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• To study the trajectory of charged particles in non-uniform and time-dependent 
electric and magnetic fields, let’s expand the fields around a position , which is 
the guiding center position of the particle

R

The trajectories of charged particles in non-uniform and time-dependent 
electric and magnetic fields

R

r

ρ

-  is the cyclotron/Larmor radius 
-  is the instantaneous particle position 
-  is the guiding center position

ρ
r
R

r(t) = R(t) + ρ(t)

E(r, t) = E(R, t) + [(r − R) ⋅ ∇] E(r, t)
r=R

+
1
2 [(r − R) ⋅ ∇]2 E(r, t)

r=R
+ O3

B(r, t) = B(R, t) + [(r − R) ⋅ ∇] B(r, t)
r=R

+
1
2 [(r − R) ⋅ ∇]2 B(r, t)

r=R
+ O3
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• To study the trajectory of charged particles in non-uniform and time-dependent 
electric and magnetic fields, let’s expand the fields around a position , which is 
the guiding center position of the particle 

• Using the definition of the instantaneous particle position:  

- Here,  is a parameter introduced to explicit the order of the expansion 
- Therefore, the fields become (in a simplified notation) 

- Note that  and  still depend on time

R

r(t) = R(t) + ϵρ(t)
ϵ

E0 = E(R, t) B0 = B(R, t)

The trajectories of charged particles in non-uniform and time-dependent 
electric and magnetic fields

E(r, t) = E0 + ϵ(ρ ⋅ ∇)E0 +
ϵ2

2
(ρ ⋅ ∇)2E0

B(r, t) = B0 + ϵ(ρ ⋅ ∇)B0 +
ϵ2

2
(ρ ⋅ ∇)2B0

E(r, t) = E(R, t) + [(r − R) ⋅ ∇] E(r, t)
r=R

+
1
2 [(r − R) ⋅ ∇]2 E(r, t)

r=R
+ O3

B(r, t) = B(R, t) + [(r − R) ⋅ ∇] B(r, t)
r=R

+
1
2 [(r − R) ⋅ ∇]2 B(r, t)

r=R
+ O3
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• Consider the equation of motion 

- Here,  is a periodic function of its last argument, with period , and  

- The small parameter  characterizes the separation between the short 
oscillation period and the timescale for the slow secular evolution of  

• The idea of the method of averaging is to treat  and  as independent variables, 
and to look for solutions of the form  that are periodic in . Thus, we replace 
the equation of motion above by the modified equation of motion below

f 2π τ =
t
ϵ

ϵ
z(t, τ)

t τ
z(t, τ) τ

Intermezzo matematico: the method of averaging

dz
dt

= f(z, t, τ)

∂z
∂t

+
1
ϵ

∂z
∂τ

= f(z, t, τ)
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• Let’s denote the -average of  by , and seek a change of variables of 
the form 

- Here,  is a periodic function of  with vanishing mean and  is a function 
free of oscillations 

• Inserting the expression for  into the motion equation (up to 2nd order) yields 

- Since  depends on time explicitly, but also through , then

τ z(t, τ) Z(t)

ζ τ Z(t)

z(t, τ)

ζ(Z, t, τ) Z = Z(t)

z(t, τ) = Z(t) + ϵζ(Z, t, τ)

⟨ζ(Z, t, τ)⟩ =
1

2π ∮ ζ(Z, t, τ)dτ = 0

Intermezzo matematico: the method of averaging

∂
∂t (Z + ϵζ) +

1
ϵ

∂
∂τ (Z + ϵζ) = f(Z, t, τ) + ϵ(ζ ⋅ ∇)f(Z, t, τ) +

ϵ2

2
(ζ ⋅ ∇)2f(Z, t, τ)

dZ
dt

+ ϵ [ ∂
∂t

+ ( dZ
dt

⋅ ∇)] ζ +
∂ζ
∂τ

= f(Z, t, τ) + ϵ(ζ ⋅ ∇)f(Z, t, τ) +
ϵ2

2
(ζ ⋅ ∇)2f(Z, t, τ)
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• The evolution of  is determined by substituting the expansions below into the  
previous equation of motion: 

- The solution is then obtained by solving the motion equation order by order 

• To lowest order, we obtain 

- Taking the -average of this equation yields 

- Integrating the oscillating component of the lowest order equation yields 

Z(t)

τ

Intermezzo matematico: the method of averaging

dZ
dt

= F0(Z, t) + ϵF1(Z, t) + ϵ2F2(Z, t) + . . .

Z = Z0(t) + ϵZ1(t) + ϵ2Z2(t) + . . .

