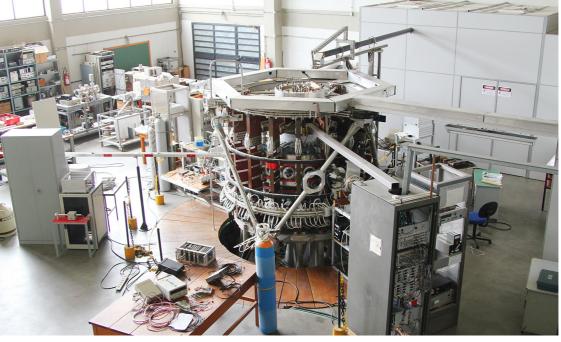
By Prof. Gustavo Paganini Canal

Plasma Physics Laboratory

Department of Applied Physics


Institute of Physics

University of São Paulo

Postgraduate course ministered remotely from the

Institute of Physics of the University of São Paulo

e-mail: canal@if.usp.br

São Paulo - SP, 01 April 2021

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

The single particle orbit theory

- Knowing the trajectory of charged particles in special field configurations is important as it provides a good physical insight into some dynamic processes
- Here, we are interested in the motion of charged particles in the presence of electric (E) and magnetic (B) fields, which are known as functions of ${\bf r}$ and t
 - Therefore, the fields are not affected by the charged particles
- The relativistic equation of motion for a charged particle under the action of the Lorentz force due to E and B fields is

$$\frac{d\mathbf{p}}{dt} = \mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

- Here, $\mathbf{p} = \gamma m \mathbf{v}$ is the relativistic particle momentum, with $\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$

q and m are the particle charge and rest mass, respectively $c=2.99\times 10^8$ m/s is the speed of light in vacuum

The classical/non-relativistic single particle orbit theory

- In many situations of practical interest, the term $v^2/c^2 \ll 1$
 - Therefore, $\gamma \approx 1$ and m can be considered constant (independent of v)
- Relativistic effects are important only for highly energetic particles
 - A 1 MeV proton has $v = 1.4 \times 10^7$ m/s, i.e. $v^2/c^2 = 0.002 \ll 1$
 - Radiative effects, which are relativistic effects, will also be neglected here
- In such a situations, the motion equation reduces to the non-relativistic equation

$$m\frac{d\mathbf{v}}{dt} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

• If the velocity obtained from this equation does not satisfy the condition $v^2/c^2 \ll 1$, then the relativistic equation of motion must be used instead

The classical/non-relativistic single particle orbit theory

Let's consider the particle kinetic energy

$$W = \frac{1}{2}m\mathbf{v}^2 = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} \qquad \rightarrow \qquad \frac{dW}{dt} = \frac{d}{dt}\left(\frac{1}{2}m\mathbf{v} \cdot \mathbf{v}\right) = m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v}$$

Using the motion equation, this equation becomes

$$\frac{dW}{dt} = m\frac{d\mathbf{v}}{dt} \cdot \mathbf{v} = q(\mathbf{E} + \mathbf{v} \times \mathbf{B}) \cdot \mathbf{v} = q(\mathbf{E} \cdot \mathbf{v}) + \underline{g(\mathbf{v} \times \mathbf{B}) \cdot \mathbf{v}} = q(\mathbf{E} \cdot \mathbf{v})$$

- From the equation above, one concludes that
 - Any change in the particle kinetic energy is done by electric fields
 - Magnetic fields do no work on charged particles, i.e. the particle kinetic energy is conserved when there is only a magnetic field

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

Single particle orbits: the trajectories of charged particles in an uniform and static electric field

 Charged particles in externally applied electromagnetic fields are subject to the Lorentz force

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m} \left(\mathbf{E}_{\text{ext}} + \mathbf{v} \times \mathbf{B}_{\text{ext}} \right)$$

• For the case in which ${f B}_{\rm ext}=0$ and ${f E}_{\rm ext}={f E}_{f 0}$ is uniform and static, one has

