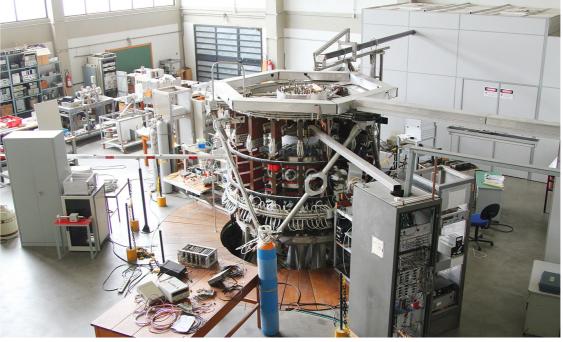
Ministrado por Prof. Gustavo Paganini Canal Laboratório de Física de Plasmas Departamento de Física Aplicada Instituto de Física

Curso de graduação ministrado remotamente e oferecido pelo Instituto de Física da Universidade de São Paulo

Universidade de São Paulo



e-mail: canal@if.usp.br

São Paulo - SP, 12 de Abril de 2021

A ocorrência de plasmas na natureza

- O conceito de temperatura
- O grau de ionização de um gás ou plasma
- A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

A ocorrência de plasmas na natureza

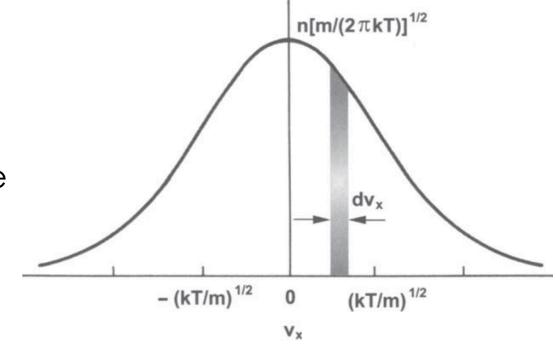
- O conceito de temperatura
- O grau de ionização de um gás ou plasma
- A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

O conceito de temperatura

- Antes de prosseguirmos, é bom relembrar alguns conceitos relacionados à definição do que é temperatura
- Um gás neutro em equilíbrio termodinâmico possui partículas com vários valores de velocidade
 - A distribuição mais provável de velocidades dessas partículas (de massa m) é a chamada distribuição Maxweliana (em 1D):

$$f(v_x) = n_0 \left(\frac{m}{2\pi k_B T}\right)^{1/2} \exp\left(-\frac{mv_x^2}{2k_B T}\right)$$

- Aqui, $k_B=1.38\times 10^{-23}$ J/K é a constante de Boltzmann, T é a temperatura do gás e n_0 é a densidade de partículas do gás



O conceito de temperatura

Densidade de partículas

- Número de partículas por unidade de volume dentro de um elemento de volume $dV = d^3x$ em torno de uma posição ${\bf r}$

$$n(\mathbf{r},t) = \iiint f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}$$

Velocidade média

- Velocidade média das partículas dentro de um elemento de volume $dV = d^3x$ em torno de uma posição ${\bf r}$

$$\mathbf{u}\left(\mathbf{r},t\right) = \frac{\int \int \int \mathbf{v} f\left(\mathbf{r},\mathbf{v},t\right) d\mathbf{v}}{n\left(\mathbf{r},t\right)}$$

Energia cinética média

- Velocidade média das partículas dentro de um elemento de volume $dV = d^3x$ em torno de uma posição ${\bf r}$

$$\langle E \rangle(\mathbf{r}, t) = \frac{\int \int \int \frac{1}{2} m v^2 f(\mathbf{r}, \mathbf{v}, t) d\mathbf{v}}{n(\mathbf{r}, t)}$$

O conceito de temperatura

 Exercício: mostre que a densidade média e a velocidade média das partículas, calculada usando uma distribuição Maxweliana, são

$$n = \int_{-\infty}^{\infty} f(v_x) dv_x = n_0 \qquad \langle v_x^2 \rangle = \frac{1}{n_0} \int_{-\infty}^{\infty} v_x^2 f(v_x) dv_x = \frac{k_B T}{m}$$

Este resultado é consistente com o teorema de equipartição da energia

$$\frac{1}{2}m\langle v_j^2\rangle = \frac{1}{2}k_BT \qquad \langle E\rangle = \frac{3}{2}k_BT$$

- Since $\langle E \rangle$ e T estão intimamente ligados, é comum em física de plasmas expressar a temperatura do gás (ou plasma) em unidades de energia
 - A temperatura é expressa em elétron-volt (eV), $k_BT = 1.6 \times 10^{-19} J = 1 \, eV$
 - Dessa forma, $T = (1.6 \times 10^{-19})/(1.38 \times 10^{-23}) = 11.600 K = 1 eV$
 - Em plasmas, partículas de diferente tipo podem ter diferentes valores de temperatura. Por exemplo: $T_e \neq T_i$
 - Em plasmas magnetizados, a temperatura numa direção pode ser diferente da temperatura nas outras direções. Por exemplo: $T_{\parallel} \neq T_{\perp}$

