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• What are plasmas? 
- Plasmas are ionized gases whose atoms have been dissociated (not 

necessarily all of them) into ions and electrons 

• All ionized gases are considered plasmas? 
- No, plasmas are ionized gases that exhibit collective effects 

• How plasmas are produced and maintained? 
- Plasmas are produced by the ionization of atoms, which can happens 

through a variety of collisional processes 
- To maintain a steady state plasma, particles and/or energy must be supplied 

constantly

This course aims at providing a broad view about the various 
phenomena occurring in plasmas
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• How can we describe/model the behavior of plasmas? 
- From first principles: following the trajectory of each individual particle 
- From a statistical approach: kinetic theory 
- Assuming the plasma is a continuous medium: fluid model 

• Why is it important to study plasma physics? 
- Plasmas are used in an enormous number of technological applications 
- Important astrophysical phenomena for human life: solar thunderstorms 
- Energy production through thermonuclear fusion: tokamaks 

• How stable are plasmas in tokamaks? 
- Sometimes, plasmas can find a path towards a lower energy state 
- Plasma instabilities are the result of plasmas accessing a lower energy state

This course aims at providing a broad view about the various 
phenomena occurring in plasmas



G.P. Canal, 23 March 2021

• Introduction about the course 

• Theoretical descriptions of plasma phenomena 

• Review of basic concepts in kinetic theory of gases 

• Particle interactions in plasmas 
- Collision cross section 
- The Rutherford cross section

PGF5112 - Plasma Physics I



G.P. Canal, 23 March 2021

• Motion equation of a charged particle of especies  in an electromagnetic field: 

• Maxwell’s equations: 

• Constitutive relations: 

α

The particle orbit theory: a first principles plasma model

mα
dvα

dt
= Fα = qα (E + vα × B)

drα

dt
= vα

∇ ⋅ E =
ρ
ϵ0

∇ ⋅ B = 0 ∇ × B = μ0J + μ0ϵ0
∂E
∂t

∇ × E = −
∂B
∂t

ρ = ρext + ρplasma = ρext + ∑
α

qαδ[r − rα(t)]

J = Jext + Jplasma = Jext + ∑
α

qαvα(t)δ[r − rα(t)]

E = Eext + Eplasma

B = Bext + Bplasma
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• The particle orbit theory provides a well-defined self-consistent model to 
describe plasmas, however, this model has limitations in practice 
- The large number of particles (~1020 m-3) makes this model prohibitive 
- The amount of information contained in this model is unnecessarily large:    

(# of particles)  x  (3 positions)  x  (3 velocities)  x  (# of temporal steps) 

• To simplify the model, the response/reaction of charged particles to EM fields 
from other charged particles is neglected (  and ) 

- The charged particle trajectory is, therefore, determined by ONLY the 
externally applied EM fields 

- This model neglects collective effects (not well suited for plasmas)

Eext > > Eplasma Bext > > Bplasma

mα
dvα

dt
= qα (Eext + vα × Bext)

drα

dt
= vα

The particle orbit theory: a first principles plasma model

E = Eext + Eplasma

B = Bext + Bplasma
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• Charged particles arriving to Earth’s atmosphere are deflected towards the 
poles by the terrestrial magnetic field 
- The collision of these charged particles with the air molecules in the 

atmosphere gives rise to the so-called auroras

The particle orbit theory is well suited to study the trajectory of charged 
particles entering Earth’s atmosphere
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• In kinetic theory, all the information of the system is contained in the 
distribution function,                       , which is defined for each particle species 

• The evolution of the system is given by the so-called Boltzmann equation: 

• Maxwell’s equations: 

• Constitutive relations: 

Due to its large number of particles, plasmas can also be described by 
means of a statistical approach: the kinetic theory of plasmas

∂fα
∂t

+ v ⋅ ∇fα +
qα

mα
(E + v × B) ⋅ ∇v fα = ∑

β

Ccoll[ fα, fβ]

∇ ⋅ E =
ρ
ϵ0

∇ ⋅ B = 0 ∇ × B = μ0J + μ0ϵ0
∂E
∂t

∇ × E = −
∂B
∂t

ρ = ρext + ρplasma = ρext + ∑
α

qα ∫v
fα(r, v, t)dv

J = Jext + Jplasma = Jext + ∑
α

qα ∫v
vfα(r, v, t)dv

fα = fα(r, v, t)

nα(r, t) = ∫v
fα(r, v, t) dv

uα(r, t) =
1

nα(r, t) ∫v
v fα(r, v, t) dv

Particle density

Mean velocity
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Depending of the conditions, each particle species in a plasma can be 
treated as a separate continuous medium: the multi-fluid model

