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Preface

This book is based on a series of lectures ‘Elements of edge physics’ given at JET
in 1993, MIT in 1995 and the University of Toronto in 1998. The lectures were
intended as an introduction to the basic ideas about the boundary or scrape-off
layer, SOL, of magnetic fusion devices—particularly of tokamaks—for people
with a plasma physics education. Concepts about the SOL have largely been
developed during the 1980s and 1990s and, as yet, little of this has found its way
into plasma texts. The first part of this book was written with the intention of
filling this gap.

The book is divided in to three parts. Part I attempts to retain the spirit of
the original lecture series, namely that of a quick review of the central ideas about
the SOL. This would be appropriate for an introductory course on the subject.
Derivations are heuristic and physical intuition is emphasized. The reader should
be able to cover this material reasonably quickly, with little need to pause for
careful derivations or to consult related texts.

In part I, problems have been included to aid the student. The problems are
of two types. The first type is embedded in the text and has the character of a
worked example intended to illuminate the point being discussed. The reader is
encouraged to include these problems when reading the text, even if deciding not
to actually work through the maths. Additional problems appear at the end of
each chapter. Solutions, or hints, are included at the end of the book.

Part II provides an introduction to methods of modelling the plasma edge
region of magnetically confined plasmas. A number of sophisticated computer
codes have been developed during the last two decades to model the edge plasma
in all its 2D or 3D glory, including time dependence and employing all the nu-
merical power of modern computational fluid dynamics, CFD, techniques. As
in other fields, this effort has resulted in creating what now constitutes a third
basic line of attack on our ignorance of the physical world—additional, that is,
to the two traditional lines of experiment and theory. The shear complexity of
code modelling, however, requires that its output be subject to efforts aimed
at interpretation and understanding—just as experiments always have required.
The need for simpler modelling has been enhanced rather than diminished by the
advent of computer code modelling.

Part II of this book is aimed at simple approaches to modelling the plasma

xvii
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xviii Preface

edge—although the rudiments of 2D fluid code modelling are also touched on.
Emphasis is therefore placed on 1D models of the edge, which often turn out to
provide surprisingly close matches to the output of the sophisticated 2D computer
code models. The modelling material of part II has been included for those en-
visaged readers who probably identify themselves as experimentalists, but with a
penchant for interpreting their experimental results—as the best experimentalists
always do. It is also for those who want to try to make sense of the output of
their sophisticated code—i.e., to interpret code results—as the best code scientists
always do. Even 1D modelling enterprises can reach the point that they require
recourse to a computer—but simple numerical procedures such as Runge–Kutta
quadrature are often adequate. Thus little maths need come between us and the
physics in this type of modelling work.

Part III of the book is a collection of essays on currently active research
topics in plasma edge physics. The selection of topics is inevitably arbitrary. The
coverage is uneven. The topics tend to reflect the personal interests of the author.
The sound of hobby-horses may be heard in the land. The material in Part III will
undoubtedly date more quickly than that in parts I and II—and in the subsequent,
numerous editions of the book, it is anticipated that some of this material may be
revised, replaced or repudiated.

A distinction is made between the plasma edge and the scrape-off layer: the
former includes the SOL, but also extends some distance inboard of the last closed
(magnetic) flux surface, LCFS, or separatrix, into the main or core plasma. This
region just inboard of the SOL is an important one in its own right and warrants
separate treatment. Like the SOL, it is not a region of traditional magnetic con-
finement physics; atomic physics processes are also important. Effects such as the
‘transport barrier’, involved in H-mode confinement, are a feature of this region.
This region is not the subject of this text. We take here the expression ‘plasma
boundary of a magnetic confinement device’ to mean the scrape-off layer.

In the early decades of fusion energy research, the SOL was little considered,
apparently in the hope that the edge would just sort itself out with little need
for intervention or understanding. This hope was misplaced and by the 1980s
it had been recognized that certain edge problems were sufficiently serious as
to jeopardize the achievement of controlled fusion energy using magnetically
confined plasmas. One of the most serious problems is that of high power han-
dling or heat removal which results from the very small plasma-interaction areas
characteristic of the SOL. Magnetic fields which are strong enough to provide
adequate confinement of the main plasma are simply too effective for the SOL,
where the characteristic cross-field scale length, i.e. the SOL width, ends up being
only about 1 cm. The total exhaust power thus tends to be deposited on a total
plasma-wetted area of solid surface of a few m2 or less—an area far smaller than
that which is in principle available, i.e. ∼1000 m2, the internal wall area in a
typical reactor design. It is turning out to be a challenge to keep the steady-state
heat fluxes incident on the solid surfaces down to ∼5 MW m−2, which is about
the level briefly experienced by the nose cone of a space vehicle re-entering the

Copyright © 2000 IOP Publishing Ltd.
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Earth’s atmosphere.
In addition to this power-removal problem, impurities generated by plasma–

surface interactions (PSI) have been the bane of fusion from the beginning and
continue to be a serious problem. Their presence in the central fusion-producing
plasma reduces power output by cooling the plasma radiatively and by diluting
the hydrogenic fuel. The SOL is both the source and sink for most impurities
and is the key to their control in magnetically confined devices. The one impurity
that is produced in the core of fusion DT plasmas—helium—must be efficiently
removed from the system to avoid poisoning the reaction. Helium removal is also
largely a SOL issue.

In principle, all magnetically confined plasmas have scrape-off layers. While
this text has been written in the context of tokamaks, much of the material applies
directly to other magnetic configurations used in fusion or other applications.

The SOL is a very long and very thin plasma region aligned to the magnetic
field B. Not surprisingly, SOL modelling draws heavily on 1D, zero-B analysis.
In most of the analysis in this book, in fact, B does not explicitly appear. Much
of SOL analysis is thus applicable to non-magnetic plasmas, such as those used in
plasma process applications, and students in such fields should also find material
in this text helpful.

Copyright © 2000 IOP Publishing Ltd.
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Introduction

Man-made plasmas almost always involve interaction with the solid state, for
example, electrodes or the walls of a containing vessel. This plasma–surface
interaction, PSI, often has profound effects on both the plasma and the solid.

Energetic plasma particles strike the solid surface, dislodging atoms from
the lattice in a process called sputtering. In time, sputtering can result in sub-
stantial erosion of the surface. The sputtered atoms enter the plasma where they
may be ionized by the impact of plasma electrons. Usually the intended plasma
species—hydrogen isotopes in the case of fusion devices—is different from the
solid species and sputtering thus results in plasma contamination.

Of yet greater importance, the basic properties of the plasma, such as its den-
sity and temperature, are often strongly dependent on the way solid and plasma
interact. At the interface between the solid and the plasma, a thin net-charge layer
called the Debye sheath develops spontaneously. The most important practical
consequence of the formation of a sheath is that it mediates the flow of particles
and energy out of the plasma to the solid surface. It therefore plays a central role
in establishing the temperature, density and other properties of the plasma.

Simple electrical gas discharges—such as a fluorescent light—have solid
electrodes at each end of a long cylindrical tube, whose wall completes the con-
tainment vessel. Air is removed from the vacuum-tight vessel using gas pumps.
A gas, of the same species as is intended for the plasma, is then introduced to the
vessel at a pressure which is simply related to the intended particle density [ions
and electrons per m3] of the plasma. Once the plasma is formed, the PSI occurring
at the electrodes and walls largely controls the properties of the discharge [0.1].
If the discharge is placed inside a magnetic coil which produces a field B aligned
with the tube axis, then the radial flow of charged particles to the tube walls can be
greatly reduced [0.2] and thus also all aspects of the PSI occurring there. This is
the principle of magnetic confinement of a plasma. Even for the strongest B-fields
the outflow of particles and energy can never, however, be reduced to zero and,
inevitably, PSI is always involved. The PSI occurring at the end electrodes can be
eliminated by bending the cylinder to make a closed, toroidal vessel. If a current
is required along the toroidal axis, this can be induced by use of a transformer,
with the toroidal plasma acting as a single-loop secondary and a coil, made e.g.
of copper, acting as the primary. This is involved in such magnetic confinement

3
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4 Introduction

devices as tokamaks [0.3].
In principle, the B-field could be so perfectly aligned as to be tangential at

every point of the cylindrical or toroidal vessel wall. In that case, the plasma parti-
cles would reach the bounding sheath, and subsequently the vessel walls by purely
radial, that is by cross-field, motion. In practice, such perfect alignment is not
possible. Let us consider what happens when there is even a tiny misalignment.
The plasma particles are not affected by the B-field with regard to their motion
along B, and they move in this parallel direction with very high speeds, typically,
of order random thermal speeds. The effect of a strong B-field is to reduce the
cross-field speed of the charged particles by many orders of magnitude relative to
thermal speeds. Thus, if B is not aligned almost perfectly with the vessel walls,
the charged particles will reach the sheath and wall by parallel motion rather than
cross-field motion.

Therefore to understand the most basic aspects of the PSI occurring in a
magnetically confined plasma requires analysis of one-dimensional, parallel-to-B
motion of charged particles in a system bounded by sheaths at each end. For this
reason, B does not explicitly appear in the analysis, since the magnetic field has
no influence on parallel motion of charged particles. This is greatly simplifying.
It also means that most of the analysis involved is applicable to non-magnetic
plasmas.

Most of the analysis in this book is one dimensional and B does not appear
explicitly.

In chapter 1, the basic features are presented of the simplest system—
namely, the isothermal plasma, where temperature is constant along the 1D
flow direction. Since the heat conductivity of plasma is usually very high, the
isothermal assumption is often a good one.

In chapter 2, the basic properties of the sheath are covered. These give the
relation between the plasma temperature and density, on the one hand, and the
outflow rates of particles and energy to the sheath and solid surface, on the other.

Chapter 3 reviews the databases required for analysis of PSI. These include,
for example, sputtering yields, Y , defined as the number of lattice atoms dislodged
per impacting particle.

Chapter 4 returns to the simplest, isothermal case of chapter 1—termed the
simple SOL—covering further aspects of it and also discussing the transition to
the complex SOL. The region at the edge of a magnetically confined plasma where
parallel transport to the surfaces occurs is called the scrape-off layer, SOL. The
Complex SOL can have a number of important differences with the simple SOL,
most importantly the existence of significant parallel temperature gradients along
the length of the SOL.

Chapter 5 covers the most basic features of the complex SOL. Since this
regime is most typically found for geometrical configurations involving divertors,
this chapter is entitled ‘The divertor SOL’. The simple SOL is most typically
encountered for geometrical configurations involving limiters.

Chapter 6 deals with the production of impurities arising from PSI and the
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Introduction 5

resulting transport or motion of the impurity ions through the plasma.
Chapters 7 and 8 deal briefly with the implications for the boundary

plasma of the important tokamak operational mode—the H-mode (high energy
confinement)—and of plasma fluctuations, which are believed to be the cause of
the otherwise unexplained (anomalous), rapid transport of particles and energy
across B.

These first eight chapters make up part I of the book constituting an ‘Intro-
duction to the subject of the plasma boundary’. Part II provides an introduction
to edge modelling, with particular emphasis on 1D models. Part III primarily
consists of a collection of essays on current research topics related to the edge.
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Chapter 1

Simple Analytic Models of the Scrape-Off
Layer

1.1 Solid Surfaces Are Sinks for Plasmas

The most basic cause of fluid flow is the presence of a fluid source and a fluid
sink. Usually some effort and expense is involved in creating fluid sink action,
for example, that achieved with mechanical pumping of gases and liquids. In the
case of a plasma fluid, however, implementation of sink action could scarcely be
simpler: the presence of a solid surface is sufficient. If charged particles happen to
strike a solid surface they tend to stick to it long enough to recombine, figure 1.1.

e

e

H+

H+

Plasma Solid

Figure 1.1. Charged particles tend to stick to solid surfaces, which therefore act as plasma
sinks.

While ions do have a finite probability of back-scattering from a solid sur-
face, section 3.1, they do so mainly as neutrals, picking up electrons from the
surface. Electrons also stick to solid surfaces, section 3.2. Thus a solid surface

6
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Solid Surfaces Are Sinks for Plasmas 7

acts as an effective sink for plasma. It is not necessarily a mass sink, however,
since the particles are subsequently released as neutrals.

For solid surfaces which are insulators or are electrically isolated, opposite
charges build up on the surfaces exposed to a plasma, quickly leading to surface
recombination. The resulting neutral atoms generally are not strongly bound to
surfaces and are thermally re-emitted back into the plasma where they can be re-
ionized, usually by electron impact. A steady-state condition can result, termed
re-cycling, whereby plasma charged pairs are lost to the surface at the same rate
as recombined neutrals re-enter the plasma, figure 1.2. While no external source
of particles is then needed, an external source of energy to provide the ionization
power is still required.

e

A+

A°

Figure 1.2. Charged particles adsorbed on solid surfaces recombine. The resulting neutral
is weakly bound to the surface and desorbs back into the plasma. Thus particle recycling
occurs and in steady state the plasma refuels itself.

The solid surface not only acts as a sink for the plasma, but it is intimately
involved in the plasma source mechanism as well. The mean free path of the
neutral for ionization may be large compared with the system size, in which case
the ionization will occur more or less uniformly throughout the system. In other
cases the ionization mean free path is short compared with system size and so the
average location of re-ionization—i.e. the plasma source—and the plasma sink
can be quite close to each other. In that case, the rest of the available volume then
‘back-fills’ e.g. by diffusion—much as heat fills a room where a heat source, such
as radiator, is usually placed close to a principal heat sink, such as a window.

A solid surface exposed to a plasma initially also acts as a pump in a mass
sense, since all but the promptly back-scattered particles are initially retained in
or on the solid, section 3.4. Such retention saturates at some level and thereafter
a steady-state situation results with the plasma ‘refuelling itself ’. At that point
any external source of fuelling, such as a gas injection, can be turned off and the
plasma density will remain constant, provided no active pumping (cryopumping,
etc) is used.

It is evident that the behaviour and properties of a plasma can be dominated
by the contact it has with solid surfaces. Given the enormous differences in the
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8 Simple Analytic Models of the Scrape-Off Layer

properties of the first (solid) and fourth (plasma) states of matter, this is scarcely
surprising. The powerful sink action resulting from plasma–solid contact is the
controlling feature of tokamak edge plasma behaviour.

1.2 The Tokamak: An Example of a Low Pressure Gas Dis-
charge Tube

Fluorescent lights and neon signs are familiar examples of low pressure gas dis-
charge tubes. Neutrals are ionized by electron impact more or less uniformly
throughout the cylindrical volume. The resulting electron-ion pairs ‘fall’ radially
to the walls, figure 1.3(a), and adhere to the surface until they recombine to form
neutrals. Sooner or later the neutrals are released back into the plasma where they
are re-ionized. Thus steady-state recycling is established and a constant plasma
density results with particles neither being added to nor removed from the system.
Power must be provided continuously—via a longitudinal electric field which

a

B

B

(a)

(b)

(c)

Figure 1.3. Cylindrical gas discharge tubes. (a) Simple cylinder. No magnetic field.
Plasma moves radially and rapidly to the cylinder walls. (b) Simple cylinder. With axial
magnetic field added. Plasma moves radially but slowly to the cylinder walls. (c) Cylinder
with two washer-limiters (poloidal ring limiters) inserted. With magnetic field. Plasma
moves radially and slowly out to radius a, followed by rapid motion parallel to B to the
sides of the washer-limiters. Plasma does not reach the cylinder walls.
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The Tokamak: An Example of a Low Pressure Gas Discharge Tube 9

causes ohmic heating of the electrons—in order to provide for the steady loss
of power to excitation and ionization of atoms and molecules, etc. Most of the
power invested in ionization, excitation, dissociation and elastic collisions ends
up as wall heating. A fraction of the input power ends up in photon energy from
these light sources—which actually shed more heat than light.

Consider the addition of a longitudinal, i.e. axial, magnetic field,
figure 1.3(b). This retards the rate at which electron–ion pairs ‘fall’ to the
walls [1.1]. For a given axial value of plasma density, the loss rate—thus also
the recycling rate in steady state—is reduced as the magnitude of B is increased,
i.e. the plasma becomes magnetically confined. In the simplest geometry of a
cylinder without wall protrusions, the net motion of the electron–ion flow, i.e.
the plasma flow, is purely radial to the walls. An electrostatic sheath, the Debye
sheath, arises just in front of the walls, figure 1.4(a). The sheath is a thin region
of net positive space charge. The walls have net negative surface charge.

Sheath at walls

Sheath at limiters

(a)

(b)

Enlarged
view

Figure 1.4. Electrostatic sheaths develop in front of the plasma-wetted surfaces: (a) at the
walls for the simple cylinder, (b) at the sides of the washer-limiters.

Throughout most of the volume a quasineutral plasma resides with electron
and ion densities being almost exactly equal to each other at each location. The
sheath governs the relation between, on the one hand, the plasma density and
temperature, and on the other hand, the fluxes of particles, momentum and energy
flowing from the plasma to the walls.

A tokamak is a low pressure gas discharge tube bent into a closed circular
shape and with the ohmic current usually induced by transformer action. Often
there are protrusions at the walls called limiters. Consider a cylindrical tube with
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10 Simple Analytic Models of the Scrape-Off Layer

two circular washers (limiters) inserted at two locations along the cylinder length,
figure 1.3(c). The outer radius of each washer is equal to the radius of the cylinder;
the inner radius a is specifiable.

Charged particles diffuse very slowly across magnetic fields, compared with
their unrestricted motion along B, which tends to be at velocities of order of the
sound speed due to the strong sink action. Consider a charged particle originating
on axis and diffusing slowly out toward the wall. At the same time it is moving
randomly along B at high speeds due to its thermal energy. For an infinitely
long cylinder (or for one closed into a torus), this parallel-to-B motion is of no
consequence for the fate of this particle—not, that is, until the particle has diffused
across radius a. Then this motion will cause its rapid removal from the plasma,
by carrying the particle quickly to the sides of the washer-limiter. Thus, in this
geometry the loss of particles to the surface sinks involves first a net radial motion
across the radius of the tube, followed by a parallel-to-B motion near the ‘edge’
of the plasma at radius a. In this geometry the sheath forms on the sides of
the washer-limiter rather than at the wall, figure 1.4(b). Indeed the plasma no
longer extends all the way out to the walls; the loss of particles to the sides of
the washer-limiters is so fast that the particles only have time to diffuse a short
distance beyond a. The inner radius of the washer, a, thus tends to limit the radius
of the plasma column to being not much greater than a. Hence the name ‘limiter’.
The thin, annular plasma region outboard of radius a is called the ‘scrape-off
layer’, SOL.

The wall is thus protected by the limiters from contact with the plasma.
One price paid is that the plasma–surface interaction is now concentrated on thin
plasma-wetted areas on each limiter, tending to cause localized over-heating and
other problems.

The first and fourth state of matter do not co-exist easily. Plasma erodes
solids and the eroded material enters the plasma, degrading its desired properties.
Much of the challenge for magnetic confinement fusion is to find a solution that
will allow these two mutually irritating states of matter to cohabit a small space.
The situation would not be so bad if the area of interaction could be made large,
thus diminishing the local intensity of interaction. As we will see, however, a
magnetic confinement arrangement that is effective enough to contain the main,
fusion producing plasma is too good for the SOL, resulting in quite small plasma-
wetted areas, and very intense plasma–solid interactions.

It is often the case that systems are strongly influenced—or even
controlled—by their boundary conditions. In the early days of magnetic
fusion research it was hoped, however, that the edge region ‘would take care of
itself’. The edge region was not of primary interest to the main thrust of the
fusion enterprise, which focuses on the hot central core region where the fusion
reaction can occur. It became clear fairly early in fusion research that the edge
region was not in fact going to ‘take care of itself’, but was going to require
significant attention. The power balance in early magnetic devices tended to be
dominated by radiation from impurities in the plasma which had originated from
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the plasma–surface interactions at the edge. The radiative cooling was so strong
that core temperatures fell far below that needed to achieve fusion.

It would have been surprising, of course, if magnetic confinement fusion had
managed to easily escape serious edge problems. Upon first hearing about the
idea of a miniature star in a solid container, the response of most laymen is that
this must be impossible due to strong interactions between the radically different
states of matter involved. It turns out, unfortunately, that the layman is almost
right. Despite great strides, the problems arising from plasma–surface interactions
continue to threaten the achievement of a viable fusion reactor based on magnetic
confinement. Plasma contamination levels, although much reduced from early
days, are still unacceptable. The erosion rates of the solid edge structures are too
high for practical reactor designs where the replacement of internal components
cannot be frequent.

To make progress, better understanding of the plasma boundary region is
necessary. Our understanding is weak and we have many questions. What con-
trols the width of the SOL? How can it be manipulated? How can some of the
power reaching the SOL be dispersed before reaching the small, plasma-wetted,
solid surfaces? Can the impurity radiation itself be exploited to achieve this, or
will that cause such contamination of the core plasma that the fusion reaction
will stop there? Can the spatial distribution of the naturally produced impurities
be manipulated so that they do more good than harm? Are there benefits to be
had from injecting non-intrinsic impurities? What is the connection between the
plasma properties of the SOL—its density and temperature—and the fluxes of
particles and power to the solid surfaces? How does the plasma move along the
SOL to the surface? (It turns out, upon closer inspection, that the simple picture
above of free thermal motion along B is inadequate.) What can be achieved
by manipulating the geometry of the edge, or by changing the magnetic fields
at the edge, or by changing the arrangements of the solid structures? Can the
internal structures of the SOL be manipulated to advantage? For example, can
temperature variations be induced to occur along the length of the SOL, so that
at the ‘target’ (solid) end the temperature is low, while at the ‘upstream’ end,
where most of the coupling to the main plasma occurs, it is hot? Can the SOL
plasma be ‘intercepted’ or ‘obstructed’ before it reaches the solid surface, perhaps
by e–i recombination in the plasma itself, i.e., volume recombination, perhaps by
frictional slowing of the plasma outflow by neutral gas, i.e. by ‘clogging the
drain’? Helium produced in the core by DT fusion reactions is an unavoidable
impurity; it must be removed at the edge so that it does not poison the fusion
reaction; can the edge plasma and solid structures be manipulated and configured
to achieve adequate pumping of the helium, using practically achievable pumping
arrangements? Solid material eroded into the plasma eventually re-deposits on
other edge surfaces; virtually none of the material is actually removed through the
vacuum pumps. Will the re-deposited solid surfaces give acceptable performance
of the fusion device? Will the tritium become trapped in such re-deposited mate-
rial (co-deposited), resulting in unacceptable radioactive inventories in a reactor?

Copyright © 2000 IOP Publishing Ltd.



12 Simple Analytic Models of the Scrape-Off Layer

This list of questions is long but by no means complete.
In order to address these and other questions which will critically affect

the demonstration of the scientific, engineering and environmental feasibility of
magnetic fusion power, we will need to better understand the plasma boundary.
This book addresses these questions and attempts to improve our understanding
of the behaviour of the plasma edge.

1.3 Tokamak Magnetic Fields

There are two principal components of a tokamak magnetic field, figure 1.5, the
toroidal magnetic field Bφ created by external magnetic coils and the poloidal, or
self-, magnetic field Bθ created by the toroidal plasma curent Ip induced e.g. by
an external transformer.

