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• Plasmas are systems with a very large number of interacting charged particles 
- It is appropriate and convenient to use a statistical approach 

• In this lecture, basic elements of kinetic theory, such as phase space and 
distribution function, are presented 

• All the physically interesting information about the system is contained in the 
distribution function 
- From knowledge of the distribution function, macroscopic variables of 

physical interest, such as mass density, gas flow velocity and pressure, can 
be systematically deduced

Fundamental of plasma kinetic theory: introduction
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• At any instant of time, each particle of the plasma can be localized by its 
position vector, for example,  in a Cartesian coordinate 
system, and each particle have a velocity vector,  

• In analogy with the configurational space (real space), defined by the 
position coordinates (x,y,z), it is convenient to introduce the velocity space 
- The velocity vector in the velocity space is seen as the position vector in 

the configurational space

r = x ̂ex + y ̂ey + z ̂ez
v = vx ̂ex + vy ̂ey + vz ̂ez

Fundamental of plasma kinetic theory: phase space
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• From the point of view of classical mechanics, the instantaneous dynamic 
state of each particle is specified by its position and velocity vectors 
- It is convenient, therefore, to consider the phase space defined by the 6 

coordinates  

• In this 6-dimensional (6D) space, the dynamic state of each particle is 
appropriately represented by a single point 
- The coordinates  of the point give the instantaneous particle position 

and velocity 

• When the particle moves, its representative point describes a trajectory in 
phase space 

• At each instant of time, the dynamic state of a system of N particles is 
represented by N points in phase space 
- This single-particle phase space also sometimes called -space

(x, y, z, vx, vy, vz)

(r, v)

μ

Single-particle phase space
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• One can also define a phase space for the whole system of particles 
- In this case, a system consisting of N particles, with no internal degrees of 

freedom, is represented by a single point in a 6N-dimensional space 

• This many-particle phase space, also called -space, is defined by the 3N 
positions  and by the 3N velocities  
- Thus, a point in this 6N-D space represents the single microscopic state of 

the whole system 
- This many-particle is used in statistical mechanics and advanced kinetic 

theory 

• The single-particle phase space is the one normally used in elementary 
kinetic theory and basic plasma physics, and is the one that will be used here

Γ
(r1, r2, r3, . . . , rN) (v1, v2, v3, . . . , vN)

Many-particle phase space
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• A small element of volume in configuration space is  
- Note that this  should not be taken literally as a mathematically  

infinitesimally quantify, but as a finite volume that is sufficiently large, to 
contain a very large number of particles, yet sufficiently small, in 
comparison with the plasma characteristic spatial variation lengths 

• For example, in a gas containing  molecules/m3, if we take , 
which in a macroscopic scale can be considered as a point, there are still  
particles inside  

dV = d3r = dr = dxdydz
dV

1018 dV = 10−12 m−3

106

dV

Volume elements

Plasmas that do not allow the choice of such a 
differential volumes as indicated cannot be 
analyzed statistically
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• When we refer to a particle as being situated inside  and at , means that its   
-coordinate is between  and  + , its -coordinate is between  and  +  

and its -coordinate is between  and  +  
- Note that particles at  and inside  may have completely arbitrary 

velocities, which would be represented by scattered points in velocity space 

• When we refer to a particle as being situated inside  and at , means that its   
-component is between  and  + , its -component is between  and     
 +  and its -component is between  and  + 

dV r
x x x dx y y y dy

z z z dz
r dV

d3v v
vx vx vx dvx vy vy
vy dvy vz vz vz dvz

Volume elements
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• In phase space ( -space), a differential element of volume may be imagined 
as a 6D cube, represented by 

- Note that inside  there are only particle inside  around  whose 
velocities lie inside  about  

- Here, the coordinates  and  are considered to be independent variables 
since, together, they represent the position of individual volume elements in 
phase space

μ

d3rd3v d3r r
d3v v

r v

Volume elements

d3rd3v = dxdydzdvxdvydvz

Phase space volume element
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• Let  denote the number of particles of type  inside the volume 
element , around the phase space coordinates , at the instant  

• The function distribution in phase space, , is defined as the density of 
representative points of type  particles in phase space, that is, 

• In volume elements  with very large velocity coordinates , the 
number of representative points is relatively small since, in any macroscopic 
system, there exists few particles with very large velocities 
- The function distribution must tend to zero as the velocity gets infinitely large  