F0(Z, t) +
∂ζ0

∂τ
= f(Z, t, τ)

ζ0(Z, t, τ) =
τ

∫
0

[f(Z, t, τ′ ) − ⟨f⟩(Z, t)] dτ′ 

F0(Z, t) = ⟨f(Z, t, τ)⟩ ≡ ⟨f⟩(Z, t)

ζ = ζ0(Z, t, τ) + ϵζ1(Z, t, τ) + ϵ2ζ2(Z, t, τ) + . . .
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• To first order, we obtain 

- Taking the -average of this equation yields 

- Integrating the oscillating component of the first order equation yields 

• To second order, we obtain 

- Taking the -average of this equation yield 

• The evolution of  up to second order only is, therefore, given by 

- Note that, at the end, the parameter  is set to unity

τ

τ

Z(t)

ϵ

F1 +
∂ζ0

∂t
+ (F0 ⋅ ∇)ζ0 +

∂ζ1

∂τ
= (ζ0 ⋅ ∇)f(Z, t, τ)

F1(Z, t) = ⟨[ζ0(Z, t, τ) ⋅ ∇]f(Z, t, τ)⟩ ≡ ⟨(ζ0 ⋅ ∇)f⟩(Z, t)

dZ
dt

= F0 + F1 + F2 = ⟨f⟩(Z, t) + ⟨(ζ0 ⋅ ∇)f⟩(Z, t) + ⟨(ζ1 ⋅ ∇)f⟩(Z, t) +
1
2

⟨(ζ0 ⋅ ∇)2f⟩(Z, t)

Intermezzo matematico: the method of averaging

F2 +
∂ζ1

∂t
+ (F0 ⋅ ∇)ζ1 +

∂ζ1

∂τ
= (ζ1 ⋅ ∇)f +

1
2

(ζ0 ⋅ ∇)2f

F2(Z, t) = ⟨(ζ1 ⋅ ∇)f⟩(Z, t) +
1
2

⟨(ζ0 ⋅ ∇)2f⟩(Z, t)

ζ1(Z, t, τ) =
τ

∫
0

[(ζ0 ⋅ ∇)f(Z, t, τ′ ) − ⟨(ζ0 ⋅ ∇)f⟩(Z, t) −
∂ζ0(Z, t, τ′ )

∂t
− (F0 ⋅ ∇)ζ0(Z, t, τ′ )] dτ′ 
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Guiding center motion

• To use the method of averaging, the equations of motion are written in the form 
of first-order differential equations 

• Let’s denote the -average of  by  and the -average of  by ,  
and seek a change of variables of the form 

- Here,  and  

- Note that  (first order) while  can be of the same order than 

τ r(t, τ) R(t) τ v(t, τ) U(t)

⟨ρ(R, U, t, τ)⟩ = 0 ⟨u(R, U, t, τ)⟩ = 0

ρ ≪ R u U

r(t, τ) = R(t) + ϵρ(R, U, t, τ)

v(t, τ) = U(t) + u(R, U, t, τ)

dr
dt

= v

m
dv
dt

= q (E + v × B)
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• Since we know that , and we have made , then  and, 
consequently, . In addition, since we also know that the magnitude of 
the ExB drift is , we must also have  

• Therefore, the modified equations of motion become (  ): 

• In addition, here we consider the motion of a charged particle in the limit in 
which the EM fields experienced by the particle do not vary much in a 
gyroperiod, so that

u⊥ = ρΩc ρ → ϵρ Ωc → ϵ−1Ωc
B → ϵ−1B

wExB = E/B E → ϵ−1E

(E, B, Ωc) → ϵ−1(E, B, Ωc)

Guiding center motion

| (ρ ⋅ ∇)E | ≪ |E |

∂r
∂t

+
1
ϵ

∂r
∂τ

= v

1
|E |

∂E
∂t

≪
|Ωc |
2π| (ρ ⋅ ∇)B | ≪ |B |

1
|B |

∂B
∂t

≪
|Ωc |
2π

m
∂v
∂t

+
m
ϵ

∂v
∂τ

=
q
ϵ

(E + v × B)
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Guiding center motion

• The evolution of  and  are determined by substituting the expansions 
below into the modified equation of motion, and solve order by order: 

• The dynamical equation for the gyrophase ( ) is likewise expanded 

- Here, again, 

R(t) U(t)

γ

Ωc → ϵ−1Ωc

ρ(R, U, t, τ) = ρ0(R, U, t, τ) + ϵρ1(R, U, t, τ) + ϵ2ρ2(R, U, t, τ) + . . .

R(t) = R0(t) + ϵR1(t) + ϵ2R2(t) + . . .

dγ
dt

=
1
ϵ [ω0(R, U, t) + ϵω1(R, U, t) + ϵ2ω2(R, U, t) + . . . ]

u(R, U, t, τ) = u0(R, U, t, τ) + ϵu1(R, U, t, τ) + ϵ2u2(R, U, t, τ) + . . .

