, no individual with
S equal to 1 would ever be observed in the treatment group of a dataset of

"In this section, we focus on the lack of overlap that may exist in a population (or super-
population). For now, we ignore the lack of overlap that can emerge in observed data solely
because of the finite size of a dataset. We turn to these issues in the next section, where we
discuss solutions to sparseness.
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Table 4.3: The Joint Probability Distribution and Conditional Population
Expectations for Matching Demonstration 2

Joint probability distribution of S and D

S=1 PriS=1,D=0]=4 Pr[S=1,D=1=0 Pr[S=1]=4
S =2 PriS=2,D=0]=.1 Pr[(S=2,D=1]=.13 Pr[S=2]=.23
S =3 Pr[S:?),D:O]—l Pr[S:3,D:1]:27 Pr[S—?)] 37
Pr[D:O]:.G Pr[D:l]:4
Potential outcomes
Under the control state  Under the treatment state
S=1 EY°’s=1]=
S=2 E[Y°s=2= E[Y'|S=2]=38 EY'-y% s =2=2
S=3 E[Y’s=31=10 EY'S=3 =14 ElY'-y%s=3=4
E[Y°|D = 0] E[Y'|D =1
—3@+LO+3(10) =L+ Z(14)
=4 =12.05

any size because the joint probability of S equal to 1 and D equal to 1 is zero.
Corresponding to this structural zero in the joint distribution of S and D, the
second panel of Table 4.3 shows that there is no corresponding conditional ex-
pectation of the potential outcome under the treatment state for those with S
equal to 1. And, thus, as shown in the last column of the second panel of Table
4.3, no causal effect exists for individuals with S equal to 1.%

Adopting the college degree causal effect framing of the last hypothetical
example in Matching Demonstration 1, this hypothetical example asserts that
there is a subpopulation of individuals from such disadvantaged backgrounds
that no individuals with S = 1 have ever graduated from college. For this group
of individuals, we assume in this example that there is simply no justification
for using the wages of those from more advantaged social backgrounds to ex-
trapolate to the what-if wages of the most disadvantaged individuals if they
had somehow overcome the obstacles that prevent them from obtaining college
degrees.

Table 4.4 shows what can be estimated for this example. If S offers a perfect
stratification of the data, one could consistently estimate the treatment effect

8The naive estimate can be calculated for this example, and it would equal 8.05 for a very
large sample because [8(.325) + 14(.675)] — [2(.667) + 6(.167) + 10(.167)] is equal to 8.05. See
the last row of the table for the population analogs to the two pieces of the naive estimator.
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Table 4.4: Estimated Conditional Expectations and Probabilities for Matching
Demonstration 2

Estimated mean observed outcome conditional on s;and d;

Control group Treatment group
S;— 1 EN[yilsz: Ldi: 0} =2
Si= EN[yi‘Si: 2,d;=0] =6 EN[yi‘Si: 2,d;=1] =8
si=3 Enly,|s;= 3,d;= 0] = 10 Enly;|s;=3,d;=1] = 14

Estimated probability of S conditional on D

si=1 Pry [s;= 1|d,= 0] = .667 Pry[s,=1|d,=1] =0
s;=2 Pry [s;= 2|d,= 0] = .167 Pry [s,= 2|d,= 1] = .325
s;i=3 Pry [s;= 3|d,= 0] = .167 Pry [s,= 3|d,= 1] = .675

for the treated as
(8 —6)(.325) + (14 — 10)(.675) = 3.35.

However, there is no way to consistently estimate the treatment effect for the
untreated, and hence no way to consistently estimate the unconditional average
treatment effect.

Are examples such as this one ever found in practice? For an example that
is more realistic than the causal effect of a college degree on economic success,
consider the evaluation of a generic program in which there is an eligibility rule.
The benefits of enrolling in the program for those who are ineligible cannot
be estimated from the data, even though, if some of those individuals were
enrolled in the program, they would likely be affected by the treatment in some
way.’

Perhaps the most important point of this last example, however, is that
the naive estimator is entirely misguided for this hypothetical application. The
average treatment effect is undefined for the population of interest. More gen-
erally, not all causal questions have answers worth seeking even in best-case
data availability scenarios, and sometimes this will be clear from the data and
contextual knowledge of the application. However, at other times, the data may
appear to suggest that no causal inference is possible for some group of individ-
uals even though the problem is simply a small sample size. There is a clever
solution to sparseness of data for these types of situations, which we discuss in
the next section.

9Developing such estimates would require going well beyond the data, introducing assump-
tions that allow for extrapolation off of the common support of S.
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4.3 Matching as Weighting

As shown in the last section, if all of the variables in .S have been observed such
that a perfect stratification of the data would be possible with an infinitely large
random sample from the population, then a consistent estimator is available in
theory for each of the average causal effects of interest defined in Equations
(2.3), (2.5), and (2.6). However, in many (if not most) datasets of finite size, it
may not be possible to use the simple estimation methods of the last section to
generate consistent estimates. Treatment and control cases may be missing at
random within some of the strata defined by S, such that some strata contain
only treatment or only control cases. In this situation, some within-stratum
causal effect estimates cannot be calculated. We now introduce a set of weighting
estimators that rely on estimated propensity scores to solve the sort of data
sparseness problems that afflict samples of finite size.

4.3.1 The Utility of Known Propensity Scores

An estimated propensity score is the estimated probability of taking the treat-
ment as a function of variables that predict treatment assignment. Before the
attraction of estimated propensity scores is explained, there is value in under-
standing why known propensity scores would be useful in an idealized context
such as a perfect stratification of the data.

Within a perfect stratification, the true propensity score is nothing other
than the within-stratum probability of receiving the treatment, or Pr[D = 1|5].
For the hypothetical example in Matching Demonstration 1 (see Subsection
4.2.1), the propensity scores are:

08

PrD=1|S=1] = —= — 182
d | =4 )
12
PrD=1]S=2 =" =5
d | I=51=5

2
Pr[D =1|$ = 3] = — = 625.

Why is the propensity score useful? As shown earlier for Matching Demonstra-
tion 1, if a perfect stratification of the data is available, then the final ingredient
for calculating average treatment effect estimates for the treated and for the un-
treated is the conditional distribution Pr[S|D]. One can recover Pr[S|D] from
the propensity scores by applying Bayes’ rule using the marginal distributions
of D and S. For example, for the first stratum,

Pr[D=1|S=1]Pr[S=1] (.182)(.44)

Pr[S =1|D =1] = D= 1] = =2

Thus, the true propensity scores encode all of the necessary information about
the joint dependence of S and D that is needed to estimate and then combine
conditional-on-S treatment effect estimates into estimates of the treatment effect
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for the treated and the treatment effect for the untreated. Known propensity
scores are thus useful for unpacking the inherent heterogeneity of causal ef-
fects and then averaging over such heterogeneity to calculate average treatment
effects.

Of course, known propensity scores are almost never available to researchers
working with observational rather than experimental data. Thus, the liter-
ature on matching more often recognizes the utility of propensity scores for
addressing an entirely different concern: solving comparison problems created
by the sparseness of data in any finite sample. These methods rely on estimated
propensity scores, as we discuss next.

4.3.2 Weighting with Propensity Scores to Address
Sparseness

Suppose again that a perfect stratification of the data exists and is known. In
particular, Assumptions 1-S and 2-S in Equations (4.1) and (4.2) are valid, and
the true propensity score is greater than 0 and less than 1 for every stratum
defined by S. But, suppose now that (1) there are multiple variables in S and
(2) some of these variables take on many values. In this scenario, there may
be many strata in the available data in which no treatment or control cases are
observed, even though the true propensity score is between 0 and 1 for every
stratum in the population.

Can average treatment effects be consistently estimated in this scenario?
Rosenbaum and Rubin (1983a) answer this question affirmatively. The essential
points of their argument are the following (see the original article for a formal
proof): First, the sparseness that results from the finiteness of a sample is
random, conditional on the joint distribution of S and D. As a result, within
each stratum for a perfect stratification of the data, the probability of having a
zero cell in the treatment or the control state is solely a function of the propensity
score. Because such sparseness is conditionally random, strata with identical
propensity scores (i.e., different combinations of values for the variables in S but
the same within-stratum probability of treatment) can be combined into a more
coarse stratification. Over repeated samples from the same population, zero
cells would emerge with equal frequency across all strata within these coarse
propensity-score-defined strata.

Because sparseness emerges in this predictable fashion, stratifying on the
propensity score itself (rather than more finely on all values of the variables in
S) solves the sparseness problem because the propensity score can be treated
as a single stratifying variable. In fact, as we show in the next hypothetical
example, one can obtain consistent estimates of treatment effects by weighting
the individual-level data by an appropriately chosen function of the estimated
propensity score, without ever having to compute any stratum-specific causal
effect estimates.

But how does one obtain the propensity scores for data from a random
sample of the population of interest? Rosenbaum and Rubin (1983a) argue
that, if one has observed the variables in S, then the propensity score can be
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estimated using standard methods, such as logit modeling. That is, one can
estimate the propensity score, assuming a logistic distribution,

exp(59)

(4.7)

and invoke maximum likelihood to estimate a vector of coefficients & One
can then stratify on the index of the estimated propensity score, e(s;) = slﬁb,
or appropriately weight the data as we show later, and all of the results es-
tablished for known propensity scores then obtain.'’ Consider the following
hypothetical example, in which weighting is performed only with respect to the
estimated propensity score, resulting in unbiased and consistent estimates of
average treatment effects even though sparseness problems are severe.

Matching Demonstration 3

Consider the following Monte Carlo simulation, which is an expanded version of
the hypothetical example in Matching Demonstration 1 (see Subsection 4.2.1)
in two respects. First, for this example, there are two stratifying variables, A
and B, each of which has 100 separate values. As for Matching Demonstra-
tion 1, these two variables represent a perfect stratification of the data and,
as such, represent all of the variables in the set of perfect stratifying variables,
defined earlier as S. Second, to demonstrate the properties of alternative esti-
mators, this example utilizes 50,000 samples of data, each of which is a random
realization of the same set of definitions for the constructed variables and the
stipulated joint distributions between them.

Generation of the 50,000 Datasets. For the simulation, we gave the variables
A and B values of .01, .02, .03, and upward to 1. We then cross-classified the
two variables to form a 100 x 100 grid and stipulated a propensity score, as
displayed in Figure 4.1, that is a positive, nonlinear function of both A and
B.'' We then populated the resulting 20,000 constructed cells (100 x 100 for
the A x B grid multiplied by the two values of D) using a Poisson random
number generator with the relevant propensity score as the Poisson parameter
for the 10,000 cells for the treatment group and one minus the propensity score as
the Poisson parameter for the 10,000 cells for the control group. This sampling
scheme generates (on average across simulated datasets) the equivalent of 10,000

10As Rosenbaum (1987) later clarified (see also Rubin and Thomas 1996), the estimated
propensity scores do a better job of balancing the observed variables in S than the true
propensity scores would in any actual application, because the estimated propensity scores
correct for the chance imbalances in S that characterize any finite sample. This insight has
led to a growing literature that seeks to balance variables in S by various computationally
intensive but powerful nonparametric techniques. We discuss this literature later, and for now
we present only parametric models, as they dominate the foundational literature on matching.

1 The parameterization of the propensity score is a constrained tensor product spline re-
gression for the index function of a logit. See Ruppert, Wand, and Carroll (2003) for examples
of such parameterizations. Here, S¢ in Equation (4.7) is equal to —2 4 3(A) — 3(A — .1) +
20A—3)—2(A—5)+4(A—-.7)—-4(A-9)+1(B)—1(B—.1)+2(B—-.7)—2(B—.9)+
3(A—.5)(B—-.5)—3A—-.7)(B-.7).
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Figure 4.1: The propensity score specification for Matching Demonstration 3.

sample members, assigned to the treatment instead of the control as a function

of the probabilities plotted in Figure 4.1.

Across the 50,000 simulated datasets, on average 7,728 of the 10,000 possible
combinations of values for both A and B had no individuals assigned to the
treatment, and 4,813 had no individuals assigned to the control. No matter
the actual realized pattern of sparseness for each simulated dataset, all of the
50,000 datasets are afflicted, such that a perfect stratification on all values for
the variables A and B would result in many strata within each dataset for which

only treatment or control cases are present.

To define treatment effects for each dataset, two potential outcomes were

defined as linear functions of individual values for A and B:

yi = 102+ 6a; +4b; + v},
y) = 100+ 3a; + 2b; + 02,

(4.8)
4.9)

where both v} and v{ are independent random draws from a normal distribution
with expectation 0 and standard deviation of 5. Then, as in Equation (2.2),
individuals from the treatment group were given an observed y; equal to their
simulated y}, and individuals from the control group were given an observed y;

equal to their simulated y.
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Table 4.5: Monte Carlo Means and Standard Deviations of Treatment Effects
and Treatment Effect Estimates for Matching Demonstration 3

Average Average
Average treatment treatment
treatment effect for effect for
effect the treated the untreated
True treatment effects 4.525 4.892 4.395
(.071) (.139) (.083)
Propensity-score-based
weighting estimators:
Misspecified propensity 4.456 4.913 4.293
score estimates (.122) (.119) (.128)
Perfectly specified 4.526 4.892 4.396
propensity score estimates (.120) (.127) (.125)
True propensity scores 4.527 4.892 4.396
(.127) (.127) (.132)

With this setup, the simulation makes available 50,000 datasets for which
the individual treatment effects can be calculated exactly, as true values of
y} and y? are available for all simulated individuals. Because the true av-
erage treatment effect, treatment effect for the treated, and treatment effect
for the untreated are thus known for each simulated dataset, these average
effects can then serve as baselines against which alternative estimators that
use data only on y; , d;, a;, and b; can be compared. The first row of Ta-
ble 4.5 presents true Monte Carlo means and standard deviations of the three
average treatments effects, calculated across the 50,000 simulated datasets.
The mean of the average treatment effect across datasets is 4.525, whereas
the means of the average treatment effects for the treated and for the un-
treated are 4.892 and 4.395, respectively. Similar to the hypothetical example
in Matching Demonstration 1, this example represents a form of positive se-
lection, in which those who are most likely to be in the treatment group are
also those most likely to benefit from the treatment.'> Accordingly, the treat-
ment effect for the treated is larger than the treatment effect for the untreated.

Methods for Treatment Effect Estimation. The last three rows of Table 4.5
present results for three propensity-score-based weighting estimators. For the
estimates in the second row, it is (wrongly) assumed that the propensity score
can be estimated consistently with a logit model with linear terms for A and B

121t can also be represented by the DAG in Figure 3.8.



4.3. Matching as Weighting 103

[i.e., assuming that, for Equation (4.7), a logit with S¢ specified as a4+ ¢4 A +
¢pB will yield consistent estimates of the propensity score surface plotted in
Figure 4.1]. After the logit model was estimated for each of the 50,000 datasets
with the wrong specification, the estimated propensity score for each individual
was then calculated,

- exp(a+ $40i + Opbi)
" 14 exp(a+ da; + dpbs)

(4.10)

along with the estimated odds of the propensity of being assigned to the treat-
ment: N
A Pi
Ty = —, 4.11
s ay
where p; is as constructed in Equation (4.10).

To estimate the treatment effect for the treated, we then implemented a
weighting estimator by calculating the average outcome for the treated and
subtracting from this average outcome a counterfactual average outcome using
weighted data on those from the control group:

> R

2 1 ivd; =0
OTT, weight = (1 Z yi> |~ (4.12)
" ird; =1 Z T

i:diZO

where n' is the number of individuals in the treatment group and #; is the
estimated odds of being in the treatment group instead of in the control group,
as constructed in Equations (4.10) and (4.11). The weighting operation in
the second term gives more weight to control group individuals equivalent to
those in the treatment group (see Rosenbaum 1987, 2002).'% To estimate the
treatment effect for the untreated, we then implemented a weighting estimator
that is the mirror image of the one in Equation (4.12):

R i:d; = 1
OTUT, weight = 17A | = E vi |, (4.13)
E : n'/f; =0

i:dizl

where n° is the number of individuals in the control group. Finally, the corre-
sponding estimator of the unconditional average treatment effect is

(711 ;di) ((ASTT’Weight) + <1 - i;&)} (3TUT,weight) )

(4.14)

13 As we will describe later when discussing the connections between matching and regres-

sion, the weighting estimator in Equation (4.12) can be written as a weighted OLS regression
estimator.

O ATE, weight
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where 8TT,weight and STUT’weight are as defined in Equations (4.12) and (4.13),
respectively. Accordingly, an average treatment effect estimate is simply a
weighted average of the two conditional average treatment effect estimates.

The same basic weighting scheme is implemented for the third row of Table
4.5, but the estimated propensity score utilized to define the estimated odds of
treatment, 7;, is instead based on results from a flawlessly estimated propensity
score equation (i.e., one that uses the exact same specification that was fed to
the random-number generator that assigned individuals to the treatment; see
prior note on page 100 for the specification). Finally, for the last row of Table
4.5, the same weighting scheme is implemented, but, in this case, the estimated
odds of treatment, 7;, are replaced with the true odds of treatment, r;, as
calculated with reference to the exact function that generated the propensity
score for Figure 4.1.

Monte Carlo Results. The naive estimator would yield a value of 5.388 for
this example, which is substantially larger than each of the three true average
treatment effects presented in the first row of Table 4.5. The second row of
the table presents three estimates from the weighting estimators in Equations
(4.12)—(4.14), using weights based on the misspecified logit described earlier.
These estimates are closer to the true values presented in the first row (and
much closer than the naive estimate), but the misspecification of the propensity-
score-estimating equation leads to some systematic bias in the estimates. The
third row of the table presents another three weighting estimates, using a perfect
specification of the propensity-score-estimating equation, and now the estimates
are asymptotically shown to be unbiased and consistent for the average treat-
ment effect, the treatment effect for the treated, and the treatment effect for
the untreated. Finally, the last row presents weighting estimates that utilize the
true propensity scores and are also asymptotically unbiased and consistent (but,
as shown by Rosenbaum 1987, more variable than those based on the flawlessly
estimated propensity score; see also Hahn 1998; Hirano, Imbens, and Ridder
2003; Rosenbaum 2002).

The last two rows demonstrate the most important claim of the literature:
If one can obtain consistent estimates of the true propensity scores, one can
solve entirely the problems created by sparseness of data.

This example shows the potential power of propensity-score-based modeling.
If treatment assignment can be modeled perfectly, one can solve the sparseness
problems that afflict finite datasets, at least in so far as offering estimates that
are consistent. On the other hand, this simulation also develops an impor-
tant qualification of this potential power. Without a perfect specification of the
propensity-score-estimating equation, one cannot rest assured that unbiased and
consistent estimates can be obtained. Because propensity scores achieve their
success by “undoing” the treatment assignment patterns, analogous to weight-
ing a stratified sample, systematically incorrect estimated propensity scores can
generate systematically incorrect weighting schemes that yield biased and in-
consistent estimates of treatment effects.'”

14There is also the larger issue of whether the challenges of causal inference can be reduced
to mere concerns about conditionally random sparseness, and this will depend entirely on
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Given the description of matching estimators offered in Section 4.1 (i.e.,
algorithms for mechanically identifying matched sets of equivalent treatment
and control cases), in what sense are the individual-level weighting estimators of
the hypothetical example in Matching Demonstration 3 equivalent to matching
estimators?

As emphasized earlier for the hypothetical examples in Matching Demon-
strations 1 and 2, stratification estimators have a straightforward connection to
matching. The strata that are formed represent matched sets, and a weighting
procedure is then used to average stratified treatment effect estimates in order
to obtain the average treatment effects of interest. The propensity score weight-
ing estimators, however, have a less straightforward connection. Here, the data
are, in effect, stratified coarsely by the estimation of the propensity score (i.e.,
because all individuals in the same strata, as defined by the stratifying variables
in S, are given the same estimated propensity scores), and then the weighting is
performed directly across individuals instead of across the strata. This type of
individual-level weighting is made necessary because of sparseness (as some of
the fine strata for which propensity scores are estimated necessarily contain only
treatment or control cases, thereby preventing the direct calculation of strati-
fied treatment effect estimates). Nonetheless, the same principle of balancing
holds: Individuals are weighted within defined strata in order to ensure that the
distribution of S is the same within the treatment and control cases that are
then used to estimate the treatment effects.

In the opposite direction, it is important to recognize that the algorithmic
matching estimators that we summarize in the next section can be considered
weighting estimators. As we show next, these data analysis procedures warrant
causal inference by achieving an as-if stratification of the data that results in a
balanced distribution of covariates across matched treatment and control cases.
Although it is sometimes easier to represent matching estimators as algorithmic
data analysis procedures that mechanically match seemingly equivalent cases to
each other, it is best to understand matching as a method to weight the data
in order to warrant causal inference by balancing S across the treatment and
control cases.

4.4 Matching as a Data Analysis Algorithm

Algorithmic matching estimators differ primarily in (1) the number of matched
cases designated for each to-be-matched target case and (2) how multiple matched
cases are weighted if more than one is utilized for each target case. In this sec-
tion, we describe the four main types of matching estimators.

Heckman, Ichimura, and Todd (1997, 1998) and Smith and Todd (2005)
outline a general framework for representing alternative matching estimators,
and we follow their lead. With our notation, all matching estimators of the

whether one is justified in imposing assumptions on the potential outcomes and treatment
assignment patterns, as outlined earlier.
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treatment effect for the treated would be defined in this framework as
A 1
OTT, match = ) Z; (yild; = 1) — %:Wi.,j (y;ld; = 0), (4.15)

where n! is the number of treatment cases, ¢ is the index over treatment cases,
J is the index over control cases, and w; ; represents a set of scaled weights that
measure the distance between each control case and the target treatment case.
In Equation (4.15), the weights are entirely unspecified.

Alternative matching estimators of the treatment effect for the treated can
be represented as different procedures for deriving the weights represented by
w; ;. As we will describe next, the weights can take on many values, indeed as
many n' x n® different values, because alternative weights can be used when
constructing the counterfactual value for each target treatment case. The dif-
ference in the propensity score is the most common distance measure used to
construct weights. Other measures of distance are available, including the esti-
mated odds of the propensity score, the difference in the index of the estimated
logit, and the Mahalanobis metric.'®

Before describing the four main types of matching algorithms, we note two
important points. First, for simplicity of presentation, in this section we will
focus on matching estimators of the treatment effect for the treated. Each of
the following matching algorithms could be used in reverse, instead focusing on
matching treatment cases to control cases in order to construct an estimate of
the treatment effect for the untreated. We mention this, in part, because it is
sometimes implied in the applied literature that the matching techniques that
we are about to summarize are useful for estimating only the treatment effect
for the treated. This is false. If (1) all variables in S are known and observed,
such that a perfect stratification of the data could be formed with a suitably
large dataset because both Assumptions 1-S and 2-S in Equations (4.1) and (4.2)
are valid and (2) the ranges of all of the variables in S are the same for both
treatment and control cases, then simple variants of the matching estimators
that we will present in this section can be formed that are consistent for the
treatment effect among the treated, the treatment effect among the untreated,
and the average treatment effect.

Moreover, to consistently estimate the treatment effect for the treated, one
does not need to assume full ignorability of treatment assignment or that both
Assumptions 1-S and 2-S in Equations (4.1) and (4.2) are valid. Instead, only
Assumption 2-S (i.e., E[Y°|D = 1,5] = E[Y°|D = 0,5]) must hold.'® In

15The Mahalanobis metric is (S; — S;)'£71(S; — S;), where ¥ is the covariance matrix of
the variables in S (usually calculated for the treatment cases only). There is a long tradi-
tion in this literature of using Mahalanobis matching in combination with propensity score
matching.

16Ty estimate the treatment effect for the treated, the ranges of the variables in S must
be the same for the treatment and control cases. We do not mention this requirement in the
text, as there is a literature (see Heckman, Ichimura, and Todd 1997, 1998), which we discuss
later, that defines the treatment effect for the treated on the common support and argues that
this is often the central goal of analysis. Thus, even if the support of S is not the same in the
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other words, to estimate the average treatment effect among the treated, it is
sufficient to assume that, conditional on S, the average level of the outcome
under the control for those in the treatment is equal, on average, to the average
level of the outcome under the control for those in the control group.'” This
assumption is still rather stringent, in that it asserts that those in the control
group do not disproportionately gain from exposure to the control state more
than would those in the treatment group if they were instead in the control
group. But it is surely weaker than having to assert Assumptions 1-S and 2-S
together.!®

Second, as we show in a later section, the matching algorithms we summarize
next are data analysis procedures that can be used more generally even when
some of the variables in S are unobserved. The matching estimators may still
be useful, as argued by Rosenbaum (2002), as a set of techniques that generates
a provisional set of causal effect estimates that can then be subjected to further
analysis.

4.4.1 Basic Variants of Matching Algorithms
Exact Matching

For the treatment effect for the treated, exact matching constructs the coun-
terfactual for each treatment case using the control cases with identical values
on the variables in S. In the notation of Equation (4.15), exact matching uses
weights equal to 1/k for matched control cases, where k is the number of matches
selected for each target treatment case. Weights of 0 are given to all unmatched
control cases. If only one match is chosen randomly from among possible exact
matches, then w; ; is set to 1 for the randomly selected match (from all avail-
able exact matches) and to 0 for all other control cases. Exact matching may
be combined with any of the matching methods described later.

Nearest-Neighbor Matching

For the treatment effect for the treated, nearest-neighbor matching constructs
the counterfactual for each treatment case using the control cases that are
closest to the treatment case on a unidimensional measure constructed from
the variables in S, usually an estimated propensity score but sometimes vari-
ants of propensity scores (see Althauser and Rubin 1970; Cochran and Rubin
1973; Rosenbaum and Rubin 1983a, 1985a, 1985b; Rubin 1973a, 1973b, 1976,

treatment and control groups, an average treatment effect among a subset of the treated can
be estimated.

7There is an ignorability variant of this mean-independence assumption: D is indepen-
dent of YO conditional on S. One would always prefer a study design in which this more
encompassing form of independence holds. Resulting causal estimates would then hold under
transformations of the potential outcomes. This would be particularly helpful if the directly
mapped Y [defined as DY'! + (1 — D)Y9] is not observed but some monotonic transformation
of Y is observed (as could perhaps be generated by a feature of measurement).

18 And this is again weaker than having to assert an assumption of ignorability of treatment
assignment.
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1980a,1980b). The traditional algorithm randomly orders the treatment cases
and then selects for each treatment case the control case with the smallest dis-
tance. The algorithm can be run with or without replacement. With replace-
ment, a control case is returned to the pool after a match and can be matched
later to another treatment case. Without replacement, a control case is taken
out of the pool once it is matched."’

If only one nearest neighbor is selected for each treatment case, then w ;
is set equal to 1 for the matched control case and 0 for all other control cases.
One can also match multiple nearest neighbors to each target treatment case,
in which case w; ; is set equal to 1/k; for the matched nearest neighbors, where
k; is the number of matches selected for each target treatment case i. Matching
more control cases to each treatment case results in lower expected variance
of the treatment effect estimate but also raises the possibility of greater bias,
because the probability of making more poor matches increases.

A danger with nearest-neighbor matching is that it may result in some very
poor matches for treatment cases. A version of nearest-neighbor matching,
known as caliper matching, is designed to remedy this drawback by restricting
matches to some maximum distance. With this type of matching, some treat-
ment cases may not receive matches, and thus the effect estimate will apply to
only the subset of the treatment cases matched (even if ignorability holds and
there is simply sparseness in the data).”’

Interval Matching

Interval matching (also referred to as subclassification and stratification match-
ing) sorts the treatment and control cases into segments of a unidimensional
metric, usually the estimated propensity score, and then calculates the treat-
ment effect within these intervals (see Cochran 1968; Rosenbaum and Rubin
1983a, 1984; Rubin 1977). For each interval, a variant of the matching estima-
tor in Equation (4.15) is estimated separately, with w; ; chosen to give the same
amount of weight to the treatment cases and control cases within each interval.
The average treatment effect for the treated is then calculated as the mean of the
interval-specific treatment effects, weighted by the number of treatment cases
in each interval. This method is nearly indistinguishable from nearest-neighbor
caliper matching with replacement when each of the intervals includes exactly
one treatment case.

190ne weakness of the traditional algorithm when used without replacement is that the
estimate will vary depending on the initial ordering of the treatment cases. A second weakness
is that without replacement the sum distance for all treatment cases will generally not be the
minimum because control cases that might make better matches to later treatment cases may
be used early in the algorithm. See our discussion of optimal matching later.

20A related form of matching, known as radius matching (see Dehejia and Wahba 2002),
matches all control cases within a particular distance — the “radius” — from the treatment
case and gives the selected control cases equal weight. If there are no control cases within the
radius of a particular treatment case, then the nearest available control case is used as the
match.
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Kernel Matching

Developed by Heckman, Ichimura, Smith, and Todd (1998) and Heckman,
Ichimura, and Todd (1997, 1998) kernel matching constructs the counterfac-
tual for each treatment case using all control cases but weights each control
case based on its distance from the treatment case. The weights represented by
w;,; in Equation (4.15) are calculated with a kernel function, G(.), that trans-
forms the distance between the selected target treatment case and all control
cases in the study. When the estimated propensity score is used to measure the
distance, kernel-matching estimators define the weight as
G[ﬁ(sj)—ﬁ(si)]

Qp

- Z ) G[ﬁ(sj)—ﬁ(sz)] ’
j a

n

(4.16)

wij

where a,, is a bandwidth parameter that scales the difference in the estimated
propensity scores based on the sample size and p(.) is the estimated propensity
score as a function of its argument.?' The numerator of this expression yields a
transformed distance between each control case and the target treatment case.
The denominator is a scaling factor equal to the sum of all the transformed
distances across control cases, which is needed so that the sum of w; ; is equal
to 1 across all control cases when matched to each target treatment case.

Although kernel-matching estimators appear complex, they are a natural ex-
tension of interval and nearest-neighbor matching: All control cases are matched
to each treatment case but weighted so that those closest to the treatment case
are given the greatest weight. Smith and Todd (2005) offer an excellent intuitive
discussion of kernel matching along with generalizations to local linear match-
ing (Heckman, Ichimura, Smith, and Todd 1998; Heckman, Ichimura, and Todd
1997, 1998) and local quadratic matching (Ham, Li, and Reagan 2003).

4.4.2 Which of These Basic Matching Algorithms Works
Best?

There is very little specific guidance in the literature on which of these matching
algorithms works best, and the answer very likely depends on the substantive
application. Smith and Todd (2005), Heckman, Ichimura, Smith, and Todd
(1998), and Heckman, Ichimura, and Todd (1997, 1998) have experimental data
against which matching estimators can be compared, and they argue for the
advantages of kernel matching (and a particular form of robust kernel match-
ing). To the extent that a general answer to this question can be offered, we
would suggest that nearest-neighbor caliper matching with replacement, interval
matching, and kernel matching are all closely related and should be preferred
to nearest-neighbor matching without replacement. If the point of a matching
estimator is to minimize bias by comparing target cases with similar matched

2lncreasing the bandwidth increases bias but lowers variance. Smith and Todd (2005) find
that estimates are fairly insensitive to the size of the bandwidth.



110 Chapter 4. Matching Estimators of Causal Effects

cases, then methods that make it impossible to generate poor matches should be
preferred.?? Matching on both the propensity score and the Mahalanobis metric
has also been recommended for achieving balance on higher-order moments (see
Diamond and Sekhon 2005; Rosenbaum and Rubin 1985b).?® Because there
is no clear guidance on which of these matching estimators is “best,” we con-
structed a fourth hypothetical example to give a sense of how often alternative
matching estimators yield appreciably similar estimates.

Matching Demonstration 4

For this example, we use simulated data for which we defined the potential out-
comes and treatment assignment patterns so that we can explore the relative
performance of alternative matching estimators. The former are estimated un-
der alternative scenarios with two different specifications of the propensity-score-
estimating equation. Unlike the hypothetical example in Matching Demon-
stration 3, we do not repeat the simulation for multiple samples but confine
ourselves to results on a single sample, as would be typical of any real-world
application.

Generation of the Dataset. The dataset that we constructed mimics the
dataset from the National Education Longitudinal Study (NELS) analyzed by
Morgan (2001). For that application, regression and matching estimators were
used to estimate the effect of Catholic schooling on the achievement of high
school students in the United States (for a summary of research on this ques-
tion, see Chapter 1). For our simulation here, we generated a dataset of 10,000
individuals with values for 13 baseline variables that resemble closely the joint
distribution of the similar variables in Morgan (2001). The variables for respon-
dents include dummy variables for race, region, urbanicity, whether they have
their own bedrooms, whether they live with two parents, an ordinal variable for
number of siblings, and a continuous variable for socioeconomic status. Then
we created an entirely hypothetical cognitive skill variable, assumed to reflect
innate and acquired skills in unknown proportions.?*

22 Another criterion for choosing among alternative matching estimators is relative efficiency.
Our reading of the literature suggests that little is known about the relative efficiency of these
estimators (see especially Abadie and Imbens 2006; Hahn 1998; Imbens 2004), even though
there are claims in the literature that kernel-based methods are the most efficient. The
efficiency advantage of kernel-matching methods is only a clear guide to practice if kernel-
based methods are known to be no more biased than alternatives. But the relative bias of
kernel-based methods is application dependent and should interact further with the bandwidth
of the kernel. Thus, it seems that we will know for sure which estimators are most efficient
for which types of applications only when statisticians discover how to calculate the sampling
variances of all alternative estimators. Thereafter, it should be possible to compute mean-
squared-error comparisons across alternative estimators for sets of typical applications.

230ne method for matching on both the Mahalanobis metric and the propensity score is to
include the propensity score in the Mahalanobis metric. A second is to use interval matching
and divide the data into blocks by use of one metric and then match on the second metric
within blocks.

24To be precise, we generated a sample using a multinomial distribution from a race-by-
region-by-urbanicity grid from the data in Morgan (2001). We then simulated socioeco-
nomic status as random draws from normal distributions with means and standard deviations
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We then defined potential outcomes for all 10,000 individuals, assuming that
the observed outcome of interest is a standardized test taken at the end of high
school. For the potential outcome under the control (i.e., a public school ed-
ucation), we generated what-if test scores from a normal distribution, with an
expectation as a function of race, region, urbanicity, number of siblings, socioe-
conomic status, family structure, and cognitive skills. We then assumed that
the what-if test scores under the treatment (i.e., a Catholic school education)
would be equal to the outcome under the control plus a boosted outcome under
the treatment that is function of race, region, and cognitive skills (under the
assumption, based on the dominant position in the extant literature, that black
and Hispanic respondents from the north, as well as all of those with high pre-
existing cognitive skills, are disproportionately likely to benefit from Catholic
secondary schooling).

We then defined the probability of attending a Catholic school using a logit
with 26 parameters, based on a specification from Morgan (2001) along with an
assumed self-selection dynamic in which individuals are slightly more likely to
select the treatment as a function of the relative size of their individual-level
treatment effect.?” This last component of the logit creates a nearly insur-
mountable challenge, because in any particular application one would not have
such a variable with which to estimate a propensity score. That, however, is our
point in including this term, as individuals are thought, in many real-world ap-
plications, to be selecting from among alternative treatments based on accurate
expectations, unavailable as measures to researchers, of their likely gains from
alternative treatment regimes. The probabilities defined by the logit were then
passed to a binomial distribution, which resulted in 986 of the 10,000 simulated
students attending Catholic schools. Finally, observed outcomes were assigned
according to treatment status.

With the sample divided into the treatment group and the control group,
we calculated from the prespecified potential outcomes the true baseline average
treatment effects. The treatment effect for the treated is 6.96 in the simulated
data, whereas the treatment effect for the untreated is 5.9. In combination, the
average treatment effect is then 6.0.

Methods for Treatment Effect Estimation. In Table 4.6, we offer 12 separate
types of matching estimates. These are based on routines written for Stata
by three sets of authors: Abadie, Drukker, Herr, and Imbens (2004), Becker

estimated separately for each of the race-by-region-by-urbanicity cells. Then, we generated all
other variables iteratively, building on top of these variables, using joint distributions (where
possible) based on estimates from the NELS data. Because we relied on standard parametric
distributions, the data are smoother than the original NELS data.

25The index of the assumed logit was —4.6 —.69( Asian)+.23(Hispanic) —.76(black) —.46 (na-
tive American) +2.7(urban) +1.5(northeast) 4+ 1.3(north central) + .35(south) — .02(siblings)
—.018(bedroom) + .31(two parents) + .39(socioeconomic status) +.33(cognitive skills)
—.032(socioeconomic status squared) —.23(cognitive skills squared) —.084(socioeconomic
status)(cognitive skills) —.37(two parents)(black) + 1.6(northeast)(black) —.38(north central)
(black) + .72(south)(black) + .23(two parents)(Hispanic) —.74(northeast)(Hispanic) —1.3
(north central)(Hispanic) —.13(south)(Hispanic) + .25(individual treatment effect — average
treatment effect).
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and Ichino (2002), and Leuven and Sianesi (2003).?° We estimate all matching
estimators under two basic scenarios. First, we offer a set of estimates based on
poorly estimated propensity scores, derived from an estimating equation from
which we omitted nine interaction terms along with the cognitive skill variable.
The last specification error is particularly important because the cognitive skill
variable has a correlation of 0.401 with the outcome variable and 0.110 with the
treatment variable in the simulated data. For the second scenario, we included
the cognitive skill variable and the nine interaction terms. Both scenarios lack
an adjustment for the self-selection dynamic, in which individuals select into
the treatment partly as a function of their expected treatment effect.

Regarding the specific settings for the alternative matching estimators, which
are listed in the row headings of Table 4.6, the interval matching algorithm began
with five blocks and subdivided blocks until each block achieved balance on the
estimated propensity score across treatment and control cases. Nearest-neighbor
matching with replacement was implemented with and without a caliper of
0.001, in both one- and five-nearest-neighbor variants. Radius matching was
implemented with a radius of 0.001. For the kernel-matching estimators, we used
two types of kernels — Epanechnikov and Gaussian — and the default bandwidth
of 0.06 for both pieces of software. For the local linear matching estimator, we
used the Epanechnikov kernel with the default bandwidth of 0.08.

Results. We estimated treatment effects under the assumption that self-
selection on the individual-level Catholic school effect is present, and yet can-
not be adjusted for using a statistical model without a measure of individuals’
expectations. Thus, we operate under the assumption that only the treatment
effect for the treated has any chance of being estimated consistently, as in the
study by Morgan (2001) on which this example is based. We therefore compare
all estimates to the true simulated treatment effect for the treated, identified
earlier as 6.96

Estimates based on the poorly estimated propensity scores are reported in
the first column of Table 4.6, along with the implied bias as an estimate of the
treatment effect for the treated in the second column (i.e., the matching estimate
minus 6.96). As expected, all estimates have a substantial positive bias. Most
of the positive bias results from the mistaken exclusion of the cognitive skill
variable from the propensity-score-estimating equation.

Matching estimates made with the well-estimated propensity scores are re-
ported in the third column of Table 4.6, along with the expected bias in the
fourth column. On the whole, these estimates are considerably better. Having
the correct specification reduces the bias in those estimates with the largest
bias from column three, and on average all estimates oscillate around the true
treatment effect for the treated of 6.96.

We have demonstrated three basic points with this example. First, look-
ing across the rows of Table 4.6, one clearly sees that matching estimators and
different software routines yield different treatment effect estimates (even ones

26We do not provide a review of software routines because such a review would be imme-
diately out-of-date on publication. At present, three additional sets of routines seem to be in
use in the applied literature (see Hansen 2004b; Ho et al. 2004; Sekhon 2005).
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Table 4.6: Matching Estimates for the Simulated Effect of Catholic Schooling on
Achievement, as Specified in Matching Demonstration 4

Poorly specified propensity =~ Well-specified propensity
score-estimating equation  score-estimating equation

Method TT estimate Bias TT estimate Bias

Interval with variable 7.93 0.97 6.73 —0.23
blocks (B&I)

One nearest-neighbor 8.16 1.20 6.69 —0.27
with caliper = 0.001 (L&S)

One nearest-neighbor 7.90 0.94 6.62 —0.34
without caliper (A)

Five nearest-neighbors 7.97 1.01 7.04 0.08
with caliper = 0.001 (L&S)

Five nearest-neighbors 7.85 0.89 7.15 0.19
without caliper (A)

Radius with radius 8.02 1.06 6.90 —0.06
= 0.001 (L&S)

Radius with radius 8.13 1.17 7.29 0.33
= 0.001 (B&I)

Kernel with Epanechnikov 7.97 1.01 6.96 0.00
kernel (L&S)

Kernel with Epanechnikov 7.89 0.93 6.86 —0.10
kernel (B&I)

Kernel with Gaussian 8.09 1.13 7.18 0.22
kernel (L&S)

Kernel with Gaussian 7.97 1.01 7.03 0.07
kernel (B&I)

Local linear with 7.91 0.95 6.84 —0.12

Epanechnikov kernel (L&S)
Notes: B&I denotes the software of Becker and Ichino (2002); L&S denotes the
software of Leuven and Sianesi (2003); A denotes the software of Abadie et al. (2004).

that are thought to be mathematically equivalent). Thus, at least for the near
future, it will be crucial for researchers to examine multiple estimates of the
same treatment effect across estimators and software packages. The lack of sim-
ilarity across seemingly equivalent estimators from alternative software routines
is surprising, but we assume that this unexpected variation will dissipate with
software updates.

Second, matching estimators cannot compensate for an unobserved covariate
in S, which leads to comparisons of treatment and control cases that are not
identical in all relevant aspects other than treatment status. The absence of
the cognitive skill variable in this example invalidates both Assumption 1-S and
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2-S. The matching routines still balance the variables included in the propensity-
score-estimating equation, but the resulting matching estimates remain biased
and inconsistent for both the average treatment effect and the average treatment
effect for the treated.

Third, the sort of self-selection dynamic built into this example — in which
individuals choose Catholic schooling as a function of their expected gains from
Catholic schooling — makes estimation of both the average treatment effect
among the untreated and the average treatment effect impossible (because As-
sumption 1-S cannot be maintained). Fortunately, if all variables in S other
than anticipation of the individual-level causal effects are observed (i.e., includ-
ing cognitive skill in this example), then the average treatment effect among the
treated can be estimated consistently.?”

Unfortunately, violation of the assumption of ignorable treatment assign-
ment (and of both Assumptions 1-S and 2-S) is the scenario in which most
analysts will find themselves, and this is the scenario to which we turn in the
next section. Before discussing what can be done in these situations, we first
close the discussion on which types of matching may work best.

4.4.3 Matching Algorithms That Seek Optimal Balance

For the hypothetical example in Matching Demonstration 4, we judged the qual-
ity of matching algorithms by examining the distance between the treatment ef-
fect estimates that we obtained and the true treatment effects that we stipulated
in constructing our hypothetical data. Because we generated only one sample,
these differences are not necessarily a very good guide to practice, even though
our main goal of the example was to show that alternative matching estimators
generally yield different results and none of these may be correct. That point
aside, it is generally recognized that the best matching algorithms are those
that optimize balance in the data being analyzed. Building on this consensus,
a broader set of matching algorithms is currently in development, which grows
out of the optimal matching proposals attributed to Rosenbaum (1989).
Matching is generally judged to be successful if, for both the treatment and
matched control groups, the distribution of the matching variables is the same.
When this result is achieved, the data are said to be balanced, as noted earlier.
[See also our discussion of Equation (3.7).] Assessing balance, however, can be
difficult for two reasons. First, evaluating the similarity of full distributions
necessitates going beyond an examination of differences in means (see Abadie

27 At the same time, this example shows that even our earlier definition of a “perfect stratifi-
cation” is somewhat underspecified. According to the definition stated earlier, if self-selection
on the causal effect occurs, a perfect stratification is available only if variables that accurately
measure anticipation of the causal effect for each individual are also available and duly included
in S. Thus, perhaps it would be preferable to refer to three types of perfect stratification: one
for which Assumption 1-S is valid (which enables estimation of the average treatment effect
for the untreated), one for which Assumption 2-S is valid (which enables estimation of the
average treatment for the treated), and one for which both are valid (which enables estimation
of the average treatment effect, as well as the average treatment effects for the treated and
the untreated).
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2002). Second, the use of any hypothesis test of similarity has two associated
dangers. With small samples, the null hypothesis of no difference may be ac-
cepted when in fact the data are far from balanced (i.e., a generic type II error).
Second, with very large datasets, almost any difference, however small, is likely
to be statistically significant. As such, hypothesis tests are generally less useful
for assessing balance than standardized differences and their generalizations.?®
Imai, King, and Stuart (2006) provide a full discussion of these issues.

If the covariates are not balanced, the estimation model for the propen-
sity score can be changed, for example, by the addition of interaction terms,
quadratic terms, or other higher-order terms. Or, matching can be performed
on the Mahalanobis metric in addition to the propensity score, perhaps nesting
one set of matching strategies within another. This respecification is not con-
sidered data mining because it does not involve examining the effect estimate.
But it can be labor intensive, and there is no guarantee that one will find the
best possible balance by simply reestimating the sorts of matching algorithms
introduced earlier, or by combining them in novel ways.

For this reason, two more general forms of matching have been proposed,
each of which is now fairly well developed. Rosenbaum (2002, Chapter 10) re-
ports on recent results for full optimal matching algorithms that he has achieved
with colleagues since Rosenbaum (1989). His algorithms seek to optimize bal-
ance and efficiency of estimation by searching through all possible matches that
could be made, after stipulating the minimum and maximum number of matches
for matched sets of treatment and control cases. Although full optimal matching
algorithms vary (see also Hansen 2004a), they are based on the idea of mini-
mizing the average distance between the estimated propensity scores among
matched cases. If the estimated propensity scores are correct, then this mini-
mization problem should balance S.

Diamond and Sekhon (2005) propose a general multivariate matching method
that uses a genetic algorithm to search for the match that achieves the best pos-
sible balance. Although their algorithm can be used to carry out matching after
the estimation of a propensity score, their technique is more general and can al-
most entirely remove the analyst from having to make any specification choices
other than designating the matching variables. Diamond and Sekhon (2005)
show that their matching algorithms provide superior balance in both Monte
Carlo simulations and a test with genuine data.?’

28The standardized difference for a matching variable X is
|EN [zi]di =1]—E [z, |d; =0]|

\/%Vaw [ |d; =1]+ L Vary [z;|d;=0]
the means of the X across treatment and control cases, it can be compared across alternative
Xs. It is generally a better criterion for balance assessment than ¢ statistics are. However, like
t statistics, this index considers only differences in the mean of X across matched treatment
and control cases. Indices of higher moments should be considered as well.

29For Diamond and Sekhon (2005), balance is assessed by using t-tests of differences in
means and also bootstrapped Kolmogorov—Smirnov tests for the full distributions of the
matching variables. It is unclear how sensitive their results are to the usage of balance tests
that are insensitive to sample size. Their algorithm, however, appears general enough that
such modifications can be easily incorporated.

Because this index is a scaled absolute difference in
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Although there is good reason to expect that these types of matching al-
gorithms can outperform the nearest-neighbor, interval, and kernel-matching
algorithms by the criteria of balance, they are considerably more difficult to im-
plement in practice. With software developments underway, these disadvantages
will be eliminated.

4.5 Matching When Treatment Assignment is
Nonignorable

What if neither Assumption 1-S nor Assumption 2-S is valid because we observe
only a subset of the variables in S, which we will now denote by X7 We
can still match on X using the techniques just summarized, as we did for the
first column of Table 4.6 in the hypothetical example for Matching Demonstra-
tion 4.

Consider, for example, the working paper of Sekhon (2004), in which a
matching algorithm is used to balance various predictors of voting at the county
level in an attempt to determine whether or not John Kerry lost votes in the
2004 presidential election campaign because optical scan voting machines were
used instead of direct electronic voting machines in many counties (see Subsec-
tion 1.3.2 on voting technology effects in Florida for the 2000 election). Sekhon
shows that it is unlikely that voting technology caused John Kerry to lose votes.
In this analysis, ignorability is not asserted in strict form, as it is quite clear
that unobserved features of the counties may well have been correlated with
both the distribution of votes and voting technology decisions. Nonetheless, the
analysis is convincing because the predictors of treatment assignment are quite
rich, and it is hard to conceive of what has been left out.

When in this position, however, it is important to concentrate on estimating
only one type of treatment effect (usually the treatment effect for the treated,
although perhaps the unconditional average treatment effect). Because a cru-
cial step must be added to the project — assessing the level of bias that may
arise from possible nonignorability of treatment — focusing on a very specific
treatment effect of primary interest helps to ground a discussion of an esti-
mate’s limitations. Then, after using one of the matching estimators of the
last section, one should use the data to minimize bias in the estimates and, if
possible, proceed thereafter to a sensitivity analysis (which we will discuss later
in Chapter 6).

4.6 Remaining Practical Issues in Matching
Analysis
In this section, we discuss the remaining practical issues that analysts who

consider using matching estimators must confront. First, we discuss the issue of
how to identify empirically the common support of the matching variables. Then
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we discuss what is known about the sampling variance of alternative matching
estimators, and we give a guide to usage of the standard errors provided by
existing software. Finally, we consider multivalued treatments.

4.6.1 Assessing the Region of Common Support

In practice, there is often good reason to believe that some of the lack of observed
overlap of S for the treatment and control cases may have emerged from system-
atic sources, often related to the choice behavior of individuals (see Heckman,
Ichimura, Smith, and Todd 1998). In these situations, it is not a sparseness
problem that must be corrected. Instead, a more fundamental mismatch be-
tween the observed treatment and control cases must be addressed, as in our
earlier hypothetical example in Matching Demonstration 2. Treatment cases
that have no possible counterpart among the controls are said to be “off the
support” of S for the control cases, and likewise for control cases who have no
possible counterparts among the treatment cases.?’

When in this situation, applied researchers who use matching techniques to
estimate the treatment effect for the treated often estimate a narrower treatment
effect. Using one of the variants of the matching estimators outlined earlier,
analysis is confined only to treatment cases whose propensity scores fall between
the minimum and maximum propensity scores in the control group. Resulting
estimates are then interpreted as estimates of a narrower treatment effect: the
common-support treatment effect for the treated (see Heckman, Ichimura, and
Todd 1997, 1998; see also Crump, Hotz, Imbens, and Mitnik 2006).

The goal of these sorts of techniques is to exclude at the outset those treat-
ment cases that are beyond the observed minima and maxima of the probability
distributions of the variables in S among the control cases (and vice versa). Al-
though using the propensity score to find the region of overlap may not capture
all dimensions of the common support (as there may be interior spaces in the
joint distribution defined by the variables in S), subsequent matching is then
expected to finish the job.

Sometimes matching on the region of common support helps to clarify and
sharpen the contribution of a study. When estimating the average treatment
effect for the treated, there may be little harm in throwing away control cases
outside the region of common support if all treatment cases fall within the sup-
port of the control cases. And, even if imposing the common-support condition
results in throwing away some of the treatment cases, this can be considered
an important substantive finding, especially for interpreting the treatment ef-
fect estimate. In this case, the resulting estimate is the treatment effect for a
subset of the treated only, and, in particular, a treatment effect estimate that
is informative only about those in the treatment and control groups who are
equivalent with respect to observed treatment selection variables. In some ap-
plications, this is precisely the estimate needed (e.g., when evaluating whether

30Support is often given slightly different definitions depending on the context, although
most definitions are consistent with a statement such as this: the union of all intervals of a
probability distribution that have true nonzero probability mass.
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a program should be expanded in size in order to accommodate more treatment
cases but without changing eligibility criteria).*! We will discuss these marginal
treatment effects later in Chapter 7.

4.6.2 The Expected Variance of Matching Estimates

After computing a matching estimate of some form, most researchers naturally
desire a measure of its expected variability across samples of the same size from
the same population, either to conduct hypothesis tests or to offer an informed
posterior distribution for the causal effect that can guide subsequent research.
We did not, however, report standard errors for the treatment effect estimates
reported in Table 4.6 for the hypothetical example in Matching Demonstra-
tion 4.

Most of the available software routines provide such estimates. For example,
for the software of Abadie and his colleagues, the one- and five-nearest-neighbor
matching estimates of 7.90 and 7.85 in the first column of Table 4.6 have esti-
mated standard errors of .671 and .527, respectively. Nonetheless, each of the
software routines we used relies on a different methodology for calculating such
estimates, and given their lack of agreement we caution against too strong of
a reliance on the standard error estimates produced by any one software rou-
tine, at least at present. Much remains to be worked out before commonly
accepted standards for calculating standard errors are available. For now, our
advice is to report a range of standard errors produced by alternative software
for corresponding matching estimates.?

We recommend caution for the following reasons. In some simple cases,
there is widespread agreement on how to properly estimate standard errors for
matching estimators. For example, if a perfect stratification of the data can be
found, the data can be analyzed as if they are a stratified random sample with
the treatment randomly assigned within each stratum. In this case, the variance

31Coming to terms with these common-support issues has become somewhat of a specialized
art form within the empirical matching literature, and some guidance is available. Heckman,
Ichimura, and Todd (1998; see also Smith and Todd 2005) recommend trimming the region
of common support to eliminate cases in regions of the common support with extremely low
density (and not just with respect to the propensity score but for the full distribution of S).
This involves selecting a minimum density (labeled the “trimming level”) that is greater than
zero. Heckman and his colleagues have found that estimates are rather sensitive to the level
of trimming in small samples, with greater bias when the trimming level is lower. However,
increasing the trimming level excludes more treatment cases and results in higher variance.
More recently, Crump et al. (2006) have developed alternative optimal weighting estimators
that are more general but designed to achieve the same goals.

32Two of the three matching software routines that we utilized allow one to calculate boot-
strapped standard errors in Stata. This is presumably because these easy-to-implement meth-
ods were once thought to provide a general framework for estimating the standard errors of
alternative matching estimators and hence were a fair way to compare the relative efficiency
of alternative matching estimators (see Tu and Zhou 2002). Unfortunately, Abadie and Im-
bens (2004) show that conventional bootstrapping is fragile and will not work in general for
matching estimators. Whether generalized forms of bootstrapping may still be used effectively
remains to be determined.
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estimates from stratified sampling apply. But rarely is a perfect stratification
available in practice without substantial sparseness in the data at hand. Once
stratification is performed with reference to an estimated propensity score, the
independence that is assumed within strata for standard error estimates from
stratified sampling methodology is no longer present. And, if one adopts a
Bayesian perspective, the model uncertainty of the propensity-score-estimating
equation must be represented in the posterior.®?