• When  depends on , the function distribution is inhomogeneous 
- In the absence of external forces, an inhomogeneous distribution function 

evolves, due to particle collisions, to an homogeneous distribution function 
 that does not depend on  anymore

d6Nα(r, v, t) α
d3rd3v (r, v) t

fα(r, v, t)
α

d3rd3v (vx, vy, vz)

fα(r, v, t) r

fα(v) r

fα(r, v, t) =
d6Nα(r, v, t)

d3rd3v

Distribution function
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• When  depends on the orientation of the vector , the distribution 
function can be anisotropic 
- When  depends only on the magnitude of the vector, i.e. on , 

the distribution function  is isotropic 

• The statistical description of different types of plasma requires the use of 
inhomogeneous and/or anisotropic distribution functions 

• In a statistical sense,  contains all the information about the system 
- Knowing  allows us to deduce all the macroscopic variable of 

physical interest for particles of type  

• One of the primary problems of kinetic theory consists on determining  
- Therefore, one needs to find an equation for the evolution of 

fα(r, v, t) v

fα(r, v, t) v = |v |
fα(r, v, t)

fα(r, v, t)
fα(r, v, t)

α

fα(r, v, t)
fα(r, v, t)

Distribution function
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• The number density, , is a macroscopic variable defined, in the 
configurational space, as the number of particles of type  per unit volume, 
irrespective of velocity 

- Here, the single integral sign represents in fact a triple integral extending over 
the entire velocity space 

• The average velocity, , is a macroscopic variable defined, in the 
configurational space, as the macroscopic flow of particles of type  in the 
neighborhood of position  at the instant  

- Note that  and  depend only on  and 

nα(r, t)
α

uα(r, t)
α

r t

nα(r, t) uα(r, t) r t

Macroscopic variables: number density and average velocity

nα(r, t) = ∫v

d6Nα(r, v, t)
d3r

= ∫v
fα(r, v, t) d3v

uα(r, t) =
1

nα(r, t) ∫v
v

d6Nα(r, v, t)
d3r

=
1

nα(r, t) ∫v
v fα(r, v, t) d3v
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• As a first attempt to describe a system using kinetic theory, let’s write the 
equations of motion for the jth particle of type  

• Naturally, the orbits of particles can be described by the exact distribution 
function 

- Here,  is the total number of particles of type  

• The normalization of the exact distribution function

α

Nα α

The Klimontovich distribution function

drα,j

dt
= vα,j

mα
dvα,j

dt
= qα [Em(rα,j, t) + vα,j × Bm(rα,j, t)]

f exact
α (r, v, t) =

Nα

∑
j=1

δ[r − rα,j(t)]δ[v − vα,j(t)]

∫r ∫v
f exact
α (r, v, t)d3rd3v =

Nα

∑
j=1

∫r
δ[r − rα,j(t)]d3r∫v

δ[v − vα,j(t)]d3v =
Nα

∑
j=1

1 = Nα

 and  are the microscopic 
electric and magnetic fields

Em Bm
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• The number density for this distribution function is 

• In the same way, the average velocity 

• In addition, the microscopic electromagnetic fields must satisfy Maxwell’s 
equation 

where the microscopic sources must be determined self-consistently: 

The Klimontovich distribution function

∇ ⋅ Em =
ρm

ϵ0

nα(r, t) = ∫v
f exact
α (r, v, t)d3v =

Nα

∑
j=1

δ[r − rα,j(t)]∫v
δ[v − vα,j(t)]d3v =

Nα

∑
j=1

δ[r − rα,j(t)]

∇ ⋅ Bm = 0 ∇ × Bm = μ0Jm + μ0ϵ0
∂Em

∂t
∇ × Em = −

∂Bm

∂t

ρm(r, t) = ∑
α

qα ∫v
f exact
α (r, v, t) = ∑

α

qα

Nα

∑
j=1

δ[r − rα,j(t)]

Jm(r, t) = ∑
α

qα ∫v
v f exact

α (r, v, t) = ∑
α

qα

Nα

∑
j=1

vα,j δ[r − rα,j(t)]

uα(r, t) = ∫v
v f exact

α (r, v, t)d3v =
Nα

∑
j=1

δ[r − rα,j(t)]∫v
v δ[v − vα,j(t)]d3v =

Nα

∑
j=1

vα,j(t) δ[r − rα,j(t)]
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• Taking the total time derivative of , and using the properties of the 
Dirac delta function, yields

f exact
α (r, v, t)