U(t) = U0(t) + ϵU1(t) + ϵ2U2(t) + . . .
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• Since the equation              is linear, it follows that                 to all orders in , i.e.: 

• The modified momentum equation, up to 2nd order, becomes 

- Note that  depends on  explicitly, but also through  and  

• Therefore

ϵ

u(R, U, t, τ) t R(t) U(t)

Guiding center motion

dr
dt

= v
dR
dt

= U

m
∂
∂t

(U + u) +
m
ϵ

∂
∂τ

(U + u) =
1
ϵ [F0(R, U, t, τ) + ϵF1(R, U, t, τ) + ϵ2F2(R, U, t, τ)]

dR0

dt
= U0

dR1

dt
= U1

dR2

dt
= U2 . . .

m
dU
dt

+ m [ ∂
∂t

+ ( dR
dt

⋅ ∇) + ( dU
dt

⋅ ∇U)] u +
1
ϵ

∂u
∂τ

=

=
F0(R, U, t, τ)

ϵ
+ F1(R, U, t, τ) + ϵF2(R, U, t, τ)
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• Substitution of the expansions into the modified equation of motion yields

Guiding center motion

+q (E1 + U1 × B0 + U0 × B1 + u1 × B0 + u0 × B1)+

+ϵq (E2 + U2 × B0 + u2 × B0 + U1 × B1 + u1 × B1 + U0 × B2 + u0 × B2)

=
q
ϵ (E0 + U0 × B0 + u0 × B0)+

m
dU0

dt
+ ϵm

dU1

dt
+ ϵ2m

dU2

dt
+ m

∂u0

∂t
+ m ( dR

dt
⋅ ∇) u0 + m ( dU

dt
⋅ ∇U) u0+

+ϵ2m ( dR
dt

⋅ ∇) u2 + ϵm
∂u1

∂t
+ ϵm ( dR

dt
⋅ ∇) u1 + ϵm ( dU

dt
⋅ ∇U) u1 + ϵ2m

∂u2

∂t
+

+ϵ2m ( dU
dt

⋅ ∇U) u2 +
m
ϵ ( ∂u0

∂τ
+ ϵ

∂u1

∂τ
+ ϵ2 ∂u0

∂τ ) =
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• To lowest order ( ), the momentum equation is 

- Here, one has defined  

• Taking the -average of this equation yields: 

- The most general solution to this 0th order equation is                               , where                              
is the so-called ExB drift: 

- Here,                   is a unit vector pointing along  

- Note that the equation                              is satisfied only if                       , i.e. the 
parallel component of the 0th order electric field must be included in 

O(ϵ−1)

Ωc0(R, t) = − qB0 /m

τ

B0

E1

Guiding center motion: 0th order terms

∂u0

∂τ
=

q
m (E0 + U0 × B0 + u0 × B0) →

∂u0

∂τ
+ u0 × Ωc0 =

q
m (E0 + U0 × B0)

E0 + U0 × B0 = 0

U0 = U0,∥b̂ + wExB

E0 + U0 × B0 = 0 E0,∥ = ϵ |E0 |

b̂ = B0 /B0

wExB =
E0 × B0

B2
0

⟨ ∂u0

∂τ ⟩ + ⟨u0⟩ × Ωc0 =
q
m (E0 + U0 × B0) →
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• Using the equation for the gyrophase, the momentum equation can be written as 

- Here, we used the solution of the -averaged 0th order equation of motion 

• Integration of the momentum equation, with , yields 

- Here,  and  are unit vectors such that  and  is a constant

τ

Ωc0 = − qB0/m

̂e1 ̂e2 ̂e1 × ̂e2 = b̂ c

Guiding center motion: 0th order terms

∂u0

∂τ
+ u0 × Ωc0 =

dγ
dτ

∂u0

∂γ
+ u0 × Ωc0 = ϵ

dγ
dt

∂u0

∂γ
+ u0 × Ωc0 =

q
m (E0 + U0 × B0) = 0

u0 = c + u0,⊥ [− ̂e1 sin ( Ωc0

ω0
γ) + ̂e2 cos ( Ωc0

ω0
γ)]

ω0
∂u0

∂γ
+ u0 × Ωc0 = 0

ϵ
dγ
dt

∂u0

∂γ
+ u0 × Ωc0 = (ω0 + ϵω1 + ϵ2ω2 + . . . ) ∂u0

∂γ
+ u0 × Ωc0 = 0
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• Periodicity constraint requires that  and                                      
- Therefore, the gyration velocity becomes 

• Keeping only 0th order terms in the velocity equation                         , and using 

that                      , yields                     , which can be written as 

• Integration of this equation yields                                            with 

- Sometimes, it is convenient to write                             or 

c = 0

Guiding center motion: 0th order terms

u0 = u0,⊥ [− ̂e1 sin γ + ̂e2 cos γ]

ω0 = Ωc0(R, t) = − qB0(R, t)/m

with γ = γ0 + Ωc0t

Ωc0
∂ρ0

∂γ
= u0

dR0 /dt = U0 dρ0 /dτ = u0

ρ0 = ρ0 [ ̂e1 cos γ + ̂e2 sin γ] ρ0 = u0,⊥/Ωc0

ρ0 = u0 × b̂/Ωc0 u0 = Ωc0 × ρ0

∂r
∂t

+
1
ϵ

∂r
∂τ

= v
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• To first order (  ), the modified momentum equation is 

• Taking the -average of this equation yields 

- Let’s calculate the -average of each term separately

O(ϵ0)

τ

τ

Guiding center motion: 1th order terms

m
dU0

dt
+ m

∂u0

∂t
+ m ( dR0

dt
⋅ ∇) u0 + m ( dU0

dt
⋅ ∇U0) u0 + m

∂u1

∂τ
=

dU0

dt
=

q
m (⟨E1⟩ + U1 × B0 + U0 × ⟨B1⟩ + ⟨u0 × B1⟩)

