PGF5112 - Plasma Physics I

By

Prof. Gustavo Paganini Canal
Plasma Physics Laboratory
Department of Applied Physics
Institute of Physics
University of São Paulo - Brazil

Postgraduate course ministered remotely from the

Institute of Physics of the University of São Paulo

PGF5112 - Plasma Physics I

- Single particle orbits: the motion of charged particles in electromagnetic fields
- Introduction (previous lecture)
- Uniform and static electric field (previous lecture)
- Uniform and static magnetic field (previous lecture)
- Uniform and static electric and magnetic fields (previous lecture)
- Non-uniform and static magnetic field (physical insight) - (previous lecture)
- Non-uniform and static electric field (physical insight) - (previous lecture)
- Non-uniform and time-dependent electric and magnetic fields
- Particle orbits in a tokamak
- Physical description of a tokamak
- Trapped and passing particles

PGF5112 - Plasma Physics I

- Single particle orbits: the motion of charged particles in electromagnetic fields
- Introduction (previous lecture)
- Uniform and static electric field (previous lecture)
- Uniform and static magnetic field (previous lecture)
- Uniform and static electric and magnetic fields (previous lecture)
- Non-uniform and static magnetic field (physical insight) - (previous lecture)
- Non-uniform and static electric field (physical insight) - (previous lecture)
- Non-uniform and time-dependent electric and magnetic fields
- Particle orbits in a tokamak
- Physical description of a tokamak
- Trapped and passing particles

The trajectories of charged particles in non-uniform and time-dependent electric and magnetic fields

- To study the trajectory of charged particles in non-uniform and time-dependent electric and magnetic fields, let's expand the fields around a position \mathbf{R}, which is the guiding center position of the particle

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r}, t)=\mathbf{B}(\mathbf{R}, t)+\left.[(\mathbf{r}-\mathbf{R}) \cdot \nabla] \mathbf{B}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+\left.\frac{1}{2}[(\mathbf{r}-\mathbf{R}) \cdot \nabla]^{2} \mathbf{B}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+O^{3} \\
& \mathbf{E}(\mathbf{r}, t)=\mathbf{E}(\mathbf{R}, t)+\left.[(\mathbf{r}-\mathbf{R}) \cdot \nabla] \mathbf{E}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+\left.\frac{1}{2}[(\mathbf{r}-\mathbf{R}) \cdot \nabla]^{2} \mathbf{E}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+O^{3}
\end{aligned}
$$

- $\boldsymbol{\rho}$ is the cyclotron/Larmor radius
- \mathbf{r} is the instantaneous particle position
- \mathbf{R} is the guiding center position

$$
\mathbf{r}(t)=\mathbf{R}(t)+\boldsymbol{\rho}(t)
$$

The trajectories of charged particles in non-uniform and time-dependent electric and magnetic fields

- To study the trajectory of charged particles in non-uniform and time-dependent electric and magnetic fields, let's expand the fields around a position \mathbf{R}, which is the guiding center position of the particle

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r}, t)=\mathbf{B}(\mathbf{R}, t)+\left.[(\mathbf{r}-\mathbf{R}) \cdot \nabla] \mathbf{B}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+\left.\frac{1}{2}[(\mathbf{r}-\mathbf{R}) \cdot \nabla]^{2} \mathbf{B}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+O^{3} \\
& \mathbf{E}(\mathbf{r}, t)=\mathbf{E}(\mathbf{R}, t)+\left.[(\mathbf{r}-\mathbf{R}) \cdot \nabla] \mathbf{E}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+\left.\frac{1}{2}[(\mathbf{r}-\mathbf{R}) \cdot \nabla]^{2} \mathbf{E}(\mathbf{r}, t)\right|_{\mathbf{r}=\mathbf{R}}+O^{3}
\end{aligned}
$$

- Using the definition of the instantaneous particle position: $\mathbf{r}(t)=\mathbf{R}(t)+\epsilon \boldsymbol{\rho}(t)$
- Here, ϵ is a parameter introduced to explicit the order of the expansion
- Therefore, the fields become (in a simplified notation)

$$
\begin{aligned}
& \mathbf{B}(\mathbf{r}, t)=\mathbf{B}_{\mathbf{0}}+\epsilon(\boldsymbol{\rho} \cdot \nabla) \mathbf{B}_{\mathbf{0}}+\frac{\epsilon^{2}}{2}(\boldsymbol{\rho} \cdot \nabla)^{2} \mathbf{B}_{\mathbf{0}} \\
& \mathbf{E}(\mathbf{r}, t)=\mathbf{E}_{\mathbf{0}}+\epsilon(\boldsymbol{\rho} \cdot \nabla) \mathbf{E}_{\mathbf{0}}+\frac{\epsilon^{2}}{2}(\boldsymbol{\rho} \cdot \nabla)^{2} \mathbf{E}_{\mathbf{0}}
\end{aligned}
$$

- Note that $\mathbf{E}_{\mathbf{0}}=\mathbf{E}(\mathbf{R}, t)$ and $\mathbf{B}_{\mathbf{0}}=\mathbf{B}(\mathbf{R}, t)$ still depend on time

Intermezzo matematico: the method of averaging

- Consider the equation of motion

$$
\frac{d \mathbf{z}}{d t}=\mathbf{f}(\mathbf{z}, t, \tau)
$$

- Here, \mathbf{f} is a periodic function of its last argument, with period 2π, and $\tau=\frac{t}{\epsilon}$
- The small parameter ϵ characterizes the separation between the short oscillation period and the timescale for the slow secular evolution of $\mathbf{z}(t, \tau)$
- The idea of the method of averaging is to treat t and τ as independent variables, and to look for solutions of the form $\mathrm{z}(t, \tau)$ that are periodic in τ. Thus, we replace the equation of motion above by the modified equation of motion below

$$
\frac{\partial \mathbf{z}}{\partial t}+\frac{1}{\epsilon} \frac{\partial \mathbf{z}}{\partial \tau}=\mathbf{f}(\mathbf{z}, t, \tau)
$$

Intermezzo matematico: the method of averaging

- Let's denote the τ-average of $\mathbf{z}(t, \tau)$ by $\mathbf{Z}(t)$, and seek a change of variables of the form

$$
\mathbf{z}(t, \tau)=\mathbf{Z}(t)+\epsilon \boldsymbol{\zeta}(\mathbf{Z}, t, \tau)
$$

- Here, $\boldsymbol{\zeta}$ is a periodic function of τ with vanishing mean and $\mathbf{Z}(t)$ is a function free of oscillations

$$
\langle\zeta(\mathbf{Z}, t, \tau)\rangle=\frac{1}{2 \pi} \oint \zeta(\mathbf{Z}, t, \tau) d \tau=0
$$

- Inserting the expression for $\mathrm{z}(t, \tau)$ into the motion equation (up to $2^{\text {nd }}$ order) yields

$$
\frac{\partial}{\partial t}(\mathbf{Z}+\epsilon \boldsymbol{\zeta})+\frac{1}{\epsilon} \frac{\partial}{\partial \tau}(\mathbf{Z}+\epsilon \zeta)=\mathbf{f}(\mathbf{Z}, t, \tau)+\epsilon(\zeta \cdot \nabla) \mathbf{f}(\mathbf{Z}, t, \tau)+\frac{\epsilon^{2}}{2}(\zeta \cdot \nabla)^{2} \mathbf{f}(\mathbf{Z}, t, \tau)
$$

- Since $\boldsymbol{\zeta}(\mathbf{Z}, t, \tau)$ depends on time explicitly, but also through $\mathbf{Z}=\mathbf{Z}(t)$, then

$$
\frac{d \mathbf{Z}}{d t}+\epsilon\left[\frac{\partial}{\partial t}+\left(\frac{d \mathbf{Z}}{d t} \cdot \nabla\right)\right] \boldsymbol{\zeta}+\frac{\partial \zeta}{\partial \tau}=\mathbf{f}(\mathbf{Z}, t, \tau)+\epsilon(\boldsymbol{\zeta} \cdot \nabla) \mathbf{f}(\mathbf{Z}, t, \tau)+\frac{\epsilon^{2}}{2}(\boldsymbol{\zeta} \cdot \nabla)^{2} \mathbf{f}(\mathbf{Z}, t, \tau)
$$

Intermezzo matematico: the method of averaging

- The evolution of $Z(t)$ is determined by substituting the expansions below into the previous equation of motion:

$$
\begin{aligned}
& \zeta=\zeta_{\mathbf{0}}(\mathbf{Z}, t, \tau)+\epsilon \zeta_{\mathbf{1}}(\mathbf{Z}, t, \tau)+\epsilon^{2} \zeta_{\mathbf{2}}(\mathbf{Z}, t, \tau)+\ldots \\
& \mathbf{Z}=\mathbf{Z}_{\mathbf{0}}(t)+\epsilon \mathbf{Z}_{\mathbf{1}}(t)+\epsilon^{2} \mathbf{Z}_{\mathbf{2}}(t)+\ldots \\
& \frac{d \mathbf{Z}}{d t}=\mathbf{F}_{\mathbf{0}}(\mathbf{Z}, t)+\epsilon \mathbf{F}_{\mathbf{1}}(\mathbf{Z}, t)+\epsilon^{2} \mathbf{F}_{\mathbf{2}}(\mathbf{Z}, t)+\ldots
\end{aligned}
$$