The Klimontovich distribution function

df exact
α

dt
= ( ∂

∂t
+

dr
dt

⋅
∂
∂r

+
dv
dt

⋅
∂

∂v )
Nα

∑
j=1

δ[r − rα,j(t)]δ[v − vα,j(t)]

df exact
α

dt
=

Nα

∑
j=1

( ∂
∂t

+
dr
dt

⋅
∂
∂r

+
dv
dt

⋅
∂

∂v ) δ[r − rα,j(t)]δ[v − vα,j(t)]

df exact
α

dt
=

Nα

∑
j=1 ( ∂

∂t
−

drα,j

dt
⋅

∂
∂rα,j

−
dvα,j

dt
⋅

∂
∂vα,j ) δ[r − rα,j(t)]δ[v − vα,j(t)]

df exact
α

dt
=

Nα

∑
j=1 (

drα,j

dt
⋅

∂
∂rα,j

+
dvα,j

dt
⋅

∂
∂vα,j

−
drα,j

dt
⋅

∂
∂rα,j

−
dvα,j

dt
⋅

∂
∂vα,j ) δ[r − rα,j(t)]δ[v − vα,j(t)] = 0
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• Therefore, using the properties of the Dirac delta function, one can write 

- This equation is known as the Klimontovich equation 
- Mathematically, this equation contains all  particles equations of motion 

• We must now be careful about the phase space element volume to be used 
- To have small fluctuations inside , i.e. , we must 

have   large compared to the mean spacing of particles in the plasma, 
i.e.  

- However,  should not be so large that macroscopic properties of the 
plasma (e.g. the average number density) vary significantly within it. 
Therefore, we must have  , which also allows for collective effects 

• In summary, to have a representative phase space ( ), we must 
have 

Nα

d3rd3v δN6D /N6D ≈ 1/ N6D ≪ 1
dx

dx ≫ n−1/3
0

d3r

dx ≪ λD

δN6D /N6D ≪ 1
n−1/3

0 ≪ dx ≪ λD

The Klimontovich distribution function

∂f exact
α

∂t
+ v ⋅

∂f exact
α

∂r
+

qα

mα
[Em(rα,j, t) + v × Bm(rα,j, t)] ⋅

∂f exact
α

∂v
= 0
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• With these requirements accounted for, we can write  

- Here,  are deviations of the microscopic variables from 
their respective ensemble average (macroscopic) values , with 
the fluctuating variables  

• Ultimately, we are looking for a smoothed distribution function  

(δρm, δJm, δEm, δBm, δfα)
(ρm, J, E, B, fα)

⟨δρm⟩ = ⟨δJm⟩ = ⟨δEm⟩ = ⟨δBm⟩ = ⟨δf exact
α ⟩ = 0

fα(r, v, t)

The Klimontovich distribution function

f exact
α = fα + δf exact

α

Em = E + δEm

Bm = B + δBm

ρm = ρ + δρm

Jm = J + δJm

f exact
α

(r, v)

fα
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• Substitution into the Klimontovich equation, and taking an ensemble average, 
leads to an evolution equation for  

with the RHS given by 

- The terms on the LHS describe the evolution of the smoothed, average 
distribution function in response to the smoothed, average electric and 
magnetic fields due to the plasma and due to external sources 

- As a consequence, particles are, in some sense, interacting/colliding via  
the smoothed/macroscopic  and  fields 

- The RHS term represents, and is dominated by, the effect on  of small 
angle Coulomb collision inside their respective Debye spheres

fα(r, v, t)

E B
fα(r, v, t)

The Klimontovich distribution function

∂fα
∂t

+ v ⋅
∂fα
∂r

+
qα

mα
[E(r, t) + v × B(r, t)] ⋅

∂fα
∂v

=
δfα
δt coll

δfα
δt coll

= −
qα

mα
[δEm(rα,j, t) + v × δBm(rα,j, t)] ⋅

∂
∂v

(δf exact
α )

(Boltzmann equation)
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• The Boltzmann equation 

can be derived in several ways 

• In this equation, collisional effects are incorporated in the RHS through a 
general collision term 

• There exist several forms for the collision term 
- The Krook relaxation model 
- The Boltzmann collision integral 
- The Fokker-Planck equation

The Boltzmann equation

∂fα
∂t

+ v ⋅
∂fα
∂r

+
qα

mα
[E(r, t) + v × B(r, t)] ⋅

∂fα
∂v

=
δfα
δt coll
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• A very simple method for taking into account collision effects is provided by 
the relaxation model (see Bittencourt ch. 5, section 6) 
- Collisions tend to restore local thermodynamic equilibrium, which is 

characterized by a a local equilibrium distribution function   

• In the absence of external forces, it is assumed that the plasma is 
characterized by , which is not far from equilibrium, and reaches 
equilibrium as as result of collisions with a relaxation time  
- This model was originally proposed by Krook and can be expressed as 

• Relaxation times for the average velocity and momentum are the same ( )   
but, for average thermal energy, it is approximately  