Even so, there is now also widespread agreement that convergence results
from nonparametric statistics can be used to justify standard error estimates for
large samples. A variety of scholars have begun to work out alternative methods
for calculating such asymptotic standard errors for matching estimators, after
first rewriting matching estimators as forms of nonparametric regression (see
Abadie and Imbens 2006; Hahn 1998; Heckman, Ichimura, and Todd 1998;
Hirano et al. 2003; Imbens 2004). For these large-sample approaches, however,
it is generally assumed that matching is performed directly with regard to the
variables in S, and the standard errors are appropriate only for large samples in
which sparseness is vanishing. Accordingly, the whole idea of using propensity
scores to solve rampant sparseness problems is almost entirely dispensed with,
and estimated propensity scores then serve merely to clean up whatever chance
variability in the distribution of S across treatment and control cases remains
in a finite sample.

Abadie and Imbens (2006) show that one can use brute force computa-
tional methods to estimate sample variances at points of the joint distribution
of S. When combined with nonparametric estimates of propensity scores, one
can obtain consistent estimates of all of the pieces of their proposed formu-
las for asymptotic standard errors. And, yet, none of this work shows that
the available variance estimators remain good guides for the expected sampling
variance of matching estimators under different amounts of misspecification of
the propensity-score-estimating equation, or when matching is attempted only
with regard to the estimated propensity score rather than completely on the
variables in S. Given that this literature is still developing, it seems prudent
to report alternative standard errors from alternative software routines and to
avoid drawing conclusions that depend on accepting any one particular method
for calculating standard errors.

33There is also a related set of randomization inference techniques, built up from con-
sideration of all of the possible permutations of treatment assignment patterns that could
theoretically emerge from alternative enactments of the same treatment assignment routine
(see Rosenbaum 2002). These permutation ideas generate formulas for evaluating specific
null hypotheses, which, from our perspective, are largely uncontroversial. They are especially
reasonable when the analyst has deep knowledge of a relatively simple treatment assignment
regime and has reason to believe that treatment effects are constant in the population. Al-
though Rosenbaum provides large-sample approximations for these permutation-based tests,
the connections to the recent econometrics literature that draws on nonparametric convergence
results have not yet been established.
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4.6.3 Matching Estimators for Many-Valued Causes

Given the prevalence of studies of many-valued causes, it is somewhat odd to
place this section under the more general heading of practical issues. But this
is appropriate because most of the complications of estimating many-valued
treatment effects are essentially practical, even though very challenging in some
cases.’

Recall the setup for many-valued causes from Chapter 2, Appendix B, where
we have a set of J treatment states, a set of J causal exposure dummy variables,

{Dj};-’zl, and a corresponding set of J potential outcome random variables,
{yDi }3]:1. The treatment received by each individual is Dj*, and the outcome

variable for individual 7, y;, is then equal to yz-D 7", For j # j*, the potential
outcomes of individual ¢ exist as J — 1 counterfactual outcomes y? 7.

There are two basic approaches to matching with many-valued treatments
(see Rosenbaum 2002, Section 10.2.4). The most straightforward and general
approach is to form a series of two-way comparisons between the multiple treat-
ments, estimating a separate propensity score for each contrast between each
pair of treatments.?> After the estimated propensity scores are obtained, treat-
ment effect estimates are calculated pairwise between treatments. Care must
be taken, however, to match appropriately on the correct estimated propensity
scores. The observed outcomes for individuals with equivalent values on alter-
native propensity scores cannot be meaningfully compared (see Imbens 2000,
Section 5).

For example, for three treatments with J equal to 1, 2, and 3, one would first
estimate three separate propensity scores, corresponding to three contrasts for
the three corresponding dummy variables: D1 versus D2, D1 versus D3, and
D2 versus D3. One would obtain three estimated propensity scores: Pry[dl; =
1ld1; = 1 or d2; = 1,s;], Pry[dl; = 1|d1; = 1 or d3; = 1,s;], and Pry[d2; =
1]d2; = 1 or d3; = 1,s;]. One would then match separately for each of the
three contrasts leaving, for example, those with d3; = 1 unused and unmatched
when matching on the propensity score for the comparison of treatment 1 versus
treatment 2. At no point would one match together individuals with equivalent
values for alternative estimated propensity scores. For example, there is no
meaningful causal comparison between two individuals, in which for the first
individual d2; = 1 and Pry[dl; = 1|d1; = 1 or d2; = 1,s;] = .6 and for the
second individual d3; = 1 and Pry[d1l; = 1|d1; =1 or d3; = 1, s;] = .6.

When the number of treatments is of modest size, such as only four or five
alternatives, there is much to recommend in this general approach. However, if

34 Although we could present these methods with reference to methods of stratification as
well, we consider the most general case in which propensity score methods are used to address
sparseness issues as well.

35Some simplification of the propensity score estimation is possible. Rather than estimate
propensity scores separately for each pairwise comparison, one can use multinomial probit
and logit models to estimate the set of propensity scores (see Lechner 2002a, 2000b; see also
Hirano and Imbens 2004; Imai and van Dyk 2004; Imbens 2000). One must still, however,
extract the right contrasts from such a model in order to obtain an exhaustive set of estimated
propensity scores.
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the number of treatments is considerably larger, then this fully general approach
may be infeasible. One might then choose to simply consider only a subset of
causal contrasts for analysis, thereby reducing the aim of the causal analysis.

If the number of treatments can be ordered, then a second approach devel-
oped by Joffe and Rosenbaum (1999) and implemented in Lu, Zanutto, Hornik,
and Rosenbaum (2001) is possible. These models generally go by the name of
dose-response models because they are used to estimate the effects of many dif-
ferent dose sizes of the same treatment, often in comparison with a base dosage
of 0 that signifies no treatment.

Rather than estimate separate propensity scores for each pairwise compar-
ison, an ordinal probability model is estimated and the propensity score is de-
fined as a single dimension of the predictors of the model (i.e., ignoring the
discrete shifts in the odds of increasing from one dosage level to the next that
are parameterized by the estimated cut-point parameters for each dosage level).
Thereafter, one then performs a slightly different form of matching in which
optimal matched sets are formed by two criteria, which Lu et al. (2001:1249)
refer to as “close on covariates; far apart on doses.” The idea here is to form
optimal contrasts between selected sets of comparable individuals to generate
estimates of counterfactually defined responses. The goal is to be able to offer a
predicted response to any shift in a dosage level from any k' to k", where both
k' and k" are between the smallest and largest dosage values observed.

Again, however, these methods assume that the treatment values can be
ordered, and further that the propensity scores can be smoothed across dose
sizes after partialing out piecewise shifts. Even so, these assumptions are no
more severe than what is typically invoked implicitly in regression modeling
approaches to causality, as we discuss later. Thus, ordered probability models
can be used to consistently estimate treatment effects for many-valued causes
of a variety of types (see also Hirano and Imbens 2004 and Imai and van Dyk
2004 for further details).

4.7 Conclusions

We conclude this chapter by discussing the strengths and weaknesses of match-
ing as a method for causal inference from observational data. Some of the
advantages of matching methods are not inherent or unique to matching itself
but rather are the result of the analytical framework in which most matching
analyses are conducted. Matching focuses attention on the heterogeneity of the
causal effect. It forces the analyst to examine the alternative distributions of
covariates across those exposed to different levels of the causal variable. The
process of examining the region of common support helps the analyst to recog-
nize which cases in the study are incomparable, such as which control cases one
should ignore when estimating the treatment effect for the treated and which
treatment cases may have no meaningful counterparts among the controls.
Although these are the advantages of matching, it is important that we not
oversell the potential power of the techniques. First, even though the extension
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of matching techniques to multivalued treatments has begun, readily available
matching estimators can be applied only to treatments or causal exposures that
are binary. Second, as we just discussed, our inability to estimate the variance of
most matching estimators with commonly accepted methods is a genuine weak-
ness (although it is reasonable to expect that this weakness can be overcome
in the near future). Third, as the hypothetical example in Matching Demon-
stration 4 showed, different matching estimators can lead to somewhat different
estimates of causal effects, and as yet there is little guidance on which types of
matching estimators work best for different types of applications.

Finally, we close by drawing attention to a common misunderstanding about
matching estimators. In much of the applied literature on matching, the propen-
sity score is presented as a single predictive dimension that can be used to bal-
ance the distribution of important covariates across treatment and control cases,
thereby warranting causal inference. As we showed in the hypothetical exam-
ple in Matching Demonstration 4, perfect balance on important covariates does
not necessarily warrant causal claims. If one does not know of variables that,
in an infinite sample, would yield a perfect stratification, then simply predict-
ing treatment status from the observed variables with a logit model and then
matching on the estimated propensity score does not solve the causal inference
problem. The estimated propensity scores will balance those variables across
the treatment and control cases. But the study will remain open to the sort
of “hidden bias” explored by Rosenbaum (2002) but that is often labeled selec-
tion on the unobservables in the social sciences. Matching is thus a statistical
method for analyzing available data, which may have some advantages in some
situations.



Chapter 5

Regression Estimators of
Causal Effects

Regression models are perhaps the most common form of data analysis used
to evaluate alternative explanations for outcomes of interest to quantitatively
oriented social scientists. In the past 40 years, a remarkable variety of regression
models have been developed by statisticians. Accordingly, most major data
analysis software packages allow for regression estimation of the relationships
between interval and categorical variables, in cross sections and longitudinal
panels, and in nested and multilevel patterns. In this chapter, however, we
restrict our attention to OLS regression, focusing mostly on the regression of an
interval-scaled variable on a binary causal variable. As we will show, the issues
are complicated enough for these models. And it is our knowledge of how least
squares models work that allows us to explain the complexity.

In this chapter, we present least squares regression from three different per-
spectives: (1) regression as a descriptive modeling tool, (2) regression as a para-
metric adjustment technique for estimating causal effects, and (3) regression as
a matching estimator of causal effects. We give more attention to the third
of these three perspectives on regression than is customary in methodological
texts because this perspective allows one to understand the others from a coun-
terfactual perspective. At the end of the chapter, we will draw some of the
connections between least squares regression and more general models, and we
will discuss the estimation of causal effects for many-valued causes.

5.1 Regression as a Descriptive Tool

Least squares regression can be justified without reference to causality, as it can
be considered nothing more than a method for obtaining a best-fitting descrip-
tive model under entailed linearity constraints. Goldberger (1991), for exam-
ple, motivates least squares regression as a technique to estimate a best-fitting
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linear approximation to a conditional expectation function that may be nonlin-
ear in the population.

Consider this descriptive motivation of regression a bit more formally. If X
is a collection of variables that are thought to be associated with Y in some
way, then the conditional expectation function of Y, viewed as a function in X,
is denoted E[Y|X]. Each particular value of the conditional expectation for a
specific realization x of X is then denoted E[Y|X = z].

Least squares regression yields a predicted surface YV = X Z?, where B is a
vector of estimated coefficients from the regression of the realized values y; on
;. The predicted surface, X B, does not necessarily run through the specific
points of the conditional expectation function, even for an infinite sample, be-
cause (1) the conditional expectation function may be a nonlinear function of
one or more of the variables in X and (2) a regression model can be fit without
parameterizing all nonlinearities in X. An estimated regression surface sim-
ply represents a best-fitting linear approximation of E[Y|X] under whatever
linearity constraints are entailed by the chosen parameterization.'

The following demonstration of this usage of regression is simple. Most
readers know this material well and can skip ahead to the next section. But,
even so, it may be worthwhile to read the demonstration quickly because we will
build directly on it when shifting to the consideration of regression as a causal
effect estimator.

Regression Demonstration 1

Recall the stratification example presented as Matching Demonstration 1 (see
page 92 in Chapter 4). Suppose that the same data are being analyzed, as
generated by the distributions presented in Tables 4.1 and 4.2; features of these
distributions are reproduced in Table 5.1 in more compact form. As before,
assume that well-defined causal states continue to exist and that S serves as a
perfect stratification of the data.? Accordingly, the conditional expectations in
the last three panels of Table 5.1 are equal as shown.

But, for this demonstration of regression as a descriptive tool, assume that
a cautious researcher does not wish to rush ahead and attempt to estimate the
specific underlying causal effect of D on Y, either averaged across all individuals
or averaged across particular subsets of the population. Instead, the researcher
is cautious and is willing to assert only that the variables S, D, and Y consti-
tute some portion of a larger system of causal relationships. In particular, the
researcher is unwilling to assert anything about the existence or nonexistence of
other variables that may also lie on the causal chain from S, through D, to Y.
This is tantamount to doubting the claim that S offers a perfect stratification
of the data, even though that claim is true by construction for this example.

1One can fit a large variety of nonlinear surfaces with regression by artful parameterizations
of the variables in X, but these surfaces are always generated by a linear combination of a
coefficient vector and values on some well-defined coding of the variables in X.

2For this section, we will also stipulate that the conditional variances of the potential
outcomes are constant across both of the potential outcomes and across levels of S.
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Table 5.1: The Joint Probability Distribution and Conditional Population Ex-
pectations for Regression Demonstration 1

Joint probability distribution of S"and D

Control group: D =0

Treatment group: D =1

S=1 Pr[Szl,DzO]:.?)G Pr[S’—lD—l] .08

S =2 Pr[S:Z,D:O]:.lQ Pr[S’—ZD—l] 12

S=3 Pr[SzB,D:O]:.lZ Pr[S—S,D—l] 2
Potential outcomes under the control state

S=1 E[Y°|S=1,D=0]=2 E[Y’|S=1,D=1]=2

S=2 EY°|§=2,D=0]=6 EY°|S=2,D=1]=6

S=3 E[Y°|S=3,D=0] =10 E[Y°|S=3,D=1] =10
Potential outcomes under the treatment state

S=1 EY'S=1,D=01=4 E[Y'S=1,D=1]=4

S=2 EY'S=2,D=0=8 EY'S=2,D=1=8

S=3 E[Y'S=3D=0=14 E[Y'S=3D=1]=14

Observed outcomes

S=1 E[Y|S:1,D 0} 2 E[Y|S:17D:1]:4

S =2 E[Y|S:2,D 0}26 E[Y\S:27D:1]:8

S=3 E[Y|S:3,D O}:l E[Y\S:3,D:1]:14

In this situation, suppose that the researcher simply wishes to estimate the
best linear approximation to the conditional expectation E[Y|D,S] and does
not wish to then give a causal interpretation to any of the coefficients that
define the linear approximation. The six true values of E[Y|D, S] are given in
the last panel of Table 5.1. Notice that the linearity of E[Y'|D,S] in D and
S is present only when S < 2. The value of 14 for E[Y|D = 1,5 = 3| makes
E[Y|D, S| nonlinear in D and S over their full distributions.

Now consider the predicted surfaces that would result from the estimation
of two alternative least squares regression equations with data from a sample of
infinite size (to render sampling error zero). A regression of ¥ on D and S that
treats D as a dummy variable and S as an interval-scaled variable would yield
a predictive surface of

Y = —2.71 + 2.69(D) + 4.45(S). (5.1)

This model constrains the partial association between Y and S to be linear.
It represents a sensible predicted regression surface because it is a best-fitting,
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linear-in-the-parameters model of the association between Y and the two vari-
ables D and S, where “best” is defined as minimizing the average squared differ-
ences between the fitted values and the true values of the conditional expectation
function.

For this example, one can offer a better descriptive fit at little interpretive
cost by using a more flexible parameterization of S. An alternative regression
that treats S as a discrete variable represented in the estimation routine by
dummy variables S2 and S3 (for S equal to 2 and S equal to 3, respectively)
would yield a predictive surface of

Y = 1.86 + 2.75(D) + 3.76(52) + 8.92(53). (5.2)

Like the predicted surface for the model in Equation (5.1), this model is also a
best linear approximation to the six values of the true conditional expectation
E[Y|D, S]. The specific estimated values are

D=0,S=1:Y =1.86,
D=05=2:Y =562,
D=0,S=3:Y =10.78,
D=1,8=1:Y =461,
D=1,58=2:Y =837,

D=1,S=3: Y =13.53.

In contrast to the model in Equation (5.1), for this model the variable S is given
a fully flexible coding. As a result, parameters are fit that uniquely represent
all values of S.? The predicted change in Y for a shift in S from 1 to 2 is 3.76

3The difference between a model in which a variable is given a fully flexible coding and one
in which it is given a more constrained coding is clearer for a simpler conditional expectation
function. For E[Y|S], consider the values in the cells of Table 5.1. The three values of E[Y|S]
can be obtained from the first and fourth panels of Table 5.1 as follows:

36 .08

EY|S=1] = (.36+A08)(2)+(.36+.08)(4):2A36,
12 12

EY|s=2] = (12 + 12) (6) + (12 + 12) ®) =7
12 2

EY|S=3] = ('12+'2)(10)+('12+'2)(14):12.5.

Notice that these three values of E[Y|S] do not fall on a straight line; the middle value of 7
is closer to 2.36 than it is to 12.5.

For E[Y|S], a least squares regression of Y on S, treating S as an interval-scaled variable,
would yield a predictive surface of

Y = —2.78 4+ 5.05(5).

The three values of this estimated regression surface lie on a straight line —2.27, 7.32, and
12.37 — and they do not match the corresponding true values of 2.36, 7, and 12.5. A regression
of Y on S, treating S as a discrete variable with dummy variables S2 and S3, would yield an
alternative predictive surface of

Y = 2.36 4 4.64(52) + 10.14(S53).
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(i.e., 5.62—1.86 = 3.76 and 8.37 —4.61 = 3.76) whereas the predicted change in
Y for a shift in S from 2 to 3 is 5.16 (i.e., 10.78 —=5.62 = 5.16 and 13.53 —8.37 =
5.16).

Even so, the model in Equation (5.2) constrains the parameter for D to be
the same without regard to the value of S. And, because the level of Y depends
on the interaction of S and D, specifying more than one parameter for the three
values of S does not bring the predicted regression surface into alignment with
the six values of E[Y'|D, S| presented in the last panel of Table 5.1. Thus, even
when S is given a fully flexible coding (and even for an inﬁnitely large sample),
the fitted values do not equal the true values of E[Y'|D, S].* As we discuss later,
a model that is saturated fully in both S and D — that is, one that adds two
additional parameters for the interactions between D and both S2 and S3 —
would yield predicted values that would exactly match the six true values of
E[Y|D, S] in a dataset of sufficient size.

Recall the more general statement of the descriptive motivation of regression
analysis presented earlier, in which the predicted surface Y =X ﬂ is estimated
for the sole purpose of obtaining a best-fitting linear approximation to the true
conditional expectation function E[Y|X]. When the purposes of regression
are so narrowly restricted, the outcome variable of interest, Y, is not gener-
ally thought to be a function of potential outcomes associated with well-defined
causal states. Consequently, it would be inappropriate to give a causal inter-
pretation to any of the estimated coeflicients in B.

This perspective implies that if one were to add more variables to the predic-
tors, embedding X in a more encompassing set of variables W, then a new set
of least squares estimates 4 could be obtained by regressing Y on W. The esti-
mated surface W+ then represents a best-fitting, linear-in-the-parameters, de-
scriptive fit to a more encompassing conditional expectation function, E[Y|W].
Whether one then prefers W4 to X /3 as a description of the variation in Y de-
pends on whether one finds it more useful to approximate E[Y'|W] than E[Y|X].
The former regression approximation is often referred to as the long regression,
with the latter representing the short regression. These labels are aptly chosen,
when regression is considered nothing more than a descriptive tool, as there is
no inherent reason to prefer a short to a long regression if neither is meant to

This second model uses a fully flexible coding of S, and each value of the conditional expec-
tation function is a unique function of the parameters in the model (that is, 2.36 = 2.36,
4.64 + 2.36 = 7, and 10.14 + 2.36 = 12.5). Thus, in this case, the regression model would, in
a suitably large sample, estimate the three values of E[Y|S] exactly.

4Why would one ever prefer a constrained regression model of this sort? Consider a con-
ditional expectation function, E[Y|X], where Y is earnings and X is years of education (with
21 values from 0 to 20). A fully flexible coding of X would fit 20 dummy variables for the 21
values of X. This would allow the predicted surface to change only modestly between some
years (such as between 7 and 8 and between 12 and 13) and more dramatically between other
years (such as between 11 and 12 and between 15 and 16). However, one might wish to treat
X as an interval-scaled variable, smoothing these increases from year to year by constraining
them to a best-fitting line parameterized only by an intercept and a constant slope. This
constrained model would not fit the conditional expectation function as closely as the model
with 20 dummy variables, but it might be preferred in some situations because it is easier to
present and easier to estimate for a relatively small sample.
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be interpreted as anything other than a best-fitting linear approximation to its
respective true conditional expectation function.

In many applied regression textbooks, the descriptive motivation of regres-
sion receives no direct explication. And, in fact, many textbooks state that the
only correct specification of a regression model is one that includes all explana-
tory variables. Goldberger (1991) admonishes such textbook writers, countering
their claims with:

An alternative position is less stringent and is free of causal language.
Nothing in the CR [classical regression] model itself requires an ex-
haustive list of explanatory variables, nor any assumption about the
direction of causality. (Goldberger 1991:173)

Goldberger is surely correct, but his perspective nonetheless begs an important
question on the ultimate utility of descriptively motivated regression. Clearly,
if one wishes to know only predicted values of the outcome Y for those not
originally studied but whose variables in X are known, then being able to form
the surface X3 is a good first step (and perhaps a good last step). And, if one
wishes to build a more elaborate regression model, allowing for an additional
variable in W or explicitly accounting for multilevel variability by modeling the
nested structure of the data, then regression results will be useful if the aim
is merely to generate descriptive reductions of the data. But, if one wishes to
know the value of Y that would result for any individual in the population if a
variable in X were shifted from a value k to a value &, then regression results
may be uninformative.

Many researchers (perhaps a clear majority) who use regression models in
their research are very much interested in causal effects. Knowing the interests
of their readers, many textbook presentations of regression sidestep these is-
sues artfully by, for example, discussing how biased regression coefficients result
from the omission of important explanatory variables but without introducing
explicit, formal notions of causality into their presentations. Draper and Smith
(1998:236), for example, write of the bias that enters into estimated regression
coefficients when only a subset of the variables in the “true response relation-
ship” are included in the fitted model. Similarly, Greene (2000:334) writes
of the same form of bias that results from estimating coefficients for a subset
of the variables from the “correctly specified regression model.”® And, in his
presentation of regression models for social scientists, Stolzenberg (2004:188)
equivocates:

Philosophical arguments about the nature of causation notwith-
standing (see Holland, 1986), in most social science uses of regres-
sion, the effect of an independent variable on a dependent variable is
the rate at which differences in the independent variable are associ-
ated with (or cause) differences or changes in the dependent variable.
[Italics in the original.]

5There are, of course, other textbooks that do present a more complete perspective, such
as Berk (2004), Freedman (2005), and Gelman and Hill (2007).



5.2. Regression Adjustment 129

We also assume that the readers of our book are interested in causal effect
estimators. And thus, although we recognize the classical regression tradition,
perhaps best defended by Goldberger (1991) as interpretable merely as a descrip-
tive data reduction tool, we will consider regression primarily as a causal effect
estimator in the following sections of this chapter. And we further note that,
in spite of our reference to Goldberger (1991), in other writing Goldberger has
made it absolutely clear that he too was very much interested in the proper usage
of regression models to offer warranted causal claims. This is perhaps most clear
in work in which he criticized what he regarded as unwarranted causal claims
generated by others using regression techniques, such as in his robust critique
of Coleman’s Catholic schools research that we summarized in Subsection 1.3.2
(see Goldberger and Cain 1982). We will return to a discussion of the notion of
a correct specification of a regression model at the end of the chapter, where we
discuss the connections between theoretical models and regressions as all-cause
perfect specifications. Until then, however, we return to the same basic scenario
considered in our presentation of matching in Chapter 4: the estimation of a
single causal effect that may be confounded by other variables.

5.2 Regression Adjustment as a Strategy to
Estimate Causal Effects

In this section, we consider the estimation of causal effects in which least squares
regression is used to adjust for variables thought to be correlated with both the
causal and the outcome variables. We first consider the textbook treatment
of the concept of omitted-variable bias, with which most readers are probably
well acquainted. Thereafter, we consider the same set of ideas after specifying
the potential outcome variables that the counterfactual tradition assumes lie
beneath the observed data.

5.2.1 Regression Models and Omitted-Variable Bias

Suppose that one is interested in estimating the causal effect of a binary variable
D on an observed outcome Y. This goal can be motivated as an attempt to
obtain an unbiased and consistent estimate of a coefficient 0 in a generic bivariate
regression equation:

Y=a+D+e¢, (5.3)

where « is an intercept and ¢ is a summary random variable that represents
all other causes of Y (some of which may be related to the causal variable of
interest, D). When Equation (5.3) is used to represent the causal effect of D
on Y without any reference to individual-varying potential outcome variables,
the parameter § is implicitly cast as an invariant, structural causal effect that
applies to all members of the population of interest.%

6 Although this is generally the case, there are of course introductions to regression that
explicitly define 0 as the mean effect of D on Y across units in the population of interest or,
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The OLS estimator of this bivariate regression coefficient is then:

Cov (ys,d;)

VaI‘N(di) (54)

5OLS, bivariate =

where Covy(.) and Vary(.) are unbiased, sample-based estimates from a sample
of size N of the population-level covariance and variance of the variables that
are their arguments.” Because D is a binary variable, SOL& bivariate 18 exactly
equivalent to the naive estimator, Ex[y;|d; = 1] — Enx|yi|d; = 0], presented ear-
lier in Equation (2.7) (i.e., sample mean of y; for those in the treatment group
minus the sample mean of y; for those in the control group). Our analysis thus
follows quite closely the prior discussion of the naive estimator in Subsection
2.6.3. The difference is that here we will develop the same basic claims with ref-
erence to the relationship between D and e rather than the general implications
of heterogeneity of the causal effect.

Consider first a case in which D is randomly assigned, as when individuals
are randomly assigned to the treatment and control groups. In this case, D
would be uncorrelated with e in Equation (5.3), even though there may be a
chance correlation between D and e in any finite set of study subjects.® The
literature on regression, when presented as a causal effect estimator, maintains
that, in this case, (1) the estimator SOL& bivariate 1S unbiased and consistent for
0 in Equation (5.3) and (2) ¢ can be interpreted as the causal effect of D on Y.

To understand this claim, it is best to consider a counterexample in which D
is correlated with € in the population because D is correlated with other causes
of Y that are implicitly embedded in . For a familiar example, consider again
the effect of education on earnings. Individuals are not randomly assigned to the
treatment “completed a bachelor’s degree.” It is generally thought that those
who complete college would be more likely to have had high levels of earnings

as was noted in the last section, without regard to causality at all.

"Notice that we are again focusing on the essential features of the methods, and thus
we maintain our perfect measurement assumption (which allows us to avoid talking about
measurement error in D or in Y, the latter of which would be embedded in €). We also
ignore degree-of-freedom adjustments because we assume that the available sample is again
large. To be more precise, of course, we would want to indicate that the sample variance of D
does not equal the population-level variance of D in the absence of such a degree-of-freedom
adjustment, and so on. We merely label Vary (.) as signifying such an unbiased estimate of
the population-level-variance of that which is its argument. Thus, Vary (.) implicitly includes
the proper degree-of-freedom adjustment, which would be N/(N — 1) and which would then
be multiplied by the average of squared deviations from the sample mean.

8We will frequently refer to D and e as being uncorrelated for this type of assumption, as
this is the semantics that most social scientists seem to use and understand when discussing
these issues. Most textbook presentations of regression discuss very specific exogeneity as-
sumptions for D that imply a correlation of 0 between D and €. Usually, in the social sciences,
the assumption is defined either by mean independence of D and € or as an assumed covariance
of 0 between D and . Both of these imply a correlation between D and e of 0. In statis-
tics, one often finds a stronger assumption: D and € must be completely independent of each
other. The argument in favor of this stronger assumption, which is convincing to statisticians,
is that an inference is strongest when it holds under any transformation of Y (and thus any
transformation of €). When full independence of D and € holds, mean independence of D and
€, a covariance of 0 between D and e, and a 0 correlation between D and e are all implied.
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Figure 5.1: Graphs for a regression equation of the causal effect of D on Y.

in the absence of a college education. If this is true, D and the population-level
error term e are correlated because those who have a 1 on D are more likely
to have high values rather than low values for €. For this example, the least
squares regression estimator 5OLS7 bivariate 1 Equation (5.4) would not yield a
consistent and unbiased estimate of 0 that can be regarded as an unbiased and
consistent estimate of the causal effect of D on Y. Instead, SOLS,bivariate must
be interpreted as an upwardly biased and inconsistent estimate of the causal
effect of D on Y. In the substance of the college-degree example, (ASOL& bivariate
would be a poor estimate of the causal effect of a college degree on earnings, as
it would suggest that the effect of obtaining a college degree is larger than it
really is.”

Figure 5.1 presents two causal graphs. In panel (a), D and Y are connected
by two types of paths, the direct causal effect D — Y and an unspecified
number of back-door paths signified by D «----» Y. (Recall that bidirected
edges «----» represent an unspecified number of common causes of the two
variables that they connect.) For the graph in panel (a), the causal effect of D
on Y is unidentified because no observable variables block the back-door paths
represented by D ¢----3 Y.

The graph in panel (b) is the regression analog to the causal graph panel (a).
It contains three edges: D — Y, e — Y, and D «----» ¢, where the node for ¢ is
represented by a hollow circle o rather than a solid circle e in order to indicate
that ¢ is an unobserved variable. The back-door paths from D to Y now run
through the error term €, and the dependence represented by the bidirected edge

9Consider for one last time the alternative and permissible descriptive interpretation: The
least squares regression estimator 3OLS, bivariate i Equation (5.4) could be interpreted as
an unbiased and consistent estimate of §, in which the regression surface generated by the
estimation of § in Equation (5.3) can be interpreted as only a descriptively motivated, best
linear prediction of the conditional expectation function, E[Y'|D] (i.e., where & is an unbiased
and consistent estimate of E[Y|D = 0] and & + & is an unbiased and consistent estimate of
E[Y|D = 1]). And, in the substance of the college-degree example, it could be regarded as
an efficient estimate of the mean difference between the earnings of those who have obtained
a college degree and those who have not. For this second type of interpretation, see the last
section of this chapter.
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contaminates the bivariate least squares regression coefficient for the regression
of Y on D. Bivariate regression results, when interpreted as warranted causal
effect estimates, assume that there are no unblocked back-door paths from the
causal variable to the outcome variable.

For many applications in the social sciences, a correlation between D and
¢ is conceptualized as a problem of omitted variables. For the example in this
section, a bivariate OLS estimate of the effect of a college degree on labor market
earnings would be said to be biased because intelligence is unobserved but is
correlated with both education and earnings. Its omission from Equation (5.3)
leads the estimate of the effect of a college degree on earnings from that equation
to be larger than it would have been if a variable for intelligence were instead
included in the equation.

This perspective, however, has led to much confusion, especially in cases in
which a correlation between D and e emerges because subjects choose different
levels of D based on their expectations about the variability of Y, and hence
their own expectations of the causal effect itself. For example, those who at-
tend college may be more likely to benefit from college than those who do not,
even independent of the unobserved ability factor. Although this latent form of
anticipation can be labeled an omitted variable, it is generally not. Instead, the
language of research shifts toward notions such as self-selection bias, and this is
less comfortable territory for the typical applied researcher.

To clarify the connections between omitted-variable bias and self-selection
bias within a more general presentation, we draw on the counterfactual model
in the next section. We break the error term in Equation (5.3) into component
pieces defined by underlying potential outcome variables and allow for the more
general forms of causal effect heterogeneity that are implicitly ruled out by
constant-coefficient models.

5.2.2 Potential Outcomes and Omitted-Variable Bias

Consider the same set of ideas but now use the potential outcome framework
to define the observable variables. We build directly on the variant of the
counterfactual model presented in Subsection 3.2.2. From that presentation,
recall Equation (3.5), which we reintroduce here as

Y=+ (ut = p°)D + {v° + D(v! =)}, (5.5)

where ;0 = E[Y?], ut = E[Y1], v° = Y — E[Y?], and v! = Y! — E[Y}].
We could rewrite this equation to bring it into closer alignment with Equation
(5.3) by stipulating that o = p°, § = (u* — p%), and e = v° + D(v! — ).
But note that this is not what is typically meant by the terms «, §, and ¢ in
Equation (5.3). The parameters o and ¢ in Equation (5.3) are not considered
to be equal to E[Y?] or E[§] for two reasons: (1) models are usually asserted in
the regression tradition (e.g., in Draper and Smith 1998) without any reference
to underlying causal states tied to potential outcomes and (2) the parameters
« and § are usually implicitly held to be constant structural effects that do not
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vary over individuals in the population. Similarly, the error term, £, in Equation
(5.3) is not separated into two pieces as a function of the definition of potential
outcomes and their relationship to D. For these reasons, Equation (5.5) is
quite different from the traditional bivariate regression in Equation (5.3), in the
sense that it is more finely articulated but also irretrievably tied to a particular
formalization of a causal effect.

Suppose that we are interested in estimating the average treatment effect,
denoted (u! — p°) here. D could be correlated with the population-level variant
of the error term v° 4+ D(v! — %) in Equation (5.5) in two ways. First, suppose
that there is a net baseline difference in the hypothetical no-treatment state
that is correlated with membership in the treatment group, but the size of the
individual-level treatment effect does not differ on average between those in
the treatment group and those in the control group. In this case, v° would be
correlated with D, generating a correlation between {v" + D(v! —v%)} and D,
even though the D(v! —v°) term in {v°+ D(v! —v%)} would be equal to zero on
average because v — v? does not vary with D. Second, suppose there is a net
treatment effect difference that is correlated with membership in the treatment
group, but there is no net baseline difference in the absence of treatment. Now,
D(v! — v°%) would be correlated with D, even though v° is not, because the
average difference in v' — 0" varies across those in the treatment group and
those in the control group. In either case, an OLS regression of the realized
values of Y on D would yield a biased and inconsistent estimate of (u! — u°).

It may be helpful to see precisely how these sorts of bias come about with ref-
erence to the potential outcomes of individuals. Table 5.2 presents three simple
two-person examples in which the least squares bivariate regression estimator
5OLS’ bivariate 1 Equation (5.4) is biased. Each panel presents the potential out-
come values for two individuals and then the implied observed data and error
term in the braces from Equation (5.5). Assume for convenience that there are
only two types of individuals in the population, both of which are homogeneous
with respect to the outcomes under study and both of which comprise one half
of the population. For the three examples in Table 5.2, we have sampled one of
each of these two types of individuals for study.

For the example in the first panel, the true average treatment effect is 15,
because for the individual in the treatment group §; is 10 whereas for the in-
dividual in the control group §; is 20. The values of v} and v are deviations
of the values of y! and ¢? from E[Y!] and E[Y?], respectively. Because these
expectations are equal to 20 and 5, the values of v} are both equal to 0 be-
cause each individual’s value of y} is equal to 20. In contrast, the values of v9
are equal to 5 and —5 for the individuals in the treatment and control groups,
respectively, because their two values of y? are 10 and 0.

As noted earlier, the bivariate regression estimate of the coefficient on D
is equal to the naive estimator, En[y;|d; = 1] — En[y;|d; = 0]. Accordingly, a
regression of the values for y; on d; would yield a value of 0 for the intercept and
a value of 20 for the coefficient on D. This estimated value of 20 is an upwardly
biased estimate for the true average causal effect because the values of d; are
positively correlated with the values of the error term v + d; (v} — v?). In this
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Table 5.2: Examples of the Two Basic Forms of Bias for Least Squares Regres-
sion

Differential baseline bias only

yi Y v vy i di vd+di(v;—1?)
In treatment group 20 10 0 5 20 1 0
In control group 20 0 0 -5 0 0 -5
Differential treatment effect bias only
ybooy? ol vY yi  di  00+di(v)—v?)
In treatment group 20 10 2.5 0 20 1 2.5
In control group 15 10 =25 0 10 0 0
Both types of bias
yiooy v Vg i di 04di(v;—?)
In treatment group 25 5 5 =25 25 1 5
In control group 15 10 -5 2.5 10 0 2.5

case, the individual with a value of 1 for d; has a value of 0 for the error term
whereas the individual with a value of 0 for d; has a value of —5 for the error
term.

For the example in the second panel, the relevant difference between the
individual in the treatment group and the individual in the control group is in
the value of y; rather than y?. In this variant, both individuals would have had
the same outcome if they were both in the control state, but the individual in the
treatment group would benefit relatively more from being in the treatment state.
Consequently, the values of d; are correlated with the values of the error term
in the last column because the true treatment effect is larger for the individual
in the treatment group than for the individual in the control group. A bivariate
regression would yield an estimate of 10 for the average causal effect, even
though the true average causal effect is only 7.5 in this case.

Finally, in the third panel of the table, both forms of baseline and net treat-
ment effect bias are present, and in opposite directions. In combination, how-
ever, they still generate a positive correlation between the values of d; and the
error term in the last column. This pattern results in a bivariate regression
estimate of 15, which is upwardly biased for the true average causal effect of
12.5.

For symmetry, and some additional insight, now consider two additional two-
person examples in which regression gives an unbiased estimate of the average
causal effect. For the first panel of Table 5.3, the potential outcomes are inde-
pendent of D, and as a result a bivariate regression of the values y; on d; would
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Table 5.3: Two-Person Examples in Which Least Squares Regression Estimates
are Unbiased

Independence of (Y, Y?) from D

1
vi oy v v yi  di vi+di(v;—v])
In treatment group 20 10 0 0 20 1 0
In control group 20 10 0 0 10 0 0
Offsetting dependence of Y'and Y% on D
yboy) ol Wl i di vd+d; (v;fvg)
In treatment group 20 10 5 =95 20 1 )
In control group 10 20 =5 5 20 0 5

yield an unbiased estimate of 10 for the true average causal effect. But the
example in the second panel is quite different. Here, the values of v} and v? are
each correlated with the values of d;, but they cancel each other out when they
jointly constitute the error term in the final column. Thus, a bivariate regression
yields an unbiased estimate of 0 for the true average causal effect of 0. And, yet,
with knowledge of the values for y} and 3?, it is clear that these results mask
important heterogeneity of the causal effect. Even though the average causal
effect is indeed 0, the individual-level causal effects are equal to 10 and —10 for
the individuals in the treatment group and control group, respectively. Thus,
regression gives the right answer, but it hides the underlying heterogeneity that
one would almost certainly wish to know.

Having considered these examples, we are now in a position to answer, from
within the counterfactual framework, the question that so often confounds stu-
dents when first introduced to regression as a causal effect estimator: What
is the error term of a regression equation? Compare the third and fourth
columns with the final column in Tables 5.2 and 5.3. The regression error term,
0+ D(v! =), is equal to v° for those in the control group and v! for those in
the treatment group. This can be seen without reference to the examples in the
tables. Simply rearrange v° + D(v! — %) as Dv! + (1 — D)v® and then rewrite
Equation (5.5) as

Y = p® + (u* — p°)D + {Dv' + (1 — D)v"}. (5.6)

It should be clear that the error term now appears very much like the observabil-
ity of Y definition presented earlier as DY 4 (1 — D)Y? in Equation (2.2). Just
as Y switches between Y'! and Y© as a function of D, the error term switches
between v! and v as a function of D. Given that v! and v° can be interpreted
as Y and YO centered around their respective population-level expectations
E[Y!] and E[Y"], this should not be surprising.
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Even so, few presentations of regression characterize the error term of a bi-
variate regression in this way. Some notable exceptions do exist. The connection
is made to the counterfactual tradition by specifying Equation (5.3) as

YZO(+5D+E(D)7 (5.7)

where the error term ¢(p) is considered to be an entirely different random vari-
able for each value of D (see Pratt and Schlaifer 1988). Consequently, the
error term ¢ in Equation (5.3) switches between €1y and () in Equation (5.7)
depending on whether D is equal to 1 or 0.'°

Before moving on to adjustment techniques, it seems proper to ask one final
question. If both v' and v° are uncorrelated with D, will the bivariate least
squares regression coefficient for D be an unbiased and consistent estimate of
the average causal effect? Yes, but two qualifications should be noted, both of
which were revealed in the second example in Table 5.3. First, bivariate re-
gression can yield an unbiased and consistent estimate in other cases, as when
the nonzero correlations that v and v° have with D “cancel out” in the con-
struction of the combined error term Duv' + (1 — D)v°. Second, an unbiased
and consistent regression estimate of the average causal effect may still mask
important heterogeneity of causal effects. The first of these qualifications would
rarely apply to real-world applications, but the second qualification, we suspect,
obtains widely and is less frequently recognized than it should be.

5.2.3 Regression as Adjustment for Otherwise Omitted
Variables

How well can regression adjust for an omitted variable if that variable is observed
and included in an expanded regression equation? The basic strategy behind
regression analysis as an adjustment technique to estimate a causal effect is to
add a sufficient set of “control variables” to the bivariate regression in Equation
(5.3) in order to break a correlation between the treatment variable D and the
error term ¢, as in

Y=a+dD+ Xp+¢e", (5.8)

where X represents one or more variables, 3 is a coefficient (or a conformable
vector of coefficients if X represents more than one variable), £* is a residualized
version of the original error term e from Equation (5.3), and all else is as defined
for Equation (5.3).

For the multiple regression analog to the least squares bivariate regression
estimator 5OLS, bivariate 11 Equation (5.4), the observed data values d; and z;
are embedded in an all-encompassing Q matrix, which is N x K, where N is
the number of respondents and K is the number of variables in X plus 2 (one

10This is the same approach taken by Freedman (see Berk 2004, Freedman 2005), and he
refers to Equation (5.7) as a response schedule. See also the discussion of Sobel (1995). For a
continuous variable, Garen (1984) notes that there would be an infinite number of error terms
(see discussion of Garen’s Equation 10).
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Figure 5.2: A causal graph for a regression equation in which the causal effect
of D on Y is identified by conditioning on X.

for the constant and one for the treatment variable D). The OLS estimator for
the parameters in Equation (5.8) is then written in matrix notation as

SOLS, multiple = (Q/Q)_IQ/yv (59)

where y is an NV x 1 vector for the observed outcomes y;. As all regression text-
books show, there is nothing magical about these least squares computations,
even though the matrix representation may appear unfamiliar to some readers.
OLS regression is equivalent to the following three-step regression procedure
with reference to Equation (5.8) [and without reference to the perhaps overly
compact Equation (5.9)]: (1) Regress y; on z; and calculate vy = y; — 943 (2)
regress d; on z; and calculate df = d; — Ji; (3) regress y; on df. The regression
coefficient on df yielded by step (3) is the OLS estimate of ¢, which is typically
declared unbiased and consistent for ¢ in Equation (5.8) if the true correlation
between D and €* is assumed to be equal to zero. Thus, in this simple example,
OLS regression is equivalent to estimating the relationship between residualized
versions of Y and D from which their common dependence on other variables
in X has been “subtracted out.”

Even though the variables in X might be labeled control variables in a
regression analysis of a causal effect, this label expresses the intent rather than
the outcome of their utilization. The goal of such a regression adjustment
strategy is to find variables in X that can be used to redraw the causal graph
in panel (b) of Figure 5.1 as the DAG in Figure 5.2. If this can be done, then
one can condition on X in order to consistently estimate the causal effect of D
on Y because X blocks the only back-door path between D and Y.

If D is uncorrelated with ¢* (i.e., the error term net of adjustment for X),
then least squares regression yields an estimate that is ostensibly freed of the
bias generated by the correlation of the treatment D with the error term ¢ in
Equation (5.3). However, even in this case some complications remain when one
invokes the potential outcome model.

First, if one assumes that ¢ is truly constant across individuals (i.e., that
yt —1¥ is equal to the same constant for all individuals i), then the OLS estimate
is unbiased and consistent for ¢ and for (u' — p%). If, however, y! — 39 is
not constant, then the OLS estimate represents a conditional-variance-weighted
estimate of the underlying causal effects of individuals, §;, in which the weights
are a function of the conditional variance of D (see Angrist 1998, as well as our
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explanation of this result in the next section). Under these conditions, the OLS
estimate is unbiased and consistent for this particular weighted average, which
is usually not a causal parameter of interest.

Second, note that the residualized error term, €*, in Equation (5.8) is not
equivalent to either e from Equation (5.3) or to the multipart error term {v° +
D(vt — %)} from Equation (5.5). Rather, it is defined by whatever adjustment
occurs within Equation (5.8), as represented by the term X/3. Consequently,
the residualized error term €* cannot be interpreted independently of decisions
about how to specify the vector of adjustment variables in X, and this can make
it difficult to define when a net covariance between D and €* can be assumed
to be zero.

We explain these two complications and their important implications in the
following sections of this chapter, where we consider a variety of examples that
demonstrate the connections between matching and regression estimators of
causal effects. Before developing these explanations, however, we conclude this
section with two final small-N examples that demonstrate how the regression
adjustment strategy does and does not work.

Table 5.4 presents two six-person examples. For both examples, a regression
of Y on D yields a biased estimate of the true average treatment effect. And, in
fact, both examples yield the same biased estimate because the observed values
y; and d; are the same for both examples. Moreover, an adjustment variable
X is also available for both examples, and its observed values x; have the same
associations with the observed values y; and d; for both examples. But the
underlying potential outcomes differ substantially between the two examples.
These differences render regression adjustment by X effective for only the first
example.

For the example in the first panel, a regression of Y on D would yield an
estimate of the coefficient for D of 11.67, which is an upwardly biased estimate
of the true average causal effect of 10. The bias arises because the correlation
between the error term in the last column and the realized values for d; is not
zero but is instead .33.

For the example in the second panel, a regression of Y on D would yield an
estimate of the coefficient for D of 11.67 because the values for y; and d; are
exactly the same as for the example in the first panel. Moreover, this estimate
is also upwardly biased because the error term in the last column is positively
correlated with the realized values of d;. However, here the patterns are more
complex. The underlying potential outcomes are different, and individual-level
heterogeneity of the causal effect is now present. One member of the control
group has an individual-level treatment effect of only 8, and as a result the
true average treatment effect is only 9.67. Consequently, the same bivariate
regression coefficient of 11.67 has a larger upward bias in this second example,
and the correlation between the values of d; and the error term in the last
column is now .39 rather than .33."!

1 Moreover, the correlation between the values of d; and both Uz-l and v? differs, with
the former generating a correlation coefficient of .51 and the latter generating a correlation
coefficient of .33.
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Table 5.4: Two Six-Person Examples in Which Regression Adjustment is Dif-
ferentially Effective

Regression adjustment with X
generates an unbiased estimate for D

yi Y v Vg yi i @i 004di(v;—0?)
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 15 5 —25 =25 15 1 0 —2.5
In control group 20 10 2.5 2.5 10 0 1 2.5
In control group 15 5 —-2.5 =25 5 0 0 —-2.5
In control group 15 5 —-2.5 =25 5 0 0 —-2.5

Regression adjustment with X
does not generate an unbiased estimate for D

yi vy wi o yi di x v0di(vl—0?)
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 15 5 =217 =25 5 1 0 —2.17
In control group 18 10 .83 2.5 10 0 1 2.5
In control group 15 5 =217 =25 5 0 0 —2.5
In control group 15 5 =217 =25 5 0 0 —2.5

This underlying difference in potential outcomes also has consequences for
the capacity of regression adjustment to effectively generate unbiased estimates
of the average treatment effect. This is easiest to see by rearranging the rows in
Table 5.4 for each of the two examples based on the values of X for each individ-
ual, as in Table 5.5. For the first example, the values of d; are uncorrelated with
the error term within subsets of individuals defined by the two values of X. In
contrast, for the second example, the values of d; remain positively correlated
with the error term within subsets of individuals defined by the two values of
X. Thus, conditioning on X breaks the correlation between D and the error
term in the first example but not in the second example. Because the observed
data are the same for both examples, this difference is entirely a function of the
underlying potential outcomes that generate the data.

This example demonstrates an important conceptual point. Recall that the
basic strategy behind regression analysis as an adjustment technique is to esti-
mate

Y=a+4+dD+ Xp3+¢e",
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Table 5.5: A Rearrangement to Show How Regression Adjustment is Differen-
tially Effective

Regression adjustment with X
generates an unbiased estimate for D
1
ytoy? o} v? yi di wp vd+di(v; —0?)

[

For those with X =1

In treatment group 20 10 2.5 2.5 20 1 1 2.5
In treatment group 20 10 2.5 2.5 20 1 1 2.5
In control group 20 10 2.5 2.5 10 0 1 2.5
For those with X =0
In treatment group 15 5  —2.5 —2.5 15 1 0 —2.5
In control group 15 5 =25 =25 5 0 0 —2.5
In control group 15 5 =25 =25 5 0 0 —2.5
Regression adjustment with X
does not generate an unbiased estimate for D
A R i di @i v)tdi(v;—of)
For those with X =1
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In treatment group 20 10 2.83 2.5 20 1 1 2.83
In control group 18 10 .83 2.5 10 0 1 2.5
For those with X = 0
In treatment group 15 5 —2.17 —2.5 15 1 0 —2.17
In control group 15 5 =217 =25 5 0 0 —2.5
In control group 15 5 =217 =25 5 0 0 —2.5

where X represents one or more control variables, (§ is a coefficient (or a con-
formable vector of coefficients if X represents more than one variable), and &*
is a residualized version of the original error term e from Equation (5.3) [see our
earlier presentation of Equation (5.8)]. The literature on regression often states
that an estimated coefficient 0 from this regression equation is unbiased and
consistent for the average causal effect if €* is uncorrelated with D. But, be-
cause the specific definition of £* is conditional on the specification of X, many
researchers find this requirement of a zero correlation difficult to interpret and
hence difficult to evaluate.

The crux of the idea, however, can be understood without reference to the
error term &* but rather with reference to the simpler (and, as we have argued
earlier) more clearly defined error term v° + D(v! — v°) from Equation (5.5)
[or, equivalently, Dv' 4 (1 — D)0 from Equation (5.6)]. Regression adjustment
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by X in Equation (5.8) will yield an unbiased and consistent estimate of the
average causal effect of D when

1. D is uncorrelated with v + D(v! — 0%) for each subset of respondents
identified by distinct values on the variables in X,

2. the causal effect of D does not vary with X, and

3. a fully flexible parameterization of X is used.'?

Consider the relationship between this set of conditions and what was de-
scribed earlier in Subsection 3.2.1 as an assumption that treatment assignment
is ignorable. Switching notation from S to X in Equation (3.3) results in

YOvhH 1L DX, (5.10)

where, again, the symbol 1 denotes independence. Now, rewrite the assump-
tion, deviating Y° and Y'* from their population-level expectations:

(% 0') 1L D | X. (5.11)

This switch from (Y9, Y1) to (v° v!) does not change the assumption, at least
insofar as is relevant here (because we have defined the individual-level causal
effect as a linear difference, because the expectation operator is linear, and
because E[Y?] and E[Y!] do not depend on who is in the treatment state and
who is in the control state). Consequently, ignorability of treatment assignment
can be defined only with respect to individual-level departures from the true
average potential outcomes across all members of the population under the
assumptions already introduced.

Given that an assumption of ignorable treatment assignment can be written
as Equation (5.11), the connections between this assumption and the set of
conditions that justify a regression estimator as unbiased and consistent for the
effect of D on Y should now be clear. If treatment assignment is ignorable as
defined in Equation (5.11), then a regression equation that conditions fully on
all values of X by including a fully flexible coding of X as a set of dummy
variables will yield unbiased and consistent regression estimates of the average
causal effect of D on Y. Even so, ignorability is not equivalent to the set of
conditions just laid out. Instead, v° and v! [as well as functions of them, such
as v+ D(v! —vY)] must only be mean independent of D conditional on X, not
fully independent of D conditional on X.

Stepping back from this correspondence, we should note that this is not
the only set of conditions that would establish least squares estimation unbi-
ased and consistent for the average causal effect, but it is the most common

12Here again, we use the word uncorrelated to characterize the necessary association between
D and v0 4 D (v! —v?). More formally, it would be best to state that D and v0 4 D(v! —00)
must be mean independent, so that a 0 covariance of D and v° + D(v! — v0) is implied.
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set of conditions that would apply in most research situations.'®> Our point in
laying it out is not to provide a rigid guideline applicable to all types of re-
gression models but instead to show why the earlier statement that “c* must
be uncorrelated with D” is insufficiently articulated from a counterfactual per-
spective.

A larger point of this section, however, is that much of the received wisdom
on regression modeling breaks down in the presence of individual-level hetero-
geneity of a causal effect, as would be present in general when causal effects
are defined with reference to underlying potential outcomes tied to well-defined
causal states. In the next section, we begin to explain these complications more
systematically, starting from the assumption, as in prior chapters, that causal
effects are inherently heterogeneous and likely to vary systematically between
those in the treatment and control groups. We then present the connections
among regression, matching, and stratification, building directly on our presen-
tation of matching as conditioning by stratification in Chapter 4.

5.3 The Connections Between Regression and
Matching

In this section, we return to the demonstrations utilized to motivate matching
estimators in Chapter 4. Our goal is to establish when matching and regres-
sion yield different results, even though a researcher is attempting to adjust
for the same set of variables. We then show how regression estimators can be
reformulated to yield the same results as matching estimators — as a full pa-
rameterization of a perfect stratification of the data and then as weighted least
squares estimators in which the weights are a function of the propensity score.
In these cases, we show that regression is an effective estimator of causal effects
defined by potential outcomes.

5.3.1 Regression as Conditional-Variance-Weighted
Matching

We first show why least squares regression can yield misleading causal effect
estimates in the presence of individual-level heterogeneity of causal effects, even
though the only variable that needs to be adjusted for is given a fully flexi-
ble coding (i.e., when the adjustment variable is parameterized with a dummy
variable for each of its values, save one for the reference category).'* When

13For example, the second condition can be dropped if the heterogeneity of the causal effect
is modeled as a function of X (i.e., the parameterization is fully saturated in both D and X).
In this case, however, regression then becomes a way of enacting a stratification of the data,
as for the matching techniques presented in the last chapter.