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m} \mathbf{E_0}$$

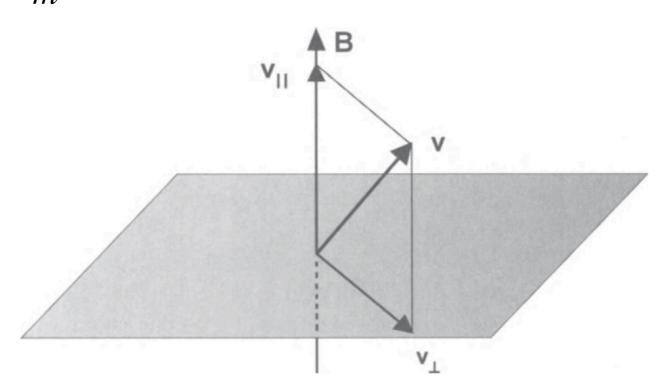
The solution of this equation is obtained by direct integration

$$\int_0^t \frac{d\mathbf{v}}{dt} dt = \int_0^t \frac{q}{m} \mathbf{E_0} dt \quad \to \quad \int_{\mathbf{v}(0)}^{\mathbf{v}(t)} d\mathbf{v} = \frac{q}{m} \mathbf{E_0} \int_0^t dt \quad \to \quad \mathbf{v}(t) = \mathbf{v}(0) + \frac{q}{m} \mathbf{E_0} t$$

(Uniforme Rectilinear Motion)

$$\int_0^t \frac{d\mathbf{r}}{dt} dt = \int_0^t \mathbf{v}(0) dt + \frac{q}{m} \mathbf{E_0} \int_0^t t dt \qquad \rightarrow \qquad \mathbf{r}(t) = \mathbf{r}(0) + \mathbf{v}(0)t + \frac{q}{2m} \mathbf{E_0} t^2$$

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields


Single particle orbits: the trajectories of charged particles in an uniform and static magnetic field

• For the case in which ${f E}_{\rm ext}=0$ and ${f B}_{\rm ext}={f B}_{f 0}$ is uniform and static, one has

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m}\mathbf{v} \times \mathbf{B_0}$$

 \bullet Decompose v in its parallel and perpendicular (to B_0) components: $v=v_{||}+v_{\perp}$

$$\frac{d\mathbf{v}_{\parallel}}{dt} + \frac{d\mathbf{v}_{\perp}}{dt} = \frac{q}{m}\mathbf{v}_{\perp} \times \mathbf{B}_{\mathbf{0}} \qquad \text{(The term } \mathbf{v}_{\parallel} \times \mathbf{B}_{\mathbf{0}} = 0 \text{ because } \mathbf{v}_{\parallel} \parallel \mathbf{B}_{\mathbf{0}}\text{)}$$

Single particle orbits: the trajectories of charged particles in an uniform and static magnetic field

• For the case in which ${f E}_{\rm ext}=0$ and ${f B}_{\rm ext}={f B}_{f 0}$ is uniform and static, one has

$$\frac{d\mathbf{v}}{dt} = \frac{q}{m}\mathbf{v} \times \mathbf{B_0}$$

 \bullet Decompose v in its parallel and perpendicular (to B_0) components: $v=v_{||}+v_{\perp}$

$$\frac{d\mathbf{v}_{\parallel}}{dt} + \frac{d\mathbf{v}_{\perp}}{dt} = \frac{q}{m}\mathbf{v}_{\perp} \times \mathbf{B}_{\mathbf{0}} \qquad \text{(The term } \mathbf{v}_{\parallel} \times \mathbf{B}_{\mathbf{0}} = 0 \text{ because } \mathbf{v}_{\parallel} \parallel \mathbf{B}_{\mathbf{0}}\text{)}$$

- In the parallel direction: uniforme rectilinear motion

$$\frac{d\mathbf{v}_{||}}{dt} = 0 \qquad \rightarrow \qquad \mathbf{v}_{||} = \mathbf{v_0}$$

- In the perpendicular direction: cyclotron motion

$$\frac{d\mathbf{v}_{\perp}}{dt} = \frac{q}{m}\mathbf{v}_{\perp} \times \mathbf{B_0}$$

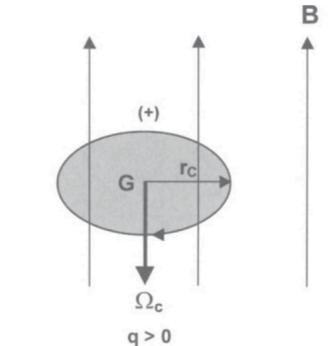
- If one defines $\Omega_{\rm c}=-rac{q}{m}{f B_0}$, the motion equation becomes: $rac{d{f v}_\perp}{dt}=\Omega_{
m c} imes{f v}_\perp$

The cyclotron frequency (or the gyrofrequency)