- The solution is then obtained by solving the motion equation order by order
- To lowest order, we obtain $\mathbf{F}_{\mathbf{0}}(\mathbf{Z}, t)+\frac{\partial \zeta_{\mathbf{0}}}{\partial \tau}=\mathbf{f}(\mathbf{Z}, t, \tau)$
- Taking the τ-average of this equation yields

$$
\mathbf{F}_{\mathbf{0}}(\mathbf{Z}, t)=\langle\mathbf{f}(\mathbf{Z}, t, \tau)\rangle \equiv\langle\mathbf{f}\rangle(\mathbf{Z}, t)
$$

- Integrating the oscillating component of the lowest order equation yields

$$
\zeta_{\mathbf{0}}(\mathbf{Z}, t, \tau)=\int_{0}^{\tau}\left[\mathbf{f}\left(\mathbf{Z}, t, \tau^{\prime}\right)-\langle\mathbf{f}\rangle(\mathbf{Z}, t)\right] d \tau^{\prime}
$$

Intermezzo matematico: the method of averaging

- To first order, we obtain $\mathbf{F}_{1}+\frac{\partial \zeta_{0}}{\partial t}+\left(\mathbf{F}_{\mathbf{0}} \cdot \nabla\right) \zeta_{0}+\frac{\partial \zeta_{1}}{\partial \tau}=\left(\zeta_{0} \cdot \nabla\right) \mathbf{f}(\mathbf{Z}, t, \tau)$
- Taking the τ-average of this equation yields

$$
\mathbf{F}_{\mathbf{1}}(\mathbf{Z}, t)=\left\langle\left[\zeta_{\mathbf{0}}(\mathbf{Z}, t, \tau) \cdot \nabla\right] \mathbf{f}(\mathbf{Z}, t, \tau)\right\rangle \equiv\left\langle\left(\zeta_{\mathbf{0}} \cdot \nabla\right) \mathbf{f}\right\rangle(\mathbf{Z}, t)
$$

- Integrating the oscillating component of the first order equation yields

$$
\zeta_{\mathbf{1}}(\mathbf{Z}, t, \tau)=\int_{0}^{\tau}\left[\left(\zeta_{0} \cdot \nabla\right) \mathbf{f}\left(\mathbf{Z}, t, \tau^{\prime}\right)-\left\langle\left(\zeta_{\mathbf{0}} \cdot \nabla\right) \mathbf{f}\right\rangle(\mathbf{Z}, t)-\frac{\partial \zeta_{\mathbf{0}}\left(\mathbf{Z}, t, \tau^{\prime}\right)}{\partial t}-\left(\mathbf{F}_{\mathbf{0}} \cdot \nabla\right) \zeta_{\mathbf{0}}\left(\mathbf{Z}, t, \tau^{\prime}\right)\right] d \tau^{\prime}
$$

- To second order, we obtain $\mathbf{F}_{2}+\frac{\partial \zeta_{1}}{\partial t}+\left(\mathbf{F}_{\mathbf{0}} \cdot \nabla\right) \zeta_{1}+\frac{\partial \zeta_{1}}{\partial \tau}=\left(\zeta_{1} \cdot \nabla\right) \mathbf{f}+\frac{1}{2}\left(\zeta_{0} \cdot \nabla\right)^{2} \mathbf{f}$
- Taking the τ-average of this equation yield

$$
\mathbf{F}_{\mathbf{2}}(\mathbf{Z}, t)=\left\langle\left(\zeta_{1} \cdot \nabla\right) \mathbf{f}\right\rangle(\mathbf{Z}, t)+\frac{1}{2}\left\langle\left\langle\zeta_{0} \cdot \nabla\right)^{2} \mathbf{f}\right\rangle(\mathbf{Z}, t)
$$

- The evolution of $\mathbf{Z}(t)$ up to second order only is, therefore, given by

$$
\frac{d \mathbf{Z}}{d t}=\mathbf{F}_{0}+\mathbf{F}_{1}+\mathbf{F}_{2}=\langle\mathbf{f}\rangle(\mathbf{Z}, t)+\left\langle\left(\zeta_{0} \cdot \nabla\right) \mathbf{f}\right\rangle(\mathbf{Z}, t)+\left\langle\left(\zeta_{1} \cdot \nabla\right) \mathbf{f}\right\rangle(\mathbf{Z}, t)+\frac{1}{2}\left\langle\left(\zeta_{0} \cdot \nabla\right)^{2} \mathbf{f}\right\rangle(\mathbf{Z}, t)
$$

- Note that, at the end, the parameter ϵ is set to unity

Guiding center motion

- To use the method of averaging, the equations of motion are written in the form of first-order differential equations

$$
\begin{aligned}
\frac{d \mathbf{r}}{d t} & =\mathbf{v} \\
m \frac{d \mathbf{v}}{d t} & =q(\mathbf{E}+\mathbf{v} \times \mathbf{B})
\end{aligned}
$$

- Let's denote the τ-average of $\mathbf{r}(t, \tau)$ by $\mathbf{R}(t)$ and the τ-average of $\mathbf{v}(t, \tau)$ by $\mathbf{U}(t)$, and seek a change of variables of the form

$$
\begin{aligned}
& \mathbf{r}(t, \tau)=\mathbf{R}(t)+\epsilon \boldsymbol{\rho}(\mathbf{R}, \mathbf{U}, t, \tau) \\
& \mathbf{v}(t, \tau)=\mathbf{U}(t)+\mathbf{u}(\mathbf{R}, \mathbf{U}, t, \tau)
\end{aligned}
$$

- Here, $\langle\boldsymbol{\rho}(\mathbf{R}, \mathbf{U}, t, \tau)\rangle=0$ and $\langle\mathbf{u}(\mathbf{R}, \mathbf{U}, t, \tau)\rangle=0$
- Note that $\boldsymbol{\rho} \ll \mathbf{R}$ (first order) while \mathbf{u} can be of the same order than \mathbf{U}

Guiding center motion

- Since we know that $u_{\perp}=\rho \Omega_{c^{\prime}}$, and we have made $\rho \rightarrow \epsilon \rho$, then $\Omega_{c} \rightarrow \epsilon^{-1} \Omega_{c}$ and, consequently, $B \rightarrow \epsilon^{-1} B$. In addition, since we also know that the magnitude of the ExB drift is $w_{E x B}=E / B$, we must also have $E \rightarrow \epsilon^{-1} E$
- Therefore, the modified equations of motion become $\left.\left(\mathbf{(} \mathbf{E}, \mathbf{B}, \boldsymbol{\Omega}_{c}\right) \rightarrow \epsilon^{-1}\left(\mathbf{E}, \mathbf{B}, \boldsymbol{\Omega}_{c}\right)\right)$:

$$
\begin{aligned}
& \frac{\partial \mathbf{r}}{\partial t}+\frac{1}{\epsilon} \frac{\partial \mathbf{r}}{\partial \tau}=\mathbf{v} \\
& m \frac{\partial \mathbf{v}}{\partial t}+\frac{m}{\epsilon} \frac{\partial \mathbf{v}}{\partial \tau}=\frac{q}{\epsilon}(\mathbf{E}+\mathbf{v} \times \mathbf{B})
\end{aligned}
$$

- In addition, here we consider the motion of a charged particle in the limit in which the EM fields experienced by the particle do not vary much in a gyroperiod, so that

$$
\begin{aligned}
& |(\boldsymbol{\rho} \cdot \nabla) \mathbf{E}| \ll|\mathbf{E}| \\
& |(\boldsymbol{\rho} \cdot \nabla) \mathbf{B}| \ll|\mathbf{B}|
\end{aligned} \quad \frac{1}{|\mathbf{E}|}\left|\frac{\partial \mathbf{E}}{\partial t}\right| \ll \frac{\left|\boldsymbol{\Omega}_{\mathrm{c}}\right|}{2 \pi} \quad \frac{1}{|\mathbf{B}|}\left|\frac{\partial \mathbf{B}}{\partial t}\right| \ll \frac{\left|\boldsymbol{\Omega}_{\mathrm{c}}\right|}{2 \pi}
$$

Guiding center motion

- The evolution of $\mathbf{R}(t)$ and $\mathbf{U}(t)$ are determined by substituting the expansions below into the modified equation of motion, and solve order by order:

$$
\begin{aligned}
& \boldsymbol{\rho}(\mathbf{R}, \mathbf{U}, t, \tau)=\boldsymbol{\rho}_{\mathbf{0}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon \boldsymbol{\rho}_{\mathbf{1}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon^{2} \boldsymbol{\rho}_{\mathbf{2}}(\mathbf{R}, \mathbf{U}, t, \tau)+\ldots \\
& \mathbf{R}(t)=\mathbf{R}_{\mathbf{0}}(t)+\epsilon \mathbf{R}_{\mathbf{1}}(t)+\epsilon^{2} \mathbf{R}_{\mathbf{2}}(t)+\ldots \\
& \mathbf{u}(\mathbf{R}, \mathbf{U}, t, \tau)=\mathbf{u}_{\mathbf{0}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon \mathbf{u}_{\mathbf{1}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon^{2} \mathbf{u}_{\mathbf{2}}(\mathbf{R}, \mathbf{U}, t, \tau)+\ldots \\
& \mathbf{U}(t)=\mathbf{U}_{\mathbf{0}}(t)+\epsilon \mathbf{U}_{\mathbf{1}}(t)+\epsilon^{2} \mathbf{U}_{\mathbf{2}}(t)+\ldots
\end{aligned}
$$