MWhen we write of a fully flexible coding of a variable, we are referring to a dummy variable
coding of that variable only. As we will discuss later, a saturated model entails a fully flexible
coding of each variable as well as all interactions between them. For the models discussed
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a single parameter is calculated for the causal effect of D on Y, least squares
estimators implicitly invoke conditional-variance weighting of individual-level
causal effects. This weighting scheme generates a conditional-variance-weighted
estimate of the average causal effect, which is not an average causal effect that
is often of any inherent interest to a researcher.'® Angrist (1998) provides a
more formal explanation of the following results, which is then placed in the
context of a larger class of models in Angrist and Krueger (1999).

Regression Demonstration 2

Reconsider Regression Demonstration 1, beginning on page 124. But now step
back from the cautious mindset of the fictitious descriptively oriented researcher.
Suppose that a causality-oriented researcher had performed the same exercise
and obtained, in particular, the results for the regression model reported in
Equation (5.2):

Y = 1.86 +2.75(D) + 3.76(52) + 8.92(S3). (5.12)

We know from Matching Demonstration 1 (beginning on page 92), on which
Regression Demonstration 1 is based, that for this hypothetical example the
average treatment effect among the treated is 3, the average treatment effect
among the untreated is 2.4, and the unconditional average treatment effect is
2.64. If the causality-oriented researcher were to declare that the coefficient
on D of 2.75 in Equation (5.12) is a good estimate of the causal effect of
D on Y, then the researcher would be incautious but not appreciably incor-
rect. The value of 2.75 is indeed close to the true average treatment effect
of 2.64, and we know from the setup of Regression Demonstration 1 that the
variable S continues to serve as a perfect stratifying variable. Thus, if the re-
searcher were to state that the regression model in Equation (5.2) statistically
controls for the common effect of S on both D and Y, as in Equation (5.8),
where S is specified as the sole element of X but as two dummy variables S2
and S3, then the researcher is not horribly off the mark. The researcher has
offered an adjustment for S, and gotten close to the true average treatment
effect.

Unfortunately, the closeness of the estimate to the true average treatment
effect is not a general feature of this type of a regression estimator. Under this
particular specification of the regression equation, the OLS estimator yields

here, a saturated model would include interactions between the causal variable D and each
dummy variable for all but one of the values of S. For a model with only a fully flexible coding
of S, these interactions are left out.

151t could be of interest to a researcher who seeks a minimum-variance estimate and who
has reason to believe that the bias of the regression estimate is modest. We discuss this point
later, but we hope to show that most applied researchers have good reason to want unbiased
and consistent estimates rather than minimum mean-squared-error estimates of their causal
parameters of interest.
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precisely the value of 2.75 in an infinite sample as the sum of sample analogs to
three terms:

Var[D|S = 1] Pr[S = 1]

ZVar[D|S = s]Pr[S = s]
g

{E[Y|ID=1,S=1]-E[Y|D=0,5=1]} (5.13)

Var[D|S = 2] Pr[S = 2]
ZVar[D|S = 5| Pr[S = s]
s

(E[Y|D=1,8=2] - E[Y|D=0,8 = 2]}

Var[D|S = 3] Pr[S = 3]
ZVar[D|S = s]Pr[S = 4]
s

{E[Y|D=1,S=3]—E[Y|D=0,5=3]}.

These three terms are not as complicated as they may appear. First, note that
the differences in the braces on the right-hand side of each term are simply the
stratum-specific differences in the outcomes, which in this case are

E[YID=1,S=1]-E[Y|D=0,S=1] = 4-2 (5.14)
E[Y|D=1,8=2-E[Y|D=0,S=2] = 8—6, (5.15)
E[Y|D=1,8=3|-E[Y|D=0,5§=3] = 14— 10. (5.16)

The left-hand portion of each term is then just a weight, exactly analogous to
the stratum-specific weights that were used for Matching Demonstration 1 to
average the stratum-specific causal effect estimates in various ways to obtain
unbiased and consistent estimates of the average treatment effect, the average
treatment effect for the treated, and the average treatment effect for the un-
treated. But, rather than use the marginal distribution of S, Pr[S], or the two
conditional distributions of S, Pr[S|D = 1] and Pr[S|D = 0], a different set of
weights is implicitly invoked by the least squares operation. In this case, the
weights are composed of three pieces: (1) the variance of the treatment variable
within each stratum, Var[D|S = s], (2) the marginal probability of S for each
stratum, Pr[S = s, and (3) a summation of the product of these two terms
across S so that the three weights sum to 1.

Accordingly, the only new piece of this estimator that was not introduced
and examined for Matching Demonstration 1 is the conditional variance of the
treatment, Var[D|S = s]. Recall that the treatment variable is distributed
within each stratum solely as a function of the stratum-specific propensity score,
Pr[D|S = s]. Thus, the treatment variable is a Bernoulli distributed random
variable within each stratum. As can be found in any handbook of statistics,
the variance of a Bernoulli distributed random variable is p(1 — p), where p
is the Bernoulli probability of success (in this case D equal to 1) instead of
failure (in this case D equal to 0). Accordingly, the expected variance of the
within-stratum treatment variable D is simply (Pr[D|S = s]) (1 — Pr[D|S = s]).
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For this example, the conditional variances Var[D|S = s| contribute to the
numerator of each weight as follows:

.08 + .36 .08+ .36

Var[D|S = 2] Pr[S = 2] = (121+212) <1 - 121+212>} (12+.12), (5.18)

Var[D|S=3]Pr[S:3]::< 2 )(1— 2 )](.2+.12). (5.19)

Var[D|S = 1] Pr[$ = 1] = (08) (1 Ogﬂ (08 +.36), (5.17)

2+.12 2412

The terms in brackets on the right-hand sides of Equations (5.17)—(5.19) are
Var[D|S = 1], Var[D|S = 2], and Var[D|S = 3]. The terms in parentheses on
the right-hand sides of Equations (5.17)—(5.19) are the marginal probability of
S for each stratum, Pr[S = 1], Pr[S = 2], and Pr[S = 3]. For example, for

the stratum with S = 1, Var[D|S = 1] = (%) (1 - %) and Pr[S =

1] = (.08 4 .36). Finally, the denominator of each of the three stratum-specific
weights in Equation (5.13) for this example is the sum of Equations (5.17)—
(5.19). The denominator is constant across all three weights and simply scales
the weights so that they sum to 1.

With an understanding of the implicit stratum-specific weights of least squares
regression, the regression estimator can be seen clearly as an estimator for the
average treatment effect but with supplemental conditional-variance weighting.
Weighting is performed with respect to the marginal distribution of individuals
across strata, but weighting is also performed with respect to the conditional
variance of the treatment variable across strata as well. Thus, net of the weight
given to stratum-specific effects solely as a function of Pr[S], the conditional-
variance terms give more weight to stratum-specific causal effects in strata with
propensity scores close to .5 and less weight to stratum-specific causal effects in
strata with propensity scores close to either 0 or 1.

Why would the OLS estimator implicitly invoke conditional-variance weight-
ing as a supplement to weighting simply by the marginal distribution of S? OLS
is a minimum-variance-based estimator of the parameter of interest. As a re-
sult, it gives more weight to stratum-specific effects with the lowest expected
variance, and the expected variance of each stratum-specific effect is an inverse
function of the stratum-specific variance of the treatment variable D. Thus, if
the two pieces of the weighting scheme are not aligned (i.e., the propensity score
is close to 0 or 1 for strata that have high total probability mass but close to .5
for strata with low probability mass), then a regression estimator of this form,
even under a fully flexible coding of S, can yield estimates that are far from the
true average treatment effect even in an infinite sample.

To see the effects that supplemental weighting by the conditional variance of
the treatment can have on a regression estimate, consider the alternative joint
distributions for S and D presented in Table 5.6. For this example, suppose that
the values of E[Y°|S, D], E[Y!|S, D], and E[Y|S, D] in the final three panels
of Table 5.1 again obtain, such that S continues to offer a perfect stratification
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Table 5.6: The Joint Probability Distribution for Two Variants of the Strat-
ifying and Treatment Variables in Prior Regression Demonstration 1

Joint probability distribution of S and D

Control group: D =0 Treatment group: D =1
Variant I
S=1 Pr[S=1,D=0]=.40 Pr(S=1,D=1]=.04
S=2 Pr[S=2,D=0]=.20 Pr(S=2,D=1]=.04
S=3 Pr(S=3,D=0]=.16 Pr[S=3,D=1]=.16
Variant I1
S=1 Pr[S=1,D=0]=.40 Pr(S=1,D=1]=.04
S=2 Pr(S=2,D=0]=.12 Pr(S=2,D=1]=.12
S=3 Pr(S=3,D=0]=.03 Pr[S=3,D=1]=.29

of the data. Note that, for the two alternative joint distributions of S and D
in Table 5.6, the marginal distribution of S remains the same as in Regression
Example 1: Pr[S = 1] = 44, Pr[S = 2] = .24, and Pr[S = 3] = 32. Asa
result, the unconditional average treatment effect is the same for both variants
of the joint distribution of S and D depicted in Table 5.6, and it matches
the unconditional average treatment effect for the original example represented
fully in Table 5.1. In particular, the same distribution of stratum-specific causal
effects results in an unconditional average treatment effect of 2.64.

The difference represented by each variant of the joint distributions in Table
5.6 is in the propensity score for each stratum of S, which generates an alter-
native marginal distribution for D and thus alternative true average treatment
effects for the treated and for the untreated (and, as we will soon see, alternative
regression estimates from the same specification).

For Variant I in Table 5.6, those with S equal to 1 or 2 are much less likely to
be in the treatment group, and those with S equal to 3 are now only equally likely
to be in the treatment group and the control group. As a result, the marginal
distribution of D is now different, with Pr[D = 0] = .76 and Pr[D = 1] = .24.
The average treatment effect for the treated is now 3.33 whereas the average
treatment effect among the untreated is 2.42. Both of these are larger than
was the case for the example represented by Table 5.1 because (1) a greater
proportion of those in the control group have S = 3 (ie., 48 > 42) (2) a
greater proportion of those in the treatment group have S = 3 (i.e., % > %),
and (3) those with S = 3 gain the most from the treatment.

For Variant II, those with S equal to 1 are still very unlikely to be in the
treatment group, but those with S equal to 2 are again equally likely to be in
the treatment group. But those with S equal to 3 are now very likely to be in



5.3. Regression and Matching 147

the treatment group. As a result, the marginal distribution of D is now different
again, with Pr[D = 0] = .55 and Pr[D = 1] = .45, and the average treatment
effect for the treated is now 3.29 whereas the average treatment effect among the
untreated is 2.11. Both of these are smaller than for Variant I because a smaller
proportion of both the treatment group and the control group have S = 3.

For these two variants of the joint distribution of S and D, we have examples
in which the unconditional average treatment effect is the same as it was for
the example in Table 5.1, but the underlying average treatment effects for the
treated and for the untreated differ considerably. Does the reestimation of
Equation (5.12) for these variants of the example still generate an estimate
for the coefficient on D that is (a) relatively close to the true unconditional
average treatment effect and (b) closer to the unconditional average treatment
effect than either the average treatment effect for the treated or the average
treatment effect for the untreated?

For Variant I, the regression model yields

Y = 1.90 + 3.07(D) + 3.92(52) + 8.56(53) (5.20)

for an infinite sample. In this case, the coefficient of 3.07 on D is not particularly
close to the unconditional average treatment effect of 2.64, and in fact it is
closer to the average treatment effect for the treated of 3.33 (although still not
particularly close). For Variant II, the regression model yields

Y = 1.96 4 2.44(D) + 3.82(52) + 9.45(53). (5.21)

In this case, the coefficient of 2.44 on D is closer to the unconditional average
treatment effect of 2.64, but not as close as was the case for the example in
Regression Demonstration 1. It is now relatively closer to the average treatment
effect for the untreated, which is 2.11 (although, again, still not particularly
close).

For Variant I, the regression estimator is weighted more toward the stratum
with S = 3, for which the propensity score is .5. For this stratum, the causal
effect is 4. For Variant II, in contrast, the regression estimator is weighted more
toward the stratum with S = 2, for which the propensity score is .5. And, for
this stratum, the causal effect is 2.6

What is the implication of these alternative setups of the same basic demon-
stration? Given that the unconditional average treatment effect is the same for
all three joint distributions of S and D, it would be unwise for the incautious
researcher to believe that this sort of a regression specification will provide a re-
liably close estimate to the unconditional average treatment effect, the average
treatment effect for the treated, or the unconditional average treatment effect
when there is reason to believe that these three average causal effects differ be-
cause of individual-level heterogeneity. The regression estimate will be weighted

16Recall that, because the marginal distribution of S is the same for all three joint distribu-
tions of S and D by construction of the example, the Pr[S = s] pieces of the weights remain
the same for all three alternatives. Thus, the differences between the regression estimates are
produced entirely by differences in the Var[D|S = s| pieces of the weights.
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toward stratum-specific effects for which the propensity score is closest to .5,
net of all else.

In general, regression models do not offer consistent estimates of the average
treatment effect when causal effect heterogeneity is present, even when a fully
flexible coding is given to the only necessary adjustment variable(s). Regression
estimators with fully flexible codings of the adjustment variables do provide con-
sistent estimates of the average treatment effect if either (a) the true propensity
score does not differ by strata or (b) the average stratum-specific causal effect
does not vary by strata.'” Condition (a) would almost never be true (because, if
it were, one would not even think to adjust for S because it is already indepen-
dent of D). And condition (b) is probably not true in most applications, because
rarely are investigators willing to assert that all consequential heterogeneity of
a causal effect has been explicitly modeled.

Instead, for this type of a regression specification, in which all elements
of a set of perfect stratifying variables S are given fully flexible codings (i.e.,
a dummy variable coding for all but one of the possible combinations of the
values for the variables in S), the OLS estimator SOLS, multiple i Equation (5.9)
is equal to

1
- ZVarN[di\si =s] Pry[s; = s|{En[yildi = 1,8, = s] — En[yi|d; = 0,s; = s|}

(5.22)
in a sample of size N. Here, ¢ is a scaling constant equal to the sum (over all
combinations of values s of S) of the terms Vary|[d;|s; = s] Pry[s; = s].

There are two additional points to emphasize. First, the weighting scheme
for stratified estimates in Equation (5.22) applies only when the fully flexible
parameterization of S is specified. Under a constrained specification of S [e.g.,
in which some elements of S are constrained to have linear effects, as in Equation
(5.1)] the weighting scheme is more complex. The weights remain a function of
the marginal distribution of S and the stratum-specific conditional variance of
D, but the specific form of each of these components becomes conditional on
the specification of the regression model (see Angrist and Krueger 1999, Section
2.3.1). The basic intuition here is that a linear constraint on a variable in S
in a regression model represents an implicit linearity assumption about true
underlying propensity score that may not be linear in S.'%

17As a by-product of either condition, the average treatment effect must be equal to the
average treatment effect for the treated and the average treatment effect for the untreated.
Thus, the regression estimator would be consistent for both of these as well.

18For a binary causal exposure variable D, a many-valued variable S that is treated as an
interval-scaled variable, and a regression equation

Y =a+8D)+B(S) ,

the OLS estimator § is equal to

1 — ~ —
YZVaI‘N[di‘Si = S] PI‘N[SZ' = S] {EN[y,‘dZ = 1,8,; = S] - EN[y1|dl = O,Si = S]}
s
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Second, regression can make it all too easy to overlook the same sort of fun-
damental mismatch problems that were examined for Matching Demonstration 2
in Subsection 4.2.2. Regression will implicitly drop strata for which the propen-
sity score is either 0 or 1 in the course of forming its weighted average by
Equation (5.22). As a result, a researcher who interprets a regression result
as a decent estimate of the average treatment effect, but with supplemental
conditional-variance weighting, may be entirely wrong. No meaningful average
causal effect may exist in the population. The second point is best explained
by the following illustration.

Regression Demonstration 3

Reconsider the hypothetical example presented as Matching Demonstration 2
from Chapter 4, beginning on page 95. The assumed relationships that generate
the data are very similar to those for Regression Demonstrations 1 and 2, but,
as shown in Table 5.7, no individual for whom S is equal to 1 in the population
is ever exposed to the treatment because Pr[S =1, D = 1] = 0 whereas Pr[S =
1,D = 0] = .4. As a result, not even an infinite sample from the population
would ever include an individual in the treatment group with s; = 1.'? Because

in a sample of size N, where [ is a scaling constant equal to the sum over all s of S the terms
VarN [dA7‘Sz = 8] PI”N [Si = S].

The distinction between Vary[di|s; = s] Pry[s; = s] and Vary[di|s; = s] Pry[s; = s]
in the main text results from a constraint on the propensity score that is implicit in the
regression equation. In specifying S as an interval-scaled variable, least squares implicitly
assumes that the true propensity score Pr[D|S] is linear in S. As a result, the first portion of
the stratum-specific weight is

Vary [di|s; = s] = ps(1 — Ps),
where p; is equal to the predicted stratum-specific propensity score from a linear regression
of dj on s;: ps =&+ pgs. .
Perhaps somewhat less clear, the term Pry[s; = s] is also a function of the constraint on
S. Pry[s; = s] is not simply the marginal distribution of S in the sample, as Pry[s; = ] is.

Rather, one must use Bayes’ rule to determine the implied marginal distribution of S, given
the assumed linearity of the propensity score across levels of S. Rearranging

Pr(s;|d; = 1] Pr[d; = 1]

Prid; = 1|s;] = Brlsi]

as
Prls;|d; = 1] Pr[d; = 1]

Pr[d; = 1|s;]
and then substituting ps for Pr[d; = 1|s;], we then find that

- Prys; = sld; = 1] Pry[d; = 1
Pry[s; =s] = tvlsi = ¢l Zﬁ [ Pry [d: }.
S

Pr[s;] =

)

The terms Pry[s; = s|d; = 1] and Pry[d; = 1] are, however, unaffected by the linearity
constraint on the propensity score. They are simply the true conditional probability of S
equal to s given D equal to d as well as the marginal probability of D equal to d for a sample
of size N.

Note that, if the true propensity score is linear in S, then the weighting scheme here is
equivalent to the one in the main text.

19 Again, recall that we assume no measurement error in general in this book. In the presence
of measurement error, some individuals might be misclassified and therefore might show up
in the data with s; = 1 and d; = 1.
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Table 5.7: The Joint Probability Distribution and Conditional
Population Expectations for Regression Demonstration 3

Joint probability distribution of S and D

Control group: D =0 Treatment group: D =1
S=1 Pr[S=1,D=0]=4 PriS=1,D=1]=0
S=2 Pr(S=2,D=0]=.1 PriS=2,D=1]=.13
S=3 Pr[S=3,D=0]=.1 Pr[S=3,D=1]=.27
Potential outcomes under the control state
S=1 EY°S=1,D=0=2
S=2 EY°’S=2,D=01=6 E[Y"S=2,D=1]=6
S=3 E[Y°S=3D=0=10 E[Y°S=3D=1=10
Potential outcomes under the treatment state
S=1 E[Y1|S:1,D:O] =4
S=2 E[Y'1S=2,D=0=8 E[Y'S=2,D=1]=8
S=3 EY'1S=3D=0=14 E}Y'S=3D=1=14
Observed outcomes
S=1 EY|S=1,D=0]=2
S=2 E[Y|S=2,D=0]=6 EY|S=2,D=1]=8
S=3 E[Y|S=3D=0=10 EY|S=3,D=1]=14

of this structural zero in the joint distribution of S and D , the three conditional
expectations, E[YY|S=1,D =0], E[Y!|S=1,D =0],and E[Y|S=1,D = 0],
are properly regarded as undefined and hence are omitted from the last three
panels of Table 5.7.

As shown earlier in Subsection 4.2.2, the naive estimator can still be calcu-
lated for this example and will be equal to 8.05 in an infinite sample. Moreover,
the average treatment effect for the treated can be estimated consistently as 3.35
by considering only the values for those with S equal to 2 and 3. But there is no
way to consistently estimate the treatment effect for the untreated, and hence
no way to consistently estimate the unconditional average treatment effect.

Consider now the estimated values that would be obtained with data arising
from this joint distribution for a regression model specified equivalently as in
Equations (5.12), (5.20), and (5.21):

Y = 2.00 + 3.13(D) + 3.36(52) + 8.64(53). (5.23)
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In this case, the OLS estimator is still equivalent to Equation (5.22), which in
an infinite sample would then be equal to Equation (5.13). But, with reference
to Equation (5.13), note that the weight for the first term,

Var[D|S = 1] Pr[S = 1]

ZVar[D|S =s|Pr[S = 5]7
s

is equal to zero because Var[D|S = 1] is equal to 0 in the population by con-
struction. Accordingly, the numerator of the stratum-specific weight is zero,
and it enters into the summation of the denominator of the other two stratum-
specific weights as zero. As a result, the regression estimator yields a coefficient
on D that is 3.13, which is biased downward as an estimate of the average treat-
ment effect for the treated and has no relationship with the undefined average
treatment effect. If interpreted as an estimate of the average treatment effect
for the treated, but with supplemental conditional-variance weighting, then the
coefficient of 3.13 is interpretable. But it cannot be interpreted as a meaningful
estimate of the average treatment effect in the population once one commits to
the potential outcome framework because the average treatment effect does not
exist.

The importance of this demonstration is only partly revealed in this way of
presenting the results. Imagine that a researcher simply observes {y;, d;, sl}f\;
and then estimates the model in Equation (5.23) without first considering the
joint distribution of S and D as presented in Table 5.7. It would be entirely
unclear to such a researcher that there are no individuals in the sample (or in
the population) whose values for both D and S are 1. Such a researcher might
therefore be led to believe that the coefficient estimate for D is a meaningful
estimate of the causal effect of D for all members of the population.

All too often, regression modeling, at least as practiced in the social sciences,
makes it too easy for an analyst to overlook fundamental mismatches between
treatment and control cases. And, thus, one can obtain average treatment
effect estimates with regression techniques even when no meaningful average
treatment effect exists. Even though this is the case, we do not want to push
this argument too far. Therefore, in the next section we make the (perhaps
obvious) point that regression can be used as a technique to execute a perfect
stratification of the data under the same assumptions that justified matching as
a stratification estimator in Chapter 4.

5.3.2 Regression as an Implementation of a Perfect
Stratification

Matching and regression can both be used to carry out a perfect stratification of
the data. Consider how the matching estimates presented in Matching Demon-
stration 1 (see page 92) could have been generated by standard regression rou-
tines. For that hypothetical example, an analyst could specify S as two dummy
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variables and D as one dummy variable. If all two-way interactions between S
and D are then included in a regression model predicting the observed outcome
Y, then the analyst has enacted the same perfect stratification of the data by
fitting a model that is saturated in both S and D to all of the cells of the first
panel of Table 4.2 (or see instead the reproduction in Table 5.1 on page 125):

Y =2+ 2(D) + 4(52) + 8(53) + 0(D x 52) +2(D x S3). (5.24)

The values of each of the six cells of the panel are unique functions of the six
estimated coefficients from the regression model. Accordingly, by use of the
marginal distribution of S and the joint distribution of S given D, coefficient
contrasts can be averaged across the relevant distributions of S in order to
obtain consistent estimates of the average treatment effect, the treatment effect
among the treated, and the treatment effect among the untreated.

Nevertheless, for many applications, such a saturated model may not be pos-
sible, and in some cases this impossibility may be misinterpreted. For Regression
Demonstration 3 (see page 149), if one were to fit the seemingly saturated model
with the same six parameters as in Equation (5.24), the coefficient on D would
be dropped by standard software routines. One might then attribute this to
the size of the dataset and then instead use a more constrained parameteriza-
tion [i.e., either enter S as a simple linear term interacted with D or instead
specify the model in Equation (5.23)]. These models must then be properly
interpreted, and in no case could they be interpreted as yielding unbiased and
consistent estimates of the average treatment effect. In a sense, this problem
is simply a matter of model misspecification. But, at a deeper level, it may be
that regression as a method tends to encourage the analyst to oversimplify these
important model specification issues.?"

What if a zero cell in the joint distribution of S and D occurred by chance
in any single dataset? In other words, what if there is no fundamental overlap
problem in the distribution of .S across D, but instead the only problem is a finite
dataset? In this case, regression can be reformulated as a weighting estimator,
as we describe in the next subsection, in order to solve the sparseness problem.

5.3.3 Matching as Weighted Regression

In this subsection, we explore further the connections between matching and
regression estimators, demonstrating how weighted regression can be used to
estimate causal effects. ITmbens (2004) reviews alternative ways to calculate the
same sorts of weighted averages that we present here, and he fully accounts for
the connections between inverse-probability-weighting procedures and nonpara-
metric regression.

As was shown for the hypothetical example in Matching Demonstration 3
(see page 100), matching can be considered a method to weight the data in order

20Rubin (1977) provides simple and elegant examples of all such complications, highlighting
the importance of assumptions about the relationships between covariates and outcomes (see
also Holland and Rubin 1983 and Rosenbaum 1984a, 1984b).
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to balance predictors of treatment selection and thereby calculate contrasts
that can be given causal interpretations. In this section, we show that the
three propensity-score-weighting estimators in Equations (4.12) — (4.14) can be
specified as three weighted OLS regression estimators. In fact, if one defines
a weighting variable appropriately, then any standard software package that
estimates weighted regression can be used.

To see how to do this, note first that the naive estimator in Equation (2.7)
can be written as an OLS estimator, (Q'Q)~'Q’y, where (1) Q is an n x
2 matrix that contains a vector of 1s in its first column and a vector of the
values of d; for each individual in its second column and (2) y is an n x 1
column vector containing values of y; for each individual. To estimate each
of the propensity-score-weighting estimators in Equations (4.12)—(4.14), simply
estimate a weighted OLS estimator:

3OLS, weighted = (QIPQ)_IQ/Py7 (525)

where P is an appropriately chosen weight matrix, depending on the average
treatment effect of interest.

For the treatment effect for the treated, specify P as an n x n diagonal
matrix with 1 in the ¢ x ith place for members of the treatment group and
pi/(1 — p;) in the i x ith place for members of the control group (where, as
defined earlier for the hypothetical example in Matching Demonstration 3, p; is
the estimated propensity score; see Subsection 4.3.2). For the treatment effect
for the untreated, specify P as an n x n diagonal matrix with (1 — p;)/p; in
the ¢ x ith place for members of the treatment group and 1s in the ¢ x ith
place for members of the control group. Finally, for the unconditional average
treatment effect, specify P as an n x n diagonal matrix with 1/p; in the i x ith
place for members of the treatment group and 1/(1 — p;) in the ¢ x ith place
for members of the control group. Consider the following demonstration, which
builds directly on the prior presentation of matching in Section 4.3.

Regression Demonstration 4

Consider first how the matching estimates in the hypothetical example in Match-
ing Demonstration 3 (beginning on page 100) could have been generated by a
standard regression routine. As shown there for Equations (4.8) and (4.9), the
potential outcomes were specified as functions of individual values for A and B:

yi = 102+ 6a; +4b; + v}, (5.26)
) 100 + 3a; + 2b; + vY, (5.27)

where A and B are distributed as independent uniform random variables with
a minimum of .1 and a maximum of 1, and where v} and v are independent
random draws from a normal distribution with expectation 0 and a standard
deviation of 5. For each individual, y; is then equal to y}(d;) + (1 —d;)y?, where
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the value of d; is determined by a Bernoulli distribution with the probability of
1 rather than 0 as the nonlinear function in A and B that is presented in Figure
4.1 in Subsection 4.3.2. The first panel of Table 5.8 reproduces the true average
treatment effects for this example from the prior Table 4.5; the unconditional
average treatment effect is 4.53 whereas the average treatment effects for the
treated and the untreated are 4.89 and 4.40, respectively.

The second panel of Table 5.8 introduces a second variant on this basic setup.
For this variant, Equations (5.26) and (5.27) are replaced with

yl = 1024 3a; + 2b; 4 6(a; x b;) + v}, (5.28)
y) = 100+ 2a; + 1b; — 2(a; x b;) + Y, (5.29)

but everything else remains that same. These alternative potential outcome
definitions result in a slightly more dramatic pattern for the average treatment
effects. As shown in the second panel of Table 5.8, the unconditional average
treatment effect is 5.05 whereas the average treatment effects for the treated and
the untreated are now 5.77 and 4.79, respectively. Although this difference is
notable, the nonlinearity of the individual-level treatment effects is of most con-
sequence here. The opposite-signed parameters specified for the cross-product
interaction of A and B ensures that those with high levels of A and B together
have much larger individual-level treatment effects than others. For Variant I
in the first panel of Table 5.8, the differential sizes of the treatment effects were
separable into simple linear pieces that could be independently attributed to A
and B.

For each variant of this example within its corresponding panel, three coeffi-
cients on D (for an infinite sample so that sampling error is zero) are presented
for three OLS regression specifications: (1) Y regressed on D, (2) Y regressed on
D, A, and B, and (3) Y regressed on D, A, A-squared, B, and B-squared. All
three of these OLS estimates are placed in the column for the average treatment
effect because such estimates are commonly interpreted as average treatment ef-
fect estimates. But, of course, this is somewhat misleading, because regression
estimates such as these are often presented without any reference to the aver-
age treatment effect (i.e., often as an estimate of an implicit constant structural
effect of D onY'). None of these OLS estimates is particularly close to its respec-
tive true average treatment effect. And, although the quadratic specifications
of A and B help to some degree, the estimates are still far from their targets.

For the last row of each panel, we then implemented the weighted regression
models specified earlier in Equation (5.25). For these estimates, we take the
estimated propensity scores (i.e., the p; used to construct each of the three P
matrices) from the row labeled “Perfectly specified propensity score estimates”
in Table 4.5. Each of the estimates lands exactly on the targeted parameter, as
will always be the case in a sufficiently large dataset if the propensity score is
estimated flawlessly.

As this demonstration shows, the relationships between matching and re-
gression are now well established in the literature. In this section, we have of-
fered a demonstration to show some of these connections. But, more generally,
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Table 5.8: OLS and Weighted OLS Estimates of Treatment Effects for Regres-
sion Demonstration 4

Average treatment effects

Els| E[§D=1 E[5|D =0]

Variant I: Y'and Y linear in A and B
True treatment effects 4.53 4.89 4.40
OLS regression estimates:
Yregressed on D 5.39

Yregressed on D and linear A and B 4.75
Yregressed on D and quadratic Aand B 4.74

Weighted OLS regression of Yon D 4.53 4.89 4.40

Variant II: Y'and Y nonlinear in Aand B
True treatment effects 5.05 5.77 4.79
OLS regression estimates:
Yregressed on D 5.88
Yregressed on D and linear Aand B 5.47
Yregressed on D and quadratic Aand B 5.44

Weighted OLS regression of Yon D 5.05 5.77 4.79

it is now known that most matching estimators can be rewritten as forms of
nonparametric regression (see Abadie and Imbens 2006; Hahn 1998; Heckman,
Ichimura, and Todd 1998; Hirano et al. 2003; Imbens 2004; Lunceford and
Davidian 2004). And, as shown earlier in this chapter, OLS regression, under
certain specifications, can be seen as a form of matching with supplemental
conditional-variance weighting (which may or may not be useful, depending on
the application). We have further shown with this demonstration one particular
advantage of a matching estimator, whether carried out as specified earlier in
Chapter 4, or as a weighted regression estimator as shown in this subsection.
Matching may significantly outperform regression models when the true func-
tional form of a regression is nonlinear but a simple linear specification is used
mistakenly. However, as shown earlier, the superior performance requires that
the propensity score be estimated effectively, and perhaps flawlessly, in the case
of weighting estimators.
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5.3.4 Regression as Supplemental Adjustment When
Matching

For Equation (5.25), we defined the Q matrix as containing a column of 1s
and a column of individual-level values d;. In fact, there is a literature that
argues that all variables that predict treatment selection should be included
as additional columns in Q as well. The idea is to offer what James Robins
refers to as a “doubly robust” or “doubly protected” estimator (see Bang and
Robins 2005; Robins and Rotnitzky 2001). Robins and Rotnitzky reflect on
the fallibility of both standard regression methods and propensity-score-based
weighting estimators:

There has been considerable debate as to which approach to con-
founder control is to be preferred, as the first is biased if the out-
come regression model is misspecified while the second approach is
biased if the treatment regression, i.e., propensity, model is mis-
specified. This controversy could be resolved if an estimator were
available that was guaranteed to be consistent for # whenever at least
one of the two models was correct under an asymptotic sequence in
which the outcome and treatment regression models remain fixed as
the sample size n increases to infinity. We refer to such combined
methods as doubly-robust or doubly-protected as they can protect
against misspecification of either the outcome or treatment model,
although not against simultaneous misspecification of both. (Robins
and Rotnitzky 2001:922)

The basic motivation of this practice is to give the analyst two chances to “get it
right,” in hopes that misspecifications of the propensity-score-estimating equa-
tion and the final regression equation will neutralize each other. And, although
Robins is credited with developing the recent asymptotic justification for a va-
riety of specific procedures (see Robins and Ritov 1997; Robins, Rotnitzky, and
Zhao 1994; Scharfstein, Rotnitzky, and Robins 1999; van der Laan and Robins
2003), the idea of using matching and regression together is quite general and
has a long legacy in applied work (see Cochran and Rubin 1973; Gelman and
King 1990; Heckman, Ichimura, and Todd 1998; Hirano and Imbens 2001; Rubin
and Thomas 1996, 2000; Smith and Todd 2005). Consider the following demon-
stration that shows some of these possibilities.

Regression Demonstration 5

Recall Matching Demonstration 4, beginning on page 110, and consider now
how regression can be used to supplement a matching algorithm.?! Recall that
for Matching Demonstration 4, we presented matching estimates of the Catholic
school effect on achievement for simulated data. As we discuss there, the treat-
ment effect for the treated is 6.96 in the simulated data, whereas the treatment

21The results for this demonstration are drawn from Morgan and Harding (2006), and we
thereby thank David Harding for his contribution to this section. More details on these results
are presented in the article as well.
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Table 5.9: Combined Matching and Regresison Estimates for the Simulated Effect of
Catholic Schooling on Achievement, as Specified in Matching Demonstration 4

Poorly specified Well-specified
propensity-score- propensity-score-
estimating equation estimating equation
TT Estimate Bias TT Estimate Bias

OLS Regression:

Not restricted to region of common 7.79 0.83 6.81 -0.15
support

Restricted to region of common support 7.88 0.92 6.80 -0.16

Matching with regression adjustment:

Interval with variable blocks (B&I) 7.95 0.99 6.70 -0.26

One Nearest Neighbor with caliper = 0.001 8.05 1.09 7.15 0.19
(L&S)

One Nearest Neighbor without caliper 7.78 0.82 6.88 -0.08
(Abadie)

Five Nearest Neighbors with caliper = 0.001 7.92 0.96 7.17 0.21
(L&S)

Five Nearest Neighbors without caliper 7.82 0.86 7.20 0.24
(Abadie)

Notes: B&I denotes the software of Becker and Ichino; L&S denotes the software
of Leuven and Sianesi; Abadie denotes the software of Abadie et al.

effect for the untreated is 5.9. In combination, the average treatment effect is
then 6.0.

In this demonstration, we present in the first two lines of Table 5.9 least
squares regression estimates of the treatment effect under two specifications, in-
cluding the same variables for the propensity-score-estimating equation directly
in the regression equation (and in the two different specifications used for the
earlier Table 4.6). We present regression estimates in two variants: (1) with-
out regard to the distributions of the variables and (2) based on a subsample
restricted to the region of common support, as defined by the propensity score
estimated from the covariates utilized for the respective scenario. Comparing
these estimates with the values from Table 4.6, linear regression does about as
well as the matching algorithms as an estimator of the treatment effect for the
treated. In some cases, these estimates outperform some of the matching esti-
mates. In fairness to the matching estimates, however, it should be pointed out
that the data analyzed for this example are well suited to regression because the
assumed functional form of each potential outcome variable is linear and hence
relatively simple. Although we believe that this is reasonable for the simulated
application, there are surely scenarios in which matching can be shown to clearly
outperform regression because of nonlinearities that are not parameterized by
the relevant regression model.

In the second panel of Table 5.9, we provide five examples of matching com-
bined with regression adjustment. Interval matching with regression adjustment
calculates the treatment effect within blocks after adjusting for the same co-
variates included in the propensity-score-estimating equation for the particular
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scenario, averaging over blocks to produce an overall treatment effect estimate.
With nearest-neighbor matching, one accomplishes regression adjustment by
regressing the outcome on the treatment and covariates using the matched sam-
ple, with appropriate weights for duplicated observations in the matched control
group and for multiple neighbor matching. When the results of Tables 4.6 and
5.9 are compared, supplemental regression adjustment reduces the bias for only
the nearest-neighbor matching with one match, whereas it offers no improve-
ment for the other three matching estimators.

As this demonstration shows, supplemental regression adjustment may pro-
vide a slight improvement over an analogous matching estimator implemented
without regression adjustment. But this is not true in all cases, especially when
the matching estimator chosen already uses many cases to match to each target
case.

Another advantage of combining matching and regression has emerged re-
cently. Rather than consider regression as a supplement to a possibly faulty
matching routine, one can consider matching a remedy to artifactual regression
results that have been produced by incautious data mining. Ho et al. (2005)
suggest that the general procedure one should carry out in any multivariate
analysis is to first balance one’s data with a matching routine and then to esti-
mate a regression model on the balanced data. From this perspective, matching
is a data preprocessor, which can be used to prepare the data for subsequent
analysis with something such as a regression routine.??

5.4 Extensions and Other Perspectives

In this chapter, we have focused almost exclusively on the estimation of the
effect of a binary cause on an interval-scaled outcome, and we have considered
only least squares adjustments. Before carrying on to discuss least squares es-
timation of the effects of many-valued causes, we of course must concede what
the reader is surely aware of: We have considered only a tiny portion of what
falls under the general topic of regression modeling. = We have not consid-
ered categorical outcome variables, time series analysis, nested data structures,
variance-component models, and so on. One can gain a full perspective of
the variants of regression modeling in just sociology and economics by consult-
ing Agresti (2002), Arminger, Clogg, and Sobel (1995), Berk (2004), Hamilton
(1994), Hayashi (2000), Hendry (1995), Long (1997), Powers and Xie (2000),
Raudenbush and Bryk (2002), Ruud (2000), and Wooldridge (2002).

In the next subsection, we consider only one modest extension: least squares
regression models for many-valued causes. This presentation then leads natu-
rally to a discussion that follows in the next subsection of what might be labelled
the “all-cause correct specification” tradition of regression analysis. Informed
by the demonstrations offered in this chapter, we discuss the attractiveness of
the promise of this alternative perspective but also the implausibility of the

22 As we note in the conclusion to this chapter, our perspective is that matching and regres-
sion should be used together, and to the extent that the distinction between them fades away.
Brand and Halaby (2006) is an example of this approach.
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perspective as a general guide for either causal analysis or regression practice in
the social sciences.

5.4.1 Regression Estimators for Many-Valued Causes

We suspect that the vast majority of published regression estimates of causal
effects in the social sciences are for causes with more than two values. Accord-
ingly, as in Subsection 4.6.3 on matching estimators for many-valued causes, we
must discuss the additional complexities of analogous regression estimators. We
will again, however, restrict attention to an interval-scaled outcome.

First, again recall the basic setup for many-valued causes from Chapter 2,
Appendix B, in which we have a set of J treatment states, a corresponding set
of J causal exposure dummy variables, {Dj};-’zl, and a corresponding set of
J potential outcome random variables, {YP7 }3-]:1. The treatment received by
each individual is Dj*.

How would one estimate the causal effect of such a J-valued cause with
regression methods? The first answer should be clear from our presentation in
the last section: Because regression can be seen as a form of matching, one can
use the same basic strategies outlined for matching estimators of many-valued
causes in Subsection 4.6.3. One could form a series of two-way comparisons
between the values of the cause, estimate a separate propensity score for each
contrast, and then use a weighted regression model to estimate each pairwise
causal effect.

If the number of causal states is relatively large, then this general strategy
is infeasible. Some smoothing across pairwise comparisons would be necessary,
either by collapsing some of the J causal states or by imposing an ordering on
the distribution of the causal effect across the J causal states. The most common
parametric restriction would be to assume that the causal effect is linear in j
for each individual i. For example, for a set of causal states (such as years of
schooling) enumerated by values from 0 to 1, 2, 3, to J, the linearity assumption
is the assumption that yZDj = yP0 4 3,(4) for all j > 0, which requires that the
difference ylpj —ylp 7= for each individual i be equal to a constant 3; for all j > 0.
In this case, the individual-level causal effect is then a slope (3, [rather than the
simple difference in potential outcomes, d;, specified earlier in Equation (2.1)].
This setup is analogous to the dose-response models for matching estimators
discussed in Subsection 4.6.3, but it explicitly leaves open the possibility that
the dose-response relationship varies across individuals even though it remains
linear.

Angrist and Krueger (1999) show in a very clear example how both a linearity
assumption on the individual-specific, dose-response relationship and a fully
flexible coding of adjustment variables results in an OLS weighting scheme for
the average value of 3, in a sample that is even more complex than what we
discussed earlier for simple binary causes (see Regression Demonstration 2 in
Subsection 5.3.1). A form of conditional-variance weighting is present again, but
now the weighting is in multiple dimensions because least squares must calculate
average derivatives across the linearly ordered causal variable (see Angrist and
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Krueger 1999, Equation 34). Because one cannot intuitively grasp how these
weights balance out across all the dimensions of the implicit weighting scheme
(at least we cannot do so), Angrist and Krueger help by offering a familiar
example: an OLS estimate of the average causal effect of an additional year of
schooling on labor market earnings, assuming linearity in years of schooling and
using a fully flexible coding of adjustment variables for age, race, and residence
location. They show that, for this example, OLS implicitly gives more weight
to the causal effect of shifting from 13 to 14 years of schooling and from 14
to 15 years of schooling than for much more common differences such as the
shift from 11 to 12 years of schooling (primarily because the net conditional
unexplained variance of schooling is greatest for the contrasts between 13 and
14 years and between 14 and 15 years). They also show that, for this example,
the piecewise increases in average earnings happen to be largest for the years
of schooling that OLS systematically weights downward. The result is a least
squares estimate under the linearity constraint of .094, which is smaller than
the weighted average estimate of .144 that one can calculate by dropping the
linearity constraint and then averaging year-specific estimates over the marginal
distribution of years of schooling.

For other examples, the weighting schemes may not generate sufficiently dif-
ferent estimates, as the overall weighting is a complex function of the relation-
ship between the unaccounted for variance of the causal variable within strata of
the adjustment variables and the level of nonlinearity of the conditional expec-
tation function. But the general point is clear and should be sobering: Linearity
constraints across causal states may lead OLS models to generate nonintuitive
(and sometimes misleading) averages of otherwise easily interpretable stratum-
specific causal effects.

5.4.2 Data Mining and the Challenge of Regression
Specification

In this subsection, we discuss the considerable appeal of what can be called the
all-cause, complete-specification tradition of regression analysis. We argue that
this orientation is impractical for most of the social sciences, for which theory
is too weak and the disciplines too contentious to furnish perfect specifications
that can be agreed on. At the same time, we agree that inductive approaches
to discovering flawless regression models that represent all causes are mostly a
form of self-deception, even though some computer programs now exist that can
prevent the worst forms of abuse.

Consider first a scenario in which one has a theoretical model that one be-
lieves is true. It suggests all of the inputs that determine the outcome of interest,
as a set of observable variables, and it is in the form of a specific function that
relates all inputs to the outcome. In this case, one can claim to have the correct
specification for a regression of the outcome on some function of the variables
suggested by the theoretical model. The only remaining challenges are then
measurement, sampling, and observation.
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The weakness of this approach is that critics can claim that the model is
not true and hence that the entailed regression specification is wrong. Fighting
off any such critics with empirical results can then be difficult, given that the
regression specification used to generate the empirical results has been called
into question.

In general, if members of a community of competing researchers assert their
own true models and then offer up purportedly flawless regression models, the
result may be a war of attrition in which no scientific progress is possible.
It is therefore natural to ask: Can the data generate an all-cause, complete-
specification regression model that all competing researchers can jointly adopt?

The first step in answering this question is to determine what an all-cause,
complete specification would be, which is sometimes simply labeled a “correct
specification.”?® In his 1978 book, Specification Searches: Ad Hoc Inference
with Nonexperimental Data, Edward Leamer lays out the following components
of what he labels The Axiom of Correct Specification:

(a) The set of explanatory variables that are thought to determine
(linearly) the dependent variable must be (1) unique, (2) complete,
(3) small in number, and (4) observable. (b) Other determinants of
the dependent variable must have a probability distribution with at
most a few unknown parameters. (3) All unknown parameters must
be constant. (Leamer 1978:4)

But Leamer then immediately undermines the axiom as it applies to observa-
tional data analysis in the social sciences:

If this axiom were, in fact, accepted, we would find one equation
estimated for every phenomenon, and we would have books that
compiled these estimates published with the same scientific fanfare
that accompanies estimates of the speed of light or the gravitational
constant. Quite the contrary, we are literally deluged with regression
equations, all offering to “explain” the same event, and instead of a
book of findings we have volumes of competing estimates. (Leamer
1978:4)

One can quibble with Leamer’s axiom [e.g., that component (3) is not essential
and so on], but the literature seems to provide abundant support for his conclu-
sion. Few examples of flawless regression models suggested by true theoretical
models can be found in the social science literature. One might hope for such
success in the future, but the past 40 years of research do not give much reason
for optimism.

Leamer instead argues that most regression models are produced by what he
labels a data-instigated specification search, which he characterizes as a Sher-
lock Holmes form of inference wherein one refrains from developing a model

23The literature has never clearly settled on a definition that has achieved consensus, but
Leamer’s is as good as any. Part of the confusion arises from the recognition that a descrip-
tively motivated regression model is always correct, no matter what its specification happens
to be.
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or any firm hypotheses before first considering extensively all the facts of a
case. Leamer argues that this approach to variable selection and specification
is fraught with potential danger and invalidates traditional notions of inference.

Consider the example of the Catholic school effect on learning, and in par-
ticular the research of James Coleman and his colleagues. In seeking to estimate
the effect of Catholic schooling on achievement, Coleman did not draw a com-
plete specification for his regression models from a specific theoretical model
of human learning. This decision was not because no such models existed, nor
because Coleman had no appreciation for the need for such models. He was,
in contrast, well aware of classic behaviorist models of learning (see Bush and
Mosteller 1955, 1959) that specified complex alternative mechanisms for se-
quences of responses to learning trials. Although he appreciated these models,
he recognized (see Coleman 1964:38) that they could not be deployed effectively
in the complex environments of secondary schooling in the United States, the
context of which he had already studied extensively (see Coleman 1961).

As a result, Coleman did not specify a learning model that justified the
regression models that he and his colleagues presented (see Sgrensen 1998;
Sgrensen and Morgan 2000).?* Their basic specification strategy was instead to
attempt to adjust for a sufficient subset of other causes of learning so that, net
of these effects, it could be claimed that Catholic and public schools students
were sufficiently equivalent. The specific variables that Coleman and his col-
leagues chose to include in their models were based in part on Coleman’s deep
knowledge of what predicts learning in high school (and one could argue that
Coleman was the most knowledgeable social scientist on the topic in the world
at the time). But he and his colleagues also adopted an empirical approach, as
indicated parenthetically at the end of the following account of their selection
of adjustment variables:

In order to minimize the effects of differences in initial selection mas-
querading as effects of differences in the sectors themselves, achieve-
ment subtests were regressed, by sector and grade, on a larger num-
ber of background variables that measure both objective and sub-
jective differences in the home. Some of these subjective differences
may not be prior to the student’s achievement, but may in part be
consequences of it, so that there may be an overcompensation for

24When the 1982 data on seniors became available to supplement the 1980 data on sopho-
mores, Coleman and his colleagues did move toward a stronger foundation for their specifica-
tions, providing an underlying model for the lagged achievement gain regression model that
was an outgrowth of Coleman’s early work on Markov chains and his proposals for longitudi-
nal data analysis (Coleman 1964, 1981). In Hoffer et al. (1985:89-91), he and his colleagues
showed that (subject to restrictions on individual heterogeneity) the lagged test score model
is a linearized reduced-form model of two underlying rates (learning and forgetting) for the
movement between two states (know and don’t know) for each item on the cognitive test.
Although the model is plausible, it is clearly constrained so that it can be estimated with
simple regression techniques (see Coleman 1981:8-9 for an explanation of his modus operands
in such situations), and this is of course not the sort of constraint that one must adopt if one
is truly interested in laying out the correct theoretical model of learning.
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background differences. It was felt desirable to do this so as to com-
pensate for possible unmeasured differences in family background;
but of course the results may be to artificially depress the resulting
levels of background-controlled achievement in Catholic and other
private schools. (A few additional background variables were ini-
tially included; those that showed no effects beyond the ones listed
in the following paragraph were eliminated from the analysis.) (Cole-
man et al. 1982:147)

Coleman and his colleagues then reported that the final list of variables
included 10 they considered “clearly prior” to school sector — including family
income, parents’ education, number of siblings, and number of rooms in the
home — as well as 7 other variables that they considered “not clearly prior” to
school sector — including more than 50 books in the home, owning a pocket
calculator, and having a mother who thinks the student should go to college
after high school.

As so often occurs in causal controversies of public importance, critics found
this resulting list inadequate. From the perspective of their critics, Coleman
and his colleagues had not provided a clear enough accounting of why some
students were observed in Catholic schools whereas others were observed in
public schools and why levels of learning should be considered a linear function
of background and the specific school characteristics selected. After arguing
that more would be known when follow-up data were collected and test score
gains from sophomore to senior year could be analyzed, Alexander and Pallas
(1983) argued that Coleman and his colleagues should have searched harder for
additional adjustment variables:

Failing this [estimating models with pretest and posttest datal, an-
other possibility would be to scout about for additional controls that
might serve as proxies for student input differences that remain after
socioeconomic adjustments. One candidate is the student’s curricu-
lum placement in high school. (Alexander and Pallas 1983:171)

Alexander and Pallas then laid out a rationale for this proxy approach, and
they offered models that showed that the differences between public and private
schools are smaller after conditioning on type of curriculum.

As this example shows, it is often simply unclear how one should go about
selecting a sufficient set of conditioning variables to include in a regression equa-
tion when adopting the “adjustment for all other causes” approach to causal
inference. Coleman and colleagues clearly included some variables that they
believed that perhaps they should not, and they presumably tossed out some
variables that they thought they should perhaps include but that proved to be
insufficiently powerful predictors of test scores. Even so, Alexander and Pallas
criticized Coleman and his colleagues for too little scouting.?”

25Contrary to the forecasts of Coleman and his critics, after the 1982 data were released,
the specification debate did not end. It simply moved on to new concerns, primarily how
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Leamer, as mentioned earlier, would characterize such scouting as a Sherlock-
Holmes-style, data-driven specification search. Leamer argues that this search
strategy turns classical inference on its head:

. if theories are constructed after having studied the data, it is
difficult to establish by how much, if at all, the data favor the data-
instigated hypothesis. For example, suppose I think that a certain
coefficient ought to be positive, and my reaction to the anomalous
result of a negative estimate is to find another variable to include in
the equation so that the estimate is positive. Have I found evidence
that the coefficient is positive? (Leamer 1983:40)

Taken to its extreme, the Sherlock Holmes regression approach may discover
relationships between candidate independent variables and the outcome vari-
able that are due to sampling variability and nothing else. David Freedman
showed this possibility in a simple simulation exercise, in which he sought to
demonstrate that “ ... in a world with a large number of unrelated variables and
no clear a priori specifications, uncritical use of standard [regression] methods
will lead to models that appear to have a lot of explanatory power” (Freedman
1983:152). To show the plausibility of this conclusion, Freedman constructed
an artificial dataset with 100 individuals, one outcome variable Y, and 50 other
variables X7 through X5p. The 100 values for each of these 51 variables were
then independent random draws from the standard normal distribution. Thus,
the data represent complete noise with only chance dependencies between the
variables that mimic what any real-world sampling procedure would produce.
The data were then subjected to regression analysis, with Y regressed on X;
through X5¢. For these 50 variables, 1 variable yielded a coefficient with a p
value of less than .05 and another 14 had p values of less than .25. Freedman
then ran a second regression of Y on the 15 variables that had p values of less
than .25, and in this second pass, 14 of them again turned up with p values
of less than .25. Most troubling, 6 of them now had p values of less than .05,
and the model as a whole had an R? of .36. From pure noise and simulated
sampling variability, Freedman produced a regression model that looks similar
to any number of those published in social science articles. It had six coefficients
that passed conventional standards of statistical significance, and it explained
a bit more than one third of the variance of the outcome variable.?%

The danger of data-driven specification searches is important to recognize,
but not all procedures are similarly in danger, especially given developments
since Leamer first presented his critique in the 1970s and 1980s. There is a
new literature on data mining and statistical learning that has devised tech-
niques to avoid the problems highlighted by Freedman’s simulation (see Hastie,

to adjust for sophomore test scores (with or without a family background adjustment, with
or without curriculum differences, with only a subset of sophomore test scores, and with or
without adjustment for attenuation that is due to measurement error).

26Raftery (1995) repeated Freedman’s simulation experiment and obtained even more dra-
matic results.
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Tibshirani, and Friedman 2001). For a very clear overview of these methods,
see Berk (2006, 2007).2"

Even so, data-instigated specifications of regression equations remain a prob-
lem in practice, because few applied social scientists use the fair and disciplined
algorithms in the statistical learning literature. The Catholic school example is
surely a case in which scouting led to the inclusion of variables that may not
have been selected by a statistical learning algorithm. But, nonetheless, none
of the scholars in the debate dared to reason backwards from their regression
models in order to declare that they had inductively constructed a true model
of learning. And, in general, it is hard to find examples of complete induc-
tive model building in the published literature; scholars are usually driven by
some theoretical predilections, and the results of mistaken induction are often
fragile enough to be uncovered in the peer review process.’® Milder forms of
misspecification are surely pervasive.