• The quantity $\Omega_{\rm c} = -rac{q}{m}{
m B_0}$ is called the cyclotron frequency or gyrofrequency

$$\frac{d\mathbf{v}_{\perp}}{dt} = \mathbf{\Omega_c} \times \mathbf{v}_{\perp}$$
 (Equation of Motion)

- Its direction is chosen accordingly to the diamagnetic direction
 - Ω_c is opposite to B_0 for a positive charge (q > 0), which moves such that the magnetic field created by it is opposite to B_0
 - Ω_c points in the direction of B_0 for a negative charge (q < 0), which also moves such that the magnetic field created by it is opposite to B_0
 - Note that $\Omega_{
 m c}$ always points in the direction of the particle angular momentum


q < 0

The Larmor radius (or the gyroradius)

- Since Ω_c is constant and, from kinetic energy conservation, $|\,v_\perp|\,$ is also constant, the equation of motion implies that
 - The particle acceleration is constant in magnitude
 - Its direction is perpendicular to both \mathbf{v}_{\perp} and $\mathbf{B}_{\mathbf{0}}$
- Therefore, the equation of motion can be integrated directly

$$\frac{d\mathbf{v}_{\perp}}{dt} = \mathbf{\Omega}_{\mathbf{c}} \times \mathbf{v}_{\perp} = \mathbf{\Omega}_{\mathbf{c}} \times \frac{d\mathbf{r}_{\mathbf{c}}}{dt} \rightarrow \mathbf{v}_{\perp} = \mathbf{\Omega}_{\mathbf{c}} \times \mathbf{r}_{\mathbf{c}}$$

- Here, \mathbf{r}_{c} is the particle vector position measured with respect to a point (G in the figure) in the plane perpendicular to \mathbf{B}_{0} which contains the particle
- Since $|\mathbf{v}_{\perp}|$ is constant, $|\mathbf{r}_{\mathbf{c}}|$ is also constant

ullet The vector ${f r}_c$ is called the Larmor radius or gyroradius

The cyclotron frequency and Larmor radius for some particular cases

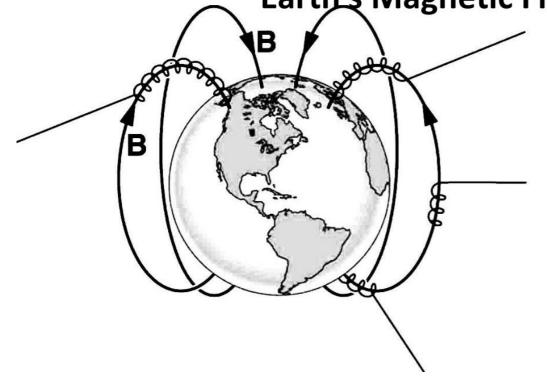
- Larmor radius: $r_c = v_\perp/\Omega_c = \frac{m v_\perp}{|q|B_0}$ One can estimate $v_\perp \approx = v_{th} = \sqrt{\frac{\overline{k_B}T}{m}}$
- Cyclotron frequency: $\Omega_c = |q|B_0/m$
 - Electron cyclotron: $f_{\rm ce} = \Omega_{\rm ce}/2\pi = 28.0 \times B_0$ (GHz)
 - Ion cyclotron: $f_{\rm ci} = \Omega_{\rm ci}/2\pi = 15.2 \times B_0$ (MHz)
- Cyclotron frequency and Larmor radius in plasmas
 - Tokamaks ($m_i=1.67\times 10^{-27}~kg;~B_0=1.5~T;~T=1\times 10^8~K$) $f_{\rm ce}=42~GHz,~f_{\rm ci}=22.8~MHz,~r_{ce}=0.15~mm~{\rm and}~r_{ci}=6.3~mm$
 - Solar corona ($m_i=1.67\times 10^{-27}~kg;~B_0=0.1~T;~T=1\times 10^6~K$) $f_{\rm ce}=2.8~GHz,~f_{\rm ci}=1.5~MHz,~r_{ce}=0.22~mm~{\rm and}~r_{ci}=9.5~mm$
- When $r_{ce}, r_{ci} \ll L$ (plasma size), the electrons/ions are said to be magnetized

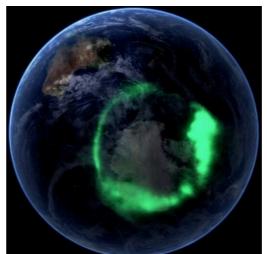
Single particle orbits: the trajectories of charged particles in an uniform and static magnetic field