The resulting Btotal is helical, with each magnetic field line lying on one of
a nested set of toroidal flux surfaces, figure 1.6 [1.2]. Figure 1.7 shows a poloidal
cross-section of a tokamak, displaying the characteristic magnetic contours which
result from taking a poloidal plane slice through the nested toroidal surfaces.

Magnetic field lines which lie on flux surfaces that never make contact with

Bθ

θ = poloidal
Bφ φ= toroidal

B

Iplasma

Figure 1.5. The toroidal direction φ is the long way round, the poloidal θ the short
way. The two principal magnetic fields of a tokamak are Bφ due to external coils and
Bθ due to the plasma curent Iplasma in the φ direction. For a tokamak |Bφ | � |Bθ |. Thus
Btotal = Bφ + Bθ is helical and with a shallow pitch angle.

Figure 1.6. Magnetic flux surfaces forming a set of nested toroids.
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Tokamak Magnetic Fields 13

a solid surface are termed closed, while those which pass through a solid surface
are termed open. A key role is played by the last closed (magnetic) flux surface,
figure 1.7, LCFS. The LCFS is the last flux surface, going outwards from the
main plasma, that does not touch a solid surface. Surfaces radially further in are
all closed while those further out are all open.

0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
-2.5

-2.0

-1.5

-1.0

-0.5

 0   

0.5

 1.0

1.5

2.0

2.5

R(m)

Z
(m

)

LCFSSOL

Limiter

Main
plasma

Figure 1.7. For the limiter configuration, the last closed magnetic flux surface, LCFS, is
defined by the leading edge of the limiter. A JET-size plasma is shown.

Because of the helical pitch of Btotal, a field line which breaks the poloidal
plane at one poloidal location will, on the next toroidal pass around the torus,
usually cut that plane at a different poloidal location, figure 1.8.

Although they remain on a given magnetic flux surface, most magnetic field
lines never close on themselves, thus eventually mapping out the entire flux sur-
face. A resonance exists if the safety factor [1.3]:

q ≈ r Bφ

RBθ

(1.1)

takes on rational values for a particular flux surface. Equation (1.1) is the ap-
proximation for a large aspect ratio, circular cross-section tokamak. Aspect ratio
= R/a where R is the major radius of the torus and a is the minor radius of the
(circular) LCFS. r is the minor radius of any particular (circular) flux surface.
For example, if q = 4 for a particular flux surface, then a field line lying on
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• •

•

Start

After half 
a toroidal
circuit

After first
toroidal
circuit

Bφ

Bθ

R

q=4

a

Figure 1.8. The safety factor q , when an integer, is the number of toroidal transits required
for Btotal to make one poloidal transit. The example shown is for q = 4.

q = 4

O

O'

θ pitch Bφ xφ

Bθ

xθ

B

2πr

8πR

Figure 1.9. A single toroidal flux surface has been cut and flattened. The specific example
of q = 4 is illustrated, showing that four toroidal transits are required for one poloidal
transit.

that surface makes exactly four large (toroidal) transits to complete one short
(poloidal) transit, closing exactly on itself. Figure 1.9 shows a q = 4 magnetic
flux surface which has been cut, opened up and flattened to make a rectangle.

O and O′ represent the same location. Since one has from Ampère’s law,
approximately:

Bθ (a) ≈ µ0 Ip

2πa
(1.2)

then q is large for small plasma current and/or large external magnetic field, Bφ .
One also has the local pitch angle of Btotal:

θpitch ≈ Bθ /Bφ ≈ Bθ /B (1.3)
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typically θpitch ≈ 0.1 since the tokamak magnetic field is primarily toroidal.
In the main or confined plasma, i.e. inside the LCFS, the principal sig-

nificance of the safety factor q is that the plasma is magnetohydrodynamically
unstable if q ≤ 2 at the edge (the LCFS) [1.4], and so such operating conditions
are usually avoided. In the region outside the LCFS, the role of q is primarily
geometrical, as will be shown. It is this necessary avoidance of small values of q
at the edge that results in small pitch angles of Btotal.

1.4 The Scrape-Off Layer, SOL

As noted, the region radially outboard of the LCFS is called the scrape-off layer,
SOL. Cross-field velocities are of order:

v⊥ � D⊥/�⊥ (1.4)

where D⊥ is the cross-field diffusion coefficient [m2 s−1] and �⊥[m] is the char-
acteristic radial scale length of density. (Fick’s law of diffusive motion: � =
−D dn/dx where � is the particle flux density [particles m−2 s−1], D is the
particle diffusion coefficient and dn/dx ≈ n/�⊥, and with � related to an ef-
fective cross-field velocity, v⊥, � ≡ nv⊥, one obtains equation (1.4).) To date,
attempts to calculate D⊥ from first principles have been of limited success [1.5].
D⊥ is generally anomalous compared with classical rates and is obtained from
experiment; see section 4.3. Values of order 1 m2 s−1 are found empirically [1.5].
The radial density length may be as large as the minor radius, a, which would be
the case if the neutrals were all ionized at the very centre, e.g. for deep injection
of fuel pellets. More typically �⊥ is of the order of the ionization mean free path,
mfp, of the recycling neutrals at the edge, λneutral

i z . Thus v⊥ may be as slow as
≈ 1 m s−1, while v‖ ≈ plasma sound speed, cs , which is typically many orders
of magnitude larger. cs is calculated in section 2.4 to be:

c2
s = k(Te + Ti )/(me + mi )

cs ≈ [k(Te + Ti )/mi ]1/2. (1.5)

For example: for Te = Ti = 25 eV, and D+ ions, cs ≈ 5× 104 m s−1.
It is this enormous difference between v‖ and v⊥ that makes the SOL so thin

relative to its length.
A great variety of geometries are possible for the solid surfaces which cause

the sink actions. They are generally considered to fall into one of the two cate-
gories: (a) limiters, (b) divertors.

1.4.1 Limiter SOLs

Conceptually the simplest limiter sink action is achieved by inserting an annulus
of solid material—a washer—with inner circular radius a—called a poloidal lim-
iter—at one or more toroidal locations, figure 1.10. The magnetic flux surfaces
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Figure 1.10. Various limiter and divertor configurations [1.37]:
(i) The toroidal limiter consists of a toroidally symmetric, protruding structure attached to the wall,

mounted at the outside of the vessel, as shown here, or at the bottom, etc.
(ii) The poloidal divertor involves a diversion of the poloidal magnetic field near the edge, making

for a toroidally symmetric configuration, analogous to the toroidal limiter.
(iii) The poloidal ring limiter, in the simplest case, is a circular annular plate of inner radius r =

aplasma, outer radius r = awall.
(iv) The toroidal divertor involves a diversion of the toroidal magnetic field near the edge, making

for a configuration analogous to that of the poloidal ring limiter.
(v) The rail or probe limiter involves insertion of a solid object into the plasma at a specific toroidal

and poloidal location.
(vi) The bundle divertor involves a non-symmetric diversion of some portion of the toroidal field

near the edge, creating a configuration analogous to that of a rail or probe limiter.

are assumed to be perfectly circular here. The typical parallel-to-B distance that
a particle has to travel in the SOL before striking a limiter is

L ≈ π R

n
(1.6)
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where n is the number of poloidal limiters (we have implicitly assumed here a
small pitch angle, i.e. a not very small q). L is called the connection length, and
the distance along B in the SOL between two points of contact with the solid
surface is 2L [1.6, 1.7]

A toroidal limiter can consist simply of a (toroidal) circular rail, project-
ing inward from, say, the wall at the midplane, figure 1.10. This configuration
involves longer L due to the small pitch angle of B:

L ≈ π Rq. (1.7)

Values of L of 100 m or more can result for large tokamaks such as JET. However,
due to the very large ratio v‖/v⊥, the SOL radial width is still only of order 1 cm.

These first two limiter examples involved either toroidal or poloidal sym-
metry. Limiter sink action can also be achieved by inserting any shape of object
into the plasma: since almost none of the field lines close on themselves, but
eventually map out the entire flux surface they lie on, then most field lines which
lie on flux surfaces outside the LCFS will eventually strike the inserted limiter.
Cross-field diffusion within poloidal flux surfaces also helps ensure that all points
in a SOL are actually in contact with a solid surface, i.e. effectively there are no
infinite L values in the SOL. A limiter which is small in poloidal and toroidal
extent will have a particularly large L .

An important variant of the toroidal limiter is the wall-limiter where the
plasma simply contacts, say, the inner wall near the midplane. Typically the wall
would be fully covered by protective tiles. Wall-limiters enjoy the advantage of
particularly large plasma-wetted areas, and thus lower power loadings, W m−2,
see section 5.6.

1.4.2 Divertor SOLs

For limiter tokamaks the poloidal magnetic field is largely created by Ip and
is approximately circular. A poloidal divertor configuration can be produced
using an external conductor carrying a current ID in the same direction as Ip,
figures 1.10 and 1.11.

In the poloidal plane, the magnetic field lines make a figure-of-eight shape,
figure 1.11(b). At some point between the two current centres a null in the
poloidal field, and thus a magnetic X -point, exists. The magnetic flux surface
passing through the X-point is called the magnetic separatrix. The flux surfaces
inside the separatrix, surrounding the Ip channel, contain the main or confined
plasma within closed flux surfaces. A sink action is achieved simply by introduc-
ing a solid plane which cuts through the flux surfaces surrounding the ID channel,
figure 1.11(a): any plasma particles which diffuse across the separatrix of the
confined plasma find themselves on open flux surfaces which connect directly to
the solid surface, which are called the divertor targets, and the particles move
rapidly to the target-sinks before diffusing very far cross-field. The separatrix

Copyright © 2000 IOP Publishing Ltd.



18 Simple Analytic Models of the Scrape-Off Layer
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Figure 1.11. The poloidal field Bplasma
θ created by Iplasma is diverted by the Bcoil

θ created
by a divertor coil current ID , parallel to Iplasma, which is carried by a coil internal or
external to the vacuum vessel.

is the LCFS. A thin SOL results, just as for the limiter geometry. If the targets
are located not too far from the X -point (the case of short ‘divertor legs’), then
the length of the average SOL field line is approximately the same as for the
toroidal limiter geometry, with L ≈ π Rq. There is an important reason to keep
the divertor legs short: the entire configuration shown in figure 1.11 lies inside
the toroidal field coils; magnetic volume is expensive to produce and only the
confined region is hot enough to produce fusion power.

The length of a field line on the separatrix is, in principle, infinite, due to
the poloidal field null at the X -point. There is, however, strong magnetic shear
just near the separatrix with the local values of L varying rapidly with radius.
Inevitable field errors effectively prevent infinite L . Further, cross-field transport
has the effect of ‘shorting’ any extremely long field lines by transport on to
immediately adjacent, shorter field lines. Typically L is quoted for the magnetic
flux surface lying slightly outside the separatrix.

Figure 1.12 shows a close-up of a divertor region, located at the bottom of
the vessel. The region below the X -point and inside the separatrix is called the
private plasma. It contains a thin layer of plasma lying along the two separatrix
arms, terminating at the targets. The private plasma is sustained by the transport
of plasma particles and power from the main SOL, across the private plasma
separatrix.

While the divertor configuration is less efficient in the use of magnetic vol-
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Divertor Targets
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Figure 1.12. The SOL surrounds the main plasma above the X-point and extends to
the target. The private plasma receives particles and energy from the SOL by cross-field
transport.

ume than the limiter one, there are off-setting advantages. The most important
one is the opportunity to move the solid surfaces where the intense plasma surface
interactions occur—the divertor targets—away from the confined plasma. Further
comparisons of the two configurations are discussed in section 5.1.

The divertor geometry shown in figures 1.11 and 1.12 is termed ‘poloidal’,
because it is the poloidal magnetic field which has been diverted by ID—it is
however toroidally symmetric—a sometimes confusing fact. Other magnetic di-
vertor configurations can also be produced [1.8], figure 1.10. The limiter shown in
figure 1.10 is termed ‘poloidal’ because it is poloidally symmetric. The ‘toroidal’
limiter is termed similarly. The presence of the divertor targets is also seen to
limit the radial extent of the SOL in the same way as limiters do.

1.5 Characteristic SOL Time

The most used configurations are the poloidal divertor and the toroidal limiter
since both can provide (relatively) large plasma-wetted areas, the area of solid
surface in contact with significant plasma fluxes, section 5.6. For both, one
has L ≈ π Rq. Plasma particles which move freely along B in the SOL have
velocities of the order of the plasma sound speed, cs , and so characteristic particle
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dwell times in the SOL are
τsol � L/cs . (1.8)

Typical edge temperatures are 1–100 eV, section 4.5, thus cs ≈ 104–105 m s−1.
For a JET-sized tokamak R ≈ 3 m; for q = 4, then L ≈ 40 m, resulting in τsol ≈
1 ms. Thus, characteristic SOL dwell times are seen to be very short compared
with energy confinement times of the main plasma which, for JET, are of the order
of 1 s, section 4.5. This time is also very short compared with the average dwell-
time of an ion originating at the centre of the main plasma, i.e. ∼ a2/D⊥ ∼ 1 s
for a JET-size plasma. τcentre ≈ a/v⊥ with v⊥ ≈ D⊥/a ∴ τcentre ≈ a2/D⊥.

1.6 The 1D Fluid Approximation for the SOL Plasma

In analysing plasma behaviour in the SOL, the most common assumption is that
the effects of toroidal magnetic curvature can be ignored, except in calculating L .
Thus neo-classical effects which arise from ‘toroidicity’ i.e. the non-zero value of
a/R [1.9], are ignored in the simplest analysis. In effect, the SOL is ‘straightened
out’, figure 1.13, [1.6, 1.7], and then analysed either two dimensionally or one
dimensionally.

Wall

SOL

2L

Main plasma

B
Scrape—Off

width

Limiter or 
divertor plate

Figure 1.13. The SOL has been straightened out. Energy and particles flow from the main
plasma into the SOL by slow cross-field transport, followed by rapid transport parallel to
B along the SOL to the targets.

The justification for neglecting neo-classical effects such as banana
orbits [1.10] in the SOL is the high level of collisionality that characterizes cold
plasmas. The self-collisional mfps are approximately [1.11]:

λee ≈ λi i ≈ 1016T 2

ne
(1.9)

λ [m], T [eV] and ne [m−3] is the number of electrons m−3. In table 1.1 two
examples are given comparing λ and L values for a large (JET) and small (Alcator
CMOD) tokamak. When λ < L , the SOL is said to be collisional.
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Table 1.1. Representative SOL conditions.

JET CMOD

Te [eV] 50 10
ne [m−3] 1019 1020

L [m] 40 8
ν∗e 25 1000
λee, λi i  [m] 2.5 0.01
τSOL = L/cs [ms] 0.6 0.3

ν∗e [1.31] is the ratio of the electron collision frequency to the electron bounce frequency. The bounce
frequency is that at which electrons trapped on banana orbits [1.31] oscillate back and forth between
the turning points. When ν∗e � 1 collisionality is too strong to permit the electrons to behave in this
‘neo-classical’ way.

The degree of collisionality is important for deciding a very basic question:
whether a fluid analysis of the plasma behaviour is adequate, or a full kinetic
analysis is required. In kinetic analysis the complete velocity distribution of the
plasma particles is calculated at every point in space (and time). In fluid analysis
one settles for just calculating the average quantities at each point in space
(and time), e.g. the average (thus ‘fluid’) velocity. Obviously kinetic analysis
is much harder to carry out than fluid analysis, and we want to know when
the latter is likely to be good enough. It turns out, section 9.12, that the fluid
approximation, as it is called, is likely to be good enough when collisionality is
strong. Although, as shown in table 1.1, the SOL may be collisional, the situation
can often be marginal. Thus the neglect of neo-classical and also so-called kinetic
effects [1.12] needs to be re-visited, chapter 26. Nevertheless, the fluid modelling
assumption is the most common one in SOL analysis. It is known from the
analysis of very simple cases—where it is possible to obtain complete kinetic
solutions and the complete velocity distributions are computed—that the results
for most quantities of practical interest are not significantly different from those
given by simpler fluid solutions, chapter 10. Thus, the fluid approximation and
the effective ‘straightening out’ of the SOL in modelling, figure 1.13, appears to
be a reasonable first approximation.

For 2D SOL analysis, toroidal symmety is assumed. The two spatial
directions are either (a) radially cross-field and along B or (b) radial and the
poloidal projection of the motion along B, see figures 1.13, 1.14. The second
approach enjoys the advantage that results can be conveniently displayed as
poloidal plane plots. Due to the assumed toroidal symmetry, cross-field motion
within the poloidal flux surface is ignored, at the first level of analysis. Since the
cross-field transport mechanisms are imperfectly understood, in 2D modelling
the transport coefficients, such as the cross-field diffusion coefficient, D⊥, are
treated as being anomalous and are taken from experiment, whenever possible.
The parallel (or poloidal-projection) transport is assumed to be classical, i.e.,
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Figure 1.14. The path of a magnetic field line projected onto a poloidal plane. Distances
along the field line s‖ have corresponding value in the poloidal plane, sθ . Analysis of the
plasma behaviour can then be calculated in terms of s‖ or sθ .

as if there were no magnetic field. It is usually not possible to carry out any
significant 2D modelling analytically and 2D fluid modelling of the SOL now
uses sophisticated computer codes [1.13].

It can be difficult to gain insight into SOL behaviour from 2D code mod-
elling, and so the incentive is strong to extract as much as possible from 1D
analytic modelling. Such 1D analysis is the principal focus in this book. The
cross-field transport of particles and energy are treated as sources of particles and
energy in the 1D analysis along the field B.

1.7 The Simple SOL and Ionization in the Main Plasma

As discussed in section 1.1, hydrogenic neutrals formed by recombination on
solid surfaces enter the plasma and are re-ionized in the fuel recycle process. Once
all solid surfaces are saturated, the plasma density in both the SOL and main
plasma (the confined plasma on the closed flux surfaces inside the separatrix or
LCFS) remains constant, with no new fuelling required unless active pumping is
employed. In the simplest situation the neutrals have a sufficiently long ionization
mfp that they pass through the SOL and are ionized inside the main plasma. This
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Figure 1.15. Neutral hydrogen recycling from a limiter tends to be ionized inside the
LCFS, while hydrogen recycling from divertor targets tends to be ionized in the SOL and
private plasma.

has a better chance of happening in limiter configurations—where the recycling
surface, the limiter, is in intimate contact with the main plasma—than for divertors
where the targets may be remote, see figure 1.15. Ionization in the main plasma
results in rapid dispersal of the resulting ions along field lines, so that by the time
the ions diffuse across the LCFS into the SOL, all details of the actual 2D spatial
distribution of the source have been obliterated, and as far as the SOL is concerned
it experiences a source of particles which is distributed more or less uniformly
along L . Due to this simplification, such deep or main plasma ionization of the
hydrogenic particles is taken to be an important part of the definition of the simple
SOL [1.6, 1.7]; [see section 1.8 and chapter 4].

This regime then yields a particularly simple estimate for the SOL radial
width λSOL: the plasma particles diffuse cross-field beyond the LCFS a charac-
teristic diffusion distance of about

λSOL � (D⊥τSOL)1/2

λSOL = (D⊥L/cs)
1/2 (1.10)

before being removed (λSOL ≈ v⊥τSOL ≈ (D⊥/λSOL)τSOL, thus giving equa-
tion (1.10)). For a typical SOL: D⊥ = 1 m2 s−1, L = 50 m, TSOL = 25 eV,
cs = 5×104 m s−1, thus λSOL ≈ few cm. One notes how very short a distance this
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Figure 1.16. For the simple SOL, ionization occurs in the main plasma and the temperature
is constant along a given SOL flux tube. For the non-simple SOL, the ionization usually
occurs in the SOL and near the targets; also the SOL temperature drops approaching the
target, along each SOL flux tube.

is compared with the plasma radius which, for example, for JET is ≈ 1 m. Thus
the radial extent of the plasma is essentially equal to the location of whichever
solid object penetrates most deeply into the plasma. This has the advantage
that one can prevent plasma interaction with most of the containing vessel by
employing structural components which can be specially designed for the purpose
of withstanding intense plasma interaction; at the same time, little of the expensive
magnetic volume is tied up. The fusion-producing main plasma can extend almost
to the vessel walls, without directly interacting with them. The λSOL given by
equation (1.10) is strictly the plasma density scrape-off length. Temperature, pres-
sure, power, etc radial decay lengths will be somewhat different, sections 4.3, 5.5.

It is important to recognize that the expression for λSOL, equation (1.10), has
been obtained for the simple SOL assumption that all of the hydrogenic ionization
occurs in the main plasma. From the viewpoint of understanding, it is unfortunate
that a significant fraction of the ionization often occurs in the SOL near the
targets. In that case, equation (1.10) is not valid. Even for the simple SOL,
equation (1.10) is only an estimate since T and cs are not constants but vary
radially across the SOL. For the non-simple, i.e., complex, SOL, chapter 4—
for example the conduction-limited divertor SOL, sections 1.9, 5.3—T and cs

also vary significantly along each flux tube, making equation (1.10) even less
appropriate. See figure 1.16.
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Figure 1.17. The bevel-sided poloidal limiter B has a larger plasma-wetted area than the
flat-sided A. Toroidal view.

•• Bφ Bφ

LCFS LCFS
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Figure 1.18. The bevel-sided toroidal limiter B has a larger plasma-wetted area that the
flat-sided A. View of the poloidal cross-section.

Unfortunately, the small values of λSOL tend to result in plasma-wetted areas
which are very small—and always much smaller than the geometrical surface
area of the vessel, all of which could, in principle, be available for plasma heat re-
moval. Mechanisms to increase the effective DSOL⊥ are therefore of interest [1.14–
1.17]. For the case of a single, washer (flat sided) poloidal limiter the plasma-
wetted area is Awet = 2[π(a + λSOL)2 − πa2] ≈ 4πaλSOL. Example: a = 1 m,
λSOL = 1 cm, Awet ≈ 0.1 m2, which is minuscule compared with the total wall
area, Awall ≈ 2π R2πa ≈ 100 m2 for R = 3 m (JET size). One can shape
the poloidal limiter so that its surface only gradually increases in minor radius
in the toroidal direction, thus increasing Awet substantially—although still not
approaching Awall, figure 1.17.

For a single, flat-sided toroidal ring limiter, Awet ≈ 4π RλSOL, i.e. larger
than for the poloidal limiter. One can also shape a toroidal limiter to be almost
tangential to the LCFS, increasing Awet significantly, figure 1.18.

On the TFTR tokamak, the inner wall was employed as a toroidal limiter in
this arrangement, giving Awet ≈ 5 m2 [1.18]. Provided the freedom to vary the
plasma shape (and LCFS shape) can be sacrificed, then such toroidal wall limiters
could in principle have Awet so large as to approach Awall. One would also have
to avoid all wall protrusions in the wetted area, requiring careful alignment of the
protective tiles in order to avoid hot spots [1.19].
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Bφ Bφ
• •

A B

Figure 1.19. The divertor plasma can be spread over a larger target area, case B, compared
with case A, by expanding the poloidal field at the targets, i.e., by making Bθ weaker there.

For poloidal divertors, Awet can be increased above 4π RλSOL by exploiting
the fact that the radial separation of the poloidal magnetic flux surfaces near
the target can be increased using external magnetic coils, figure 1.19. This is
considered further in section 5.6.