- The dynamical equation for the gyrophase (γ) is likewise expanded

$$
\frac{d \gamma}{d t}=\frac{1}{\epsilon}\left[\omega_{0}(\mathbf{R}, \mathbf{U}, t)+\epsilon \omega_{1}(\mathbf{R}, \mathbf{U}, t)+\epsilon^{2} \omega_{2}(\mathbf{R}, \mathbf{U}, t)+\ldots\right]
$$

- Here, again, $\Omega_{c} \rightarrow \epsilon^{-1} \Omega_{c}$

Guiding center motion

- Since the equation $\frac{d \mathbf{r}}{d t}=\mathbf{v}$ is linear, it follows that $\frac{d \mathbf{R}}{d t}=\mathbf{U}$ to all orders in ϵ, i.e.:

$$
\frac{d \mathbf{R}_{\mathbf{0}}}{d t}=\mathbf{U}_{\mathbf{0}} \quad \frac{d \mathbf{R}_{\mathbf{1}}}{d t}=\mathbf{U}_{\mathbf{1}} \quad \frac{d \mathbf{R}_{\mathbf{2}}}{d t}=\mathbf{U}_{\mathbf{2}} \quad \ldots
$$

- The modified momentum equation, up to $2^{\text {nd }}$ order, becomes
$m \frac{\partial}{\partial t}(\mathbf{U}+\boldsymbol{u})+\frac{m}{\epsilon} \frac{\partial}{\partial \tau}(\mathbf{U}+\boldsymbol{u})=\frac{1}{\epsilon}\left[\mathbf{F}_{\mathbf{0}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon \mathbf{F}_{\mathbf{1}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon^{2} \mathbf{F}_{\mathbf{2}}(\mathbf{R}, \mathbf{U}, t, \tau)\right]$
- Note that $\mathbf{u}(\mathbf{R}, \mathbf{U}, t, \tau)$ depends on t explicitly, but also through $\mathbf{R}(t)$ and $\mathbf{U}(t)$
- Therefore

$$
\begin{aligned}
& m \frac{d \mathbf{U}}{d t}+m\left[\frac{\partial}{\partial t}+\left(\frac{d \mathbf{R}}{d t} \cdot \nabla\right)+\left(\frac{d \mathbf{U}}{d t} \cdot \nabla_{\boldsymbol{U}}\right)\right] \boldsymbol{u}+\frac{1}{\epsilon} \frac{\partial \boldsymbol{u}}{\partial \tau}= \\
&=\frac{\mathbf{F}_{\mathbf{0}}(\mathbf{R}, \mathbf{U}, t, \tau)}{\epsilon}+\mathbf{F}_{\mathbf{1}}(\mathbf{R}, \mathbf{U}, t, \tau)+\epsilon \mathbf{F}_{\mathbf{2}}(\mathbf{R}, \mathbf{U}, t, \tau)
\end{aligned}
$$

Guiding center motion

- Substitution of the expansions into the modified equation of motion yields

$$
\begin{aligned}
& m \frac{d \mathbf{U}_{\mathbf{0}}}{d t}+\epsilon m \frac{d \mathbf{U}_{\mathbf{1}}}{d t}+\epsilon^{2} m \frac{d \mathbf{U}_{\mathbf{2}}}{d t}+m \frac{\partial \boldsymbol{u}_{\mathbf{0}}}{\partial t}+m\left(\frac{d \mathbf{R}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{0}}+m\left(\frac{d \mathbf{U}}{d t} \cdot \nabla_{\boldsymbol{U}}\right) \boldsymbol{u}_{\mathbf{0}}+ \\
& +\epsilon^{2} m\left(\frac{d \mathbf{R}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{2}}+\epsilon m \frac{\partial \boldsymbol{u}_{\mathbf{1}}}{\partial t}+\epsilon m\left(\frac{d \mathbf{R}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{1}}+\epsilon m\left(\frac{d \mathbf{U}}{d t} \cdot \nabla_{\boldsymbol{U}}\right) \boldsymbol{u}_{\mathbf{1}}+\epsilon^{2} m \frac{\partial \boldsymbol{u}_{\mathbf{2}}}{\partial t}+ \\
& +\epsilon^{2} m\left(\frac{d \mathbf{U}}{d t} \cdot \nabla_{\boldsymbol{U}}\right) \boldsymbol{u}_{\mathbf{2}}+\frac{m}{\epsilon}\left(\frac{\partial \boldsymbol{u}_{\mathbf{0}}}{\partial \tau}+\epsilon \frac{\partial \boldsymbol{u}_{\mathbf{1}}}{\partial \tau}+\epsilon^{2} \frac{\partial \boldsymbol{u}_{\mathbf{0}}}{\partial \tau}\right)= \\
& = \\
& \frac{q}{\epsilon}\left(\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}\right)+ \\
& +q\left(\mathbf{E}_{\mathbf{1}}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}\right)+ \\
& +\epsilon q\left(\mathbf{E}_{\mathbf{2}}+\mathbf{U}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{2}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{2}}\right)
\end{aligned}
$$

Guiding center motion: $0^{\text {th }}$ order terms

- To lowest order $\left(O\left(\epsilon^{-1}\right)\right)$, the momentum equation is

$$
\frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \tau}=\frac{q}{m}\left(\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}\right) \quad \rightarrow \quad \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \tau}+\mathbf{u}_{\mathbf{0}} \times \boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}}=\frac{q}{m}\left(\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}\right)
$$

- Here, one has defined $\mathbf{\Omega}_{\mathbf{c} \mathbf{0}}(\mathbf{R}, t)=-q \mathbf{B}_{\mathbf{0}} / m$
- Taking the τ-average of this equation yields:

$$
\left\langle\frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \tau}\right\rangle+\left\langle\mathbf{u}_{\mathbf{0}}\right\rangle \times \mathbf{\Omega}_{\mathbf{c} \mathbf{0}}=\frac{q}{m}\left(\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}\right) \quad \rightarrow \quad \mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}=0
$$

- The most general solution to this $0^{\text {th }}$ order equation is $\mathbf{U}_{\mathbf{0}}=U_{0, \|} \hat{\mathbf{b}}+\mathbf{w}_{\mathbf{E x B}}$ where is the so-called ExB drift:

$$
\mathbf{w}_{\mathbf{E x B}}=\frac{\mathbf{E}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}}{B_{0}^{2}}
$$

- Here, $\hat{\mathbf{b}}=\mathbf{B}_{\mathbf{0}} / B_{0}$ is a unit vector pointing along $\mathbf{B}_{\mathbf{0}}$
- Note that the equation $\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}=0$ is satisfied only if $E_{0, \|}=\epsilon\left|\mathbf{E}_{\mathbf{0}}\right|$, i.e. the parallel component of the $0^{\text {th }}$ order electric field must be included in $\mathbf{E}_{\mathbf{1}}$

Guiding center motion: $0^{\text {th }}$ order terms

- Using the equation for the gyrophase, the momentum equation can be written as

$$
\begin{aligned}
& \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \tau}+\mathbf{u}_{\mathbf{0}} \times \mathbf{\Omega}_{\mathbf{c} \mathbf{0}}=\frac{d \gamma}{d \tau} \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \gamma}+\mathbf{u}_{\mathbf{0}} \times \mathbf{\Omega}_{\mathbf{c} \mathbf{0}}=\epsilon \frac{d \gamma}{d t} \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \gamma}+\mathbf{u}_{\mathbf{0}} \times \boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}}=\frac{q}{m}\left(\mathbf{E}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}\right)=0 \\
& \epsilon \frac{d \gamma}{d t} \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \gamma}+\mathbf{u}_{\mathbf{0}} \times \boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}}=\left(\omega_{0}+\epsilon \omega_{1}+\epsilon^{2} \omega_{2}+\ldots\right) \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \gamma}+\mathbf{u}_{\mathbf{0}} \times \boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}}=0 \\
& \omega_{0} \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial \gamma}+\mathbf{u}_{\mathbf{0}} \times \boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}}=0
\end{aligned}
$$

- Here, we used the solution of the τ-averaged $0^{\text {th }}$ order equation of motion
- Integration of the momentum equation, with $\Omega_{c 0}=-q B_{0} / m$, yields

$$
\mathbf{u}_{\mathbf{0}}=\mathbf{c}+\mathbf{u}_{0, \perp}\left[-\hat{\mathbf{e}}_{\mathbf{1}} \sin \left(\frac{\Omega_{c 0}}{\omega_{0}} \gamma\right)+\hat{\mathbf{e}}_{\mathbf{2}} \cos \left(\frac{\Omega_{c 0}}{\omega_{0}} \gamma\right)\right]
$$

- Here, $\hat{\mathbf{e}}_{1}$ and $\hat{\mathbf{e}}_{2}$ are unit vectors such that $\hat{\mathbf{e}}_{\mathbf{1}} \times \hat{\mathbf{e}}_{2}=\hat{\mathbf{b}}$ and \mathbf{c} is a constant