- The trajectory of the particle is given by the superposition of a uniform motion along B_0 and a cyclotron motion perpendicular to B_0
 - The particle describes a helix
- The angle between \mathbf{B}_0 and the direction of the particle motion is called the pitch angle

$$\alpha = \sin^{-1}\left(\frac{v_{\perp}}{v}\right) = \tan^{-1}\left(\frac{v_{\perp}}{v_{\parallel}}\right)$$

- . Here, $v = \sqrt{v_{\parallel}^2 + v_{\perp}^2}$ is the total speed of the particle
- When $v_{\parallel}=0$ and $v_{\perp}\neq0$, then $\alpha=\pi/2$ (Circular/Cyclotron Motion)
- When $v_{\parallel} \neq 0$ and $v_{\perp} = 0$, then $\alpha = 0$ (Uniform Rectilinear Motion)





The particle orbit theory is well suited to study the trajectory of charged particles entering Earth's atmosphere

- Charged particles arriving to Earth's atmosphere are deflected towards the poles by the terrestrial magnetic field
 - The collision of these charged particles with the air molecules in the atmosphere gives rise to the so-called auroras

Magnetic moment associated with the cyclotron motion

The magnetic moment due to a circulating current I is normal to the area A

$$|\mathbf{m}| = I A$$

- The current due to cyclotron motion is

$$I = \frac{|q|}{T_c} = \frac{|q|\Omega_c}{2\pi}$$

- The area of the current loop is

$$A = \pi r_c^2$$

Therefore, the magnetic moment becomes

$$|\mathbf{m}| = \frac{|q|\Omega_c}{2\pi}\pi r_c^2 = \frac{1}{2}|q|\Omega_c r_c^2 = \frac{\frac{1}{2}mv_\perp^2}{B_0} = \frac{W_\perp}{B_0}$$

$$\mathbf{m} = -\frac{W_{\perp}}{B_0^2} \mathbf{B_0}$$

Magnetization current associated with the cyclotron motion

ullet The magnetization ${f M}$ due to the cyclotron motion of several various particles is

$$\mathbf{M} = \frac{1}{V} \sum_{i=1}^{N} \mathbf{m_j} = \frac{N \mathbf{m}}{V} = n \mathbf{m} \rightarrow \mathbf{M} = -\frac{n W_{\perp}}{B_0^2} \mathbf{B_0}$$

• From classical electrodynamics, the magnetization current is $J_M = \nabla \times M$. Writing the total current density as $J_{total} = J + J_M$, where J is the current due to free charges, the Ampère-Maxwell equation becomes

$$\nabla \times \mathbf{B} = \mu_0 \left(\mathbf{J} + \mathbf{J_M} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right) = \mu_0 \left(\mathbf{J} + \nabla \times \mathbf{M} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \right)$$

$$\nabla \times \left(\frac{\mathbf{B}}{\mu_0} - \mathbf{M}\right) = \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \quad \rightarrow \quad \nabla \times \mathbf{H} = \mathbf{J} + \epsilon_0 \frac{\partial \mathbf{E}}{\partial t} \quad \text{, where } \mathbf{B} = \mu_0 (\mathbf{H} + \mathbf{M})$$

- ullet A simple linear relation between B and H exists when M is proportional to B or H
 - E.g. $\mathbf{M} = \chi_m \mathbf{H}$, where χ_m is the magnetic susceptibility of the medium
- In a plasma, however, $M \propto 1/B$ (non-linear). Therefore, it is NOT convenient to treat a plasma as a magnetic medium

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

Single particle orbits: the trajectories of charged particles in uniform and static electric and magnetic fields

ullet For the case in which $E_{
m ext}=E_0$ and $B_{
m ext}=B_0$ are uniform and static, one has

$$m\frac{d\mathbf{v}}{dt} = q\left(\mathbf{E_0} + \mathbf{v} \times \mathbf{B_0}\right)$$

ullet Decompose v and E_0 in their parallel and perpendicular (to B_0) components

$$m\frac{d\mathbf{v}_{\parallel}}{dt} + m\frac{d\mathbf{v}_{\perp}}{dt} = q\left(\mathbf{E}_{\mathbf{0},\parallel} + \mathbf{E}_{\mathbf{0},\perp} + \mathbf{v}_{\perp} \times \mathbf{B}_{\mathbf{0}}\right)$$