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

O grau de ionização de um gás ou um plasma

- Da mecânica estatística, é possível determinar o grau de ionização de um gás (ou plasma) em equilíbrio termodinâmico à uma temperatura T
- É interessante que, como veremos, é possível atingir um grau de ionização considerável mesmo quando a energia térmica média das partículas está bem abaixo na energia de ionização dos átomos do gás
- Da mecânica estatística, temos que

$$\frac{n_a}{n_b} = \frac{g_a}{g_b} \exp \left[-\frac{\left(U_a - U_b \right)}{k_B T} \right]$$

- Aqui, g_a e g_b são os pesos estatísticos (degenerescência) associada às energias U_a e U_b

O grau de ionização de um gás ou um plasma

• Para o caso particular de um sistema com apenas 2 níveis de energia, a fração de partículas que estão no estado de mais alta energia (U_a) e

$$\alpha = \frac{n_a}{n_a + n_b} = \frac{n_a}{n_b} \left(\frac{n_a}{n_b} + 1\right)^{-1}$$

Esta expressão pode ser escrita como

$$\alpha = \frac{\left(g_a/g_b\right) \exp\left(-U/k_BT\right)}{\left(g_a/g_b\right) \exp\left(-U/k_BT\right) + 1}$$

Element	U(eV)
Helium (He)	24.59
Argon (A)	15.76
Nitrogen (N)	14.53
Oxygen (O)	13.62
Hydrogen (H)	13.60
Mercury (Hg)	10.44
Iron (Fe)	7.87
Sodium (Na)	5.14
Potassium (K)	4.34
Cesium (Cs)	3.89

- Caso de ionização: estado a corresponde ao par elétron-ion livres, estado b corresponde ao átomo neutro, e $U=U_a-U_b$ é a energia de ionização
 - A temperatura na qual lpha=0.5 é igual à

$$(g_a/g_b) \exp(-U/k_B T_{1/2}) = 1 \rightarrow T_{1/2} = \frac{U}{k_B \ln(g_a/g_b)}$$

O grau de ionização de um gás ou um plasma

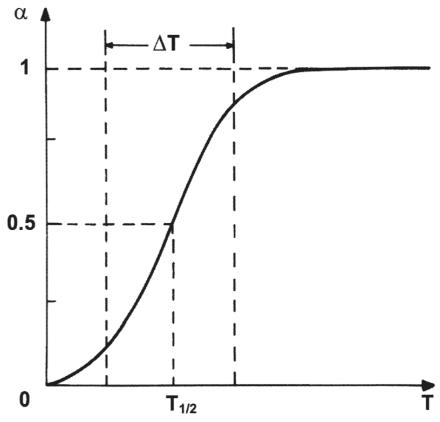
• A intervalo no qual α varia de aproximadamente 0 até aproximadamente 1 é definido como sendo

$$\left. \frac{d\alpha}{dT} \right|_{T_{1/2}} = \frac{1}{\Delta T}$$

Portanto,

$$\Delta T = \frac{4T_{1/2}}{k_B \ln \left(g_a/g_b\right)} = \frac{4U}{\left[k_B \ln \left(g_a/g_b\right)\right]^2}$$

• Como $g_a\gg g_b$, a curva $\alpha(T)$ parece com uma função degrau centrada em $T_{1/2}$



• Da mecânica quântica, pode-se estimar que (h é a constante de Planck)

$$\frac{g_a}{g_b} = \frac{1}{\lambda_{th}^3 n_i} = \left(\frac{2\pi m_e k_B T}{h^2}\right)^{3/2} \frac{1}{n_i} = 2.405 \times 10^{21} \frac{T^{3/2}}{n_i}$$

(λ_{th} é o comprimento de onda térmico de De Broglie do elétron)

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

A equação de Saha

• Substituindo valores, temos que (T em Kelvin e n_i em m⁻³):

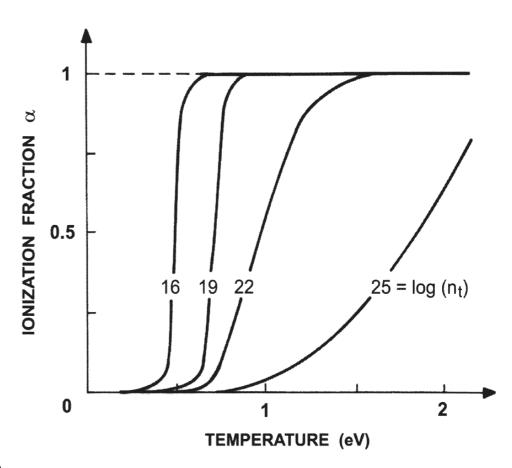
$$\frac{g_a}{g_b} = \left(\frac{2\pi m_e k_B T}{h^2}\right)^{3/2} \frac{1}{n_i} = 2.405 \times 10^{21} \frac{T^{3/2}}{n_i}$$