Guiding center motion: $0^{\text {th }}$ order terms

- Periodicity constraint requires that $\mathbf{c}=0$ and $\omega_{0}=\Omega_{c 0}(\mathbf{R}, t)=-q B_{0}(\mathbf{R}, t) / m$
- Therefore, the gyration velocity becomes

$$
\mathbf{u}_{\mathbf{0}}=\mathbf{u}_{0, \perp}\left[-\hat{\mathbf{e}}_{\mathbf{1}} \sin \gamma+\hat{\mathbf{e}}_{\mathbf{2}} \cos \gamma\right] \text { with } \gamma=\gamma_{0}+\Omega_{c 0} t
$$

- Keeping only $0^{\text {th }}$ order terms in the velocity equation $\frac{\partial \mathbf{r}}{\partial t}+\frac{1}{\epsilon} \frac{\partial \mathbf{r}}{\partial \tau}=\mathbf{v}$, and using that $d \mathbf{R}_{\mathbf{0}} / d t=\mathbf{U}_{\mathbf{0}}$, yields $d \rho_{\mathbf{0}} / d \tau=\mathbf{u}_{\mathbf{0}}$, which can be written as

$$
\Omega_{c 0} \frac{\partial \rho_{\mathbf{0}}}{\partial \gamma}=\mathbf{u}_{\mathbf{0}}
$$

- Integration of this equation yields $\rho_{\mathbf{0}}=\rho_{0}\left[\hat{\mathbf{e}}_{\mathbf{1}} \cos \gamma+\hat{\mathbf{e}}_{\mathbf{2}} \sin \gamma\right]$ with $\rho_{0}=u_{0, \perp} / \Omega_{c 0}$
- Sometimes, it is convenient to write $\boldsymbol{\rho}_{\mathbf{0}}=\mathbf{u}_{\mathbf{0}} \times \hat{\mathbf{b}} / \boldsymbol{\Omega}_{c 0}$ or $\boldsymbol{u}_{\mathbf{0}}=\boldsymbol{\Omega}_{\mathbf{c} \mathbf{0}} \times \boldsymbol{\rho}_{\mathbf{0}}$

Guiding center motion: $1^{\text {th }}$ order terms

- To first order ($O\left(\epsilon^{0}\right)$), the modified momentum equation is

$$
\begin{aligned}
m \frac{d \mathbf{U}_{\mathbf{0}}}{d t}+m \frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial t}+m\left(\frac{d \mathbf{R}_{\mathbf{0}}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{0}}+m & \left(\frac{d \mathbf{U}_{\mathbf{0}}}{d t} \cdot \nabla_{U_{0}}\right) \boldsymbol{u}_{\mathbf{0}}+m \frac{\partial \mathbf{u}_{\mathbf{1}}}{\partial \tau}= \\
= & q\left(\mathbf{E}_{\mathbf{1}}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}\right)
\end{aligned}
$$

- Taking the τ-average of this equation yields

$$
\frac{d \mathbf{U}_{\mathbf{0}}}{d t}=\frac{q}{m}\left(\left\langle\mathbf{E}_{\mathbf{1}}\right\rangle+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{0}} \times\left\langle\mathbf{B}_{\mathbf{1}}\right\rangle+\left\langle\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}\right\rangle\right)
$$

- Let's calculate the τ-average of each term separately

$$
\begin{aligned}
& \left\langle\mathbf{E}_{\mathbf{1}}\right\rangle=\left\langle\mathbf{E}_{\mathbf{1}, \|}+\left(\rho_{\mathbf{0}} \cdot \nabla\right) \mathbf{E}_{\mathbf{0}}\right\rangle=\left\langle\mathbf{E}_{\mathbf{1}, \| \mid}\right\rangle+\left(\left\langle\boldsymbol{\rho}_{\mathbf{0}}\right\rangle \cdot \nabla\right) \mathbf{E}_{\mathbf{0}}=E_{1, \|} \hat{\mathbf{b}} \\
& \left\langle\mathbf{B}_{\mathbf{1}}\right\rangle=\left\langle\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right\rangle=\left(\left\langle\boldsymbol{\rho}_{\mathbf{0}}\right\rangle \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}=0 \\
& \left\langle\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}\right\rangle=\left\langle\mathbf{u}_{\mathbf{0}} \times\left[\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle=\left\langle\left(\boldsymbol{\Omega}_{\boldsymbol{c} \mathbf{0}} \times \boldsymbol{\rho}_{\mathbf{0}}\right) \times\left[\left(\rho_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle
\end{aligned}
$$

Guiding center motion: $1^{\text {th }}$ order terms

- Substitution into the τ-averaged $1^{\text {th }}$ order momentum equation yields

$$
\frac{d}{d t}\left(\mathrm{U}_{0\| \|} \hat{\mathbf{b}}+\mathbf{w}_{\mathbf{E x B}}\right)=\frac{q}{m}\left\{\mathbf{E}_{\mathbf{1}, \|}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\left\langle\left(\boldsymbol{\Omega}_{c \mathbf{0}} \times \boldsymbol{\rho}_{\mathbf{0}}\right) \times\left[\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle\right\}
$$

- The last term on the RHS can be written as

$$
\left(\boldsymbol{\Omega}_{c 0} \times \rho_{0}\right) \times\left[\left(\rho_{0} \cdot \nabla\right) \mathbf{B}_{0}\right]=\left\{\boldsymbol{\Omega}_{c 0} \cdot\left[\left(\rho_{0} \cdot \nabla\right) \mathbf{B}_{0}\right]\right\} \boldsymbol{\rho}_{0}-\left\{\boldsymbol{\rho}_{0} \cdot\left[\left(\rho_{0} \cdot \nabla\right) \mathbf{B}_{0}\right]\right\} \boldsymbol{\Omega}_{c 0}
$$

- Exercise: using the Einstein notation, show that

$$
\begin{aligned}
& \left\{\boldsymbol{\Omega}_{c \mathbf{0}} \cdot\left[\left(\rho_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\} \boldsymbol{\rho}_{\mathbf{0}}=\Omega_{c 0}\left[\left(\rho_{0} \rho_{\mathbf{0}}\right) \cdot \nabla B_{0}\right] \\
& \left\{\rho_{\mathbf{0}} \cdot\left[\left(\rho_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\} \boldsymbol{\Omega}_{c \mathbf{0}}=\left[\left(\rho_{\mathbf{0}} \rho_{\mathbf{0}}\right): \nabla \mathbf{B}_{\mathbf{0}}\right] \boldsymbol{\Omega}_{c \mathbf{0}} \\
& \left\langle\rho_{0} \rho_{\mathbf{0}}\right\rangle=\frac{\rho_{0}^{2}}{2}(\mathbf{I}-\hat{\mathbf{b}} \hat{\mathbf{b}})
\end{aligned}
$$

Guiding center motion: $1^{\text {th }}$ order terms

- Using the results from the previous exercise, we have

$$
\begin{aligned}
& \left\langle\left(\boldsymbol{\Omega}_{c \mathbf{0}} \times \boldsymbol{\rho}_{\mathbf{0}}\right) \times\left[\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle=\Omega_{c 0}\left[\frac{\rho_{0}^{2}}{2}(\mathbf{I}-\hat{\mathbf{b}} \hat{\mathbf{b}}) \cdot \nabla B_{0}\right]-\left[\frac{\rho_{0}^{2}}{2}(\mathbf{I}-\hat{\mathbf{b}} \hat{\mathbf{b}}): \nabla \mathbf{B}_{\mathbf{0}}\right] \boldsymbol{\Omega}_{c \mathbf{0}} \\
& \left\langle\left(\boldsymbol{\Omega}_{c \mathbf{0}} \times \boldsymbol{\rho}_{\mathbf{0}}\right) \times\left[\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle=-\frac{m u_{0, \perp}^{2}}{2 q B_{0}} \nabla B_{0}=-\frac{\mu}{q} \nabla B_{0}
\end{aligned}
$$

- Here, \mathbf{I} is the identity tensor, and we used that $\mathbf{I}: \nabla \mathbf{B}_{\mathbf{0}}=\nabla \cdot \mathbf{B}_{\mathbf{0}}=0$, that $\hat{\mathbf{b}} \hat{\mathbf{b}} \cdot \nabla B_{0}=\hat{\mathbf{b}} \hat{\mathbf{b}}: \nabla \mathbf{B}_{\mathbf{0}}$ and that $\mu=m u_{0, \perp}^{2} / 2 B_{0}$ is the magnitude of the magnetic moment associated to the gyromotion
- Therefore, the τ-averaged $1^{\text {th }}$ order momentum equation becomes

$$
m \frac{d}{d t}\left(\mathrm{U}_{0, \|} \hat{\mathbf{b}}+\mathbf{w}_{\mathbf{E x B}}\right)=q \mathbf{E}_{\mathbf{1}, \|}+q \mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}-\mu \nabla B_{0}
$$