1.8 1D Plasma Flow Along the Simple SOL to a Surface

1.8.1 The Basic Features Reviewed

For clarity, we start by simply stating, without proof, the basic features of 1D flow
along the SOL [1.6, 1.7]. In the subsequent section these results are derived.

(1) The plasma fluid flows along the SOL due to the presence of a particle
source and sink, the limiter/divertor surfaces. But how does the plasma
‘know’, at each point along the SOL, that it is supposed to be moving toward
the surface? Why isn’t the SOL plasma stagnant? Why does it become
accelerated up to a non-zero velocity v? What is the local force causing
this? It is the parallel pressure gradient which is induced in the SOL plasma
by the presence of source and sink. See figure 1.20. The total pressure
is constant along B, but the static pressure decreases, providing the force:
ptotal = pstatic + pdynamic, where pdynamic ≡ mnv2; thus as pstatic drops, the
flux of flow momentum, mnv2, increases, and v increases; see chapter 9.

(2) In the first few µs after the plasma is initiated—that is just after ionization
of the fill gas in the vacuum vessel and before the recycling and ionization
have become established, the electrons, due to their small mass and high
mobility, rush ahead of the ions and strike the solid surfaces, charging them
up negatively.

(3) From that time on, an electron-repelling potential difference exists between
the plasma and the surface, slowing the loss rate of the electrons—while,
at the same time, increasing the ion loss rate. The potential spontaneously
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Figure 1.20. Schematic of the variation of plasma pressure, electric potential, plasma
velocity and ion/electron densities in the plasma between two semi-infinite planes. The
thickness of the sheath is exaggerated for clarity. The total length is 2L .

adjusts, on an isolated or electrically floating surface, until the loss rates
of the two charge species become equal—defined as ambipolar plasma
transport—i.e. an ambipolar electric field arises in the plasma. It will be
found that the solid surface will spontaneously charge up to a potential of
Vwall ∼ −3kTe/e, for a hydrogenic plasma, relative to the plasma potential.
The plasma is an excellent conductor in the direction along B and can be at
almost a constant potential along any given magnetic field line.

(4) Electrostatic potentials on surfaces contacting plasmas are almost entirely
shielded out within a short distance—regardless of whether the potential
arises spontaneously or is applied as an external voltage on an electrode.
This phenomenon is termed Debye shielding and it occurs over a very short
distance of the order of the Debye length [1.20]:

λDebye = (ε0kTe/nee2)1/2. (1.11)
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Example: Te = 20 eV, ne = 1019 m−3, ∴ λDebye ≈ 10−5 m.
This thin region is called the Debye sheath and is a region of net positive
space charge, existing in a dynamic equilibrium: the ions continue to
move through the sheath at high speed. The positive charge density
[coulombs m−2], integrated through the sheath thickness, almost equals
the negative charge density existing on the solid surface. Thus the rest of
the region upstream of the sheath—the essentially neutral plasma itself—is
almost completely shielded from the electric field due to the space charge
density in the sheath.

(5) The shielding is not perfect, however, and a small electric field E≈kTe/2eL ,
penetrates throughout the length of the plasma where the particle source
exists. This is called the pre-sheath electric field and it acts on the ions
in the SOL to help move them toward the target.

(6) The surface sink action causes a depression of the local plasma density
creating a parallel density and pressure gradient. The pre-sheath field acts
to retard the electrons, which come into a nearly perfect parallel momentum,
i.e. force, balance between a parallel pressure gradient force pushing the
electrons toward the surface, and the retarding electric field force. The
electrons thus obey, almost perfectly, a Boltzmann factor relation [1.21, 1.22]

n = n0 exp[eV/kTe]. (1.12)

n0 is the plasma density upstream where the plasma potential is taken to be
V = 0. As the surface is approached V becomes more negative (the pre-
sheath electric field). It is also noted that a parallel ion pressure gradient
exists (equal to the electron one if Te = Ti ), but this adds to the E-force on
the ions. There is a direct link between the pressure and potential gradient
implied in the Boltzmann relation. Assuming quasineutrality, ne = ni , and
one-dimensional ambipolarity, i.e. �e = �i where � = nv is particle flux
density, the electron fluid velocity must equal the ion fluid velocity. Thus
the electrons cannot actually be in perfect force balance along B. However,
it will be shown that the electron + ion fluid velocity is much less than the
electron thermal speed, ce = (8kTe/πme)

1/2, and that the electron force
balance is almost exact. The extreme lightness of the electrons requires that
they be in nearly perfect force balance, otherwise extremely high electron
fluid speeds and currents would occur.

(7) While the ambipolar electric field acts on both the ion fluid and the electron
fluid individually, it can exert no force on the plasma fluid—which is the
sum of the e and i fluids and is therefore (quasi-) neutral. As mentioned in
point (1), the only force accelerating the plasma fluid toward the surface is
the pressure-gradient force. See figure 1.21.

(8) In the foregoing it has been implicitly assumed that the plasma is isothermal
along any given flux tube in the SOL. Since the SOL plasma has very high
heat conductivity this can be a good approximation. The effect of parallel
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Figure 1.21. The electrons are almost in perfect force balance, while for the ions the
electric field force and the ion pressure gradient force are additive (and equal if Te = Ti ,
the case shown here), accelerating the ions. The force on the plasma is due to the total
pressure gradient alone, since an electric field exerts no force on the quasineutral plasma.

T -gradients will be discussed in section 4.10. Here we note that a further
element of the definition of the simple SOL is that parallel gradients be small.
This constitutes the sheath-limited regime; see sections 1.9, 9.10. It will
be shown that both charge species have a fluid speed which reaches the ion
acoustic speed: cs = [k(Te+Ti )/mi ]1/2 just as the particles enter the sheath,
that is vse = cs , where vse is the velocity at the sheath edge.

(9) It will be found that the plasma density drops from n0 at distance L upstream
to nse = 1

2 n0 at the sheath edge.

1.8.2 Derivations of Results for 1D Plasma Flow in the Simple SOL

1.8.2.1 The 1D Fluid Equations

In this section the fluid particle and momentum conservation equations for an
isothermal plasma are derived in an intuitive way. A more systematic derivation
is given in chapter 9.

First we show that the particle flux density � [particles m−2 s−1], is given
by � = nv where v is the bulk or fluid speed (not to be confused with the
individual particle speed which has a component due to random, thermal motion
as well as the common fluid speed v of all the particles). Here we will follow
the usual custom: the absence of any subscript on v indicates fluid velocity. If
random, thermal or other types of velocity are intended, appropriate subscripts
are employed. Consider figure 1.22 where a ‘slug’ of fluid of cross-sectional area
A [m2] drifts at velocity v past an observer.

In time t [s] a slug of length vt [m] will pass the observer, containing nvt A
[particles]. Thus the number of particles per m2 per s passing the observer is nv,
which we define to be �.
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Figure 1.22. Demonstration that � = nv.

Consider next figure 1.23 and the conservation of particles or mass, in 1D
for steady state. We must allow that � can be a function of x , the distance in
the 1D flow direction and that a source of particles—perhaps due to ionization
of neutrals—is present of strength Sp [particles m−3 s−1]. The net outflow of
particles from the volume shown in figure 1.23 is

(�out − �in)A =
(

�in +�x
d�

dx
− �in

)
A = �x A

d�

dx
(1.13)

which must equal the creation rate in the volume:

�x ASp (1.14)
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Figure 1.23. Demonstration of the particle conservation equation.

thus giving the particle conservation equation:

d�

dx
= d(nv)

dx
= Sp. (1.15)

The 1D steady-state, momentum conservation equation can be arrived at from
Newton’s second law:

F = ma = m 
dv

dt
= m 

dv

dx

dx

dt
= mv 

dv

dx 
(1.16)

applied to the n particles per m3, gives

nmv 
dv

dx
= nF  (1.17)

and the total force m−3, nF , is due to several contributions:

nF = neE − dp

dx
− nFdrag (1.18)

where neE is the parallel E-force exerted on particles of charge +e. From
figure 1.24 it can be seen that the net pressure force on the particle in the volume
shown is: [

−
(

p +�x
dp

dx

)
+ p

]
A = −�x A

dp

dx
(1.19)
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Figure 1.24. Demonstration of the pressure-gradient force.

giving a net p-gradient force on the particles in one m3 of −dp/dx . One notes
the minus sign: the force is in the opposite direction to the increasing pressure!

The drag force can include various contributions. There can be viscous
drag and drag due to momentum-loss collisions with neutrals, but we start by
neglecting such forces here. There is also an effective drag in the fluid picture due
to the particle source Sp. In the fluid picture all particles at a given location x have
the same drift velocity v(x); we assume here, however, that the newly created ions
come from non-moving neutrals, and so the momentum required per m3 per s to
bring them instantly up to the local speed, mvSp, constitutes a local drag force on
the fluid. Thus we obtain the 1D, steady-state momentum equation:

nmv
dv

dx
= neE − dp

dx
− mvSp. (1.20)

One can proceed further to derive an energy conservation equation but that is not
necessary if isothermal conditions are assumed, as here. Thus one has two equa-
tions, (1.15) and (1.20), in the two unknowns n(x), v(x)—i.e., the two dependent
variables—in terms of one independent variable x . It may appear that p(x) is a
further unknown; however, for the isothermal assumption one has p(x) = kT n(x)

with T a parameter which has to be found from some other considerations. If the
isothermal assumption is relaxed then one needs the energy conservation equation
also. We can also remove E as a dependent variable by using the Boltzmann
relation. Sp, m and e must be given.

These two equations will be sufficient to demonstrate the most basic features
of plasma flow along the SOL.
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1.8.2.2 The Boltzmann Relation for Electrons

Consider the momentum equation for the electron fluid:

nmev 
dv

dx
= −neE − dpe

dx
− mevSp (1.21)

giving approximately:

nmev
v

L
≈ −neE − n 

kTe

L
− mev 

nv

L 
(1.22)

where L is the characteristic parallel length of spatial variations along the SOL
and we used also the particle conservation, equation (1.15), Sp = d(nv)/dx ≈
nv/L . Although we have not yet proved that the characteristic drift speed along
the SOL is cs , we appropriate that result here; we will have to confirm consistency
at a later point. Thus:

nme
c2

s

L
= −neE − nkTe

L
− menc2

s

L 
(1.23)

which, taking Te = Ti becomes approximately

n 
me

mi

2kT

L
≈ −neE − nkT

L
− n 

me

mi

2kT

L 
(1.24)

and thus it is seen that, indeed, the inertia term and the drag term are of the
order me/mi � 1 of the pressure-gradient term. The force balance for electrons
is thus between the electric field and −dpe/dx , to an excellent approximation,
figure 1.21. Inserting E ≡ −dV/dx and integrating then gives the Boltzmann
factor relation, equation (1.12). It is to be emphasized again that the electrons can
satisfy the Boltzmann relation quite closely, yet have a substantial fluid velocity
of order cs � ce. A more rigorous derivation of the Boltzmann relation is given
in section 2.2.

1.8.2.3 Modelling the Ions

Because the electrons experience a retarding E-field in the SOL, modelling has
been seen to be very simple; the Boltzmann factor contains all the electron infor-
mation. Also, it can be shown (1.22) that the electron velocity distribution remains
Maxwellian in a retarding E-field (that is sufficiently strong to limit particle loss
from the system), which is a further valuable simplification; the total number of
electrons m−3 merely decreases with increasingly negative V . The ions, on the
other hand, are in an accelerating field which substantially disturbs their velocity
distribution, which may have been Maxwellian far from the absorbing surface.
For the ions it is necessary to retain the terms which could be dropped for the
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electrons, last section. We thus have the first two conservation equations for ions:

d(nv)

dx
= Sp (1.25)

nmv 
dv

dx
= − dpi

dx
+ enE − mvSp. (1.26)

Note that m from now on designates the ion mass, while n, v and Sp need no
subscripts to distinguish between electron and ion, since we are assuming here:
(a) singly charged ions, (b) ne = ni , (c) ambipolar outflow, ve = vi , and (d) ions
and electrons produced at the same rates. With the isothermal assumption made
here,

dpi

dx
= kTi

dn

dx 
(1.27)

and so, again, there are only two dependent variables—n and v—and a parameter
Ti (which has to be established by separate considerations). We can thus achieve
the objective of establishing n(x), v(x), V (x). We are able to replace E using the
Boltzmann relation for the electrons:

enE = −kTe
dn

dx 
(1.28)

and so can re-write the plasma momentum equation (‘plasma’ because the elec-
tron and ion momentum equations have been combined):

nmv 
dv

dx
= −mc2

s
dn

dx
− mvSp (1.29)

where cs is, strictly, the isothermal plasma acoustic speed equation (1.5). (Re-
taining the me-related terms in equation (1.21) and adding the electron and ion
momentum equations together, rather than using the Boltzmann relation for the
electrons, gives equation (1.29) with m = me + mi .) One may note that E does
not appear in equation (1.29). The first term on the RHS is the sum of the e and i
pressure gradient forces, figure 1.21. It is convenient to define the plasma Mach
number:

M ≡ v/cs . (1.30)

The two equations (1.25), (1.29) can be combined to eliminate dn/dx and give a
most informative result:

dM

dx
= Sp

ncs

(1+ M2)

(1− M2)
. (1.31)
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Figure 1.25. The rate coefficients for atomic and molecular hydrogen [1.23]. The
numbered reactions are (1): e+ H2 → H+2 + 2e, (2): e+ H2 → 2H0 + e, (3): e+ H2 →
H0 + H+ + 2e, (4): e+ H+2 → 2H0, (5): e+ H+2 → H0 + H+ + e, (6): e+ H0 →
H+ + 2e, and charge exchange (7): H0 + H+ → H+ + H0.

1.8.2.4 The Particle Source Sp

The two particle ‘source’ mechanisms that usually dominate the SOL are: (a) lo-
cal ionization of neutrals by the plasma electrons, (b) cross-field diffusion. The
latter is not a true source of ions in the overall system, but appears as such in 1D
analysis.

(a) Electron ionization.
Assuming the electrons are Maxwellian, the basic atomic and molecular
cross-sections from experiment can be integrated over the velocity
distribution (1.25) to give the rate coefficients σv(Te) [m3 s−1], shown in
figures 1.25–1.28, [1.23, 1.26]. Thus, for example, the rate of ionization
of hydrogen atoms by electron impact, Siz  [ionization events m−3 s−1],
is Siz = nenHσvi z , where nH [H atoms m−3] is the atom density and
one uses curve (6) in figure 1.25. Figure 1.25 shows σvi z  values for a
number of important processes for hydrogenic neutral atoms and molecules.
Figures 1.26–1.28 show σvi z  for several important plasma impurities.
Figures 1.29–1.31 indicate the principal hydrogenic reactions schematically.
A certain fraction of the hydrogenic ions recycling from the limiter/divertor
targets are promptly back-scattered as neutral atoms with energies which
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Figure 1.26. Ionization rate coefficients for carbon [1.24].

are an appreciable fraction of the ion impact energy; see section 3.1 and
figure 1.29. For these neutrals one uses reaction (6) to calculate σvi z  in
figure 1.25. The other particles recycle as neutral molecules, figure 1.29;
some of these will be directly ionized, reaction (1) of figure 1.25, while
others will be dissociated into two Franck–Condon atoms by electron
impact, reaction (2), with those atoms—of energy about 2 eV [1.26]—
becoming ionized, reaction (6), figure 1.30. A most important process
for hydrogenic particles is that of resonant charge exchange, reaction (7),
figure 1.25: the collision of a slow atom entering from the wall and a
hot plasma ion results in the creation of a fast atom which, if moving
inward, can penetrate deeply into the plasma before ionizing. Indeed,
because the resonant charge exchange rate is higher than the ionization
rate, this process may be repeated several times resulting, effectively, in
a ‘neutral accelerator’; figure 1.31. Figure 1.25 indicates that a number
of other processes also have to be considered when attempting to model
the behaviour of neutral hydrogen in a hydrogenic plasma. The task is
a complex one to carry out in detail and for this reason, a number of
computer codes have been written over the years to incorporate these and
other processes. Currently the most sophisticated treatments are the Monte
Carlo codes, DEGAS, EIRENE and NIMBUS [1.13]. The 2D or even 3D
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solid-surface configurations and background plasma, including Te, Ti and
ne as functions of space, are specified as inputs. The recycling neutrals are
then launched from the appropriate locations on the limiter/divertor targets
where ions arrived, and followed until they are finally ionized—perhaps
after a number of wall reflections, charge exchange events, etc.
Impurity particles often enter the plasma as atoms and thus do not usually
experience as complex a set of reactions as hydrogen. Even a molecular
impurity such as N2 will not experience the strong charge-exchange process
that hydrogen does because the N+ H+ → N+ + H charge-exchange pro-
cess is not resonant, i.e., a potential-energy difference is involved.
The use of sophisticated code modelling of the neutrals is appropriate for
coupling to the 2D fluid codes of the SOL [1.13], such as B2, UEDGE,
EDGE2D, etc, chapter 13. For our present purposes of simple 1D ana-
lytic treatment we will assume for hydrogen the existence of an effective
ionization rate coefficient σvi z(Te) as an average of reactions (1) and (6)
of figure 1.25. The effect of energetic back-scattering and the ‘acceler-
ation’ process of Franck–Condon dissociation and charge exchange is to
make neutral hydrogen penetrate a plasma more deeply before becoming
ionized than would be the case if the neutral only had its original thermal
velocity, corresponding to the temperature of the solid surface. This can be
allowed for, approximately, by assuming that the penetrating neutral velocity
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Figure 1.27. Ionization rate coefficients for oxygen [1.24].
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Figure 1.28. Ionization rate coefficients for neon [1.24]. One may note how difficult it is
to ionize the He-like ions C4+, O6+, Ne8+.

is greater than the thermal velocity by some specified amount, or using more
sophisticated—yet still simple—estimates, see section 4.6.
We then have:

Sp,i z = nnnσvi z(Te) [ion pairs m−3 s−1] (1.32)

where n = plasma density (strictly ne) and nn = neutral density (some
average of atomic and molecular).

(b) Cross-field diffusive ‘source’.
Consider now the radial, cross-field direction r , figure 1.32, and the fact
that parallel removal to the solid surface constitutes a particle sink for the
cross-field particle flux density, �⊥. Thus, conservation of particles for the
r -direction:

d�⊥
dr

= Sp⊥ < 0. (1.33)

This cross-field sink gives the parallel source term Sp,c- f we are seeking:

Sp,c- f ≡ Sp‖ = −Sp⊥. (1.34)

Let us assume further that �⊥ satisfies Fick’s law of diffusion:

�⊥ = −D⊥
dn

dr
. (1.35)
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Figure 1.29. Hydrogen atomic ions striking a surface may be energetically back-scattered
as a neutral or be adsorbed, subsequently combining with a second atom and thermally
desorbing as a molecule.

The plasma density decays radially with characteristic length λSOL, sec-
tion 1.6, and so

dn

dr
� − n

λSOL

d2n

dr2
� n

λ2
SOL

. (1.36)

Thus:

Sp,c- f = D⊥n/λ2
SOL. (1.37)
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Figure 1.30. A hydrogen molecule struck by an electron may dissociate by the
Franck–Condon process, creating two atoms of kinetic energy a few eV, or be ionized
in a one-step or two-step process.

One may note that both Sp,i z and Sp,c-f vary directly as plasma density, which
turns out to be rather convenient for purposes of simple analysis.

1.8.2.5 Sonic Flow of Isothermal Plasma into the Sheath

Returning to equation (1.31) we note that the term Sp/ncs is intrinsically positive.
Thus, assuming from symmetry that the flow at distance L from the surface,
i.e. halfway between two surfaces, is stagnant, i.e. v(0) = M(0) = 0, then
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Figure 1.31. A neutral hydrogen atom has a large cross-section for charge exchange with
a plasma ion. The neutral can thus, in effect, be strongly accelerated, penetrating deeply
into the plasma. In this figure, imagine that B is parallel to the solid surface and that the
ions move freely along B while experiencing gyroscopic motion about B. If the charge
exchange collision occurs at an instant when, as a result of the ion’s gyroscopic motion,
it happens to be moving away from the wall, then the fast atom created by the charge
exchange event will be launched toward the centre of the plasma.

dM/dx > 0 here, the flow accelerates towards the surfaces—as it must, of course.
We note that M cannot exceed unity without introducing an unphysical singularity
in the midst of the flow field. We are, however, attracted to the idea that just at
the plasma–sheath interface M reaches unity [1.6, 1.7]: this will, indeed, imply
infinite gradients for n, v, V at that point—but we know that the sheath, being very
thin, is a region where any finite changes in n, v, V will give gradients that are
extremely large compared with the ones in the plasma. Thus, to the same degree
of approximation that we have employed in treating the plasma as being precisely
neutral, we may accept that all gradients become infinite at the plasma–sheath
interface.

Alternatively, one need not divide the space filled by the charged particles
into the two absolutely distinct regions, i.e. the plasma where ne = ni exactly,
and the sheath where ne < ni . Instead, the entire space can be analysed as one
region, employing Poisson’s equation in order to relate the charge imbalance,
(ni − ne), to d2V/dx2, i.e. Poisson’s equation provides the extra equation when
ne �= ni . In that case no infinite gradients occur and it is found that at the point
where (ni − ne)/ni becomes significant, then M ≈ 1 [1.27], corresponding in
the simpler, two-region analysis, to the plasma–sheath interface. Such an analysis
must be numerical, however, and much insight is thereby lost.

It should be noted that we have not proven here that M = 1 at the plasma–
sheath interface. What has been demonstrated is that M cannot exceed 1 in an
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Figure 1.32. Cross-field diffusion into the SOL constitutes an effective particle source in
1D, along-the-SOL modelling.

(isothermal) plasma. At the same time we are receptive to the idea that the flow
actually attains sonic speed at the plasma–sheath interface, but this remains to be
proven. To do that we will have to carry out an analysis from the sheath side,
thus obtaining the Bohm criterion [1.28], section 2.3. For now, however, we will
proceed on the assumption that M = 1 at the sheath edge.

We are further inclined toward the idea of sonic flow into the sheath from
the general result that a fluid subject to an uncompensated pressure difference of
order�p ≈ p will ‘explode’, i.e. it is accelerated to a speed of the order of the
sound speed in the direction of the pressure-gradient force, figure 1.33. This may
be seen by combining the ion and electron momentum equations (1.26) and (1.28)
to give for the plasma fluid:

nmv
dv

dx
= −dp

dx
(1.38)
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Figure 1.33. An uncompensated pressure-gradient force of magnitude −dp/dr � p/r
causes a fluid to expand explosively rapidly.

for a freely expanding, no-source, 1D fluid. Here p ≡ pe + pi . In the direction
along B the plasma is subject to no other force than the pressure-gradient force.
Since the sheath acts as a perfect sink for the ions, we anticipate intuitively a
large �p along the flow direction, of order p itself. From equation (1.38) we have
approximately:

nmv2/L ≈ p/L ≈ nkT/L (1.39)

where L is the gradient scale length and v is a representative velocity. From
equation (1.39) one directly obtains the important result that free expansion of a
fluid occurs at speed v ≈ (kT/mi )

1/2, i.e. at the sound speed.