- This model is strictly applicable to collision between particles of same mass 
- Due to its simplicity, this relaxation model is useful to provide insight into 

weakly ionized plasmas in which only charge-neutral collisions are important

fα,0(r, v)

fα(r, v, t)
τ

τ
(mβ /mα)τ

The Krook relaxation model for the collision term

δfα
δt coll

= −
( fα − fα,0)

τ
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• Solve the Boltzmann equation in the absence of external forces and spatial 
gradients using the Krook relaxation model for the collision term and show that 

Exercise

fα(v, t) = fα,0(v) + [fα(v,0) − fα,0(v)] e− t
τ
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• The Boltzmann collision integral is given by (see Bittencourt ch. 21, section 2) 

- Here, , ,  and f′ α = fα(r, v′ , t) f′ β1 = fβ(r, v′ 1, t) fα = fα(r, v, t) fβ1 = fβ(r, v1, t)

The Boltzmann collision integral

δfα
δt coll

= ∑
β

∫v1
∫Ω

( f′ α f′ β − fα fβ)d3v |v1 − v |σ(Ω)dΩ

Particle of type β

Particle of type α
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• The Boltzmann collision integral is given by (see Bittencourt ch. 21, section 2)  

- Here, , ,  and  

• The derivation of the Boltzmann collision integral involves four basic 
assumptions 
- The distribution function does not vary appreciably over a distance of the 

order of the range of the interparticle force law 
- Effects of the external force, on the magnitude of the collision cross section, 

are ignored 
- Only binary collisions are taken into account 
- The velocities of the interacting particles, before the collision, are assumed 

to be uncorrelated

f′ α = fα(r, v′ , t) f′ β1 = fβ(r, v′ 1, t) fα = fα(r, v, t) fβ1 = fβ(r, v1, t)

The Boltzmann collision integral

δfα
δt coll

= ∑
β

∫v1
∫Ω

( f′ α f′ β − fα fβ)d3v |v1 − v |σ(Ω)dΩ
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• With this collision term, the Boltzmann equation becomes an integro-differential 
equation involving integrals and partial derivatives 

• For example, in a ionized gas composed by electrons, positive ions and neutral 
particles, we have a system of three Boltzmann equations, coupled through the 
collision term, plus Maxwell’s equations

The Boltzmann collision integral

∂fα
∂t

+ v ⋅
∂fα
∂r

+
qα

mα
[E(r, t) + v × B(r, t)] ⋅

∂fα
∂v

= = ∑
β

∫v1
∫Ω

( f′ α f′ β − fα fβ)d3v |v1 − v |σ(Ω)dΩ

∂fe
∂t

+ v ⋅
∂fe
∂r

−
e

me
[E(r, t) + v × B(r, t)] ⋅

∂fe
∂v

= ∑
β=i,n

∫v1
∫Ω

( f′ e f′ β − fe fβ)d3v |v1 − v |σ(Ω)dΩ

∂fi
∂t

+ v ⋅
∂fi
∂r

+
e
mi

[E(r, t) + v × B(r, t)] ⋅
∂fi
∂v

= ∑
β=e,n

∫v1
∫Ω

( f′ i f′ β − fi fβ)d3v |v1 − v |σ(Ω)dΩ

∂fn
∂t

+ v ⋅
∂fn
∂r

= ∑
β=e,i

∫v1
∫Ω

( f′ n f′ β − fn fβ)d3v |v1 − v |σ(Ω)dΩ
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• Derive the Boltzmann collision integral (see Bittencourt ch. 21, section 2) 

• Derive the Boltzmann collision integral for the collision between electrons and 
neutrals in a weakly ionized plasma  (see Bittencourt ch. 21, section 4)

Exercise
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• The Fokker-Planck collision term is given by (Bittencourt ch. 21, section 5) 

• The Fokker-Planck collision term accounts for simultaneous Coulomb 
interactions between charged particles 
- It is assumed that the large angle scattering in a multiple Coulomb 

interaction can be considered as a series of consecutive weak binary 
collisions (small angle collisions):  

- As a consequence, the Fokker-Planck collision term can be derived from 
the Boltzmann collision integral, which is valid only for binary collisions 

• The average quantities  and  are given by

v′ = v + Δv

⟨Δvj⟩av ⟨ΔvjΔvk⟩av

The Fokker-Planck collision term

δfα
δt coll

= − ∑
j

∂
∂vj

(fα⟨Δvj⟩av) +
1
2 ∑

j,k

∂2

∂vj∂vk
(fα⟨ΔvjΔvk⟩av)