Guiding center motion: $1^{\text {th }}$ order terms

- Let's now separate the momentum equation in its parallel and perpendicular components
- Parallel component

$$
\begin{aligned}
& m \frac{d \mathrm{U}_{0, \|}}{d t}+m \mathrm{U}_{0, \|} \hat{\mathbf{b}} \cdot \frac{d \hat{\mathbf{b}}}{d t}+m \hat{\mathbf{b}} \cdot \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}=q E_{1, \|}-\mu \nabla_{\|} B_{0} \\
& \frac{d \hat{\mathbf{b}}}{d t}=\frac{\partial \hat{\mathbf{b}}}{\partial t}+\left(\mathbf{U}_{\mathbf{0}} \cdot \nabla\right) \hat{\mathbf{b}}=\frac{\partial \hat{\mathbf{b}}}{\partial t}+\left(\mathbf{w}_{\mathbf{E x B}} \cdot \nabla\right) \hat{\mathbf{b}}+\mathrm{U}_{0, \|} \hat{\boldsymbol{\kappa}}
\end{aligned}
$$

The quantity $\hat{\boldsymbol{\kappa}}=(\hat{\mathbf{b}} \cdot \nabla) \hat{\mathbf{b}}$ is termed the curvature vector and it points towards the center of the circle that most closely approximates the magnetic field line at a particular point

- Exercise: show that $\hat{\mathbf{b}} \cdot \frac{d \hat{\mathbf{b}}}{d t}=0$
- Therefore, the momentum equation becomes

$$
m \frac{d \mathrm{U}_{0, \|}}{d t}+m \hat{\mathbf{b}} \cdot \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}=q E_{1, \|}-\mu \nabla_{\|} B_{0}
$$

Guiding center motion: $1^{\text {th }}$ order terms

- The parallel and perpendicular components of the momentum equation are
- Parallel component

$$
m \frac{d U_{0, \|}}{d t}=q E_{1, \|}-\mu \nabla_{\|} B_{0}-m \hat{\mathbf{b}} \cdot \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}
$$

- Perpendicular component

$$
\mathbf{U}_{\mathbf{1}, \perp}=\mathbf{B}_{\mathbf{0}} \times\left[\frac{m}{q B_{0}^{2}} \frac{d \mathbf{U}_{\mathbf{0}}}{d t}+\frac{\mu}{q B_{0}^{2}} \nabla B_{0}\right]
$$

- Comments
- The $0^{\text {th }}$ order parallel drift $\left(U_{0, \|}\right)$ is determined at $1^{\text {th }}$ order
- The $1^{\text {th }}$ order correction to the parallel drift is underdetermined at this order, which implies that $U_{1, \| \mid}=\epsilon^{2}\left|\mathbf{U}_{\mathbf{1}}\right|$ and, at this order, we have $\mathbf{U}_{\mathbf{1}}=\mathbf{U}_{\mathbf{1}, \perp}$

Guiding center motion: $1^{\text {th }}$ order terms

- Making use of the τ-averaged $1^{\text {th }}$ order ($O\left(\epsilon^{0}\right)$) momentum equation allow us to write the oscillating component of the first order modified momentum equation

$$
\frac{\partial \mathbf{u}_{\mathbf{0}}}{\partial t}+\left(\frac{d \mathbf{R}_{\mathbf{0}}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{0}}+\left(\frac{d \mathbf{U}_{\mathbf{0}}}{d t} \cdot \nabla_{\boldsymbol{U}_{\mathbf{0}}}\right) \boldsymbol{u}_{\mathbf{0}}+\frac{\partial \mathbf{u}_{\mathbf{1}}}{\partial \tau}=\frac{q}{m}\left(\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{1}}\right)
$$

- This equation must be integrated in order to find $\mathbf{u}_{1}=\mathbf{u}_{1}(\mathbf{R}, \mathbf{U}, t, \tau)$
- Then, keeping only $1^{\text {th }}$ order terms in the velocity equation $\frac{\partial \mathbf{r}}{\partial t}+\frac{1}{\epsilon} \frac{\partial \mathbf{r}}{\partial \tau}=\mathbf{v}$, and using that $d \mathbf{R}_{1} / d t=\mathbf{U}_{\mathbf{1}}$, yields

$$
\omega_{1} \frac{\partial \rho_{\mathbf{1}}}{\partial \gamma}=\mathbf{u}_{\mathbf{1}}-\frac{\partial \boldsymbol{\rho}_{\mathbf{0}}}{\partial t}-\left(\frac{d \mathbf{R}_{\mathbf{0}}}{d t} \cdot \nabla\right) \boldsymbol{\rho}_{\mathbf{0}}+\left(\frac{d \mathbf{U}_{\mathbf{0}}}{d t} \cdot \nabla_{\boldsymbol{U}_{\mathbf{0}}}\right) \boldsymbol{\rho}_{\mathbf{0}}
$$

- This equation must then be integrated for $\rho_{1}=\rho_{1}(\mathbf{R}, \mathrm{U}, t, \tau)$ to be found. During this integration, the first order correction to the Larmor frequency (ω_{1}) is also found

Guiding center motion: $1^{\text {th }}$ order terms

- In the absence of an \mathbf{E}_{0}-field, and for a static \mathbf{B}_{0}-field, the parallel drift velocity reduces to

$$
m \frac{d \mathrm{U}_{0, \|}}{d t}=-\mu \nabla_{\|} B_{0}
$$

- Particles tend to move away from regions with stronger \mathbf{B}_{0}-field

Charged Particle Trajectories in

Guiding center motion: $1^{\text {th }}$ order terms

- In the absence of an \mathbf{E}_{0}-field, and for a static $\mathbf{B}_{\mathbf{0}}$-field, the parallel drift velocity reduces to

$$
m \frac{d \mathrm{U}_{0, \|}}{d t}=-\mu \nabla_{\|} B_{0}
$$

- Particles tend to move away from regions with stronger \mathbf{B}_{0}-field
- First magnetic confinement devices used this effect to trap particles in localized regions of space (magnetic bottles)

Guiding center motion: $1^{\text {th }}$ order terms

- In the absence of an \mathbf{E}_{0}-field, and for a static $\mathbf{B}_{\mathbf{0}}$-field, the parallel drift velocity reduces to

$$
m \frac{d \mathrm{U}_{0, \|}}{d t}=-\mu \nabla_{\|} B_{0}
$$

- Particles tend to move away from regions with stronger \mathbf{B}_{0}-field
- First magnetic confinement devices used this effect to trap particles in localized regions of space (magnetic bottles)
- Exercise: show that particles can scape from the magnetic bottle through the "throats" of the bottle if the pitch angle

$$
\alpha_{0}<\sin ^{-1}\left[\left(\frac{B_{0}}{B_{m}}\right)^{1 / 2}\right]=\left.\sin ^{-1}\left(\frac{v_{\perp}}{v}\right)\right|_{z=0}
$$

Guiding center motion: $1^{\text {th }}$ order terms

- There exists drifts perpendicular to the \mathbf{B}_{0}-field due to inertial force and due to magnetic field gradient

$$
\mathbf{U}_{\mathbf{1}, \perp}=\mathbf{B}_{\mathbf{0}} \times\left[\frac{m}{q B_{0}^{2}} \frac{d \mathbf{U}_{\mathbf{0}}}{d t}+\frac{\mu}{q B_{0}^{2}} \nabla B_{0}\right]
$$

- The perpendicular drift due to magnetic field gradient

$$
\mathbf{w}_{\nabla \mathbf{B}}=\frac{\mu}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \nabla B_{0}
$$

- Exercise: Given the magnetic field of a vertical infinite wire with constant current (I),

$$
\mathbf{B}_{\mathbf{0}}=\frac{\mu_{0} I}{2 \pi R} \hat{\mathbf{e}}_{\boldsymbol{\theta}}
$$

calculate $\mathbf{w}_{\nabla \mathrm{B}}$ for an electron and a proton and the associated electric current density

Guiding center motion: $1^{\text {th }}$ order terms

- The perpendicular drift due to inertial force

$$
\mathbf{U}_{\mathbf{1}, \perp}=\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \mathbf{U}_{\mathbf{0}}}{d t}=\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d}{d t}\left(U_{0, \|} \hat{\mathbf{b}}\right)+\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}
$$

- The drift due to magnetic field curvature

$$
\mathbf{w}_{\text {curv }}=\frac{m U_{0, \|}}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \hat{\mathbf{b}}}{d t}
$$

Using the relation $\frac{d \hat{\mathbf{b}}}{d t}=\frac{\partial \hat{\mathbf{b}}}{\partial t}+\left(\mathbf{w}_{\mathbf{E x B}} \cdot \nabla\right) \hat{\mathbf{b}}+\mathrm{U}_{0, \|} \hat{\boldsymbol{\kappa}}$ this drift becomes

$$
\mathbf{w}_{\text {curv }}=\frac{m U_{0, \|}}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times\left(\frac{\partial \hat{\mathbf{b}}}{\partial t}+\left(\mathbf{w}_{\mathbf{E x B}} \cdot \nabla\right) \hat{\mathbf{b}}+U_{0, \|} \hat{\boldsymbol{\kappa}}\right)
$$

In the absence of $\mathbf{E}_{\mathbf{0}}$-field, and for static $\mathbf{B}_{\mathbf{0}}$-field, the curvature drift reduces to

$$
\mathbf{w}_{\text {curv }}=\frac{2 W_{\|}}{q B_{0}^{4}} \mathbf{B}_{\mathbf{0}} \times\left[\left(\mathbf{B}_{\mathbf{0}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]
$$