Usando este resultado, temos que

$$\frac{n_i}{n_n} = 2.405 \times 10^{21} \frac{T^{3/2}}{n_i} \exp\left(-\frac{U}{k_B T}\right)$$

- Esta equação é a equação de Saha
- Como 1 eV = 11.600 K, a equação de Saha pode ser reescrita como (T em eV e n_i em m⁻³)

$$\frac{n_i}{n_n} = 3.00 \times 10^7 \frac{T^{3/2}}{n_i} \exp\left(-\frac{U}{T}\right)$$



Grau de ionização de alguns gases

Ar à temperatura ambiente

$$n_n = 3 \times 10^{25} \ m^{-3} \ (1 \ \text{Atm})$$
 $T = 300 \ K$ $U = 14.5 \ eV \ (N)$

$$T = 300 \ K$$

$$U = 14.5 \ eV \ (N)$$

$$\frac{n_i}{n_n} = 2 \times 10^{-122} \ll 1$$

Tokamak

$$n = n_e = n_i = 1 \times 10^{20} \ m^{-3}$$
 $T = 1 \times 10^8 \ K$ $U = 13.6 \ eV (H)$

$$T = 1 \times 10^8 \ K$$

$$U = 13.6 \ eV (H)$$

$$\frac{n_i}{n_n} = 2.4 \times 10^{13} \gg 1$$

Tocha de plasma

$$n_n = 3 \times 10^{25} \ m^{-3} \ (1 \ \text{Atm})$$
 $T = 1 \times 10^4 \ K$ $U = 13.6 \ eV \ (H)$

$$T = 1 \times 10^4 \ K$$

$$U = 13.6 \ eV \ (H)$$

$$\frac{n_i}{n_n} = 3 \times 10^{-4} \ll 1$$

Grau de ionização de alguns gases

Coroa solar

$$n = 1 \times 10^{12} \ m^{-3}$$
 $T = 1 \times 10^6 \ K$ $U = 13.6 \ eV (H)$ $\frac{n_i}{n} = 2.4 \times 10^{18} \gg 1$ (Excelente plasma!!!!!)

Núcleo do sol

$$n = n_e = n_i = 1 \times 10^{32} \ m^{-3}$$
 $T = 1.6 \times 10^7 \ K$ $U = 13.6 \ eV (H)$

$$\frac{n_i}{n_n} = 1.5$$
 (O núcleo do sol não está totalmente ionizado.

Ainda assim, reações de fusão nuclear acontecem!!!!!!)

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

O que é um plasma?

O que é um plasma?

 Plasmas são gases ionizados cujos átomos foram dissociados (não necessariamente todos) em íons e elétrons

Todos os gases ionizados são considerado plasmas?

Não, plasmas são gases ionizados que exibem efeitos coletivos

Como plasmas são produzidos e mantidos?

- Plasmas são produzidos pela ionização de átomos neutros, o que pode acontecer por meio de uma grande variedade de processos
- Para manter um plasma em estado estacionário, as partículas e/ou energia, devem ser fornecidas constantemente

O que é um plasma?

Como podemos descrever/modelar o comportamento de plasmas?

- A partir de primeiros princípios: seguindo a trajetória de cada partícula
- A partir de uma abordagem estatística: teoria cinética
- Assumindo que o plasma é um meio contínuo: modelo de fluido

Por que é importante estudar a física de plasmas?

- Plasmas são usados em um grande número de aplicações tecnológicas
- Fenômenos astrofísicos de interesse à vida humana: tempestades solares
- Produção de energia por fusão termonuclear: tokamaks

Quão estáveis são os plasmas gerados em laboratório?

- Às vezes, os plasmas podem encontrar um caminho para acessar um estado de mais baixa energia
- Instabilidades de plasmas s\u00e3o o resultado de plasmas acessando um estado de menor energia

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

Características macroscópicas de plasmas: quasi-neutralidade

Plasmas tem a tendência natural de permanecer eletricamente neutro

$$\sum_{j} Z_{j} n_{j} = n_{e}$$
 (Condição de neutralidade elétrica)

- Se houver qualquer desequilíbrio de cargas em uma região do plasma:
 - Um campo elétrico se estabelece dentro e ao redor dessa região
 - Elétrons externos à essa região são acelerados na direção dessa região
 - Em um curto intervalo de tempo, a quasi-neutralidade é restaurada

Carga elétrica resultante devido ao desequilíbrio de cargas: $Q = \frac{4}{3}\pi a^3(n_i - n_e)e$

Potencial elétrico na superfície da região esférica: $\phi = \frac{1}{4\pi\epsilon_0} \frac{Q}{a} = \frac{e(n_i - n_e)}{3\epsilon_0} a^2$