- Parallel direction

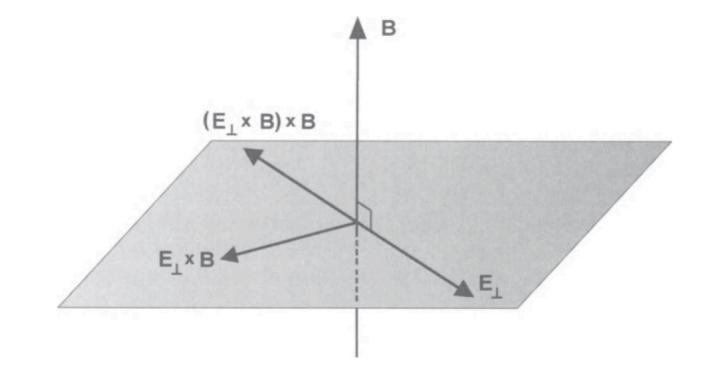
$$m\frac{d\mathbf{v}_{||}}{dt} = q\mathbf{E}_{\mathbf{0},||} \rightarrow \mathbf{v}(t) = \mathbf{v}_{||}(0) + \frac{q}{m}\mathbf{E}_{\mathbf{0},||}t \rightarrow \mathbf{r}_{||}(t) = \mathbf{r}_{||}(0) + \mathbf{v}_{||}(0)t + \frac{q}{2m}\mathbf{E}_{\mathbf{0},||}t^{2}$$

- Perpendicular direction

$$m\frac{d\mathbf{v}_{\perp}}{dt} = q\left(\mathbf{E}_{\mathbf{0},\perp} + \mathbf{v}_{\perp} \times \mathbf{B}_{\mathbf{0}}\right)$$

Single particle orbits: the trajectories of charged particles in uniform and static electric and magnetic fields

• To solve the perpendicular equation, let's change referencial: ${f v}_{\perp}(t)={f v}_{{f c}}(t)+{f v}_{{f E}{f x}{f B}}$


$$m\frac{d\mathbf{v_c}}{dt} = q\left(\mathbf{E_{0,\perp}} + \mathbf{v_c} \times \mathbf{B_0} + \mathbf{v_{ExB}} \times \mathbf{B_0}\right)$$

 \bullet Choose the constant velocity v_{ExB} as

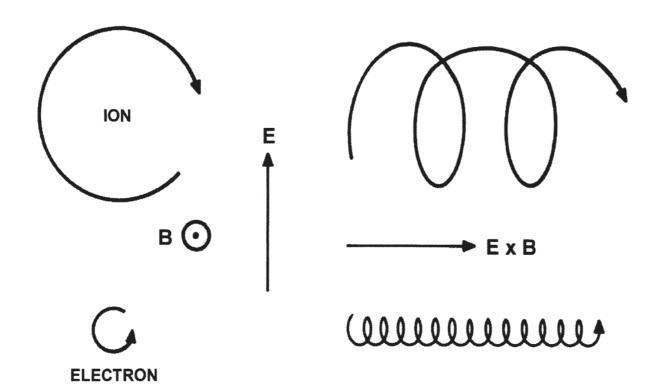
$$\mathbf{v_{ExB}} = \frac{\mathbf{E_{0,\perp} \times B_0}}{B_0^2}$$

The equation of motion becomes

$$\frac{d\mathbf{v_c}}{dt} = \frac{q}{m}\mathbf{v_c} \times \mathbf{B_0}$$

- The solution of this equation is the cyclotron motion

$$\mathbf{v}_{\mathbf{c}}(t) = \mathbf{\Omega}_{\mathbf{c}} \times \mathbf{r}_{\mathbf{c}}(t)$$



Single particle orbits: the trajectories of charged particles in uniform and static electric and magnetic fields

Therefore, the solution of this problem is

$$\mathbf{v}(t) = \mathbf{\Omega_c} \times \mathbf{r_c}(t) + \mathbf{v_{ExB}} + \mathbf{v_{\parallel}}(0) + \frac{q \mathbf{E_{0,\parallel}}}{m} t$$

- The constant velocity ${\bf v_{ExB}}={\bf E_{0,\perp}}\times{\bf B_0}/B_0^2$ is termed the ExB drift velocity
 - Note that v_{ExB} is independent of the particle mass and charge
 - Since $\mathbf{E_{0,\parallel}} \times \mathbf{B_0} = 0$, one can also write $\mathbf{v_{ExB}} = \mathbf{E_0} \times \mathbf{B_0}/B_0^2$