1.8.2.6 The Velocity Distribution Along the SOL

For either Sp,i z or Sp,c- f we may set:

Sp = Cn (1.40)

with C some positive parameter (whose value must be found from some consid-
erations other than the two conservation equations). Thus from equation (1.31)
we have ∫ M

0

1− M2

1+ M2
dM =

∫ x

0

Cdx

cs
(1.41)
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which yields the desired v(x), M(x) as an implicit function:

2 tan−1 M − M = Cx

cs
. (1.42)

We now introduce the boundary condition

M(L) = 1 (1.43)

which is the information, additional to the two conservation equations them-
selves, needed to constrain C . We have already assumed the upstream boundary
condition M(0) = 0. (We note that, strictly, we should have used [L-(sheath
thickness)] ≈ [L − λDebye] above, but we ignore this tiny correction.) Thus from
equation (1.41):

π

2
− 1 = C L

cs
. (1.44)

We note that this informs us that the source strength is constrained by the
size of the space available, L , and by the plasma temperature (cs)—or, at least,
that all three quantities, C , L , cs , must satisfy a constraint. Unless this constraint
is satisfied the plasma cannot exist in steady state.

(a) Ionization source: The constraint gives:

π

2
− 1 = σvi z(T )

cs(T )
nn L . (1.45)

Thus, for steady state, the electron temperature is not a free parameter for
a locally self-sustained plasma (i.e. impact ionization due to the plasma’s
own electrons), but Te is a function of the product nn L . This result has been
known for almost a century for low pressure gas discharges [1.29], where
the degree of ionization is usually very small, and so nn is simply given by
the original gas fill pressure of the discharge tube, while L is replaced by the
radius R of the (cylindrical) gas tube, since the sink action is primarily radial
to the cylinder walls. Thus a Te(pgas R) relation is anticipated theoretically,
and is observed experimentally, see figure 1.34 [1.29]. Lowering pgas raises
Te since each electron then ‘has to work harder’ to maintain particle balance.
Decreasing R also forces Te up since the volume (producing the particles,
which is proportional to R2) is reduced relative to the surface area (sink,
which is proportional to R). The gas discharge spontaneously achieves the
value of electron temperature required for particle balance, drawing just
the necessary power input from the applied longitudinal electric field (this
process thus sets the value of that field). If some additional external power
input were added, the longitudinal field would decrease and/or steady-state
conditions would be lost. It is a remarkable fact that it is particle/momentum
balance—rather than power balance—which controls the electron tempera-
ture in a locally self-sustained plasma.
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Figure 1.34. For low pressure, non-magnetic electric discharges such as fluorescent lights,
Te is a function of the product pneutral R where R is the radius of the cylinder and pneutral
is the gas pressure, pgas. Ei ≡ ionization potential. Constant c: ≈ 4 × 10−3 for He,
≈ 6× 10−2 for Ne, ≈ 4× 10−2 for Ar, ≈ 7× 10−2 for Hg, ≈ 10−2 for H2, ≈ 4× 10−2

for N2 [1.29].

It should also be noted, however, that the foregoing simple picture—where
nn was treated as a fixed, constant, externally controllable parameter—does
not apply to a tokamak SOL. There, nn varies spatially by many orders
of magnitude, from regions just near the recycling surface, to deep in the
core [1.30]. We therefore do not conclude, even when ionization within
the tokamak SOL is a large part of the 1D flow source, that Te is fixed,
independent of power balance considerations. We return to the matter of
including the power balance implication of ionization within the SOL, in
section 5.5.

(b) Cross-field particle source. The constraint now becomes:

π

2
− 1 = D⊥

λ2
SOL

L

cs
(1.46)
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Figure 1.35. Spatial variation of flow Mach number for three models: A: Sp ∝ ne; B:
Sp = constant; C: Sp ∝ (1− M2)/(2M(1+ M2)).

i.e.

λSOL ≈
(

D⊥L

cs

)1/2

(1.47)

We had obtained this result earlier, equation (1.10). That is, the cross-field
density gradient is constrained by particle/momentum balance.
For either type of source the spatial variation is the same, equation (1.42),
curve A in figure 1.35. One notes that M(x) is not too far from being
linear, but it does steepen to an infinite gradient at the sheath edge, x = L .
This non-linear variation results from assuming Sp ∝ n; one can show, see
problem 1.20, that n(x) does not vary greatly with changes in the form of
Sp. One may note that even assuming Sp = constant, curve B in figure 1.35,
does not alter the solution very much. One should note that for the ‘complex
SOL’ where Sp,i z  is also important, section 1.9 and chapter 5, nn(x) probably
varies strongly, neutral density being much larger near the recycling surface
than far upstream. In such cases one anticipates the M(x) would stay small
until the ionization region near the plates was reached, where it would rapidly
rise to unity, see problem 1.20.

1.8.2.7 Variation of Plasma Density Along the SOL

Algebraic manipulation of the two conservation equations also gives the ‘conser-
vative form of the momentum equation’:

d

dx
(pe + pi + mnv2) = 0 (1.48)
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or:

pe + pi + mnv2 = constant. (1.49)

One should note here that the intuitive argument used in section 1.8.2.1
justifying inclusion of an effective drag term that we employed in what might
be called the ‘inertial form of the momentum equation’ must now be viewed as
somewhat suspect: we do not find such a term in the conservative form, equa-
tion (1.49). Why not? The only fully satisfactory answer is to employ a more
rigorous derivation of the momentum equation, section 9.4.

For the isothermal assumption, equation (1.49) simplifies to give:

n(x) = n0

1+ [M(x)]2 (1.50)

where n0 = n(0). Note that equation (1.50) is very general since it is completely
independent of the particle source Sp—including its spatial variation; see also
problem 1.20. We know M(x) from equation (1.42), therefore n(x) is also now
known. One notes that the variation of plasma density along the SOL is not very
great for isothermal conditions, only dropping by a factor of 2 from upstream to
the sheath edge.

The particle flux density at the sheath edge, �se, is therefore:

�se = 1
2 n0cs . (1.51)

1.8.2.8 The Average Dwell-Time in the SOL, τSOL

While the flow velocity is not constant along the SOL, equation (1.42), a rep-
resentative value of v is ∼ 1

2 cs , figure 1.35, for the spatially ‘well distributed’
sources which have been considered here. Thus one estimates τSOL ≈ L/cs,
equation (1.8). Alternately, we may define τSOL to be the particle confinement
time in the SOL, which is the particle content of the SOL divided by the particle
outflux, hence τSOL = (nSOLL)/( 1

2 n0cs) ≈ L/cs , as before.
For a complex SOL it can be the case that the ionization distances are very

short and the particle source is concentrated very near the solid surface; the latter
way of defining τSOL will still give τSOL ≈ L/cs . In this case, however, flow only
exists very near the target and most of the SOL is stagnant. Thus the average time
in the SOL involves groups of particles with extremely different dwell times in the
SOL. Indeed ions having v → 0 have dwell times → ∞! We see again that the
result λSOL ≈ (D⊥L/cs)

1/2, Equation (1.10), is not applicable. It also appears
that the SOL will extend radially all the way to the wall in these circumstances,
assuming that D⊥ �= 0, since many of the particles spend very long times in the
SOL. We will return to this matter in chapter 15 on flow reversal and chapter 19
on the relation among SOL decay lengths.
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Figure 1.36. Variation of the electric potential on a wall or an electrode is almost entirely
‘soaked up’ within the thin sheath, leaving the plasma unaffected. Here the potential on
the ‘far’ (right) wall is assumed not to change as the potential of the ‘near’ (left) wall is
varied relative to the plasma potential, which is taken to be V = 0 here. See section 2.6
for the case where a potential difference is applied between the two end walls.

1.8.2.9 The Parallel Electric Field in the SOL

We may combine the Boltzmann relation, equation (1.12), with equation (1.50) to
eliminate n, obtaining:

V (x) = −kTe

e
ln[1+ (M(x))2] (1.52)

we have M(x) from equation (1.42), thus we know V (x) and E‖(x). This gives
the pre-sheath (i.e. the plasma) electric field, figure 1.20. At the sheath edge one
has

Vse ≡ V (L) = 
kTe

e
ln 2

� − 0.7
kTe

e
. (1.53)

If any larger potential than this is applied externally to a plasma—whether
via electrodes connected to a power supply, or the spontaneous surface charging
which occurs when the more mobile electrons rush to the walls immediately after
initialization of the plasma—then the excess potential is shielded out by the Debye
sheath, figure 1.36.

We will show in section 2.6 that the spontaneous wall charging for floating
(ambipolar) conditions results in a negative surface potential of ∼ −3kTe/e for
hydrogenic plasmas. Therefore, most of the latter potential appears across the
sheath, with only ∼ −0.7kTe/e penetrating into the plasma—constituting the
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ambipolar electric field required to help move the ions at each point along the
SOL to the sink, figure 1.20.

1.8.2.10 Flow With/Without Friction

The above results, for the simple SOL, assumed no true drag, i.e. no viscous
drag and no collisional drag due to neutrals. The rather modest drops of n and V
along the SOL given by equations (1.50) and (1.53) then result. When frictional
drag, e.g. due to collisions with neutrals, is significant the parallel pressure and
potential gradients increase in order still to achieve sonic flow at the sheath edge
in the face of such momentum losses, section 10.4, and quite large drops in n and
V can then occur within the plasma.

1.8.2.11 The Validity of the Isothermal Fluid Assumption for the SOL

By assuming an isothermal fluid model of the SOL, it has been possible to develop
a very simple and entirely analytic prescription for all the major features of the
SOL, resulting in quite simple expressions for n(x), v(x), V (x). But how reliable
are such results? After all, this model neglects the following real effects, among
others:

(a) there is a natural cooling of a flow as it accelerates to the sonic speed;
(b) self-collisional mean free paths can often be ≥ L , making fluid treatments

strictly invalid, section 9.12;
(c) viscous effects have been neglected. (We have already noted in the last sec-

tion that frictional drag on the plasma due to neutral collisions can certainly
have a major effect on the solution and that effect will have to be considered
explicitly, section 10.4).

In this section we will show, by comparisons with other solutions; where the
foregoing three effects have been allowed for, that these effects do not appreciably
alter the results obtained from the isothermal fluid model, and that these results
are therefore a good first approximation for the simple SOL, section 1.9, chapter 5.

Before proceeding, it should be noted that we are not considering here the
effect on the SOL solution of the parallel temperature gradients which arise in the
SOL due to the finite parallel heat conductivity of the edge plasma. This enor-
mously important regime—the conduction-limited regime, section 1.9, which is
of particular interest for divertor tokamaks—is dealt with separately, section 5.3.
The parallel (ion) temperature gradient being considered here is that caused by
the acceleration of the flow, which converts static pressure into dynamic pressure.
This is a relatively small effect and of less consequence.

Chapter 10 discusses in detail other 1D plasma solutions where one or more
of the following are included:

(a) the fluid approximation is replaced by a kinetic analysis where the complete
ion velocity distribution fi (x, v) is calculated at each location x along the
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flow rather than just the average quantities, n, v, p calculated in fluid mod-
elling;

(b) the (ion) isothermal assumption is relaxed and acceleration cooling is al-
lowed for;

(c) the effect of shear viscous drag in the SOL is allowed for (although this is
strictly a 2D effect).

Results for the quantities of principal practical importance are given in table 1.2. It
can be noted that the differences between these various 1D models are small, and
indeed could probably not be measured with existing techniques. See chapter 10
for further discussion. Thus, the simple, isothermal fluid model is an adequate,
convenient, analytical tool for describing the behaviour of the simple SOL, sec-
tion 1.9.

1.8.2.12 Is Supersonic Plasma Flow Possible in the SOL?

It should not be concluded from the isothermal fluid model that supersonic plasma
flow is actually impossible or even that the gradients of n, v, V , p necessarily
have singularities in the plasma solution at the plasma–sheath interface. As will
be shown in chapter 14, when temperature varies with x , a smooth transition to
supersonic flow upstream of the plasma–sheath interface can occur.

Even for the isothermal model one can hypothesize a sufficiently exotic
particle source distribution such that singularities do not occur when the flow
reaches the sound speed. Consider, for example, the (admittedly rather improba-
ble) source:

Sp = C(1− M2)

2M(1+ M2) 
(1.54)

with C some constant. Insertion of this value of Sp in equation (1.31) shows that
the singularity is now avoided. This Sp allows for direct integration, giving the
result:

M(x) = (exp[(ln 2)(x/L)] − 1)1/2. (1.55)

This solution for M(x)is plotted in figure 1.35, curve C, which clearly now has no
singularity at M = 1. Reaching M = 1 as a result of such a source will not cause
anything dramatic to happen that would cause us to think that the (quasineutral)
plasma solution could not be extended further in space, i.e. that the sheath must
start when M reaches unity.

Thus, it is not an absolutely general result—even when the isothermal as-
sumption is made—that analysis of the plasma equations will guarantee that the
sheath-edge velocity be sonic. In order to establish this critical matter more gen-
erally we must examine the sheath equations, which is done in the next chapter,
resulting in the Bohm criterion.
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Table 1.2. Calculated sheath related quantities from various models. Te = Ti .

Normal- Model
Quantity ization

factor 1 2 3 4 5 6 7 Ave

1. Plasma density at
sheath edge, nse n0 0.50 0.40 0.60 0.52 0.50 0.50 0.43 0.51
2. Plasma flow velocity
at sheath edge, vse (2kT0/mi )

1/2 1.00 1.13 0.95 0.90 1.05 1.03 0.88 0.99
3. Normalized potential
at sheath edge, ηse kT0/e −0.69 −0.72 −0.41 −0.65 −0.69 −0.69 −0.86 −0.67
4. Normalized (floating)
wall potential, ηw kT0/e −3.19 −3.08 −2.91 −3.26 −3.13 −3.15 −3.45 −3.17
5. Particle outflux
density, �se n0(2kT0/mi )

1/2 0.50 0.55 0.63 0.47 0.53 0.52 0.38 0.51

Models.

1. Isothermal fluid model, section 10.2 [1.32].
2. Adiabatic fluid model [1.32].
3. Kinetic model of Emmert et al., section 10.7 [1.33].
4. Kinetic model of Bissell et al., section 10.7[1.34].
5. Fluid, collisionless model, T i⊥ �= T i‖ , section 10.8 [1.35].
6. Fluid, collisional model, T i⊥ = T i‖ , section 10.9 [1.35].
7. Kinetic model with cross-field viscosity, η⊥ = nm D⊥ [1.36].

In order to make a valid comparison, the results of [1.33–1.35] were used for Te = T i⊥(0) = T i‖ (0) ≡ T0,
temperature at the symmetry point of the system (e.g., at x = 0 of a SOL, figure 1.20), rather than for the
examples actually illustrated in [1.35], where T i‖ (0) < T i⊥(0); H+ ions; no secondary electron emission;
see chapter 10 for a more complete discussion of these comparisons.
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1.9 Comparison of the Simple SOL and the Complex SOL

The most important distinguishing property among SOLs is the existence or
absence of a significant temperature drop along the length of the SOL. When
the plasma is essentially isothermal—along each individual flux tube—the SOL
is said to be in the sheath-limited regime: the sheath is the only important
element in the edge influencing the transport of particles and power from the
confined plasma inside the separatrix to the solid surfaces. The acceleration
of the flow to sonic speed at the sheath edge can involve a modest drop in
temperature, chapter 9, as thermal energy is converted to kinetic energy of
flow; however, we will still treat that as an essentially isothermal situation. By
contrast, very large parallel temperature gradients can arise in the SOL owing
to the finite heat conductivity of plasmas and the fact that the heat entering the
SOL from the main plasma must traverse a considerable length, of order L , to
reach the heat sink at the solid surface. It may seem surprising that classical
parallel heat conductivity of a plasma could ever be a constraining factor, but it
should be kept in mind that the SOL is much cooler than the core and classical
conductivity varies as T 5/2, a quite strong function; see section 9.6. As will
be shown in sections 4.10, 5.3, under a wide range of operating condition—
particularly for divertors—the parallel temperature drop can be significant
between the upstream location half-way between targets along the SOL, and
the sheath edge in front of the target. This is called the conduction-limited
regime (although the sheath continues to be an important element in this regime).
Note that the term ‘sheath limited’ does not imply that Te drops across the
sheath: for both regimes Te remains effectively constant across the sheath, see
section 2.2.

The use of the term ‘limited’ should not be misunderstood: for magnetic
fusion plasmas the power leaving the confined plasma is a given, fixed quantity, so
far as the SOL is concerned, and the power will reach the solid surfaces regardless
of what regime the SOL is in (ignoring direct volumetric power losses from the
SOL, such as radiation). It is actually the SOL plasma density and temperature
that are determined or ‘limited’ by the power entering the SOL, as well as other
parameters.

While the presence or absence of a significant parallel temperature gradient
is the single most important characteristic distinguishing SOL regimes, other
factors, such as the presence or absence of ionization in the SOL, are also
important. We thus also define the simple SOL as one which is not only in
the sheath-limited regime but is characterized by a number of other features
which simplify understanding and analysis, such as the absence of local
ionization. The presence of such complicating factors is used to define the
complex SOL, which would usually be in the conduction-limited regime also.
More complete definitions of the simple and complex SOLs are given in
chapter 4. The distinctions between simple and complex SOLs are summarized
in table 1.3.
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Table 1.3. The principal distinctions between simple and complex SOLs.

Simple SOLs Complex SOLs

1. Parallel temperature gradients ∇‖Te,i ≈ 0 ∇‖Te,i �= 0
2. Thermal coupling of electrons de-coupled coupled

and ions
3. Particle source cross-field ionization within

transport from the the SOL is
main plasma important

4. Volumetric sources and sinks none can be important
of particles, momentum and
energy in the SOL

Problems. Chapter 1

1.1. Find the value of safety factor q and θpitch at the LCFS for a circular JET-size
tokamak: Bφ = 3 T, Ip = 3 MA, R = 3 m, a = 1.5 m. During current
‘start-up’ and ‘ramp-down’ Ip changes greatly; consider the effect on q(a).

1.2. Note from equation (1.1) that q is not a constant across the plasma, but
depends on r , q(r); 0 ≤ r ≤ a. Assume Bφ = constant. The plasma current
concentrates near the centre where the temperature is highest and therefore
the electrical conductivity is highest. Find Bθ (r) assuming a plasma current
density jφ [A m−2]:

jφ(r) = j0

[
1−

(
r

a

)2]3

.

Show that q(a) = 4q(0), i.e. the q-value at the edge is four times larger
than at the centre. Thus if q(a) = 2–3, which gives a stable tokamak, the
core of the plasma has q(0) < 1, which is unstable. This results in internal
disruptions which are observed as sawtooth temporal behaviour of the core
temperature: the temperature on the axis builds up over a period of time
then crashes down as the central confinement is destroyed, dumping the heat
content of the core into the more peripheral regions of the main plasma. In
the latter region inverse sawteeth are observed.

1.3. The magnetic field of a poloidal divertor tokamak. Consider two equal and
parallel line-currents, Ip: one at x = +a representing the plasma current
(which, in reality, is spatially distributed; see problem 1.2) and one at x =
−a, representing the divertor coil current:

(a) With the aid of the Biot–Savart law, sketch the pattern of Bθ (x, y),
approximately. The location where Bθ = 0 is the ‘X-point’; where
is it? Where would it be if Ip(a) = 2Ip(−a)?
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Y

X

a—a

Ip Ip
(a)

0.5

0.5

SOL
K>1

K<1
x<0

private
plasma

1.0

K<1
x>0
main

plasma

separatrix
(K = 1)

1.5 x
a

y
a

(b)

Figure 1.37. Problem 1.3. (a) Two parallel line currents create a poloidal divertor magnetic
field. (b) The Bθ -field lines. K is a constant of integration whose value determines the
location of the field line. (Figures (a) and (b) not to same scale.)

(b) Find Bθ (x, y, Ip, a) using the Biot–Savart law.
(c) Thus show the slope of the tangent to Bθ is:

y′ ≡ dy

dx
= x(a2 − x2 − y2)

y(a2 + x2 + y2)
.

(d) Thus show that the equation of the contours of the Bθ -field lines is:

y

a
= ±

[
−

(
x

a

)2

− 1+
(

4

(
x

a

)2

+ K

)1/2]1/2

where K is a different constant on each Bθ -line. Show that K = 1 for
the separatrix; that the K < 1 lines are either the contours in the main
plasma, or the contours in the private plasma; and that the K > 1 lines
are in the SOL; see figure 1.37(b).

(e) Suppose a divertor target is created by inserting a solid plane at x = 0,
extending in the ±y-directions. (Is there a private plasma in this case?
Would there be one if the solid plane were inserted at some location
x < 0?) Let there be a toroidal magnetic field Bφ , in the same direction
as Ip. For flux lines in the SOL, show that the distance s‖ measured
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along the (total-B) line, starting at the target is:

s‖ =
∫ x

0

|B|
|Bθ | (1+ (y′)2)1/2dx .

Is this expression valid all the way to the other target?
(f) Numerical problem: for a = 2 m, Ip = 5 MA, Bφ = 3 T, K = 1.1, find

the target-to-target distance, smax‖ . Find a simple estimate to compare
this numerical value with. What is the value of smax‖ for K = 1?

1.4. For a CMOD-size tokamak withBφ = 9 T, R = 0.67 m, a = 0.22 m,
Ip = 0.64 MA, assume in turn:

(i) a limiter configuration consisting of three evenly spaced poloidal rings,
(ii) a single-null poloidal divertor (one X-point, as in figure 1.11).

Assume at the LCFS that T = 20 eV and ne = 8 × 1019 m−3. D⊥ =
0.5 m2 s−1.

(a) Estimate L .
(b) Estimate τSOL and compare this with the time required for a particle to

diffuse from the centre of the main plasma to the LCFS.
(c) Compare τSOL with the ion–ion collision time, where τ coll

i i ≈
λi i/v

thermal
i and vthermal = (8kT/πm)1/2. Is the SOL collisional?

(d) Estimate λSOL. Estimate the total volume occupied by the SOL and
compare this with the volume of the main plasma. For this estimate
assume λSOL remains constant all around the SOL.

(e) What is the plasma-wetted area? Compare it with the total wall area
assuming the wall radius is 0.05 m larger than the radius of the LCFS.
Find Awet for the poloidal-limiter configuration if the leading edge of
the limiter is bevelled at 10◦ to B, as shown in figure 1.38.

LCFS

β=10°

B

Figure 1.38. Problem 1.4. A beveled leading edge on a limiter distributes the heat load.

(f) For the limiter case it can be reasonable to assume that λSOL remains
constant around the SOL. For the divertor case, as can be seen from fig-
ure 1.37(b), there exists an expansion of the separation of the magnetic
flux surfaces at the target, relative to the typical value of the separation
around most of the main plasma. Thus the value of λSOL for purposes of
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deposition of particles and power on the target (the plasma-wetted area)
is increased by a flux expansion factor, see section 5.6. Assume here that
this factor is 5×. Find Awet for the poloidal divertor configuration.

1.5. For the same parameters as assumed in problem 1.4:

(a) Find λDebye and compare with L .
(b) Estimate the E-field parallel to B in the SOL plasma.
(c) If at some point in the SOL the electrostatic potential V = −15 volts,

with the reference potential V = 0 at the point where n = n0, find n at
that location in terms of n0.