Características macroscópicas de plasmas: quasi-neutralidade

• Para um plasma com n_{i0} = n_{e0} = 1x10²⁰ m⁻³ e um desequilíbrio de carga $\delta n_i/n_{i0} = (n_i-n_{i0})/n_{i0} = 1~\%$ dentro de uma região esférica de raio 1 mm:

$$Q = \frac{4}{3}\pi a^3(n_i - n_e)e = \frac{4}{3}\pi a^3(n_{i0} + \delta n_i - n_{e0})e = \frac{4\pi e n_{i0}}{3}\frac{\delta n_i}{n_{i0}}a^3 = 6.7 \times 10^{-10} C$$

$$\phi = \frac{1}{4\pi\epsilon_0} \frac{Q}{a} = \frac{e(n_i - n_e)}{3\epsilon_0} a^2 = 6.0 \text{ kV} \qquad E_r = \frac{1}{4\pi\epsilon_0} \frac{Q}{a^2} = \frac{e(n_i - n_e)}{3\epsilon_0} a = 6.0 \text{ MV/m}$$

$$|\mathbf{F}| = |e\mathbf{E}| = 1.6 \times 10^{-19} \times 6.0 \times 10^6 \approx 9.6 \times 10^{-13} N$$

Essa força não perece tão forte assim!?!?!?!

$$|\mathbf{a}| = \frac{|\mathbf{F}|}{m_e} = \frac{|e\mathbf{E}|}{m_e} = \frac{1.6 \times 10^{-19} \times 6.0 \times 10^6}{9.11 \times 10^{-31}} \approx 1 \times 10^{18} \ m/s^2$$

No entanto, a aceleração é colossal!!!!!!

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

 Desequilíbrios de carga podem ocorrer de forma natural em plasmas apenas em uma pequena região cujo tamanho típico é da ordem do chamado comprimento de Debye

$$\lambda_D = \sqrt{\frac{\epsilon_0 k_B T}{n_0 e^2}}$$

- O comprimento de Debye é a distância típica em que a energia potencial elétrica da partícula se equilibra com sua energia térmica
 - A energia potencial elétrica tende a restaurar a quase neutralidade
 - A energia térmica das partículas tende a destruir a quasi-neutralidade

- Vamos isolar uma carga elétrica de um plasma (globalmente neutro) e estudar como esta carga interage com as outras cargas ao seu redor
- Da equação de Poisson:

$$\nabla^2 \phi = -\frac{\rho}{\epsilon_0} = -\frac{\left[Z_i e \, n_i(\mathbf{r}) - e \, n_e(\mathbf{r})\right]}{\epsilon_0} - \frac{q_t}{\epsilon_0} \delta(\mathbf{r})$$

Da equação de Boltzmann (ver Bittencourt cap. 7, seção 5)

$$n_j(\mathbf{r}) = n_{j0} \exp \left[-\frac{U(\mathbf{r})}{k_B T_j} \right] = n_{j0} \exp \left[-\frac{q_j \phi(\mathbf{r})}{k_B T_j} \right]$$

• Suponhamos que $n_e(\mathbf{r} \to \infty) = n_i(\mathbf{r} \to \infty) = n_0$

$$\nabla^2 \phi + \frac{e n_0}{\epsilon_0} \left[Z_i \exp\left(-\frac{Z_i e \phi}{k_B T_i}\right) - \exp\left(\frac{e \phi}{k_B T_e}\right) \right] = -\frac{q_t}{\epsilon_0} \delta(\mathbf{r})$$

• Vamos supor que o potencial eletrostático perturbador, devido à carga teste, seja fraco, de modo que a energia potencial eletrostática das partículas seja muito menor do que sua energia térmica média, ou seja, $q_i\phi(r)\ll k_BT_i$:

$$\exp\left(-\frac{q_j \phi}{k_B T_j}\right) \approx 1 - \frac{q_j \phi}{k_B T_j}$$

(Comprimento de Debye)

$$\begin{array}{ll} \bullet \ \ \mathsf{Portanto}, \nabla^2 \phi - \frac{\phi}{\lambda_D^2} = -\frac{q_t}{\epsilon_0} \delta(\mathbf{r}) \, , \, \mathsf{with} \quad \lambda_D = \sqrt{\frac{\epsilon_0 k_B T_{\mathrm{eff}}}{n_0 e^2}} \qquad \mathsf{or} \qquad \quad \lambda_D = 7433 \, \sqrt{\frac{T_{\mathrm{eff}}}{n_0}} \\ T_{\mathrm{eff}} = \frac{T_e \, T_i}{(Z_i T_e + T_i)} \, \mathsf{em} \, \, \mathsf{eV} \\ n_0 \, \mathsf{em} \, \, \mathsf{m}^{-3} \end{array}$$