Drift due to an external force

ullet For the case in which, in addition to the EM fields, there is a force F acting on the particle, the equation of motion becomes

$$m\frac{d\mathbf{v}}{dt} = q\left(\mathbf{E_0} + \mathbf{v} \times \mathbf{B_0}\right) + \mathbf{F}$$

ullet The effect of the force is, in a formal sense, analogous to the effect of ${f E_0}$

$$\mathbf{v_F} = \frac{\mathbf{F} \times \mathbf{B_0}}{qB_0^2}$$

• In the case of a uniform gravitational field ($\mathbf{F} = m\mathbf{g}$), the drift velocity is

$$\mathbf{v_F} = \frac{m}{q} \frac{\mathbf{g} \times \mathbf{B_0}}{B_0^2}$$

Associated to the gravitational drift, there is an electric current density

$$\mathbf{J_g} = \frac{1}{\delta V} \sum_{j} q_j \, \mathbf{v_j} = \frac{1}{\delta V} \left(\sum_{j} m_j \right) \frac{\mathbf{g} \times \mathbf{B_0}}{B_0^2} = \rho_m \frac{\mathbf{g} \times \mathbf{B_0}}{B_0^2}$$

This current contributes to the so-called equatorial electrojet

Exercise

• What happens with the ExB drift velocity when the magnetic field tends to zero while the electric field remains finite? What is the validity of the ExB drift expression?

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

Drift due to magnetic field gradient (physical insight)

 One can expect that if the magnetic field varies over the Larmor radius, a drift velocity might arise B OUT OF PAGE

Larmor radius

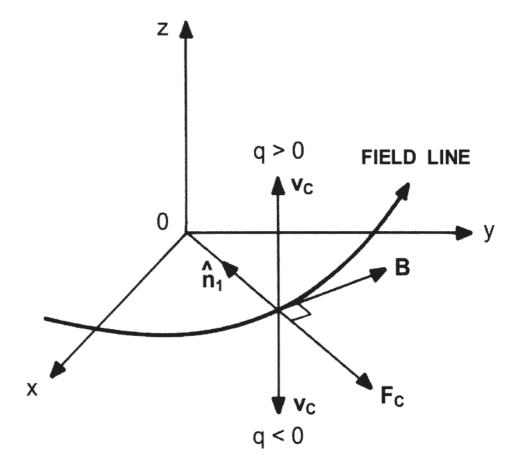
$$r_c = \frac{m \mathbf{v}_{\perp}}{|q| B_0}$$

$$\langle \mathbf{F} \rangle_{\mathrm{L}} = - |\mathbf{m}| \nabla B_0$$

• The magnetic drift associated to the gradient of the magnetic field (∇B_0) is

$$\mathbf{v}_{\nabla \mathbf{B}} = \frac{\langle \mathbf{F} \rangle_{L} \times \mathbf{B}_{\mathbf{0}}}{qB_{0}^{2}} = -\frac{|\mathbf{m}|}{q} \frac{\nabla B_{0} \times \mathbf{B}_{\mathbf{0}}}{B_{0}^{2}}$$

Drift due to magnetic field curvature (physical insight)


 One can also expect that if the magnetic field direction varies over the Larmor radius, a drift velocity might arise

Magnetic force due to the ${\bf B_0}$ -curvature

$$\langle \mathbf{F} \rangle_{\mathcal{L}} = -\frac{m v_{\parallel}^2}{R} \hat{\mathbf{n}}_1$$

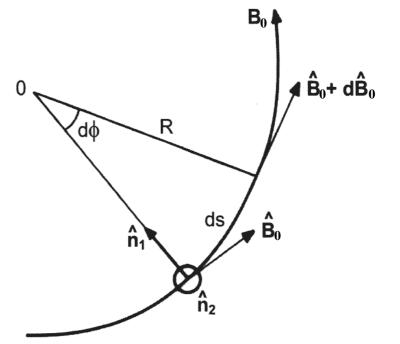
ullet Magnetic drift due to the ${\bf B_0}$ -curvature

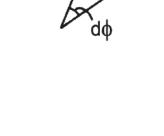
$$\mathbf{v_{curv}} = \frac{\langle \mathbf{F} \rangle_{L} \times \mathbf{B_0}}{qB_0^2} = -\frac{mv_{\parallel}^2}{Rq} \frac{\hat{\mathbf{n}}_1 \times \mathbf{B_0}}{B_0^2}$$

Drift due to magnetic field curvature (physical insight)