5.5 Conclusions

Regression models, in their many forms, remain one of the most popular tech-
niques for the evaluation of alternative explanations in the social sciences. In
this chapter, we have restricted most of our attention to OLS regression of an
interval-scaled variable on a binary causal variable. And, although we have
considered how regression modeling can be used as a descriptive data reduction
tool, we have focused mostly on regression as a parametric adjustment tech-
nique for estimating causal effects, while also presenting the deep connections
between regression and matching as complementary forms of a more general
conditioning estimation strategy.

We conclude this chapter by discussing the strengths and weaknesses of re-
gression as a method for causal inference from observational data. The main
strengths of regression analysis are clearly its computational simplicity, its myr-
iad forms, its familiarity to a wide range of social scientists, and the ease with
which one can induce computer software to generate standard errors. These
are all distinct advantages over the matching techniques that we summarized in
Chapter 4.

27 And, as we noted earlier in Chapter 4, there are cases in which a data-driven specification
search is both permissive and potentially quite useful. Consider again the causal graph in
Figure 3.10 and suppose that one has a large number of variables that may be associated
with both D and Y in one’s dataset and that one presumes may be members of either S or
X. Accordingly, one has the choice of conditioning on two different types of variables that lie
along the back-door path from D to Y: the variables in S that predict D or the variables in
X that predict Y. Engaging in a data-driven specification search for variables that predict Y
will fall prey to inferential difficulties about the causal effect of D on Y for exactly the reasons
just discussed. But a data-driven specification search for variables that predict D will not
fall prey to the same troubles, because in this search one does not use any direct information
about the outcome Y.

28That being said, predictions about the behavior of financial markets can come close. See
Krueger and Kennedy (1990) for discussion and interpretation of the apparent effect of Super
Bowl victories on the U.S. stock market.
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But, as we have shown in this chapter, regression models have some serious
weaknesses. Their ease of estimation tends to suppress attention to features
of the data that matching techniques force researchers to consider, such as the
potential heterogeneity of the causal effect and the alternative distributions of
covariates across those exposed to different levels of the cause. Moreover, the
traditional exogeneity assumption of regression (e.g., in the case of least squares
regression that the independent variables must be uncorrelated with the regres-
sion error term) often befuddles applied researchers who can otherwise easily
grasp the stratification and conditioning perspective that undergirds matching.
As a result, regression practitioners can too easily accept their hope that the
specification of plausible control variables generates an as-if randomized exper-
iment.

Focusing more narrowly on least squares models, we have shown through
several demonstrations that they generate causal effect estimates that are both
nonintuitive and inappropriate when consequential heterogeneity has not been
fully parameterized. In this sense, the apparent simplicity of least squares re-
gression belies the complexity of how the data are reduced to a minimum mean-
squared-error linear prediction. For more complex regression models, the ways
in which such heterogeneity is implicitly averaged are presently unknown. But
no one seems to suspect that the complications of unparameterized heterogeneity
are less consequential for fancier maximum-likelihood-based regression models
in the general linear modeling tradition.

Our overall conclusion is thus virtually the same as for matching: Regres-
sion is a statistical method for analyzing available data, and for the estimation
of causal effects it may have some advantages in some situations. The joint
implication of these conclusions for causal analysis is that matching and regres-
sion are probably best used together, or at least used in ways such that the
distinction between them fades away.
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Chapter 6

Identification in the
Absence of a Complete
Model of Causal Exposure

In this chapter, we introduce strategies to estimate causal effects when simple
conditioning methods will not suffice. After reviewing the related concepts of a
nonignorable treatment assignment and selection on the unobservables, we then
consider sensitivity analysis and partial identification approaches. Thereafter,
we introduce three strategies to identify and then estimate causal effects: (1)
conditioning on a prior value of the observed outcome variable, (2) using an in-
strumental variable (IV) for the causal variable, and (3) estimating an isolated
and exhaustive mechanism (or set of mechanisms) that relates the causal vari-
able to the outcome variable. Under very specific assumptions, these strategies
will identify a specific average causal effect of interest even though selection is
on the unobservables and treatment assignment is nonignorable. These strate-
gies are then explained more completely in the following three chapters, where
the specific details of estimation are laid out.

6.1 Nonignorability and Selection on the
Unobservables Revisited

As demonstrated earlier in Subsections 3.2.1 and 3.2.2, the concept of ignor-
able treatment assignment is closely related to the concept of selection on the
observables. In many cases, they can both be represented by the same causal
graph. Recall Figure 3.8, in which in panel (a) there are two types of paths
between D and Y: the causal effect of D on Y represented by D — Y and
an unspecified set of back-door paths represented collectively by the bidirected
edge D ¢«----» Y. If this diagram can be elaborated, as in panel (b), by re-
placing D «----+ Y with a fully articulated back-door path D « S — Y, then

169
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the graph becomes a full causal model. And observation of S ensures that the
matching and regression conditioning strategies of the prior two chapters can
be used to generate consistent estimates of the causal effect of D on Y. In this
scenario, selection is on the observables — the variables in S — and the remaining
treatment assignment mechanism is composed only of random variation that is
completely ignorable.

If, in contrast, as shown in panel (b) of Figure 3.9 rather than Figure 3.8, only
a subset Z of the variables in .S is observed, then selection is on the unobservables
because some components of S are now embedded in U. Conditioning on Z in
this causal diagram leaves unblocked back-door paths represented by D «— U
+«----»> Y untouched. And, as a result, any observed association between D and
Y within strata defined by Z cannot be separated into the genuine causal effect
of D on Y and the back-door association between D and Y that is generated
by the unobserved determinants of selection, U.

As noted in Chapter 3, and then as shown in demonstrations in Chapters 4
and 5, the concepts of ignorability and selection on the observables are a bit more
subtle when potential outcomes are introduced. Weaker forms of conditional
independence can be asserted about the joint distribution of Y', Y9 D, and
S than can be conveyed as in Figures 3.8 and 3.9, in which the observable
variable Y is depicted instead of the potential outcome variables Y and Y©.
For example, the average treatment effect for the treated can be estimated
consistently by asserting only that Y is independent of D conditional on S,
even though full ignorability does not hold [see discussion of Equation (3.3) in
Subsection 3.2.1].!

6.2 Sensitivity Analysis for Provisional Causal
Effect Estimates

What if a researcher suspects, based on substantive knowledge from other stud-
ies or a particular theoretical perspective, that treatment selection is nonig-
norable because selection is, in part, on unobserved variables? In this case,
the researcher can still offer a causal effect estimate under the assumption that
treatment selection is ignorable. She must then judge how wrong the results
may be and offer interpretations that are appropriately cautious.

Although Hubert Blalock is often accused of inspiring naive causal analysis
in sociology (and we have engaged, as well, in our own share of Blalock criti-
cism in Chapter 1), he did warn against overconfident causal claims based on
conditioning with regression methods. At the end of his influential 1964 book
Causal Inferences in Nonexperimental Research, he wrote:

IFurthermore, as discussed in Sections 4.2.1 and 4.4 in the presentation of matching tech-
niques, one need not assume full conditional independence Y in order to consistently esti-
mate the treatment effect for the treated, as an equality of the two conditional expectations,
E[Y°|D =1,S5] = E[Y°|D = 0, S], will suffice [see discussion of Assumption 2-S in Equation
(4.2)].
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It seems safe to conclude that the problem of making causal infer-
ences on the basis of nonexperimental data is by no stretch of the
imagination a simple one. A number of simplifying assumptions
must be made, perhaps so many that the goal would seem almost
impossible to achieve. The temptation may very well be to give up
the entire venture. But, as we have suggested at a number of points,
there may not be any satisfactory alternatives. Most likely, social
scientists will continue to make causal inferences, either with or with-
out an explicit awareness of these problems. (Blalock 1964:184)

His recommendation was to report a range of plausible results, and he lamented
the pressures to settle in on only one favored set of results:

... it would be extremely helpful if social scientists would develop the
habit of contrasting the results of several different procedures.

If conclusions or results differed, one might gain valuable insights as
to why specific differences have occurred. ... Present practices and
publication policies are undoubtedly unfavorable to such a strategy.
... there are undoubtedly pressures on the individual investigator to
report only his “best” results in instances where different techniques
have not given the same results. (Blalock 1964:184-5)

In the decades since scholars such as Blalock appealed for the multimodel
reporting of results, a number of scholars have attempted to systematize this
approach. In the counterfactual tradition, the approach known as sensitivity
analysis has been the most influential.”? Based largely on the work of statis-
tician Paul Rosenbaum and his colleagues (see Rosenbaum 1991, 1992, 2002;
Gastwirth, Krieger, and Rosenbaum 1998, 2000), the guiding principle of the
approach is simple: When reporting and interpreting an estimate of a causal
effect, researchers should analyze and report how sensitive the estimates and
interpretations are to the maintained assumptions of the analysis.

For Rosenbaum, sensitivity analysis of this form is quite distinct from other
types of robustness checks on one’s results because of its concern with estimates
of causal effects.” Rosenbaum (1999:275) writes “Assumptions are of three
kinds: (i) the scientific model or hypothesis, which is the focus of scientific

2There is a related literature on sensitivity analysis that is tied to simulation methods
and deterministic modeling more generally. In this tradition, for example, the parameters of
a deterministic simulation of an outcome are varied systematically. If variation in nuisance
parameters of no inherent interest does not change the basic results of the model, then the
model is robust. And, as described in Saltelli, Tarantola, Campolongo, and Ratto (2004), such
methods can be used to assess the uncertainty of model predictions based on the uncertainty
of model inputs. Such results can direct future effort optimally, so as to reduce the uncertainty
of those inputs that generate the most uncertainty of prediction.

3For example, Rosenbaum (1999:271) writes that “A sensitivity analysis asks to what extent
plausible changes in assumptions change conclusions. In contrast, a stability analysis asks how
ostensibly innocuous changes in analytical decisions change conclusions. A sensitivity analysis
typically examines a continuous family of departures from a critical assumption, in which the
magnitude of the departure and the magnitude of the change in conclusions are the focus
of attention. In contrast, a stability analysis typically examines a discrete decision, and the
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interest, (ii) incidental assumptions, needed for statistical inference but of little
or no scientific interest and (iii) pivotal assumptions which rival the scientific
hypothesis and are the focus of scientific controversy.”

Sensitivity analysis is usually focused narrowly on the specific and pivotal
assumption of ignorability of treatment assignment. Here, the question of in-
terest is, How sensitive are estimates of a causal effect to the potential effects
of unobservable treatment selection patterns?

Rosenbaum (2002) devotes a large portion of his excellent book on observa-
tional data analysis to strategies for performing sensitivity analysis, especially
for matching designs.* Examples in the literature demonstrate the utility of the
approach. Harding (2003), for example, assesses the strength of the relationship
that a composite of unobserved variables would have to have with a treatment
and an outcome variable in order to challenge his causal inferences on the effect
of neighborhood context on the odds of completing high school.

If, after performing a sensitivity analysis, one can show that all plausible
violations of ignorability would not change the qualitative conclusions, then one
should report the level of sensitivity and confidently stick to the conclusions.
If, however, plausible violations of ignorability would change the qualitative
conclusions, then one should step back from strong conclusions and consider
other methods of analysis. In the next section, we consider the most obvious
first step — an analysis of bounds.

6.3 Partial Identification with Minimal
Assumptions

Before considering alternative types of assumptions that allow for the point
identification of causal effects of interest even though selection is on the unob-
servables, such as IV estimators and causal effect estimation by Pearl’s front-
door criterion, we first consider what can be learned about the causal effects
while imposing the weakest assumptions conceivable.

In a series of articles and books that have built on less formalized work of
the past, Charles Manski (1994, 1995, 1997, 2003) has investigated plausible
values for treatment effect parameters, such as the average treatment effect,
that are consistent with the data when weak assumptions alone are maintained.
In this section, we introduce Manski’s work to show that, in most research
situations, the observed data themselves provide some information on the size
of the treatment effect without any auxiliary assumptions.

hope and expectation is that the conclusions are largely unaltered by changing this decision.
Stability analyses are necessary in most complex analyses; however, the extent to which they
are needed varies markedly from study to study.”

4For expositions of the basic perspective written for social scientists, see DiPrete and Gangl
(2004) as well as Frank (2000).
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6.3.1 No-Assumptions Bounds

To see why the collection of data can bound the range of permissible values for
the average treatment effect, consider a hypothetical example in which we know
that both Y'! and Y are bounded by 0 and 1, and thus that Y is also bounded
by 0 and 1. Examples could be dichotomous potential outcomes for graduating
high school or not in response to two causal states, such as Catholic schooling or
public schooling discussed extensively already. Or the potential outcomes could
be whether one voted for Al Gore, depending on whether or not one received a
butterfly ballot (see Subsection 1.3.2).°
In this case, we know from the definitions of Y'* and Y, even without collect-
ing data, that the average treatment effect E[§] cannot be greater than 1 or less
than —1. This is a straightforward implication of the obvious point that no indi-
vidual treatment effect can be greater than 1 or less than —1. Accordingly, the
maximum average treatment effect of 1 would occur if E[Y!|D = 1] = E[Y!|D =
0] = 1 and E[Y°|D = 1] = E[Y°|D = 0] = 0 whereas the minimum average
treatment effect of —1 would occur instead if E[Y!|D =1] = E[Y}D =0]=0
and E[Y°|D = 1] = E[Y°|D = 0] = 1. Thus, we know that F[§] must be
contained in an interval of length 2, which can be stated as a known bound on
E[0], using the notation
—-1<E)p) <1 (6.1)

or that E[4] lies in an interval with closed bounds, as in
E[d] € [-1,1). (6.2)

Manski has shown that we can improve on these bounded intervals con-
siderably without making additional assumptions by collecting data on Y and
D. By following a systematic sampling strategy from a well-defined popula-
tion, we can assert the specific convergence results stated earlier in Equations
(2.9)—(2.11). These would ensure that, for an infinite sample, Ex[d;] = E[D],
Enlyild; = 1] = E[Y!|D = 1], and En[y;|d; = 0] = E[Y°|D = 0]. Knowledge
of these three quantities allows one to narrow the bound of width 2 in Equations
(6.1) and (6.2) to one with a width of only 1.

Consider the hypothetical example depicted in Table 6.1, where, as shown in
the first panel, we stipulate that E[Y!|D = 1] = .7 and E[Y°|D = 0] = .3. The
naive estimator, En[y;|d; = 1] — En[y;|d; = 0], would yield values that converge
to .4 as the sample size increases. Note that the naive estimator does not use
the information about the distribution of the sample across the observed values
of D. And, we leave question marks to stand in for the unknown values of the
counterfactual conditional expectations E[Y!|D = 0] and E[Y°|D = 1].

5This latter example would be especially appropriate to analyze from a bounds perspective,
as the goal of such a causal analysis would be to determine whether the causal effect is plausibly
large enough to have flipped the election results. With that goal clearly in focus, concerns
over putative statistical significance are not terribly relevant.
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Table 6.1: A Hypothetical Example of the Calculation of Bounds for the Average
Treatment Effect

B! ] E[Y°] ]

Naive estimator suggests E[§] = .4

Treatment group EYYD=1=.7 EY°D=1]=7?

Control group EYD=0]=7? E[Y°D=0=.3
Largest possible E[d] = .7

Treatment group EYYD=1=.7 EY°D=1]=0

Control group EYlD=0]=1 E[Y°D=0=.3
Smallest possible E[0] = —.3

Treatment group EYlD=1=.7 E[Y°D=1=1

Control group EY!D=0]=0 E[Y°D=0]=.3

Suppose that E[D] = .5 and that our sample is infinite such that sampling
error is zero. And, for simplicity of notation and consistency with the decom-
position in Chapter 2, allow 7 to again stand in for E[D]. For the second and
third panels of Table 6.1, the minimum and maximum values of 0 and 1 for
the counterfactual conditional expectations E[Y1|D = 0] are E[Y°|D = 1] are
substituted for the question marks in the first panel.

If half of the sample is in the treatment group, and if E[Y!|D = 1] = .7
and E[Y?|D = 0] = .3, then the largest possible treatment effect is .7 whereas
the smallest possible treatment effect is —.3. This result is a straightforward
calculation of what-if values for the decomposition of the average treatment
effect presented in Equation (2.8), which was used earlier to discuss the bias of
the naive estimator:

E[p] = {nEY'D=1]+(1—-7)E[Y'|D=0]} (6.3)
—{7EY°ID=1]+ (1 -7)E[Y°|D =0]}.

Plugging in the values from the second panel of Table 6.1 into the decomposition
in Equation (6.3) yields the largest possible treatment effect as

B[] = {(5)(7)+ (1= 5)1)} —{(5)(0)+ (- .5)(:3)}
— 85-.15
= 7,
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whereas plugging in the values from the third panel yields the smallest possible
treatment effect as

EP] = AN+ (1 =5)0)} —{(5H(1)+ (1 -.5)(3)}
= .35—.65
= -3

Thus, the constraints implied by the observed data alone guarantee, for this
example, that F[d] € [—.3,.7], which is an interval of length 1 and is half the
length of the maximum interval calculated before estimates of 7, E[Y!|D = 1],
and E[YY|D = 0] were obtained from the data.

Manski labels this interval the “no-assumptions bound” because it requires
knowledge only of the bounds on Y'! and Y, as well as collection of data on Y’
and D from a systematic random sample of a well-defined population. Consider
now a more general development of these same ideas.

The treatment effect can be bounded by finite values only when the potential
outcomes Y and Y° are bounded by finite values. In other words, because
E[YYD = 0] and E[Y°|D = 1] are both unobserved, they can take on any
values from —oo to oo in the absence of known restrictions on the ranges of
Y! and YY. Thus, in the absence of any known restrictions on E[Y!|D = 0]
and E[Y°|D = 1], E[f] is contained in the completely uninformative interval
between —oo and oo.

Manski (1994, 1995, 2003) shows that with potential outcome variables
bounded by 1 and 0, the no-assumptions bound will always be of length 1.
This result is obtained by a more general manipulation of Equation (6.3), for
which the lower bound is derived as

{(rEYY D=1+ (1 —7)(0)} —{x(1)+ (1 -m)E[Y°|D = 0]}, (6.4)
and the upper bound is derived as
{(mEYY D=1+ (1 —7)(1)} —{x(0)+ (1 —7)E[Y°|D =0]}. (6.5)

Simplifying and then combining Equations (6.4) and (6.5) yields the
no-assumptions bound for potential outcomes bounded by 1 and O:

TEY'D=1-(1-mEY D=0 -7 (6.6)
< E[o]
<7EY'D=1] — (1 —7)E[Y°|D =0]+ (1 — 7).

The length of the bound is 1 because the upper and lower bounds differ only by
two complementary probabilities 7 and 1 — 7 that sum to 1. The location of
the bound in the [—1,1] interval is set by the common term 7E[Y!|D = 1] —
(1 — m)E[Y°|D = 0], to which —7 and 1 — 7 are then added to form the
bound.
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More generally, if Y'! and Y are bounded by any finite values a and b, where
b > a, such as theoretical minimum and maximum scores on a standardized test,
then Equation (6.1) can be written more generally as

—b+a<E[§] <b—a, (6.7)

which then generates the more general no-assumptions bound for the observed
data:

TEY'D=1~-(1-mE[YD=0+a(l—-7) —br (6.8)

<7TEY'D=1-(1-7mEY°D=0]+b1-7)—an.

The same basic results hold as before. The no-assumptions bound always in-
cludes zero, and it is only half as wide as the bound in Equation (6.7) implied
only by the bounds on the potential outcomes. In this case, the no-assumptions
bound is of length b — a rather than of length 2(b — a).° As with the case
for potential outcomes bounded by 1 and 0, the particular location of the in-
terval of length b — a in [—b + a,b — a] is again determined by the same term,
7E[YYD =1] - (1 - m)E[Y°|D =0].

6.3.2 Bounds Under Additional Weak Assumptions

For Manski, calculation of the no-assumptions bound is only the starting point
of an analysis of bounds. The primary goal is to analyze how additional as-
sumptions can narrow the no-assumptions bound. Manski’s basic perspective is
summarized nicely in following passage:

Empirical researchers should be concerned with both the logic and
the credibility of their inferences. Credibility is a subjective matter,
yvet I take there to be wide agreement on a principle I shall call:

The Law of Decreasing Credibility: The credibility of inference
decreases with the strength of the assumptions maintained.

This principle implies that empirical researchers face a dilemma
as they decide what assumptions to maintain: Stronger assumptions
yield inferences that may be more powerful but less credible. (Man-
ski 2003:1)

Manski has shown that weak and often plausible assumptions can substantially
narrow the no-assumptions bound. Consider the following simple assumptions
about the direction of causality and the direction of self-selection (and see his
empirical applications for more detail, such as Manski and Nagin 1998; Manski,
Sandefur, McLanahan, and Powers 1992).

6To see this, note that [b — a] 4+ [~1(—b + a)] simplifies to 2(b — a) and [b(1 — 7) — ax] +
[-1(a(l —7) — br)] simplifies to b — a.
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Monotone Treatment Response

In many situations, it may be reasonable to assume that the individual-level
treatment effect cannot be negative, such that § > 0 for every individual 7.
Manski labels this assumption the monotone treatment response (MTR) as-
sumption.

Under MTR (in the direction where § > 0), the lower bound for the average
treatment effect must be 0. MTR implies that members of the control group
have counterfactual values of y} that are at least as high as their observed values
of y;. The reasoning here is simple: If y; = y{ for members of the control group,
then the MTR assumption that y > 4?9 for all individuals i implies that y} > y;
for members of the control group. The opposite is likewise true for members
of the treatment group; their counterfactual values for 4? are no higher than
their observed values of y;. Under MTR for the hypothetical example presented
in Table 6.1, one can therefore replace the extreme values of 1 and 0 in the
no-assumptions lower bound:

{(B)()+(1—=.5)0)} —{(H1+(1-.5)(3)}=-.3

with less extreme values of .7 and .3. As a result, one obtains a new lower

bound:
{5+ A =5)(3)} —{(H(T)+(1—-.5)(3)}=0,

implying that the bound for the average treatment effect, assuming MTR, is
[0,.7] rather than [—.3,.7].

Monotone Treatment Selection

It may also be possible to assume that those who receive the treatment have
higher average outcomes under potential exposure to both the treatment and
control, which Manski labels the monotone treatment selection (MTS) assump-
tion. In most cases, one would assume jointly that E[Y!|D = 1] > E[Y!|D = 0]
and E[Y°|D = 1] > E[Y°|D = 0], which is traditionally thought of as positive
self-selection. (But one could flip the direction of the assumption, just as we
also noted for MTR.) Manski and Pepper (2000) present this type of MTS as-
sumption for the example of the effect of education on earnings, for which it is
equivalent to assuming that individuals with higher education would on average
receive higher wages than individuals with lower education, under counterfac-
tual conditions in which they had the same levels of education.

For the hypothetical example presented in Table 6.1, MTS implies that the
naive estimator would be an upper bound for the average treatment effect. In
short, MTS in this direction stipulates that members of the treatment/control
group could not have done any worse/better in the control/treatment state than
those observed in the control/treatment group. Maintaining MTS allows one to
replace the extreme values of 1 and 0 in the no-assumptions upper bound,

{(B)(N+1-=5)(1)} —{(5)0+(1—-.5)(.3)} =.7,
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with the less extreme values of .7 and .3, yielding for this example,

{((5)(7) + (1= 5)(N)} —{(5)(3)+(1—.5)(3)} = 4.

MTS thereby implies that the bound for the average treatment effect is [—.3, .4]
rather than [—.3,.7].

Combinations of Weak Assumptions

The power of Manski’s approach comes from the ability to apply different as-
sumptions at the same time in order to narrow the no-assumptions bound to
a bound that is considerably more informative. For the hypothetical example
presented in Table 6.1, one can narrow the no-assumptions bound from [—.3,.7]
to [0,.4] by invoking the MTR and MTS assumptions together. The resulting
bound still includes 0, but in some applications such narrowing may well be
helpful in ruling out some unreasonable and extreme causal claims.

In his 2003 book, Partial Identification of Probability Distributions, Manski
formalizes the bounds approach presented here into a complete theory of partial
identification. For this formalization, he relabels the bounded intervals as identi-
fication regions and states: “I begin with the identification region obtained using
the empirical evidence alone [the no-assumptions bound represented by Equa-
tion (6.8)] and study how distributional assumptions may shrink this region”
(Manski 2003:5).”  We will return to Manski’s partial identification approach
later, when we discuss IVs as here he has developed a set of weaker assumptions
that are of considerable interest. Next, we present three point-identification
strategies that do not require that selection be on the observables only.

"Manski continues this quotation: “A mathematically complementary approach is to begin
with some point-identifying assumption and examine how identification decays as this assump-
tion is weakened in specific ways” (Manski 2003:5). This alternative is sensitivity analysis,
as described earlier with reference to the work of Paul Rosenbaum (see Rosenbaum 2002).
Manski regards Rosenbaum’s sensitivity analysis approach as too narrow, writing, “Another
form of prior information that may yield nonintersecting bounds is proposed by Rosenbaum
in his ... discussion of sensitivity analysis. Here Rosenbaum, who views the assumption of
ignorable treatment assignment as critical to the interpretation of observational studies, con-
siders weakening this assumption in a particular manner. ... Where Rosenbaum and I differ
is that I do not view the assumption of ignorable treatment selection to have a special sta-
tus in observational studies of treatment effects. As an economist, I usually am inclined to
think that treatments are purposefully selected and that comparison of outcomes plays an
important role in the selection process. Perhaps the departures from ignorable treatment se-
lection that Rosenbaum entertains in his sensitivity analysis can be interpreted behaviorally
in terms of some model of purposeful treatment selection, but for now I do not see how”
(Manski 1999:281). Sensitivity analysis can be and is being generalized, to the extent that
the boundary between sensitivity analysis and partial identification will gradually disappear.
Consider, for example, savvy applied work such as Berk and de Leeuw (1999).
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(a) The identification puzzle (b) Coleman’s solution

Figure 6.1: Coleman’s strategy for the identification of the causal effect of
Catholic schooling on learning.

6.4 Additional Strategies for the Point
Identification of Causal Effects

Although Manski shows that there are many potential strategies to point iden-
tify causal effects, we focus in this section on the three most prominent strategies
for cases in which treatment selection is on unobserved variables. The follow-
ing three strategies have already been foreshadowed in the two prior sections in
Chapters 1 and 3 on Pearl’s approach to the identification of causal effects. Here,
with more context, we present them with reference to the regression equations
offered by James Coleman and his colleagues for the estimation of the causal
effect of Catholic schooling on high school achievement.

We first note that point identification can (sometimes) be achieved by con-
ditioning on a lagged value of the outcome variable. Then we introduce IV
strategies and conclude with a presentation of estimation via an isolated and
exhaustive mechanism.® Each of these strategies is then laid out with substan-
tial detail in Chapters 7-9.

6.4.1 Conditioning on a “Pretest”

The basic identification challenge that Coleman and his colleagues confronted
is depicted in panel (a) of Figure 6.1. Although somewhat simplified, the causal
diagram represents the basic types of causal variables that Coleman and his
colleagues contemplated in their original analyses and then in debate with their
critics. For the DAG in panel (a), Y is an observed score on a standardized
achievement test, and D is an observed dichotomous causal variable equal to 1
for those who attend Catholic schools. The primary goal of the research was to
estimate the causal effect of D on Y, conceptualized as the average causal effect
of Catholic schooling on achievement.

8We also offer an appendix to this chapter, in which a latent variable model of self-selection
is used to point identify causal effects.
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The remaining variables in the DAG represent the basic types of variables
that Coleman and his colleagues decided should be specified in their regression
equations. The variables in X represent determinants of achievement test scores
that have no direct causal effects on sector selection. The variables in O repre-
sent ultimate background factors that determine both X and D. Coleman and
his colleagues identified many variables that they believed were contained in O
and X, although they were unsure of whether to consider them as members
of O or X. Finally, U represents the problematic variables that Coleman and
his colleagues recognized were probably unobserved. These variables — intrinsic
motivation to learn, anticipation of the causal effect itself, and subtle features
of the home environment — were thought to determine both school sector choice
and achievement. Because these variables were assumed to be unobserved, they
are represented collectively by the variable U with a node that is a hollow
circle o.

In the initial research, the analysis strategy of Coleman and his colleagues
was to condition on observed variables in X and/or O that blocked two separate
back-door paths from DtoY: DU «— O —=X —-Y and D+« 0 — X =Y.
Unfortunately, these variables in X and O did not block the third back-door
path from D to Y, which is D « U — Y. As a result, the causal effect of D on
Y remained formally unidentified in their analysis.

Their solution to this predicament is presented in panel (b) of Figure 6.1,
which became possible to estimate when the second round of survey data became
available two years later. Rather than treat the tenth-grade test scores as Y,
they relabeled these scores as Y;_; and considered the twelfth-grade test scores
as a new Y. They then argued that the tenth-grade test scores could serve as
an effective pretest variable that could be used to screen off the effects of the
variables in U on Y.

In particular, their strategy is equivalent to asserting that conditioning on
X, O, and Y;_4 blocks all five back-door paths between D and Y. Two of these
back-door paths are blocked by Y;_1: D« U — Y,y - Y and D «— U «
O — X — Y;_1 — Y. The remaining three paths are blocked by X (in some
cases with supplemental but unnecessary conditioning on O). The first two of
these are easily recognizableas D «— U «— O - X - Yand D «— 0 — X — Y.
But the final back-door path may appear hidden: D «— U — Y;_; «— X — Y.
Note that this last path would be blocked in the absence of conditioning, as Y;_1
is a collider variable for this path (see our earlier discussion of collider variables
in Subsection 3.1.3). Conditioning on Y;_;, however, unblocks this path, and
thus the path must be blocked by conditioning on X.

As shown in Figure 6.2, there are two basic criticisms of this approach. The
first was seized on by their critics: The variables in U were not plausibly screened
off by Y;_1, as shown in panel (a) of Figure 6.2. If highly motivated students
were more likely to pay tuition to enroll in Catholic schools, then enhanced
motivation would contribute directly to learning in both the tenth grade and
the twelfth grade. Similarly, it is unreasonable to assume that the motivation
that is correlated with willingness to pay tuition would exert only a one-time
boost early in the Catholic school careers of students. Thus, the critics argued,
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(b) Criticism 2: The lagged Yis a
collider, and conditioning on it
does not block a back-door path
through a variable such as £

(a) Criticism 1: The lagged Y is
an imperfect screen

Figure 6.2: Criticism of Coleman’s estimates of the effect of Catholic schooling
on learning.

in effect, that a sixth back-door path D < U — Y exists that cannot be blocked
by conditioning on Y;_;.

The second criticism is more subtle. It could be argued that there is a
common unobserved cause of both Y;_; and Y, which is represented in panel
(b) of Figure 6.2 by E. Consider F to be an unobserved and completely random
characteristic of students that measures their taste for tests. Independent of all
else, it may be that some students enjoy and/or perform well when taking
tests. If such a taste exists, it creates a new back-door path from D to Y:
D«—U—Y; 1+ E—Y. For this path, Y;_; is a collider. In the absence of
conditioning on Y;_1, it would be blocked and would not create a net association
between D and Y. Instead, by conditioning on Y; 1 in an attempt to block other
back-door paths in the graph, Coleman and his colleagues unblocked this path,
thereby creating a new net association between D and Y. This new association
could be eliminated by additional conditioning on either U or E. But such
supplemental conditioning is impossible because both U and F are unobserved.

Many examples in the social science literature have the same basic features.
The plausibility of the criticism in both panels of Figure 6.2 should serve as a
caution, which is a point we take up in considerable detail in Chapter 9. There,
we discuss a variety of issues, including a more complete discussion of the sorts
of dynamic processes that generate dependencies such as the one represented
by E in panel (b) of Figure 6.2.

6.4.2 Instrumental Variables and Naturally
Occurring Variation

An alternative strategy to identify the causal effect of Catholic schooling on
achievement is presented in panel (a) of Figure 6.3. For this DAG, a new variable
Z has been specified from among those variables that implicitly determined D,
independent of O and U, in Figures 6.1 and 6.2. Z is commonly labeled an IV
for D. For now, Z can be thought of as a shock to D that is independent of
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Figure 6.3: Alternative identification strategies for the causal effect of Catholic
schooling on learning.

O, U, and X. If such an IV exists, one can obtain an estimate of the causal
effect of D on Y by first calculating the association between Z and Y and then
dividing by the association between Z and D. As we will discuss in Chapter 7,
for this strategy to work, Z must have an association with D and with Y, but
Z cannot have a causal effect on Y except through its causal effect on D.

One example that we will use when discussing this sort of a technique in
Chapter 7 is a variable Z for whether a student in a given geographic area
was randomly assigned a tuition voucher that could be redeemed at a Catholic
school. In this case, because Z is randomly assigned, it is unlikely to have a
direct causal effect on Y. Although not impossible, it would seem that receiving
a voucher in the mail would not affect achievement-relevant behavior. For the IV
to identify the causal effect, the only causal effect of Z on Y must come about
because (1) the voucher induces some students who would otherwise attend
public schools to instead attend Catholic schools, and (2) Catholic schools raise
the achievement of some of the students who have attended Catholic schools
because of the voucher. The critical assumption here — that there is no other
pathway, causal or otherwise, between Z and Y, except the path through D —
is a strong and untestable assumption, as we discuss extensively with several
examples in Chapter 7. Although this approach has considerable appeal, for
many applications it can be hard to find a suitable IV. And, even when they are
available, they usually do not identify the average causal effect if individual-level
heterogeneity of the causal effect is present as well.

6.4.3 Mechanisms and the Front-Door Criterion

As we discussed in Chapter 3, and then demonstrated in Chapters 4 and 5,
Pearl’s back-door criterion for a sufficient set of conditioning variables offers
a powerful strategy for prosecuting causal analysis. Pearl has a second closely
related conditioning strategy: the front-door criterion. This type of strategy has
been used informally in the social sciences for decades in attempts to explain
how causal effects come about. But only recently has it been used as a formal
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identification strategy in the social sciences (see, for example, Winship and
Harding, forthcoming).

The front-door criterion is perhaps most easily understood with an example
used by Pearl. The question of interest is whether smoking causes cancer. As
decades of court cases proved, one cannot convince a jury that smoking causes
cancer by measuring the association between smoking and cancer because there
are many plausible back-door paths between both, such as common genetic
propensities to smoke and succumb to cancer. Pearl shows that another analysis
strategy was much more effective in making the case that smoking does indeed
cause cancer: (1) estimating the effect of smoking on the amount of tar in the
lungs, (2) estimating the effect of the amount of tar in the lungs on rates on
lung cancer, and (3) multiplying together these two effects to form an estimate
of the effect of smoking on cancer.

Consider how this approach can be applied to the Catholic school example,
as presented in panel (b) of Figure 6.3. As before, no set of observed variables
satisfies the back-door criterion. The problem, again, is that U is unobserved,
and thus the back-door path D « U — Y remains unblocked after conditioning
on every subset of observed variables in the graph. Suppose, however, that there
is a variable M that intercepts the full causal effect of D on Y. The variable
M can be represented as the full mechanism (or causal pathway) that relates
D to Y. Observation of M identifies the causal effect of D on Y by a double
application of the back-door criterion to estimation of both the causal effect of
D on M and the causal effect of M on Y. For the the causal effect D — M, note
that there are no back-door paths between D and M, and therefore the causal
effect of D on M can be estimated by their simple association without any
conditioning whatsoever. For the causal effect M — Y, there are three back-
door paths between M andY: M «— D« U —-Y M «— D «— 0 — X =Y,
and M «— D «— U «— O — X — Y. The variable D blocks all three of these
back-door paths. Thus, because the causal effects D — M and M — Y can
be estimated consistently, the full causal effect of D on Y can be estimated
consistently by combining these causal effect estimates.’

In general, one can consistently estimate the effect of a causal variable on an
outcome variable by estimating the effect as it propagates through an isolated
and exhaustive mechanism. The mechanism need not be (and typically would
not be) a single variable. The key requirements of this estimation strategy
are that the mechanism (or set of variables that comprise the mechanism) be
isolated and exhaustive.'” Like other point-identification approaches, these are
strong assumptions, which we discuss fully in Chapter 8.

9How these effects are combined generally involves some form of multiplication, depending
on the scales of M and Y and whether the effects are linear.

10Before leaving this example, consider the exhaustiveness assumption. For panel (b) of
Figure 6.3, if one assumes mistakenly that M represents the full mechanism that relates D to
Y, when in fact it is only one isolated piece of a more complete mechanism, then one will likely
underestimate the causal effect of D on Y using M. Because one mistakenly ignores some
of the true causal pathways that relate D to Y, one attributes net associations generated
by the alternative mechanisms to the unblocked back-door paths between D and Y, as in
D—U&~0O—=X-=>Y.
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6.5 Conclusions

In this chapter, we have made the transition from “easy” to “hard” instances of
causal effect estimation. No longer does simple conditioning on the determinants
of the cause or all other direct causes of the outcome allow for identification and
consistent estimation of the causal effect of interest. Instead, we have considered
examples in which important variables that might have been used to mount an
effective conditioning strategy are unobserved. Thus, selection of the treatment
of interest is on unobserved characteristics of individuals that have unknown
but suspected relationships to the outcome.

For these more trying situations, we have first considered minimal weak as-
sumptions that can be used to bound plausible values for the size of the causal
effect. We then showed how these bounds can be narrowed by the systematic
introduction of additional assumptions. Then, we introduced three further sets
of assumptions that point identify causal effects when they are valid: (1) condi-
tioning on a lagged outcome variable, as in classic pretest/posttest designs, (2)
using an IV, as one finds in the recent surge of interest in natural experiments,
and (3) specifying an isolated and exhaustive mechanism.

We discuss these strategies in the remaining chapters, but in a slightly differ-
ent order than suggested by this chapter. We first turn in Chapter 7 to the IV
strategy, which we present in detail to explicate its strengths and weaknesses.
Thereafter, we return to identification via mechanisms in Chapter 8, where we
will discuss Pearl’s perspective in relation to recent proposals for similar strate-
gies from the social sciences. Finally, we consider methods that use longitudinal
data in Chapter 9, where we will revisit the pretest estimation strategy consid-
ered here and more general models.

Appendix: Latent Variable
Selection-Bias Models

Heckman’s early work in the late 1970s on selection bias, particularly his lambda
method, has received some attention in sociology. Heckman’s closely related
work on dummy endogenous variables (Heckman 1978), pursued at the same
time, has received less attention (but see Winship and Mare 1984).

Although completed before most of Rubin and Rosenbaum’s work on propen-
sity scores, Heckman’s work on the dummy endogenous variable problem can be
understood in relation to the propensity score approach.!! Recall the treatment
selection tradition, and Equation (3.6) in particular:

D=2+,

HThe general selection model considered by Heckman (1979) can also be estimated by
maximum likelihood or nonlinear least squares, although this involves stronger distributional
assumptions than the lambda method discussed here. See Winship and Mare (1992) and Fu,
Winship, and Mare (2004) for further discussion.
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where D is a latent continuous variable, Z includes variables that determine
treatment selection, ¢ is a coefficient (or a vector of coefficients if Z includes
more than one variable), and U represents both systematic unobserved determi-
nants of treatment selection and completely random idiosyncratic determinants
of treatment selection. As before, the latent continuous variable D in Equation
(3.6) is then related to the treatment selection dummy, D, by

D=1ifD >0,
D=0if D <0,

where the threshold 0 is arbitrary because U has no inherent metric (as it is
composed of unobservable and some unknown variables).

Rather than focus on the conditional probability of treatment selection (i.e.,
directly on Pr[D = 1|Z]), Heckman focuses on the conditional expectation of
the latent variable D. Using the linearity of Equation (3.6), he is interested in

E[D|Z¢$,D) = Zé + E[U|Z¢, D]. (6.9)

Note that the expected value of D is a function of both Z¢ and D. This
allows Heckman to take account of selection that may be a function of both the
observables Z and the unobservables U.

Heckman’s insight was the recognition that, although one could not observe
U directly, one could calculate its expected value from Equation (6.9). The
expected value of U could then be used as a control variable (or a control
function in Z and D) in order to consistently estimate the average causal effect
of D with a standard multiple regression routine.

To calculate the expected value of U in Equation (6.9), one needs to make an
assumption about the distribution of U. Typically, U is assumed to be normally
distributed (although, as we discuss later, this assumption is the Achilles’ heel of
the method). If f(.) is the normal density function and F'(.) is the corresponding
cumulative distribution function, then

f(Z¢)

EHHZ¢J):]}:[T:?iZgﬁ, (6.10)
EKIZ¢J):(H:;£§Z?. (6.11)

Equation (6.10) simply gives the formula for Heckman’s A in a standard sample
selection problem. In the treatment context, a A for those in the treatment group
(D = 1) is calculated with Equation (6.10) and a second A for those in the control
group (D = 0) is calculated with Equation (6.11). These two X’s would then be
entered into a regression equation as control variables analogous to those in X
in Equation (5.8). Thus, the procedure here is identical to Heckman’s lambda
method for correcting for selection bias, except that two distinct \’s are utilized.

As Heckman and many others have come to recognize, estimates from this
method can be very sensitive to assumptions about the distribution of U. This
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recognition has led to a second wave of selection-bias estimators, which rely on
semiparametric estimation of the treatment selection equation (see Honoré and
Powell 1994; Pagan and Ullah 1999). Moreover, it has led to recognition of a
point that Heckman made clearly in the original development of the model, that
sample selection models are most effectively estimated when the variables in Z
include instruments. As we discuss next in Chapter 7, Heckman and Vytlacil
(2005) offer a framework that represents these sorts of latent variable selection
models, semiparametric extensions, IV estimators, and others, within a common
counterfactual framework.



Chapter 7

Instrumental Variable
Estimators of Causal Effects

If a perfect stratification of the data cannot be achieved with available data, and
thus neither matching nor regression nor any other type of basic conditioning
technique can be used to effectively estimate a causal effect of D on Y, one
solution is to find an exogenous source of variation that affects Y only by way
of the causal variable D. The causal effect is then estimated by measuring how
Y varies with the portion of the total variation in D that is attributable to the
exogenous variation. The variable that indexes the portion of the total variation
in D that is used to estimate the causal effect is an instrumental variable.

In this chapter, we orient the reader to IV estimation of causal effects by
presenting examples of binary instruments, some of which are natural experi-
ments because the IVs are “gifts of nature” (Rosenzweig and Wolpin 2000:872).
We then return to the origins of IV techniques, and we contrast this estima-
tion strategy with the perspective on regression that was presented in Chapter
5. We then develop the same ideas using the potential outcome framework,
showing how the counterfactual perspective has led to a new literature on how
to interpret IV estimates. This new literature suggests that IV techniques are
more effective for estimating narrowly defined causal effects than for estimating
the average causal effects that they are often mistakenly thought to inform. We
conclude with a brief discussion of marginal treatment effects identified by local
IVs, as well as the use of monotone IVs in an analysis of bounds.

7.1 Causal Effect Estimation with a Binary IV

Recall the causal regression setup in Equation (5.3):

Y=a+0D+e¢, (7.1)

187
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(a) Z is a valid instrumental (b) Z is not a valid instrumental
variable for D variable for D

Figure 7.1: Causal diagrams for Z as a potential IV.

where Y is the outcome variable, D is a binary causal exposure variable, « is
an intercept, ¢ is the causal effect of D on Y, and ¢ is a summary random
variable that represents all other causes of Y. As noted before, when Equation
(7.1) is used to represent the causal effect of D on Y, the parameter § is usually
considered an invariant, structural causal effect that applies to all members of
the population of interest.

Suppose that the probability that D is equal to 1 rather than 0 is a function
of a binary variable Z that takes on values of 0 and 1. Figure 7.1 presents two
possible ways in which the variable Z could be related to both D and Y. Note
first that, for both causal diagrams, the presence of the set of back-door paths
denoted by D «----» ¢ — Y prevents a least squares regression of Y on D (or
any other conditioning strategy) from generating a consistent estimate of the
effect of D on Y. However, for the graph in panel (a), Z has an association with
Y only through D whereas for the graph in panel (b) Z has an association with
Y through D and also through common causes that determine both Z and e.!

Consider how Z can be used to estimate the causal effect of D on Y in the
first but not the second causal diagram. We know that for the set of causal
relationships in both panels of Figure 7.1, the probability that D is equal to 1
rather than 0 is a function of the value of Z. But D still varies when conditioning
on the value of Z because there are common causes that determine both D and
€ as well as implicit independent causes that give D its probability distribution.
If we continue to maintain the assumption that the effect of D on Y is a constant
structural effect §, then it is not necessary to relate all of the variation in D to
all of the variation in Y in order to obtain a consistent estimate of the causal
effect. The covariation in D and Y that is generated by the common causes of
D and € can be ignored if a way of isolating the variation in D and Y that is
causal can be found.

Can the variation in D and Y that is generated by variation in Z be used to
consistently estimate the causal effect of D on Y in this way? The answer to

1We have drawn the two bidirected edges separately for the diagram in panel (b) for
simplicity. The same reasoning holds in more complex situations in which some of the common
causes of Z and ¢ are also common causes of D and/or Y (and so on).
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this question depends crucially on whether or not Z has an association with Y
independent of its association with Y through D. For the graph in panel (a), this
strategy will succeed because Z is associated with Y only through D. For the
graph in panel (b), this strategy will fail because Z and Y share common causes,
as represented by the bidirected edge Z «----» . As a result, the variation that
7 appears to generate in both D and Y may instead be generated by one or
more unobserved common causes of Z and Y.

To see this result a bit more formally, take the population-level expectation
of Equation (7.1), E[Y] = Ela+ dD + €] = a + dE[D] + Fle], and rewrite it as
a difference equation in Z:

E[Y|Z =1]- E[Y|Z = 0] (7.2)
= §(E[D|Z =1] - E[D|Z =0]) + (E[|Z = 1] — E[e|Z = 0]) .

Equation (7.2) is now focused narrowly on the variation in Y, D, and ¢ that
exists across levels of Z.? Now, take Equation (7.2) and divide both sides by
E[D|Z = 1] — E[D|Z = 0], yielding

E[Y|Z =1] - E[Y|Z = 0]

E[D|Z =1] — E[D|Z = 0]
_ S(E[D|Z =1] - E[D|Z = 0)) + (E[e|Z = 1] — E[¢|Z = 0])
- E[D|Z = 1] - E[D|Z = 0]

(7.3)

If the data are generated by the set of causal relationships depicted in panel (a)
of Figure 7.1, then Z has no association with ¢, and E[¢|Z = 1] — E[e|Z = 0]
in Equation (7.3) is equal to 0. Consequently, the right-hand side of Equation
(7.3) simplifies to d:

E[Y|Z =1] - E[Y|Z = 0]
E[D|Z =1] - E[D|Z = 0]

=4. (7.4)

Under these conditions, the ratio of the population-level association between
Y and Z and between D and Z is equal to the causal effect of D on Y. This
result suggests that, if Z is in fact associated with D but not associated with &
(or with Y, except through D), then the following sample-based estimator will
equal 0 in an infinite sample:

Enlyilzi = 1] — Enlyi|z = 0]

O1v . WALD = (7.5)

2Equation (7.2) is generated in the following way. First, write E[Y] = a + §E[D] + El[e]
conditional on the two values of Z, yielding E[Y|Z = 1| = a+ 0E[D|Z = 1] + E[e|Z = 1]
and E[Y|Z = 0] = a+ dE[D|Z = 0] + E[e|Z = 0]. Note that, because a and § are considered
constant structural effects for this motivation of IV estimation, they do not vary with Z. Now,
subtract E[Y|Z = 0] = a+ 0E[D|Z = 0]+ E[e|Z = 0] from E[Y|Z = 1] = a+ éE[D|Z =
1]+ E[e|Z = 1]. The parameter « is eliminated by the subtraction, and ¢ can be factored out
of its two terms, resulting in Equation (7.2).
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As suggested by its subscript, this is the IV estimator, which is known as the
Wald estimator when the instrument is binary. Although the Wald estimator is
consistent for ¢ in this scenario, the assumption that § is an invariant structural
effect is crucial for this result.® From a potential outcomes perspective, in which
we generally assume that causal effects vary meaningfully across individuals, this
assumption is very limiting and quite likely unreasonable. Explaining when and
how this assumption can be relaxed is one of the main goals of this chapter.”

For completeness, return to consideration of panel (b) of Figure 7.1, in which
Z has a nonzero association with €. In this case, Fle|Z = 1] — Fle|Z = 0] in
Equations (7.2) and (7.3) cannot be equal to 0, and thus Equation (7.3) does
not reduce further to Equation (7.4). Rather, it reduces only to

ElY|Z =1]-E[Y|Z =0] 64 Ele|Z =1] — E[e|Z = 0] (7.6)
E[D|Z =1] - E[D|Z = 0] E[D|Z =1]-E[D|Z=0] " '
In this case, the ratio of the population-level association between Y and Z and
between D and Z does not equal the causal effect of D on Y but rather the
causal effect of D on Y plus the the last term on the right-hand side of Equation
(7.6). The Wald estimator in Equation (7.5) is not consistent or asymptotically
unbiased for § in this case. Instead, it converges to the right-hand side of
Equation (7.6), which is equal to § plus a bias term that is a function of the net
association between Z and e.

More generally, an IV estimator is a ratio that is a joint projection of Y and
D onto a third dimension Z. In this sense, an IV estimator isolates a specific
portion of the covariation in D and Y. For that selected covariation to be the
basis of a valid causal inference for the effect of D on Y, it cannot be attributable
to any extraneous common causes that determine both Z and Y. And, to justify
the causal effect estimate generated by a subset of the covariation in D and Y
as a consistent estimate of the population-level causal effect of D on Y, it is
typically assumed in this tradition that ¢ is a constant for all members of the
population.” Consider the following hypothetical demonstration, which is an
extension of the school voucher example introduced earlier in Chapter 1.

3 As for the origin of the Wald estimator, it is customarily traced to Wald (1940) by authors
such as Angrist and Krueger (1999). As we discuss later, the Wald estimator is not generally
unbiased in a finite sample and instead is only consistent.

4The reasons may well be clear to the reader already. In moving from Equation (7.1) to
Equation (7.2), covariation in Y and D within levels of Z was purged from the equation.
But if D has a causal effect on Y that varies across all individuals, it may be that whatever
contrast is identified through Z may not be relevant to all members of the population.

5There is one trivial way around this assumption. If the naive estimator of D on Y is
consistent for the average causal effect of D on Y, then D is its own IV. The subset of the
covariation in D and Y that is projected onto Z is then the full set of covariation in D and Y
because Z is equal to D. In this case, no extrapolation is needed and the constant treatment
effect assumption can be avoided. As we will discuss later, there are slightly less trivial ways
to avoid the assumption as well. One alternative is to assert that § is a constant among
the treated and then stipulate instead that the IV identifies only the treatment effect for the
treated. Although plausible, there are better ways to handle heterogeneity, as we will discuss
as this chapter unfolds.
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IV Demonstration 1

Suppose that a state education department wishes to determine whether private
high schools outperform public high schools in a given metropolitan area, as
measured by the achievement of ninth graders on a standardized test. For
context, suppose that a school voucher program is operating in the city and
that the state is considering whether to introduce the program in other areas in
order to shift students out of public schools and into private schools.

To answer this policy question, the state department of education uses a
census of the population in the metropolitan area to select a random sample of
10,000 ninth graders. They then give a standardized test to each sampled ninth
grader at the end of the year, and they collect data as {y;, di}g’lo 00, where Y is
the score on the standardized test and D is equal to 1 for students who attend
private high schools and equal to 0 for students who attend public high schools.

After the data are collected, suppose that the values of y; are regressed on
the values of d; and that a predicted regression surface is obtained:

Y =50.0+9.67 (D). (7.7)

The state officials recognize that private school students typically have more
highly educated parents and therefore are more likely to have higher test scores
no matter what curriculum and school culture they have been exposed to. Ac-
cordingly, they surmise that 9.67 is likely a poor causal effect estimate, or at
least not one that they would want to defend in public.

The state officials therefore decide to merge the data with administrative
records on the school voucher program in the area. For this program, all eighth
graders in the city (both in public and private schools) are entered into a random
lottery for $3,000 school vouchers that are redeemable at a private high school.
By mandate, 10 percent of all eligible students win the voucher lottery.

After merging the data, the state officials cross-tabulate eighth-grade lottery
winners (where z; = 1 for those who won the lottery and z; = 0 for those who
did not) by school sector attendance in the ninth grade, d;. As shown in Table
7.1, 1000 of the 10,000 sampled students were voucher lottery winners.® Of
these 1000 students, 200 were observed in private schools in the ninth grade. In
comparison, of the 9000 sampled students who were not voucher lottery winners,
only 1000 were observed in private schools.

The researchers conclude that the dummy variable Z for winning the voucher
lottery is a valid IV for D because (1) the randomization of the lottery renders
7 independent of £ in the population-level causal regression equation Y =
a+ 0D +¢ and (2) Z is associated with D, as shown for the sample data in
Table 7.1. They therefore estimate 5IV7WALD in Equation (7.5) as

Enlyilzi = 1] — Exlyilz; =0]  51.6 — 51.111

= =55 7.8
EN[dZ|Zl :1] —EN[dZ‘ZzZO] 2 —.111 ’ ( )

SFor simplicity, we have assumed that the sample percentage of lottery winners is the same
as the population percentage. Of course, some random variation would be expected in any
sample.
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Table 7.1: The Distribution of Voucher Winners by
School Sector for IV Demonstration 1

Public school Private school

di=0 di=1

Voucher loser 2;i=0 8000 1000
Voucher winner z;= 1 800 200

and conclude that the true causal effect of private schooling on ninth grade
achievement is 5.5 rather than 9.67. Operationally, the Wald estimator takes
the average difference in test scores among those students who have won a
voucher and those who have not won a voucher and divides that difference by a
corresponding difference in the proportion of high school students who attend
private schools among those who have won a voucher and the proportion of
high school students who attend private schools among those who have not
won a voucher. The numerator of Equation (7.8) is equal to 51.6 — 51.111
by an assumed construction of the outcome Y, which we will present later
when we repeat this demonstration in more detail (as IV Demonstration 2,
beginning on page 204). The denominator, however, can be calculated directly
from Table 7.1. In particular, Ex[d; = 1|z; = 1] = 200/1000 = .2 whereas
En[d; = 1|z; = 0] = 1000/9000 = .111.