(d) What is the potential drop along the SOL from the midpoint to the edge
of the sheath?

(e) Estimate the pressure gradient force (per particle) on the ions and elec-
trons. Include signs.

(f) At the sheath edge find pe, pi [N m−2].

1.6. The particle conservation equation, (1.15), assumes a steady-state. Re-
develop this equation to allow for ∂n/∂t �= 0.

1.7. The momentum conservation equation, (1.20), neglects gravity. Assume
gravity acts in the +x-direction and re-develop this equation to allow for
g �= 0.

1.8. The Boltzmann relation, equation (1.12), is strictly valid only if the electrons
have no fluid velocity. Estimate the magnitude of the error involved in
using the Boltzmann relation if, in fact, the electron fluid velocity is cs , the
isothermal plasma sound speed. Assume Te = Ti and that the ions in the
plasma are D+.

1.9. Derive equation (1.31).

1.10. Figure 1.39 is a plot of σ and σv, as functions of electron energy E (eV) for
σ , and of electron temperature T (eV) for σv, for the ionization of H atoms
by electron impact:

e+ H → 2e+ H+.

One can estimate σv  by σce, where ce ≡ (8kTe/πme)
1/2, the thermal

electron velocity. When is this likely to provide a good estimate? When
not? Explain. Consider specifically the cases for 10, 100 and 1000 eV and
comment.

1.11. Collision frequency νcoll ≡ n f σv where n f is the density of ‘field’ particles
that the ‘test’ particle is colliding with, e.g. electrons in the case of an H-
atom test particle entering the plasma. The collisional mean free path of a
test particle is λmfp = vtτcoll , where vt = velocity of the test particle and
τcoll ≡ ν−1

coll.
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10-12
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10-18

JG99.73/4c

10-19

10-20

10-21

10-22

10-23

10-1 100 101

T or E(eV)

102

e + H(Is)→e + H+ + e

103 104

Figure 1.39. Problem 1.10. The electron-impact ionization cross-section and ionization
rate for atomic hydrogen [1.26].

(a) Consider a 10 eV H-atom test particle entering a plasma of density
1019 m−3 and Te = Ti = (a) 8 eV, (b) 80 eV. Find νcoll, τcoll and λmfp
for (a) ionization by electron impact (b) charge exchange. Compare and
comment on the implications.

(b) Consider a 0.2 eV H2-molecule test particle entering the same plasma,
as in (a). Evaluate τcoll and λmfp for the various processes that the H2
experiences. Compare and comment.

1.12. At t = 0 a carbon atom is injected into a plasma of density 1019 m−3 and
T = (a) 10 eV, (b) 100 eV. If the C particle only stays in the plasma for
dwell time 1 ms, a typical value of SOL dwell time, what charge state does
the particle spend most time in? Ignore recombination (which, in fact, can
be important).

1.13. Consider a radial profile of density in the SOL that is not the usual expo-
nential but rather:

n(r) = n0(1− ar)e−ar

where n0 = density at the LCFS and a = 100 m−1. For n0 = 1019 m−3,
T = 20 eV, constant across the SOL, and D⊥ = 0.3 m2 s−1, compare the
cross-field particle source, Sp,c- f and the ionization source Sp,i z at r = 0
and r = 0.01 m, assuming nH = 1018 m−3, constant across the SOL.
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1.14. It is usually assumed that the plasma speed at the upstream end of the SOL,
x = 0, is 0. Consider the case when the fluid is already moving at x = 0,
with Mach number M(0) = 1/2. Assume this is caused by a source of
ionization at the upstream end of the SOL, i.e. there is some ionization
occurring within the SOL. Suppose that otherwise the SOL is supplied by a
cross-field source. We want to calculate λSOL for this case.

(a) Show how equation (1.44) is altered in this case.
(b) Show how eqns. (1.46), (1.47) are altered.
(c) Show as M(0) → 1, that λSOL → ∞. Explain physically why this

happens.

1.15. Consider a neon light: a cylindrical discharge tube of radius r = 1 cm, at
pressure 2 torr. What is the electron temperature? Check that equation (1.45)
is reasonably consistent with figure 1.34 for He using the fact that σvi z =
10−17 m3 s−1 for Te = 4 eV. Assume a neutral temperature of 300 K to
relate neutral density and pressure.

1.16. Derive equation (1.48).

1.17. Show how the result for the particle flux density at the sheath edge, equa-
tion (1.51), would change if M(0) = 1

2 . Explain physically why the density
drop along the SOL would disappear as M(0)→ 1.

1.18. Consider a plasma contained between two planes a distance 3 m apart;
ne = 1019 m−3, T = 20 eV. A transparent planar mesh is inserted at
the midplane between the two end surfaces for purposes of applying an
electrostatic potential difference across each half of the plasma, as shown
in figure 1.40.

Mesh

Vapplied Vapplied

Figure 1.40. Problem 1.18. An electrostatic field applied to a planar plasma between solid
electrodes with a central mesh.

For Vapplied = 100 volts, calculate how much voltage drop occurs within
the plasma and how much occurs across the sheaths at the end surfaces. For
simplicity assume that no sheath develops at the mesh surface. Assume that
the polarity is such as to bias the end plates at −100 volts relative to the
plasma centre at V = 0. Estimate the magnitude of the electric field in the
plasma and in the sheath; compare and comment.
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1.19. Equation (1.31) shows that dM/dx → ∞ as M → 1. For the usual
assumptions show that the gradients of n and V also become infinite as
M → 1. Show in each case whether the limit is +∞ or −∞. Give a
physical interpretation of your findings.

1.20. Consider a one-dimensional, isothermal plasma flow with spatially varying
particle source Sp(x). Define a new independent variable y (1.38):

y ≡
∫ x

0
Sp(x ′)dx ′.

(a) Show that nv = y, assuming stagnant upstream conditions.
(b) Show that the momentum equation (1.48) gives vy + nc2

s = constant,
and find the constant.

(c) Thus show that this gives the result of equation (1.50), n/n0 = (1 +
M2)−1, regardless of the form of Sp(x).

(d) Show that M(y) is also a universal result, independent of the form of
Sp(x), and is given by:

y

csn0
= M

1+ M2
.

(e) Evaluate y(L) and thus show that:

M(yn) = y−1
n − [y−2

n − 1]1/2

where yn ≡ y/y(L).
(f) Find M(x/L) and n(x/L) for the case of y ∝ (x/L)a where a is a

positive parameter. Plot for a = 1
3 and a = 3. Physically, what situation

is indicated when a � 1? When a � 1?

1.21. Derive equation (1.55).
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Chapter 2

The Role and Properties of the Sheath

2.1 The Bohm Criterion. Historical Background

The space within the vessel occupied by the charged particles consists of two
regions, Figure 2.1:

(a) the plasma which usually fills the vast majority of the available space. The
plasma is by definition the region where ne = ni (for the case of singly
charged ions, otherwise ne =∑

i ni Zi , sum over all ions), i.e. the plasma is
electrically neutral, or at least ne ≈ ni , i.e. quasineutrality holds;

(b) the sheath is a region of net charge, usually in a thin region adjacent to a
solid surface and ne < ni in the sheath.

plasma
where ne ≈ ni

sheaths
where ni 

>
 ne

Figure 2.1. The space available to charged particles is divided into the quasineutral plasma
and the sheath, which is characterized by net (positive) space-charge density.

We will later consider the justification of this simplification and will show
that it is often an excellent approximation to the actual situation, where in reality
no crisp distinction exists between plasma and sheath and no precisely defined
sheath edge exists.

When we analysed the plasma side and assumed ne = ni precisely, we found
for the simplest assumption—of an isothermal fluid model with a particle source

61
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proportional to n—that the plasma fluid velocity could not exceed the (isother-
mal) sound speed, cs = [k(Te + Ti )/mi ]1/2, without singularities arising, i.e. the
plasma solution ‘blows up’ with dv/dx , dn/dx , dV/dx → ±∞, section 1.8.2.5.
Thus we conclude, at least for these assumptions, that:

vse ≤ cs (2.1)

where the subscript ‘se’ denotes the sheath edge. By analysing the sheath side of
the plasma–sheath interface (plasma–sheath edge), we will now show, following
Bohm [2.1], that

vse ≥ cs . (2.2)

We will thus conclude that the only possibility is:

vse = cs (2.3)

at least for the above assumptions. Relation (2.2) is called the Bohm criterion.
Sometimes, incorrectly, equation (2.3) is called the Bohm criterion, but this is not
the most general result.

In the next section we will give a derivation of relation (2.2) for the sim-
ple case where Ti = 0, following Bohm in that regard. Historically this is
an important case and, in fact, gives a more interesting (surprising) result than
occurs when Te ≈ Ti . Non-magnetic, low pressure discharges—which have
been much studied since the 19th century, and which have, in fact, been used
to establish a number of the basic findings of modern physics—are characterized
by Te � Ti ≈ Tambient [2.2]. This weak energy-coupling between the electrons
and ions is due to:

(a) the fact that ohmic heating power, Pohmic, goes preferentially into the lighter
charged species; Pohmic = σ E2, where the electrical conductivity σ ∝
m−1/2 [2.3];

(b) energy-transfer collision times between particles of dissimilar mass can be
quite long, τ

Energy
ei = (mi/me)τ

Energy
ee [2.4], and longer than the characteris-

tic time for electron energy gain by ohmic heating and energy loss by inelas-
tic, e.g. excitation, collisions and wall collisions (at least at low pressures;
in high pressure discharges, e.g. lightning, Te ≈ Ti [2.2]). In magnetically
confined discharges Te ≈ Ti can hold due to the much increased loss times
to the walls.

For plasmas where Te ≈ Ti , it may not be thought too surprising that the ion
flow velocity to a (perfectly absorbing) wall would be of the order (kT/mi )

1/2

since that is, approximately, the ordinary gas sound speed—and, intuitively, one
anticipates that something like sonic velocities would characterize fluid flow into
an all-absorbing sink. For plasmas with Te � Ti , however, the intuitive expecta-
tion that the exit velocity of the ions would be≈ (kTi/mi )

1/2 turns out to be quite
wrong. The fact that vion

exit � (kTi/mi )
1/2 for low pressure discharges had been
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established experimentally by the early decades of the 20th century [2.5], but it
was not for a long time understood. It was Irving Langmuir, first Nobel Prize
Winner in plasma physics—and the originator of the term ‘plasma’ to describe
the fourth state of matter [2.6]—who first showed why the ion exit velocity is
related to the electron temperature, not the ion temperature (when Te � Ti ). This
was demonstrated in 1929 [2.5] from an analysis of the plasma equations (see
section 10.6) and was not as definitive as Bohm’s 1949 [2.1] analysis which was
carried out from the sheath side.

We may well ask: ‘Why does vion
exit have anything to do with Te?’. The answer

lies in the ambipolar electric field which spontaneously arises within a plasma
which is bounded by electrically isolated, i.e., electrically floating, absorbing
walls, and because electrons have very high thermal velocities compared with
ions. The resulting negative charge on the wall adjusts itself spontaneously to
bring about an equal ion and electron loss to the walls, in steady state; figure 2.2.
This results in an electrically floating wall potential Vw which is sufficient to
significantly inhibit the free Maxwellian electron outfluxes. This requires that
Vw be of order −kTe/e, and it means, generally, that the changes of electrostatic
potential along the plasma, scale as kTe/e, rather than as kTi/e, say. The ions ex-
perience the same potential changes, but for them an acceleration is involved, and
hence they gain energy on the scale of kTe, i.e. vion

exit is of the order (kTe/mi )
1/2.

While this plausibility argument correctly gives a rough estimate of vion
exit—

and does correctly identify the ambipolar electric field as the cause—it is too
crude to tell us whether this is the velocity at the plasma–sheath edge—or the
velocity right at the wall. And what if the wall is electrically biased relative to the

ambipolar
E-field

Ions Ions

electrons electrons

Figure 2.2. If the walls are electrically isolated (floating) an ambipolar electric field
spontaneously arises within the plasma and sheath, bringing about zero net outflow of
charge to the walls in steady state (1D system). Only a small fraction of the wall-directed
electrons reach the wall on the first try, but all of the ions do.
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plasma using an external power supply, rather than being allowed to float? (The
result turns out to be the same, so long as the surface is not biased so positively
as to repel ions, section 2.6.) We will need a more careful treatment in order to
proceed further.

2.2 The Maxwellian Velocity Distribution

The sheath is so thin that it is usually collisionless. Many sheath properties are
therefore related to Maxwellian fluxes. We will therefore step back for a moment
from our development of sheath analysis, for a somewhat extended aside on the
properties of Maxwellian distributions.

When a set of identical gas or plasma particles is left alone to interact solely
with each other, collisionally—without other forces being present, and with none
of the particles being lost from the system, nor new ones introduced—then after
a length of time greater than the self-collisional time a steady state called ther-
modynamic equilibrium results from this self-collisionality—characterized by a
Maxwellian velocity distribution f Max(v). It can be proven rigorously [2.7] that
f Max must be of the form:

f Max(vx , vy, vz) = c exp[−b(1/2)m{(vx−ax )
2+(vy−ay)

2+(vz−az)
2}] (2.4)

with no other dependences being possible; ax , ay , az , b, c are constants whose
physical meaning we will identify below, m is the mass of each particle and
f (vx , vy, vz)dvx dvydvz is the number of particles with velocity in [vx to vx+dvx ,
vy to vy + dvy , vz to vz + dvz]. All velocities are possible, −∞ < vx,y,z < +∞.
v ≡ (vx , vy, vz). dv ≡ dvx dvydvz . Note that at this stage the concept of ‘temper-
ature’ has not yet appeared, and it still remains for us to define ‘temperature’ and
its relation to these, otherwise unknown, constants.

When any of ax , ay, az �= 0 we have the drifting Maxwellian distribution,
with drift or mean velocity vmean = (ax , ay, az), as will be shown below. For the
moment we take the special case of vmean = 0, giving the ordinary Maxwellian
distribution.

We may transform to spherical (velocity) coordinates by defining the particle
speed:

w ≡ (v2
x + v2

y + v2
z )

1/2 (2.5)

0 ≤ w < +∞ (2.6)

giving
f Max(w)dw = 4πw2c exp[−b(1/2)mw2]dw. (2.7)

We require that
∫∞

0 f Max(w)dw = n, the number of particles m−3 as a nor-
malization. We may use the table of integrals, table 2.1, to then show that the
constants b and c are related by:

c = n(mb/2π)3/2. (2.8)
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Table 2.1. Some useful integrals.

n
∫∞

0 dxxne−αx2 ∫∞
−∞ dxxne−αx2 ∫∞

0 dyy
n−1

2 e−αy

0 π1/2

2α1/2
π1/2

α1/2
π1/2

α1/2

1 1
2α

0 1
α

2 π1/2

4α3/2
π1/2

2α3/2
π1/2

2α3/2

3 1
2α2 0 1

α2

4 3π1/2

8α5/2
3π1/2

4α5/2
3π1/2

4α5/2

5 1
α3 0 2

α3

6 15π1/2

16α7/2
15π1/2

8α7/2
15π1/2

8α7/2

We may define the temperature T of a set of gas or plasma particles in a
very simple, convenient and physically obvious way as being that quantity which
satisfies the definition equation:

3
2 nkT ≡ n

〈 1
2 m(v2

x + v2
y + v2

z )
〉 ≡ ∫

f (v)
( 1

2 m(v2
x + v2

y + v2
z )

)
dv (2.9)

where k is a constant (the Boltzmann constant) which is required here if we want
to render this definition of ‘temperature’ consistent with the standard, but less
physically obvious, definition based on the freezing point of water at atmospheric
pressure being 273 K. (If we only ever dealt with monatomic gases or plasmas,
where the only random or ‘thermal’ energy is that associated with the v, centre of
mass velocities of the particles—then presumably the definition of ‘temperature’
would simply have been taken to be

〈 1
2 m(v2

x + v2
y + v2

z )
〉

[joules]. And thus,
we might say: ‘It’s not too hot out today, only 6 maJ’, i.e. 16 ◦C (maJ ≡ milli
attojoules)). One apparently could have done without the factor 3/2 in equa-
tion (2.9), just absorbing it into the constant; however, from statistical mechanics
it can be shown (2.8) that when other types of thermal energy, ‘modes’, are also
possible—for example rotational and vibrational modes for diatomic molecules—
then each energy mode has, on average, 1/2kT of energy in equilibrium. The
3/2 in equation (2.9) is then seen to be due to the three independent velocity
components.

Strictly the word ‘temperature’ should be restricted to cases where f is
a Maxwellian (or possibly a drifting one); however, it is not uncommon for
equation (2.9) to be used to define the ‘temperature’ of even non-Maxwellian
distributions, a practice we follow here.
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Use of table 2.1, then shows that

b = 1/kT (2.10)

thus
c = n(m/2πkT )3/2. (2.11)

Hence
f Max(w) = n(β/π)3/24πw2 exp(−βw2) (2.12)

where
β ≡ m/2kT (2.13)

also:
f Max(v) = n(β/π)3/2 exp(−β(v2

x + v2
y + v2

z )) (2.14)

or, when vmean �= 0

f drift Max(v) = n(β/π)3/2 exp[−β{(vx − ax )
2 + (vy − ay)

2 + (vz − az)
2}].
(2.15)

(It is easily confirmed that none of the foregoing derivations required that vmean =
0.)

Of course, introducing temperature in the preceding way reverses the order in
which students usually first encounter Maxwellian distributions where we start by
assuming that equation (2.14) describes the distribution, with temperature already
embedded in the expression. That approach, however, leaves this fundamental
quantity—‘temperature’—undefined, or at least makes it harder to define.

One can now readily show that

〈vx 〉 ≡ (1/n)

∫ ∞

−∞
f Max(v)vx dv = ax (2.16)

thus confirming that (ax , ay, az) is, indeed, the mean drift velocity of the distri-
bution.

It should be emphasized that, strictly, the only velocity distributions possi-
ble in complete thermodynamic equilibrium are either an ordinary, or a drifting,
Maxwellian [2.7].

We also have the Maxwellian energy distribution:

f Max(E)dE = 2π−1/2(kT )−3/2nE1/2e−E/kT dE (2.17)

obtained from
E = 1

2 mw2 (2.18)

and
dw = (2/m)1/2dE/2E1/2 (2.19)
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where f Max(E)dE is the number of particles with (thermal) kinetic energy within
E to E + dE .

By integrating over vy and vz one also obtains the 1D Maxwellian distribu-
tion:

f 1D Max(vx ) = n0(β/π)1/2e−βv2
x

−∞ < vx < +∞. (2.20)

It is straightforward to show that the average particle speed, or thermal
speed, for the non-drifting Maxwellian is

〈w〉 ≡
∫ ∞

0
w f Max(w)dw/n

= (8kT/πm)1/2 ≡ c. (2.21)

Next, we find the one-way particle flux density in the x-direction for an
ordinary Maxwellian. We note first that the increment of density with velocity
(vx , vy, vz) is:

δn = f (v)dvx dvydvz (2.22)

thus the increment of particle flux density in the x-direction is:

δ�x = vxδn = vx f (v)dvx dvydvz . (2.23)

Hence

�Max
x ≡

∫ +∞

vx=0
f Max(v)vx dvx

∫ +∞

vy=−∞
dvy

∫ +∞

vz=−∞
dvz (2.24)

giving:

�max
x = 1

4 nc

using table 2.1. Note that the vx -integral is only over [0,+∞); the total or net
(both way) particle flux density is zero for an ordinary Maxwellian.

One may note that for a drifting Maxwellian, equation (2.15), there is of
course a total or net particle flux density in the x-direction:

�drift Max
x =

∫ +∞

vx=−∞
f drift Max(v)vx dvx

∫ +∞

−∞
dvy

∫ +∞

−∞
dvz

giving:

�drift Max
x = nax = n〈vx 〉. (2.25)

One notes, therefore, the important distinction between the one-way particle
flux density due to random, thermal motion of particles, and the net particle
flux density due to average or fluid velocity. The integral in equation (2.25)
is called the first moment of the distribution. Recall the similar-looking result
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in section 1.8.2.1, � = nv, figure 1.22. The latter, however, is more general
than equation (2.25) which has been obtained for the specific case of a drifting
Maxwellian distribution. It is not necessary to assume in fluid modelling that
a drifting Maxwellian ‘lies behind things’, although that can often be a useful
picture.

The next ‘moment’ of the velocity distribution gives the flux of x-momentum
in the x-direction, which is called the ‘pressure’ for reasons which will shortly
be seen. The increment of x-momentum in the x-direction is the product of the
increment of x-directed particle flux density, δ�x , multiplied by the x-momentum
of each particle, mvx : 

mvxδ�x = (mvx )vx f (v)dvx dvydvz . (2.26)

This time the integral over dvx is from −∞ to +∞ because momentum
is a vector quantity and so the back-flux of backward-going momentum counts
additively with the forward-flux of forward-going momentum. This is perhaps
seen more clearly by considering an elemental volume and the flux of mvx -
momentum across the upstream face, for example. Clearly the volume is gaining,
i.e. ‘importing’, mvx -momentum due to the part of the distribution for which
vx > 0. However, it is also exporting negative mvx -momentum due to the part
of the distribution for which vx < 0. The ‘export’ of negative momentum has
the same effect as the ‘import’ of positive momentum. We may also consider the
situation at the perfectly reflecting walls (perfectly reflecting so as not to remove
or add energy, i.e. the gas/plasma is in thermal equilibrium with its surroundings):
particles can only strike the wall from the one side, thus we now have a vx -
integral only over 0 to +∞; however, the change of momentum experienced by
the gas/plasma is 2mvx per collision since the reflection is perfect. It is readily
shown that the integral of mvxδ�x from−∞ to+∞ is the same as 2mvxδ�x from
0 to+∞. We also now see why this momentum flux is termed the ‘pressure’ since
it is equal to the force per unit area exerted on the walls: momentum lost by the
gas/plasma equals that gained by the walls. Thus pressure:

p =
∫ +∞

vx=−∞
(mvx )vx f (v)dvx

∫ +∞

vy=−∞
dvy

∫ +∞

vz=−∞
dvz (2.27)

and using table 2.1, and for f = f Max, it is readily shown to give the familiar
ideal gas result:

p = nkT . (2.28)

We may note that pressure has nothing directly to do with self-collisions.
For an ordinary Maxwellian one obtains the same pressure for the other

directions, i.e. the pressure is isotropic. For non-Maxwellian distributions one
may have different pressures in different directions; also one needs to consider,
for example, the x-directed flux of mvy-momentum, which may integrate to a
non-zero value. Then a pressure tensor, rather than the foregoing pressure scalar,
is involved and the pressure is anisotropic [2.9].
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A further ‘moment’ of the distribution is the thermal energy density ‘stored’
in each m3:

E = 3
2 nkT (2.29)

while the one-way heat flux density for a Maxwellian is

qMax
x =

∫ +∞

vx=0

1
2 m(v2

x + v2
y + v2

z )vx f 
Max(v)dvx

∫ +∞

vy=−∞
dvy

∫ +∞

vz=−∞
dvz

= (
1kT + 1

2 kT + 1
2 kT

) 1
4 nc = 2kT

( 1
4 nc

) = 2kT �Max
x

2kT �Max
x = qMax

x . (2.30)

It may seem surprising that the amount of transported energy is 2kT per particle,
not just (3/2)kT , as it was for the ‘stored’ energy density. One obtained, in
fact, just (1/2)kT from each of the dvy and dvz integrals in equation (2.30),
while it was the vx -integral that gave 1kT , for the total of 2kT . It is the extra
weighting given to the higher vx -particles in the distribution that, through the
v3

x term in the integral of equation (2.30) (contrasting only v2
x in the integral

giving equation (2.29)), gives 1kT , rather than (1/2)kT . It will be seen later,
section 10.7, that if one wants to create particles which will have a Maxwellian
distribution, then the energy required to be invested by the source per particle is
not (3/2)kT , but 2kT , for this reason.