Comprimento de Debye para alguns casos particulares

- Tokamaks (
$$n_0 = 1 \times 10^{20}~m^{-3}$$
; $T_e = T_i = 1 \times 10^8~K$): $\lambda_D = 5 \times 10^{-5}~m$

- Solar corona (
$$n_0 = 1 \times 10^{12} \ m^{-3}$$
; $T_e = T_i = 1 \times 10^6 \ K$): $\lambda_D = 0.05 \ m$

• Em coordenadas esféricas, temos que

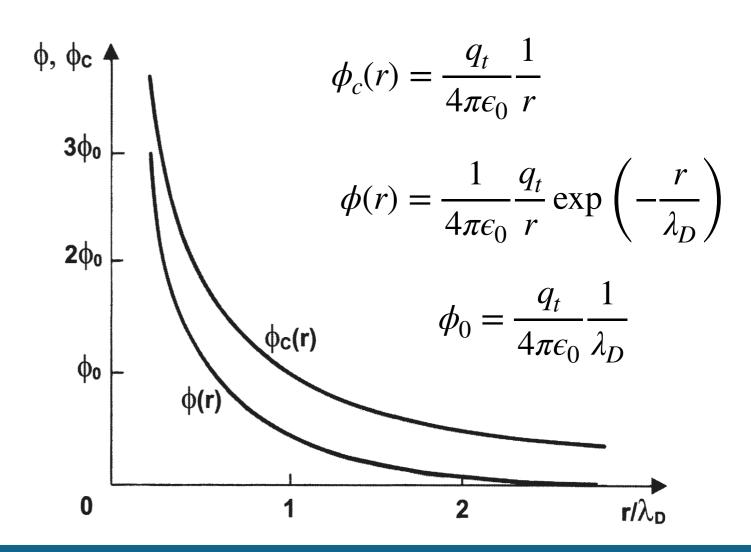
$$\frac{1}{r^2} \frac{d}{dr} \left[r^2 \frac{d\phi}{dr} \right] - \frac{\phi}{\lambda_D^2} = -\frac{q_t}{\epsilon_0} \delta(\mathbf{r})$$

- Vamos tentar resolver essa equação usando o ansatz $\phi(r) = \phi_c(r) f(r) = \frac{q_t}{4\pi\epsilon_0} \frac{f(r)}{r}$ onde $f(r \to 0) = 1$ e $\phi(r \to \infty) = 0$.
- Para $\mathbf{r} \neq 0$, temos que: $\frac{d^2f}{dr^2} = \frac{f}{\lambda_D^2} \rightarrow f(r) = A \exp\left(\frac{r}{\lambda_D}\right) + B \exp\left(-\frac{r}{\lambda_D}\right)$
- A condição $\phi(r \to \infty) = 0$ implica que A = 0, enquanto a condição $f(r \to 0) = 1$ implica que B = 1. Portanto,

$$\phi(r) = \phi_c(r) \exp\left(-\frac{r}{\lambda_D}\right) = \frac{1}{4\pi\epsilon_0} \frac{q_t}{r} \exp\left(-\frac{r}{\lambda_D}\right)$$

- Próximo da carga teste ($r \ll \lambda_D$), o potencial elétrico criado pela carga teste é dado pelo potencial Coulombiano
- Longe da carga teste ($r\gg\lambda_D$), o potencial elétrico criado pela carga teste é significativamente menor do que o potencial Coulombiano
- O número de partículas que interagem coletivamente com a carga teste é da ordem do número de cargas dentro da esfera de Debye

$$N_D = \frac{4\pi}{3} \lambda_D^3 n_0$$



- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

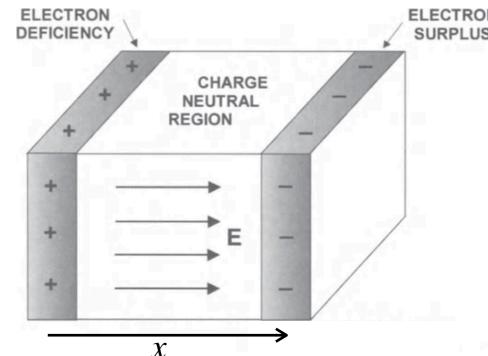
Características macroscópicas de plasmas: oscilações de plasma

- A blindagem de Debye é um efeito dinâmico
- Quando um desequilíbrio de cargas é criado no plasma, por exemplo, devido à flutuações térmicas
 - Um fortíssimo campo elétrico surge
 - Elétrons são acelerados na direção desse desequilíbrio de cargas
 - A maior parte dos elétrons não colide, mas sofre apenas deflexão de baixo ângulo
 - Os elétrons oscilam em torno da carga

