Ajuste com função exponencial

Uma função exponencial pode ser expressada

$$y = Ce^{ax}$$

 Para ajustar os dados a uma curva exponencial observamos que podemos criar uma nova variável para transformar o ajuste em reta.

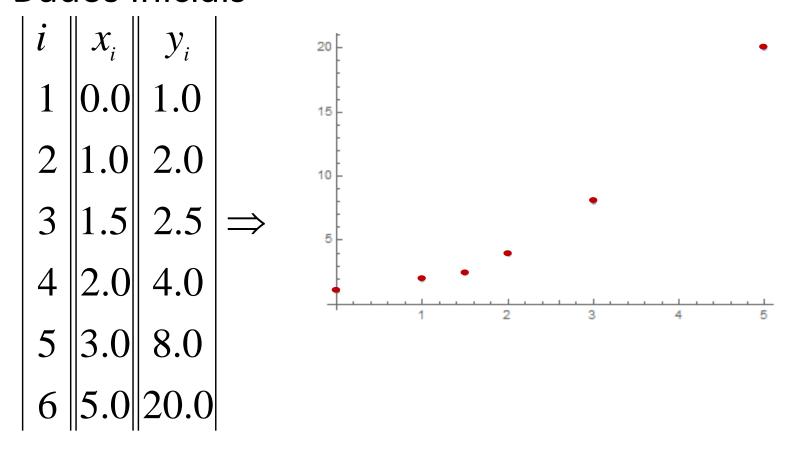
$$z = \ln y = \ln C e^{ax} = \ln C + \ln e^{ax} = \ln C + ax$$

Ajuste com função exponencial

Uma função exponencial pode ser expressada

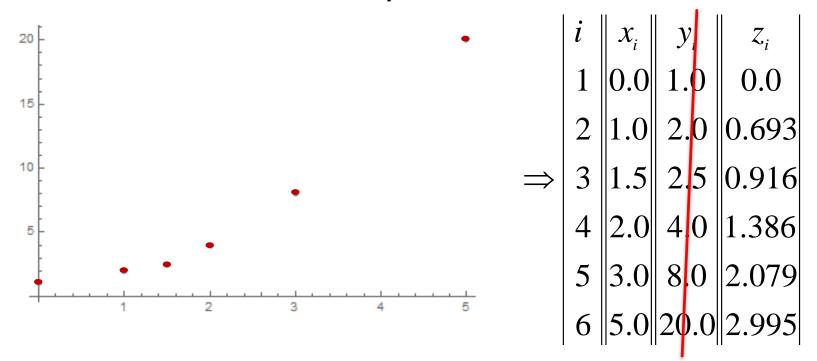
$$y = Ce^{ax}$$

 Para ajustar os dados a uma curva exponencial observamos que podemos criar uma nova variável para transformar o ajuste em reta.


$$z = \ln y = \ln C e^{ax} = \ln C + \ln e^{ax} = \ln C + ax$$

Fazendo $B = \ln C$, temos : z = B + ax,

portanto o ajuste é: z = ax + B


Exemplo: Dados para o ajuste

Dados iniciais

Exemplo: Dados para o ajuste

Dados modificados para a nova variável

$$\ln 2 = 0.693$$

$$\ln 2.5 = 0.916$$

Ajuste em reta

Fórmula do ajuste linear

$$\begin{bmatrix} \sum_{i=1}^{n} x_{i}^{2} & \sum_{i=1}^{n} x_{i} \\ \sum_{i=1}^{n} x_{i} & n \end{bmatrix} \begin{bmatrix} a \\ B \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^{n} x_{i} z_{i} \\ \sum_{i=1}^{n} z_{i} \end{bmatrix} \Rightarrow \begin{bmatrix} i & x_{i} & x_{i} \\ 1 & 0.000 & 0.000 & 0.000 \\ 2 & 1.000 & 0.693 & 1.000 & 0.693 \\ 3 & 1.500 & 0.916 & 2.250 & 1.374 \\ 4 & 2.000 & 1.386 & 4.000 & 2.772 \\ 5 & 3.000 & 2.079 & 9.000 & 6.237 \\ 6 & 5.000 & 2.995 & 25.000 & 14.975 \end{bmatrix}$$

 \sum 12.5 8.069 41.25 26.051

Ajuste em reta

$\mid i \mid$	X_i	$ z_i $	X_i^2	$\left \begin{array}{c} \mathcal{X}_i \mathcal{Z}_i \end{array} \right $
1	0.000	0.000	0.000	0.000
2	1.000	0.693	1.000	0.693
3	1.500	0.916	2.250	1.374
4	2.000	1.386	4.000	2.772
5	3.000	2.079	9.000	6.237
6	5.000	2.995	25.000	14.975

O sistema a ser resolvido é:

$$\begin{bmatrix} 41.25 & 12.5 \\ 12.5 & 6 \end{bmatrix} \begin{bmatrix} a \\ B \end{bmatrix} = \begin{bmatrix} 26.051 \\ 8.069 \end{bmatrix}$$

$$\sum$$
 12.5 8.069 41.25 26.051

Ajuste exponencial

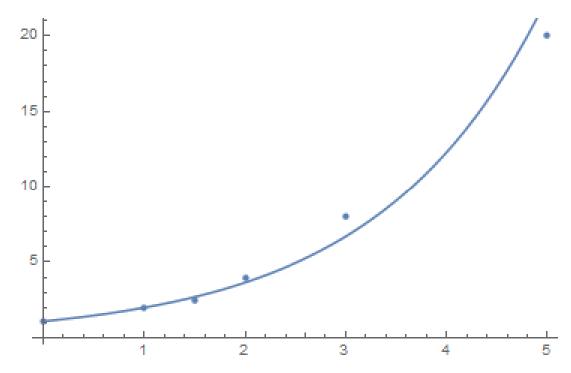
$$\begin{bmatrix} 41.25 & 12.5 \\ 12.5 & 6 \end{bmatrix} \begin{bmatrix} a \\ B \end{bmatrix} = \begin{bmatrix} 26.051 \\ 8.069 \end{bmatrix}$$

Resolvendo:
$$a = 0.6076$$
 e $B = 0.079$

$$B = \ln C = 0.079 \Rightarrow C = e^{0.079}$$

Substituindo:
$$z = ax + B = 0.6076x + 0.079$$

$$y = Ce^{ax} = e^{0.079}e^{0.6076x}$$


$$y = e^{0.079 + 0.6076x}$$

$$y = 1.0822 e^{0.6076x}$$

Ajuste exponencial

Desenhando a função exponencial:

$$y = 1.0822 e^{0.6076x}$$

Aplicação

 Uma pesquisadora em química, após um processo térmico sobre um alimento, tabelou a presença de uma componente em quatro tempos diferentes. Após uma análise dos dados conjetura que uma curva quadrática ajusta bem os mesmos. Determine a curva quadrática que melhor ajusta os dados:

Item	$\mid t_i \mid$	$ y_i $	2.5	
1	0.8	2.50	2.0	
2	1.5	0.40	1.5	
3	2.0	0.25	1.0	
4	5.0	0.08	0.5	
\sum	9.3	3.23	1 2	3 4 5