We may note that the vx -integral is over 0 to +∞, as it was for equa-
tion (2.24), but contrasts with the −∞ to +∞ domain for p, equation (2.27),
where a scalar quantity, 1

2 m(v2
x + v2

y + v2
z ), was involved. Also note that qMax

x is
very close to the standard definition of the conducted heat flux density qcond,x

which is the same as equation (2.30) except that the vx -integral is from −∞
to +∞, and any general f (v) may be inserted. For f = f Max then, due to
symmetry, one obtains qcond,x = 0 (only odd powers of vx are involved in the
integral). In general f (v) may be asymmetric, however, and that will then give
qcond,x �= 0. Still higher ‘moments’ can also be evaluated, but we leave the
sequence here.

For the drifting Maxwellian, equation (2.15), a net, forward power flux does
exist. It is readily shown that:

qdrift Max
x,net = ( 5

2 kT + 1
2 ma2

x

)
nax

qdrift Max
x,net = ( 5

2 kT + 1
2 ma2

x

)
�x,net (2.31)

where, as before:
�x,net = nax . (2.32)

We consider next what happens to a set of particles subject to an external
conservative force field, such as gravity or an electrostatic force. We will show
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that the distribution remains Maxwellian, and only the density changes, satisfying
a Boltzmann factor relation.

That is we will show that the distribution is given by:

f (v, x) = n0(β/π)3/2 exp[−β(v2
x + v2

y + v2
z )] exp[−�(x)/kT ] (2.33)

where Boltzmann factor ≡ exp[−�(x)/kT ] and n0 is the reference value of
density at � = 0. Thus for an electric potential � = qV the Boltzmann factor is

e−qV/kT

where q is the charge on the particle. A ‘potential trough’ exists for electrons
in regions where V decreases—say in the approach to a negatively charged solid
surface—since the electron density decreases as the wall is approached, i.e., for
electrons, with charge −e, the Boltzmann factor is eeV/kTe . It is to be noted,
however, that the velocity distribution remains Maxwellian at each point in space
and Te is spatially constant.

The Boltzmann factor can be demonstrated [2.10] from the steady-state, 1D
kinetic equation, section 9.2, which for electrons without any source or sink of
particles is:

vx
∂ f

∂x
+ eE

m

∂ f

∂vx
= ∂ f

∂t

∣∣∣∣
coll

. (2.34)

One can show that f = f Maxe−�/kT satisfies this equation: since e−�/kT is
independent of velocity and since insertion of f Max into ∂ f/∂t |coll gives zero,
then insertion of f will also. It is easy to show that f then satisfies the residual
equation.

In practice, there is almost always a source and sink of particles present. The
situation that we are most interested in, in edge plasma physics, involves electrons
almost perfectly trapped in a potential well caused by the presence of negatively
charged walls. The trapping, however, is not perfect; indeed for a floating wall
the outflow of electrons from the plasma equals the ionic outflow. For the ions,
this loss process strongly distorts the ion velocity distribution, which is very far
from Maxwellian at the sheath edge, section 25.1. The distortion is strong for the
ions because there are no backward-going ions at the sheath edge; also, the mean
ion velocity is cs , which is often of the same order as the ion sound (thermal)
speed ci ≡ (8kTi/πmi )

1/2. While the electrons have the same mean speed as the
ions, this is very small compared with ce and the electron distribution may deviate
only slightly from Maxwellian. Thus the Boltzmann factor is often an excellent
approximation for the electrons—in situations where it would be grossly in error
for the ions.

2.3 The Bohm Criterion; Ti = 0. Simple Derivation

We return now to the analysis of the sheath, starting with the simplest possible
case. Consider the sheath where ne �= ni . For the electron density we assume
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electrostatic
potential

pre-sheath
E-field

plasma flow
velocity

0

0

0

|vse|

|V|

|E|

Vse

Vw

|v|

Figure 2.3. The potential drop within the plasma, Vse, constitutes the pre-sheath E-field
which accelerates the ions to speed vse at the sheath edge (se). We wish to find the values
of vse and Vse.

that the Boltzmann factor relation [2.10, 2.11] holds, since the electrons find them-
selves in a repulsive, i.e. confining, electric field, i.e. an electrostatic well, and
suffer such slow loss that ‘vloss

e ’ (≡ vse) � ce. As a result, the electron velocity
distribution is approximately Maxwellian, even in the sheath, (see section 2.5),
Te remains constant, and the electron density at each point in the sheath, where
the local electrostatic potential is V (x), simply falls off according to a Boltzmann
factor:

ne(x) = nse exp[e(V − Vse)/kTe]. (2.35)

Note that here we are taking the reference potential to be V = 0 at a location in
the plasma some distance upstream of the sheath edge: the point of the present
exercise is to find the value of Vse, figure 2.3. Vse describes the potential drop
which occurs upstream of the sheath edge, i.e. in the plasma itself, i.e. the pre-
sheath electric field, section 1.8.2.9. We want to know how strong this pre-sheath
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potential drop is: for the case of Ti = 0 together with the assumption that all the
ions originated at a single location upstream of the sheath edge—this is really the
same thing as finding the ‘plasma exit velocity’ vse, since with these assumptions:

1
2 miv

2
se = −e�Vpre-sheath = −eVse. (2.36)

(Note that in equations (2.35) and (2.36), all V < 0.)
In addition to the assumptions that Ti = 0 and that all the ions are assumed

to start at a single location upstream of the sheath edge, with zero velocity, it is
assumed that the ions fall collisionlessly through a pre-sheath potential drop Vse.
nse is also unknown, but will cancel out. mi and Te are parameters of the system
which have to be specified. V is a variable, but will also cancel out.

Next, consider the ions. From energy conservation we have at all points in
the sheath and plasma

1
2 miv

2 = −eV . (2.37)

Equation (2.37) can also be obtained from the ion fluid momentum
equation (1.26); momentum and energy conservation give the same result
when energy conversion to thermal energy does not occur.

Since the only source of ions is at the upstream source point, particle conser-
vation gives niv = constant so that, combining particle and energy conservation:

ni = nse(Vse/V )1/2. (2.38)

Within the plasma we assume ne = ni , but in the sheath ne < ni and we
need an equation to relate ne, ni and V . This is given by the Maxwell equation:

∇ · E = e(ni − ne)/ε0 (2.39)

which, with E ≡ −∇V , gives the 1D Poisson’s equation:

d2V

dx2
= − e

ε0
(ni − ne) (2.40)

thus
d2V

dx2
= − e

ε0
nse

[(
Vse

V

)1/2

− exp[e(V − Vse)/kTe]
]
. (2.41)

We now focus on the region just inside the sheath and define:

� ≡ Vse − V (> 0). (2.42)

Thus we may expand:(
Vse

V

)1/2

≈ 1+ 1

2

�

Vse
= 1− 1

2

�

|Vse| (2.43)

exp[e(V − Vse)/kTe] ≈ 1− e�

kTe
(2.44)
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giving
d2�

dx2 
≈ 

ense�

ε0

(
e

kTe
− 1

2|Vse|
)

. (2.45)

Now, one may recall a basic property of single, second-order differential
equations of the form y′′ = ay: y(x) is non-oscillatory if a > 0 and is oscillatory
if a < 0. Under the assumption that an oscillatory sheath potential, V (x), is
unphysical, and, in any case, has never been seen experimentally, we assume that
it is therefore necessary that:

e

kTe
≥ 1

2|Vse| (2.46)

or
miv

2
se ≥ kTe (2.47)

or
vse ≥ cs (2.48)

i.e. the Bohm criterion for the ‘plasma exit velocity’.
We may also note from equation (2.45) that

�

L2
sheath

≈ en�

ε0

e

kTe
(2.49)

where Lsheath is the characteristic scale length of the sheath, thus

Lsheath ≈
(

ε0kTe

e2n

)1/2

≡ λDebye (2.50)

where λDebye is the Debye length. Example: Te = 20 eV, n = 1019 m−3, then
λDebye = 10−5 m and one notes how extremely thin the sheath is for typical
tokamak edge conditions.

We can estimate the actual degree of charge imbalance existing in the
plasma. We consider the plasma region but do not assume ne = ni , rather we
employ Poisson’s equation (2.40), as we just did for the sheath. We must also
appropriate the finding of section 1.8.2.9, that the total potential drop within an
(isothermal) plasma, i.e. the pre-sheath drop, is ∼ 0.7kTe/e, equation (1.53).
Thus defining the charge imbalance in the plasma:

α ≡ |ne − ni |/ne (2.51)

and taking d2V/dx2 ≈ 0.7kTe/eL2 in the plasma where L is the plasma size, and
inserting into Poisson’s equation, one finds:

α ≡ |ne − ni |/ne ≈
(

λDebye

L

)2

. (2.52)
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Example: λDebye = 10−5 m, L = 10 m then the charge imbalance in the plasma is
≈ 10−12. Thus, plasmas are generally neutral to an extremely high order indeed.
The plasma is almost completely shielded by the sheath from external fields such
as those arising from wall charges. This electrostatic shielding, called Debye
shielding, is not perfect, however, and this is manifest by the existence of a non-
zero, small, electric field in the plasma, Eplasma ≈ 0.7kTe/eL and non-zero, but
extremely small, charge imbalance in the plasma.

While the latter is of no practical consequence, the existence of the pre-
sheath or plasma E-field is of critical importance and gives rise to the Bohm crite-
rion. This field is insignificant compared with the sheath electric field, (Esheath ≈
kTe/eλDebye ≈ 105 Eplasma), but its role is just as dramatic. We may consider the
analogy with a waterfall: the drama of a fall has as much to do with the magnitude
of the flow as it has to do with the magnitude of the vertical drop, figure 2.4.
The former has nothing to do with the latter, but depends only on the upstream
condition including the drop along the river upstream. The particle outflow rate
of plasma to a solid surface is controlled entirely by the forces in the plasma, not
the sheath—i.e. by the conditions upstream of the main drop.

flow rate

drop

Figure 2.4. Analogy between plasma flow through the potential drop of a sheath and a
waterfall. The flow rate over a fall has nothing to do with the magnitude of the drop.

We return to equation (2.35) and the assumption that ne satisfies the Boltz-
mann factor. Strictly, this only holds true when the electron population experi-
ences no loss whatsoever, as in the last section. Near the sheath edge one can
show that the missing electrons, due to the electron loss to the walls, are only a
tiny fraction of the value given by assuming the Boltzmann factor and so the error
is slight, section 2.6. Fortunately, the Bohm criterion analysis is only concerned
with the region just near the sheath edge. Deeper into the sheath the distortion
caused by the missing electrons increases and finally, just at the wall, fully half
of the Maxwellian distribution is missing—the backward-going half, figure 2.5.
Therefore some error would be involved if one used equation (2.41) to calculate
the spatial variation of V (x) all the way through the sheath to the wall—but
fortunately there is little practical interest in the details of V (x) in the sheath.
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Figure 2.5. The ion and electron velocity distributions at the sheath edge (se), at some
point part way through the sheath, and at the wall (w). The electron distributions are cut
off due to the capture by the wall of the high energy tail of the distribution.

Further, the magnitude of the total potential drop to the wall is unaffected.
Why do we make the unnecessary, and somewhat artificial, division of space

into the non-neutral sheath and the (quasi-) neutral plasma? Why not just apply
Poisson’s equation throughout? This has, in fact, been done [2.12, 2.13] and
the numerical results support very well the simpler picture of distinct sheath +
plasma. Although there is then no precisely definable ‘sheath’, if one arbitrarily
takes the sheath edge to be the location where the charge imbalance exceeds a few
per cent, then the sheath thickness is found to be∼ 10λDebye, see figure 2.6 which
shows the solutions for V (x), ne(x), ni (x), ve(x) and vi (x) in the sheath for the
case of Ti = 0. (The correction to allow for the loss of the electrons absorbed
by the wall has also been included here when solving the Poisson equation (2.41)
to obtain these results [2.13].) The picture of plasma + sheath is much more
informative than purely numerical results, and the loss of absolute precision is
rarely of practical importance.

We end this section with a caution: the above derivation is for a case so
simple as to be almost artificial:

(a) the particle source is a delta function in space,
(b) the ions are mono-energetic, Ti = 0,
(c) there are no collisions.

Relaxation of assumptions (a) and (b) to more realistic ones results in only modest
changes to cs and Vse, as in next section, also section 10.6. Ion–ion collisions
are not of much importance, but if the ions suffer momentum-loss collisions to
neutrals, then |Vse| can become very large, section 10.4.
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Figure 2.6. Chodura’s computed profiles of potential, ne, ni and average ion and electron
speeds through the sheath [2.13]. Case of Ti = 0 H+ ions. Net space charge becomes
significant starting at a distance of about 10 Debye lengths from the wall (x = xw).

2.4 The Bohm Criterion when Ti �= 0

Allowing for Ti �= 0 rather complicates the analysis, but it is nevertheless carried
out the same way as in section 2.3. The final result turns out to be expressible in
a rather compact way, the generalized Bohm criterion [2.14, 2.15]:∫ ∞

0

f ise(v)dv

v2
≤ mi

kTe
(2.53)

where f ise(v) is the 1D ion velocity distribution at the sheath edge. For Ti = 0
one has mono-velocity ions at each point and the integral in equation (2.53) just
gives v−2

se , and thus the basic Bohm criterion, equation (2.48).
Next, consider a crude approximation to the situation where Ti �= 0 and let

us take f i
se(v) to be the normalized ‘top hat’ shape, figure 2.7:

f i
se(v) =

{
(2ci )

−1 for vse − ci ≤ v ≤ vse + ci

0 otherwise
(2.54)

where we define ci ≡ (kTi/mi )
1/2, essentially the ion thermal speed. Insertion of

this distribution into equation (2.53) gives the anticipated result:

vse ≥ cs = [(kTe + kTi )/mi ]1/2. (2.55a)
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v
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2ci

Figure 2.7. A simple ‘top hat’ approximation to the ion velocity distribution at the sheath
edge (se). The thermal speed is characterized by ci = (kTi /mi )

1/2, giving the width of
the distribution. The average speed is vse, to be found.

One may note that the f ise(v) of equation (2.54) has been purposely devised to
have no backward-going ions at the sheath edge—a physical necessity since all
ions crossing the sheath edge reach the surface and the surface is absorbing. Note
also, that if f ise(0) �= 0, the integral in equation (2.53) will ‘blow up’, so that
even zero-velocity ions are ruled out at the sheath edge, see figure 2.5. Further,
one sees from equation (2.53) that the integral is strongly weighted to the slowest
ions. Consider the component δni of the total ni that had the value vi

se at the
sheath edge. The decrease in the magnitude of δni caused by the acceleration in
the sheath is larger, the smaller the value of vi

se; ni = ∑
δni must not drop too

fast, specifically not as fast as ne drops—otherwise there will not be a region of
net positive space charge. We thus see why the inequality of equation (2.53) is in
the direction shown. This inequality can also be seen to be the same as requiring
ni > ne just inside the sheath. (Actually, so long as the entrance to the sheath
is characterized by the non-oscillatory build-up of either positive or negative net
space charge density, the same inequality (2.53) results.)

We can now appreciate why vse must increase with Ti : it is actually due to
the ions in the slow part of the ion velocity distribution: since they make ni more
susceptible to the acceleration–rarefaction effect, the whole distribution has to be
‘shifted up’—i.e. vse increased—in order to ‘stiffen up’ the ion distribution, i.e.
to make the ions less susceptible to the acceleration–rarefaction effect. Any first,
intuitive thought that perhaps it is the presence of the high energy tail of the ion
distribution which causes vse to go up with Ti , would be incorrect.

Figure 2.5 shows schematically the velocity distributions of ions and elec-
trons at three locations: the sheath edge, part way through the sheath and just at
the solid surface. One may note that at the sheath edge there are no backward-
going ions since the wall absorbs all ions reaching it. Acceleration of the ions
through the sheath tends to narrow the velocity distribution. At the sheath edge
there are backward-going electrons; however, the most energetic, forward-going
electrons are absorbed by the wall and thus, at the sheath edge, the high energy
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backward-going tail of the distribution is missing. Sufficiently far from the wall,
electron–electron collisions will replenish this missing part of the distribution,
which thus relaxes toward a full Maxwellian. As a historical aside it is appropriate
to mention here the so-called Langmuir paradox: in the 1920s Langmuir made
measurements of the electron distribution in non-magnetic gas discharges and
reported that he found that the high energy, backward-going tail was not miss-
ing, even in circumstances where electron–electron collisions were not frequent
enough to have replenished the tail. This gave rise to the apparent paradox. Much
speculation arose over subsequent decades to explain this paradox, including a
possible role of plasma fluctuations [2.16]; however, it turned out that when more
sensitive measurements of the electron distribution were made, that the backward-
going tail was, in fact, shown to be missing in weakly collisional plasmas [2.17].
If the electron self-collisionality is extremely weak everywhere in the plasma,
then the high energy tail is not replenished—eventually even in the forward-going
direction, and a more complicated situation results [2.18]; see section 25.5.

Riemann has written extensively on the Bohm criterion including both com-
prehensive reviews [2.19, 2.20], as well as much new analysis [2.21–2.30]. In
[2.19] Riemann discusses the generalization of the non-zero Ti Bohm criterion,
which becomes:

vse ≥ cs = [(kTe + γ kTi )/mi ]1/2 (2.55b)

with γ = 1 for isothermal flow, γ = 5/3 for adiabatic flow with isotropic pres-
sure, section 10.9, and γ = 3 for 1D adiabatic flow, section 10.8. Riemann points
out that the criterion of (2.53)—which he terms the kinetic form of the Bohm
criterion—is actually only consistent with γ = 3, since near the sheath edge the
plasma flow must become 1D, adiabatic, with no coupling of perpendicular and
parallel pressures; also see section 10.8, where the latter concepts are discussed.

2.5 The Particle Flux Density to a Surface

We have now succeeded in achieving one of our major objectives in the analysis
of the tokamak edge, namely, the quantification of the particle sink action caused
to a plasma by its contact with a solid surface: that is we can now relate the
particle outflux density, �se, from a plasma to a surface, in terms of the plasma
properties n and T , equation (1.51):

�se = nsevse = nsecs ≈ 1
2 n0[k(Te + Ti )/mi ]1/2. (2.56)

One notes that �se [charged particle pairs m−2 s−1] has no dependence on
how large a potential drop exists in the sheath, section 2.3. Usually (Lsheath/L)�
1 so we neglect the small additional particle source occurring in the sheath and
take �se = �w, the flux density reaching the actual wall.
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2.6 Potential Drop in the Sheath for Floating or Biased Sur-
faces

We are interested in knowing the potential drop, Vs f , that spontaneously arises
between a plasma and a solid surface in contact with it which is electrically
isolated, thus floating, thus �e

se = �i
se, assuming a 1D system. Ambipolar flow is

defined to occur when �e = �i . The quantity Vs f  is important for determining
the ion impact sputtering of the solid surface, section 3.3, and the heat flux to the
solid surface, section 2.8.

We have the ion flux density at the sheath edge, (and reaching the wall):

�w = �se = nsecs . (2.57)

For the electrons we invoke the Boltzmann relation equation (2.35), plus
the fact that in a retarding (confining) electrostatic field the velocity distribution
remains Maxwellian with constant Te, section 2.2, plus the fact that the one-way,
random (thermal) particle flux density for a Maxwellian, section 2.2, is:

�Max = 1

4
nc = 1

4
n

(
8kTe

πme

)1/2

(2.58)

so that the electron flux density reaching the wall is:

�e
w = 1

4 nwce = 1
4 nse exp[eVw/kTe]ce (2.59)

where Vw is the potential of the wall relative to the plasma potential at the sheath
edge where V = 0. For floating conditions the wall sits at ‘floating potential’ Vs f ,
Vw = Vs f  < 0 (‘s’ for ‘sheath’, ‘ f ’ for ‘floating’).

Setting �e
w = �i

w gives:

eVs f

kTe
= 0.5 ln

[(
2π 

me

mi

)(
1+ Ti

Te

)]
. (2.60)

See figure 2.8. One may note that Vs f  has no dependence on density, since nse has
cancelled out. The natural normalization for Vs f  is kTe/e. Note that Vs f  < 0, the
wall repels electrons, and that its magnitude decreases as Ti increases: for higher
Ti , �i

w increases and so the surface now must be less repelling to the electrons to
maintain ambipolarity �e

w = �i
w. The voltage drop (absolute magnitude) across

the combined pre-sheath and sheath is ≈ −Vs f + 0.7kTe/e, section 1.8.2.9. For
hydrogenic plasmas, eVs f /kTe ≈ −3 while for a heavy ion plasma, such as Hg+,
eVs f /kTe ≈ −6.

Various extensions of the simple treatment here can be made, including
allowing for secondary electron production at the solid surface due to electron, ion
and photon impact, section 3.2. See section 25.5 which contains a more extended
treatment of the topic of this section. The effect of secondary electron emission is
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Figure 2.8. The potential drop across the sheath for an electrically floating surface, Vs f ,
as a function of Ti /Te, for various hydrogenic species (‘DT’ has mass 2.5 amu). The
surface may release secondary electrons due to the plasma electrons striking the surface,
section 3.2, which influences Vs f , section 25.5, equation (25.31). δe is the coefficient of
secondary electron emission.

indicated in figure 2.8; it lowers |Vs f | since more electrons from the plasma must
reach the floating surface when it is releasing electrons back into the plasma.

What if the surface is not floating, but has been electrically biased by ap-
plying, by external means, a potential difference between the plasma and solid
surface, so that �e

w �= �i
w, i.e. net current is drawn through the external circuit?

This could be achieved in a 1D system by applying an external power supply to
the two solid surfaces at each end, figure 2.9. In this way a net current could be
forced to pass through the plasma, and the sheaths at each end, closing through
the external circuit.

Regardless of whether the solid is electrically floating or not, �i
w is still given

by equation (2.57) (unless very large positive bias voltages are applied, as will be
discussed). The change in potential is entirely taken up by changes in the drops in
the two sheaths, while the two pre-sheaths, on each side of the mid-point continue
to have drops of∼ −0.7kTe/e (isothermal case). The sheaths continue to provide
virtually perfect Debye shielding of the plasma. The Bohm criterion still holds
at the sheath edge at each end, since its derivation was based on small �/kTe

equation (2.42), i.e. the region of the sheath just at the entrance from the plasma,
which is unaffected by the changes at the wall. Also we noted that the analysis
from the plasma side gave a ‘blow up’ singularity (gradients of n, V , etc went to
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Solid           Sheath Sheath           Solid
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V  applied

Figure 2.9. An external power supply applies a potential difference between the two
(electrically conducting) end walls of a 1D plasma/sheath system, drawing a current. There
is either no magnetic field, or B lies along the axial, current direction.
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sheath-2.62
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Figure 2.10. Problem 2.1. The potential profile for the case of biasing the right end of
the system shown in figure 2.9 by −1kTe/e. Here the plasma potential has been taken as
the reference, V = 0, and it has been assumed that Vs f = −3kTe/e. Pre-sheath potential
drops are not shown here for simplicity.