• Plasma fluid transport equations can be derived for each species by taking 
the moments of the Boltzmann equation

∂ρmα

∂t
+ ∇ ⋅ (ρmαuα) = Sα

ρmα [ ∂uα

∂t
+ (uα ⋅ ∇) uα] = nαqα (E + uα × B) − ∇ ⋅ Pα + Aα − uα Sα

∇ × E = −
∂B
∂t

∇ × B = μ0J + μ0ϵ0
∂E
∂t

3
2 [ ∂pα

∂t
+ uα ⋅ ∇pα] +

3 pα

2 (∇ ⋅ uα) + (Pα ⋅ ∇) ⋅ uα + ∇ ⋅ qα = Mα − uα ⋅ Aα +
1
2

u2
α Sα

Mass conservation

Momentum conservation

Energy conservation

Maxwell’s equations

J = ∑
α

nα qα uα
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Depending of the conditions, the whole plasma can be treated as one 
continuous medium: the single-fluid model

• The behavior of the plasma as a whole can be determined by adding the 
contributions of the various particle species in the plasma

∂ρm

∂t
+ ∇ ⋅ (ρmu) = 0 ρm [ ∂u

∂t
+ (u ⋅ ∇) u] = ρE + J × B − ∇ ⋅ P

∇ × E = −
∂B
∂t

∇ × B = μ0J + μ0ϵ0
∂E
∂t

3
2 [ ∂p

∂t
+ u ⋅ ∇p] +

3 p
2

(∇ ⋅ u) + (P ⋅ ∇) ⋅ u + ∇ ⋅ q = J ⋅ E − u ⋅ (J × B) − ρu ⋅ E

Mass conservation Momentum conservation

Energy conservation

Maxwell’s equations

∂J
∂t

+ ∇ ⋅ (uJ′ + Ju) −
e

me
∇ ⋅ Pe =

ne2

me
(E + u × B) −

e
me

J × B − νeiJ

Generalized Ohm’s law
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The magnetohydrodynamic model

• Within the single-fluid approach, the magnetohydrodynamic (MHD) model 
focuses on large (plasma size) scale and (relatively) low frequency phenomena  
- In the MHD model, the information about the plasma is contained in

∂ρm

∂t
+ ∇ ⋅ (ρmu) = 0

ρm [ ∂u
∂t

+ (u ⋅ ∇) u] = J × B − ∇p − ∇ ⋅ Π

p = ( kBT
mi ) ρm

∇ × E = −
∂B
∂t

∇ × B = μ0J

E + u × B = ηJ

(Mass conservation)

(Momentum conservation)

(Energy conservation)

(Faraday’s law)

(Ampère’s law)

(Ohm’s law)

ρm, u e p
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• Distribution function 
- Number of particles, per unit of volume, with velocity between  and  
-               has units of 

v v + dv

Review of basic concepts in the kinetic theory of gases

d6N = f (r, v, t) dr dv

vx

f (r0, vx, t0)

N(t) = ∫r ∫v
d6N dr dv

f (r, v, t) s3/m6

d6N = f (r, v, t) d3v d3x

N(t) = ∫r ∫v
f (r, v, t) dr dv
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• Particle density 
- Number of particles per unit of volume (independent of their velocity) within 

a volume  around  

• Mean velocity 
- Average velocity of the particles within a volume  around  

• Mean energy 
- Average energy of the particles within a volume  around 

d3x r

d3x r

d3x r

n (r, t) = ∫ ∫ ∫ f (r, v, t) dv

u (r, t) =
∫ ∫ ∫ v f (r, v, t) dv

n (r, t)

K (r, t) =
∫ ∫ ∫ 1

2 mv2 f (r, v, t) dv

n (r, t)

Review of basic concepts in the kinetic theory of gases



G.P. Canal, 23 March 2021

• In the kinetic theory of gases, one can show (H-theorem) that the velocity 
distribution function of the particles tends to the Maxwell-Boltzmann distribution 
when the gas reaches thermodynamic equilibrium through collisions 

fM (v) = n ( m
2πkBT )

3/2

exp (−
mv2

2kBT ) v2 = v2
x + v2

y + v2
z

Review of basic concepts in the kinetic theory of gases
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• In plasmas, however, the general form of the H-theorem does not hold 
- There are frequent situations in what the electrons distribution function 

evolves away from the Maxwell-Boltzmann distribution (for example, a 
Druyvesteyn distribution) 

- The shape of the distribution function has an impact on the reaction rates in 
what electrons play a significant role

Review of basic concepts in the kinetic theory of gases
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• Mean velocity in a Maxwell-Boltzmann distribution 