⟨E1⟩ = ⟨E1,∥ + (ρ0 ⋅ ∇)E0⟩ = ⟨E1,∥⟩ + (⟨ρ0⟩ ⋅ ∇)E0 = E1,∥b̂

⟨u0 × B1⟩ = ⟨u0 × [(ρ0 ⋅ ∇)B0]⟩ = ⟨(Ωc0 × ρ0) × [(ρ0 ⋅ ∇)B0]⟩

= q (E1 + U1 × B0 + U0 × B1 + u1 × B0 + u0 × B1)

⟨B1⟩ = ⟨(ρ0 ⋅ ∇)B0⟩ = (⟨ρ0⟩ ⋅ ∇)B0 = 0
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• Substitution into the -averaged 1th order momentum equation yields 

- The last term on the RHS can be written as 

• Exercise: using the Einstein notation, show that

τ

Guiding center motion: 1th order terms

d
dt (U0∥b̂ + wExB) =

q
m {E1,∥ + U1 × B0 + ⟨(Ωc0 × ρ0) × [(ρ0 ⋅ ∇) B0]⟩}

(Ωc0 × ρ0) × [(ρ0 ⋅ ∇) B0] = {Ωc0 ⋅ [(ρ0 ⋅ ∇) B0]} ρ0 − {ρ0 ⋅ [(ρ0 ⋅ ∇) B0]} Ωc0

{Ωc0 ⋅ [(ρ0 ⋅ ∇) B0]} ρ0 = Ωc0 [(ρ0ρ0) ⋅ ∇B0]

{ρ0 ⋅ [(ρ0 ⋅ ∇) B0]} Ωc0 = [(ρ0ρ0) : ∇B0] Ωc0

⟨ρ0ρ0⟩ =
ρ2

0

2 (I − b̂b̂)



G.P. Canal, 08 April 2021

• Using the results from the previous exercise, we have 

- Here,  is the identity tensor, and we used that , that 
 and that  is the magnitude of the magnetic 

moment associated to the gyromotion 

• Therefore, the -averaged 1th order momentum equation becomes

I I : ∇B0 = ∇ ⋅ B0 = 0
b̂b̂ ⋅ ∇B0 = b̂b̂ : ∇B0 μ = mu2

0,⊥/2B0

τ

Guiding center motion: 1th order terms

m
d
dt (U0,∥b̂ + wExB) = qE1,∥ + qU1 × B0 − μ∇B0

⟨(Ωc0 × ρ0) × [(ρ0 ⋅ ∇) B0]⟩ = Ωc0 [ ρ2
0

2 (I − b̂b̂) ⋅ ∇B0] − [ ρ2
0

2 (I − b̂b̂) : ∇B0] Ωc0

⟨(Ωc0 × ρ0) × [(ρ0 ⋅ ∇) B0]⟩ = −
mu2

0,⊥

2qB0
∇B0 = = −

μ
q

∇B0



G.P. Canal, 08 April 2021

• Let’s now separate the momentum equation in its parallel and perpendicular 
components 

- Parallel component 

The quantity  is termed the curvature                                                
vector and it points towards the center of the                                                       
circle that most closely approximates the                                                    
magnetic field line at a particular point 

• Exercise: show that  

• Therefore, the momentum equation becomes

̂κ = (b̂ ⋅ ∇)b̂

b̂ ⋅
d b̂
dt

= 0

Guiding center motion: 1th order terms

m
dU0,∥

dt
+ mU0,∥b̂ ⋅

d b̂
dt

+ mb̂ ⋅
dwExB

dt
= qE1,∥ − μ∇∥B0

d b̂
dt

=
∂b̂
∂t

+ (U0 ⋅ ∇)b̂ =
∂b̂
∂t

+ (wExB ⋅ ∇)b̂ + U0,∥ ̂κ

m
dU0,∥

dt
+ mb̂ ⋅

dwExB

dt
= qE1,∥ − μ∇∥B0
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• The parallel and perpendicular components of the momentum equation are 
- Parallel component 

- Perpendicular component 

• Comments 
- The 0th order parallel drift ( ) is determined at 1th order 

- The 1th order correction to the parallel drift is underdetermined at this order, 
which implies that  and, at this order, we have 

U0,∥

U1,∥ = ϵ2 |U1 | U1 = U1,⊥

Guiding center motion: 1th order terms

m
dU0,∥

dt
= qE1,∥ − μ∇∥B0 − mb̂ ⋅

dwExB

dt

U1,⊥ = B0 × [ m
qB2

0

dU0

dt
+

μ
qB2

0
∇B0]
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• Making use of the -averaged 1th order (  ) momentum equation allow us to 
write the oscillating component of the first order modified momentum equation 

• This equation must be integrated in order to find  

• Then, keeping only 1th order terms in the velocity equation                         , and 

using that                      , yields 

• This equation must then be integrated for                              to be found. During this 
integration, the first order correction to the Larmor frequency (  ) is also found

τ O(ϵ0)