For this demonstration, Z is a valid instrument by traditional standards. It
is randomly assigned to students in the population, and it predicts enrollment
in private high schools. The resulting estimator yields a point estimate that
can be given a causal interpretation by traditional standards. However, as we
will show later when we reintroduce this demonstration as IV Demonstration 2,
the particular causal effect that this IV identifies is quite a bit different when
individual-level causal effect heterogeneity is present. It does not identify the
average causal effect for all students. Instead, it identifies only the average
causal effect for the subset of all students who would attend a private school if
given a voucher but who would not attend a private school in the absence of a
voucher. This means, for example, that the IV estimate is uninformative about
the average causal effect among those who would enroll in private high schools
in the absence of a voucher. This group of students represents the vast majority
of private school students (in this example 1000/1200 or 83 percent).

The potential outcome literature has provided the insight that allows one
to craft such a precise causal interpretation, and symmetrically to understand
what an IV estimate does not inform. Before presenting that newer material,
we return, as in Chapter 5 on regression, to a more complete accounting of the
traditional IV literature.
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7.2 Traditional IV Estimators

As detailed by Goldberger (1972), Bowden and Turkington (1984), and Heck-
man (2000), IV estimators were developed first in the 1920s by biologists and
economists analyzing equilibrium price determination in market exchange (see
E. Working 1927, H. Working 1925, and Wright 1921, 1925). After
subsequent development in the 1930s and 1940s (e.g., Haavelmo 1943, Reierspl
1941, Schultz 1938, and Wright 1934), IV estimators were brought into wide-
spread use in economics by researchers associated with the Cowles commission
(see Hood and Koopmans 1953, Koopmans and Reiersgl 1950).” The structural
equation tradition in sociology shares similar origins to that of the IV literature
(see Duncan 1975). The most familiar deployment of IV estimation in the ex-
tant sociological research is as the order condition for identification of a system
of structural equations (see Bollen 1989, 1995, 1996a, 1996b, 2001; Fox 1984).
Consider the same basic ideas presented earlier for the Wald estimator in
Equation (7.5). Again, recall the causal regression setup in Equation (7.1):

Y=a+D+e. (7.9)
The OLS estimator of the regression coefficient on D is

_ Covy(yi,di)

3 ivariate = 7.10
OLS, bivariat Varn (d)) (7.10)

where Covy(.) and Vary(.) denote unbiased, sample-based estimates from a
sample of size NV of the population-level covariance and variance.

Now, again suppose that a correlation between D and e renders the least
squares estimator biased and inconsistent for § in Equation (7.9). If least squares
cannot be used to effectively estimate J, an alternative IV estimator can be
attempted, with an IV Z, as in

~ _ Covy(yi,2)

v = Cova(di 21)’ (7.11)

where Z can now take on more than two values. If the instrument Z is correlated
with D but uncorrelated with e, then the IV estimator in Equation (7.11) is
consistent for § in Equation (7.9).%

"The canonical example for this early development was the estimation of price determina-
tion in markets. For a market in equilibrium, only one price and one quantity of goods sold is
observable at any point in time. To make prospective predictions about the potential effects of
exogenous supply-and-demand shocks on prices and quantities for a new market equilibrium,
the shape of latent supply-and-demand curves must be determined. To estimate points on
such curves, separate variables are needed that uniquely index separate supply-and-demand
shocks. Usually based on data from a set of exchangeable markets or alternative well-chosen
equilibria for the same market from past time periods, these IVs are then used to identify dif-
ferent points of intersection between a shifted linear supply/demand curve and a fixed linear
demand/supply curve.

8Notice that substituting d; for z; in Equation (7.11) results in the least squares regression
estimator in Equation (7.10). Thus, the least squares regression estimator implicitly treats D
as an instrument for itself.
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One way to see why IV estimators yield consistent estimates is to again
consider the population-level relationships between Y, D, and Z, as in Equations
(7.1)—(7.4). Manipulating Equation (7.1) as before, one can write the covariance
between the outcome Y and the instrument Z as

Cov(Y,Z) =6 Cov(D,Z)+ Cov(e, Z), (7.12)

again assuming that J is a constant structural effect. Dividing by Cov(D, Z)
then yields

Cov(Y,Z) 6Cov(D,Z)+ Cov(e, Z)

Cov(D,Z) Cov(D, Z) ’ (7.13)

which is directly analogous to Equation (7.3). When Cov(e, Z) is equal to 0 in
the population, then the right-hand side of Equation (7.13) simplifies to §. This
suggests that
Covn (yis2i) »
_— ) 7.14
Covy(d;, z) 7 (7.14)

if Cov(e, Z) = 0 in the population and if Cov(D,Z) # 0. This would be the
case for the causal diagram in panel (a) of Figure 7.1. But here the claim is
more general and holds for cases in which Z is many valued [and, in fact, for
cases in which D is many valued as well, assuming that the linear specification
in Equation (7.9) is appropriate].

In the traditional econometrics literature, IVs are considered all-purpose
remedies for least squares estimators that yield biased and inconsistent esti-
mates, whether generated by obvious omitted variables or subtle patterns of
self-selection. Consider the following examples of IV estimation in economics.

Three Examples of IV Estimation from Economics

For the effect of education on labor market earnings, as introduced earlier in
Subsection 1.3.1, IVs have been used to estimate the causal effect of education.
As reviewed by Card (1999) and by Angrist and Krueger (2001), the causal
effect of years of schooling on subsequent earnings has been estimated with a
variety of IVs, including proximity to college, regional and temporal variation
in school construction, tuition at local colleges, temporal variation in the mini-
mum school-leaving age, and quarter of birth. The argument here is that each
of these variables predicts educational attainment but has no direct effect on
earnings. For the quarter-of-birth instrument, Angrist and Krueger (1991:981-2)
reason:

If the fraction of students who desire to leave school before they
reach the legal dropout age is constant across birthdays, a student’s
birthday should be expected to influence his or her ultimate educa-
tional attainment. This relationship would be expected because, in
the absence of rolling admissions to school, students born in differ-
ent months of the year start school at different ages. This fact, in
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conjunction with compulsory schooling laws, which require students
to attend school until they reach a specified birthday, produces a cor-

relation between date of birth and years of schooling. ... Students
who are born early in the calendar year are typically older when
they enter school than children born late in the year. ... Hence,

if a fixed fraction of students is constrained by the compulsory at-
tendance law, those born in the beginning of the year will have less
schooling, on average, than those born near the end of the year.

As discussed in Subsection 1.3.2, much of the early debate on the effective-
ness of private schooling relative to its alternatives was carried out with observa-
tional survey data on high school students from national samples of public and
Catholic high schools. In attempts to resolve the endogeneity of school sector
selection, Evans and Schwab (1995), Hoxby (1996), and Neal (1997) introduced
plausible IVs for Catholic school attendance. Hoxby and Neal argued that the
share of the local population that is Catholic is a valid IV for Catholic school
attendance, maintaining that exogenous differences in population composition
influence the likelihood of attending a Catholic school (by lowering the costs of
opening such schools, which then lowers the tuition that schools need to charge
and to which parents respond when making school sector selection decisions).
Variation in the number of Catholics in each county was attributed to lagged
effects from past immigration patterns and was therefore assumed to have no
direct effect on learning.”

For another example, consider the literature on the effects of military service
on subsequent labor market outcomes, which is a topic that both economists
and sociologists have studied for several decades. Some have argued that mil-
itary service can serve as an effective quasi-job-training program for young
men likely to otherwise experience low earnings because of weak attachment
to more traditional forms of education (Browning, Lopreato, and Poston 1973)
or as a more general productivity signal that generates a veteran premium (De
Tray 1982). In one of the earliest studies, which focused primarily on veter-
ans who served around the time of the Korean War, Cutright (1974) concluded
that:

...two years in the military environment, coupled with the exten-
sive benefits awarded to veterans, do not result in a clear cut, large
net positive effect of service. ... Therefore, one may question the
likely utility of social programs that offer minority men and whites
likely to have low earnings a career contingency in a bridging en-
vironment similar to that provided by military service. (Cutright
1974:326)

9Evans and Schwab (1995) use a student’s religious identification as an IV. This is rather
unconvincing, and it is easy to show with the same data that Catholic students in public
schools outperform similar non-Catholic students. Thus, to many (see Altonji, Elder, and
Taber 2005a, 2005b) the assumed exclusion restriction appears unreasonable. Neal (1997)
also used this IV but only selectively in his analysis.
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U
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D Y

Figure 7.2: A DAG with an unblocked back-door path and a valid IV.

Following the Vietnam War, attention then focused on whether any military
service premium had declined (see Rosen and Taubman 1982, Schwartz 1986;
see also Berger and Hirsch 1983). Angrist (1990) used the randomization created
by the draft lottery to estimate the Vietnam-era veteran effect. Here, the draft
lottery turns date of birth into an IV, in much the same way that compulsory
school entry and school-leaving laws turn date of birth into an IV for years
of education. Angrist determined that veteran status had a negative effect on
earnings, which he attributed to a loss of labor market experience.'’

The IV Identifying Assumption Cannot be Tested with the Data

The basic assumption underlying the three studies just summarized — that Z has
no causal effect on Y except indirectly through D — is a strong and untestable
assumption. Some researchers believe mistakenly that this assumption is em-
pirically testable in the following way. They believe that the assumption that
Z has no direct effect on Y implies there is no association between Z and Y
conditional on D. Thus, if an association between Z and Y is detected after
conditioning on D, then the assumption must be incorrect.

Pearl’s graphical approach shows clearly why individuals might believe that
the identifying assumption can be tested in this way and also why it cannot.
Consider the simplest possible causal DAG, presented in Figure 7.2, in which (1)
an unblocked back-door path between D and Y exists because of the common
cause U but (2) Z is a valid IV that identifies the causal effect of D on Y.'' Here,

10We do not mean to imply that Angrist’s work on this issue ended in 1990. Not only was
his work very important for understanding what IV estimators accomplish in the presence of
causal effect heterogeneity (see next section), he continued with subsequent substantive work
on the military service effect. Angrist and Krueger (1994) estimated the World War II veteran
effect, and, in an attempt to reconcile past estimates, concluded: “Empirical results using
the 1960, 1970, and 1980 censuses support a conclusion that World War II veterans earn no
more than comparable nonveterans, and may well earn less. These findings suggest that the
answer to the question ‘Why do World War II veterans earn more than nonveterans?’ appears
to be that World War II veterans would have earned more than nonveterans even had they
not served in the military. Military service, in fact, may have reduced World War II veterans’
earnings from what they otherwise would have been” (Angrist and Krueger 1994:92). Then,
Angrist (1998) assessed the effects of voluntary service in the military in the 1980s, and he
found mixed evidence.

1 This DAG is consistent with the same basic diagram presented in panel (a) of
Figure 7.1. We have replaced the bidirected edge from D to e by (1) representing the as-
sociation between D and e as a back-door path between D and Y generated by a latent
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the instrument Z is valid because it causes D and because it is unconditionally
unassociated with U.

Why is the suggested test faulty? Again, the rationale for the test is that
conditioning on D will block the indirect relationship between Z and Y through
D. Accordingly, if the only association between Z and Y is indirect through
D, then it is thought that there should be no association between Z and Y
after conditioning on D. If such a net association is detected, then it may seem
reasonable to conclude that the IV identifying assumption must be false.

Although this rationale feels convincing, it is incorrect. It is certainly true
that if the IV assumption is invalid, then Z and Y will be associated after con-
ditioning on D. But the converse is not true. Z and Y will always be associated
after conditioning on D when the IV assumption is valid. The explanation fol-
lows from the fact that D in Figure 7.2 is a collider that is mutually caused by
both Z and U. As shown earlier in Chapter 3 (see Subsection 3.1.3), condition-
ing on a collider variable creates dependence between the variables that cause it.
Accordingly, conditioning on D in this DAG creates dependence between Z and
U, even though the IV identifying assumption is valid. And, as a result, Z and
Y will always be associated within at least one stratum of D even if the IV is
valid. The faulty test yields an association between Z and Y when conditioning
on D regardless of whether the IV identifying assumption is valid.'?

7.3 Recognized Pitfalls of Traditional IV
Estimation

The traditional IV literature suggests that, as long as there is an instrument
that predicts the causal variable of interest but does not affect the outcome
variable (except by way of the causal variable), then an IV estimator can be
used to effectively estimate the causal effect. FEven within this IV tradition,
however, there are some recognized pitfalls of an IV estimation strategy. First,
the assumption that an IV does not have a net direct effect on the outcome
variable is often hard to defend. Second, even when an IV does not have a net
direct effect on the outcome variable, IV estimators are biased in finite samples.
Moreover, this bias can be substantial when an instrument only weakly predicts
the causal variable. We discuss each of these weaknesses here.

Even “natural experiments” that generate compelling IVs are not immune
from criticism. Consider date of birth as an instrument for veteran status in

common cause U and then (2) eliminating the remainder of the distribution of € from the
graph because it is unconditionally unassociated with Z and D. The latter is possible because
the net variation in € that is unrelated to U is irrelevant to the estimation of the causal effect
of DonY.

12For completeness, consider what the faulty test reveals when the IV assumption is invalid.
Suppose that Figure 7.2 is augmented by an unobserved cause E and then two edges £ — Z
and E — U. In this case, Z and Y would be associated within levels of D for two reasons:
(1) conditioning on the collider D generates a net association between Z and U (and hence
Z and Y') and (2) the common cause F of Z and U generates an unconditional association
between Z and Y.
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estimating the effect of military service in Vietnam on subsequent earnings (An-
grist 1990). The case for excluding date of birth from the earnings equation that
is the primary interest of the study is the randomization of the draft lottery,
in which numbers were assigned by date of birth. Even though a type of ran-
domization generates the IV, this does not necessarily imply that date of birth
has no net direct effect on earnings. After the randomization occurs and the
lottery outcomes are known, employers may behave differently with respect to
individuals with different lottery numbers, investing more heavily in individuals
who are less likely to be drafted. As a result, lottery number may be a di-
rect, though probably weak, determinant of future earnings (see Heckman 1997,
Moffitt 1996). IVs that are not generated by randomization are even more sus-
ceptible to causal narratives that challenge the assumption that the purported
IV does not have a net direct effect on the outcome of interest.

Even in the absence of this complication, there are well-recognized statistical
pitfalls. By using only a portion of the covariation in the causal variable and
the outcome variable, IV estimators use only a portion of the information in
the data. This represents a direct loss in statistical power, and as a result
IV estimators tend to exhibit substantially more expected sampling variance
than other estimators. By the criterion of mean-squared error, a consistent and
asymptotically unbiased IV estimator is often outperformed by a biased and
inconsistent regression estimator.

The problem can be especially acute in some cases. It has been shown that
instruments that only weakly predict the causal variable of interest should be
avoided entirely, even if they generate point estimates with acceptably small
estimated standard errors (see Bound, Jaeger, and Baker 1995). In brief, the
argument here is fourfold: (1) In finite samples, IV point estimates can always
be computed because sample covariances are never exactly equal to zero; (2) as
a result, an IV point estimate can be computed even for an instrument that is
invalid because it does not predict the endogenous variable in the population
[i.e., even if Cov(D, Z) = 0 in the population, rendering Equation (7.13) unde-
fined because its denominator is equal to 0]; (3) at the same time, the formulas
for calculating the standard errors of IV estimates fail in such situations, giving
artificially small standard errors (when in fact the true standard error for the
undefined parameter is infinity); and (4) the bias imparted by a small violation
of the assumption that the IV affects the outcome variable only by way of the
causal variable can explode if the instrument is weak.'? To see this last result,
consider Equation (7.6), which depicts the expected bias in the Wald estimator
for a binary IV as the term

Ele|Z =1]— Ele|Z = 0]
EDZ=1_-ED|Z=0]

(7.15)

When the identifying assumption is violated, the numerator of Equation (7.15)
is nonzero because Z is associated with Y through e. The bias is then an

13Complications (1), (2), (3), and (4) are all closely related. Situation (4) can be considered
a less extreme version of the three-part predicament depicted in (1)—(3).
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inverse function of the strength of the instrument; the weaker the instrument,
the smaller the denominator and the larger the bias. If the denominator is close
to zero, even a tiny violation of the identifying assumption can generate a large
amount of bias. And, unfortunately, this relationship is independent of the
sample size. Thus, even though a weak instrument may suggest a reasonable
(or perhaps even intriguing) point estimate, and one with an acceptably small
estimated standard error, the IV estimate may contain no genuine information
whatsoever about the true causal effect of interest (see Hahn and Hausman
2003; Staiger and Stock 1997; Wooldridge 2002).*

Beyond these widely recognized pitfalls of standard IV estimation in eco-
nomics, a third criticism is emerging of current practice. As noted by Angrist
and Krueger (2001), the ways in which IVs are used has changed in the past
30 years. Because it has been hard to achieve consensus that particular no-net-
direct-effect assumptions are credible, IVs that arise from naturally occurring
variation have become more popular. Genuine “gifts of nature,” such as varia-
tion in the weather and natural boundaries, have become the most prized sources
of IVs (see Rosenzweig and Wolpin 2000 for a list of such instruments).

Not all economists see this shift in IV estimation techniques toward naturally
occurring I'Vs as necessarily a step in the right direction. Rosenzweig and Wolpin
(2000) offer one of the most cogent critiques (but see also Heckman 2000, 2005).
They make two main points. First, the variation on which naturally occurring
IVs capitalize is often poorly explained and/or does not reflect the variation
that maintained theories posit should be important. As a result, IV estimates
from natural experiments have a black-box character that lessens their appeal
as informative estimates for the development of theory or policy guidance.

Second, the random variation created by a naturally occurring experiment
does not necessarily ensure that an IV has no net direct effect on the outcome.
Other causes of the outcome can respond to the natural event that generates the
IV as well. Rosenzweig and Wolpin contend that natural experiments tend to
lead analysts to ignore these issues because natural experiments appear falsely
infallible.

We will explain these points further in this chapter, after introducing IV es-
timation in the presence of causal effect heterogeneity. (We will then revisit this
critique in the next chapter on mechanisms as well.) The new IV literature, to
be discussed next, addresses complications of the constant coefficient assump-
tion implied by the stipulated constant value of § in Equations (7.1) and (7.9).
The issues are similar to those presented for regression estimators in Chapter 5,
in that heterogeneity invalidates traditional causal inference from IV estimates.
But IV estimators do identify specific narrow slices of average causal effects that

M There are no clear guidelines on how large an association between an IV and a treatment
variable must be before analysis can proceed safely. Most everyone agrees that an IV is too
weak if it does not yield a test statistic that rejects a null hypotheses of no association between
Z and D. However, a main point of this literature is that the converse is not true. If a dataset
is large enough, the small association between Z and D generated by a weak IV can still yield
a test statistic that rejects a null hypotheses of no association. Even so, the problems in the
main text are not vitiated, especially the explosion of the bias generated by a small violation
of the identifying assumption.
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may be of distinct interest, and as a result they represent a narrowly targeted
estimation strategy with considerable appeal in some situations.

7.4 Instrumental Variable Estimators of
Average Causal Effects

Following the adoption of a counterfactual perspective, a group of econometri-
cians and statisticians has clarified considerably what IVs identify when indivi-
dual-level causal effects are heterogeneous. In this section, we will emphasize the
work that has developed the connections between traditional IV estimators and
potential-outcome-defined treatment effects (Angrist and Imbens 1995; Angrist,
Imbens, and Rubin 1996; Imbens and Angrist 1994; ITmbens and Rubin 1997).
The key innovation here is the definition of a new treatment effect parameter:
the local average treatment effect (LATE). We will also discuss other important
work that has further clarified these issues, and some of this literature is more
general than the LATE literature that we introduce first (see Heckman 1996,
1997, 2000; Heckman, Tobias, and Vytlacil 2003; Heckman, Urzua, and Vytlacil
2006; Heckman and Vytlacil 1999, 2000, 2005; Manski 2003; Vytlacil 2002).%”

7.4.1 1V Estimation as LATE Estimation

Consider the following motivation of the Wald estimator in Equation (7.5), and
recall the definition of Y presented in Equation (3.4):

Y = Y4+ ¥'-Y"D (7.16)
= Y°+4D
pul 4+ 8D + 00,

where i’ = E[Y?] and v° = Y° — E[Y"]. Note that § is now defined as Y —Y°,
unlike its structural representation in Equations (7.1) and (7.9) where ¢ was
implicitly assumed to be constant across all individuals.

To understand when an IV estimator can be interpreted as an average causal
effect estimator, Imbens and Angrist (1994) developed a counterfactual frame-
work to classify individuals into those who respond positively to an instrument,
those who remain unaffected by an instrument, and those who rebel against
an instrument. Their innovation was to define potential treatment assignment
variables, DZ=% for cach state z of the instrument Z. When D and Z are bi-
nary variables, there are four possible groups of individuals in the population.'®
These can be summarized by a four-category latent variable C' for compliance

15Given the rapidity of these developments in the IV literature, some disagreement on the
origins of these ideas pervades the literature. Heckman and Robb (1985, 1986) did provide
extensive analysis of what IV estimators identify in the presence of heterogeneity. Subsequent
work by others, as we discuss in this section, has clarified and extended these ideas, even while
Heckman and his colleagues continued to refine their ideas.

16These four groups are considered principal strata in the framework of Frangakis and Rubin
(2002).
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status:
Compliers (C' = ¢) : D?=Y =0 and DZ=! =1,
Defiers (C' = d) : D?=% =1 and D?=! =0,
Always takers (C' = a) : D?=0 =1 and D?=! =1,
Never takers (C' = n) : DZ=9 — 0 and D?=! = 0.

Consider the private schooling example presented earlier in IV Demonstration
1. Students who would enroll in private schools only if offered the voucher are

compliers (C' = ¢). Students who would enroll in private schools only if not
offered the voucher are defiers (C' = d). Students who would always enroll in
private schools, regardless of whether they are offered the voucher, are always
takers (C'= a). And, finally, students who would never enroll in private schools
are never takers (C' = n).

Analogous to the definition of the observed outcome, Y, the observed treat-

ment indicator variable D can then be defined as

D = D?%°4 (D% - D%z (7.17)
D?=0 4 27,

where k = D=1 — DZ=017  The parameter s in Equation (7.17) is the
individual-level causal effect of the instrument on D, and it varies across in-
dividuals if DZ=! — DZ=9 varies across individuals (i.e., if observed treatment
status varies as the instrument is switched from “off” to “on” for each individ-
ual). If the instrument represents encouragement to take the treatment, such
as the randomly assigned school voucher in IV Demonstration 1, then s can be
interpreted as the individual-level compliance inducement effect of the instru-
ment. Accordingly, kK = 1 for compliers and k = —1 for defiers. For always
takers and never takers, kK = 0 because none of them respond to the instrument.

Given these definitions of potential outcome variables and potential treat-
ment variables, a valid instrument Z for the causal effect of D on Y must satisfy
three assumptions in order to identify a LATE:

independence assumption: (Y1, Y% DZ=! DZ=0) 1 z, (7.18)
nonzero effect of instrument assumption: s # 0 for all 1, (7.19)

monotonicity assumption: either £ > 0 for all i or x <0 for all i. (7.20)

17 Note also that D has now been counterfactually defined with reference to DZ. Accord-
ingly, the definition of Y in Equation (7.16) is conditional on the definition of D in Equation
(7.17). Furthermore, although there is little benefit in doing so, it bears noting that this def-
inition of D could be structured analogously to the definition of Y in Equation (7.16) so that
the last line would become D = (+xZ+t, where ¢ = E[D?=C] and « = D?=°—E[D?=0]. The
parameter ¢ would then be the expected probability of being in the treatment if all individu-
als were assigned to the state “instrument switched off,” and ¢ would be the individual-level
departure from this expected value, taking on values 1 — E[DZ=9] and —E[D%=9] to balance
the right-hand side of Equation (7.17) so that D is equal to either 1 or 0.
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The independence assumption in Equation (7.18) is analogous to the assump-
tion that Cov(Z,¢) = 0 in the traditional IV literature [see the earlier discussion
of Equation (7.13)].'% It stipulates that the instrument must be independent
of the potential outcomes and potential treatments. Knowing the value of the
instrument for individual ¢ must not yield any information about the potential
outcome of individual ¢ under either treatment state. Moreover, knowing the
realized value of the instrument for individual ¢ must not yield any information
about the probability of being in the treatment under alternative hypothetical
values of the instrument. This latter point may well appear confusing, but it is
exactly analogous to the independence assumption of potential outcomes from
observed treatment status, discussed earlier for Equation (2.4). A valid instru-
ment predicts observed treatment status (D), but it does not predict potential
treatment status (DZ=7).

The assumptions in Equations (7.19) and (7.20) are assumptions about in-
dividual responses to shifts in the instrument. The assumption of a nonzero
effect of Z on D is a stipulation that the instrument must predict treatment
assignment for at least some individuals. There must be at least some compli-
ers or some defiers in the population of interest. The monotonicity assumption
then further specifies that the effect of Z on D must be either weakly positive
or weakly negative for all individuals ¢. Thus, there may be either defiers or
compliers in the population but not both.'?

If these three assumptions obtain, then an instrument Z identifies the LATE:
the average causal effect of the treatment for the subset of the population whose
treatment selection is induced by the instrument.? If x > 0 for all 4, then the
Wald estimator from Equation (7.5) converges to a particular LATE:

drv.waLp — E[6|C = d], (7.21)

which is equal to E[Y! — Y°|D?=! = 1, D=9 = (] and is therefore the average
causal effect among compliers. In contrast, if x < 0 for all ¢, then the Wald

18SUTVA must continue to hold, and now it must apply to potential treatments as well.
In addition, as we noted earlier, our presentation here follows Imbens and Angrist (1994),
Angrist and Imbens (1995), and Angrist et al. (1996). As we note later, IVs can be defined
in slightly different (in some cases more general) ways. But for now, we restrict attention to
the LATE literature, in which assumptions such as complete independence of the instrument
are utilized.

19Manski defines this assumption as a MTS assumption in order to distinguish it from his
MTR assumption (see Manski 1997; Manski and Pepper 2000). Vytlacil (2002) establishes
its connections to the index structure model laid out in Heckman and Vytlacil (1999), as
we discuss later. Heckman (2000), Heckman and Vytlacil (2005), and Heckman, Urzua, and
Vytlacil (2006) provide a full accounting of the relationships between alternative IV estimators.

20The LATE is often referred to as the complier average causal effect to signify that the
descriptor local is really defined by the restricted applicability of the LATE estimate to the
average causal effect of compliers. The following example does not use the compliance language
explicitly, except insofar as those who respond to the voucher are labeled compliers. The LATE
literature that we cite provides the explicit connections between LATE and the large literature
on noncompliance in randomized experiments (see in particular Imbens and Rubin 1997 and
citations therein).
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estimator from Equation (7.5) converges to the opposite LATE:
drv,waLp —— E[5|C = d], (7.22)

which is equal to E[Y! — Y| DZ=1 =0, D=0 = 1] and is therefore the average
causal effect among defiers. In either case, the treatment effects of always takers
and never takers are not informed in any way by the IV estimate.

In the next section, we will explain the claims in Equations (7.21) and (7.22)
in considerable detail through a more elaborate version of IV Demonstration 1.
But the basic intuition is straightforward. A valid IV is nothing more than
an exogenous dimension across which the treatment and outcome variables are
analyzed jointly. For a binary instrument, this dimension is a simple contrast,
which is the ratio presented earlier [see Equations (7.5) and (7.8)]:

Enlyilzi = 1] — Enlyi|zi = 0]
Enldilzi = 1) — En[d;|z; = 0]

The numerator is the naive estimate of the effect of Z on Y, and the denominator
is the naive estimate of the effect of Z on D.

To give a causal interpretation to this ratio of differences across the third
dimension indexed by Z, a model of individual treatment response must be
specified and then used to interpret the causal effect estimate. The model of
individual response adopted for a LATE analysis with a binary IV is the four-
fold typology of compliance, captured by the latent variable C defined earlier
for always takers, never takers, compliers, and defiers. Within this model, the
always takers and never takers do not respond to the instrument (i.e., they did
not take part in the “experiment” created by the IV, and thus their treatment
assignment is not determined by Z). This means that they are distributed in
the same proportion within alternative values of the instrument Z. And, as a
result, differences in the average value of Y, when examined across Z, are not
a function of the outcomes of always takers and never takers.?!

In contrast, defiers and compliers contribute all of the variation that gener-
ates the IV estimate because only their behavior is responsive to the instrument.
For this reason, any differences in the average value of Y, when examined across
7, must result from treatment effects for those who move into and out of the
causal states represented by D. If compliers are present but defiers are not, then
the causal estimate offered by the ratio is interpretable as the average causal
effect for compliers. If defiers are present but compliers are not, then the causal
estimate offered by the ratio is interpretable as the average causal effect for
defiers. If both compliers and defiers are present, then the estimate generated
by the ratio does not have a well-defined causal interpretation. In the following
demonstration, we will consider the most common case in the LATE literature

21In a sense, the outcomes of always takers and never takers represent a type of background
noise that is ignored by the IV estimator. More precisely, always takers and never takers
have a distribution of outcomes, but the distribution of these outcomes is balanced across the
values of the instrument.
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for which the monotonicity condition holds in the direction such that compliers
exist in the population but defiers do not.

IV Demonstration 2

Recall IV Demonstration 1 in Section 7.1. In an attempt to determine whether
private high schools outperform public high schools, a state education
department assembles a dataset on a random sample of 10,000 ninth graders,
{yi,di,zi}g’lo 00, where Y is a standardized test, and D is equal to 1 for stu-
dents who attend private high schools and 0 for students who attend public
high schools. Likewise, Z is equal to 1 for those who win a lottery for a $3000
school voucher and 0 for those who do not.

As noted earlier for IV Demonstration 1, a bivariate regression of the values
of y; on d; yielded a treatment effect estimate of 9.67 [see discussion of Equation
(7.7)]. An alternative IV estimate with Z as an instrument for D yielded an
estimate of 5.5 [see Equation (7.8)]. The hypothetical state officials relied on
the IV estimate rather than on the regression estimate because they recognized
that private school students have more advantaged social backgrounds. And
they concluded that the randomization of the voucher lottery, in combination
with the relationship between D and Z shown in Table 7.1, established the
voucher lottery outcome as a valid IV.

We stated earlier that the estimate of 5.5 is properly interpreted as a partic-
ular LATE: the average causal effect for the subset of all students who would
attend a private school if given a voucher but would not attend a private school
in the absence of a voucher. To explain the reasoning behind this conclusion,
we will first explain how the observed values for D and Y are generated as a
consequence of variation in Z. Then we will introduce potential outcomes and
use the treatment response model in order to explain why the IV estimate is
interpretable as the average causal effect for compliers.

Recall that we reported the frequency distribution of D and Z in
Table 7.1. The same information is presented again in Table 7.2, but now
also as probability values (where, for example, the term Pry [.,.] in the upper
left cell is equal to Pry [d; = 0, z; = 0] by plugging the row and column headings
into the joint probability statement). We also now report the expectations of
the outcome variable Y, conditional on D and Z.

First, consider how the least squares and IV estimates are calculated. The
coefficient of 9.67 on D in Equation (7.7) is equal to the naive estimator,
Enlyild; = 1] — En[yild; = 0]. One can calculate these two conditional ex-
pectations from the elements of Table 7.2 by forming weighted averages within
columns:

1 02

Enlyild; =1 = g 5500+ 75 " 5558 = 59667,
8 .08

Enlyildi =0] = 50 + 50 = 50.0.

.8+ .08 8+.08
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Table 7.2: The Joint Probability Distribution and Conditional Ex-
pectations of the Test Score for Voucher Winner by School Sector for
IV Demonstrations 1 and 2

Public school Private school
d;=0 d;i=1
Voucher loser zi=0 N = 8000 N = 1000
PI‘N [7] =.8 PTN [,] =.1
Voucher winner z;= 1 N =800 N =200
PI‘N [.7 ] = .08 PYN [., } =.02
Enly,l.,.] =50 Enly,|.,.] = 58

As shown earlier in Equation (7.8), the IV estimate of 5.5 is the ratio of two
specific contrasts:

Enlyilzi =1] — Exly;|z; = 0]  51.6 —51.111

= =5.5. 7.23

Both of these contrasts are calculated within the rows of Table 7.2 rather than
the columns. The contrast in the numerator is the naive estimate of the effect
of Z on Y. It is calculated as the difference between

08 02
Enlyilzi = 1] = =51.6 and
Nyl = 1] = o= 60+ o558 =516 an

8 1
EN[yi|Zi:0}:'8_’_'1504—.8_’_.160:51.111.

The contrast in the denominator is the naive estimate of the effect of Z on D.
It is calculated as the difference between

02

Enldi =1z =1] = — == — 2 and

~l 7 =11 = 02 an
1

Exnld; = 1]z = 0] = — 111,

N 7 =0l = 27

Thus, calculating the IV estimate in this case is quite simple and does not
require any consideration of the underlying potential outcomes or potential
treatments.

But, to interpret the IV estimate when causal effect heterogeneity is present,
the potential outcome and potential treatment framework are needed. Con-
sider the three identifying assumptions in Equations (7.18)—(7.20). Because the
voucher lottery is completely random, the voucher instrument Z is independent
of the potential outcome and potential treatment variables. Also, as just shown,
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Z predicts D, thereby sustaining the nonzero effect assumption. Thus, the first
two assumptions are satisfied as explained earlier for IV Demonstration 1.

Only the monotonicity assumption in Equation (7.20) requires a new justi-
fication. Fortunately, there is no evidence in the school choice literature that
students and their parents rebel against vouchers, changing their behavior to
avoid private schooling only when offered a voucher.?? Accordingly, it seems
reasonable to assume that there are no defiers in this hypothetical population
and hence that the monotonicity assumption obtains.

The joint implications of independence and monotonicity for the four groups
of individuals in the cells of Table 7.2 should be clear. Monotonicity allows us to
ignore defiers completely while independence ensures that the same distribution
of never takers, always takers, and compliers is present among those who win
the voucher lottery and those who do not. As a result, the proportion of always
takers can be estimated consistently from the first row of Table 7.2 and the
proportion of never takers can be estimated consistently from the second row
of Table 7.2 as

PI‘N[di = 1,21‘ = 0]

Prnsi—0] C=al (7.24)
Pry[d; =0,z = 1] 2 il — n
Pry|z = 1] Pr[C'=n]. (7.25)

For this example, the proportion of always takers is 1000/9000 = .111, and the
proportion of never takers is 800/1000 = .8. Because no defiers exist in the
population with regard to this instrument, these two estimated proportions can
be subtracted from 1 in order to obtain the proportion of compliers:

_ PI‘N[di = l,Zi = O] _ PI"N[di = O,Zi = 1]
Pry(z; = 0] Pry(z; = 1]

L Pr[C =] . (7.26)

For this example, the proportion of compliers in the populationis 1—.111—.8 =
.089. Applying this distribution of always takers, never takers, and compliers
(and a bit of rounding) to the frequencies from Table 7.2 yields the joint fre-
quency distribution presented in Table 7.3.

For Table 7.3, notice the symmetry across rows that is generated by the
independence of the instrument: 1000/7200 ~ 111/800 (subject to rounding)
and 800/9000 ~ 89/1000 (again, subject to rounding). Of course, there is one
major difference between the two rows: The compliers are in private schools
among voucher winners but in public schools among voucher losers.

Before continuing, two important points should be noted. First, it is impor-
tant to recognize that the calculations that give rise to the distribution of never
takers, always takers, and compliers in Table 7.3 are not determined solely by the
data. In a deeper sense, they are entailed by maintenance of the monotonicity

2280me parents might reason that private schooling is no longer as attractive if it is to be
flooded with an army of voucher-funded children. Thus, defiers might emerge if the vouchers
were widely distributed, and the monotonicity condition would then fail. In this case, how-
ever, the stable unit treatment value assumption that undergirds the entire counterfactual
framework would likewise fail, necessitating deeper analysis in any case.
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Table 7.3: The Distributions of Never Takers, Compliers, and Al-
ways Takers for IV Demonstration 2

Public school Private school

di=0 di=1

Voucher loser zi=0 7200 Never takers 1000 Always takers
800 Compliers

Voucher winner z;=1 800 Never takers 111 Always takers
89 Compliers

assumption. In the absence of that assumption, an unspecified number of de-
fiers would be in the table as well, making the calculation of these proportions
impossible.

Second, not all students in the dataset can be individually identified as al-
ways takers, never takers, or compliers. Consider the private school students
for this example. Of these 1200 students, 1000 students are known to be always
takers, as they have observed values of d; = 1 and z; = 0. The remaining 200
private school students are observationally equivalent, with observed values of
d; = 1 and z; = 1. We know, based on the maintenance of the monotonicity and
independence assumptions, that these 200 students include 111 always takers
and 89 compliers. But it is impossible to determine which of these 200 stu-
dents are among the 111 always takers and which are among the 89 compliers.
The same pattern prevails for public school students. Here, we can definitively
identify 800 students as never takers, but the 8000 public school students who
are voucher losers cannot be definitively partitioned into the specific 7200 never
takers and the 800 compliers.

Now, consider why the IV estimator yields 5.5 for this example, and then
why 5.5 is interpretable as the average effect of private schooling for those who
are induced to enroll in private schools because they have won vouchers. As
noted already, because Z is independent of Y and Y°, the same proportion
of always takers and never takers is present among both voucher winners and
voucher losers. The difference in the expectation of Y across the two rows of
Table 7.2 must arise from (1) the existence of compliers only in public schools in
the first row and only in private schools in the second row and (2) the existence
of a nonzero average causal effect for compliers.

To see this claim more formally, recall Equation (7.21), in which this par-
ticular LATE is defined. By the linearity of expectations and the definition of
an individual-level causal effect as a linear difference between y} and y?, the
average causal effect among compliers, E[d |6' = ¢], is equal to the expectation
E[Y'|C = ¢] minus the expectation E[Y°|C = ¢]. To obtain a consistent esti-
mate of the average causal effect for compliers, it is sufficient to obtain consistent
estimates of E[Y!|C = ¢] and E[Y°|C = ] separately and then to subtract the
latter from the former.
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Fortunately, this strategy is feasible because the contribution of these two
conditional expectations to the observed data can be written out in two equa-
tions and then solved. In particular, E[Y'|C' = ¢] and E[Y°|C = ¢] contribute
to the expectations of the observed outcome Y, conditional on D and Z, in the
following two equations:

BY|D=17=1] = & 7 _PT%C:)C[}O — ]E[Y1|(§ = (7.27)
Pr[C’ = a] L@ — g
+Pr[C~':c]+Pr[C~':a]E[Y ¢ =ad,
E[Y|D=0,7=0] = o z _Pr}[ii []é — ]E[Y°|C' = (7.28)
Pr[C = n]

ey s s L L

These two equations are population-level decompositions of the conditional ex-
pectations for the observed data that correspond to the two cells of the diagonal
of Table 7.2. These are the only two cells in which compliers are present, and
thus the only two cells in which the observed data are affected by the outcomes
of compliers.

How can we plug values into Equations (7.27) and (7.28) in order to solve
for E[Y'|C' = ¢] and E[Y°|C = ¢] and thereby obtain all of the ingredients of
a consistent estimate of E[6|C = ¢]? We have already shown from applying
the convergence assertions in Equations (7.24)(7.26) that the terms Pr[C = ¢],
Pr[C' = a], and Pr[C' = n] can be consistently estimated. And, in fact, these
are given earlier for the example data as .089, .8, and .111. Thus, to solve
these equations for E[Y|C' = ¢] and E[Y°|C = ¢], the only remaining pieces
that need to be estimated are E[Y'|C' = a] and E[Y°|C = n], which are the
average outcome under the treatment for the always takers and the average
outcome under the control for the never takers. Fortunately, the independence
and monotonicity assumptions guarantee that voucher losers in private schools
represent a random sample of always takers. Thus, E[Y!|C = a] is estimated
consistently by Enly;|d; = 1,2z; = 0], which is 60 for this example (see the
upper right-hand cell in Table 7.2). Similarly, because voucher winners in public
schools represent a random sample of never takers, F [YO|C’ = n] is estimated
consistently by En[y;|d; = 0, z; = 1], which is equal to 50 for this example (see
the lower left-hand cell in Table 7.2). Plugging all of these values into Equations
(7.27) and (7.28) then yields

089 . 8
=% py G =d 4 —" 2
8= a0t sPY €=+ 559755 (7.29)
089 . 111
50 = — 2 __EYOC = o] + ———50. 7.30
os0 PO =AY et (7.30)
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Solving Equation (7.29) for E[Y|C = ¢] results in 55.5 whereas solving Equa-
tion (7.30) for E[Y°|C = ¢] results in 50. The difference between these values is
5.5, which is the average causal effect for the subset of all students who would
attend a private school if given a voucher but would not attend a private school
in the absence of a voucher.?® The value of 5.5 yields no information whatso-
ever about the effect of private schooling for the always takers and the never
takers.?

Of course, the Wald estimate is also 5.5, as shown in Equations (7.8) and
(7.23). And thus, in one sense, the Wald estimator can be thought of as a quick
alternative method for calculating all of the steps just presented to solve exactly
for E[§ |C’ = ¢|. Even so, this correspondence does not explain when and how the
Wald estimator can be interpreted as the average causal effect for compliers. For
this example, the correspondence arises precisely because we have assumed that
there are no defiers in the population, based on the substance of the application
and the treatment response model that we adopted. As a result, the Wald
estimate can be interpreted as a consistent estimate of the average effect of
private schooling for those who comply with the instrument because it is equal
to that value under the assumed model of treatment response we are willing to
adopt.??

LATE estimators have been criticized because the identified effect is defined
by the instrument under consideration. As a result, different instruments define
different average treatment effects for the same group of treated individuals.
And, when this is possible, the meanings of the labels for the latent compliance
variable C' depend on the instrument, such that some individuals can be never
takers for one instrument and compliers for another.

Although from one perspective this is a weakness, from another it is the most
attractive feature of LATE estimation. For IV Demonstration 2, the IV estimate

23For completeness, consider how the naive estimate and the LATE would differ if all re-
mained the same except the stipulated value of 50 for Ey[d; = 0,2; = 0] in Table 7.2. If
En|[d; = 0,z; = 0] were instead 50.25, then the naive estimate would be 9.44 and the LATE
estimate would be 3.00. And, if Ex[d; = 0, 2; = 0] were instead 50.5, then the naive estimate
would be 9.21 and the LATE estimate would be .5. Thus, for the example in the main text,
compliers on average do no worse in public schools than never takers. But, for these two
variants of the example, compliers on average do slightly better in public schools than never
takers. As a result, the calculations in Equation (7.29) remain the same, but the values of
Equation (7.30) change such that E[Y?|C = ¢ is equal to 52.5 and 55.0, respectively. The
LATE estimate is therefore smaller in both cases because the performance of compliers in
public schools is higher (whereas the performance of compliers in private schools remains the
same).

24We can estimate E[Y1|C = a] and E[Y?|C = n] consistently with Ex[yi|d; = 1,z = 0]
and En[yi|d; = 0,z = 1]. But we have no way to effectively estimate their counterfactual
analogs: the mean outcome in public schools for always takers and the mean outcome in
privates schools for never takers.

25In other words, the Wald estimate of 5.5 is also a quick method for calculating an entirely
different causal effect under a different set of assumptions. If monotonicity cannot be defended,
then the IV estimate can be given a traditional structural interpretation, under the assumption
that the causal effect is constant for all individuals. In this sense, because the Wald estimate
has more than one possible causal interpretation, merely understanding how it is calculated
does not furnish an explanation for how it can be interpreted.



210 Chapter 7. Instrumental Variable Estimators

does not provide any information about the average effect for individuals who
would attend private schooling anyway (i.e., the always takers) or those who
would still not attend the private schools if given a voucher (i.e., the never
takers). Instead, the IV estimate is an estimate of a narrowly defined average
effect only among those induced to take the treatment by the voucher policy
intervention. But, for IV Demonstration 2, this is precisely what should be of
interest to the state officials. If the policy question is “What is the effect of
vouchers on school performance?” then they presumably care most about the
average effect for compliers.

The limited power of the LATE interpretation of an IV estimate is thus, in
some contexts, beneficial because of its targeted clarity. Moreover, when sup-
plemented by a range of additional IV estimates (i.e., different voucher sizes,
and so on), complementary LATE estimates may collectively represent an ex-
tremely useful set of parameters that describe variation in the causal effect of
interest for different groups of individuals exposed to the cause for alternative
(but related) reasons. Before summarizing the marginal treatment effect liter-
ature that more completely specifies the interrelationships among all types of
average causal effect estimators, we first lay out the implications of the LATE
perspective for traditional IV estimation.

7.4.2 Implications of the LATE Perspective for Traditional
IV Estimation

The LATE literature specifies a set of assumptions under which it is permissible
to give IV estimates an average causal effect interpretation using the counter-
factual model of causality. In this sense, the new framework is mostly a set of
guidelines for how to interpret IV estimates. As such, the LATE perspective
has direct implications for traditional IV estimation, as introduced earlier in
this chapter.

Monotonicity and Assumptions of Homogeneous Response

An important implication of the new LATE framework is that many conven-
tional IV estimates lack a justifiable average causal effect interpretation if the
IV does not satisfy a monotonicity condition. In the presence of causal effect
heterogeneity, a conventional IV estimator yields a parameter estimate that has
no clear interpretation, as it is an unknown and unidentifiable mixture of the
treatment effects of compliers and defiers.

For IV Demonstration 2, we showed that the estimate of 5.5 is applicable
to students whose families would change their child’s enrollment choice from a
public school to a private school for a $3000 voucher. Can an assumption be
introduced that allows the estimate of 5.5 to be be interpreted as informative
about other students who do (or who would) attend private schools?

Two variants of the same homogeneity assumption allow for such extrapo-
lated inference: the assumption that the causal effect is a structural effect that
is (a) constant across all members of the population or (b) constant across all
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members of the population who typically take the treatment.?® In its stronger
form (a), the assumption simply asserts that the causal effect estimate is equally
valid for all members of the population, regardless of whether or not the group
of students whose enrollment status would change in response to the voucher
is representative of the population of students as a whole. In its weaker form
(b), the assumption pushes the assumed constancy of the effect only half as
far, stipulating that the IV estimate is valid as an estimate of the treatment
effect for the treated only. For IV Demonstration 2, the weaker variant of the
homogeneity assumption is equivalent to asserting that the IV estimate pro-
vides information only about the achievement gains obtained by private school
students.

Although weaker, this second homogeneity assumption is still quite strong,
in that all individuals in private schools are considered homogeneous. In exam-
ples such as IV Demonstration 2, it is clear that there are two distinct groups
within the treated: always takers and compliers. And there is little reason to
expect that both groups respond in exactly the same way to private school-
ing. Thus, for examples such as this one, Manski (1995:44) argues that this
homogeneity assumption “strains credibility” because there is almost certainly
patterned heterogeneity in the effect among treated individuals.

One traditional way to bolster a homogeneity assumption is to condition on
variables in a vector X that can account for all such heterogeneity and then as-
sert a conditional homogeneity of response assumption. To do so, the Wald esti-
mator must be abandoned in favor of a two-stage least squares (2SLS) estimator.
As shown in any econometrics textbook (e.g., Greene 2000; Wooldridge 2002),
the endogenous regressors D and X are embedded in a more all-encompassing
X matrix, which is n x k, where n is the number of respondents and k is the
number of variables in X plus 2 (one for the constant and one for the treatment
variable D). Then, a matrix Z is constructed that is equivalent to X, except
that the column in X that includes the treatment variable D is replaced with
its instrument Z. The 2SLS estimator is then

drvasis = (Z'X) 12y, (7.31)

where y is an n x 1 vector containing the outcomes y;. The strategy is to
condition out all of the systematic variability in the observed response and
then to simultaneously use the instrument Z to identify a pure net structural
effect.

Is this strategy really a feasible solution? Probably not. If good measures of
all of the necessary variables in X are available, a simple OLS estimator probably
would have been feasible in the first place. Rarely would all possible necessary
variables be available, save a single variable that has a net additive constant
effect on the outcome. For IV Demonstration 2, a variable that measures “family
responsiveness to incentives” would be needed, and it would have to flawlessly
predict which families respond to $3000 vouchers and which families do not.

26This assumption is known as a constant-coefficient assumption, a homogeneous response
assumption, or a shifted outcome assumption (see Manski 1995, 2003).
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Other Difficulties of Interpretation

IV estimates are hard, if not impossible, to interpret as LATE estimates when
the instrument measures something other than an incentive to which individ-
uals can consciously respond by complying or defying. Instruments based on
exogenous field variation (as championed in Angrist and Krueger 2001 but crit-
icized in Rosenzweig and Wolpin 2000) can be particularly hard to interpret,
because the shifts in costs and benefits that the natural variation is supposed
to induce generally remain unspecified, thereby weakening a main link in the
narrative that explains why some individuals take the treatment in response to
the instrument.

Moreover, if two Vs are available, then the traditional econometric literature
suggests that they should both be used to overidentify the model and obtain
a more precise treatment effect estimate by the 2SLS estimator in Equation
(7.31). Overidentified models, in which more than one instrument is used to
identify the same treatment effect, generate a mixture-of-LATEs problem.

Consider the Catholic school example discussed earlier. Suppose that two
IVs are used: the share of the county that identifies as Catholic and a student’s
religious identification (as in Neal 1997). Even if these potential IVs have no
net direct effects on test scores (and further that the weak instrument problem
discussed earlier is not applicable), can a theoretically meaningful LATE inter-
pretation be given to the effect that the two instruments in this example jointly
identify? For the religious identification instrument, the suggested LATE inter-
pretation is the average effect of Catholic schooling among those who are more
likely to attend Catholic schools because they are Catholic. However, when
overidentified with the IV represented by the share of the local population that
is Catholic, this suggested LATE interpretation is inextricably mixed with an-
other LATE: the average effect of Catholic schooling among those who are more
likely to attend Catholic schools because of the small difference in tuition that a
high proportion of Catholics in the local population tends to generate. And thus
the estimated causal effect would be averaged across two very different groups
of hypothetical individuals, both of which likely deserve separate attention.?”

In sum, if causal effect heterogeneity is present, then a constant-coefficient
interpretation of an IV estimate is implausible. However, if the instrument
satisfies a monotonicity condition and can be conceptualized as a relatively
proximate inducement to take the treatment, then IV estimates can be given
LATE interpretations. These fine-grained interpretations can be very illumi-
nating about particular groups of individuals, even though they may provide
no information whatsoever about other groups of individuals in the population
(including other individuals who typically choose to take the treatment). Thus,

2TThere is also the possibility that, contra the justification of Hoxby (1996), the individuals
who are induced to attend Catholic schooling because a greater share of the population is
Catholic are not at all the same as those who are supposedly at the margin of a tuition-based
cost calculation. This is one basic criticism that Rosenzweig and Wolpin (2000) level against
all such naturally occurring IVs — there is often no evidence that the IV is inducing a group of
individuals to take the treatment, or if it is, that it is a group of individuals whose outcomes
are not particularly representative of the population of interest.
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the limited nature of IV estimators when interpreted as LATE estimators shows
both the potential strengths and weaknesses of IV estimation in general.

7.5 Two Additional Perspectives on the
Identification of Causal Effects with IVs

In this section, we discuss two additional perspectives on the identifying power
of IVs. The first shows how a perfect instrument can help to identify subtle
patterns of causal effect heterogeneity. The second perspective shows that a pu-
tative IV that does not satisfy a traditional assumption of no-direct-causation
nonetheless still retains some identifying power if the violation of that assump-
tion is monotonic.

7.5.1 Local IVs and Marginal Treatment Effects

Heckman and Vytlacil (1999, 2005), building upon Heckman (1997), have shown
that LATEs and many other average treatment effects can be seen as weighted
averages of more fundamental marginal treatment effects.?® Although the gen-
erality of their perspective is captivating, and the methodological content of the
perspective unifies many strands of the literature in causal effect estimation, we
summarize it only briefly here because the demands on data are quite substan-
tial. The all-powerful IV that is needed to estimate a full schedule of marginal
treatment effects will rarely be available to researchers.

The marginal treatment effect (MTE) perspective can be easily grasped with
only a slight modification to the set up of IV Demonstration 2. Instead of 10
percent of students receiving a voucher that is exactly equal to $3000, suppose
instead that these 10 percent of students receive a voucher that is a random
draw from a uniform distribution with a minimum of $1 and a maximum equal
to the tuition charged by the most expensive private school in the area.

For Heckman and Vytlacil, the size of each student’s voucher is a valid in-
strument Z, maintaining the same assumptions as we did for IV Demonstration
2 (i.e., Z is randomly assigned, Z has a nonzero effect on D, and the effect of
Z on D is monotonic). The monotonicity assumption is a little more complex
than before, but it stipulates that the true probability of taking the treatment
is higher for all individuals with values of Z equal to 2” rather than 2’ if 2/ >
z'. This fits cleanly into the notation introduced earlier by simply allowing Z
to be many valued.

Heckman and Vytlacil then define two related concepts: a local instrumental
variable (LIV) and an MTE. An LIV is the limiting case of a component binary
IV drawn from Z in which 2” approaches 2’ for any two values of Z such that
2" > 2'. Each LIV then defines a marginal treatment effect, which is the limiting
form of a LATE, in which the IV is an LIV.

28See also Heckman, Urzua, and Vytlacil (2006).
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Consider the more elaborate version of IV Demonstration 2 just introduced
here. One could form LIVs from Z by stratifying the data by the values of Z
and then considering adjacent strata. Given a large-enough sample for a large-
enough voucher program, LIVs could be constructed for each dollar increase
in the voucher. Each LIV could then be used to estimate a LATE, and these
LIV-identified LATEs could then be considered MTEs.

Heckman and Vytlacil (2005) show that most average causal effect estimates
can be represented as weighted averages of MTEs, identified by LIVs. But the
weighting schemes differ based on the parameter of interest, some of which, as
was the case in our regression chapter, may have no inherent interest. Heck-
man and Vytlacil therefore propose a more general strategy. They argue that
researchers should define the policy-relevant treatment effect (PRTE) based on
an assessment of how a contemplated policy would affect treatment selection.
Then, MTEs should be estimated with LIVs and weighted appropriately to
obtain the PRTE that is of primary interest.