Pela lei de Gauss law:
$$E_x = \left(\frac{n_0 e}{\epsilon_0}\right) x$$

Pela equação de movimento de um elétron:

$$\frac{d^2x}{dt^2} = -\frac{eE_x}{m_e} = -\omega_{pe}^2x \qquad \omega_{pe} = \sqrt{\frac{n_0e^2}{\epsilon_0m_e}}$$



Frequência de plasma elétron (ω_{pe})

Características macroscópicas de plasmas: oscilações de plasma

- O tempo médio que um elétron leva para completar uma oscilação completa depende de sua velocidade térmica $v_{th,e} = \sqrt{k_B T_e/m_e}$
- Note que existe uma relação entre $\omega_{pe},~\lambda_{De}$ and $~v_{th,e}$

$$\lambda_{De} = \sqrt{\frac{\epsilon_0 k_B T_e}{n_0 e^2}} = \sqrt{\frac{\epsilon_0 m_e}{n_0 e^2} \frac{k_B T_e}{m_e}} = \frac{v_{th,e}}{\omega_{pe}} \rightarrow v_{th,e} = \lambda_{De} \omega_{pe}$$

Frequência de plasma elétron

$$\omega_{pe} = \sqrt{\frac{n_0 e^2}{\epsilon_0 m_e}}$$
 $f_{pe} = \frac{\omega_{pe}}{2\pi} = 9.0 \sqrt{n_0}$ $(n_0 \text{ em m}^{-3})$

- Frequência de plasma elétron para alguns casos particulares
 - Tokamaks $(n_0 = 1 \times 10^{20} \ m^{-3})$: $f_{pe} = 90 \ GHz$
 - Solar corona ($n_0 = 1 \times 10^{12} \ m^{-3}$): $f_{pe} = 9 \ MHz$

Características macroscópicas de plasmas: oscilações de plasma

- A colisão entre elétrons e partículas do gás neutro pode impedir que oscilações de elétrons sejam estabelecidas, evitando assim a blindagem de Debye
 - Tempo típico entre a colisão entre elétrons e gás neutro

$$\tau_{en} = \frac{1}{\nu_{en}} = \frac{1}{n_n \, \sigma_{en} \, \nu_{th,e}}$$

- Fazendo $\sigma_{en} \approx \pi a_0^2$ (com a_0 sendo o raio de Bohr - Hidrogênio) e $v_{th,e} = \sqrt{\frac{k_B T}{m_e}}$

$$au_{en}pprox rac{1 imes 10^{17}}{n_n\sqrt{T}}$$
 (dado n_i , n_n pode ser calculado pela equação de Saha)

- Tokamaks ($n_i = 1 \times 10^{20} \ m^{-3}$; $T = 1 \times 10^8 \ K$): $\tau_{en} = 2.4 \times 10^6 \ s$
- Solar corona ($n_i = 1 \times 10^{12} \ m^{-3}$; $T = 1 \times 10^6 \ K$): $\tau_{en} = 2 \times 10^{20} \ s$
- Para os casos acima, o critério $au_{en}\gg 2\pi/\omega_{pe}$ é bem satisfeito!

- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

Características macroscópicas: critérios de definição de plasma

- A principal diferença entre gases ionizados e plasmas é a presença de efeitos coletivos, que estão presentes se
 - (1) As dimensões do plasma forem muito maiores que o comprimento de Debye $L\gg \lambda_D$
 - (2) O número de elétrons dentro de uma esfera de Debye for muito maior do que a unidade

$$N_D = \frac{4}{3}\pi\lambda_D^3 n_0 \gg 1$$
 $g = \frac{1}{n_0\lambda_D^3} \ll 1$ (Parâmetro de plasma)

- (3) O tempo médio entre colisão de elétrons e partículas neutras é muito maior do que o tempo para uma oscilação de plasma de elétrons ocorrer

$$\tau_{en} \gg \tau_{pe} = \frac{1}{f_{pe}} = \frac{2\pi}{\omega_{pe}}$$

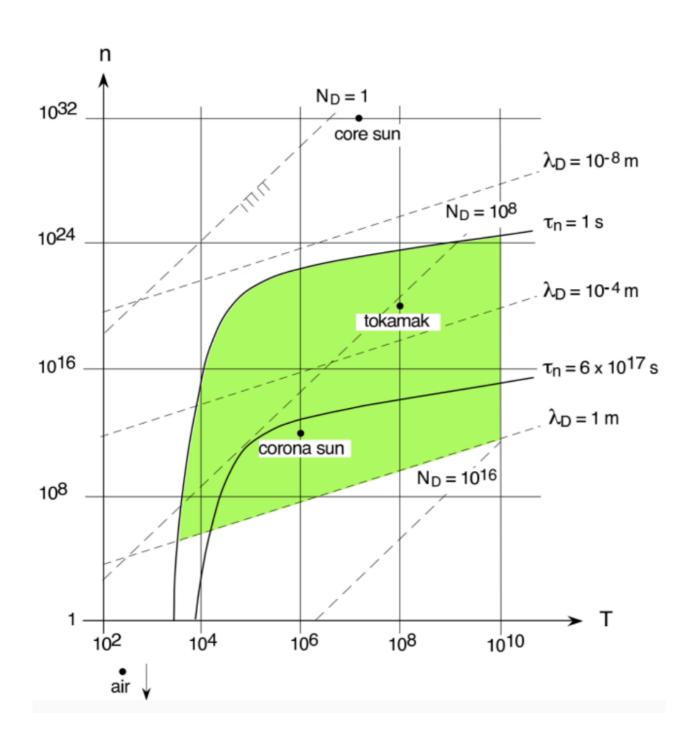
Observe que o primeiro critério já implica na neutralidade macroscópica