ω1

Guiding center motion: 1th order terms

∂u0

∂t
+ ( dR0

dt
⋅ ∇) u0 + ( dU0

dt
⋅ ∇U0) u0 +

∂u1

∂τ
=

q
m (U0 × B1 + u1 × B0 + u0 × B1)

u1 = u1(R, U, t, τ)

ω1
∂ρ1

∂γ
= u1 −

∂ρ0

∂t
− ( dR0

dt
⋅ ∇) ρ0 + ( dU0

dt
⋅ ∇U0) ρ0

dR1/dt = U1

∂r
∂t

+
1
ϵ

∂r
∂τ

= v

ρ1 = ρ1(R, U, t, τ)
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• In the absence of an -field, and for a static -field, the parallel drift velocity 
reduces to 

- Particles tend to move away from regions                                                           
with stronger -field

E0 B0

B0

Guiding center motion: 1th order terms

m
dU0,∥

dt
= − μ∇∥B0
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• In the absence of an -field, and for a static -field, the parallel drift velocity 
reduces to 

- Particles tend to move away from regions                                                           
with stronger -field 

- First magnetic confinement devices used                                                            
this effect to trap particles in localized                                                          
regions of space (magnetic bottles)

E0 B0

B0

Guiding center motion: 1th order terms

Mirror Machines

m
dU0,∥

dt
= − μ∇∥B0
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• In the absence of an -field, and for a static -field, the parallel drift velocity 
reduces to 

- Particles tend to move away from regions                                                           
with stronger -field 

- First magnetic confinement devices used                                                            
this effect to trap particles in localized                                                          
regions of space (magnetic bottles) 

• Exercise: show that particles can scape from                                                                                          
the magnetic bottle through the "throats" of                                                                          
the bottle if the pitch angle

E0 B0

B0

Guiding center motion: 1th order terms

α0 < sin−1 [( B0

Bm )
1/2

] = sin−1 ( v⊥

v )
z=0

m
dU0,∥

dt
= − μ∇∥B0
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• There exists drifts perpendicular to the -field due to inertial force and due to 
magnetic field gradient 

• The perpendicular drift due to magnetic field gradient 

• Exercise: Given the magnetic field of a                                                                  
vertical infinite wire with constant current ( ),  

calculate          for an electron and a proton                                                               
and the associated electric current density

B0

I

Guiding center motion: 1th order terms

w∇B =
μ

qB2
0

B0 × ∇B0

U1,⊥ = B0 × [ m
qB2

0

dU0

dt
+

μ
qB2

0
∇B0]

w∇B

∇B0

B0 =
μ0I
2πR

̂eθ

w∇B
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• The perpendicular drift due to inertial force 

- The drift due to magnetic field curvature 

Using the relation                                                  this drift becomes 

In the absence of -field, and for static -field, the curvature drift reduces to 

• Exercise: calculate          , and the associated current density, for the -field 
configuration of the previous exercise

E0 B0

B0

Guiding center motion: 1th order terms

U1,⊥ =
m

qB2
0

B0 ×
dU0

dt
=

m
qB2

0
B0 ×

d
dt

(U0,∥b̂) +
m

qB2
0

B0 ×
dwExB

dt

d b̂
dt

=
∂b̂
∂t

+ (wExB ⋅ ∇)b̂ + U0,∥ ̂κ

wcurv =
mU0,∥

qB2
0

B0 ×
d b̂
dt

wcurv =
mU0,∥

qB2
0

B0 × ( ∂b̂
∂t

+ (wExB ⋅ ∇)b̂ + U0,∥ ̂κ)

wcurv =
2W∥

qB4
0

B0 × [(B0 ⋅ ∇)B0]
wcurv
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• Exercise: show that in the absence of -field, and for static -field, the curvature 
and the gradient drifts can be combined as (what assumption must be made?) 

• Exercise: suppose that the magnetic field of the Earth can be approximated by 
the field of a magnetic dipole with :  

Describe the trajectory of charged particles at , as shown in the figure 
above, and calculate the associated electron and ion current densities. Suppose 
that  and 

E0 B0

B0 = 3.12 × 10−5 T

h = 300 km

n(h = 300 km) = 1 × 109 m−3 ρm(h = 300 km) = 2.67 × 10−17 kg/m−3 (Oxigen)

Exercises: Earth’s ring current

wCG = −
m

qB3
0 (U2

0,∥ +
1
2

U2
0,⊥)(∇B0 × B0)

Br = − 2B0 ( RE

RE + h )
3

cos θ

Bθ = − B0 ( RE

RE + h )
3

sin θ

RE = 6370 km (Earth′ s Radius)
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• The perpendicular drift due to inertial force 

- The polarization drift 

For a static -field, the polarization drift reduces toB0

Guiding center motion: 1th order terms

wpol =
m

qB2
0

B0 ×
dwExB

dt

wpol =
m

qB2
0

dE0,⊥

dt

U1,⊥ =
m

qB2
0

B0 ×
dU0

dt
=

m
qB2

0
B0 ×

d
dt

(U0,∥b̂) +
m

qB2
0

B0 ×
dwExB

dt
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• Since the polarization drift is charge-dependent, a time-dependent electric field 
(perpendicular to ) will produce a net polarization current in a neutral plasma, 
so that the plasma medium behaves like a dielectric 