There is much to recommend in this approach, and in fact it should not be
considered an approach relevant only to policy research. The approach is quite
easily extended to targeted theory-relevant causal effects, for which one wishes
to weight marginal causal effects according to a foundational theoretical model.
But, in spite of this appeal, the entire approach may well come to represent
a gold standard for what ought to be done rather than what actually can be
done in practice. If it is generally recognized that IVs satisfying the LATE
assumptions are hard to find, then those that satisfy LIV assumptions must be
harder still. In this regard, the next approach has an advantage.

7.5.2 Monotone IVs and Analyses of Bounds

Whereas the recent work of Heckman and his colleagues demonstrates how pow-
erful the conclusions of a study can be if a perfect and finely articulated IV is
available, Manski’s recent work probes the opposite territory, following on the
consideration in his early work of the capacity of traditional IVs to narrow the
no-assumptions bound (see Manski 1994, 1995). Manski and Pepper (2000)
investigate what can be learned about the average causal effect when both
standard and weaker IV assumptions are maintained. Their results are then
presented as a component of the general partial identification methodology laid
out in Manski (2003; see especially Chapter 9).

Manski and Pepper (2000) first define the traditional IV assumption in terms
of mean independence, after conditioning on a nuisance covariate X for gener-
ality. In our notation, the standard IV assumption of no direct effect of Z on Y
(by either Y'! or Y°) is written out as

EYYX,Z=2]=E[Y'X,Z=2", (7.32)

EY°|X,Z=2]=EY'|X,Z="2"], (7.33)

for any two values 2’ and z” of Z (and separately for strata defined by X).
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In other words, Equations (7.32) and (7.33) require that the expectations of
the potential outcomes be equal within strata defined by Z (conditional on X).
Accordingly, the bounds analysis discussed in Section 6.3 then applies within
each stratum of Z, and the bound on the average causal effect can then be
defined as the intersection of the bounds across the strata defined by Z. This
result implies that the no-assumptions bound can only be narrowed by an IV if
the no-assumptions bounds differ across strata defined by Z.

Manski and Pepper (2000) then consider a weaker assumption for an IV
analysis, known as a monotone IV (MIV) assumption. It states that for all
values of the instrument Z, in which 2z > 2/, the variable Z is an MIV if

EYYX,Z=2"1>EY'X,Z="7], (7.34)

EY°|X,Z=2"1>EY"|X,Z="2]. (7.35)

In Equations (7.34) and (7.35), the expected values of both potential outcomes
are weakly increasing in Z. Note that this usage of the concept of monotonicity
is quite different than for the LATE analysis described earlier and for the LIV
analysis of the last subsection. Here, monotonicity refers to the relationship be-
tween the instrument and the potential outcomes, not the relationship between
the treatment and the instrument. The latter type of assumption is referred
to as monotone treatment selection (MTS) by Manski and his colleagues (see,
again, our earlier discussion in Section 6.3).

To what extent does an MIV narrow the bound for the average causal effect
[or, in the words of Manski (2003), shrink the identification region for it]? The
short answer: No more than a traditional IV (and usually considerable less),
but still enough to have some identifying power.

It is easier to explain how an MIV bounds the expectation of each potential
outcome than it is to demonstrate directly how an MIV bounds an average
treatment effect that is a function of these expectations. Consider just the
determination of the upper bound for E[Y'!].

Under the standard IV assumption of mean independence, the upper bound
for E[Y'!] is equal to the smallest upper bound across the different subpopu-
lations defined by the instrument Z. More precisely, the upper bound is the
smallest value that E[Y!|Z = 2] takes on across all values z of Z.

In contrast, under the weaker MIV assumption, the upper bound for E[Y!]
is a weighted average of subpopulation upper bounds, for which each subpopu-
lation upper bound is defined across the values of Z. The implicit calculation of
this upper bound on E[Y!] can be described in a series of as-if algorithmic steps.
First, a value of Z is selected as z’. The upper bound for E[Y!], with respect to
2/, is set as the smallest value that E[Y!|Z = z] takes on across all values 2’ of
Z where 2" > 2'.?°  After this smallest upper bound is found with 2’ fixed, the

29Because this smallest upper bound relative to z’ is selected from a smaller subset of
possible upper bounds (only those greater than z’ rather than all values of Z), the resulting
weighted upper bound across 2’ is by definition no smaller (and usually larger) than would
be the upper bound suggested by a more stringent mean-independence IV assumption. As
a result, MIVs never shrink the identification region more than traditional IVs (and usually
considerable less).
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next value of 2’ is selected, and a smallest upper bound is found with respect
to this next z’. After all values of Z have been selected as z’, the upper bound
for E[Y1] is set as the weighted average of the subpopulation upper bounds
with respect to each value of Z, where the weights are the marginal distribution
of Z attached pointwise to the smallest upper bounds set with respect to all
2 of Z.

The determination of the lower bound on E[Y'!] under MIV is the opposite of
this procedure, in the sense that the greatest lower bound is first sought across
subpopulations of Z, restricting the range of Z over which one searches in each
step to be larger than the selected anchoring point 2z’ of Z. To then find the
bounds implied by an MIV for the average causal effect, the bounds on E[Y"]
must be calculated with the same basic procedure. These bounds can then be
substituted into the same basic framework introduced in Section 6.3, with the
marginal distribution of D used to characterize the known distribution across
treatment states.

Of course, as we noted in Chapter 6, the goal of a partial identification anal-
ysis is to invoke combinations of weak assumptions.>’ In that larger context,
Manski and Pepper (2000) note that MTS is equivalent to an MIV assumption
where the treatment variable is the MIV. The MIV approach to IV estimation
is at least as convincing of a method for practice as the more general partial
identification approach summarized in Chapter 6. Again, it is generally difficult
to eliminate values of 0 for treatment effects in this tradition, but the method-
ology can be used, as Manski shows, to convincingly reject extreme causal effect
assertions and build regions of credible inference to move the literature forward
in any given area. Moreover, it is presumably much easier to find MIVs in any
substantive area than IVs that allow for the identification of LATEs and or full
schedules of MTEs.

7.6 Conclusions

The impressive development of the IV literature in econometrics and statistics
in the past decade suggests a variety of recommendations for practice that dif-
fer from those found in the older IV literature. First, weak instruments yield
estimates that are especially susceptible to finite sample bias. Consequently,
natural experiments should be avoided if the implied IVs only weakly predict
the causal variable of interest. No matter how seductive their claims to sat-
isfy identification assumptions may be, resulting point estimates and standard
errors may be very misleading.

30In a prior version of their manuscript, Manski and Pepper use the MTR, MTS, and MIV
assumptions together to determine the bounds on the effect of education on the logged wages
of respondents for the National Longitudinal Survey of Youth. When they invoked MTR and
MTS assumptions, they found that the bound for the effect of a twelfth year of schooling
was [0,.199], that the bound for the effect of a fifteenth year of schooling was [0, .255], and
that the bound for the effect of a sixteenth year of schooling was [0,.256]. When they then
used the Armed Forces Qualify Test as an MIV while still maintaining the MTR and MTS
assumptions, they obtained narrower bounds respectively of [0,.126], [0,.162], and [0, .167].
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Second, if causal effect heterogeneity is present, a potential IV should be
used only if it satisfies a monotonicity condition. IV estimates should then be
interpreted as LATE estimates defined by the instrument.

Third, if causal effect heterogeneity is present, IVs should not be combined
in a 2SLS model (except in the rare cases in which measures of all of the vari-
ables that account for the causal effect heterogeneity are available). Instead, IV
estimates should be offered for those IVs that satisfy monotonicity conditions.
These alternative estimates should then be interpreted as LATE estimates and
reconciled with each other based on a narrative about why the causal effect
varies for different units of analysis who are exposed to the cause (and/or dif-
ferent levels of the cause) for different reasons.

Finally, IVs should be used to examine general patterns of causal effect
heterogeneity. Using IVs to estimate only the average treatment effect for the
treated is too narrow of a purpose, as there is likely a good deal of variation
in the treatment effect that is amenable to analysis with complementary IVs.
The possibilities for this type of analysis are most clearly developed in the new
literature on the identification of marginal treatment effects using local IVs.

Properly handled, there is much to recommend in the IV estimation strategy
for causal analysis. But, of course, IVs may not be available. We now turn to
other techniques that may allow for the identification and estimation of a causal
effect when a complete model of causal exposure cannot be formulated because
selection is determined by relevant unobserved variables.






Chapter 8

Mechanisms and Causal
Explanation

Social scientists have recognized for decades that adequate explanations for
how causes bring about their effects must, at some level, specify in empirically
verifiable ways the causal pathways between causes and their outcomes. This
requirement of depth of causal explanation applies to the counterfactual tradi-
tion as well. Accordingly, it is widely recognized that a consistent estimate of a
counterfactually defined causal effect of D on Y may not qualify as a sufficiently
deep causal account of how D effects Y, based on the standards that prevail in
a particular field of study.

In this chapter, we first discuss the dangers of insufficiently deep explana-
tions of causal effects, reconsidering the weak explanatory power of some of the
natural experiments discussed already in Chapter 7. We then consider the older
literature on intervening variables in the social sciences as a way to introduce
the mechanism-based estimation strategy proposed by Pearl (2000). In some
respects, Pearl’s approach is completely new, as it shows in a novel and so-
phisticated way how causal mechanisms can be used to identify causal effects
even when unblocked back-door paths between a causal variable and an outcome
variable are present. In other respects, however, Pearl’s approach is refreshingly
familiar, as it helps to clarify the appropriate usage of intervening and mediating
variables when attempting to deepen the explanation of a causal claim.

Independent of Pearl’s important work, a diverse group of social scientists
has appealed recently for the importance of mechanisms to all explanation in so-
cial science research. Although some of these appeals are not inconsistent with
the basic counterfactual approach (e.g., Reskin 2003; Sgrensen 1998), some of
the more extended appeals (e.g., Goldthorpe 2000) claim to be at odds with
some of the basic premises of the counterfactual model. We will argue instead
that there is no incompatibility between causal mechanisms and counterfactual
thinking. Finally, we draw on Machamer, Darden, and Craver (2000) and intro-
duce their concept of a mechanism sketch as well as the process of bottoming out
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in mechanistic explanation. This terminology helps to frame our final discussion
of how mechanisms can be used to sustain and deepen causal explanation, which
draws together Pearl’s front-door criterion with standards for sufficient causal
depth.

8.1 The Dangers of Insufficiently Deep
Explanations

Before considering how mechanisms can be used to identify causal effects, we
first discuss the importance of explanatory depth in counterfactual causal anal-
ysis. To do so, we return to the important critical work of Rosenzweig and
Wolpin (2000) on the limited appeal of many natural experiments.

As discussed in Chapter 7, the natural experiment literature in economics
uses naturally occurring forms of randomness as IVs in order to identify and
then estimate causal effects of long-standing interest. Initially, this literature
was heralded as the arrival of a new age of econometric analysis, in which it
now appeared possible to consistently estimate some of the causal effects of
greatest interest to economists, such as the effect of human capital investments
in education on earnings. Looking back on these bold claims, Rosenzweig and
Wolpin (2000:829-30) conclude, “The impression left by this literature is that if
one accepts that the instruments are perfectly random and plausibly affect the
variable whose effect is of interest, then the instrumental-variables estimates are
conclusive.” They then argue that these estimates are far from conclusive and,
in fact, are far more shallow than was initially recognized.

To somewhat overstate the case, the initial overconfidence of the natural
experiment movement was based on the mistaken belief that the randomness of a
natural experiment allows one to offer valid causal inference in the absence of any
explicit theory. One might say that some econometricians had been seduced by
a position implicit in some writing in statistics: We do not need explicit theories
in order to perform data analysis. Rosenzweig and Wolpin (2000) counter this
position by arguing that the theory that underlies any model specification is
critical to the interpretation of an estimate of a causal effect, and almost all
examples of estimation by natural experiments have model specifications that
make implicit theoretical claims.

Here, we provide an informal presentation of two of the examples analyzed
by Rosenzweig and Wolpin — the effect of education on earnings and the effect
of military service on earnings — each of which was already introduced and
discussed briefly in Chapter 7. We will use causal diagrams here in order to
demonstrate the issues involved.

Angrist and Krueger (1991, 1992) address the ability-bias issue in the esti-
mation of the causal effect of schooling on subsequent labor market earnings.
They assert that the quarter in which one is born is random but nonetheless pre-
dicts one’s level of education because of compulsory school entry and dropout
laws (see the quotation in Section 7.2 that gives the rationale). Angrist and
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Krueger’s estimates of the increase in log earnings for each year of education
fall between .072 and .102, values that are consistent with those found by others
using different methods (see Card 1999).

As discussed already in Chapter 7, the first limitation of their results is that
their IV estimates apply to only a narrow segment of the population: those
individuals whose schooling would have changed if their birthdate was in a dif-
ferent quarter. Again, this is a LATE estimate that applies to those individuals
whose years of schooling are responsive to school entry and dropout laws. No
one maintains that this narrow subpopulation is simply a random sample of all
individuals in the population of interest, and most would argue that Angrist
and Krueger estimated the returns to schooling only for disadvantaged youth
prone to dropping out of high school for other reasons. There are, however,
complications of how to interpret their estimates even for this subpopulation.

Consider the causal diagram presented in Figure 8.1, which is based loosely
on the critique offered by Rosenzweig and Wolpin (2000) and is a summary of
the debate that unfolded in the years following the publication of Angrist and
Krueger (1991). The causal diagram is not meant to represent a full causal
account of how education determines wages, but rather only the casual diagram
that is applicable to compliers. As discussed in Chapter 7, for this example,
compliers are those members of the population whose education is (or would
be) responsive to a switch in their quarter of birth. Thus, this diagram takes
it for granted that this particular LATE is the only parameter that is informed
by this analysis.'

For the causal diagram in Figure 8.1, schooling has both direct and indirect
effects on wages. Most important, as is maintained in the human capital liter-
ature, schooling is thought to have a negative indirect effect on wages through
work experience; going to school longer reduces the amount of work experi-
ence one acquires by any particular age. Accordingly, there is a causal pathway
from schooling to wages via work experience. The quarter-of-birth IV does
not provide a separate estimate of this distinct pathway, because a change in
schooling in response to one’s birthdate also changes work experience. At best,
the quarter-of-birth IV estimates only the total effect of schooling on wages,
not its direct effect.” The IV yields a LATE estimate that likely mixes to-
gether two distinct and countervailing causal pathways: a positive direct effect
of schooling on wages and a negative indirect effect via work experience. Given
the long-standing interest of economists in the interaction between investments
in formal schooling and the provision of on-the-job training, this total effect
estimate is regarded by many as an insufficiently deep causal account of the

IThis position is equivalent to assuming that a more encompassing DAG exists that is
applicable to the entire population and that the diagram in Figure 8.1 applies only to the
joint probability distribution for compliers.

2 Angrist and Krueger could deal with this problem by conditioning on a measure of work
experience, but in their data no such variable is available. The only alternative with their
data, which is common in the literature, is to attempt to untangle the effects by conditioning
on age (which is typically done within an age-heterogeneous sample). However, this form of
conditioning does not completely explain away the association between schooling and work
experience, as is widely recognized (see Card 1999).
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School

Wages
Quarter of Birth 4

Experience

Figure 8.1: A causal diagram for compliers with quarter of birth as an IV for
schooling.

effect of education on earnings (even if one is convinced, as we are, that learn-
ing about compliers in this case is still illuminating).

For a second example, consider the effect of military service on lifetime
earnings, as analyzed by Angrist (1990) and introduced in Section 7.2. The
question of interest here is whether military service provides important training
that increases later earnings in civilian life or rather whether military service is
simply a period of lost civilian work experience. Military service, however, is
not random. On the one hand, individuals must pass a mental ability test and
a health examination in order to enlist. On the other hand, individuals with
attractive schooling opportunities and civilian labor market opportunities are
less likely to enlist. To deal with the problem of nonrandom selection into the
military, Angrist (1990) considers individuals who were potentially eligible to
be drafted into the military by a lottery during the later stages of the Vietnam
War. To ensure that the draft was fair, the U.S. government decided to draft
individuals based on a lottery that selected birthdates (see our earlier discussion
in Section 7.2).

Consider now the causal diagram in Figure 8.2, again based on the summary
of critiques of the study compiled by Rosenzweig and Wolpin (2000). Here, there
are three issues to consider. First, as we noted for the last example, the draft
lottery identifies a LATE, and thus it is not applicable to the causal effect for
always takers (those who voluntarily enlist) and never takers (those who are
draft dodgers, those who failed the mental ability test, and those who failed the
physical examination). Accordingly, as for Figure 8.1, the causal diagram in
Figure 8.2 also applies to compliers only.

Second, note that there is a potential path from the draft lottery to civilian
experience/training. If this path exists, then the draft lottery is not a valid IV
for military service. As we noted earlier in Chapter 7, Heckman (1997) argues
that employers would be likely to invest less in individuals with unfavorable
lottery numbers. For example, it is plausible that employers may have given less
on-the-job training to those most likely to be drafted and/or may have assigned
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Figure 8.2: A causal diagram for compliers with the Vietnam draft lottery as
an IV for military service.

such individuals to short-run tasks that did not require the accumulation of
skill to master. If this effect exists, then the draft lottery would be an invalid
instrument for military service.

Third, and most important for our consideration here, there are four sep-
arate causal pathways between military service and wages. In addition to the
direct causal effect of military service on wages, there are two causal pathways
solely mediated by civilian experience and schooling respectively. Here, it is
generally thought that military service reduces civilian labor force experience
and schooling, both of which then reduce wages. But there is then a counter-
vailing effect of military service that snakes through the causal diagram in a
fourth causal pathway: Military service reduces schooling, which then increases
work experience, and which then increases wages. Because all four of these
pathways are activated by the shock induced by the draft lottery, Angrist’s only
resort is to assert that his estimates are for the total effect of military service on
wages. But, given the inherent interest in untangling how the military service ef-
fect interacts with both schooling and the accumulation of civilian experience, a
total effect estimate is insufficiently deep to end all future research, even though
this natural experiment was informative and an important contribution to the
literature.

Rosenzweig and Wolpin (2000) consider many other examples, all of which
emphasize the same basic points as these two examples. IV analyses of this type
provide estimates of very specific parameters that are often not of fundamental
interest because they apply to nonrandom segments of the population of inter-
est. Moreover, IV analyses typically provide total causal effect estimates, often
in substantive areas in which scholars have an inherent interest in the separable
causal pathways that generate the outcome in response to the cause. Under-
standing the separable causal pathways that make up these total effects requires
an explicit specification of additional intervening and mediating variables.

Now consider these two issues more generally, moving away from IV esti-
mates toward more general estimates of average causal effects. Consider an
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optimistic scenario for which one obtains what all agree is a consistent estimate
of the average causal effect of D on Y (as warranted, for example, by a con-
sensus that one has conditioned on all variables that block all back-door paths
from D to Y'). Even in this scenario, in which the causal claim is valid by the
standards of the counterfactual model, there are two related ways in which such
an estimate can be regarded as insufficiently deep.

First, the average causal effect may not be a parameter of any fundamental
interest. This point has been made most forcefully by Heckman (2000, 2005).
If treatment effects are heterogeneous, which often is the case as we have noted
in prior chapters, then the average causal effect will be population specific.
To oversimplify the argument, it may be that what is of fundamental interest
are conditional average treatment effects of some form (perhaps even just the
average treatment effect for the treated and the average treatment effect for
the untreated). The overall average treatment effect is then simply a weighted
average of any such underlying effects, in which the weights are a function of
whatever pattern of causal exposure may prevail in the particular population
from which one’s sample is drawn. Heckman and many others note that the
average causal effect of D on Y may be of limited use for predicting the out-
comes of policy interventions, either for new populations or in different contexts.
But the point is in fact much more general and is applicable outside of policy
research. Average causal effects are tied to particular populations, and quite
often social scientists desire explanations for outcomes that can be modified in
straightforward ways when populations shift or contexts change in ways that
are separable from the fundamental conditional average causal effects.

The second issue, which is our primary focus in the remainder of this chap-
ter, is that a consistent estimate of the average causal effect of D on Y does not
necessarily entail any particular mechanism that explains how D brings about
Y. If a theory suggests why and how D brings about Y, then merely providing
evidence of the amount that Y can be expected to shift in response to an inter-
vention on D does not then provide any support for the underlying theory. If
an assessment of the support for the underlying theory is desired, then a more
narrowly focused analysis of the putative causal pathways that relate D to Y
must be undertaken. We present Pearl’s approach to this type of analysis in the
next section, which we see as consistent with decades of research in the social
sciences, although appreciably more clear as a guide for future research. We
first return to the classic perspective on the importance of intervening variables
in causal explanation.

8.2 Explanation and Identification of Causal
Effects by Mechanisms

As we noted earlier, social scientists have generally considered the explication
of mechanisms through the introduction of mediating and intervening variables
to be essential to sound explanatory practice in causal analysis. Duncan and his
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colleagues wrote in their 1972 book, Socioeconomic Background and Achieve-
ment:

. much of the scientific quest is concerned with the search for in-
tervening variables that will serve to interpret or explain gross asso-
ciations presumed to reflect a causal relationship. (Duncan, Feath-
erman, and Duncan 1972:12)

The words “interpret” and “explain” are implicit references to the language
of social research that is usually associated with Paul Lazarsfeld. More than
two decades earlier, Kendall and Lazarsfeld (1950) had distinguished between
alternative types of elaboration that can be carried out when investigating an
association between a causal variable X and an outcome variable Y.* Each
type of elaboration involves the introduction of a test factor (or test variable)
T, after which the association between the causal variable X and the outcome
variable Y is calculated for each value of T

Kendall and Lazarsfeld considered two types of M-elaboration, which arise
when the partial association between X and Y within strata defined by T is
smaller than the original total association between X and Y.* The two pos-
sibilities are determined by whether 7" precedes X in time according to the
maintained theory:

1. If T follows X in time, then an M-type elaboration can be represented
by the diagram X — T — Y (Kendall and Lazarsfeld 1950:157). This
type of elaboration is referred to as an interpretation of the association
between X and Y, using a test factor that is an intervening variable.

2. If T precedes X in time, then an M-type elaboration can be represented by
the diagram X «— T — Y (Kendall and Lazarsfeld 1950:157). This type
of elaboration is referred to as an explanation of the association between
X and Y, using a test factor that is an antecedent variable.

Although Kendall and Lazarsfeld did not argue that causality can be established
by interpretation, and although they use the word explanation in a rather limited
sense (and with a different usage than Duncan and colleagues, as just quoted),
Kendall and Lazarsfeld were clearly interested in mechanistic accounts of causal
effects. For example, they wrote:

3The citations here are for a discussion of Samuel Stouffer’s research in The American
Soldier (which we also discuss in Chapter 1). Patricia Kendall was the lead author for this
piece, and yet she is almost never cited in the derivative literature as a contributor to this
language. Because it is often written that Lazarsfeld presented and discussed this basic
typology in many places, it is possible that it is fair to credit him disproportionately for these
ideas. Our reading of the literature, however, does not yield a clear interpretation. But it
does suggest to us that the Kendall has received less credit than she deserved.

4They also lay out a third form of elaboration, referred to as P-type elaboration (or spec-
ification). Here, the goal is to focus “on the relative size of the partial relationship [between
X and Y within strata of the test factor T in order to specify the circumstances under which
the original relation is more or less pronounced” (Kendall and Lazarsfeld 1950:157). This type
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Figure 8.3: A causal diagram in which M and N represent an isolated and
exhaustive mechanism for the causal effect of D on Y.

When we interpret a result we try to determine the process through
which the assumed cause is related to what we take to be its effect.
How did the result come about? What are the “links” between
the two variables? Answers to these questions are provided in the
interpretation of the result. (Kendall and Lazarsfeld 1950:148)

A long tradition of empirical social science exists that follows these basic ideas,
in which a central goal of investigation is the search for mediating, intervening,
and processual variables that can account for an association that is thought
to be causal. Even so, as we noted in Chapter 5, applications of the all-cause
regression specification approach gradually obscured this goal, leading over the
1980s and 1990s to more frequent attempts to offer single-equation models in
which all putative causes of an outcome are evaluated next to each other.

Fortunately, Pearl (2000) has developed an inside—out perspective on the
identifying power of mechanisms that can help the social sciences recapture the
inclination to pursue mechanistic explanation of putative causal effects. Pearl’s
approach goes well beyond Lazarsfeldian elaboration. Instead, he shows how one
can consistently estimate the effect of a causal variable on an outcome variable
by estimating the effect as it propagates through an isolated and exhaustive
mechanism.

Consider the graph in Figure 8.3. For this DAG, the variable U is unob-
served, and a back-door path D « U — Y exists between D and Y. As a
result, identification by the back-door criterion, as presented in Chapter 3, is
infeasible. However, the variables M and N intercept the full causal effect of
D on Y, and thus these two variables represent the full mechanism (or set of
causal pathways) that relates D to Y. (Again, recall that there is no assump-
tion of linearity in a DAG, and thus this model is consistent with any nonlinear
function in D, M, N, and Y".)

of elaboration is appropriate when the test factor is related to either X or Y but not both.
We ignore this form of elaboration here, as we focus on variables that are related to both the
causal and outcome variables.
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For this graph, observation of M and N identifies the causal effect of D on
Y by a double application of the back-door criterion, first for the estimation
of the causal effects D — M and D — N and then for the estimation of the
causal effects M — Y and N — Y. For the first two causal effects, note that
there are no back-door paths between D and both M and N. Therefore one
can consistently estimate D — M and D — N with their simple unconditional
associations.

For M — Y and N — Y, there are two back-door paths to consider for each
effect, but in all cases these back-door paths can be blocked by conditioning on
D. For example, for the causal effect of M on Y, the two back-door paths are
M—D«—U-—=Y and M «— D — N — Y, both of which are blocked by D.

Because one can obtain consistent estimates of the casual effects of D on
both M and N and, in turn, of both M and N on Y, one can calculate the
full causal effect of D on Y by combining these causal effect estimates. The
presence of the back-door path D «— U — Y is inconsequential.

The front-door criterion is very simple, as it is nothing more than a straight-
forward two-step application of the back-door criterion introduced in Chapter 3.
The front-door criterion, however, does not give direct guidance on how deep an
identifying mechanism must be in order to qualify as a sufficiently deep causal
explanation. Before addressing the latter issue, we clarify in the remainder of
this section what the requirements of isolation and exhaustiveness entail.

The Assumption That the Mechanism is Isolated and Exhaustive

The crucial assumption of this approach, as we have noted already, is that the
mechanism (or set of variables that comprise the mechanism) is isolated and
exhaustive. To see the importance of isolation first, consider the alternative
graph presented in Figure 8.4. Here, the variable U is again unobserved, and
thus the back-door path D «— U — Y is unblocked. Also, the variable M
intercepts the full causal effect of D on Y. But the mechanism represented by
M is not isolated because U has a causal effect on M. This contamination
from U generates a new back-door path from M to Y as M «— U — Y. As a
result, the causal effect of M on Y is not identified because D does not block
all back-door paths from M to Y. And, even though a consistent estimate of
the effect of D on M can be obtained, a consistent estimate of the effect of D
on Y is not available.

This example also shows what is crucial in the criterion of isolation. The
mechanistic variables must be isolated from otherwise unblocked back-door
paths so that the back-door criterion can be applied twice in order to recover
the full causal effect from the data. For Figure 8.4, if U were instead an ob-
served variable, then the back-door path M «— U — Y could be blocked by
conditioning on U. This would allow for the estimation of the effect of M on
Y by standard conditioning techniques. And, as a result, the causal effect can
be estimated consistently by first estimating the causal effect D — M with
their unconditional association and then estimating the causal effect M — Y
by conditioning on U.
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Figure 8.4: A causal diagram in which M is not an isolated mechanism for the
causal effect of D on Y.

More generally, isolation comes in strong and weak forms, both of which are
sufficient. For the strong form considered until now, no back-door paths exist
between the mechanistic variables and the outcome variable that are not blocked
by D. For the weak form, back-door paths do exist between the mechanistic
variables and the outcome variable that are not blocked by D, but each of
these back-door paths can then be blocked by conditioning on another observed
variable in the graph other than D. This distinction clarifies that one must be
concerned only about the dependence of mechanistic variables on components of
back-door paths that cannot be blocked by conditioning on observed variables.

The implication of the necessity of assuming isolation is that a very good
understanding of the back-door paths between the causal variable and the out-
come variable is needed to justify the assumption that none of the components
of unblockable back-door paths have direct effects on the mechanism. If the
isolation assumption cannot be maintained, then the mechanistic variables are
similarly affected by the same set of dependencies that invalidate basic back-
door conditioning as a strategy to identify the causal effect.

Now consider the requirement that the mechanism is exhaustive. For the
graph in panel (a) of Figure 8.5, suppose, again, that there is an unblocked
back-door path and also two distinct causal pathways from D to Y, which are
represented by the two variables M and N. Finally, unlike for Figure 8.3,
suppose that N is unobserved.

In this case, the causal pathway from D to Y via N cannot be estimated,
and thus the full causal effect of D on Y cannot be estimated by front-door
conditioning. If one were to assert a mistaken assumption that M is the full
causal mechanism (for example, by substituting a back-door path D «— N — Y
for the genuine causal pathway D — N — Y'), then one can obtain a causal
effect estimate. But the causal effect of D on Y will then be underestimated
(assuming all causal effects are positive, etc.) because the part of the causal
effect generated by the pathway D — N — Y is attributed to a mistakenly
asserted back-door path D «— N — Y.
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Figure 8.5: Causal diagrams in which one pathway in an isolated and exhaustive
mechanism is unobserved.

Relaxing the Assumption That the Mechanism is Exhaustive

For the example depicted in panel (a) of Figure 8.5, a mechanism-based anal-
ysis may still be useful because an isolated piece of the causal effect can still
be estimated. Even though N is unobserved, the causal effect of D on M is
identified by their observed association because there are no back-door paths
from D to M. And, as before, the causal effect of M on Y is identified because
all back-door paths from M to Y are blocked by D. One can thereby obtain a
consistent estimate of the causal effect of M on Y by conditioning on D, which
guarantees that the part of the causal effect that travels through the pathway
D — M — Y can be estimated consistently. This is an important result, es-
pecially for practice, because identifying and consistently estimating a distinct
causal pathway can be very useful, even if one cannot in the end offer a causal
effect estimate of the full effect of the causal variable on the outcome variable.”

But, even though this partial estimation result is very useful, there is an
important implicit assumption that is hidden by this example: The unobserved
causal pathways cannot interact with the observed causal pathways. To see
the complications that such an interaction could produce, consider the graph
in panel (b) of Figure 8.5. For this graph, the mechanism is isolated, but the
unobservable variable N has a causal effect on M. As a result, the causal
pathway from D through N to Y is “mixed in” with the causal pathway from D
through M to Y. In this situation, the effect of M on Y is not identified. Two
back-door paths between M and Y are still blocked by D: M «— D «— U — Y
and M «— D — N — Y. However, there is now a third back-door path between

5Note, further, that one can then assess the portion of the total variation in D and Y that
can be attributed to the pathway through M. This calculation can be useful, but it does
not identify the amount of the causal effect that is explained by M. The problem is that the
association between D and Y that is not attributable to M cannot be apportioned across the
two unblocked paths D« U — Y and D - N — Y.
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M and Y that cannot be blocked by conditioning on D or any other observed
variable. This new path is M «— N — Y, and it remains unblocked because its
only intermediate variable N is unobserved (and is not a collider). Not only is
it impossible to estimate the effect of D on the unobserved variable N, but the
variable N may transmit to both M and Y its own exogenous variation that is
completely unrelated to D and U. Without recognition of this outside source of
dependence, one could mistakenly infer that the causal pathway from D to Y
via M is much more powerful than it is (assuming all causal effects are positive,
etc.).

As these simple diagrams show, if one wants to use a mechanism-based
strategy to point identify the full effect of a causal variable on an outcome
variable, one must put forward an isolated mechanism that is also exhaustive.
The exhaustiveness requirement can be relaxed if one is satisfied with identifying
only part of the causal effect of interest. But, to secure partial estimation of this
form, one must be willing to assume that the observed portion of the mechanism
is completely separate from the unobserved portion of the mechanism. And, to
assert this assumption, one typically needs to have a theoretical model of the
complete and exhaustive mechanism, even though parts of it remain unobserved.

In sum, Pearl’s front-door criterion represents a powerful and original set of
ideas that clarifies the extent to which a mechanism can be used to identify and
estimate a causal effect. And, by approaching the causal inference predicament
from the inside—out, the approach helps to shape the question of whether a
causal claim qualifies as a sufficiently deep explanation. Rather than estimating
a causal effect by some form of conditioning (or with a naturally occurring
experiment) and then wondering whether a mechanism can be elaborated to
show how the effect comes about, Pearl instead shows that, if we can agree
on the variables that constitute an isolated and exhaustive mechanism (in some
configuration), then we can estimate the causal effect from its component causal
pathways.

The approach cannot be taken out of context, though, lest one claim too
much explanatory power for a nonisolated and/or nonexhaustive mechanism.
And, at the same time, it must be acknowledged that even a front-door-identified
causal effect may not be explained deeply enough by the isolated and exhaustive
mechanism that identifies it, for any such mechanism may still be too shallow for
a particular substantive area. To consider these issues further, we now turn to
recent social scientific writing on mechanisms, wherein the connections among
theory, generative mechanisms, and modes of explanation have been fruitfully
engaged.

8.3 The Appeal for Generative Mechanisms
To some extent inspired by the work of Jon Elster (e.g., Elster 1989), but more

generally by their reading of past successes and failures in explanatory inquiry in
the social sciences, Peter Hedstrom and Richard Swedberg convened a group of
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leading scholars to discuss a reorientation of explanatory practices in the social
sciences. A collection of papers was then published in 1998 as Social Mech-
anisms: An Analytical Approach to Social Theory. At the same time, John
Goldthorpe developed his case for grounding all causal modeling in the social
sciences on the elaboration of generative mechanisms. His proposal was pub-
lished in 2000 as On Sociology: Numbers, Narratives, and the Integration of
Research and Theory.® Most recently, Peter Hedstrom has laid out in consid-
erable detail his full program of a mechanism-based social science in his 2005
book, Dissecting the Social: On the Principles of Analytical Sociology. To orient
the reader to this alternative mechanism-based perspective, we will present the
slightly different perspectives of both Goldthorpe (2000, 2001) and Hedstrém
(2005).

Goldthorpe develops his proposal by first attempting to drive a wedge be-
tween the counterfactual model, which he labels “causation as consequential
manipulation,” and his alternative mechanistic model of causality. To develop
his argument, he advances the claim that the counterfactual model is irretriev-
ably tied to actual experimental manipulations of causal variables. Goldthorpe
(2001:6) writes, “... the crux of the matter is of course the insistence of Rubin,
Holland, and others that causes must be manipulable, and their unwillingness
to allow causal significance to be accorded to variables that are not manipula-
ble, at least in principle.”” [See our discussion of this issue in the final chapter,
in which we present the position of Woodward (2003) that this argument is
incorrect.] Goldthorpe also argues, citing the work of statisticians Cox and
Wermuth (1996; also Cox 1992), that the counterfactual model too easily set-
tles for causal claims of insufficient depth that do not account for how causes
brings about their effects (a point that is clearly supported by our presentation
of the natural experiment literature discussed earlier in this chapter).

With this criticism of the counterfactual model in mind, Goldthorpe then
proposes his alternative recommendation:

The approach to causal analysis that is here proposed ... is pre-
sented in the form of a three phase sequence: (i) establishing the
phenomena that form the ezplananda; (ii) hypothesizing generative
processes at the level of social action; and (iii) testing the hypothe-
ses. (Goldthorpe 2001:10)

6A chapter from his book was also published in 2001 in the European Sociological Review
as “Causation, Statistics, and Sociology,” which then received comments from a variety of
scholars, including the statisticians David Cox and Nanny Wermuth (whose response we will
discuss later). Our citations are to the 2001 piece.

"It is unclear from this passage what Goldthorpe means by “in principle.” However, on the
next page of the article, he offers an example that reveals that his conception of a manipulation
can be very narrow. Following an example of Holland (1986), he introduces mechanistic
variables and argues that in so doing he has produced a causal narrative that has nothing
to do with hypothetical manipulations/interventions and hence cannot be represented in a
counterfactual framework. The argument seems to be that the mechanistic variables are
nonmanipulable because they are typically voluntary decisions of an individual.
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Goldthorpe then proceeds to lay out the basic contours of the first two steps,
arguing that the most useful mechanisms in the social sciences are those that
are based on rational choice theory (because these are sufficiently microscopic
and focus on the actions and beliefs of individuals). He then explicates the third
step of his approach, which is his requirement that one must test hypotheses
suggested by the generative mechanism that one has proposed.® And here, he
notes that generative causal accounts of the sort that he prefers can never be
definitively verified, only indirectly supported through repeated validation of
entailed hypotheses.

Consider now the more recent appeal for mechanisms offered by Peter Hed-
strom (2005). Unlike Goldthorpe, Hedstrém does not confront the counterfac-
tual causality literature directly. He instead develops an argument that sug-
gests the following orienting principle: “The core idea behind the mechanism
approach is that we explain not by evoking universal laws, or by identifying
statistically relevant factors, but by specifying mechanisms that show how phe-
nomena are brought about” (Hedstrém 2005:24). Hedstrom arrives at this posi-
tion from two different directions. First, he signs on to the dominant position in
the philosophy of science that an explanation of how a phenomenon is brought
about must necessarily be a causal account of some form that does not rely
on unrealistic presuppositions of the existence of invariant general (or covering)
laws (see Hedstrom 2005:15-20). But he also justifies the principle by criticizing
regression-based causal models in social science (see Hedstrom 2005:20-3):

Such statistical analysis is often described as a form of ‘causal analy-
sis’. If a factor appears to be systematically related to the expected
value or the conditional probability of the outcome, then the factor
is often referred to as a (probabilistic) ‘cause’ of the outcome. Al-
though it makes little sense to quibble over words, I would like to
reserve the word cause for a less casual notion of causality. (Hed-
strom 2005:23)

Like Goldthorpe, Hedstrom also lays out a script for the construction of mecha-
nisms, which is similar in its appeal to the principles of methodological individ-
ualism (although he steps back from Goldthorpe’s strict reliance on subjective
expected utility forms of rational choice theory, noting the promise of agent-
based models, and similar approaches). Most importantly, Hedstrém does not
advocate the indirect testing of mechanisms in the way that Goldthorpe does.
Instead, he defends the explanatory utility of mechanisms in a much more gen-
eral way:

Mechanisms should be seen as theoretical propositions about causal
tendencies, not as statements about actualities. An explanation may

8By our reading, Goldthorpe ends up back at the counterfactual model at this point. His
defense against such a reading is “... while it might seem that, at this stage, attention does
after all come to focus on the effects of — given — causes rather than on the causes of effects,
this is within the context not of randomized experimental design but of (what should be) a
theoretically informed account of a generative process that is subject to ongoing evaluation.”
(Goldthorpe 2000:13)
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be perfectly correct if understood as a proposition about a causal
tendency, and yet it may be inadequate for predicting actual out-
comes if other processes are also at work. ... Since it is the rule rather
than the exception that concretely observed phenomena are influ-
enced by several different processes, testing a theory by examining
the accuracy of its predictions is likely to conflate the truth or rel-
evance of the postulated mechanism with the importance of other
processes, and this may lead us to mistakenly reject perfectly appro-
priate causal accounts. (Hedstrom 2005:108)

What, then, is the explanatory status of mechanisms that are “theoretical propo-
sitions about causal tendencies”? Here, Hedstrom seems to argue three basic
points: (1) An explanation must be a causal account; (2) causal accounts must
include mechanisms; (3) mechanisms may or may not explain actualities. The
direct implication of this position is that a valid explanation does not necessarily
have to explain actualities, only causal tendencies.’

In our view, Goldthorpe and Hedstrom have developed a wonderful appeal
for the need to construct sufficiently deep theories of social processes. Their
work is filled with much insight on a variety of promising ways to formulate
plausible theoretical mechanisms. And they have helped to further convince
many social scientists that specifying the social processes that account for how
causes bring about their effects is a central goal of analysis. It is therefore
unsurprising that this new wave of scholarship has inspired a movement of sorts
in sociology and political science, which we and many others regard as both
promising and very healthy for theory construction in the social sciences.'’

But, to be seen as blueprints for explanatory causal analysis, both of these
particular perspectives need to be augmented. And we would argue that they
can be usefully extended by embracing the counterfactual model of causality
more directly. We explain this position in the remainder of this section, first
by offering a slightly different reading of recent developments in the philosophy
of science and then by raising the issue of how social scientists can retain the
capacity to adjudicate between competing mechanistic accounts of causal effects.

91t is unclear from the foregoing passage what the problematic “other processes” are meant
to be. Clearly, they must come in two different forms: (1) other mechanisms that are com-
pletely independent of the postulated mechanism of primary interest or (2) other mechanisms
that interact with the postulated mechanism of primary interest. If one is estimating the ef-
fects of a cause, it is only the latter that are problematic for the evaluation of mechanisms, and
hence for the evaluation of causal accounts based on mechanisms. See our earlier discussion
of partial identification by the front-door criterion.

10But we are somewhat more traditional in favoring mechanisms that are formal models,
as we are less convinced of the utility of many simulation-based methods of theory construc-
tion (see Hedstrom 2005:76-87, 131-6, 149 on the appeal of such techniques). We agree
with Humphreys’ (2004:132) caution: “Agent-based models are a powerful addition to the
armory of social scientists, but as with any black-box computational procedures, the illusion
of understanding is all too easy to generate.”
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Philosophy of Science and Explanation by Mechanisms

As we noted at the beginning of this chapter, the appeal to mechanisms as
elaborations of causal claims has been entrenched in the sociological literature
for many decades, and we suspect that this emphasis is true of all of the social
sciences.'! Where perhaps the focus on generative mechanisms is new is in the
proposed elevation of their status to the object of primary investigation. This
elevation is not unrelated to shifting currents in the philosophy of science.

Some proponents of a mechanism-based social science have drawn inspira-
tion from the demise of covering law models of explanation in the philosophy
of science (e.g., Gorski 2004, Hedstrom 2005). The covering law model, as
most famously explicated by Carl Hempel, maintains that all valid explanations
can be formulated as logico-deductive entailment from invariant general laws.'?
Since 1970 at least, the model has received near-continuous challenges to its
basic premises (see Godfrey-Smith 2003, Salmon 1989, and Woodward 2003).
The presupposition that general and exceptionless laws exist and that can be
used to warrant all valid causal claims cannot be sustained in most scientific
disciplines, and certainly not in the social sciences.

In response, a variety of alternative models of scientific explanation have
arisen, with realist models attracting the largest number of adherents (see Psil-
los 1999). In general, realist models grant ontological status to unobserved
quantities (sometimes conferring provisional truth status on them). Most re-
alist models reject causal nihilism and affirm that valid scientific explanation
must necessarily be grounded in causal accounts of some form. Especially when
invoked for the social sciences, realist models admit the possibility of inherent
heterogeneity of causal relationships — in time, space, and within populations.
But the depth of the appeal to unobservables varies across types of realist mod-
els, as does the level of provisional truth status conferred upon unobservables.

What we wish to emphasize in this section is how uneasily the focus on
generative mechanisms sits within this new terrain. As we have just noted, the

M Hedstrom and Swedberg (1998) take a different reading of the literature that followed
from the Lazarsfeldian tradition, focusing critical attention on the work of Duncan and his
colleagues (see their quotation on page 9). Then, in his 2005 book, Hedstrom criticized
Duncan’s models of socioeconomic status (see pages 102-3). As is clear in our main text,
our reading of Duncan’s record on this issue is somewhat less negative, although we noted in
Chapter 1 that it is hard to pin down exactly what Duncan recommended in the theory and
the practice of causal modeling. Hedstrém’s negative opinion, however, is certainly applicable
to much scholarship that followed Duncan’s lead, a position that we suspect Duncan too would
have agreed with and which we note in Chapter 1.

Goldthorpe (2001) also has a different reading of Lazarsfeld’s method of elaboration. He
argues that the “robust dependence” tradition of causal analysis, which he regards as exem-
plified by Lazarsfeld’s work, was based almost entirely on the search for prior causes that
can explain away correlations (see Goldthorpe 2001:2-3). This seems inconsistent with what
Kendall and Lazarsfeld (1950) refer to as interpretation, as we noted earlier.

12We do not attempt to give a full summary of the fall of covering law models, as many
accessible texts exist in philosophy (see citations in the main text) and others that are written
for social scientists alone (e.g., Gorski 2004 and Hedstrom 2005). Nor do we give a full
explication of the variety of positions that have replaced the covering law model, as these too
are well summarized elsewhere (see citations in the main text for realist models in particular,
as well as the variety of naturalist positions that contend with them).
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appeal for mechanistic explanation in the social sciences is attractive partly
because it is claimed that it does not rest on the existence of general laws.
But some philosophers who endorse the mechanisms position disagree with this
claim, arguing that laws are still essential, perhaps even constituting the defining
characteristic of what a mechanism is. For example, having written on the
role of mechanisms in scientific explanation for several decades, Mario Bunge
(2004:207) concludes in a recent article, “No law, no possible mechanism; and
no mechanism, no explanation.”'?

Hedstrom (2005) considers this complication carefully, and he emphasizes
that his mechanism-based approach to explanation is less reliant on invariant
laws than the covering law models that he rejects. This position is certainly
correct, but one must still consider how to grapple with what seem to be three
fairly common declarative statements on the relationships between laws and
mechanisms: (1) invariant covering laws do not exist, (2) mechanisms depend to
some degree on the existence of laws that are weaker than general, invariant laws,
(3) mechanisms are nested within each other. Accepting all three statements
seems to delimit laws to the smallest possible configuration within each nested
mechanism, such that the laws of a mechanism are dispensed with each time a
new black box is opened.

If a mechanism is designed to explain how an actuality comes about, then
all seems to be fine with this perspective.!* But if one instead maintains that
mechanisms are the key to the explanation of causal tendencies only — such that
the validity of a mechanism cannot be undermined by its inability to explain
anything in particular — then this line of thought leads all too easily to the
critical realist perspective on mechanisms. We suspect that most empirical social
scientists would find critical realism uninspiring. Critical realism’s pioneer, Roy
Bhaskar, writes with regard to mechanisms:

The world consists of mechanisms not events. Such mechanisms
combine to generate the flux of phenomena that constitute the ac-
tual states and happenings of the world. They may be said to be
real, though it is rarely that they are actually manifest and rarer
still that they are empirically identified by men. They are the in-
transitive objects of scientific theory. They are quite independent
of men — as thinkers, causal agents and perceivers. They are not
unknowable though knowledge of them depends upon a rare blend-
ing of intellectual, practico-technical and perceptual skills. They are
not artificial constructs. But neither are they Platonic forms. For

13Given Bunge’s position, one then necessarily wonders: How does one discover these crucial
explanatory mechanisms? Bunge’s (2004:200) guidance is: “There is no method, let alone
logic, for conjecturing mechanisms. True, Peirce wrote about the ‘method of abduction,” but
‘abduction’ is synonymous with ‘conjecturing’, and this — as Peirce himself warned — is an art,
not a technique. One reason is that, typically, mechanisms are unobservable, and therefore
their description is bound to contain concepts that do not occur in empirical data.”

1 As best we can tell, Woodward (2003; Section 4.6) takes this position, noting the need
for only a rather limited “backing” relationship between causal claims and laws.
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they can become manifest to men in experience. Thus we are not
imprisoned in caves, either of our own or of nature’s making. We
are not doomed to ignorance. But neither are we spontaneously free.
This is the arduous task of science: the production of the knowledge
of those enduring and continually active mechanisms of nature that
produce the phenomena of the world. (Bhaskar 1998[1997]:34-5)

If the social sciences sign on to the idea that mechanisms are general and tran-
scendentally valid explanations that may not explain any particularities, we will
be led inevitably to a fundamental premise of critical realism: The mechanisms
that constitute causal explanations are irreducible to each other, even if they are
nested in each other. This position is summarized by Andrew Collier (2005:335):
“Critical realism defends the idea that reality is many-layered, and each level
has its own kind of laws, irreducible to those of any other layer.”

For the social sciences, one might argue that such an irreducibility presump-
tion could be unifying in offering protection against incursions from biology
and physics. But, if accepted, it would undermine the work of social scientists
who have at least some interest in developing causal claims that unite levels
of analysis. If irreducibility were accepted, how then could methodological in-
dividualists such as Goldthorpe criticize those who seek to develop macrolevel
causal claims with only minimally sufficient reliance on proximate actors and
institutions (e.g., Alexander 2003)?*® Gorski (2004), for example, lays out a
constructive realist model of explanation, built up from the causal process per-
spective of Wesley Salmon, that is completely at odds with the perspective of
Goldthorpe (2000).'° But Goldthorpe (2000) questions the explanatory utility
of all secondhand historical analysis, in essence rejecting the capacity of histor-
ical analysis, as practiced in sociology, to sustain causal claims of any form. If
Goldthorpe were to sign on to irreducibility, which we doubt he would, he could
not thereby criticize macrosocial claims of causal relationships.

Given that these extreme positions on mechanisms in the philosophy of sci-
ence are likely to be unhelpful to practicing social scientists, and given that we
suspect Goldthorpe, Hedstrom, and others in the generative mechanisms move-
ment would agree, which type of philosophy of science gives the appropriate
backing for causal analysis? If anything, it is the philosophical writing on the
counterfactual model that provides a solid and pragmatic foundation, as best
represented by Woodward (2003). The key to understanding why this is the
case is to consider alternative ways to adjudicate between the rival mechanisms
proposed by alternative investigators, which we turn to next.

5Methodological individualism is the basic position of Goldthorpe (2000) and Hedstréom
(2005), as influenced heavily by the scholarship of Raymond Boudon (see Boudon 1998 and
citations therein).

16Gorski (2004) endorses the causal process model of Wesley Salmon, as developed in
Salmon’s work from the 1970s and early 1980s (see Salmon 1984). Given the ways in which
Salmon’s work has developed since then, turning completely toward causal mechanical ideas
based on the notion of conserved quantities, his ideas now seem completely at odds with
Gorski’s statement that “Social science is ‘nothing but history.” The real error was ever to
think it could be anything more” (Gorski 2004:30).
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Adjudication Between Rival Mechanisms

Imagine that social scientist A and social scientist B have proposed distinct
mechanisms for how X brings about Y. How do they determine whose mech-
anism is supported? According to Goldthorpe (2000, 2001), each scholar is
expected to derive entailed hypotheses and test them with data. One might
hope that scholars A and B will be able to agree on a clear critical test that
could tip the scales in favor of one mechanism or the other. Unfortunately, the
mechanisms of the two scholars may be so different that no such critical test
can be derived and agreed on (as would often be the case if scholar 4 is a soci-
ologist and scholar B is an economist, for example). If no such agreement can
be found, the two scholars may end up expending effort seeking to affirm their
own entailed indirect hypotheses.

Consider the reaction that Goldthorpe’s proposal elicited from the statisti-
cians David Cox and Nanny Wermuth, whose prior work Goldthorpe had used
to develop his proposal:

Goldthorpe (2001) has argued for this...view of causality as the
appropriate one for sociology with explanation via rational choice
theory as an important route for interpretation. To be satisfac-
tory there needs to be evidence, typically arising from studies of
different kinds, that such generating processes are not merely hy-
pothesized. Causality is not to be established by merely calling a
statistical model causal. (Cox and Wermuth 2001:69)

Cox and Wermuth take the position that generative mechanisms must be di-
rectly evaluated, not evaluated only by indirect entailed hypotheses. Anything
short of this analysis strategy could result in a flourishing of mechanisms in the
social sciences, without an attendant sense of which ones are valid or not. The
alternative to mechanism anarchy could be even worse: mechanism warlordism.
The mechanisms of the most industrious scholars — those who can dream up the
most hypotheses to affirm, who can recruit the largest number of students to do
the same, and who can attract the funds to collect the data — could receive the
most affirmation. The only defense for out-of-favor mechanisms might then be
to appeal to the hidden structures of alternative mechanisms, which one would
be tempted to claim cannot be evaluated because of a lack of data.

In sum, the generative mechanisms movement in the social sciences is an
admirable call for theory construction.!” When it does not verge into critical-
realist transcendentalism, it is also a very useful call for the pursuit of sufficiently
deep causal accounts. But such depth, we would argue, is best secured when
it is verified in empirical analysis grounded on the counterfactual model. In
the next section, we work our way back to Pearl’s front-door criteria, using the
language of mechanism sketches and mechanism schemas.

17 In fact, the first author found it convincing and inspiring when writing Morgan (2005).



238 Chapter 8. Mechanisms and Causal Explanation

8.4 The Pursuit of Explanation with
Mechanisms that Bottom Out

Amid the resurgence of writing on mechanisms, we find one statement more
helpful than many others, the 2000 article “Thinking About Mechanisms” writ-
ten by Machamer, Darden, and Craver and published in Philosophy of Science.
In their article, Machamer, Darden, and Craver develop two particularly helpful
lines of thought: (1) the distinctions among a fully articulated mechanism, a
mechanism sketch, and a mechanism schema; and (2) the process of “bottom-
ing out” in mechanistic model building. To develop these concepts, Machamer,
Darden, and Craver (2000:12) first note that “In a complete description of [a]
mechanism, there are no gaps that leave specific steps unintelligible; the process
as a whole is rendered intelligible in terms of entities and activities that are
acceptable to a field at a time.” But they then explain that explanatory inquiry
using mechanisms is not an all-or-nothing affair, in which every step is always
specified. Variability in the representation of mechanisms is possible because:

Mechanisms occur in nested hierarchies. . .. The levels in these hier-
archies should be thought of as part-whole hierarchies with the addi-
tional restriction that lower level entities, properties, and activities
are components in mechanisms that produce higher level phenomena
....7 (Machamer et al. 2000:13)

In spite of such nesting, there is a natural bottoming out of mechanism-based
explanations:

Nested hierarchical descriptions of mechanisms typically bottom out
in lowest level mechanisms. These are the components that are
accepted as relatively fundamental or taken to be unproblematic for
the purposes of a given scientist, research group, or field. Bottoming
out is relative: Different types of entities and activities are where
a given field stops when constructing mechanisms. The explanation
comes to an end, and description of lower-level mechanisms would
be irrelevant to their interests. (Machamer et al. 2000:13)

Then, by thinking through the complexity of the nesting of mechanisms, and
how scholars represent mechanisms to each other, they develop two related
concepts. A mechanism schema is a representation of a set of mechanisms in
which some known details (or known nested levels) are suppressed for the sake
of simplicity. Or, as Machamer et al. (2000:15) state, “a mechanism schema
is a truncated abstract description of a mechanism that can be filled with de-
scriptions of known component parts and activities.” In contrast, a mechanism
sketch is quite different:

A sketch is an abstraction for which bottom out entities and activ-
ities cannot (yet) be supplied or which contains gaps in its stages.
The productive continuity from one stage to the next has missing
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pieces, black boxes, which we do not yet know how to fill in. A
sketch thus serves to indicate what further work needs to be done
in order to have a mechanism schema. Sometimes a sketch has to
be abandoned in the light of new findings. In other cases it may
become a schema, serving as an abstraction that can be instantiated
as needed. (Machamer et al. 2000:18)

Within this framework, one can conceive of causal analysis in the social sciences
as the pursuit of explanations that bottom out.'® Although there will inevitably
be differences of opinion on how deep an explanation must be to bottom out,
it would seem uncontroversial to state that a valid explanation that invokes a
mechanism must bottom out at least as far as the observables in the data at
hand.!?