±∞), i.e. formation of a sheath edge as soon as V had dropped to ∼ −0.7kTe/e
(isothermal case). Thus whenever any voltage drop which is more negative than
∼ −0.7kTe/e, is applied across an isothermal, frictionless plasma all of the excess
voltage will develop across the sheaths.

Consider a symmetrical situation, with floating surfaces at each end, and,
say, Vs f = −3kTe/e. Next suppose that an external bias is applied to the two
end surfaces such that the right end is biased to −1kTe/e, say, relative to the
left end surface, figure 2.10. Let the voltage drop across the right, and left,
sheaths be Vr , and V�, respectively. Both pre-sheath voltage drops would remain
at ∼ −0.7kTe/e as before (for simplicity these pre-sheaths are not shown in
figure 2.10). The electron flux density reaching the right surface will now be

�e
rw = 1

4 nseceeeVr /kTe (2.61)

while
�i

rw = nsecs = 1
4 nseceeeVs f /kTe (2.62)
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the same as for Vapplied = 0. Also nse = 1
2 n0 (isothermal case) as for Vapplied = 0.

At the left surface:
�e

�w = 1
4 nseceeeV�/kTe (2.63)

and
�i

�w = nsecs = 1
4 nseceeeVs f /kTe (2.64)

by conservation of charge we must have

�e
�w + �e

rw = 2nsecs (2.65)

and we also have
Vr − V� = Vapplied. (2.66)

Combining equations (2.61)–(2.66):

eV�

kTe
= ln

[
2eeVs f /kTe

1+ eeVapplied/kTe

]
. (2.67)

One also has the net current to the right surface:

jr = e(�i
rw − �e

rw) = − j� (2.68)

= 1
4 ensece(e

eVs f /kTe − eeVr /kT e ) (2.69)

= 1
4 enseceeeVs f /kTe (1− ee(Vr−Vs f )/kTe ) (2.70)

= ensecs(1− ee(Vr−Vs f )/kTe ). (2.71)

Problem 2.1. For eVs f /kTe = −3, and eVapplied/kTe = −1, show that

eV�

kTe
= −2.62,

eVr

kTe
= −3.62, figure 2.10.

Also show that
jr = ensecs(1− e−0.62) = 0.462ensecs . (2.72)

Note that the right surface receives a (positive) current +0.462ensecs , in this ex-
ample, while the left surfaces injects+0.462ensecs into the plasma—by receiving
more electrons than ions. There is no true electron emission from either surface.
Fill in the boxes: the right surface receives �ensecs of positive ions plus �ensecs

of electrons, and thus receives a positive current of �ensecs . The left surface
receives �ensecs of positive ions, but also �ensecs of electrons for a net received
current of �ensecs (i.e. a net injected current of �ensecs).

It is illuminating to consider what happens if Vapplied →−∞. Then

V� → Vs f + kTe

e
ln 2 ≈ −2.3kTe/e

Vr → −∞ (2.73)

jr → ensecs .
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That is, virtually all of Vapplied is taken up by the right, electron-repelling surface,
while the left, electron-attracting surface saturates as to its sheath voltage drop
and the current, from left to right, attains the ion saturation current level:

j i
sat ≡ ensecs ≈ 1

2 en0cs . (2.74)

With regard to the distortion caused to the electron distribution by the loss
to the wall, it is to be noted that only a small fraction of the electrons in the
distribution—only the ones moving toward the target and in the high energy tail of
the distribution—are being removed from the distribution. Thus, for the forward-
going part of the distribution, the full Maxwellian is present, even at the sheath
edge—and this continues to be true even within the sheath, right up to the solid
surface. At the sheath edge most of the backward-going electrons are still present
since the wall potential is sufficiently repelling of electrons that most are reflected
somewhere within the sheath. For locations deeper and deeper into the sheath,
there are fewer and fewer backward-going electrons at all, until just in front of
the solid surface there are no backward-going electrons (assuming that there is no
electron emission); see figure 2.5. Thus at the sheath edge the electron density
is almost the same as if the surface were completely repelling—and the electron
density is almost exactly given by the Boltzmann factor. Now strictly, at the
sheath edge:

ne = n0 exp[eVse/kTe]
(

1+
∫ −e(Vw−Vse)

E=0
f Max(E)dE

)/
2 (2.75)

where n0 = electron density halfway between the two walls defining the plasma
region, where V = 0 is set as reference, Vse is the potential at the sheath edge
(∼ −0.7kTe/e), and Vw is the floating wall potential (∼ −3kTe/e). The first
contribution in equation (2.75) is due to the forward-going electrons, the second
(the integral) to the back-going ones. The ‘missing’ fraction is:

fraction =
(

1
2

∫∞
vx=vcutoff

e−βv2
x dvx

)
∫∞
vx=0 e−βv2

x dvx
(2.76)

where
1
2 m(vcutoff)

2 = −e(Vw − Vse). (2.77)

Thus

fraction = 1− erf

[(−e(Vw − Vse)

kTe

)1/2]
(2.78)

where erf is the error function.
Example: −e(Vw − Vse) = 3kT gives fraction = 0.0075, a negligible

amount.
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One might, however, still be concerned that the electron flux density actually
reaching the surface might not be given by:

�e,wall = 1
4 newce = 1

4 nsece exp[e(Vw − Vse)/kTe] (2.79)

since the electron distribution just at the wall is only a half Maxwellian (forward
going). In fact, equation (2.79) is valid since it only depends on the forward-going
part of the distribution being Maxwellian at constant Te. Of course, the foregoing
assumes that the forward-going part of the distribution has been ‘replenished’
within the plasma to a Maxwellian form, by some means or other. When colli-
sionality throughout the entire plasma is very weak, this may not be the case and
then �e,wall can be strongly reduced [2.18].

As noted from table 1.1, the collisionality of the SOL can be marginal and
operating conditions exist where the electron self-collisionality is insufficiently
strong to ensure that the electrons are Maxwellian. In this situation it may
nevertheless happen that the SOL electrons are Maxwellian, for example, the
case where the electrons entered the SOL primarily by cross-field transport from
the main plasma and the electrons happened to be Maxwellian there. The main
plasma, however, may also not be strongly collisional and in addition external
heating processes can bring about non-Maxwellian distributions of electrons—
and ions—in the main plasma. The weakly collisional SOL (the sheath-limited
SOL, see sections 1.9, 4.1, 9.10) may therefore be characterized by non-
Maxwellian electrons and ions. Such cases are inherently complex since they
depend on both the SOL and main plasmas and cannot be analysed purely in
terms of SOL processes. The usual working assumption is simply to ignore this
possibility, but the fact that the SOL particles are not necessarily Maxwellian in
sheath-limited conditions should be kept in mind.

2.7 Langmuir Probes

The results of section 2.6 directly indicate how a Langmuir probe, LP, works.
Historically, LPs have been one of the most widely used diagnostic techniques
for low temperature plasmas, Te � 100 eV [2.33], and have also come to be
widely used over recent years for SOL measurements [2.34–2.38].

LPs have, in fact, been the ‘work horse’ of tokamak edge measurements.
Most of the basic information about the SOL—plasma density and electron
temperature—has been generated by LPs [2.39]. It is therefore appropriate to
include a brief discussion of LP interpretation at this point.

LPs are relatively simple and inexpensive diagnostics, robust and compatible
with tokamak SOL conditions. They are readily deployable in large arrays built
into the edge structures [2.38]—i.e. limiters and divertor targets—or in recipro-
cating drive mechanisms for probing even to just inside the LCFS [2.38]. When
‘built in’ they are non-disturbing of the edge plasma. The price paid for these
experimental advantages is that probe interpretation is notoriously difficult. Here
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Figure 2.11. (a) Sections through the Alcator C-MOD divertor showing a fast moving
(reciprocating) probe and built-in target probe arrays. (b) Side view of target probes and
(c) front view showing the toroidal arrangement of built-in triple probes. B LaBombard.
Reproduced from [2.38].

we cover only the rudiments of probe theory. For a more detailed discussion
see [2.33–2.45].

The simplest geometrical arrangement is the LP built into the divertor target
or limiter, figure 2.11. Let us define ALP to be the area of the LP and assume that
B is parallel to the normal vector to the probe surface. We also assume that the
LP is biased relative to the limiters or divertor plates which are defined as being
at ‘machine potential’.

The LP current must close through the plasma, returning through the limiter
or divertor target surfaces which are in contact with the plasma. In the absence of a
B-field, this ‘return current’ spreads out over the entire area of the solid structure
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Langmuir
probe

return
surface

Figure 2.12. Case of no magnetic field and a single Langmuir probe biased relative to the
walls. The wall area involved in the return current is typically much larger than the probe
area, due to the high electrical conductivity of the plasma.

in contact with the plasma, Areturn, with Areturn � ALP, typically, figure 2.12.
This, therefore, is not precisely the same geometry as was considered in the last
section where the areas receiving current from the plasma and injecting current
into the plasma were equal (a 1D system). The situation of Areturn � ALP has the
important consequence that the potential drop at the ‘return sheath’, Vreturn, will
need to change only very little in order to accommodate even large changes in the
current passing through the system. Thus when analysing the I –V characteristic
of the LP, Vreturn ≈ constant and it will play no important role; it is merely an
offset.

In principle the plasma resistance will also influence the LP circuit analysis,
but usually plasma resistance is too small for this to matter. Thus, the only
important element in the LP circuit will usually be the sheath of the LP itself.

We next show that analysis of the LP circuit I –V characteristic can yield
measurements of Te and ne at the LP. We may take equation (2.71) with I =
j ALP to describe not only the I –V characteristic for the LP sheath, but for the
entire LP internal circuit which, of course, is all that is experimentally accessible,
figure 2.13.

We may assume that such large objects as the limiters/targets will set the
potential drop between the plasma and the outside world, so that we may take
‘machine potential’ as the reference for all potentials, V = 0 there. In that case
the plasma will float (rather than vice versa) relative to that reference to a potential
of about +3kTe/e (thus still tending to force electrons to remain in the plasma,
of course). Let us take the left side to be the return surface and the right side the
LP, figure 2.14; all potentials are now incremented by |Vs f | ∼ +3kTe/e, hence
VLP = Vr + 3kTe/e and equation (2.71) gives:

VLP = kTe

e
ln

(
1− ILP

I+sat,L P

)
. (2.80)
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Figure 2.13. Case of non-zero magnetic field and a single Langmuir probe biased relative
to the walls. Because of the weak cross-field electrical conductivity of the plasma, the
probe circuit can be characterized by substantial ‘internal’ resistances in the plasma and
sheaths, making interpretation of the I –V characteristic difficult.

Figure 2.14. Single Langmuir probe for B = 0, but now with the main vessel wall (the
‘return surface’) taken as the reference potential where V = 0. The plasma now floats at
∼ +3kTe/e relative to the walls. Changes in voltage applied between probe and vessel
walls are taken up almost entirely by the probe sheath.

Therefore a ln plot of ILP against VLP yields a measurement of Te. Also directly
measurable from the ILP against VLP characteristic is the value of I+sat,L P  and since
we have:

I+sat,L P ≡ ALPensecs (2.81)

this can yield a measurement of nse, the value near the LP, or n0 ≈ 2nse, the
density far from the LP. It should be noted that in order to deduce a value of nse or
n0, it is necessary to know the value of cs . Unfortunately the LP does not provide
a measurement of Ti and so some uncertainty is involved here. Sometimes it can
be inferred from estimate of equipartition rates, section 4.11, that Ti ≈ Te. In
any case, since a factor of only (1+ Ti/Te)

1/2 is involved the uncertainty can be
small.

Copyright © 2000 IOP Publishing Ltd.



88 The Role and Properties of the Sheath

Strictly, the foregoing applies to a plasma with B = 0. When B �= 0 one
needs to consider the fact that the plasma current may have to close by cross-field
current paths to reach the limiter/target surfaces. Cross-field resistances are not
well understood, section 17.5, and it may be that Rcross can become a significant
element in the circuit [2.40]. The effective resistance of the LP sheath may be
defined by

R−1
L P,sheath ≡

dILP

dVLP
(2.82)

yielding the estimate

R−1
L P,sheath ≈

I+L P,sat

Vs f
� e2nsecs ALP

kTe
(2.83)
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Figure 2.15. Double probe. The entire electrical circuit can be isolated from the vessel
(walls). If the two probes have the same collecting area, the I –V characteristic is
symmetrical.

Uncertainties about the value of Rcross also lead to uncertainties about Areturn
and hence Rreturn sheath (since the amount by which the return current spreads out
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over the limiters/targets—and whether part of the return path involves the lim-
iter/target surface at the other end of the flux tube in contact with the LP—depends
on the cross-field resistance [2.40]). The standard approach is nevertheless to
assume RL P,sheath � Rcross, Rreturn sheath and to analyse the I –V characteristic
as if B = 0. This assumption appears often to be fairly safe when drawing
net positive current by the LP, i.e. for VLP < Vs f  (i.e. < 0 here), where the
maximum current density that can be drawn is +ensecs . In 2D or 3D situations,
where the ‘return’ surface which draws net ion current may be very large, one can
draw net electron currents which are substantially larger than ensecs—up to the
electron saturation current density, j e

sat. For the 1D assumption of section 2.6,
by contrast, it would not be possible to draw an electron current to one of the
surfaces of more than −2 j+sat, which would occur when the other surface was
drawing j+sat, and no electrons at all; in that case the first surface would draw a
net current of + j+sat− 2 j+sat = − j+sat. The I –V characteristic would be completely
symmetrical, figure 2.15. This is also the double-probe characteristic, since it is
what applies also to the arrangement where the ‘reference electrode’ is changed
from being the limiter/targets to being instead a second LP of the same area as
the first LP [2.33, 2.35]. (In the derivations of section 2.6 the main aspect of
1D that was actually used was that the two particle-collecting elements, ‘probes’,
had the same area.) The biasing circuit of the double LP, figure 2.15, therefore
floats completely separately from ‘machine potential’, which can have practical
advantages (e.g., protection of the probe’s power supply from voltage surges, etc).
The biasing potential is applied between the two probes—just as it was between
the two sides of the 1D system of section 2.6. The double LP therefore also yields
measurements of Te and ne.

Figure 2.16. Measurements of nSOL
e in the T-10 tokamak by microwave interferometry

(�) and Langmuir probes (•) [2.42, 2.39]. Two runs of increasing and decreasing density.

In 2D and 3D geometries—i.e. the usual arrangement of a single LP biased
relative to the limiters or targets—equation (2.80) implies that arbitrarily large
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Figure 2.17. Measurements of ne and Te in the TEXTOR tokamak using a lithium beam
(continuous line) and a Langmuir probe (points) [2.43, 2.39].

(negative) currents of electrons could be drawn to the probe. However, when
VLP ≥ Vplasma(≈ +3kTe/e if the reference is taken to be the ‘machine poten-
tial’, figure 2.14) one would expect the electron current density to saturate at the
random Maxwellian flux density, section 2.2, thus:

j e
sat = − 1

4 nece (2.84)

which is greater in magnitude than j+sat by the ratio ≈ (mi/me)
1/2 ≈ 60 for a

D+ plasma. For values of VLP this high (and higher), the currents drawn from the
plasma are so large and disturbing that any simple analysis fails. However, it is
often found that a more-or-less well defined, if noisy, electron saturation current
exists. For B = 0 plasmas it is indeed found that [2.33]:

| j e
sat|/j+sat ≈ (mi/me)

1/2. (2.85)

However when B �= 0 far smaller ratios are usually recorded [2.35]. The reason
for this is still not entirely clear, although theories have been advanced starting
with Bohm’s in the 1940s [2.41]. It does appear that the problem is due to the
departure of the net electron collecting part of the characteristic from the standard
form, equation (2.80)—and is due to Rcross and/or Rreturn sheath no longer being
negligible compared with RL P,sheath. Thus, a common practice in tokamaks is to
use only the net ion-collecting part of the I –V characteristic to deduce Te (and, of
course, I+sat and ne) [2.37, 2.38]. Comparisons with other measuring techniques
in tokamaks show that the agreement can be to within a factor of 2 or better, for
both Te and ne [2.39]. Some comparisons are shown in figures 2.16 [2.42], 2.17,
[2.43] and 2.18 [2.44].
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Figure 2.18. Vertical profiles of ne and Te made above the divertor target floor in the
DIII-D tokamak using Langmuir probes (RCP) and Thomson scattering (DTS) [2.44].

A disadvantage to using only part of the I –V characteristic for net positive
current collection is that this means the probe is only sampling the high energy
tail of the electron distribution, figure 2.5. If the distribution is non-Maxwellian
this can result in erroneous—usually too high [2.45–2.47]—values of Te being
indicated by a standard analysis of the LP I –V characteristic.
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2.8 The Sheath Heat Transmission Coefficients. Basic Treat-
ment

The sheath not only constitutes a particle sink for the SOL plasma, but also an
energy sink. We wish to relate the electron, qe, and ion, qi , power flux densities
[W m−2] to the plasma conditions, n and T —similar to our relating of particle
out flux density � [ions m−2 s−1] to n and T . This topic is dealt with in greater
detail in section 25.5. Here we present an abbreviated and heuristic treatment.

Consider first the electrons and assume them to be Maxwellian far upstream
of the sheath. For a Maxwellian distribution, there is a simple relation between
the one-way random flux densities of particles �, and heat q [W m−2], section 2.2

q = 2kT �. (2.86)

(Of course there is no net flux of either particles or heat for a Maxwellian dis-
tribution.) Right at the solid surface (the sheath–solid interface, ss), however,
the electrons cannot have a perfect Maxwellian distribution, since there are no
backward-going electrons there due to the absorption at the surface (and assuming
for simplicity no electron reflection or secondary emission), figure 2.5. As to the
forward-going electrons at the ss: it can be shown that this will still correspond to
a perfect Maxwellian of constant Te since the electrostatic force is conservative,
section 2.2. Thus, the net (also forward-going) electron heat flux density at the ss
is

qe
ss = 2kTe�ss = 2kTe�se (2.87)

with �ss = �se on the assumption that the sheath is so thin that any particle source
there is negligible.

Next consider qe
se. At the sheath edge the electron distribution consists of

two parts:

(a) the majority of forward-going electrons are too low in energy to surmount
the repulsive sheath potential to reach the solid surface, and will be reflected
at some point within the sheath, figure 2.2. Therefore there is an equal
backward-going set of electrons at the se. Clearly these electrons contribute
nothing to qe

se or qe
ss (nor to �ss, �se);

(b) the high energy electrons, those with forward-going kinetic energy of at least
|eVs f |, will be lost to the solid surface, and there is no corresponding back-
flow of such electrons at the sheath edge.

The net electron power flow at the sheath edge is therefore

qe
se = (2kTe + |eVs f |)�se (2.88)

since the ‘loss electrons’ had an energy that was higher at the sheath edge by an
amount |eVs f | than at the solid surface.

We thus may note that the sheath acts as an electron ‘high energy filter’,
permitting only the more energetic electrons in the population to escape. The
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Figure 2.19. The sheath acts as an electron–ion energy-transfer mechanism, transferring
energy |eVs f | from the electron to the ion.

sheath therefore constitutes a powerful cooling effect on the electrons, i.e. it is
not just power removing, as it is for the ions, but it is specifically cooling, i.e.,
temperature reducing. (There is not, however, any drop of Te across the sheath.
Rather, the temperature of the entire ‘reservoir’ of plasma electrons in the SOL is
reduced.)

It is important to distinguish between the electron power flux received by
the surface—qe

ss—which is the surface heating power due to the sheath—and
the power flux lost by the plasma electron population—qe

se—which we may call
the electron cooling power due to the sheath. For purposes of calculating ther-
mal loads on the solid structure, qe

ss is required. For purposes of modelling the
behaviour of the plasma electrons, qe

se is required.
Where does the ‘missing’ electron power go? It is transferred to the ions

which are accelerated through the sheath. The motion of ions into the sheath
tends constantly to destroy the electrostatic field of the sheath, caused by the net
negative charge on the solid surface. The electrons must therefore constantly
reinvest energy in the formation of the sheath’s electrostatic field, which energy
is constantly being transferred to the ions, giving them a larger kinetic energy, by
an amount |eVs f |, at the ss than they had at the se. The sheath thus also acts as an
e–i energy-transfer mechanism, transferring energy |eVs f | from electrons to ions
for each charged pair lost to the solid, figure 2.19.

In a similar, smaller way the pre-sheath also acts to transfer a further amount
|eVpre-sheath| ∼ 0.7kTe from the electrons to the ions.
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It is convenient to define the electron sheath heat transmission coefficient γe

by:

qe
se ≡ γekTe�se (2.89)

thus
γe = 2+ |eVs f |/kTe + |eVpre-sheath|/kTe.

γe ≈ 2+ 3+ 1
2 = 5.5. (2.90)

We see that much more heat is removed from the electron population, per electron
lost, than we might have naively supposed. We might have supposed γe = 1.5–2,
perhaps.

We turn next to the ions which present a more complicated problem than the
electrons since they are accelerated by the pre-sheath electric field and so, even if
the ion distribution far upstream from the se is Maxwellian, the ion distribution
at the se is seriously distorted from the Maxwellian since the ions are not expe-
riencing a net force of zero. There are no backward-going ions at all at the se,
figure 2.5. Nor is the distribution even a half Maxwellian since there can be no
ions with v = 0 at the se, section 2.4. Now, if the ion distribution at the se were,
in fact, a drifting Maxwellian, drifting with velocity cs , then we would have:

qi
se =

(
5
2 kTi + 1

2 mi c
2
s

)
�se (2.91)

see section 2.2.
Thus

qi
se = 7

2 kT �se if Te = Ti (2.92)

and
γi = 3.5.

Detailed analysis of specific cases where it is possible to calculate the complete
ion velocity distribution at the se shows this value of γi to be on the high side,
with values γi � 2 being more appropriate [2.48]; see section 25.1. Thus qi

se
∼=

2kTi�se and the ion power flux actually impacting on the solid is correspondingly:

qi
ss ≈ (2kTi + |eVs f |)�se

≈ (2kTi + 3kTe)�se (2.93)

(here we ignore the question of including |eVpre-sheath| since that is entangled with
the problem of establishing the precise value of γi ).

It is convenient to define the total sheath heat transmission coefficient γ by:

qse ≡ qi
se + qe

se = γ kTe�se (2.94)

so that:
γ � 7–8 (2.95)
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for Te = Ti , comprising ∼ 5–6 for the electrons and an estimated ∼ 2–3 for the
ions. Note that qss = qse, i.e. the power removed from the plasma as a whole,
equals the power received by the solid surface. In section 25.5 more complete
expressions for γ are derived, allowing for: (i) non-floating solid surface, i.e.
electrical bias, i.e. non-ambipolar conditions, (ii) Te �= Ti , (iii) secondary electron
emission and electron reflection, (iv) ion reflection and (v) deposition of the
potential energy of atom–atom recombination and e–i recombination on the solid
surface.