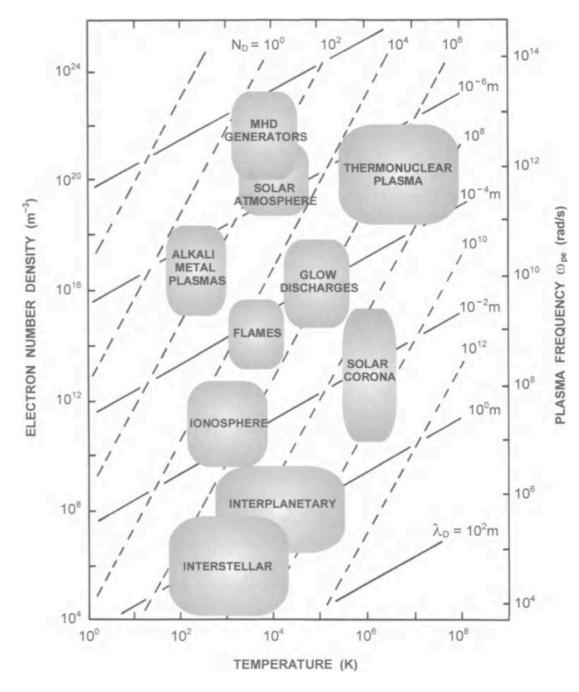
$$\sum_{j} Z_{j} n_{j} = n_{e}$$

- Às vezes, a neutralidade de carga é considerada um 4º critério, embora não seja um critério independente

Características macroscópicas: critérios de definição de plasma

Condições para o aparecimento de efeitos coletivos (região verde)



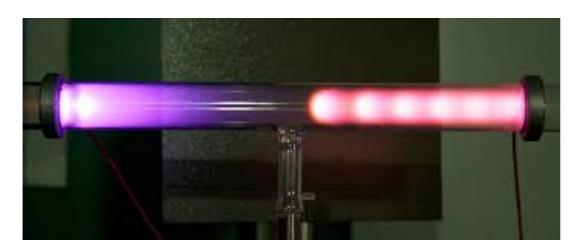


- A ocorrência de plasmas na natureza
 - O conceito de temperatura
 - O grau de ionização de um gás ou plasma
 - A equação de Saha
- O que é um plasma?
- Características macroscópicas de plasmas
 - Quasi-neutralidade
 - A blindagem de Debye
 - Oscilações de plasma
 - Os critérios de definição de plasmas
- Aplicações da física de plasma

Aplicações da física de plasma: descargas gasosas

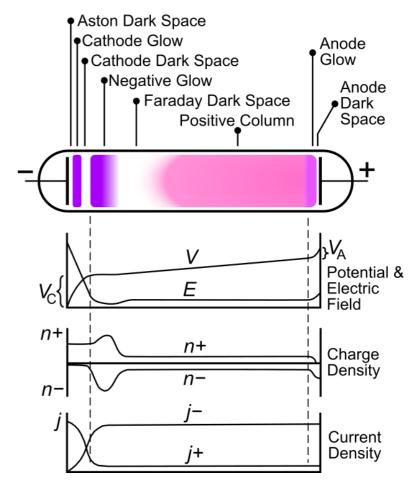
Descargas gasosas

- O trabalhos pioneiros no estudo de plasmas começaram com Langmuir,
 Tonks e seus colaboradores (1920)
- Foi nestes estudos que a blindagem de Debye foi descoberta
- A pesquisa em plasma iniciou com o estudo de plasmas glow fracamente ionizados ($T \approx 2\,eV$)



Descargas gasosas são encontradas hoje em

- Retificadores a mercúrio
- Tiratron a hidrogênio
- Ignitrons
- Lampadas neon e fluorescentes