• One can also expect that if the magnetic field direction varies over the Larmor

radius, a drift velocity might arise


Magnetic force due to the B_0 -curvature


$$\langle \mathbf{F} \rangle_{\mathbf{L}} = -\frac{m v_{\parallel}^2}{R} \hat{\mathbf{n}}_{\mathbf{1}}$$

$$\mathbf{v_{curv}} = \frac{\langle \mathbf{F} \rangle_{L} \times \mathbf{B_0}}{qB_0^2} = -\frac{mv_{\parallel}^2}{Rq} \frac{\hat{\mathbf{n}}_1 \times \mathbf{B_0}}{B_0^2}$$

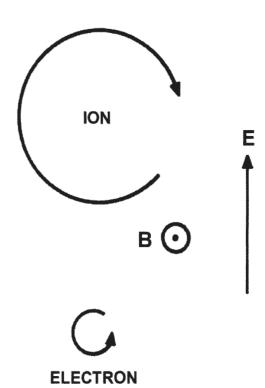
$$\mathbf{v_{curv}} = -\frac{mv_{\parallel}^2}{q} \frac{(\mathbf{B_0} \cdot \nabla)\mathbf{B_0} \times \mathbf{B_0}}{B_0^4}$$

$$ds = Rd\phi \qquad \hat{\mathbf{B}}_0 = \frac{\mathbf{B}_0}{B_0}$$

$$|d\hat{\mathbf{B}}_0| = |\hat{\mathbf{B}}_0| d\phi \qquad d\hat{\mathbf{B}}_0 = \hat{\mathbf{n}}_1 d\phi$$

$$\frac{\hat{\mathbf{n}}_1}{R} = \frac{d\hat{\mathbf{B}}_0}{ds}$$

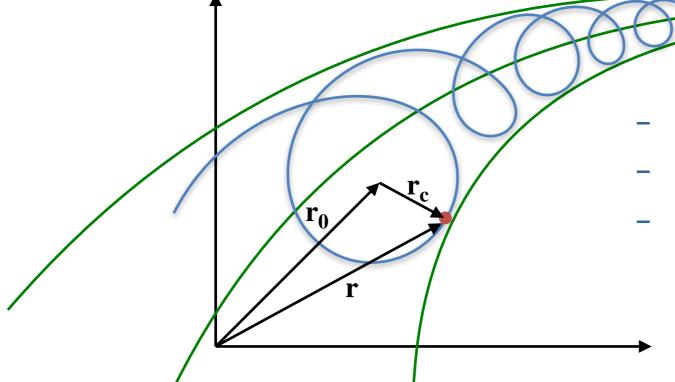
$$\frac{\hat{\mathbf{n}}_1}{R} = (\hat{\mathbf{B}}_0 \cdot \nabla) \hat{\mathbf{B}}_0 = \frac{(\mathbf{B}_0 \cdot \nabla) \mathbf{B}_0}{B_0^2}$$


- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields

Drift due to electric field non-uniformities (physical insight)

- One can also expect that if the electric field varies over the Larmor radius, a drift velocity might arise
- At first order, in which the electric field varies linearly, a charged particle executing a cyclotron motion pass by a region with stronger E_0 -field and pass by a region with weaker E_0 -field
 - On average, the first order correction cancels out
 - Therefore, $\mathbf{E_0}$ -field non-uniformities are important only as 2^{nd} order corrections

- Single particle orbits: the motion of charged particles in electromagnetic fields
 - Introduction
 - Uniform and static electric field
 - Uniform and static magnetic field
 - Uniform and static electric and magnetic fields
 - Non-uniform and static magnetic field (physical insight)
 - Non-uniform and static electric field (physical insight)
 - Non-uniform and time-dependent electric and magnetic fields



The trajectories of charged particles in non-uniform and time-dependent electric and magnetic fields

• To study the trajectory of charged particles in non-uniform and time-dependent electric and magnetic fields, let's expand the fields around a position ${\bf r}_0$, which is the guiding center position of the particle

$$\mathbf{B}(\mathbf{r},t) = \mathbf{B}(\mathbf{r_0},t) + \left[(\mathbf{r} - \mathbf{r_0}) \cdot \nabla \right] \mathbf{B}(\mathbf{r},t) \Big|_{\mathbf{r} = \mathbf{r_0}} + O^2$$

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r_0},t) + \left[(\mathbf{r} - \mathbf{r_0}) \cdot \nabla \right] \mathbf{E}(\mathbf{r},t) \Big|_{\mathbf{r}=\mathbf{r_0}} + \frac{1}{2} \left[(\mathbf{r} - \mathbf{r_0}) \cdot \nabla \right]^2 \mathbf{E}(\mathbf{r},t) \Big|_{\mathbf{r}=\mathbf{r_0}} + O^3$$