Now, consider the application of this framework to the sort of causal dia-
grams we have considered so far. Suppose that one uses some form of back-door
conditioning to identify a casual effect of D on Y. Suppose, furthermore, that
one has done so from within the counterfactual framework, settling on the av-
erage causal effect as the parameter of first-order interest. One then necessarily
confronts the question that we raised in the beginning of this chapter: Does a
counterfactually defined and consistent estimate of the causal effect of D on Y
by itself meet the standard of an explanation that bottoms out?

The answer to this question is clear: It depends on what D and Y are,
who is conducting the study, and for what purposes. If one wishes to know
only how a hypothetical intervention on D would shift Y, and hence has no
interest in anything else whatsoever, then bottoming out has been achieved
in some minimalist way. The analysis yields up a consistent estimate of the
average causal effect of D on Y that holds for the population within which
both are observed. In this case, the model D — Y is then regarded as merely a
mechanism sketch, which suffices to be treated as a sufficiently deep explanation
for the purposes at hand.

However, as we have noted from the beginning of this chapter onward, it
will often be the case that an estimate of a warranted causal effect of D on
Y, grounded in the potential outcomes framework, is properly considered to be

183ee also the discussion of modularity in Woodward (2003, Chapter 7).

19 A critical realist could escape from this position in a variety of ways: asserting irreducibil-
ity and transcendentalism and then, more specifically, by arguing in the end that the data that
one is forced to consider are but a poor reflection of the phenomena that the mechanism truly
does explain. For all of these reasons, the lack of observed explanatory power for observed
events would then be argued to be untroubling. This position, however, then becomes a vari-
ant of an appeal to a hidden but presupposed valid underlying structure, which Woodward
convincingly argues cannot be an acceptable explanatory strategy for any field that hopes to
resolve its explanatory controversies because “... the appeal to hidden structure makes it too
easy to protect one’s favored theory of explanation from genuine counterexamples” (Wood-
ward 2003:175). Moreover, if the particularities in the data are merely a poor reflection of the
phenomenon that the mechanism is supposed to explain, then presumably whatever generates
the mismatch can be encoded in the mechanism that explains both the genuine phenomenon
of interest and the process that generates the misleading data.
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an insufficiently deep explanation of how D brings about Y. Such a judgment
would be appropriate when the interest of the field is in understanding both how
interventions on D and interventions on the mechanistic intervening variables
that link D to Y would shift Y. In this case, the model D — Y is a mechanism
sketch that, for the purposes at hand, cannot be regarded as a sufficiently deep
explanation. The arrow in the sketch D — Y is a black box that must be filled
in through further analysis.

If a warranted claim of a counterfactually defined causal effect is properly
regarded as insufficiently deep, the recourse is not to abandon the counterfactual
model, but rather to investigate the nested mechanism that intercepts the effect
of D on Y. Such analysis may initially take the form of a set of alternative
conjectured mechanisms. But, ultimately, any such analysis must return to the
particular observed relationship between D and Y in the population of interest
(or more broadly in multiple well-defined populations for which the question
of interest is relevant). Thus, although theoretical creativity may be required,
opening up black boxes is, at least in part, an empirical pursuit. At some point,
one must specify the counterfactual states for the variables that constitute the
mechanisms, and each link thereby specified must be submitted to its own causal
analysis.

Consider this process abstractly with reference to a causal diagram, after
which we will introduce a real-world example. Suppose that one pursues fur-
ther theoretical conjecturing and subsequent empirical analysis, and one then
determines that the variables A, B, and C' constitute an isolated and exhaus-
tive mechanism that identifies the causal effect of D on Y by Pearl’s front-door
criterion. At this point, one may be tempted to declare that a sufficiently deep
causal explanation of the effect of D on Y has been secured. Such a claim may
well be true, but it is not guaranteed. It could be that there are further nested
mechanistic variables, such that, for example, three additional variables M, N,
and O (each of which is a concept of considerable interest to one’s peers) are
then found to mediate the casual pathway D — A — Y . In this case, the
casual pathway D — A — Y is then itself best regarded in hindsight as merely
a component of a mechanism sketch. When M, N, and O are then observed,
D — A — Y is replaced in the mechanism sketch with, for example, one or
more related causal pathways, suchas D —- M — A —- N —-Y and D — A
— O — Y. In this example, A, B, and C' may well identify the causal effect
by the front-door criterion, but they do not qualify as a sufficiently deep causal
account of how D brings about Y.

As we noted in the first part of this chapter, the progressive deepening of
causal explanation through the modeling of intervening processes is entirely
consistent with social science tradition. And yet we also claimed that Pearl’s
front-door criterion can help guide sharpened analysis practices in this regard.
To see what we mean, consider the example of Duncan’s research on status
attainment processes again. As we noted earlier in Chapter 1, Blau and Duncan
(1967) deepened the causal account of how parental social status determines
offsprings’ social status by specifying what most scholars now regard as the
most important link: levels of educational attainment.
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Thereafter, Duncan and his colleagues then supported and encouraged fur-
ther work on the process of educational attainment, most importantly the Wis-
consin model of status attainment that we introduced earlier in Subsection 1.3.1.
This model is a direct extension of Blau and Duncan’s research, in which the
causal pathways between parental status and offspring’s attainment were elabo-
rated by the introduction of intervening variables for significant others’ influence
and educational aspirations. In fact, in the most important article in this tradi-
tion, Sewell et al. (1969) use mechanistic language to introduce the contribution
of their study:

...we present theory and data regarding what we believe to be
a logically consistent social psychological model. This provides a
plausible causal argument to link stratification and mental ability
inputs through a set of social psychological and behavioral mecha-
nisms to educational and occupational attainments. One compelling
feature of the model is that some of the inputs may be manipulated
through experimental or other purposive interventions. This means
that parts of it can be experimentally tested in future research and
that practical policy agents can reasonably hope to use it in order
to change educational and occupational attainments. (Sewell et al.
1969:84)

The Wisconsin model was very favorably received in sociology, as it was consid-
ered to be consistent with the basic features of the model of Blau and Duncan
(1967) and yet had a claim to greater causal depth.

Even so, as we also noted in Subsection 1.3.1, critics emerged immediately
(see also Morgan 2005, Chapter 2, for a more extended summary). The basic
argument was that, even if significant others’ influence and educational aspi-
rations have causal effects on educational attainment, they are both grounded
in part in sources outside of parental status and mental ability (a point the
authors of the Wisconsin model recognized). Thus, although significant others’
influence and educational aspirations may be helpful to some extent in offering
an interpretation of some of the causal process that generates intergenerational
correlations of educational attainment, these intervening variables do not qual-
ify as an isolated and exhaustive mechanism that fully accounts for the effects
of parental status on offsprings’ status.

In this regard, the Blau and Duncan model can be regarded as a mechanism
sketch for the status attainment process, and the Wisconsin model can then
be regarded as a mechanism-based attempt to deepen its implied explanation.
The Wisconsin model was therefore an important step forward, but it was not
conclusive and did not settle all further research.

Nearly 40 years later, it is now clear that the Wisconsin model itself is a
mechanism sketch. The research community of inequality scholars in sociology
seems to have concluded that its pathways have not bottomed out, and much
research continues on the processes that generate educational aspirations (as
well as whether or not the relationship between aspirations and attainment is
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sufficiently explanatory to be useful). Moreover, some scholars (e.g., Goldthorpe
2000) have produced entirely different mechanism sketches for the relationship
between parental status and educational attainment. The future of this research
tradition is clearly careful empirical analysis that can adjudicate between these
rival mechanism sketches, which will be decisive only when alternative mecha-
nism sketches are pushed down to lower-level entities on which critical tests can
then be performed.

8.5 Conclusion

Pearl’s front-door criterion for the identification of a causal effect is a powerful
and illuminating perspective on the explanatory power of mechanisms. It clearly
shows that the identification of a causal effect by a mechanism requires that
the mechanism be isolated and exhaustive and that its variables be observed.
For such a mechanism to count as a sufficiently deep explanation, its causal
pathways must be finely enough articulated that it meets whatever standard of
bottoming out is maintained in the relevant field of study. If such a standard is
not reached, then the causal effect is identified even though it is not accompanied
by a sufficiently deep explanation. Instead, the identifying causal pathways
represent a mechanism sketch that demands further analysis.

Considering this chapter and the strategies for causal effect estimation from
prior chapters, we have come back full circle to our initial presentation of causal
modeling options in Chapter 1. We noted there, with reference to Figure 1.3,
that a causal effect that is identified by both the back-door criterion and an
IV is best explained when it is also identified by an isolated and exhaustive
mechanism. This is the gold standard for an explanatory causal analysis, at
least until a field decides that a crucial linkage within a mechanism must then
be opened up and subjected to its own analysis.

In the next chapter, we turn in a different direction to consider the extent
to which over-time data on an outcome variable can be used to identify and
estimate a causal effect. One often hears presentations in which scholars remark
“I cannot get at causality because I do not have longitudinal data.” We will argue
in the next chapter that longitudinal data, although very helpful in many cases,
are not the panacea that such statements seem to imply. Moreover, we will show
that some long-standing techniques that are thought to reveal causal effects are
strongly dependent on assumptions that are often entirely inappropriate and
sometimes completely unrecognized.



Chapter 9

Repeated Observations and
the Estimation of Causal

Effects

As discussed in previous chapters, the fundamental problem of causal inference
is that an individual cannot be simultaneously observed in both the treatment
and control states. In some situations, however, it is possible to observe the same
individual or unit of observation in the treatment and control states at different
points in time. If time has no effect, then the causal effect of a treatment
can be estimated as the difference between an individual’s outcome under the
control at time 1 and under the treatment at time 2. The assumption that
time (and thus age for individuals) has no effect is often heroic. If, however,
individuals’ outcomes evolve in a predictable way, then it may be possible to use
the longitudinal structure of the data to predict the counterfactual outcomes of
each individual.

In this chapter, we will assume that the time at which treatment occurs
is fixed. We will again focus on the consequences of nonrandom selection of
individuals into the treatment and control groups. We will not, however, con-
sider scenarios in which the specific timing of treatment is endogenous. This
situation is considerably more complex because a treatment indicator must be
modeled for every time period, recognizing that selection of the treatment in
any single time period is not only a function of individual characteristics but
also of previous decisions and expectations of future decisions.’

We begin our discussion with the interrupted time series (ITS) model. This
model is the simplest design in which over-time data are utilized, as the data
consist of a single person/unit observed at multiple points in time. The goal is
to determine the degree to which a treatment shifts the underlying trajectory

1For a discussion of the recent literature in this active area, see van der Laan and Robins
(2003), as well as citations therein to the important methodological and substantive work of
Robins.
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of an individual’s values for an outcome. Thereafter, we consider the regression
discontinuity design. Although not a case in which we have repeated observa-
tions on a single individual or unit, the structure of the regression discontinuity
(RD) design is sufficiently similar to that of the ITS that it is useful to present it
here as well. For the RD design, we also consider the case of fuzzy assignment,
which amounts to using IV methods to correct for possible imprecision in the
treatment assignment criteria.

Thereafter, we consider panel data: multiple observations over time on multi-
ple individuals or units. We first examine the adequacy of traditional two-period
pretreatment /posttreatment adjustment strategies. We show that such meth-
ods, despite their considerable popularity, are in general inadequate for making
causal inferences, unless the researcher is willing to make strong and generally
untestable assumptions about how the outcome evolves over time across indi-
viduals. Then, we consider a more comprehensive model-based approach. The
key here is to be explicit about the evolutionary dynamics of the outcome and
how selection into the treatment depends on these dynamics. This type of strat-
egy typically requires multiple pretreatment waves of data. With data over a
sufficient number of time periods, it is possible to test the appropriateness of
different models.

9.1 Interrupted Time Series Models

To assess the causal effect of a treatment within an ITS model, a time series
model is typically estimated:

Y, = f(T) + Db+ ey, (9.1

where Y; is some function in time [which is represented by f(7T) on the right-
hand side|, D; is a dummy variable indicating whether the treatment is in effect
in time period ¢, and e; is time-varying noise. The basic strategy of an ITS
analysis is to use the observed trajectory of Y prior to the treatment to forecast
the future trajectory of Y in the absence of the treatment (see the introductions
in Marcantonio and Cook 1994; McDowall, McCleary, Meidinger, and Hay 1980;
Shadish, Cook, and Campbell 2001).”

The primary weakness of an ITS model is that the evolution of Y prior to
the treatment may not be a sufficiently good predictor of how Y would evolve
in the absence of treatment. Consider the trajectory of Y in the hypothetical
example depicted in Figure 9.1. The solid line represents the observed data
on Y, and the time of the introduction of the treatment is indicated on the
horizontal axis. Here, the future (counterfactual) evolution of Y in the absence

2Potential outcome notation may be useful here, but it is not needed for understanding
the ITS design. Before the treatment is introduced, Y; is equal to Yto. After the treatment is
introduced, Y; then switches over to Ytl. Under this structure, the causal effect is then the
difference between Y: and Yt0 in the treatment period. But, because YtO cannot be observed
in the treatment period, an ITS design forecasts the values of YtO in the treatment period by
extrapolating from the trajectory of Y; in the pretreatment period.
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Figure 9.1: Trajectories of the observed and counterfactual outcomes for an ITS
model.

of treatment is represented by the dashed line. Clearly, this counterfactual
trajectory would be poorly predicted by a straightforward linear extrapolation
from the observed data before the treatment. In fact, in this case, assuming
that the counterfactual trajectory followed such a linear trajectory would result
in substantial overestimation of the treatment effect. In general, if the future
in the absence of treatment is quite different from the past, then it may be
impossible to successfully estimate the causal effect with an ITS model.

In terms of estimation, an I'TS model involves no issues beyond those found
in a standard time series analysis. There, the key is that the errors e; are likely
to be correlated over time. If we use least squares regression, the parameter
estimates will be consistent, but the standard errors and any hypothesis tests
based on them will be wrong. This problem can be especially acute in many
cases, as the number of data points in time series datasets can be small. We will
not go into all of the issues involved in estimating time series models, as there
are many books that cover the topic in depth (e.g., Hamilton 1994 and Hendry
1995).

Instead, we will illustrate the basic thinking behind an I'TS analysis with an
example from Braga, Kennedy, Waring, and Piehl (2001), which is presented in
Figure 9.2. The data presented there are the trend in the monthly youth homi-
cide rate in Boston between June 1991 and May 1998. Braga and his colleagues
were interested in evaluating whether an innovative program, “Operation Cease-
fire,” initiated by the Boston Police Department in June of 1996, reduced youth
homicides.

Operation Ceasefire involved meetings with gang-involved youth who were
engaged in gang conflict. Gang members were offered educational, employ-
ment, and other social services if they committed to refraining from gang-related
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Figure 9.2: Monthly youth homicide rates in Boston, 1991-9. (Source: Figure 2,
page 205, of Braga, Anthony A., David M. Kennedy, Elin J. Waring, and Anne
Morrison Piehl. 2001. “Problem-Oriented Policing, Deterrence, and Youth Vi-
olence: An Evaluation of Boston’s Operation Ceasefire.” Journal of Research
in Crime and Delinquency 38:195-225. Reprinted by permission of Sage Publi-
cations, Inc.)

deviance. At the same time, the police made it clear that they would use every
legal means available to see that those who continued to be involved in violent
behavior were sent to prison (see Kennedy 1997 for a more detailed description).

The vertical line in Figure 9.2 marks June 1996, the date at which Operation
Ceasefire was initiated. The two horizontal lines indicate, respectively, the mean
level of youth homicides before and after June 1996. As can be seen in Figure
9.2, there appears to be an abrupt and large drop in the level of youth homicide
in Boston immediately after the implementation of Operation Ceasefire.

Braga and his colleagues carry out a more formal analysis using standard
time series techniques (although because their dependent variable is a count
variable — number of youth homicides in a month — they use a Poisson regression
model). In their first model, they adjust only for seasonal effects by using
dummy variables for month and a linear term for time. Inclusion of the time
trend is particularly important. Although it is not clear in Figure 9.2, there
is a slight downward time trend in the homicide rate. For this model, Braga
and his colleagues report a large negative and statistically significant effect of
Operation Ceasefire on youth homicides.

In general, a researcher would usually prefer a situation in which the un-
derlying time trend and the hypothesized program effect are in the opposite
directions. In such a case, disentangling the program effect and the time trend
is far easier, strengthening any warrant for a claimed causal effect. However,
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for this example, the underlying time trend and the expected program impact
move in the same direction. Thus, a researcher should be concerned about the
ability to accurately estimate the size of the program effect in the presence of
the underlying trend. Recall that our earlier Figure 9.1 illustrated a similar
but possibly even more problematic situation. Not only does the time trend
move in the same direction as the effect in that hypothetical example, but there
is a change in the time trend in the same direction as the treatment, making
accurate estimation of the treatment impossible.

Braga et al. (2001) is a very high-quality example of how to carry out an
ITS analysis, in part because they consider these issues carefully. They offer
four types of supplemental analysis, each of which is broadly applicable to all
ITS designs, and each of which can be used to strengthen the warrant for a
causal assertion.

First, they considered additional dependent variables that Operation Cease-
fire should have affected. Specifically, they analyzed whether the program af-
fected the number of gun assaults and reports of gun shots fired. For these
dependent variables, they find an even larger program impact. Their analysis
would have been strengthened further if they also had considered dependent
variables that Operation Ceasefire should not have affected as much (e.g., num-
ber of robberies and incidents of domestic violence). Here, evidence of an impact
would suggest that factors other than the program itself at least partially ac-
counted for the observed drop in youth homicides.

Second, they focused their hypothesis and considered it within meaningful
subgroups. In particular, they analyzed the level of gun assaults in police district
B-2, the district where gang violence was the highest in the early 1990s and
Operation Ceasefire was most active. As they predicted, the program effect was
larger there than in the city as a whole. If there had been districts with high
levels of youth violence where Operation Ceasefire was inactive, it would have
been useful to have tested for a program impact. If evidence were found that the
program had an impact in these districts, it would suggest that something other
than the program was responsible for the observed decline in youth homicides,
gun assaults, and gun shots fired. Unfortunately, at least for the analyst, almost
all youth violence in Boston occurs in three adjacent police districts, all districts
in which Operation Ceasefire was active. As a result, such an analysis was not
possible.

Third, Braga and his colleagues included additional adjustment variables
in their time series models in order to capture the underlying time trend as
well as the year-by-year variability before and after the introduction of the
treatment. These time-varying covariates included unemployment rates, the
size of the youth population, the robbery rate, the homicide rate for older vic-
tims, and the drug-related arrest rate. The advisability of adjusting for the
latter three variables, given that they are certainly endogenous, is questionable.
Nonetheless, conditioning on these additional variables produced little change
in their estimate of the program impact on any of their dependent variables.

As a final method to assess the robustness of their results, Braga and his
colleagues compared the time trend in homicides in Boston with the time trend
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in 41 other cities where no interventions were implemented. Their goal was to
determine whether other cities experienced declines in rates as abrupt as the
one observed in Boston. The explanation of Braga and his colleagues for the
abruptness of the decline in Boston — in fact, a decline that emerged in only
two months — was that word got out on the street quickly that the police meant
business.

For the other cities that they considered, homicide rates fell throughout the
1990s in many of them. But the declines were, with the exception of those
of New York, substantially smaller than the decline in Boston. Braga and his
colleagues then showed that abrupt declines did occur in five other cities, but
the exact timing of these abrupt declines was different than in Boston. This
evidence raises perhaps the greatest doubt about the assertion that Operation
Ceasefire causally reduced youth homicide rates in Boston because there is no
clear explanation for why these abrupt declines occurred elsewhere either. And,
because it may be implausible that Operation Ceasefire’s effect could have fully
taken hold in as short as two months, the possibility exists that the decline in
homicide rates and the introduction of Operation Ceasefire were coincidental.

If Braga and his colleagues had carried out their evaluation a number of years
later, they could have implemented one additional strategy. In 1999, Operation
Ceasefire was cut back and then terminated. If Braga and his colleagues had
performed their analysis through 2006, they could have examined whether the
termination of the program resulted in an increase in homicide rates. In fact,
since 1999, youth homicide rates have risen such that, by the summer of 2006,
they were at nearly the same level as in the early 1990s. Although no recent
formal analysis has been carried out with time-varying covariates (at least of
which we are aware), the recent increase in the youth homicide rate certainly
provides prima facie evidence for Operation Ceasefire’s impact.

This example nicely illustrates the variety of general strategies that are po-
tentially available to strengthen an I'TS analysis:

1. Assess the effect of the cause on multiple outcomes that should be affected
by the cause.

2. Assess the effect of the cause on outcomes that should not be affected by
the cause.

3. Assess the effect of the cause within subgroups across which the causal
effect should vary in predictable ways.

4. Adjust for trends in other variables that may affect or be related to the
underlying time series of interest.

5. Compare the time trend with the time trend for other units or populations
to determine whether breaks in the time series are likely to occur in the
absence of the cause.

6. Assess the impact of termination of the cause in addition to its initiation.
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These strategies are often available for other types of analysis, and they are also
widely applicable to all forms of data analysis that attempt to infer causation
from over-time relationships.

9.2 Regression Discontinuity Designs

An RD design is very similar to an ITS design, except that the treatment is a
function of a variable other than time. RD applies in situations in which treat-
ment assignment is a discontinuous variable (or highly nonlinear function of a
continuous variable) that is believed to also directly affect the outcome. RD has
been applied to a variety of problems: the effect of student scholarships on ca-
reer aspirations (Thistlewaite and Campbell 1960), the effect of unemployment
benefits for former prisoners on recidivism (Berk and Rauma 1983), the effect
of financial aid on attendance at a particular college (Van der Klaauw 2002),
the effect of class size on student test scores (Angrist and Lavy 1999), and the
willingness of parents to pay for better schools (Black 1999).

Campbell was the first to propose the RD method (see Trochim 1984 and
Hahn, Todd, and Van der Klaauw 2001). It is most easily understood with an
example. Here we consider the example of Mark and Mellor (1991), which is
discussed also by Shadish et al. (2001). Mark and Mellor were concerned with
the effect that an event of high personal salience may have on hindsight bias —
the claim that an event was foreseeable after it occurred. In their study, they
examine the effects of being laid off in a large manufacturing plant. Individuals
with less than 20 years of seniority were laid off; those with 20 years or more
were not. Figure 9.3 shows the relationship between seniority and hindsight
bias.

As shown in Figure 9.3, there is an abrupt discontinuity in the relationship
between foreseeability and seniority at the point in seniority where individuals
were laid off. Those who were not laid off (i.e., individuals with higher levels
of seniority) were more likely to see the event as foreseen. Note here that the
effect of seniority within the group of those who were laid off and those who were
not is in the opposite direction of the treatment effect: laid-off individuals with
the highest seniority were less likely to believe that the layoffs were foreseeable.
Because these effects are in the opposite direction, Mark and Mellor have greater
confidence that being laid off increases the likelihood that an individual thinks
an event is foreseeable.

In general, an RD design can be estimated in the same way as an I'TS model
because most of the same issues apply. One key and helpful difference is that
in most RD designs individuals are sampled independently. As a result, the
problem of correlated errors in an ITS design is absent in an RD design.

A generalization of the RD design, known as the fuzzy RD design, has re-
ceived recent attention. Here, treatment is a function of an assignment process
in which there is some error that may be associated with Y. Consider the
causal diagram in Figure 9.4. Here, f(Z) represents the assignment rule to D
as a function of Z. Note that, if this assignment rule were perfect, then we
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Figure 9.3: Foreseeability of a layoff as an example of an RD design. (Source:
Figure 1 of Mark, Melvin M. and Steven Mellor. 1991. “Effect of Self-Relevance
of an Event on Hindsight Bias: The Foreseeability of a Layoff.” Journal of
Applied Psychology 76:569-77. Reprinted with permission.)

could simply condition on Z, which would allow us to block the back-door path
D~ f(Z)—2Z—-YJ?

In the case of fuzzy RD, the assignment rule is not deterministic because D
is a function of both f(Z) and Up, and because Up and Uy may be correlated.
The situation is directly analogous to an experiment with noncompliance in
which noncompliance is thought to be nonrandom. By conditioning on Z, f(Z)
can be used as an instrument for D because it is uncorrelated with both Up and
Uy and affects Y only through D. Conditioning on Z is necessary to eliminate
the back-door path f(Z) « Z — Y. This will work, however, only if f(Z) is
some nonlinear function of Z, so that f(Z) and Z are not linearly dependent.*

Angrist and Lavy (1999) use the fuzzy RD design to study the effects of
class size on student test performance in the Israeli public school system. In
the Israeli school system, an additional class is added to a grade within a school
when the existing classes contain more than 40 students. Within any school,
this intervention creates a discontinuous relationship between enrollment and
class size. This discontinuity allowed Angrist and Lavy to create a nonlinear

3In other words, if assignment were perfect, there would be no potential for a back-door
path through Up and Uy (i.e., the bidirected edge between Up and Uy would not be present).

4As Tmbens and Rubin (1997) show, one can deal with noncompliance by treating the
intention to treat indicator as an instrument, Z, for actual treatment.
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Figure 9.4: An example of a fuzzy RD design.

function of enrollment that can then be used as an instrument for class size.
They find that class size has a substantial effect on test performance for fourth
and fifth graders, but not for third graders.

As shown by this example, RD designs are simple and can be convincing.
But the same weaknesses of ITS designs are present. Counterfactual values
must be extrapolated from observed data below/before and above/after the
application of the treatment. If the assumptions built into the chosen method
of extrapolation are unreasonable, then causal effect estimates will be incorrect.

9.3 Panel Data

A severe limitation of time series data is that we have data on only a single
unit over time. This limitation is problematic for two reasons. First, because of
the relatively small amount of data, it is very common to obtain large standard
errors, making inference about the presence of a treatment effect difficult. Sec-
ond, because we do not observe the treated unit of analysis in the control state
after the treatment is introduced, the only way to impute the counterfactual
outcome is to assume that the future can be predicted accurately from the past.
This assumption is generally untestable.

Panel data, where multiple individuals or units are observed over time, may
solve both problems. Assuming that each individual’s time series is relatively
long, separate ITS analyses could be conducted for each individual and then
pooled to form an average causal effect estimate. Moreover, because individ-
uals receive the treatment at different times (and ages) or do not receive the
treatment at all, it is possible to observe how Y, changes over time for some
individuals after others have received the treatment. To the degree that time
affects Y,? for individuals in the treatment and control groups similarly, it may
be possible to make reasonable predictions about how the counterfactual val-
ues of Y,? would have evolved over time for individuals in the treatment group
during the posttreatment period. If these predictions are reasonable, inferences
about the causal effect of the treatment, D, can be made by comparison of the
observed Y;! for those who are treated (D = 1) with the predictions of coun-
terfactual values of Y0 for those who are treated (D = 1). The crux of the
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matter, of course, is how to use observed values of Y;" among the control group
to make reasonable predictions about future counterfactual values of Y;° for the
treatment group.

For the remainder of this chapter, in which we must deal now with some
quantities that vary only over individuals, others that vary only over time, and
others that vary over both, we will subscript with ¢ for individuals and with ¢
for time. In some cases, such subscripting is redundant. For example, in prior
chapters, we have represented the causal effect as §, recognizing that this varies
over individuals. Now, however, we will represent the individual-level causal
effect as §;, so that it is clear that in this form we are assuming that it does
not vary with time. For a time-varying causal effect, we would instead need to
subscript it as d;;.

Moreover, we will also distinguish between two different treatment indicator
variables. D;; is a time-varying dummy variable that indicates whether individ-
ual ¢ receives the treatment in time period ¢. In contrast, D} is a time-constant
dummy variable that indicates whether individual ¢ ever receives the treatment
at any point in the time span under study. D;; is best thought of as a treatment
exposure indicator variable, and D} is best thought of as a treatment group
indicator variable. In some sense, this distinction reveals the potential value
of panel data. For a cross-sectional study in which all observation occurs in
a single time period, D;; = Dj;. However, a panel dataset over multiple time
periods allows a researcher to consider how treatment exposure (D;;) can be sep-
arated from treatment group membership (D}) and then exploit this difference
to estimate the causal effect.

This distinction has consequences for the relationship between observed and
potential outcomes. For the control group, Y;; = Y. But, for the treatment
group, Y;; = Y2 before treatment exposure, and Y; = Y, after treatment
exposure. More formally, Y; is defined with reference to D;;, such that Y;; =
DY+ (1—D;)Y9 for all t. As a result, if treatment exposure occurs between
time period ¢’ and ¢”, then Y; = Y9, for those in the control group (D; = 0)
and for those in the treatment group (D] = 1). But, in time period t”, D;; and
Dy diverge, so that Y;;» = Y9, for those in the control group (D} = 0) and
Yy = Y3, for those in the treatment group (D} = 1).

Finally, as will become clear, we consider only treatment effects where all
heterogeneity of §; across the population is random. This restriction allows
us to avoid the complications (discussed extensively in Chapters 4 and 5) that
arise when heterogeneity of a causal effect exists across levels of conditioning
variables. All of those discussions apply here as well, but for now we consider
the specific complications of panel data models.

9.3.1 Traditional Adjustment Strategies

The most common situation in panel data analysis consists of nonequivalent
treatment and control groups and two periods of data, where the first wave of
data is from pretreatment time period ¢ and the second wave of data is from
posttreatment time period ¢+ 1. Such two-period, pretreatment/posttreatment
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panel data are sometimes thought to be a panacea for not having a randomized
experiment. Typically, it is assumed that changes over time in the control group
can be used to adjust the changes observed for the treatment group, with the
net change then representing a consistent estimate of the causal effect of the
treatment.

Unfortunately, the situation is far more complicated. There are an infinite
number of ways to adjust for initial differences, and different methods of ad-
justment give estimates that sometimes differ dramatically. Specifically, as we
will show in this section, by choosing a particular adjustment technique, any
estimate that a researcher may want can be obtained.

Consider the two most common methods used in the analysis of pretreat-
ment /posttreatment data, usually referred to as change score and analysis of
covariance models. These two models are equivalent to estimating the following
two equations for the observed Y;; with OLS regression:

change score: Yitr1 —Yie = a+ Djc+ ey, (9.2)
analysis of covariance: Y41 = a+ Yub+ Dic+e;. (9.3)

These two equations provide different means of adjustment for Yj;. In the change
score model, one adjusts Yj; 11 by subtracting out Y;;. For the analysis of
covariance model, one adjusts Yj; 1 by regressing it on Yj;."

Consider a real-world example that shows how these two models can yield
different results. After decades of studying the environmental and genetic de-
terminants of intelligence, considerable controversy remains over their relative
effects on life outcomes. As discussed in Devlin, Fienberg, Resnick, and Roeder
(1997) and other similar collections, these debates resurfaced after the publi-
cation of The Bell Curve: Intelligence and Class Structure in American Life
by Herrnstein and Murray in 1994. Even though existing reviews of the litera-
ture emphasized the malleability of IQ (see Ceci 1991), Herrnstein and Murray
concluded in their widely read book that:

Taken together, the story of attempts to raise intelligence is one
of high hopes, flamboyant claims, and disappointing results. For
the foreseeable future, the problems of low cognitive ability are not
going to be solved by outside interventions to make children smarter.
(Herrnstein and Murray 1994:389)

As discussed in Winship and Korenman (1997), the weight of evidence supports
the claim that education determines measured intelligence to some degree, even
though debate remains on how best to measure intelligence.

5Also, it bears mentioning that when we present alternative equations such as Equations
(9.2) and (9.3) in this chapter, we give generic notation — such as a, b, and ¢ — to standard
regression coefficients such as intercepts and treatment effect estimates. We do the same, in
general, for regression residuals, and so on. We do not mean to imply that such quantities are
equal across equations, but it is cambersome to introduce distinct notation for each coefficient
across equations to make sure that we never imply equality by reusing generic characters such
as a, b, ¢, and e.
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Consider now a very specific question associated with this controversy: What
is the causal effect of a twelfth year of education on measured 1Q? The following
results, based on data from the National Longitudinal Survey of Youth, show
how different the results from change score and analysis of covariance models can
be. For both models, IQ is measured in the twelfth grade for all individuals who
meet various analysis-sample criteria (N = 1354). IQ is then measured again
two years later, and the treatment variable is high school completion. A change
score analysis yields a treatment effect estimate of 1.318 (with a standard error
of .241) and an analysis of covariance model yields a treatment effect estimate
of 2.323 (with a standard error of .217).° These estimates are quite different:
The analysis of covariance model suggests that the effect of a twelfth year of
schooling on IQ is 76 percent larger than that of the change score model (that
is, [2.323 — 1.318]/1.318). Which estimate should one use? Before we discuss
how (and if) one can choose between these two types of traditional adjustment,
consider a more general, but still simple, hypothetical example.

Panel Data Demonstration 1

For this hypothetical example, there are three points in time, ¢t = {1, 2,3}, and
treatment selection is assumed to occur between ¢t = 2 and ¢t = 3. We present
three alternative treatment selection rules. For the first variant, treatment selec-
tion is a random variable D* with the probability that D* is equal to 1 specified
as a logistic distribution in A and B:

exp(—2+24; +2B;)

PriD =114, Bi] = 17 exp(—2 + 24; + 2B;)’ (94)

where A and B are bivariate normal with

= m - {é ﬂ . (9.5)

For the second variant, the treatment selection probability is a function in A,
B, and Y3

exp{—2+ 24; + 2B; + .1(Y}) — Ex[Y3])}

Pr[D; = 1|A;, B;, Y] = :
i |4 i2 1 +exp{—2+24; +2B; + .1(Y3 — Ex[Y3])}

(9.6)

where A and B are defined as for the first variant. And for the third variant,
the treatment selection probability is now a function in A, B, and ¢:
exp{—2 + 2A2 + 2Bz + 1(51 — EN[(Sl])}

PrD; = 1A Bin ol = 324, + 2B, + 161 — B} 7

6For completeness, we report additional features of these models here. Each was estimated
with three other covariates: age, year of the test, and a standardized measure of socioeconomic
status. The coefficients on these three variables were —.184, —.755, and —.429 for the change
score model and —.966, —.495, and 2.047 for the analysis of covariance model. The R? was
.06 for the change score model and .68 for the analysis of covariance model, in which the lag
coefficient on IQ in the twelfth grade was .623.
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where A and B are, again, defined as for the first variant.
Finally, the potential outcomes ¢!, are constructed as

Yo = 98+ 2a; + 2b; + 5u, (9.8)
Y% = 99+ 2a; + 2b; + 505,
Yy = 100 + 2a; + 2b; + 50%,

where the v9 are multivariate normal with

0 1 5 5
p=10|, s=|5 1 5. (9.9)
0 5 5 1

Because of the timing of treatment, the values y9; and y% become the observed
values y;1 and y;o for all individuals. But because treatment exposure occurs
between ¢ = 2 and ¢ = 3, the values y% become observed values y;3 for those in
the control group whereas the values of y% become counterfactual for those in
the treatment group.

The potential outcomes v}, of individuals are then constructed as y9, + d;:

yh = yh+ o, (9.10)
yi12 = y?z +di,
Yis = U+ 0i,

where § is normally distributed with mean 10 and variance 1. The values y}; and
yk, are counterfactual, in the sense that no one is exposed to the treatment in
time periods 1 and 2, and thus no one receives the boost J; that is attributable
to the treatment. But, for ¢ = 3, the values y}5 become the observed values y;3
for those in the treatment group and remain counterfactual values for those in
the control group.

For this example, Table 9.1 shows that the analysis of covariance and change
score models often give very different results. Consider for now only the first
column of the results, where treatment assignment is based on A and B only.
The true average treatment effect is the same as the average treatment effects
for the treated and for the untreated because treatment selection is not based
on expectations of the causal effect. However, the naive estimate of 14.69 is up-
wardly biased because A and B are positively associated with both the outcome
and treatment assignment. We also offer two other cross-sectional estimators
just below the naive estimator. Note that if we observe both A and B, then
we can estimate the average causal effect consistently as 10.00 because in this
case selection is on the relevant observables only. However, if we do not observe
B, then a regression of Y3 (our posttreatment observed outcome) only on D*
and A will overestimate the true average treatment effect (in this case with a
value of 12.30, which is between the true average treatment effect and the naive
estimate). Here, B is regarded as an omitted variable, which is correlated with
both Y3 and D*. It is precisely in these situations when researchers turn to
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Table 9.1: Hypothetical Treatment Effect Estimates from Analysis
of Covariance and Change Score Models

Treatment selection
Eq. (9.4) Eq. (9.6) Eq. (9.7)

True average treatment effects

Average treatment effect, E[J] 10.00 10.00 10.00

Average treatment effect for the treated, 10.00 10.00 10.30
E[5|D* = 1]

Average treatment effect for the untreated, 10.00 10.00 9.87
E[5|D* = 0]

Estimators of the coefficient on D

Cross-sectional estimators:

Naive estimator 14.69 15.23 14.82
Regression of Y3 on A and D* 12.30 13.08 12.52
Regression of Y3 on A, B, and D* 10.00 10.95 10.42

Analysis of covariance estimators:

Regression of Y3 on Y5 and D* 11.90 11.89 12.14
Regression of Y3 on Y5 , A, and D* 11.03 11.00 11.33
Regression of Y3 on Y5 , A, B, and D* 10.00 10.00 10.42

Change score estimator:
Regression of (Y3 — Y3) and D* 10.00 9.48 10.30

a pretreatment outcome measure (or pretest) in order to solve such omitted-
variable-bias problems.

Now, consider the final four rows of Table 9.1. For the first two analysis
of covariance models, the treatment effect estimates are upwardly biased at
11.90 and 11.03. The third estimate is not, but this result arises because the
regression equation includes both A and B, such that no omitted-variable bias
is present. In contrast, the change score model yields an unbiased estimate of
the outcome of 10.00. Thus, it is easy to see here that a researcher should
favor the change score model over the analysis of covariance model. But such a
conclusion is clear here only because we know by construction that 10.00 is the
correct answer. Typically, a researcher would be left with two estimates — such
as 11.90 and 10.00 — with no clear sense of which is correct.

For these simulated data, the change score model gives the correct answer
because the Y'Y outcomes for the treatment group and the control group change
at the same rate over time [see the terms 98 through 100 in the lines of Equa-
tion (9.8)] and the treatment effect does not vary with time [see the same term
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0; in all lines of Equation (9.10)]. Such uniformity of time trends cannot be
assumed to prevail in general. Finally, to see what is coming in later sections
of this chapter, note also that the situation is even more complex when treat-
ment selection is on Y3 or §, as is shown in the second and third columns of
Table 9.1.

Return to the question that motivates this hypothetical example, where we
are not in the fortunate situation of knowing what the true average treatment
effect is. All we have are alternative treatment effect estimates suggested by a
change score model and an analysis of covariance model. How should one choose
between them? There are at least three possible ways to decide:

1. Choose the method that gives us the results we want.

2. Choose based on the nature of problem. As Allison (1990) suggests: If
selection is based on fixed characteristics, use change score analysis. If
selection is based on the dependent variable, use an analysis of covariance.

3. Use the data to determine which model, if either, is appropriate (as in
Heckman and Hotz 1989).

Hopefully, the first decision method is not a serious consideration. The second
is a better option, in that it at least suggests that one should begin to think
through the specific nature of the problem of interest. The third decision method
appears most promising, at least at face value. However, in some cases (perhaps
most where these two designs are utilized), we have data from only two points
in time. This is the situation for the estimate of the causal effect of a twelfth
year of schooling on IQ. It would also be the case for the hypothetical example
if we had data only from time periods 2 and 3.

Unfortunately, with only two time periods, both the change score and anal-
ysis of covariance models are just identified. As such, the data cannot be used
to test whether one of the two methods is more appropriate. As we will explain
when we discuss model-based approaches later, we need at least two periods of
pretreatment data to carry out a test of model fit. We would be able to perform
such tests on the hypothetical example, if we used the data from time period 1
as well.

For now, consider the case in which we continue to have data from only one
pretreatment time point, ¢, and one posttreatment time point, ¢t + 1 (i.e., time
periods 2 and 3 for the hypothetical example). Consider the implicit assump-
tions that are made if it is asserted that either the change score model or the
analysis of covariance model represents a consistent estimator of the treatment
effect of interest:

e The change score model assumes that, in the absence of treatment, any
difference between the expectations of Y for those in the treatment and
control groups remains constant over time. In the counterfactual frame-
work, the assumption is that E[Y;}|D; = 1] and E[Y;}|D; = 0] differ by
the same constant k in every time period t.
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e The analysis of covariance model assumes that, in the absence of treatment,
any difference between the expectations of Y for those in the the treatment
and control groups shrinks by a multiplicative factor r between each time
period. The implication here is that, after enough time, the analysis
of covariance model assumes that there would be no difference in the
expected outcomes for the treatment and control groups if the treatment
is not introduced. In the counterfactual framework, the assumption is that
the difference between E[Y9|D; = 1] and E[Y?|D} = 0] declines by the
same amount in every period of time, such that, by time period t = oo,
E[YS__|D; = 1] will be equal to E[Y?___|D; = O]

it=00 it=o00

Now, consider a general equation that represents the value of the average treat-
ment effect:

Elsun] = (BEWEalD; =1-EY2,ID; =0)  (911)
—a (BIYZID; = 1] - EY§|D} =0))

for some unknown value . The term in the first set of parentheses is equal to
the naive estimator in the posttreatment period ¢ + 1 [see Equation (2.7)]. It
is therefore equal to E[Yji41|D} = 1] — E[Yit41|D} = 0]. The second term is
an adjustment factor: How much of the initial difference in time period ¢ of
the expectation of Y for those in the treatment and for those in the control
group should be subtracted out? The piece of this term inside the second set of
parentheses is equal to E[Y;|D; = 1] — E[Y;| D} = 0] because Y is observed as
Y for both the treatment group and the control group in time period ¢. Thus
Equation (9.11) can be rewritten as

Elbit+1] = (E[Yir41|D; = 1] = E[Yir41|D; = 0]) (9.12)
—a(E[Yy|D} = 1] — E[Yy| D] = 0]),

and its right-hand side can then be written even more simply with words as
(posttreatment difference in Y) — « (pretreatment difference in Y) . (9.13)

The change score model and analysis of covariance model can be seen as
alternative methods that make very different and very rigid assumptions about
the value of a in Equations (9.11)—(9.13). Change score models implicitly as-
sume that o = 1. In contrast, analysis of covariance models implicitly assume
that o = r, where r is the intraclass correlation between Y;1; and Y; (i.e., r is
the correlation for individuals’ Y;;11 and Yj;). In other contexts, this correlation
r is known as Y’s reliability. If other covariates are included in the model, then
analysis of covariance models estimate a coefficient on Y; that can be thought of
as the intraclass correlation between residualized variants of Y41 and Y;, where
their common linear dependence on the covariates has been purged. In this
case, the basic intuition still holds, but the coefficient on Y; is not the reliability
of Y anymore, but rather a conditional variant of it.
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Upper line of each pair is the treatment group.
Lower line of each pair is the control group.
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Figure 9.5: Three examples of possible trajectories for the treatment and control
groups of the outcome in the absence of treatment.

Researchers often believe that, because 7 is estimated from the data, an
analysis of covariance model is superior to a change score model. This position
is wrong. To be sure, an analysis of covariance model does estimate r from the
data on Y. But, when using the results from an analysis of covariance model,
a researcher is assuming implicitly that « in Equations (9.11)—(9.13) should
be equal to r (or some conditional variant of it). As we noted earlier, this is
an assumption that, in the absence of treatment, the difference between the
expectation of Y for those in the treatment group and those in the control
group would shrink by the factor r between ¢t and ¢ + 1 for every value of ¢.

Consider the graph presented in Figure 9.5, which is adapted from Judd and
Kenny (1981; Figure 6.4). It presents three scenarios for changes over time in
the expected value of Y for the treatment and control groups in the absence of
treatment (i.e., Y°). For each pair of lines, the upper line is for the treatment
group and the lower line is for the control group. Most importantly, this graph
shows a possibility (the bottom pair of lines) that is not consistent with either
a change score analysis or an analysis of covariance. Here, in the absence of
treatment, the expectations of Y for the treatment group and for the control
group diverge over time. There are many possible examples of this situation,
but the most famous is represented by situations described in the gospel of
Matthew, where it is written “Unto every one that hath shall be given, and he
shall have abundance: but from him that hath not shall be taken away even
that which he hath” (quoted in Merton 1968, who is credited with introducing
this version of the idea into the social sciences).

The key point is that different methods of estimation make different implicit
assumptions about how the difference in the expectations between the treatment
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and control groups would change with time in the absence of treatment (which,
in the counterfactual tradition, are different assumptions about treatment and
control group differences in the evolution of Y°). Researchers typically use ei-
ther change score models or analysis of covariance models without taking note of
these assumptions. Nevertheless, these assumptions can be very consequential,
as we now show in a general way.

Our claim that any assumption about « is potentially reasonable can be jus-
tified by consideration of the following model for the generation of the potential
outcome variables:

Y9 =X+ T, (9.14)
Yy =Yg+, (9.15)

where )\; is an individual-varying intercept, the variable T identifies the time
period, and 7; is an individual-varying coefficient on time 7. For this model,
the following equality holds:

B[Y}|D; =1] - E[Y3|D} = 0] = (E[\|D} = 1] - E[\i| Df = 0]) (9.16)
+T (E[r:|Dj = 1] = E[rs|Di = 0]),

where the T" on the right-hand side is set equal to the value of ¢ in the subscript
on the left-hand side. Without loss of generality, assume for the moment that
(E[M\|Df = 1] — E[N;|Df =0]) > 0. In this case, note that whether the initial
difference between Y° between those in the treatment group and those in the
control group remains the same, grows, or shrinks is, respectively, a function of
whether (E[r;|D} = 1] — E[r;|D} = 0]) is equal to 0, is greater than 0, or is less
than 0.

If we assume that (E[\;|D} = 1] — E[\;| D} = 0]) = 0, then the appropriate
adjustment factor, «, equals

a =1+ (E[r;|Df =1] — E[r;|D; =0)). (9.17)

If (E[r;|Df =1] — E[r;|D} =0]) =0 (i.e., Y changes on average over time at
the same rate for individuals in the treatment and control group), then o = 1 in
Equation (9.17), and the assumptions of the change score model are appropriate.
If (E[r;|Df =1] — E[r;|D} =0]) = (r — 1), which is necessarily nonpositive
(because 0 < r < 1), then o = r in Equation (9.17), and the assumptions of the
analysis of covariance model are appropriate instead.

Of course, there is no reason that (E[r;|Df = 1] — E[r;|D} = 0]) should nec-
essarily be equal to either 0 or » — 1. Thus, it is possible that neither the change
score model nor the analysis of covariance model provides the correct adjust-
ment. To bring this point home, consider Table 9.2, in which the stipulated true
causal effect is 1. The table reports different estimates of the causal effect of the
treatment for different combinations of true and assumed adjustment factors.
Equivalently, because o = 1+ (E[r;| D} = 1] — E[r;|D} = 0]), the table reports
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Table 9.2: Estimated Treatment Effects (With
True Effect Equal to 1) for Different Combina-
tions of True and Assumed Adjustment Factors

Assumed «

True « 2 1.5 1 .5 0
2 1 1.5 2 25 3

1.5 5 1 1.5 2 25

1 0 .5 1 15 2

) —.5 0 .5 1 15

0 -1 =5 0 ) 1

estimates for different actual and assumed values of the difference in slopes for
the treatment and control groups.

Note first that all of the diagonal elements of Table 9.2 are equal to 1. If
the assumed adjustment factor equals the correct adjustment factor, we get the
correct estimate of the causal effect, 1. Below the diagonal are cases where we
have overadjusted (that is, in which the assumed adjustment factor is greater
than the correct one). As a result, we get estimates of the causal effect that are
too low, ranging from .5 to —1, including an estimate of no effect at all. Above
the diagonal, we have cases where we have underadjusted (that is, the assumed
adjustment factor is smaller than the correct one). As a result, our estimates of
the causal effect are too high, ranging from 1.5 to 3.

For this example, the true causal effect is 1 by construction. Across Table
9.2, we have estimates ranging from —1 to 3. We could easily expand the
range of these estimates by considering a broader range of true and/or assumed
adjustment factors. And alternative examples could be developed in which the
true causal effect equals alternative values, and in which the range of estimates
varies just as widely. Although the calculations behind Table 9.2 are simple, the
point of the table is to show that one can obtain any estimate of a causal effect
by making different assumptions about the appropriate adjustment factor.

In view of this problem, what should a researcher do? If there are strong
theoretical reasons for arguing that a particular adjustment factor is correct,
and others agree, then analysis is straightforward. If not, which we suspect is
generally the case, then it may be possible to argue for a range of adjustment
factors. In this case, a researcher may be able to bound the causal effect to a
region on which all researchers can agree.

In general, the assumption that a particular correction factor is correct must
be based on a set of assumptions about how the expectation of Y° for those in
the treatment and control groups evolves over time. This leads naturally to a
more explicit model-based approach. As we will also see, with data from more
than one pretreatment time period, it may be possible to test the adequacy of
the assumptions and thus the appropriateness of a particular adjustment factor.
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In fact, when panel data are used, there may be no feasible alternative to using
an explicit model-based approach.

9.3.2 Model-Based Approaches

In discussing panel data models we have until now considered only traditional
methods of estimating a causal effect. There is, however, much merit to con-
sidering explicit models of the evolution of Y! and Y and then to ask “Under
what model assumptions do different methods give consistent estimates?” In
this section, we take this approach and address four questions:

1. What is the dynamic structure of the outcome? That is, how are future
values of the outcome related to previous values of the outcome? Answer-
ing this question is critical if our goal is to estimate counterfactual values.
In the counterfactual framework for the sort of treatment examples we
will consider, we are interested primarily in the dynamic structure of Y0,
which is the potential outcome random variable under the control state.

2. How is assignment to the treatment determined? As in cross-sectional
attempts to estimate causal effects, this is crucial if a researcher hopes to
generate consistent estimates of a particular causal effect.

3. What are the alternative methods of estimation that can be used to consis-
tently estimate the average causal effect, given a valid set of assumptions?

4. How can the estimated model be tested against the data?

We will consider these four questions in this order.

Dynamic Structure

As shown in any advanced time series textbook, the dynamic structure of the
outcome can be infinitely complex. In the context of panel data models, re-
searchers have typically considered fairly simple structures, often because of
the limited number of waves of data that are available. Rather than trying to
provide an exhaustive account — which would take a book in and of itself — we
primarily focus on conceptual issues.

The broad statistics and econometric literature on panel data models is quite
distinct from the estimation of treatment effects from a counterfactual perspec-
tive. Implicit in much of this literature is the assumption that causal effects are
constant across individuals, such that causes/treatments simply shift the out-
come by fixed amounts. From a counterfactual perspective, such assumptions
are overly rigid. A necessary component of estimating a treatment effect is the
consideration of the hypothetical evolution of Y for the treatment group after
the treatment occurs. If treatment effects are heterogeneous and selection is on
the treatment effect itself, then the treatment effect for the treated is usually
the parameter of interest, as it is often the only one that can be identified by
any model (and, fortunately, it is also often of inherent substantive interest).
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Consider the following possible two equations for the generation of Y°:

Yidir = Ai+ iy, (9.18)
€it+1 = PCit + Vit (9.19)

where ); is a time-constant, individual-varying fixed effect, v;; is pure random
noise (that is, uncorrelated with everything), and p is the correlation between
e;t over time (not the correlation between Y over time, which we labeled as
r earlier). Equation (9.19) specifies an autoregressive process of order (1). It
is order (1) because the current e;;1 is dependent on only the last e;, not ;1
or any errors from prior time periods. There are many possible ways that the
current error could be dependent on past errors. These define what are known
as the class of autoregressive moving average (ARMA) models.

Within the current context [i.e., assuming that we know that Equations
(9.18) and (9.19) are capable of representing the full dynamic structure of Y],
determining the dynamic portion of the model for Y'° amounts to asking whether
Var(A\) = 0, p = 0, or both. Multiple tests are available to evaluate these re-
strictions (see, again, texts such as Hamilton 1994 and Hendry 1995 for com-
prehensive details). Most standard data analysis programs allow a researcher
to estimate a full model on the pretreatment values of Y, assuming that neither
Var(A) = 0 mnor p = 0, and then to reestimate various constrained versions.
Thereafter, a researcher can then use standard likelihood ratio tests of these
model constraints. But such tests on the pretreatment data are not full tests of
how Y evolves for the treatment group in the absence of treatment (here again,
we are back to the issue in ITS analysis in Figure 9.1). Thus, a researcher most
likely will need to make some untestable assumptions.