- Exercise: calculate $\mathbf{w}_{\text {curv }}$, and the associated current density, for the \mathbf{B}_{0}-field configuration of the previous exercise

Exercises: Earth's ring current

- Exercise: show that in the absence of \mathbf{E}_{0}-field, and for static \mathbf{B}_{0}-field, the curvature and the gradient drifts can be combined as (what assumption must be made?)

$$
\mathbf{w}_{\mathbf{C G}}=-\frac{m}{q B_{0}^{3}}\left(U_{0, \|}^{2}+\frac{1}{2} U_{0, \perp}^{2}\right)\left(\nabla B_{0} \times \mathbf{B}_{\mathbf{0}}\right)
$$

- Exercise: suppose that the magnetic field of the Earth can be approximated by the field of a magnetic dipole with $B_{0}=3.12 \times 10^{-5} \mathrm{~T}$:

$$
\begin{aligned}
& B_{r}=-2 B_{0}\left(\frac{R_{E}}{R_{E}+h}\right)^{3} \cos \theta \\
& B_{\theta}=-B_{0}\left(\frac{R_{E}}{R_{E}+h}\right)^{3} \sin \theta \\
& R_{E}=6370 \mathrm{~km} \quad \text { (Earth's Radius) }
\end{aligned}
$$

Describe the trajectory of charged particles at $h=300 \mathrm{~km}$, as shown in the figure above, and calculate the associated electron and ion current densities. Suppose that $n(h=300 \mathrm{~km})=1 \times 10^{9} \mathrm{~m}^{-3}$ and $\rho_{m}(h=300 \mathrm{~km})=2.67 \times 10^{-17} \mathrm{~kg} / \mathrm{m}^{-3} \quad$ (Oxigen)

Guiding center motion: $1^{\text {th }}$ order terms

- The perpendicular drift due to inertial force

$$
\mathbf{U}_{\mathbf{1}, \perp}=\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \mathbf{U}_{\mathbf{0}}}{d t}=\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d}{d t}\left(U_{0, \|} \hat{\mathbf{b}}\right)+\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}
$$

- The polarization drift

$$
\mathbf{w}_{\mathbf{p o l}}=\frac{m}{q B_{0}^{2}} \mathbf{B}_{\mathbf{0}} \times \frac{d \mathbf{w}_{\mathbf{E x B}}}{d t}
$$

For a static $\mathbf{B}_{\mathbf{0}}$-field, the polarization drift reduces to

$$
\mathbf{w}_{\mathbf{p o l}}=\frac{m}{q B_{0}^{2}} \frac{d \mathbf{E}_{\mathbf{0}, \perp}}{d t}
$$

The polarization current density

- Since the polarization drift is charge-dependent, a time-dependent electric field (perpendicular to $\mathbf{B}_{\mathbf{0}}$) will produce a net polarization current in a neutral plasma, so that the plasma medium behaves like a dielectric

- The polarization current density is given by

$$
\mathbf{J}_{\mathbf{P}}=\frac{1}{\delta V} \sum_{j} q_{j} \mathbf{w}_{\mathbf{p o l ,} \mathbf{j}}=\frac{1}{\delta V}\left(\sum_{j} m_{j}\right) \frac{1}{B_{0}^{2}} \frac{d \mathbf{E}_{0, \perp}}{d t}=\frac{\rho_{m}}{B_{0}^{2}} \frac{d \mathbf{E}_{\mathbf{0}, \perp}}{d t}
$$

- A static $\mathbf{E}_{\mathbf{0}}$-field does not produce a polarization field since the ions and electrons will move around to preserve quasi-neutrality

The plasma dielectric constant

- To calculate the plasma dielectric constant, let's insert the polarization current in the Ampère-Maxwell equation
- Since $\mathbf{E}_{\mathbf{0}}=\mathbf{E}_{\mathbf{0}}\left(\mathbf{r}_{\mathbf{0}}, t\right)$, the partial time derivatives become total time derivatives

$$
\nabla \times \mathbf{B}=\mu_{0}\left(\mathbf{J}_{\mathbf{P}}+\epsilon_{0} \frac{\partial \mathbf{E}}{\partial t}\right)=\mu_{0}\left(\frac{\rho_{m}}{B_{0}^{2}} \frac{\partial \mathbf{E}_{\mathbf{0}, \perp}}{\partial t}+\epsilon_{0} \frac{\partial \mathbf{E}_{\mathbf{0}}}{\partial t}\right)=\mu_{0} \epsilon_{0}\left(1+\frac{\rho_{m}}{\epsilon_{0} B_{0}^{2}}\right) \frac{d \mathbf{E}_{\mathbf{0}, \perp}}{d t}+\epsilon_{0} \frac{d \mathbf{E}_{\mathbf{0}, \|}}{d t}
$$

- Therefore, the plasma perpendicular dielectric current is

$$
\nabla \times \mathbf{B}=\mu_{0} \epsilon \frac{d \mathbf{E}_{\mathbf{0}}}{d t} \quad \text { where } \quad \epsilon_{\|}=\epsilon_{0} \quad \text { and } \quad \epsilon_{\perp}=\epsilon_{0}\left(1+\frac{\rho_{m}}{\epsilon_{0} B_{0}^{2}}\right)
$$

- The resulting charge density that accumulates due to the polarization drift must satisfy the charge continuity equation

$$
\frac{\partial \rho_{P}}{\partial t}+\nabla \cdot \mathbf{J}_{\mathbf{P}}=0 \quad \rightarrow \quad \frac{\partial \rho_{P}}{\partial t}+\nabla \cdot\left(\frac{\rho_{m}}{B_{0}^{2}} \frac{d \mathbf{E}_{\mathbf{0}, \perp}}{d t}\right)=0 \quad \rightarrow \quad \rho_{P}=-\frac{\rho_{m}}{B_{0}^{2}} \nabla \cdot \mathbf{E}_{\mathbf{0}, \perp}
$$

- Writing the total charge density as $\rho_{\text {total }}=\rho+\rho_{P}$ yields
$\nabla \cdot \mathbf{E}_{\mathbf{0}, \|}+\nabla \cdot \mathbf{E}_{\mathbf{0}, \perp}=\frac{\rho}{\epsilon_{0}}-\frac{\rho_{m}}{\epsilon_{0} B_{0}^{2}} \nabla \cdot \mathbf{E}_{\mathbf{0}, \perp} \rightarrow \quad \nabla \cdot\left[\epsilon_{0} \mathbf{E}_{\mathbf{0}, \|}+\epsilon_{0}\left(1+\frac{\rho_{m}}{\epsilon_{0} B_{0}^{2}}\right) \mathbf{E}_{\mathbf{0}, \perp}\right]=\rho \rightarrow \nabla \cdot \mathbf{E}_{\mathbf{0}}=\frac{\rho}{\epsilon}$

Plasma as an electric and magnetic medium

- Let's estimate the magnitude of the electric permittivity and magnetic permeability of a hydrogen fusion plasma with parameters:
- Plasma density: $1 \times 10^{20} \mathrm{~m}^{-3}$
- Plasma temperature: $1 \times 10^{8} \mathrm{~K}\left(W_{\perp}=1 / 2 m v_{\perp}^{2} \approx k_{B} T / 2=7 \times 10^{-16} \mathrm{~J}\right)$
- Magnetic field: 1 T
- Physical constants: $m_{i}=1.67 \times 10^{-27} \mathrm{~kg}, \epsilon_{0}=8.85 \times 10^{-12} \mathrm{~F} / \mathrm{m}$ and $\mu_{0}=4 \pi \times 10^{-7} \mathrm{H} / \mathrm{m}$
- Plasma perpendicular electric permittivity

$$
\epsilon_{\perp} / \epsilon_{0}=1+\frac{1.67 \times 10^{-27} \times 1 \times 10^{20}}{8.85 \times 10^{-12} \times 1^{2}}=1+1.89 \times 10^{4} \approx 1.89 \times 10^{4} \gg 1
$$

- Plasma magnetic permeability: let's combine $\mathbf{B}=\mu_{0}(\mathbf{H}+\mathbf{M})$ with $\mathbf{M}=-n W_{\perp} \mathbf{B} / B^{2}$

$$
\begin{aligned}
& \mathbf{B}=\mu \mathbf{H} \quad \text { with } \mu=\mu_{0} /\left(1+\frac{\mu_{0} n W_{\perp}}{B^{2}}\right) . \text { Therefore, } \mu / \mu_{0}=1 /\left(1+\frac{\mu_{0} n W_{\perp}}{B^{2}}\right) \\
& \mu / \mu_{0}=1 /\left(1+\frac{4 \pi \times 10^{-7} \times 1 \times 10^{20} \times 7 \times 10^{-16}}{1^{2}}\right)=1 /\left(1+8.8 \times 10^{-2}\right) \approx 1
\end{aligned}
$$

Conservation of the magnetic flux (Bittencourt's, Ch. 4, sec. 4.1)