⟨Δvj⟩av = ∫Ω ∫v1

Δvj |v1 − v |σ(Ω) dΩ fβ,1d3v1

⟨ΔvjΔvk⟩av = ∫Ω ∫v1

ΔvjΔvk |v1 − v |σ(Ω) dΩ fβ,1d3v1
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• The average quantities  and  are known as the Fokker-Planck 
coefficients of dynamic friction and diffusion in velocity space, respectively

⟨Δvj⟩av ⟨ΔvjΔvk⟩av

The Fokker-Planck collision term
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• Derive the Fokker-Planck equations (see Bittencourt ch. 21, section 5) 

• Derive the Fokker-Planck equations for Coulomb interactions (see Bittencourt 
ch. 21, section 5.2) 

• Derive the Fokker-Planck equations for electron-ion Coulomb interactions (see 
Bittencourt ch. 21, section 5.3)

Exercise
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• A very useful approximate way to describe the dynamics of a plasma is to 
consider that the plasma particle motions are governed by externally applied 
fields plus the macroscopic internal fields due to the plasma particles, but 
ignoring the effect of particle scattering due to collisions 
- The equation used to describe such (hot) plasmas is called Vlasov equation 

or, sometimes, the collisionless plasma kinetic equation 

• Although the Vlasov equation does not explicitly include a collision term, i.e. 
does not accounts for the frequent small angle Coulomb scattering, part of the 
effect of particle collisions are accounted for via the macroscopic fields 

• The condition for the neglect of collisional effects is that the frequency of the 
relevant physical process ( ) be much larger than the collision frequency ( ) 
- Here, the frequency  represents whichever of the various fundamental 

frequencies involved in the process

ω ν
ω

The Vlasov equation

∂fα
∂t

+ v ⋅
∂fα
∂r

+
qα

mα
[E(r, t) + v × B(r, t)] ⋅

∂fα
∂v

= 0
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• Let’s study the Debye shielding problem using the kinetic approach 

• To determine the steady-state electron and ion distribution functions,    
and , and the electrostatic potential, , let us consider the steady-state 
Vlasov equations for electrons and ions (only electric field in the Lorentz force) 

• Substituting   in these equations leads to 

• Since                                          , the total charge density (including the test 

charge) can be expresses as

fe(r, v)
fi(r, v) Φ(r)

E = − ∇Φ

Debye shielding using the Vlasov equation

v ⋅ ∇fe(r, v) −
e E(r)

me
⋅ ∇v fe(r, v) = 0 v ⋅ ∇fi(r, v) +

e E(r)
mi

⋅ ∇v fi(r, v) = 0

v ⋅ ∇fe(r, v) +
e

me
∇Φ(r) ⋅ ∇v fe(r, v) = 0 v ⋅ ∇fi(r, v) −

e
mi

∇Φ(r) ⋅ ∇v fi(r, v) = 0

nα(r, t) = ∫v
fα(r, v, t) d3v

ρ(r) = qtδ(r) − e∫v
( fe − fi) d3v
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• The Poisson equation for this case becomes 

• These three equations constitute a system of equations that need to be solved 
simultaneously to determine ,  and  

• The solution of the two Vlasov equations (for  and ) can be given in 
terms of Maxwellian distribution functions (see Bittencourt ch. 7, section 5) like  

the Poisson equation becomes

fe(r, v) fi(r, v) Φ(r)

fe(r, v) fi(r, v)

Debye shielding using the Vlasov equation

∇2Φ −
e
ϵ0 ∫v

( fe − fi) d3v = −
qt

ϵ0
δ(r)

fα(r, v) = fα,M(v)exp [−
qαΦ(r)

kBT ]

∇2Φ −
e
ϵ0 [exp ( eΦ

kBT )∫v
fe,M(v) d3v − exp (−

eΦ
kBT )∫v

fi,M(v) d3v] = −
qt

ϵ0
δ(r)
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• Denoting the equilibrium/Maxwellian electron and ion densities as 

the Poisson equation becomes 

- This equation is the same solved in the 30th March lecture, whose solution is

Debye shielding using the Vlasov equation

∫v
fe,M(v) d3v = ∫v

fi,M(v) d3v = n0

∇2Φ −
en0

ϵ0 [exp ( eΦ
kBT ) − exp (−

eΦ
kBT )] = −

qt

ϵ0
δ(r)

Φ(r) =
1

4πϵ0

qt

r
exp (−

r
λD )
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• Bittencourt: ch. 5 
- 5.1, 5.3, 5.4, 5.5, 5.6, 5.7 and 5.8 

• Bittencourt: ch. 21 
- 21.2 and 21.3

Exercises
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