- The polarization current density is given by 

- A static -field does not produce a polarization field since the ions and 
electrons will move around to preserve quasi-neutrality

B0

E0

The polarization current density

JP =
1

δV ∑
j

qj wpol,j =
1

δV ∑
j

mj
1

B2
0

dE0,⊥

dt
=

ρm

B2
0

dE0,⊥

dt
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• To calculate the plasma dielectric constant, let’s insert the polarization current in 
the Ampère-Maxwell equation 
- Since , the partial time derivatives become total time derivatives 

• Therefore, the plasma perpendicular dielectric current is 

• The resulting charge density that accumulates due to the polarization drift must 
satisfy the charge continuity equation 

• Writing the total charge density as  yields

E0 = E0(r0, t)

ρtotal = ρ + ρP

The plasma dielectric constant

∇ × B = μ0 (JP + ϵ0
∂E
∂t ) = μ0 ( ρm

B2
0

∂E0,⊥

∂t
+ ϵ0

∂E0

∂t ) = μ0ϵ0 (1 +
ρm

ϵ0B2
0 )

dE0,⊥

dt
+ ϵ0

dE0,∥

dt

ϵ⊥ = ϵ0 (1 +
ρm

ϵ0B2
0 )

∂ρP

∂t
+ ∇ ⋅ JP = 0 →

∂ρP

∂t
+ ∇ ⋅ ( ρm

B2
0

dE0,⊥

dt ) = 0 → ρP = −
ρm

B2
0

∇ ⋅ E0,⊥

∇ ⋅ E0,∥ + ∇ ⋅ E0,⊥ =
ρ
ϵ0

−
ρm

ϵ0B2
0

∇ ⋅ E0,⊥ → ∇ ⋅ E0 =
ρ
ϵ

∇ × B = μ0ϵ
dE0

dt
where                 andϵ∥ = ϵ0

∇ ⋅ [ϵ0E0,∥ + ϵ0 (1 +
ρm

ϵ0B2
0 ) E0,⊥] = ρ →
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• Let’s estimate the magnitude of the electric permittivity and magnetic 
permeability of a hydrogen fusion plasma with parameters: 
- Plasma density: 1 x 1020 m-3 
- Plasma temperature: 1 x 108 K (                                      7 x 10-16 J) 
- Magnetic field: 1 T 
- Physical constants: mi =1.67x10-27 kg,  = 8.85x10-12 F/m and  = 4  x10-7 H/m 

• Plasma perpendicular electric permittivity 

• Plasma magnetic permeability: let’s combine  with

ϵ0 μ0 π

B = μ0 (H + M)

Plasma as an electric and magnetic medium

ϵ⊥/ϵ0 = 1 +
1.67 × 10−27 × 1 × 1020

8.85 × 10−12 × 12
= 1 + 1.89 × 104 ≈ 1.89 × 104 ≫ 1

M = − nW⊥B/B2

B = μH with                                      . Therefore,μ = μ0/(1 +
μ0nW⊥

B2 ) μ/μ0 = 1/(1 +
μ0nW⊥

B2 )
μ /μ0 = 1/(1 +

4π × 10−7 × 1 × 1020 × 7 × 10−16

12 ) = 1/(1 + 8.8 × 10−2) ≈ 1

W⊥ = 1/2mv2
⊥ ≈ kBT/2 =
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• Exercise: suppose there exists a time-dependent magnetic field  

- Use Faraday’s law to show that, in cylindrical coordinates,  
- Calculate the corresponding ExB drift 
- The force acting on a charge due to the electric field is q  and, therefore, 

the increase in the transverse kinetic energy over one cyclotron period is 

From this result, show that the magnetic flux through a Larmor orbit                   
is conserved: 

and, as a consequence, the particle magnetic moment is also conserved

B0 = B0(t)k̂
E0 = −

r
2

×
dB0

dt

E0

Conservation of the magnetic flux (Bittencourt’s, Ch. 4, sec. 4.1)

δ ( 1
2

mv2
⊥) = q∮ E0 ⋅ dr

δΦm = δ (B0πr2
c ) = 0

Φm = B0πr2
c
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• Exercise: using the  and -fields from previous exercise for a group of particles 
- Suppose that, at , the average kinetic energy of each particle is 

and that . In addition, suppose that, from  up to 
, the -field varies adiabatically: , however, 

there is not enough time for the temperatures to equilibrate. What are the 
values of  and ? 

- From  up to , the magnetic field is kept constant until 
. What is the value of ? 

- From  up to , the -field is brought, again adiabatically, to its 
initial value: . However, there is not enough time 
for the temperatures to equilibrate. What are the values of  and ? 

- From  up to  , the -field is kept constant until  . 
What is the final temperature of the plasma? 