• In a Maxwell-Boltzmann distribution, the mean velocities ⟨vx⟩ = ⟨vy⟩ = ⟨vz⟩ = 0

⟨vx⟩ = ( m
2πkBT )

3/2

∫
∞

−∞
vx exp (−

mv2
x

2kBT ) dvx

0

∫
∞

−∞
exp (−

mv2
y

2kBT ) dvy

2πkBT
m

∫
∞

−∞
exp (−

mv2
z

2kBT ) dvz

2πkBT
m

⟨vx⟩ =
1
n ∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
vx n ( m

2πkBT )
3/2

exp −
m (v2

x + v2
y + v2

z )
2kBT

dvx dvy dvz

Review of basic concepts in the kinetic theory of gases
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• Mean energy in a Maxwell-Boltzmann distribution:  

• In a Maxwell-Boltzmann distribution, the mean velocities 

• This result is consistent with the theorem of equipartition of energy:

⟨v2
x ⟩ = ( m

2πkBT )
3/2

∫
∞

−∞
v2

x exp (−
mv2

x

2kBT ) dvx

π
2 ( 2kBT

m )
3/2

∫
∞

−∞
exp (−

mv2
y

2kBT ) dvy

2πkBT
m

∫
∞

−∞
exp (−

mv2
z

2kBT ) dvz

2πkBT
m

⟨v2
x ⟩ =

1
n ∫

∞

−∞ ∫
∞

−∞ ∫
∞

−∞
v2

x n ( m
2πkBT )

3/2

exp −
m (v2

x + v2
y + v2

z )
2kBT

dvx dvy dvz

Review of basic concepts in the kinetic theory of gases

⟨E⟩ =
1
2

m⟨v2⟩ =
1
2

m (⟨v2
x ⟩ + ⟨v2

y ⟩ + ⟨v2
z ⟩)

1
2

m⟨v2
j ⟩ =

1
2

kBT

⟨v2
x ⟩ = ⟨v2

y ⟩ = ⟨v2
z ⟩ =

kBT
m

⟨E⟩ =
3
2

kBT
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• The cross section of a certain collision process corresponds to the effective 
area of the target particle assuming that the projectile is a point particle 

• As an example, consider the collision between two neutrals (or between a 
neutral and a charged particle) 

• Considering  R1 = R2 = a0 = 0.5 × 10−10 m

The most basic concept of cross section

σt = πb2
0

σt = π (R1 + R2)2

σt = 0.8 × 10−20 m2
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• The cross section of a certain collision process corresponds to the effective 
area of the target particle assuming that the projectile is a point particle 

• As an example, consider the collision between two neutrals (or between a 
neutral and a charged particle) 

• Considering  R1 = R2 = a0 = 0.5 × 10−10 m

For energies lower than 1 eV, a quantic, resonant 
effect causes a decrease in the cross section 

(The Ramsauer effect)

Argon Plasma

The most basic concept of cross section

σt = πb2
0

σt = π (R1 + R2)2

σt = 0.8 × 10−20 m2



G.P. Canal, 23 March 2021

• The precise definition of a cross section 
accounts for the scattering of an 
incoming particle as follows 
-  is the particle flux (#/m2/s) 
-  is the differential cross section 
-  is the impact parameter 
-  is the # of particles scattered, per 

unit time, into  

• Since , one finds that

Γ
σ(χ, ϵ)
b
·N

dΩ

dΩ = sin(χ) dχ dϵ

The precise concept of cross section

dN
dt

= Γ dσt = Γ σ(χ, ϵ) dΩ = Γ b dϵ db

σ(χ, ϵ) =
b

sin(χ)
db
dχ
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• When an electron (q=-e) approaches a positive ion (q=Ze) by a distance , it 
experiences an attractive force (the Coulomb force) 

• To have a substantial change in the trajectory of the electron, the energy of the 
interaction must be of the same order of the electron’s kinetic energy

b

The Rutherford cross section corresponds to the elastic scattering of 
charged particles due to the Coulomb interaction

Fr = −
Ze2

4πϵ0b2

Ze2

4πϵ0b
≈

1
2

mv2 b ≈
2Ze2

4πϵ0v2
σ ≈ πb2 ≈

4πZ2e4

(4πϵ0)2v4
∝

1
v4

This dependence has important consequences on plasma resistivity and diffusion: 
Collisions in plasmas become less frequent at higher velocities/temperatures
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• Using polar coordinates, centered on an ion scattering center, and using energy 
and momentum conservation, show that 

-                   is the reduced mass 

-  is the relative velocity g = v1 − v

Exercise

tan ( χ
2 ) =

Ze2

4πϵ0μg2b

(Eq. 20.4.13 from Bittencourt’s book)

μ =
m m1

m + m1
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