- Exercise: suppose there exists a time-dependent magnetic field $\mathbf{B}_{\mathbf{0}}=B_{0}(t) \hat{\mathbf{k}}$
- Use Faraday's law to show that, in cylindrical coordinates, $\mathbf{E}_{\mathbf{0}}=-\frac{\mathbf{r}}{2} \times \frac{d \mathbf{B}_{\mathbf{0}}}{d t}$
- Calculate the corresponding ExB drift
- The force acting on a charge due to the electric field is $q \mathbf{E}_{\mathbf{0}}$ and, therefore, the increase in the transverse kinetic energy over one cyclotron period is

$$
\delta\left(\frac{1}{2} m v_{\perp}^{2}\right)=q \oint \mathbf{E}_{\mathbf{0}} \cdot d \mathbf{r}
$$

From this result, show that the magnetic flux through a Larmor orbit $\Phi_{m}=B_{0} \pi r_{c}^{2}$ is conserved:

$$
\delta \Phi_{m}=\delta\left(B_{0} \pi r_{c}^{2}\right)=0
$$

and, as a consequence, the particle magnetic moment is also conserved

Plasma heating through magnetic pumping

- Exercise: using the $\mathbf{E}_{\mathbf{0}}$ and $\mathbf{B}_{\mathbf{0}}$-fields from previous exercise for a group of particles
- Suppose that, at $t=t_{0}$, the average kinetic energy of each particle is

$$
E_{k i n}=\frac{1}{2} m\left\langle v_{\|}^{2}\right\rangle+\frac{1}{2} m\left\langle v_{\perp}^{2}\right\rangle=\frac{1}{2} k_{B} T_{\|}+k_{B} T_{\perp}
$$

and that $T_{\| \mid}\left(t_{0}\right)=T_{\perp}\left(t_{0}\right)=T_{0}$. In addition, suppose that, from $t=t_{0}$ up to $t=t_{1}$, the $\mathbf{B}_{\mathbf{0}}$-field varies adiabatically: $\mathbf{B}_{\mathbf{0}}=B_{0}\left[1+\left(t-t_{0}\right) /\left(t_{1}-t_{0}\right)\right] \hat{\mathbf{k}}$, however, there is not enough time for the temperatures to equilibrate. What are the values of $T_{\|}\left(t_{1}\right)$ and $T_{\perp}\left(t_{1}\right)$?

- From $t=t_{1}$ up to $t=t_{2}$, the magnetic field is kept constant until $T_{\|}\left(t_{2}\right)=T_{\perp}\left(t_{2}\right)=T_{2}$. What is the value of T_{2} ?
- From $t=t_{2}$ up to $t=t_{3}$, the \mathbf{B}_{0}-field is brought, again adiabatically, to its initial value: $\mathbf{B}_{\mathbf{0}}=B_{0}\left[2-\left(t-t_{2}\right) /\left(t_{3}-t_{2}\right)\right] \hat{\mathbf{k}}$. However, there is not enough time for the temperatures to equilibrate. What are the values of $T_{\|}\left(t_{3}\right)$ and $T_{\perp}\left(t_{3}\right)$?
- From $t=t_{3}$ up to $t=t_{f}$, the $\mathbf{B}_{\mathbf{0}}$-field is kept constant until $T_{\|}\left(t_{f}\right)=T_{\perp}\left(t_{f}\right)=T_{f}$. What is the final temperature of the plasma?

$$
\text { Answer: } T_{f}=10 T_{0} / 9 \text { (for one single loop of } \mathbf{B}_{0} \text {-field sweep) }
$$

Guiding center motion: $2^{\text {th }}$ order terms

- To second order $\left(O\left(\epsilon^{1}\right)\right.$), the momentum equation is

$$
\begin{gathered}
\frac{d \mathbf{U}_{\mathbf{1}}}{d t}+\left(\frac{d \mathbf{R}_{\mathbf{1}}}{d t} \cdot \nabla\right) \boldsymbol{u}_{\mathbf{0}}+\left(\frac{d \mathbf{U}_{\mathbf{1}}}{d t} \cdot \nabla_{U_{1}}\right) \boldsymbol{u}_{\mathbf{0}}+\frac{\partial \mathbf{u}_{\mathbf{1}}}{\partial t}+\left(\frac{d \mathbf{R}_{\mathbf{0}}}{d t} \cdot \nabla\right) \boldsymbol{u}_{1}+\left(\frac{d \mathbf{U}_{\mathbf{0}}}{d t} \cdot \nabla_{U_{0}}\right) \boldsymbol{u}_{\mathbf{1}}+\frac{\partial \mathbf{u}_{\mathbf{2}}}{\partial \tau}= \\
=\frac{q}{m}\left(\mathbf{E}_{\mathbf{2}}+\mathbf{U}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{u}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}+\mathbf{U}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{2}}+\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{2}\right)
\end{gathered}
$$

- Taking the τ-average of this equation yields

$$
\frac{d \mathbf{U}_{\mathbf{1}}}{d t}=\frac{q}{m}\left(\left\langle\mathbf{E}_{\mathbf{2}}\right\rangle+\mathbf{U}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}+\mathbf{U}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}+\left\langle\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}\right\rangle+\mathbf{U}_{\mathbf{0}} \times\left\langle\mathbf{B}_{\mathbf{2}}\right\rangle+\left\langle\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{2}}\right\rangle\right)
$$

- Let's calculate each τ-average term separately

$$
\begin{aligned}
& \left\langle\mathbf{E}_{\mathbf{2}}\right\rangle=\left\langle\left(\boldsymbol{\rho}_{\mathbf{1}}\right\rangle \cdot \nabla\right) \mathbf{E}_{\mathbf{0}}+\frac{1}{2}\left\langle\left(\rho_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{E}_{\mathbf{0}}\right\rangle=\frac{1}{2}\left\langle\left(\rho_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{E}_{\mathbf{0}}\right\rangle \\
& \left\langle\mathbf{B}_{\mathbf{2}}\right\rangle=\left\langle\left(\boldsymbol{\rho}_{\mathbf{1}}\right\rangle \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}+\frac{1}{2}\left\langle\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{B}_{\mathbf{0}}\right\rangle=\frac{1}{2}\left\langle\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{B}_{\mathbf{0}}\right\rangle \\
& \left\langle\mathbf{u}_{\mathbf{1}} \times \mathbf{B}_{\mathbf{1}}\right\rangle=\left\langle\mathbf{u}_{\mathbf{1}} \times\left[\left(\boldsymbol{\rho}_{\mathbf{1}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}\right]\right\rangle \quad\left\langle\mathbf{u}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{2}}\right\rangle=\frac{1}{2}\left\langle\mathbf{u}_{\mathbf{0}} \times\left[\left(\boldsymbol{\rho}_{\mathbf{1}} \cdot \nabla\right) \mathbf{B}_{\mathbf{0}}+\frac{1}{2}\left(\rho_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{B}_{\mathbf{0}}\right]\right.
\end{aligned}
$$

Guiding center motion: $2^{\text {th }}$ order terms

- Neglecting $1^{\text {st }}$ and $2^{\text {nd }}$ order corrections to the magnetic field yields

$$
\frac{d \mathbf{U}_{\mathbf{1}}}{d t}=\frac{q}{m}\left[\frac{1}{2}\left\langle\left(\boldsymbol{\rho}_{\mathbf{0}} \cdot \nabla\right)^{2} \mathbf{E}_{\mathbf{0}}\right\rangle+\mathbf{U}_{\mathbf{2}} \times \mathbf{B}_{\mathbf{0}}\right]
$$

- The solution of this equation gives

$$
\mathbf{U}_{\mathbf{2}, \perp}=\frac{\rho_{0}^{2}}{4} \frac{\nabla_{\perp}^{2} \mathbf{E}_{\mathbf{0}} \times \mathbf{B}_{\mathbf{0}}}{B_{0}^{2}}
$$

Summary of particle drifts

- The $0^{\text {th }}$ order driff
- $\mathrm{U}_{0, \|} \hat{\mathbf{b}}$: Parallel drift
- $\mathbf{w}_{\mathbf{E x B}}$: ExB drift

$$
\mathbf{U}_{\mathbf{0}}=\mathrm{U}_{0, \|} \hat{\mathbf{b}}+\mathbf{w}_{\mathbf{E x B}}
$$

- The $1^{\text {th }}$ order drift
- $\mathbf{w}_{\nabla \mathbf{B}}$: magnetic field gradient drift
- $\mathbf{w}_{\text {ExB }}$: magnetic field curvature drift
- $\mathbf{w}_{\text {pol }}$: polarization drift

$$
\mathbf{U}_{\mathbf{1}}=\mathbf{w}_{\nabla \mathbf{B}}+\mathbf{w}_{\mathbf{c u r v}}+\mathbf{w}_{\mathbf{p o l}}
$$

- The $2^{\text {th }}$ order drift
- $\mathbf{w}_{\nabla^{2} \mathbf{E}}$: second order E-drift

$$
\mathbf{U}_{\mathbf{2}}=\mathbf{w}_{\nabla^{2} \mathbf{E}}
$$

Exercises

- The cyclotron resonance: Show that when a circularly polarized electric field rotates in the counterclockwise direction, looking along B_{0}, a positive particle is able to absorb energy from the electric field, so that its speed increases continuously in time (see Bittencourt's Ch. 4, Sec. 3.4). What about a negative particle?
- Solve exercises 4.4, 4.6, 4.7 and 4.11 from Bittencourt's Ch. 4