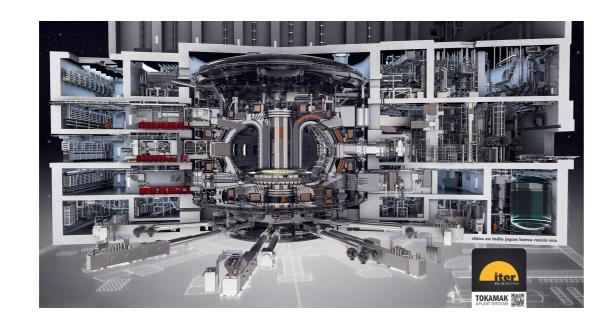


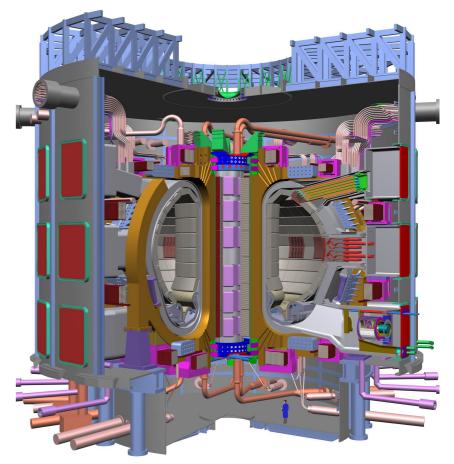
Aplicações da física de plasma: fusão termonuclear controlada

- A física moderna de plasmas teve início em 1952
 - Foi proposto que a reação de fusão de uma bomba de hidrogênio fosse controlada para fazer um reator para produção de energia
 - As principais reações exotérmicas são

$$_{1}D^{2} + _{1}D^{2} \longrightarrow _{0}n^{1} + _{2}He^{3} + 3.2 \text{ MeV}$$
 $_{1}D^{2} + _{1}D^{2} \longrightarrow _{1}p^{1} + _{1}Te^{3} + 4.0 \text{ MeV}$
 $_{1}D^{2} + _{1}T^{3} \longrightarrow _{0}n^{1} + _{2}He^{4} + 17.6 \text{ MeV}$

A fusão hoje é estuda, principalmente, em tokamaks





https://www.iter.org

Aplicações da física de plasma: fusão termonuclear controlada

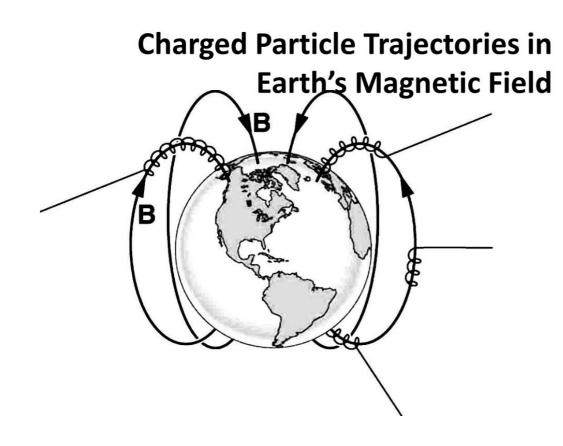
- A física moderna de plasmas teve início em 1952
 - Foi proposto que a reação de fusão de uma bomba de hidrogênio fosse controlada para fazer um reator para produção de energia
 - As principais reações exotérmicas são

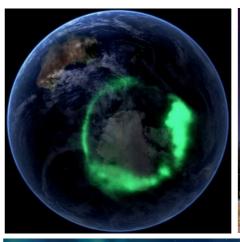
$$_{1}D^{2} + _{1}D^{2} \longrightarrow _{0}n^{1} + _{2}He^{3} + 3.2 MeV$$
 $_{1}D^{2} + _{1}D^{2} \longrightarrow _{1}p^{1} + _{1}Te^{3} + 4.0 MeV$
 $_{1}D^{2} + _{1}T^{3} \longrightarrow _{0}n^{1} + _{2}He^{4} + 17.6 MeV$

A fusão hoje é estuda, principalmente, em tokamaks

Aplicações da física de plasma: física espacial

- A física de plasma é importante para o estudo do ambiente espacial da Terra
 - Partículas carregadas que chegam ao nosso planeta são desviadas para os pólos terrestres pelo campo magnético
 - A interação destas partículas carregadas com as partículas da alta atmosfera dá origem as auroras polares





Aplicações da física de plasma: propulsão iônica

 Pela magnetohidrodinâmica (MHD), sabe-se que é possível aplicar forças num plasma magnetizado pela passagem de corrente elétrica

$$\mathbf{F} = q\left(\mathbf{E} + \mathbf{v} \times \mathbf{B}\right)$$

- Esta aplicação possui impacto direto na área de propulsão espacial



Referências

- F.F. Chen: Capítulo 1
- Referência adicional: quasi-neutralidade
 - Bittencourt: Cap. 1, seção 2
- Referência adicional: blindagem de Debye
 - Bittencourt: Cap. 11, seção 2
 - Bittencourt: Cap. 7, seção 5
- Referência adicional: oscilações de plasma
 - Bittencourt: Cap. 1, seção 2
- Referência adicional: grau de ionização e equação de Saha
 - Bittencourt: Cap. 7, seção 6