Answer:  (for one single loop of -field sweep)

E0 B0

t = t0

T∥(t0) = T⊥(t0) = T0 t = t0
t = t1 B0 B0 = B0 [1 + (t − t0)/(t1 − t0)] k̂

T∥(t1) T⊥(t1)
t = t1 t = t2

T∥(t2) = T⊥(t2) = T2 T2
t = t2 t = t3 B0

B0 = B0 [2 − (t − t2)/(t3 − t2)] k̂
T∥(t3) T⊥(t3)

t = t3 t = tf B0 T∥(tf ) = T⊥(tf ) = Tf

Tf = 10 T0/9 B0

Plasma heating through magnetic pumping

Ekin =
1
2

m⟨v2
∥⟩ +

1
2

m⟨v2
⊥⟩ =

1
2

kBT∥ + kBT⊥
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• To second order ( ), the momentum equation is 

• Taking the -average of this equation yields 

- Let’s calculate each -average term separately

O(ϵ1)

τ

τ

Guiding center motion: 2th order terms

dU1

dt
+ ( dR1

dt
⋅ ∇) u0 + ( dU1

dt
⋅ ∇U1) u0 +

∂u1

∂t
+ ( dR0

dt
⋅ ∇) u1 + ( dU0

dt
⋅ ∇U0) u1 +

∂u2

∂τ
=

dU1

dt
=

q
m (⟨E2⟩ + U2 × B0 + U1 × B1 + ⟨u1 × B1⟩ + U0 × ⟨B2⟩ + ⟨u0 × B2⟩)

⟨E2⟩ = ⟨(ρ1⟩ ⋅ ∇)E0 +
1
2

⟨(ρ0 ⋅ ∇)2E0⟩ =
1
2

⟨(ρ0 ⋅ ∇)2E0⟩

⟨u1 × B1⟩ = ⟨u1 × [(ρ1 ⋅ ∇) B0]⟩ ⟨u0 × B2⟩ =
1
2 ⟨u0 × [(ρ1 ⋅ ∇)B0 +

1
2

(ρ0 ⋅ ∇)2B0]⟩

=
q
m (E2 + U2 × B0 + u2 × B0 + U1 × B1 + u1 × B1 + U0 × B2 + u0 × B2)

⟨B2⟩ = ⟨(ρ1⟩ ⋅ ∇)B0 +
1
2

⟨(ρ0 ⋅ ∇)2B0⟩ =
1
2

⟨(ρ0 ⋅ ∇)2B0⟩
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• Neglecting 1st and 2nd order corrections to the magnetic field yields  

• The solution of this equation gives

Guiding center motion: 2th order terms

dU1

dt
=

q
m [ 1

2
⟨(ρ0 ⋅ ∇)2E0⟩ + U2 × B0]

U2,⊥ =
ρ2

0

4
∇2

⊥E0 × B0

B2
0
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• The 0th order drift 
- : Parallel drift 

- : ExB drift 

• The 1th order drift 
- : magnetic field gradient drift 
- : magnetic field curvature drift 

- : polarization drift 

• The 2th order drift 
- : second order -drift

U0,∥b̂

wExB

w∇B

wExB

wpol

w∇2E E

Summary of particle drifts

U0 = U0,∥b̂ + wExB

U1 = w∇B + wcurv + wpol

U2 = w∇2E
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• The cyclotron resonance: Show that when a circularly polarized electric field 
rotates in the counterclockwise direction, looking along , a positive particle is 
able to absorb energy from the electric field, so that its speed increases 
continuously in time (see Bittencourt’s Ch. 4, Sec. 3.4). What about a negative 
particle? 

• Solve exercises 4.4, 4.6, 4.7 and 4.11 from Bittencourt’s Ch. 4

B0

Exercises
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• Single particle orbits: the motion of charged particles in electromagnetic fields 
- Introduction (previous lecture) 
- Uniform and static electric field (previous lecture) 
- Uniform and static magnetic field (previous lecture) 
- Uniform and static electric and magnetic fields (previous lecture) 
- Non-uniform and static magnetic field (physical insight) - (previous lecture) 
- Non-uniform and static electric field (physical insight) - (previous lecture) 
- Non-uniform and time-dependent electric and magnetic fields 

• Particle orbits in a tokamak 
- Physical description of a tokamak 
- Trapped and passing particles

PGF5112 - Plasma Physics I
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• Tokamaks machines are symmetric with respect to the vertical axis in the center 
of the machine (axisymmetric) 

• The word tokamak is a Russian acronym (toroidalnaja kamera s magnitnymi 
katushkami) that can be translated as toroidal chamber with magnetic coils 

• The main components of a tokamak are 
- The vacuum vessel (VV) 

+ The pressure must be optimized to                                                                                      
facilitate the plasma breakdown 

- The toroidal field (TF) coils 
+ These coils are responsible for confining                                                                                      

the particles 
+ The toroidal field intensity decreases with the major radius coordinate

Description of the magnetic fields in a tokamak

Bϕ =
R0BT0

R

Toroidal 
Field Coil

Vacuum 
Vessel
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Description of the magnetic fields in a tokamak

• Tokamaks machines are symmetric with respect to the vertical axis in the center 
of the machine (axisymmetric) 

• The word tokamak is a Russian acronym (toroidalnaja kamera s magnitnymi 
katushkami) that can be translated as toroidal chamber with magnetic coils 