Consider the following scenarios. If both Var(\) and p are nonzero (and,
furthermore, that selection into the treatment is on A), how then do the values
of Y0 in the treatment and control group behave? When asking this question,
we are implicitly considering how E[Y?|D; = 1] and E[Y?|D} = 0] regress
over time toward one or more values. Consider a summary of these different
situations in Table 9.3, which are then depicted as pairs of lines in Figure 9.6.

Note that Model A is consistent with the assumptions of the change score
model. Model B is consistent with the assumptions of the analysis of covariance
model. Model C is consistent with neither, but we suspect that it is the most
common scenario in empirical research.

Many of the most common models in panel data analysis assume that there
is virtually no dynamic structure to the process that generates the outcome. In
fact, most versions of the model that generally goes by the name of a “fixed
effects” model are based on the following implicit model for the generation of
Y% and Y

Y] = N+T7+ v, (9.20)
Vi = Yi+d, (9.21)

where )\; is a fixed time constant, individual-level determinant of the outcome
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Table 9.3: Alternative Trajectories of the Outcome Under the Control State for
Different Assumptions About its Dynamic Structure

Model Assumed Constraints Evolution of Y

A p=0 Var(\) #0 Immediate regression of individual values
to separate group expectations

B p#0 Var(A) =0 Regression over time of individual values
to a common expectation

C p#0 Var(A) #0 Regression over time of individual values
to separate group expectations

in the absence of treatment, 7'7 is a time trend common to all (because T is a
variable measuring time, and 7 is a constant coefficient that does not vary over
individuals or time), v is random noise, and d; is an individual-specific additive
causal effect that is assumed to be independent of \; and v;;. The assumed data
generation process that motivates the most standard form of a fixed effect model
is equivalent to the assumption that each individual has his or her own intercept
but there is neither serial correlation in v;; nor individual-specific trajectories
in time.

The motivation for the standard fixed effects model can be generalized by
allowing each individual to have his or her own slope with respect to time,
which is indicated by subscripting 7 by ¢ in the assumed data generation model
in Equations (9.20) and (9.21). This more general model is then

Y9 = XN+T7i+vi, (9.22)
Vi = Yi+d, (9.23)

which, apart from the stochastic term v;;, was considered already in the previous
section [see Equations (9.14) and (9.15)]. There, we showed that allowing for
differences between E[7;| D} = 1] and E[7;|D; = 0] could lead to the necessity of
adjustment factors ranging from negative to positive infinity. The attractiveness
of this model, of course, is that it allows the expectation of Y for the treatment
and control groups to evolve in parallel, diverge, or converge. This will depend,
respectively, on whether the difference in the expected slopes for the treatment
and control groups is zero, positive, or negative. But substantial amounts of data
are needed to estimate it, and certainly from more than just one pretreatment
time period and one posttreatment time period.

Determining the Assignment Process

As we have argued in previous chapters, the key to estimating a treatment
effect is understanding the process of treatment assignment/selection. One of
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Upper line of each pair is the treatment group.
Lower line of each pair is the control group.

Y e Model A

Figure 9.6: Three examples of the possible trajectories summarized in
Table 9.3.

the advantages of conceptualizing and then analyzing the dynamic process of
the outcome is that it provides evidence of factors in the assignment process.
Specifically, knowing the dynamic structure of Y indicates how Y might be
predicted, which is important in situations where selection is likely to be on the
predicted Y.

Two general cases are of particular interest and lead to quite different es-
timation strategies. The issue, however, is potentially tricky in that we may
want to condition on one or more endogenous variables. As we have discussed
at several points throughout this book, conditioning on an endogenous variable
can often unblock already blocked back-door paths, thus creating new problems.

Consider first the case in which assignment is directly a function of previous
values of Y, as in Figure 9.7. In this diagram, the association between Y;; and
D does not identify the causal effect of D on Y;;; because they are connected
by a back-door path through Y;: D «— Y, — Y41 However, this back-door path
can be blocked by conditioning on Y;.

Note that Y; is a collider on the path that connects e;_; and e; via Y; 1
and Y;. Thus, conditioning on Y; will induce associations between both e; 1
and Y;_ 1 with e;. These new associations are unproblematic, however, because
they do not create a new back-door path between D and Y; ;. Note that if we
thought that D depended on earlier values of Y, we could condition on these
Y’s without creating problematic back-door paths.

Consider an alternative and much more complex model, presented in Figure
9.8, where D is determined by A\ as opposed to Y;. For this model, there is
an unblocked back-door path connecting Y;4; and D: D «— XA — Y;;;. What
happens if we condition on Y;? Obviously, the unblocked back-door path D «
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Figure 9.7: A model of endogenous treatment assignment in which selection is
on the pretreatment outcome.

/"-\\ /"-\\
7 ~ /7 N
Ivt-l Ut I Ut+1
Y; g Y S Yiir
D
A

Figure 9.8: A model of endogenous treatment assignment in which selection is
on a fixed effect that also determines the outcome.

A — Y,y remains unblocked because Y; does not lie along it. In addition,
conditioning on Y; unblocks another back-door path because Y; is a collider on
the previously blocked back-door path D «— A — Y} «— vy «-—--» v441 — Yiqq.
In combination, conditioning on Y; has only made things worse. We failed to
block the original back-door path that was of concern, and we unblocked an
already blocked back-door path.

Consider this problem from another perspective. Suppose that the standard
motivation of a fixed effect model is in place, such that one has reason to believe
that Y? and Y are generated as in Equations (9.20) and (9.21). Suppose,
therefore, that we wish to estimate the following regression equation:

Yity1 =l + Dirr1c+e; (9.24)

where the [; are individual-specific intercepts, and where we then hope that the
estimated coefficient ¢ on the treatment exposure variable in time period ¢ + 1
will then be equal to the average causal effect, F[d].
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If we had a measure of )\;, then estimating the model in Equation (9.24)
would be straightforward. We could put in a dummy variable specification to
parameterize the [; intercepts. In the causal diagram in Figure 9.8, and from a
standard structural equation perspective, Y;; can be thought of as a measure of
Ai. This then suggests that the following regression equation can be estimated
instead of the one in Equation (9.24):

Yiev1 =a+Yiub+ Dijp1c+e; . (925)

If we think of Y;; as a measure of \;, then it contains measurement error because
it is also a function of v;;. As a result, the coefficient on Y;; will be downwardly
biased. In fact, the estimate of b will be a consistent estimate of r, which is the
reliability of Y. This is not surprising because Equation (9.25) is the analysis of
covariance model. Thus, the analysis of covariance model can be interpreted as
a fixed effect model in which we have used a noisy measure of \; as a right-hand
side variable.

In the last section, we saw that the choice of either the analysis of covariance
or the change score model can be consequential. Accordingly, it is critical to
determine whether assignment to D is function of Yj; or \;. If we have two or
more pretreatment observations, this is easy to do. The first step is to determine
whether b = ¢ or ¢ = 0 in the following model:

Logit(D;) = a+ Yyb+ Yii_1c . (9.26)

In Figure 9.7, D is dependent only on Y;. Thus, ¢ should equal 0. In Figure 9.8,
D is associated with only Y; and Y;_; through their joint dependence on A. As
aresult, b = c.” Obviously, in this test, we may also include observed X’s that
we believe also determine D. And the test generalizes in the obvious way when
we observe Y at more than two pretreatment time periods.

Effect Estimation

Extensive discussions exist in the econometrics literature on the estimation of
the fixed effects model and its generalizations. Basically, there are two different

"These assumptions can more easily be tested by estimating the model

Logit(D;) = a + Yjb+ (Yie + Yig—1)c

and testing whether b = 0 or ¢ = 0. Here, (Y;¢ + Yi;—1) is essentially acting as a measure of \;.
This strategy is based on the following trick often used to test for the equality of coefficients
for two variables X and Z. Let the coefficient on X be m and on Z be m + n. Run the
following regression equation:

Y = Xm+Z(m+n)+tu
(X+2Zym+Zn+u

and use a standard statistical test to evaluate the null hypothesis that n = 0.
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estimation strategies. For the differencing approach, the specification is

differencing: Vi1 — Yy = (A —N) + (Dig41 — Dir)d (9.27)
+ (Xitg1 — Xit)b + (€it41 — €4t)
= (Dit41 — Dir)d + (Xiz41 — Xie)b + (eit41 — €4t),

where treatment exposure occurs between time period t and ¢t + 1. In contrast,
the dummy variable approach is

individual dummies: Y;; = P;l; + D;d + X0 + ey, (9.28)

where P; is a dummy variable for person ¢, and [; is its associated coefficient.
This second method amounts to estimating a separate intercept for each in-
dividual. It is also equivalent to differencing Y and X from their respective
individual-level means. If one wants to estimate the generalized fixed effect
model in which there is an interaction between an individual effect and time,
one can do this by either differencing additional times or by interacting the
individual dummies, P;, with time and estimating a separate interaction term
for each dummy.

To understand the differences between these two approaches, evolving con-
ventions in data analysis must be noted. For the representation of the change
score model and the analysis of covariance model in Equations (9.2) and (9.3),
we conformed to the convention in the literature wherein the models are written
out so that they can be estimated easily as a cross-sectional dataset. In other
words, time is encoded in the variables, so that time-varying outcome variables
—Y;; and Yj;41— are regressed on a cross-sectional treatment group dummy vari-
able D} in an implicit dataset with one record for each of N individuals. This
data setup is also the implicit background for the differencing specification of
the fixed effect estimator in Equation (9.27).

As can be seen in virtually any panel data textbook (e.g., Baltagi 2005),
the convention is to now structure one’s dataset in person—time records, which
results in N x T records rather than N records. Forcing time to be constant
within each data record allows for variables such as D;; and D} to be cleanly pa-
rameterized in subsequent analysis. This data setup is the implicit background
for the individual dummy specification of the fixed effect estimator in Equa-
tion (9.28), and that is why there is no reference to time ¢ versus time ¢ + 1 in
Equation (9.28). Throughout the remainder of this section, we will write with
such an N x T dataset in mind. The ideas, however, do not depend on such
an implicit structuring, as one can switch back and forth between both setups
based on analogs to Equations (9.27) and (9.28).

As for the alternative fixed effect specifications in Equations (9.27) and
(9.28), the two methods give identical answers when there are only two points in
time. When the errors are correlated across time and there are more than two
time periods, the two methods will give somewhat different estimates, though
both estimators are consistent. Which estimator is preferable depends on the
nature of the correlation structure. We need not be concerned about this issue
here (see Baltagi 2005, Hsiao 2003, and Wooldridge 2002 for discussion).
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Traditional fixed effect and differencing methods are generally inefficient,
however, if the goal is only to estimate the effect of a treatment. These meth-
ods simply eliminate unobserved individual effects from the data. Doing so
powerfully eliminates all associations between the treatment variable D;; and
unobserved time-constant, individual-level variables. If the coefficients of all
observed variables are of interest, then this is appropriate.

In the present case, however, our focus is simply on estimating the effect of
treatment exposure, D;;. As pointed out repeatedly in previous chapters, one
approach to consistently estimate the effect of D;; is to balance the data with
respect to all systematic determinants of D;;. As discussed in the last section,
our interest in the case of linear models (the situation with nonlinear models
being more complicated) is in differences in the expected trajectories of Y for
those in the treatment and control groups. If we want to use the control group’s
Y'Y to predict what the treatment group’s Y° would have been in the absence
of treatment, then it is essential that differences in the two groups’ trajectories
be modeled.

To be more concrete, suppose that we have three time points, as for the
demonstration reported in Table 9.1. If the only difference in the expected tra-
jectories of Y for the two groups is in their levels (that is, their intercepts), then
all we need to do is allow for differences in group-level intercepts by estimating

Yii=a+ D;b + Djd + €44 (929)

Here, the coefficient b captures differences in the intercept in the expected tra-
jectories for the treatment and control groups, such that the intercept for the
control group is a and the intercept for the treatment group is a + b.%

If the expected trajectories also differ in their slopes, then we need to include
a term for time and an interaction term between group membership and time,
as in

Yii=a+ Db+Tc+ (D xT)c + Diyyd + ey (9.30)

The coefficient b again captures differences in the intercepts, and ¢’ now captures
differences in the slopes of the expected trajectories. Interactions between D*
and higher-order polynomials of T (or any other function of time) can also be
introduced, assuming sufficient pretreatment data are available.

Estimating the model in Equation (9.30) is equivalent to differencing out
the treatment /control group expectations of \; and 7; in the following assumed
data generation model for Y? and Y'! [based on an augmentation of Equations
(9.22) and (9.23)]. Expanding a standard fixed effect model separately for the
treatment and control groups using the time-constant indicator of the treatment

8Notice that we can include both D;; and D7 in the same regression equation because we
have multiple records for each individual over time in our dataset. In posttreatment time
periods D} = D;; for all individuals (assuming that no one leaves the treatment state before
the end of the study), but in pretreatment time periods D} = D;; only for individuals in the
control group.
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group D* yields

for D} =0: (9.31)
Y8 peo = (Hxp—o + Vi,p*=0) + T(kr pe—o + Th.pr—0)5
for D} = 1:
Yi(t),D*:1 = (px pre1 tvi,pr=1) + T(pr peeq + T;,D*:l)v
for D} =0 and D] = 1:
Vi Y048 (9.32)

Here, p1) p+_g is the expectation of A; in the control group, and A\; = iy p-—o +
v;,p+=0 for those in the control group. Likewise, u, p«_q is the expectation of
7; in the control group, and 7; = p, p«_g + Tj5 p-—o for those in the control
group. The terms for the treatment group are defined analogously.

In this setup, the terms v; p-—o, vi,p+=1, T} p-_g, and T'7} 5._, become
components of the error term e;; of Equation (9.30) as constant individual-level
differences v; and time-varying individual differences T'7;. Because v; p+—o,
vi,p+=1, T'T} p«—g, and T} p._, are all by construction uncorrelated with D,
e;+ is uncorrelated with D} assuming any extra individual or time-varying noise
embedded within e;; is completely random. Furthermore, the coefficient a in
Equation (9.30) is equal to p1y p«—q, and the coefficient b is equal to gy p«—;—
M, p+—o- Thus, b captures the difference in the expected intercept for individuals
in the treatment and control groups. Likewise, the coefficient ¢ in Equation
(9:30) is equal to g, p«_g, and the coefficient ¢’ is then equal to p, p«_y —
My pr—g- And thus ¢’ captures the difference in expected slope of the time
trends for individuals in the treatment and control groups.

The coefficient d on D;; is a consistent estimate of average treatment effect
because the expectations of \; and 7; are balanced across the treatment and
control groups. All of their systematic components related to treatment group
membership are parameterized completely by a, b, ¢, and ¢’. This leaves all
remaining components of the distributions of \; and 7; safely relegated to the
error term.”

There are two advantages of estimating Equation (9.30), as opposed to using
traditional methods for estimating fixed effect models and their generalizations.
First, conceptually, the model makes clear that if the goal is consistent es-
timation, then the expected trajectories of Y for the treatment and control
groups must be correctly modeled (not necessarily all individual-specific tra-
jectories). Later, we show how this principle leads to a general specification
test. Second, there are potential efficiency gains. For example, in a standard
fixed effect model, half of the overall degrees of freedom are lost by specifying
individual-specific fixed effects (when there are only two time periods of data).
In estimating Equation (9.30), only one degree of freedom is lost to an estimate
of the difference in the intercept for the mean of Y. We should note, however,

9Moreover, because this model is set up as a linear specification of the treatment effect, a
lack of balance in higher-order (centered) moments of \; and 7; does not affect the estimation
of d.
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that this minimization in the loss of degrees of freedom is moderated by the fact
that the errors in Equation (9.30) are likely to be highly correlated within in-
dividuals (because the errors within individuals include a common fixed effect).
An estimation procedure should be used for the standard errors that accounts
for this correlation.

In the situation in which Y;; is directly affected by Y;, estimation is far
simpler. As already discussed with reference to Figure 9.7, conditioning on Y;
is sufficient to block all back-door paths connecting Y;11 and D. Conditioning
could be done by matching, as in the analysis of Dehejia and Wahba (1999)
for the National Supported Work data (although there is no evidence that they
attempt to test the suitability of this specification as opposed to a fixed effect
specification).!’ Alternatively, Y; could be conditioned on by a regression model,
as in an analysis of covariance model. More complicated specifications in which
Yi41 is a function of both Y; and unobserved individual-level variables are also
possible. In general, IVs are needed to estimate these models effectively. Halaby
(2004) provides a clear introduction to these methods.

Model Testing

Hopefully, by now, we have convinced the reader that maintained modeling as-
sumptions can have large consequences. Given this dependence, it is critical that
researchers be explicit about the assumptions that they have made and be able
to defend those assumptions. Assumptions can be defended either theoretically
or on empirical grounds. Often neither is done. In fact, they are made often
without any explicit recognition. Fortunately, if pretreatment observations are
available for multiple time periods, it is possible in many circumstances to test
the assumptions against the data. Here, we describe two conceptually different,
but mathematically closely related, approaches.

In discussing strategies to increase confidence in a causal effect estimate
from an I'TS model, we suggested that a researcher could either use a dependent
variable for which no effect should occur or estimate the effect for a group for
which no treatment effect should occur. Evidence of a treatment effect in either
case is evidence that the model is misspecified.

Heckman and Hotz (1989) suggest applying this same principle to panel data
when two or more pretreatment waves of data are available. Specifically, they
suggest taking one of the pretreatment Y’s and analyzing it as if it occurred
posttreatment. A researcher then simply applies the estimation method to the
new pseudo-posttreatment data and tests for whether there is evidence of a
“treatment effect.” Because neither the treatment nor the control group has
experienced a treatment in the data under consideration, evidence of a treatment
effect is evidence that the model is misspecified (i.e., that the model has failed
to fully adjust for differences between the treatment and control groups).

In the analysis of covariance model, care must be taken. Here, it is implicitly
assumed that selection is on Yj;. For example, for a logit specification of the

L0For detailed discussions of the appropriate model specification for these data, see Smith
and Todd (2005) and associated comment and reply.
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probability of treatment selection, it is implicitly assumed:
Logit(D}) = a + Yib. (9.33)

In this model, D} is a function of Y;;. This is mathematically equivalent to
maintaining that D} is a function of Yj;—1 + (Yit — Yiz—1). Generally, Y;; will be
correlated with (Y;; — Yj;—1). Consider the following model:

Yit = a+ Yi—1r+ Djc+u;. (9.34)

Because Dj is a function of both Y;; and (Y — Yi:—1), and Y;; is correlated
with the latter term, in general ¢ will not equal 0. The basic point is that D}
is partially a function of a component of Y;; that is not contained in Y;;_;. In
general, the coefficient ¢ on DJ is a function of this dependence.

We can, however, run time backwards. Accordingly, we can estimate

Yiee1 = a + Yur + v;. (9.35)

If we are going to use the testing strategy of Heckman and Hotz (1989) to
evaluate an analysis of covariance model, we should then test whether ¢ = 0 in
the following related model:

Yiici =a+Yur + Dic+e;. (9.36)

Because there is no component of D} that depends on Y;;_; conditional on Yj,
¢ should equal 0 in this model if the analysis of covariance model has correctly
adjusted for treatment group differences in Yj;_1.

Heckman and Hotz’s test also indicates how two-period pretreatment/
posttreatment data can be used. What we should do is fit a cross-sectional
model. We should then treat the pretreatment Y as if it were a posttreatment
Y and then test for a treatment effect. Evidence of a treatment effect is evi-
dence that our cross-sectional model has failed to fully adjust for pretreatment
differences between the treatment and control groups.

To better understand these procedures, consider a more general specification
of this type of test. Recall that, net of our adjustments for various functions
of time and other variables, we seek to evaluate whether the trajectories of Y
are equivalent in the pretreatment data for the treatment and control groups.
A variety of different models can be assessed. A fixed effect model allows for
differences in the intercepts for two groups. A model with individual- or group-
specific time coefficients allows for differences in slopes. If we have enough pre-
test data, we can add additional functions of time into our model and thereby
allow for even more heterogeneity of trajectories for Y.

The most general specification would be to use one time period as the base
and create a dummy variable indicator for all other time periods and to allow
these dummy variables to fully interact with our treatment group indicator D*.
This is what is known as the saturated model in this tradition. It is a completely
flexible function form and allows for completely separate time trajectories for
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Table 9.4: Specification Tests from the Analysis of Heckman and Hotz (1989)
of the Effect of the National Supported Work Program on the Earnings of High
School Dropouts

p values for specification tests

Preprogram Postprogram
Estimated effect 1975 earnings 1978 earnings
Experiment —48
(144)
Regression —1884 .000 .000
(247)
Fixed effect model —1886 .000 .000
(pre-1972) (242)
Random-growth model —231 375 .329
(pre-1972 and 1973) (414)

Note: Results are from Tables 3 and 5 of Heckman and Hotz (1989), for the B1
specification of basic demographic characteristics.

YV for the treatment and control groups. It is of little use in estimating the
true causal effect.

Using just the pretest data, we can, however, compare the saturated model
with any more restrictive model — such as a fixed effects model — using an F-test
or likelihood ratio test. Evidence that the more restrictive model does not fit
is evidence that the more restrictive model fails to fully model the differences
between the treatment and control groups in the trajectories of Y.

Consider the results of Heckman and Hotz (1989), a portion of which is
presented in Table 9.4.''  For their analysis, Heckman and Hotz (1989) es-
timated a wide range of alternative models of the effect of the National Sup-
ported Work program on the 1978 earnings of participants who were high school
dropouts. The first column reports selected estimated effects from their study.
The experimental estimate indicates that the program has no effect (that is,
—48 dollars with a standard error of 144 dollars). The regression and fixed
effect models show large negative effects, which are statistically significant by
conventional standards. Their random-growth models, which allow for individ-
ual slope coefficients for the trajectories of earnings, suggest a modest but still
nonsignificant negative effect.

I Although Heckman and Hotz (1989) is an exemplary early example of this sort of analysis,
the basic specification test approach is used in one form or another in other work as well (e.g.,
Petersen, Penner, and Hggsnes 2006, Table 4).
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The second column of Table 9.4 reports the p values for tests of no treatment
effect, in which the preprogram 1975 earnings are used as if they were in fact
posttreatment earnings. If the models that are tested adequately adjust for un-
derlying differences between the treatment and control groups in the trajectories
of earnings, one would expect the treatment effect estimate to be nonsignificant
(i.e., have a high p value). In the case of the regression and fixed effects mod-
els, the faux-treatment-effect estimate is highly significant, indicating a lack of
model fit. In the case of the random-growth model, however, it appears to fit
the data.

The third column reports results from a similar test, where Heckman and
Hotz analyze the valid 1978 posttreatment data as if one time period was in
fact pretreatment data. Again, they test for whether there is evidence of a
treatment effect. As with the tests reported in the second column, if the model
is properly specified, then there should be no evidence of a treatment effect.
But here also the p values for the regression and fixed effects models suggest
a significant treatment effect, indicating that these models do not fit the data.
And, as before, the p value for the random-growth model indicates that it fits
the data.'?

The National Supported Work data have been analyzed by many different
social scientists, and they are perhaps the most widely used data to assess the
relative explanatory power of alternative types of panel data estimators. There
has been considerable debate about whether or not researchers need methods
that take account of unobservables or whether adjusting only for observables is
sufficient. Smith and Todd (2005; see also the associated comment and reply)
offer the most up-to-date analysis. Their analyses show clearly how sensitive
estimates can be to the sample that is chosen. They support Heckman’s position
that there are important situations for which treatment selection is likely to be
a function of unobserved variables.

9.4 Conclusions

Longitudinal data may be helpful for estimating causal effects, but longitudinal
data do not constitute a magic bullet. Defendable assumptions about the treat-
ment assignment process must be specified. And, to use longitudinal data to
its maximum potential, researchers must carefully consider the dynamic process
that generates the outcome, clearly define the causal effect of interest, and then
use constrained models only when there is reason to believe that they fit the
underlying data.

12 A note of caution is warranted here. As in all situations, the power of these tests is a
function of sample size. In this case, there are only 566 treatment cases. From the data, it is
impossible to tell whether the random-growth model fits the data because it is a sufficiently
correct model of the underlying individual-specific trajectories or rather because the sample
is small.
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Chapter 10

Counterfactual Causality
and Future Empirical
Research in the Social
Sciences

What role should counterfactual models play in causal analysis in observational
social science? Some claim that it is the only correct way to think about causal-
ity while others claim that it is of limited value. We take an intermediate
position. We see the methods of counterfactual causal modeling as constituting
a useful set of tools that can help to improve the investigation of causal relation-
ships within the social sciences. We believe that counterfactual methods both
complement and extend existing approaches to causal analysis.

The strength of counterfactual modeling is that it demands that the re-
searcher specify precisely how changing the treatment state, holding other rel-
evant conditions constant, would change the expected outcome for a relevant
unit of analysis. Counterfactual models also reveal the essential requirement of
explanations that appeal to mechanisms: One must document how a treatment
effect is propagated by a mechanism to an outcome, considering each distinctive
causal pathway along the way.

Nonetheless, counterfactual models require much less than some versions of
structural equation modeling. Counterfactual models do not require a full spec-
ification of all causes that produce an outcome, and they do not assume (or
require) that a causal effect estimate be population invariant. In many cases,
their parameters can be estimated under far weaker assumptions. For many
average causal effects of interest, for example, the data merely need to be bal-
anced with respect to the determinants of treatment assignment. Causal claims
do not rest on assumptions that require full independence between the observed
causes of the outcome and all other unobserved causes. Thus, counterfactual
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modeling allows us to go beyond traditional analyses that focus on conditional
associations and the problem of omitted variables, pushing us to develop richer
and more specific causal accounts. These models, however, do not require that
we specify full structural models of all of the determinants of an outcome when
neither theory nor data can sustain them.

In this chapter, we first shore up our presentation of the counterfactual
model by considering several critical perspectives on its utility. We weigh in
with the arguments that we find most compelling, and it will not be surprising
to the reader that we find these objections less serious than do those who have
formulated them. However, we use quotations from the published literature ex-
tensively in order to demonstrate the richness of these debates and to encourage
a full reading of the material that we are able to summarize only briefly here.

We then conclude the chapter with a discussion of causal modeling practices,
noting the alternative modes of causal inquiry that exist in observational social
science. We argue that counterfactual-based modeling is useful because it en-
courages the explicit analysis of well-defined causal relationships. As such, the
model facilitates movement between modes of causal inquiry, guiding analysis
to the deepest level that theory and data can enable at any given point in time.

10.1 Objections to Features of the
Counterfactual Model

Although attractive in many respects, the counterfactual model is not without
serious objections from thoughtful critics. In this section, we present some of
the concerns from the published literature.! If any of these objections are
accepted, then a justification for eschewing much of what we have presented
in prior chapters is available. Such a decision, however, would presumably
require the adoption of the counterposition(s) of those who raise the following
objections. We will not lay out these alternative approaches to causal analysis
here, but their main features are implicit in the critiques of the counterfactual
model.

Objection 1: Nonmanipulable Causes Cannot be Analyzed

The counterfactual model is most natural when one can conceive of a spe-
cific procedure for manipulating the cause of interest, or in the words of Berk

IThere is one common objection that we do not present or discuss in the main text. Some
argue that the counterfactual model encourages undue obsession with causal inference that
can lead to poor statistical practice as a by-product. It is often asked, Is it a good idea to
focus so much on unbiasedness and consistency of estimates? An emphasis on consistency,
for example, could lead one to favor a consistent but very inefficient IV estimate over an
inconsistent but very efficient OLS estimate. We do not address this objection in the main
text because it is an objection to all approaches to causal modeling. Accordingly, we do not
advocate downgrading attention to matters of statistical inference, only upgrading of the care
with which we pursue causal inference.
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(2004:91), “in the sense that conscious human action can change things.” If the
effects of a cause that cannot be manipulated by “human action” are of inter-
est, then the contribution of the framework loses some of its transparency (see
Holland 1986). There are two reactions to this objection.

First, it is not as limiting as is often claimed. Woodward (2003) has argued
this position more completely than anyone else (see, in particular, his section 3.4
“In What Sense Must Interventions Be Possible?”). In developing his conception
of an intervention, Woodward concludes:

The sorts of counterfactuals that cannot be legitimately used to elu-
cidate the meaning of causal claims will be those for which we cannot
coherently describe what it would be like for the relevant intervention
to occur at all or for which there is no conceivable basis for assessing
claims about what would happen under such interventions because
we have no basis for disentangling, even conceptually, the effect of
changing the cause variable alone from the effects of other sorts of
changes that accompany changes in the cause variable. (Woodward
2003:132)

In this regard, what matters is not the ability for humans to manipulate the
cause through some form of actual physical intervention but rather that we be
able, as observational analysts, to conceive of the conditions that would follow
from a hypothetical (but perhaps physically impossible) intervention.? More-
over, the manipulability criterion is not as strong as is sometimes supposed. For
example, if racial discrimination is the topic of study, race itself does not need
to be manipulated, only the perception of race by the potential discriminator.
Deception can then be used to gain leverage on the causal effect of interest, even
if race itself remains fixed.

Even if Woodward’s position is rejected [and we concede that some discus-
sions, such as those of Berk (2004), do remain convincing to a large extent], and
thus if a researcher does not feel comfortable using the counterfactual frame-
work to define the causal effects for hard-to-conceive-of-actually-manipulating
attributes, the counterfactual framework can still be used in an as-if mode in
order to sharpen the goals of an analysis. This is the position of Glymour
(1986), who responds to the position that nonmanipulable attributes cannot
be causes by arguing that counterfactuals can be used to elucidate effects that
are presumed to have been caused by a set of potentially manipulable factors
but are merely referred to collectively by nominal labels. The goal of research
is to push the analysis further down from the nominal labels to the separable
manipulable factors. In pursuit of this goal, it can be efficient to first define the
counterfactuals associated with nonmanipulable attributes as if they could be
easily and naturally manipulated by human action.

2Woodward (2003:122) also discusses how the focus on conceivable interventions allows one
to avoid having to contemplate preposterously unreasonable counterfactuals.
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Consider studying the effect of race on socioeconomic outcomes, one of the
most common topics of study in the literature on social inequality. Although
race cannot be manipulated easily, the framework can still be used to construct
thought experiments that clarify the questions of interest. For example, the
counterfactual model could be used to motivate an attempt to estimate the
average gain an employed black male working full time, full year would expect
to capture if all prospective employers believed him to be white. This would be
a quite different effort than an attempt to estimate what the black—white gap
would be if black men had grown up in families with as much family income
as whites, and hence would have had the available resources with which to
purchase higher-quality secondary and postsecondary education. By helping to
frame such fine distinctions between alternative states, the counterfactual model
helps to sharpen research questions and then shape reasonable interpretations of
whatever data are at hand. Reskin (2003) notes, correctly to be sure, that such
a basic framing of differentials is but a first step. But it is a necessary first step,
for only thereafter can one begin to systematically investigate the intervening
mechanisms that generate the causal relationships and the differences across
attributes that the extant literature defines as important.

In this regard, stating merely that an attribute D causes an outcome Y is
simply the crudest form of a mechanism sketch (as we discussed in Chapter
8). To further investigate this mechanism sketch, counterfactuals must then
be defined for whatever presupposed process is thought to generate the causal
effect of D on Y. Reskin (2003), for example, provides a clear exposition of
how the investigation of such effects of attributes should proceed. She argues
that researchers should lay out alternative mechanisms that generate ascriptive
inequality — primarily those based on the discriminatory motives of gatekeepers
versus those based on unequal access in structures of opportunity — and then
evaluate the relative of importance of each mechanism in targeted empirical
analysis.

Objection 2: The Counterfactual Approach Is Ill Suited to the
Discovery of the Causes of Effects

If an investigator is interested in estimating the effects of causes, then the coun-
terfactual model is quite natural. However, if an investigator is interested in all
of the causes of an observed effect, then the counterfactual model is less helpful.
This limitation is most obvious when the effect of interest is an important event
that demands explanation.

Although we would not want to argue that causes-of-effects questions (or
causes-of-events questions) should be of no concern, such global questions of
causation are often ill posed and can encourage sloppy analysis. Michael Sobel
has provided perhaps the most vigorous indictment of the common practice of
attempting to estimate simultaneously a large numbers of causes of an effect of
interest from survey data. To cite one example of his perspective, he writes in
the overview essay “Causal Inference in the Social Sciences” for a millennium
issue of the Journal of the American Statistical Association:
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... much of quantitative political science and sociology may be char-
acterized as a highly stylized search for new causes of effects. Re-
searchers typically begin with one or more outcomes and a list of
causes identified by previous workers. Potentially new causes are
then listed; if these account (“explain”) for additional variability of
the response, then the new causes are held to affect the outcome,
and the significant coefficients in the new model are endowed with a
causal interpretation. The process is repeated by subsequent work-
ers, resulting in further “progress.” When researchers realize that
they are merely adding more and more variables to a predictive con-
ditioning set, one wonders what will take the place of the thousands
of purported (causal) effects that currently fill the journals. (Sobel
2000:650)

If Sobel is correct (and we are inclined to agree with him), then the social
sciences give too much attention to the identification of the causes of effects
and too little attention to the simpler and more tractable goal of estimating
the effects of particular causes. But even if one disagrees with this position,
maintaining instead that causes-of-effects questions should always be in the
foreground, it is hard to deny that the quest for a full account of the causes
of any effect is aided (and perhaps, at times, best advanced) by the pursuit of
well-defined questions that focus narrowly on the effects of particular causes. As
knowledge of these effects accumulates, we can then attempt to build full causal
accounts of outcomes and events. If counterfactual modeling is then justified
only as an instrumental path toward the ultimate goal of sustaining full causal
accounts, little of its appeal is diminished in our view.

The philosopher Paul Humphreys offers an elegant appeal to this pragmatic
realist-empiricist position in the concluding paragraph of his 1989 book, The
Chances of Explanation: Causal Ezxplanation in the Social, Medical, and Phys-
ical Sciences. After reflecting on the demise of the covering law model of expla-
nation and some of its failed alternatives, Humphreys writes:

What, then, do we have to replace the traditional account of ex-
planatory knowledge? It is not propositional knowledge ... . Nor is
it de dicto knowledge ... . It is de re knowledge of the causes that
contributed to the effect, gained in a cumulative manner, coupled
with the discovery of previously unknown structures that pushes
the moving boundary of the observable even further from ordinary
experience and allows us to become acquainted with finer and finer
details of how the world works. When we know of all of the causes,
then we shall know all there is to know of the kind with which we
are concerned, for all that we will be left is pure chance, and chance
is, as I have said, literally nothing. (Humphreys 1989: 140-1)

The idea here is that we should strive to explain phenomena by estimating the
effects of putative causes on particular outcomes. And, in practice for obser-
vational data analysis, all such attempts require a consideration of at least two
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types of other causes of the outcome: (1) those that may lie along unblocked
back-door paths in a causal diagram and (2) those that constitute the mecha-
nisms that link the putative causal variable to the outcome variable. Over time,
we collect more data and estimate the effects of the same causes on the same
outcomes in a variety of conditions, which deepens our understanding of both
forms of variables that were considered unobservables initially.

Objection 3: Causal Inference Should Not Depend on Metaphysical
Quantities

In a wide-ranging article titled “Causal Inference Without Counterfactuals,”
the statistician A. P. Dawid (2000) argues that potential outcomes are inher-
ently metaphysical, and thus the counterfactual model for causal inference is
“generally unhelpful and frequently misleading” (Dawid 2000:409). He argues
that causal claims must rest only on inherently testable ideas, and he presents
a decision-theoretic alternative that he argues succeeds in realizing the goal of
estimating the effects of causes.”

Although some aspects of Dawid’s critique are rather involved, some of its
central features are quite simple. He argues that counterfactual modeling em-
braces “fatalism” because it implicitly assumes that the potential outcomes of
individuals (i.e., y! and Y for a binary cause) are fixed values that are regarded
as “predetermined attributes” of individuals “waiting only to be uncovered by
suitable experimentation” (Dawid 2000:412).* He regards this implicit assump-
tion as inherently untestable, and yet it is necessary in order to make sense of
other concepts that are central to counterfactual modeling (such as SUTVA and
the existence of compliers and defiers for LATE analysis):

[This untestable assumption] ... leaves no scope for introducing re-
alistic stochastic effects of external influences acting between the
times of application of treatment and of the response. Any account
of causation that requires one to jettison all of the familiar statistical
framework and machinery should be treated with the utmost suspi-
cion, unless and until it has shown itself completely indispensable
for its purpose. (Dawid 2000:413)

For his alternative, Dawid considers a basic Bayesian decision model that,
without reference to potential outcomes, allows a statistician to (1) design a
randomized experiment to compare the effects of a treatment on an outcome (in
comparison with a base state of either no treatment or an alternative treatment)
and (2) convey the results of this experiment to inform a relevant decision maker
of the expected effect of applying the treatment to an additional subject similar

3For brevity, we do not cover Dawid’s position on modeling the causes of effects here. We
just addressed the causes-of-effects versus effects-of-causes position in the last section.

4He also then objects to the arbitrariness of selecting the linear difference yilf y? to
represent the individual-level causal effect, which is a bit of a red herring, given that virtually
everyone has conceded that other possibilities exist but cannot always be profitably analyzed
given the constraints of data.
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to those on whom the experiment was conducted.” After contrasting his model
with the counterfactual model, he concludes:

I have argued that the counterfactual approach to causal inference is
essentially metaphysical, and full of temptation to make “inferences”
that cannot be justified on the basis of empirical data and are thus
unscientific. An alternative approach based on decision analysis,
naturally appealing and fully scientific, has been presented. This
approach is completely satisfactory for addressing the problem of
inference about the effects of causes, and the familiar “black box”
approach of experimental statistics is perfectly adequate for this pur-
pose. (Dawid 2000:423)

The response to Dawid’s critique of the counterfactual model has been largely
negative, as revealed in the comments published with it. The crux of the coun-
terargument is the following. If perfect experiments for every causal question of
interest could be designed and then implemented, then potential outcomes are
unnecessary (even though they might still be useful for some purposes, such as
to think through the results that might have emerged from alternative experi-
mental protocols). Furthermore, no one seems to disagree with the claim that
we should use study designs that can rescue us from having to apply assump-
tions to what-if quantities. In this regard, it would of course be preferable to be
able to use a crossover study in all situations, which Rothman and Greenland
(1998) describe as follows:

The classic crossover study is a type of intervention study in which
two (or more) interventions are compared, as in any experimental
study. In a crossover study, however, each subject receives both in-
terventions, with one following the other in a randomized sequence.
Enough time is allocated between administration of the interventions
so that the effect on the subject of each intervention can be mea-
sured before the other intervention is given. Obviously, the crossover
study is only feasible for studying interventions whose effects occur
promptly and do not persist, so that the effect of the second inter-
vention is not intermingled with the effect of the first. (Rothman
and Greenland 1998:111)

The appeal of this sort of a study design, in view of Dawid’s critique, is that each
ostensibly metaphysical potential outcome would become an observed outcome.
But, unfortunately, crossover research designs work effectively only when one has
control over the allocation of the treatments and only when treatment effects are

5Following in the Bayesian tradition, the decision maker (who could also be the statistician)
can then assess the consequences of applying the treatment to the subject, with reference to
cost considerations and other determinants of her loss function. But these additional points
are not stressed by Dawid, in part because they are not incompatible with the counterfactual
model.
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sufficiently ephemeral. These conditions sometimes exist for the causal questions
that concern social scientists, but rarely is this the case.

For observational data analysis, which Dawid barely mentions in his arti-
cle, we are stuck with having to assert what-if assumptions about potential
outcomes in order to move forward. Robins and Greenland (2000), when com-
menting on the Dawid critique, consider many of the applied examples for which
counterfactual models have been used. They conclude:

By narrowly concentrating on randomized experiments with com-
plete compliance, Dawid, in our opinion, incorrectly concludes that
an approach to causal inference based on “decision analysis” and
free of counterfactuals is completely satisfactory for addressing the
problem of inference about the effects of causes. We argue that when
attempting to estimate the effects of causes in observational studies
or in randomized experiments with noncompliance ... [a] reliance
on counterfactuals or their logical equivalent cannot be avoided.
(Robins and Greenland 2000:431)

This basic point is echoed by most of the other commentators on the article.
Cox (2000:424) asks this question: “And yet: has the philosophical coherence [of
Dawid’s position], if not thrown the baby out with the bathwater, at least left the
baby seriously bruised in some vital organs?” Casella and Schwartz (2000:425—
6) conclude, “Dawid insists that such choices [about how to conduct causal
analysis| ... must be based on strict principles that can be verified empirically.
We believe that such a program is so overly rigid that, in the end, science is not
served.”

Even so, Dawid’s objection to the metaphysical nature of potential outcomes
does bring up a deeper question: What is the epistemological status of the coun-
terfactual model?® The potential outcomes framework is certainly not positivist,
as it breaks radically from the positivist—empiricist prescription that analysis
must consider only observable quantities. The reliance on what-if potential out-
comes and the consideration of unobservable characteristics of the treatment
assignment /selection process consigns the counterfactual model to the postpos-
itivist model of science generally labeled realism (see Psillos 1999, Putnam 1975;
see also Godfrey-Smith 2003 for an overview). But, because each unobserved
potential outcome could have become an observed outcome if the unobservables
in the treatment assignment process had been configured in an alternative way,
the entire framework aspires to help us become reductive empiricists.

6When wading into the philosophy literature, one point leaps out in regard to Dawid’s
charge. The literature on causality is considered by most philosophers to be properly situated
in the subfield of metaphysics. Thus, Dawid’s charge that the potential outcome framework is
metaphysical is, from the perspective of philosophers, both accurate and untroubling. See also
the position of Pearl (2000:33-4), who argues that, even if counterfactuals are metaphysical,
individuals are all too happy to use them in their daily lives. For this reason alone, it seems
natural to build notions of causality around them.
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In this regard, we suspect that most social scientists who use the counter-
factual model would find the pragmatic position of Donald Campbell similar to
their own, as he laid it out in 1977:

I am a fallibilist and antifoundationalist. No part of our system
of knowledge is immune to correction. There are no firm building
blocks, either as indubitable and therefore valid axioms, or in any set
of posits that are unequivocal once made. Nor are there even any
unequivocal experiences or explicit operations on which to found
certainty of communication in lieu of a certainty of knowledge.

I am some kind of a realist, some kind of a critical, hypothet-
ical, corrigible, scientific realist. But I am against direct realism,
naive realism, and epistemological complacency. (Campbell 1988
[1977]:444-5)

We read this passage as indicating that Campbell recognizes, grudgingly to be
sure, that the pursuit of valid knowledge necessitates the invocation of unob-
servable quantities, such as potential outcomes. This tips one into the realm
of realism, wherein such unobservables are given provisional truth status for
pragmatic purposes. But, for any corrigible realist, the ultimate aspiration is to
bring conjectured unobservables out in the open, drawing analysis down to its
most generic form as an as-if positivist endeavor.

For scholars who find the counterfactual approach to observational data
analysis unappealing, perhaps because of the persuasiveness of one of these
objections, a variety of responses exists. Some scholars argue, simply, that
we should devote much more attention to descriptive modeling because causal
analysis can be so intractable. We begin the next section with this position, after
which we then move on to consider four alternative modes of causal inquiry.

10.2 Modes of Causal Inquiry in the Social
Sciences

Some scholars argue that many long-standing questions in the social sciences
can and should be pursued without any reference to causality. When the sole
interest is a parsimonious account of “what the data show” or “what the histor-
ical record reveals,” then all strategies for causal analysis are largely irrelevant,
including the counterfactual framework. But, there are also good reasons to con-
sider descriptive analysis more generally. Berk (2004:218) notes that “... good
description is the bread and butter of good science and good policy research.”
Sobel (1996:376) declares that “... many sociological questions neither require
nor benefit from the introduction of causal considerations, and the tendency to
treat such questions as if they are causal only leads to confusion.”

We agree with this position to a great extent. But the appeal for descriptive
research cannot be taken too far. Deep epistemological questions still arise in
descriptive research, as not all descriptive accounts can be considered equally
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worthy of our attention. Perhaps more importantly, social scientists may not
want to backpedal from causal inquiry, lest journalists, partisan think-tank
scholars, and politicians take it over entirely. We would most prefer to see
both judicious descriptive analysis and careful causal analysis jointly crowd out
poor causal analysis in the social sciences.

As we have noted at several points, when considering the causal controver-
sies that pervade the literature, many social scientists have echoed the point
summarized most clearly for sociology by John Goldthorpe, who writes, “soci-
ologists have to find their own ways of thinking about causation, proper to the
kinds of research that they can realistically carry out and the problems that
they can realistically address” (Goldthorpe 2001:8). With this appeal in mind,
we conclude this book with a discussion of the four primary modes of causal
inquiry that exist in observational data analysis.

We have two goals for this concluding presentation of complementary modes
of causal inquiry: (1) to affirm that all four modes of inquiry are valuable and
(2) to argue that the counterfactual model is consistent with all of them and
can help us to move productively between them.

Even so, we would not want to argue for the hegemony of counterfactual
thinking. The specter of widespread mechanical adoption of the counterfactual
model is truly frightening to us: No one wishes to have to review journal sub-
missions in which scholars define the treatment effect for the treated, offer up
a fairly arbitrary set of matching estimates, and then a disingenuous sensitivity
analysis that purportedly bolsters the results. This prospect alone is sufficient
for us to recommend considerable caution.”

But, perhaps more important, we cannot envision the pursuit of empirical
analysis in our own research areas without engaging in analysis that has no
explicit connection with the counterfactual model. In other words, we can see
many future profitable lines of inquiry in our own research in which counterfac-
tual thinking will play no role other than as a background tool that encourages
clear thinking.

With that backing, we offer the following (necessarily oversimplified) rep-
resentation of complementary modes of causal inquiry in observational social
science:

Mode 1: Associational Analysis. In practice, most causal inquiry begins with
an assessment, sometimes unreported, of whether a putative causal variable and
outcome variable are associated in some way. It is often stated that establishing
such an association is a precondition for subsequent causal analysis, as reflected
in the aphorism “no causation without association.”®

"When reading the penultimate draft of this book, one colleague asked, “Why is this
worse than the senseless regression estimates that we have to review now?” It perhaps bears
mentioning that this colleague was coming to the end of a tour of duty on the editorial board
of a major journal.

8Formally, of course, there are cases for which this may not be true, such as when individual-
varying causal effects perfectly cancel out each other or when suppression effects exist. We
ignore exceptions such as these here, as they are rare. The sorts of physical equilibria that



10.2. Modes of Causal Inquiry in the Social Sciences 287

Mode 2: Conditional Associational Analysis. After an association has been
established, it is customary to then reestimate the association after condition-
ing on values of other observed variables. Although quite general, the typical
approach usually follows one of two implementations: (1) conditioning on other
variables that are thought to determine the outcome and that may also be re-
lated to the cause and (2) conditioning on variables that determine the cause and
that may also be related to the outcome. Although conceptually quite different
(as we noted in our discussion in Section 3.3), the goal of such conditioning is
to eliminate prior causes of both the putative causal variable and the outcome
variable, so as eliminate obvious sources of spuriousness.

Mode 3: Mechanism-Based Analysis. Perhaps after obvious forms of spuri-
ousness have been eliminated through conditioning, a common practice in causal
inquiry is to then introduce intervening variables between the putative causal
variable and the outcome variable in an effort to provide a mechanistic explana-
tion of the process that generates the causal effect. Such a form of causal inquiry
can proceed, as is often the case, even though it may be unclear whether or not
all forms of spurious association have been eliminated.

Mode 4: All-Cause Structural Analysis. Finally, at its most ambitious level,
causal inquiry is pursued as an attempt to identify all causes in a chain of
causality from the putative causal variable to the outcome variable, eliminating
all spurious forms of association as a by-product. This approach is best repre-
sented in the forms of structural equation modeling that prevail in economics,
wherein all specifications are justified with appeals to microeconomic theory
and purport to explain the entire “who, when, where, and how” of all of the
causes of the outcome of interest.

Consider now how the counterfactual model of causality can be related to
these four modes of inquiry and how it facilitates movement between them as
advances in theory construction and data collection are achieved. For mode 1
(associational analysis), the counterfactual model encourages the consideration
of causes for which one can conceive of reasonable and theoretically possible con-
ditions associated with an intervention that changes the causal variable from one
value to another. When causal inquiry is stuck by convention on the considera-
tion of the effects of attributes, for which the conditions of an as-if intervention
are unclear, the model encourages additional effort to break the associational
analysis into pieces that are more amenable to analysis by consideration of spe-
cific counterfactual dependencies. The hope of such a refined and expansive
strategy is that the analysis can be brought down to a level where manipu-
lations are more easily conceivable, which may then allow for a redirection of
the conventional forms of associational causal inquiry. Such redirection may be
necessary in order to open up the possibility of advancement beyond modes 1
and 2.

rigidly generate balancing of responses to causal shocks have no clear analogs in the social
sciences that would generate similar perfect cancellation of unit-specific causal effects. And,
although suppression effects exist in the social sciences, we cannot think of examples for which
they have been shown to completely erase bivariate associations that are at least partly causal.
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For the transition from mode 1 to mode 2 (that is, from associational to
conditional associational analysis), the counterfactual model encourages sepa-
rate but comparative consideration of the determinants of the cause and the
determinants of the outcome. Determinants of causal variables lost some de-
served attention as regression methods became dominant in observational social
science in the 1980s and 1990s, but the matching literature associated with the
counterfactual model has restored some of this attention by focusing analysis
on the goal of balancing the data with respect to the determinants of the cause.
Moreover, the joint consideration of both types of variables then allows for a
determination, by carefully defined assumptions grounded in theory, of which
sufficient subset of such determinants may be used in a conditioning strategy to
achieve identification of the causal effect by eliminating all spurious associations.
If the assumptions cannot be sustained for any set of observed variables, then
point identification of the causal effect by back-door conditioning is impossible.
If no other research design is possible, such as those that exemplify modes 3
and 4, then the counterfactual model suggests clearly why analysis should then
expand beyond efforts to point estimate causal effects to alternative forms of
partial identification and sensitivity analysis.

In addition, the counterfactual model also encourages especially careful ex-
amination of all back-door paths from the causal variable to the outcome variable
(rather than simply a one-by-one consideration of all variables that lie along any
back-door path). This form of systematic consideration of model identification
can prevent researchers from mistakenly generating new spurious associations
between the causal variable and the outcome variable, as occurs when condi-
tioning on a collider variable that lies along an already blocked back-door path.

For the transition from mode 2 to mode 3, the counterfactual model shows
that such a transition is substantive, not methodological. No new techniques
beyond those used for mode 2 are required. All that is required to pursue mode 3
is a theory that suggests which variables (and in which configuration) represent
the intervening causal mechanism that brings about the causal effect.

Moreover, the model shows that typical mechanism-based analyses must
be clearly separated into two very different varieties: those that merely point
to possible causal pathways and those that fully identify the causal effect of
interest. For analysis of the former type, some explanation can be achieved.
But, to realize the more ambitious goals of the latter, the mechanistic variables
that are specified must be isolated and exhaustive (or made so by suitable
conditioning). Mechanistic variables that are not independent of unblocked
back-door paths after conditioning on observed variables cannot be used to
identify a causal effect.

For transitions from modes 2 and 3 to mode 4, the counterfactual model
sensitizes researchers to the stringency of the assumptions that usually must
be maintained for all-cause structural analysis. Pearl (2000) is surely correct
that our ambition should always be to get as close as possible to all-cause struc-
tural models. But, the counterfactual model clarifies the dubious nature of the
maintained assumptions that pervade the published literature where all-cause
models are offered.
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For example, most such models are based on combinations of two identifica-
tion strategies — basic conditioning and instrumental variable techniques — under
maintained assumptions that causal effects are homogeneous (or at least condi-
tionally random). As the matching literature associated with the counterfactual
model has shown, such homogeneity is rarely justified empirically, and most
parametric forms of conditioning average systematic causal effect heterogeneity
in arcane ways. Moreover, the IV literature associated with the counterfac-
tual model has shown that, in the presence of such heterogeneity, IVs estimate
marginal causal effects that cannot then be extrapolated to other segments of
the population of interest without introducing unsupportable assumptions of
homogeneity of effects.

By making these issues clear, the counterfactual model shows how high the
demands on theory and on data must be in order to sustain the all-cause mode
of causal inquiry: Answers to all of the “who, when, where, and how” questions
for the causal relationship of interest must be provided. Dodging these questions
by introducing homogeneity assumptions that have only a dubious grounding
in theory (or a solid grounding in dubious theory) can undermine causal claims,
at least in the eyes of a fair critic. In this sense, the counterfactual model
encourages modesty of causal inquiry.

Finally, such modesty can be pursued outside of these four modes of inquiry,
after which analysis can then shift into whichever of these four modes seems most
appropriate. As shown perhaps most clearly in Manski’s partial identification
perspective (see our discussion in Chapter 6), the range that a causal effect may
take on can be defined and then examined within the counterfactual framework
before any data are considered. Thereafter, an assessment can be undertaken of
the data that are available to estimate average causal effects of various forms.
For these steps, assumptions about why a causal relationship may exist need
not be introduced, nor in fact assumptions that there is any systematic relation-
ship between the processes that generate causal relationships at the individual
level. Such flexibility leaves analysis wide open at the outset, focusing atten-
tion on clear definitions of effects of interest, independent of data availability
issues.

But, once an analysis has begun, a theoretical position must be adopted
in order to provide answers to at least some of the “who, when, where, and
how” questions for the causal relationship of interest. Given provisional an-
swers to these questions, the counterfactual model then reveals very precisely
which modes of causal inquiry are feasible. Analysis may have to stop at the
associational level, yielding nothing other than analogs to the naive estimator.
If some of the determinants of the cause are systematic and observed, then anal-
ysis can move down to conditional variants of associational analysis, followed by
an analysis of bounds (and perhaps a sensitivity analysis). If theory and data
are available to examine what brings about the effect of the cause, then analy-
sis can move down toward a mechanism-based mode of causal inquiry. Finally,
if theory is finely articulated and supported by past substantive scholarship,
and if all data requirements are met, then full structural modeling can be at-
tempted. Such all-cause models represent a standard that is rarely achieved but
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properly valued, for they provide complete explanations not only of the causes
of an outcome but of every linkage in the causal chain between them. Counter-
factual modeling guides us as close to this standard as is appropriate, given the
constraints of theory and of data that prevail at any given time.
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