PGF5112 - Plasma Physics I

- Single particle orbits: the motion of charged particles in electromagnetic fields
- Introduction (previous lecture)
- Uniform and static electric field (previous lecture)
- Uniform and static magnetic field (previous lecture)
- Uniform and static electric and magnetic fields (previous lecture)
- Non-uniform and static magnetic field (physical insight) - (previous lecture)
- Non-uniform and static electric field (physical insight) - (previous lecture)
- Non-uniform and time-dependent electric and magnetic fields
- Particle orbits in a tokamak
- Physical description of a tokamak
- Trapped and passing particles

Description of the magnetic fields in a tokamak

- Tokamaks machines are symmetric with respect to the vertical axis in the center of the machine (axisymmetric)
- The word tokamak is a Russian acronym (toroidalnaja kamera s magnitnymi katushkami) that can be translated as toroidal chamber with magnetic coils
- The main components of a tokamak are
- The vacuum vessel (VV)
+ The pressure must be optimized to facilitate the plasma breakdown
- The toroidal field (TF) coils
+ These coils are responsible for confining the particles

+ The toroidal field intensity decreases with the major radius coordinate

$$
B_{\phi}=\frac{R_{0} B_{T 0}}{R}
$$

Description of the magnetic fields in a tokamak

- Tokamaks machines are symmetric with respect to the vertical axis in the center of the machine (axisymmetric)
- The word tokamak is a Russian acronym (toroidalnaja kamera s magnitnymi katushkami) that can be translated as toroidal chamber with magnetic coils
- The main components of a tokamak are
- The central solenoide (CS)
+ The CS is responsible for driving the plasma current by induction (transformer action)
- The poloidal field (PF) coils
+ These coils are needed to shape the plasma boundary and to control the plasma position

Description of the magnetic fields in a tokamak

- The total magnetic field in a tokamak is helicoidal
- Important parameters that can be used to characterize a tokamak is
- Major radius: R_{0}
- (Horizontal) Minor radius: a
- The aspect ratio: $A=R_{0} / a$

$r=a$ (Plasma Boundary)

Description of the magnetic fields in a tokamak

- The total magnetic field in a tokamak is helicoidal
- Important parameters that can be used to characterize a tokamak is
- Major radius: R_{0}
- (Horizontal) Minor radius: a
- The aspect ratio: $A=R_{0} / a$
(a) Tokamak of conventional aspect ratio ($\mathrm{A} \approx 3$)

(b) Tokamak of low aspect ratio ($\mathbf{A}<2$)

Central Solenoide

Particle drifts in a tokamak

- Let's calculate the trajectory of charged particles in a tokamak using

$$
\begin{aligned}
& \mathbf{U}=U_{0, \|} \hat{\mathbf{b}}+\mathbf{w}_{\mathbf{E x B}}+\mathbf{w}_{\nabla \mathbf{B}}+\mathbf{w}_{\mathbf{c u r v}}+\mathbf{w}_{\mathbf{p o l}}+\mathbf{w}_{\nabla^{2} \mathbf{E}} \\
& \mathbf{U} \approx \mathbf{w}_{\mathbf{C G}}=-\frac{m}{q B_{0}^{3}}\left(w_{0, \|}^{2}+\frac{1}{2} w_{0, \perp}^{2}\right)\left(\nabla B_{0} \times \mathbf{B}_{\mathbf{0}}\right)
\end{aligned}
$$

- Note that to use the equation above we must impose that $\nabla \times \mathbf{B}=0$ and also to neglect the induced (toroidal) electric field
- The magnetic field in a tokamak can be written as the sum of the poloidal and toroidal fields

$$
\mathbf{B}=\mathbf{B}_{\mathbf{P}}+\mathbf{B}_{\mathbf{T}}=\mathbf{B}_{\mathbf{P}}+\frac{R_{0} B_{T 0}}{R} \hat{\mathbf{e}}_{\phi}
$$

- In tokamaks, $\mathbf{B}_{\mathbf{P}} \ll \mathbf{B}_{\mathbf{T}}$. Therefore, taking $\nabla \times \mathbf{B}=\nabla \times \mathbf{B}_{\mathbf{P}}+\nabla \times \mathbf{B}_{\mathbf{T}} \approx \nabla \times \mathbf{B}_{\mathbf{T}}=0$ is somewhat justified. In addition, we will assume that the field gradient is dominated by the toroidal field:

$$
\nabla B=\nabla\left(B_{T} \sqrt{1+\frac{B_{P}^{2}}{B_{T}^{2}}}\right) \approx \nabla B_{T}
$$

Particle drifts in a tokamak

- In a $\{R, \phi, Z\}$ coordinate system, we have that

$$
\begin{aligned}
& \nabla B_{T}=\nabla\left(\frac{R_{0} B_{T 0}}{R}\right)=-\frac{R_{0} B_{T 0}}{R^{2}} \hat{\mathbf{e}}_{\mathbf{R}} \\
& \nabla B_{0} \times \mathbf{B}_{\mathbf{0}}=-\frac{R_{0} B_{0}}{R^{2}} \hat{\mathbf{e}}_{\mathbf{R}} \times\left(\mathbf{B}_{\mathbf{P}}+\frac{R_{0} B_{0}}{R} \hat{\mathbf{e}}_{\phi}\right)=\frac{B_{T 0}}{R}\left(B_{T 0} \hat{\mathbf{e}}_{\mathbf{Z}}+B_{P 0} \cos \theta \hat{\mathbf{e}}_{\phi}\right) \\
& \mathbf{w}_{\mathbf{C G}}=-\frac{m}{q B_{T 0}^{2} R}\left(w_{0, \|}^{2}+\frac{1}{2} w_{0, \perp}^{2}\right)\left(B_{T 0} \hat{\mathbf{e}}_{\mathbf{Z}}+B_{P 0} \cos \theta \hat{\mathbf{e}}_{\phi}\right)
\end{aligned}
$$

Particle drifts in a tokamak

- In a tokamak, charged particles drift in two directions (charge/mass dependent)
- In the vertical direction: constant drift
- In the toroidal direction: the magnitude depends on the poloidal angle

$$
\mathbf{w}_{\mathbf{C G}}=-\frac{m}{q B_{T 0}^{2} R}\left(w_{0, \|}^{2}+\frac{1}{2} w_{0, \perp}^{2}\right)\left(B_{T 0} \hat{\mathbf{e}}_{\mathbf{Z}}+B_{P 0} \cos \theta \hat{\mathbf{e}}_{\phi}\right)
$$

Electrons drift in the opposite direction

PGF5112 - Plasma Physics I

- Single particle orbits: the motion of charged particles in electromagnetic fields
- Introduction (previous lecture)
- Uniform and static electric field (previous lecture)
- Uniform and static magnetic field (previous lecture)
- Uniform and static electric and magnetic fields (previous lecture)
- Non-uniform and static magnetic field (physical insight) - (previous lecture)
- Non-uniform and static electric field (physical insight) - (previous lecture)
- Non-uniform and time-dependent electric and magnetic fields
- Particle orbits in a tokamak
- Physical description of a tokamak
- Trapped and passing particles

Trapped and passing particles

- In addition to the drift calculated in the previous topic, the particles also have a parallel velocity along the field lines
- Since the field lines in a tokamak is helicoidal, the particles would access the high toroidal field side (HFS) region and the low toroidal field side (LFS) region
- Depending on their ratio v_{\perp} / v, particles could be reflected, in a similar way as in mirror machines, and be trapped in the LFS region
- The total kinetic energy of a particle is conserved and is given by

$$
K=\frac{1}{2} m w_{\|}^{2}+\frac{1}{2} m w_{\perp}^{2}=\frac{1}{2} m w_{\|}^{2}+\mu B
$$

- Where μ is the particle magnetic moment (first adiabatic constant) and
$B \approx B_{T}=\frac{R_{0} B_{T 0}}{R}=\frac{B_{T 0}}{1+r / R_{0} \cos \theta}=\approx B_{T 0}\left(1-\frac{r}{R_{0}} \cos \theta\right)=B_{T 0}\left[1-\epsilon+2 \epsilon \sin ^{2}\left(\frac{\theta}{2}\right)\right]$

Trapped and passing particles

- Therefore, the energy equation of a particle in a tokamak field becomes

$$
\frac{1}{2} m w_{\|}^{2}+\mu \Delta B \sin ^{2}\left(\frac{\theta}{2}\right)=K-\mu B_{\min }
$$

- Where

$$
\begin{aligned}
& B_{\min }=\left.B(r, \theta)\right|_{\min }=\frac{B_{T 0}}{1+\epsilon}=B_{T 0}(1-\epsilon) \\
& B_{\max }=\left.B(r, \theta)\right|_{\max }=\frac{B_{T 0}}{1-\epsilon}=B_{T 0}(1+\epsilon)
\end{aligned}
$$

$$
\Delta B=B_{\max }-B_{\min }
$$

- Exercise: show that particles are trapped in the LFS region if $\frac{w_{\|}^{2}}{w^{2}}<\epsilon=\frac{r}{R_{0}}$,
otherwise, they are passing particles

References

- The single particle orbit theory
- Bittencourt: Ch. 2, 3 and 4
- Particle orbits in tokamaks
- Fitzpatrick: Ch. 2