• The main components of a tokamak are 
- The central solenoide (CS) 

+ The CS is responsible for driving the plasma                                                                       
current by induction (transformer action) 

- The poloidal field (PF) coils 
+ These coils are needed to shape the plasma                                                                             

boundary and to control the plasma position
Poloidal 
Field Coil

Central 
Solenoide



G.P. Canal, 08 April 2021

Description of the magnetic fields in a tokamak

• The total magnetic field in a tokamak is helicoidal 

• Important parameters that can be used to characterize a tokamak is 
- Major radius: 
- (Horizontal) Minor radius:  
- The aspect ratio: A = R0/a

r = a (Plasma Boundary)

R0

a
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Description of the magnetic fields in a tokamak

• The total magnetic field in a tokamak is helicoidal 

• Important parameters that can be used to characterize a tokamak is 
- Major radius: 
- (Horizontal) Minor radius:  
- The aspect ratio: A = R0/a

R0

a
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Particle drifts in a tokamak

• Let’s calculate the trajectory of charged particles in a tokamak using 

- Note that to use the equation above we must impose that  and also 
to neglect the induced (toroidal) electric field 

• The magnetic field in a tokamak can be written as the sum of the poloidal and 
toroidal fields 

- In tokamaks, . Therefore, taking  is 
somewhat justified. In addition, we will assume that the field gradient is 
dominated by the toroidal field:

∇ × B = 0

BP ≪ BT ∇ × B = ∇ × BP + ∇ × BT ≈ ∇ × BT = 0

B = BP + BT = BP +
R0BT0

R
̂eϕ

U ≈ wCG = −
m

qB3
0 (w2

0,∥ +
1
2

w2
0,⊥)(∇B0 × B0)

U = U0,∥b̂ + wExB + w∇B + wcurv + wpol + w∇2E

∇B = ∇ BT 1 +
B2

P

B2
T

≈ ∇BT



G.P. Canal, 08 April 2021

Particle drifts in a tokamak

• In a  coordinate system, we have that {R, ϕ, Z}

∇BT = ∇( R0BT0

R ) = −
R0BT0

R2
̂eR

wCG = −
m

qB2
T0R (w2

0,∥ +
1
2

w2
0,⊥) (BT0 ̂eZ + BP0 cos θ ̂eϕ)

∇B0 × B0 = −
R0B0

R2
̂eR × (BP +

R0B0

R
̂eϕ) =

BT0

R (BT0 ̂eZ + BP0 cos θ ̂eϕ)
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Particle drifts in a tokamak

• In a tokamak, charged particles drift in two directions (charge/mass dependent) 
- In the vertical direction: constant drift 
- In the toroidal direction: the magnitude depends on the poloidal angle

wCG = −
m

qB2
T0R (w2

0,∥ +
1
2

w2
0,⊥) (BT0 ̂eZ + BP0 cos θ ̂eϕ)

Electrons drift in the 
opposite direction
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• Single particle orbits: the motion of charged particles in electromagnetic fields 
- Introduction (previous lecture) 
- Uniform and static electric field (previous lecture) 
- Uniform and static magnetic field (previous lecture) 
- Uniform and static electric and magnetic fields (previous lecture) 
- Non-uniform and static magnetic field (physical insight) - (previous lecture) 
- Non-uniform and static electric field (physical insight) - (previous lecture) 
- Non-uniform and time-dependent electric and magnetic fields 

• Particle orbits in a tokamak 
- Physical description of a tokamak 
- Trapped and passing particles

PGF5112 - Plasma Physics I



G.P. Canal, 08 April 2021

Trapped and passing particles

• In addition to the drift calculated in the previous topic, the particles also have a 
parallel velocity along the field lines 

• Since the field lines in a tokamak is helicoidal, the particles would access the 
high toroidal field side (HFS) region and the low toroidal field side (LFS) region 

- Depending on their ratio , particles could be reflected, in a similar way as 
in mirror machines, and be trapped in the LFS region 

• The total kinetic energy of a particle is conserved and is given by 

- Where  is the particle magnetic moment (first adiabatic constant) and

v⊥/v

μ

K =
1
2

mw2
∥ +

1
2

mw2
⊥ =

1
2

mw2
∥ + μB

B ≈ BT =
R0BT0

R
=

BT0

1 + r/R0 cos θ
= ≈ BT0 (1 −

r
R0

cos θ) = BT0 [1 − ϵ + 2ϵ sin2 ( θ
2 )]
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Trapped and passing particles

• Therefore, the energy equation of a particle in a tokamak field becomes 

- Where 

• Exercise: show that particles are trapped in the LFS region if                        , 
otherwise, they are passing particles

1
2

mw2
∥ + μΔB sin2 ( θ

2 ) = K − μBmin

Bmin = B(r, θ) |min =
BT0

1 + ϵ
= BT0(1 − ϵ)

Bmax = B(r, θ) |max =
BT0

1 − ϵ
= BT0(1 + ϵ)

ΔB = Bmax − Bmin

w2
∥

w2
< ϵ =

r
R0
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