- $\mathbf{r_c}$ is the Larmor/cyclotron radius
- **r** is the instantaneous particle position
- ${f r_0}$ is the guiding center position

$$\mathbf{r}(t) = \mathbf{r_0}(t) + \mathbf{r_c}(t)$$

The trajectories of charged particles in non-uniform and time-dependent electric and magnetic fields

• To study the trajectory of charged particles in non-uniform and time-dependent electric and magnetic fields, let's expand the fields around a position ${\bf r}_0$, which is the guiding center position of the particle

$$\mathbf{B}(\mathbf{r},t) = \mathbf{B}(\mathbf{r_0},t) + \left[(\mathbf{r} - \mathbf{r_0}) \cdot \nabla \right] \mathbf{B}(\mathbf{r},t) \Big|_{\mathbf{r} = \mathbf{r_0}} + O^2$$

$$\mathbf{E}(\mathbf{r},t) = \mathbf{E}(\mathbf{r}_0,t) + \left[(\mathbf{r} - \mathbf{r}_0) \cdot \nabla \right] \mathbf{E}(\mathbf{r},t) \Big|_{\mathbf{r}=\mathbf{r}_0} + \frac{1}{2} \left[(\mathbf{r} - \mathbf{r}_0) \cdot \nabla \right]^2 \mathbf{E}(\mathbf{r},t) \Big|_{\mathbf{r}=\mathbf{r}_0} + O^3$$

- Using the definition of the instantaneous particle position: $\mathbf{r}(t) = \epsilon^0 \mathbf{r_0}(t) + \epsilon^1 \mathbf{r_c}(t)$
 - Here, ϵ is a parameter introduced to explicit the order of the expansion
 - Therefore, the fields become (in a simplified notation)

$$\mathbf{B}(\mathbf{r}, t) = \epsilon^{0} \mathbf{B_{0}} + \epsilon^{1} \left(\mathbf{r_{c}} \cdot \nabla \right) \mathbf{B_{0}}$$

$$\mathbf{E}(\mathbf{r}, t) = \epsilon^{0} \mathbf{E_{0}} + \epsilon^{1} \left(\mathbf{r_{c}} \cdot \nabla \right) \mathbf{E_{0}} + \frac{\epsilon^{2}}{2} \left(\mathbf{r_{c}} \cdot \nabla \right)^{2} \mathbf{E_{0}}$$

- Note that $\mathbf{E_0} = \mathbf{E}(\mathbf{r_0},t)$ and $\mathbf{B_0} = \mathbf{B}(\mathbf{r_0},t)$ still depend on time

The trajectories of charged particles in non-uniform and time-dependent electric and magnetic fields

 Let's now write the particle velocity v making the zeroth, first and second order contributions explicit

$$\mathbf{v}(t) = \epsilon^0 \mathbf{v_0}(t) + \epsilon^1 \mathbf{w_1} + \epsilon^2 \mathbf{w_2}$$

- Note that the first and second corrections are assumed to be constant
- Combining all these assumptions with the charged particle equation of motion:

$$\epsilon^0 \frac{d\mathbf{v_0}}{dt} = \frac{q}{m} \left[\mathbf{E} + \left(\epsilon^0 \mathbf{v_0}(t) + \epsilon^1 \mathbf{w_1} + \epsilon^2 \mathbf{w_2} \right) \times \mathbf{B} \right]$$

$$\epsilon^{0} \frac{d\mathbf{v_{0}}}{dt} = \frac{q}{m} \left[\epsilon^{0} \mathbf{E_{0}} + \epsilon^{1} \left(\mathbf{r_{c}} \cdot \nabla \right) \mathbf{E_{0}} + \frac{\epsilon^{2}}{2} \left(\mathbf{r_{c}} \cdot \nabla \right)^{2} \mathbf{E_{0}} \right] +$$

$$+\frac{q}{m}\left[\left(\epsilon^{0}\mathbf{v_{0}}(t)+\epsilon^{1}\mathbf{w_{1}}+\epsilon^{2}\mathbf{w_{2}}\right)\times\left(\epsilon^{0}\mathbf{B_{0}}+\epsilon^{1}\left(\mathbf{r_{c}}\cdot\nabla\right)\mathbf{B_{0}}\right)\right]$$

References

- The single particle orbit theory
 - Bittencourt: Ch. 2, 3 and 4