2.9 Some Basic Consequences of the Existence of the Sheath

(i) The sheath cools the electrons more strongly than the ions, tending to make
Te < Ti in the SOL.
We may consider two different power channels or flows into the SOL from
the main plasma: the electron and ion channels. Each consists of cross-field
conduction and convection. (In practice we often only have measurements
of the total power into the SOL, Pin [W ], but for present purposes let us
assume that we know the along-the-SOL parallel power flux density input
for electrons and ions separately, figure 2.20.) Suppose qe

in = qi
in [W m−2]

and that e–i equipartition collisions are negligible so that Te and Ti may be
unequal in the SOL.
In this case

qe
in = qe

se, qi
in = qi

se

so that
qe

se = 5.5kTe�se =
(

5
2 kTi + 1

2 mi c
2
s

)
�se = qi

se. (2.96)

For simplicity we have assumed the over-estimate of equation (2.91). Equa-
tion (2.96) yields

Ti/Te = 5/3.

LCFS

SOL
qin

e

qin
i

Pin
SOL

JG
98

.6
64

/1
c

Figure 2.20. In practice, an experimental measurement of the total power entering the
SOL from the main plasma, PSOL

in [W], is all that is available. Here, however, we assume
that the parallel power flux densities flowing along the SOL, q [W m−2], are known, and
for the ion and electron ‘channels’ separately.
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Figure 2.21. Measurements of Te and Ti made in the DITE SOL using an RFA, retarding
field analyser, and a PIMS, plasma ion mass spectrometer [2.49]. T SOL

i can be significantly
larger than T SOL

e .

So, we may anticipate Ti/Te � 2. Although SOL measurements of Ti are
quite sparse, they have been obtained on a few tokamaks using, for example,
gridded energy analysers [2.38]. Ratios of Ti/Te > 2 are typical, [2.49–
2.53]. Figure 2.21 shows an example of measurements made on the DITE
tokamak [2.49], comparing Te and Ti measured using an RFA, Retarding
field analyser, and a PIMS, plasma ion mass spectrometer.
It has to be noted that the tendency of the sheath to force Ti > Te in the
SOL can be offset if qe

in > qi
in, or if e–i equipartition collisions are effective,

section 4.11. Furthermore, volumetric power losses/gains exist in the SOL
due to hydrogenic recycle processes, impurity radiation etc. These processes,
however, tend to strengthen further the tendency for Ti > Te: the hydrogenic
recycle and impurity radiation is almost entirely a cooling action on the
electrons. The hydrogenic recycle may, by contrast, actually heat the ions:
some of the ions are back-scattered from the solid surface, section 3.1, as
energetic neutral particles—carrying back into the plasma part of the |eVs f |
energy that the ions gained from the electrons via the sheath energy transfer
mechanism. When such energetic neutrals are subsequently ionized in the
plasma, they constitute a heat source for the plasma ion population. This
ion heating is also due to the existence of the sheath, and comes from the
electrons.
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(ii) Sputtering of the solid is increased due to the presence of the sheath.
For physical sputtering at impact energies � a few 100 eV, the sputtering
yield Y (the number of particles of the solid that are ejected for each im-
pacting particle) is usually a strongly increasing function of the ion impact
energy, Eimpact, section 3.3, and is linearly proportional to the ion particle
flux density �. When the solid surface is at the plasma potential there is
no sheath. In that case, � is the one-way Maxwellian value, 1

4 nci , which
is not much different from the value when the sheath is present, � � ncs ,
if Ti � Te. On the other hand, E impact is � 2kTi for no sheath and �
2kTi+3kTe ≈ 5kT with sheath. The 3kTe portion is analogous to the energy
gained by the water falling through the drop of the waterfall, figure 2.4.
Therefore physical sputtering is increased by the presence of a sheath. In
fact, the sheath could increase E impact from a value below the sputtering
threshold, section 3.3—where there is no sputtering at all (in principle)—to
above threshold. The chemical sputtering yields of carbon for hydrogen and
oxygen impact, section 3.3, are less dependent on Eimpact.

(iii) For fixed plasma conditions the sheath reduces the heat flux to the solid
surface.
In some (non-fusion) plasma devices, n and T are fixed, for example to meet
some external requirements such as photon production in a light source. In
that case, the sheath reduces qss . (It is important to note that this is not the
situation with the tokamak SOL, which is considered below, (iv).)
For no sheath:

qe
ss = 2kTe

1
4 nce (2.97)

qi
ss = 2kTi

1
4 nci (2.98)

and qe
ss � qi

ss since ce � ci , if Ti ≈ Te. With a sheath:

qe
ss � 2kTe

1
4 n exp(−3)ce (2.99)

qi
ss � (2kTi + 3kTe)

1
2 ncs . (2.100)

Thus: the sheath increases qi
ss approximately twofold while decreasing qe

ss
by approximately 20-fold, giving an overall reduction by about an order of
magnitude. The sheath serves to protect the solid surface from plasma heat,
insulating it.

(iv) For a plasma such as the tokamak edge, where input power is given, the
resulting plasma n and T are strongly influenced by the presence of a sheath.
The sheath properties are the boundary conditions for the edge plasma. For
the tokamak edge the plasma properties n and T are not directly controlled
but are the response to the imposed input power and the imposed plasma
content of the tokamak vessel. From (iii) it is clear that, for a given input
power and total plasma content, the resulting edge n and T will be quite
different with and without a sheath being present at the solid surfaces.
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There is usually not much choice in the matter, it should be noted: while
portions of the plasma-wetted solid surface can be biased sufficiently to
eliminate the sheath, the plasma on average must float relative to the solid
structure, so sheaths tend to be an unavoidable fact of life when plasmas
and solids interact. The real point is that the presence of the sheath very
much affects the connection between the independent variables (input power,
total plasma particle content) and the dependent variables (the edge density
and temperature) and so it is essential to include the sheath properties as
boundary conditions in modelling the edge plasma.

2.10 The Solid Surface at an Oblique Angle to B: The
Chodura Sheath

So far we have assumed that the normal to the solid surface is parallel to B,
which has the result that B does not occur explicitly in the analysis. In tokamaks,
because of the small pitch angle, section 1.3, the angle between the surface normal
and B can be quite large, for the most natural arrangements of toroidal limiters
and poloidal divertors, section 1.4.2. In fact, it is desirable to construct configu-
rations which employ glancing angles between B and the surface—only a degree
perhaps—in order to make the deposited heat flux density as small a fraction of
the parallel heat flux as possible, section 5.6. In this way the risk of melting and
sublimation is reduced.

The parallel heat flux density is what we have been considering so far,
equations (2.86)–(2.95). Although the latter results were obtained for the normal
sheath, it will be found that this heat flux along B is little changed for the oblique
sheath. Let us call this flux density q‖ and the actually deposited heat flux qdep.
Then

qdep = q‖ cos ψ (2.101)

where ψ is the angle between B and the surface normal; see figure 2.22. For the
target plasma conditions T ≈ 25 eV, n ≈ 1020 m−3, equation (2.94) gives q‖ >

108 W m−2 which is almost two orders of magnitude higher than safe thermal
engineering design. Thus values of ψ up to 89◦ are potentially of interest.

Even if the target surface normal is parallel to the poloidally projected B,
i.e. Bθ , figure 2.23(a), that still implies a large ψ , ψ � 80 ◦, simply due to the
small pitch angle of the tokamak field, Bθ /Bφ � 1. In order to reduce qdep still
further, the divertor target can be tilted within the poloidal plane, figure 2.23(b),
so that ψ up to 89 ◦ can be achieved. (For a discussion of the limit ψ → 90 ◦, see
section 25.2). We wish to know the effect on �se, Vs f  and qse of varying ψ from
0 ◦ (normal sheath) to ∼ 89 ◦ (strongly oblique sheath). The answer turns out to
be that the effect is surprisingly small.

Here we present a simplified derivation of the properties of the oblique
sheath. Figure 2.22 gives the basic picture, as first identified by Chodura [2.13].
Three regions exist:
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Figure 2.22. Chodura’s analysis of the near-surface region for the case of B oblique to the
surface [2.13]. A quasineutral magnetic pre-sheath, of thickness a few ion Larmor radii,
now arises between the (B = 0) pre-sheath and the Debye sheath.

a) b)

Bθ Bθ

Figure 2.23. The separatrix magnetic field line in the poloidal plane for ‘orthogonal’
targets (a) and ‘non-orthogonal’ targets (b).

(1) The usual electrostatic sheath—or Debye sheath—where ne < ni , width a
few λDebye.

(2) The magnetic pre-sheath, or Chodura sheath which is quasineutral and is of
width a few ion Larmor radii; ρi = miv⊥/eB ∼= mi cs/eB.

(3) The usual ordinary pre-sheath, i.e. simply the plasma itself. This is also
quasineutral. Characteristic scale lengths are the distance over which the
particle source exists, or simply the size of the plasma.

The first and third regions have the same properties as for the normal sheath
situation. Just as before, we may ignore the cyclotron motion of the ions and
electrons in the pre-sheath/plasma, and only the transport parallel to B is of
importance. The Debye sheath is typically so much thinner than an ion Larmor
radius that the ion motion in this region is dominated by the E-field, as if the B-
field were non-existent. Thus all the properties established in sections 2.3, 2.4 of
the Debye sheath—including the Bohm criterion— continue to apply. Therefore
the drift velocity at the se of the ions perpendicular to the solid surface must be,
at minimum, cs .
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While it is not immediately obvious why it is true, Chodura was able to
show that the velocity of the ions along B, at the entrance to the Chodura sheath
(the magnetic pre-sheath edge, MPSE) is ≥ cs . The derivation of this key result
is discussed below. This is indeed a critically important result: it means that
the plasma upstream of the MPSE—i.e. virtually the entire system—has no
‘knowledge’ of whether the plasma flow tube is terminated by a normal sheath or
an oblique sheath. This is the reason why the value of ψ has so little consequence
on any aspect of the plasma properties—yet allows us to have the benefits of
arranging that qdep � q‖. (One also has �dep � �‖, of course, but this is of little
practical importance since the total sputtered flux is not affected; the product of
plasma-wetted area and �dep is not changed.) Indeed, virtually no information
can be communicated back to the plasma from points beyond the MPSE where
v‖ ≥ cs , since the usual ‘zone of silence’ associated with supersonic flow sets
in [2.15]. The information cut-off is not total because of the electrons which can
convey some information back upstream since v‖ � ce; see below.

The function of the Chodura sheath is thus evident: a region of enhanced
electric field is required in order to turn the sonic/supersonic ion flow from the
parallel-to-B direction to the parallel-to-the-surface-normal direction. The elec-
trons, with their much smaller Larmor radius, pass almost straight through both
Chodura and Debye sheaths, undeflected.

The particle outflux density from the plasma, for an isothermal plasma is
therefore:

�‖B = nMPSEcs ≈ 1
2 n0cs (2.102)

i.e. just the same boundary condition as for the normal sheath.
Consider next the floating potential to which the surface charges for ambipo-

lar conditions, Vs f . The ions satisfy:

�i
dep ≡ �i

⊥surface = nMPSEcs cos ψ. (2.103)

Assuming that the electrons are not deflected at all, then:

�e‖B ≈ 1
4 nMPSEce exp[eVs f /kTe] (2.104)

and so
�e

dep ≡ �e
⊥surface = cos ψ�e‖B . (2.105)

Equating equations (2.103) and (2.105) for the floating surface shows that the
cos ψ term cancels out: Vs f  is independent of ψ , to first order, see figure 2.24.

This total potential drop is distributed between the Debye sheath drop, eVDS,
and the Chodura sheath (magnetic pre-sheath) drop, eVMPS:

Vs f = VDS + VMPS. (2.106)

The split depends on ψ : the electrons satisfy the Boltzmann relation at all
points, to the same high approximation as for the standard sheath, essentially (the
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Figure 2.24. To first order the total voltage drop across the magnetic pre-sheath and Debye
sheath is independent of angle ψ [2.13]. Electrically floating wall. (a) Ti = 0, (b) Ti = Te

H+ ions.

missing high energy tail is slightly different, see below), thus we take:

nDSE = nMPSE exp[eVMPS/kTe] (2.107)

where nDSE, nMPSE are the densities at the Debye sheath edge (referred to simply
as the ‘se’ previously) and the Chodura sheath edge. For the ions we assume
conservation of flux between the two locations:

nMPSEcs cos ψ = nDSEcs . (2.108)
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Figure 2.25. The average ion and electron velocities through the magnetic pre-sheath and
Debye sheath [2.13] for the specific case of ψ = 60 ◦, Ti = 0, H+ plasma. The magnetic
field strength is specified through the parameter ∝≡ ωce/ωpe, where ωce ≡ eB/me, the
electron cyclotron frequency and ωpe = (nee2/ε0me)

1/2 is the electron-plasma frequency.
Here the case of α = 1 is illustrated.

Combining (2.107) and (2.108) gives the potential drop across the Chodura sheath
as:

eVMPS

kTe
= ln(cos ψ). (2.109)

Example: ψ = 80 ◦, eVMPS/kTe = −1.75, and so if eVs f /kTe = −3 then
eVDS/kTe = −1.25.

In the pre-sheath the E-field is required to overcome ion inertia, while in the
Chodura sheath an additional E-force is required to overcome the v× B, Lorenz,
force on the ions. As ψ increases |VMPS|increases.

We may estimate the width of the Chodura sheath, LMPS, and thus also the
electric field EMPS, as follows: the Lorenz force on the ion, balanced with the
E-force, gives:

evi B � eEMPS (2.110)

with vi � cs and EMPS � kTe/eLMPS. Thus:

LMPS ≈ cs/ωci = ρi (cs) (2.111)

that is, LMPS is of the order of the ion Larmor radius ρi evaluated for velocity cs .
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Figure 2.26. The potential drop through the magnetic pre-sheath and Debye sheath for
various values of angle ψ and for Ti = 0 (a), Ti = Te (b), for H+ plasma and α = 1, no
secondary electron emission for an electrically floating wall.

ωci = eB/mi . Chodura’s more detailed analysis yields:

LMPS �
√

6(cs/ωci ) sin ψ. (2.112)

Figure 2.25 shows an example of the variation of ion and electron velocities,
vi x , vex through the MPS and the DS, illustrating that the scale length of the MPS
is ρi (cs), and that of the DS, λDebye. One also may note that at the entrance to
the MPS (far to the left in figure 2.25) vex = cs cos ψ , i.e. v‖B,MPSE = cs , while
at the DSE, vex = vi x = cs . Figure 2.26 gives examples of the electrostatic
potential variation in the MPS and DS, showing that as ψ increases, more of the
total potential drop occurs within the MPS (note that the DS is scarcely resolved
in this figure).
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We return to the derivation of the Chodura criterion:

v‖B,MPSE � cs . (2.113)

Although the mathematics is more complex due to the presence of a magnetic
field, the basic idea is the same as for the derivation of the Bohm criterion,
section 2.3: Chodura [2.13], sets up an expression for the potential variation just
entering the MPS—equivalent to equation (2.45). Chodura does not assume that
quasineutrality holds in the MPS, but employs Poisson’s equation, and demon-
strates that the MPS is in fact quasineutral. Then, as with the B = 0 case, a
constraint is found to exist for the ion velocity, in order that the potentials evolve
in a non-oscillating way. Chodura formulates the problem in terms of a small
time-independent ‘disturbance’ to the potential of the form exp(ikx) and finds a
relation between k2 and v‖B,MPSE (a ‘dispersion relation’) [2.13]. Only for k2 < 0
will the potential ‘disturbance’ be non-oscillatory. (We used essentially the same
idea in section 2.3). This is found to occur for v‖B,MPSE � cs , equation (2.113).
Proceeding differently from Chodura, Riemann [2.27], assumed the MPS to be
quasineutral and that the electrons satisfy the Boltzmann relation. He then showed
that the existence of a (real) solution requires that relation (2.113) holds—which
we may therefore call the Chodura–Riemann condition [2.54].

By treating the electron flow reaching the target in detail, Chodura found
that eVs f  has a slight dependence on ψ , figure 2.24. As with the normal sheath
the electrons would completely conform to the Boltzmann relation right up to
the solid surface, were it not for the loss of the high energy tail of the electron
distribution, which is absorbed by the surface. For the normal sheath this dis-
tortion to the electron distribution has no effect on the electron flux reaching the
solid surface, �ess, since only the vx > 0 electrons are involved. For an oblique
target, the electron absorption involves the vy and vz velocity components and the
distortion to the electron distribution now effects �ess somewhat.

The principal conclusions, however, are that, to first order, the sink action
of the solid surface acting on the plasma, with regard to both particle and power
flows, is unaffected by the change from a normal to an oblique target. Further, the
sheath voltage drop and ion impact energy are unaffected, to first order.

At this point it is appropriate to return briefly to the topic of Langmuir
probes, section 2.7. Probes built into limiters and divertor targets, figure 2.11,
have become widely used in tokamaks since about 1990, due to the increas-
ing levels of power and pulse lengths being employed. Fixed probes standing
proud of the surface, figure 2.27(a), can suffer over-heating. One approach is to
make the probe’s collecting surface almost flush with the limiter/target surface,
figure 2.27(b). The heat flux density received on the probe surface is only slightly
higher than at the limiter/target surfaces, while at the same time, the effective
collection area of the probe, Aeff, remains simply defined, namely it is the area of
the probe projected perpendicular to B. For the reasons just discussed above, the
probe analysis can then proceed as if the collecting element were perpendicular
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Figure 2.27. Langmuir probes built into divertor targets or limiters may involve highly
oblique B. The collection area of the probes is that projected perpendicular to B.

to B, and of area Aeff [2.35–2.39]. One would also use the projected area Aeff for
‘proud’ probes, figure 2.27(a).

The most robust built-in probes are truly mounted flush to the limiter or
divertor target surface, figure 2.27(c). The magnetic field is still oblique to the
collecting surface (we do not consider here the case of B perfectly parallel to the
surface, which is discussed in section 25.2). In this situation the ion flow to the
collecting surface is partly due to parallel-to-B motion, and partly due to cross-
field, E× B drifts (chapter 18 and sections 25.3, 25.4). Riemann and co-workers
have provided a simple and convenient analysis of this case [2.55] which is found
to be in good agreement with experiment [2.56].

Additional Problems

2.2. Before the role of the pre-sheath in accelerating the ions was understood,
it was thought that one could calculate the floating potential of a surface,
Vs f , by assuming that the electron and ion particle flux densities entering the
sheath were simply the one-way Maxwellian fluxes, which are:

�
Max,one-way
e,i = 1

4 nsece,i

c ≡ (8kT/πm)1/2.

Show that this incorrect line of reasoning gives the result:

eVs f

kTe
= 1

2 
ln

(
me

mi

Ti

Te

)
.

Compare this with the Langmuir–Bohm result, equation (2.60). When is this
a good approximation? When poor? Explain physically why this incorrect
result gives

Vs f →−∞ when Ti → 0.

2.3. The Maxwellian distribution. It is a general property of systems in equilib-
rium at temperature T , that the probability of a particle having an energy
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E is proportional to exp[−E/kT ]. Use this property alone to obtain the
Maxwellian distribution for velocities in two dimensions

f (vx , vy) = n

(
m

2πkT

)
exp

[
− m

2kT
(v2

x + v2
y)

]
.

2.4. Show that for a three-dimensional Maxwellian distribution the particle flux
density � [particles m−2 s−1] through any imaginary surface in one direction
is � = 1

4 nc where c = (8kT/πm)1/2 (the net flux, of course is zero). Show
that the one-directional energy flow density q [W m−2] through the surface
is q = 2kT �. Show that the energy density is 3

2 nkT . Explain physically
why q is greater than the product of � and the average energy per particle
3/2kT .

2.5. Derive equations (2.16), (2.21), (2.28), (2.29), (2.31).

2.6. Debye shielding. In order for shielding to occur, i.e., for a plasma to exist (as
distinct from simply ionized gas) the particle density must be large enough
for some particles to exist, on average, in a distance λD , the Debye length.
Find what conditions this imposes on n and T . Are fusion plasmas likely
to satisfy this condition? What about interstellar space where, perhaps, n =
106 m−3, T = 10−2 eV?

2.7. Show that f = f Maxe−�/kT satisfies equation (2.34).

2.8. A large voltage is applied to a 1D plasma with n = 2 × 1018 m−3 and
Te = Ti = 15 eV. The plasma occupies 1 m between the electrodes. Owing
to the presence of the neutrals, the ions suffer collisions in responding to the
electric field and the result is that a 200 V drop develops within the plasma
itself due to friction.

(a) Calculate the charge imbalance in the plasma, i.e., (ne − ni )/ne.
(b) The sheath thickness, lsh , is not actually a constant, but it increases with

the magnitude of the potential drop across the sheath, �Vsh . One can
make a rough estimate of lsh(�Vsh) using Poisson’s equation together
with the crude assumptions that within the sheath ne ≈ 0 and ni ≈
n0, constant, i.e. that the electron density decreases extremely rapidly
compared with the ion density. Assuming that the electric field at the
entrance to the sheath can be neglected, show that:

lsh ≈ λD(e�Vsh/kTe)
1/2.

Estimate the sheath thickness here [m], if �Vsh = 150 volts.
(c) Make less crude approximations to show that one obtains the Child–

Langmuir law [2.19]:

lsh ≈ λD(e�Vsh/kTe)
3/4.

Hint: see equation (9) of [2.19].
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(d) For sufficiently large �Vsh , the sheath can be made ‘visible’ as a dark
region (due to the relative absence of electrons which cause photon
emission by impact with neutrals). Assuming that lsh would need to
be at least 1 mm to be seen, how large a sheath voltage drop would be
required to make the sheath visible in the above plasma?

2.9. Show that the Bohm criterion, equation (2.48), can also be obtained [2.57]
from requiring that:

dni

dx

∣∣∣∣
se
≥ dne

dx

∣∣∣∣
se

that is, as the sheath is entered the electron density decreases as fast as, or
faster than, the ion density (note that both gradients are negative).

Hint: dn/dx = (dn/dV )(dV/dx). Give a physical justification for the above
assumption.

2.10. The derivation of the Bohm criterion in section 2.3 assumed singly charged
ions. Re-derive this criterion assuming a charge of Z on the ions to show
that vse ≥ (ZkTe/mi )

1/2.

2.11. Demonstration that in a retarding electric field the electron velocity dis-
tribution remains Maxwellian, but the electron density is reduced by the
Boltzmann factor.

(a) Write down the 1D Maxwellian velocity distribution.
(b) Write down the expressions for the conservation of energy and particles.

Assume there is no volumetric source or sink of electrons. Let the ve-
locity distribution at any general location be g(v′), and at the reference
location be fref(v), a Maxwellian. From energy conservation:

v′2 = v2 − 2eV/me

where the reference potential is taken to be V = 0. Argue that particle
conservation gives:

v′g(v′)dv′ = v fref(v)dv.

(c) Thus prove the stated result.

2.12. From the generalized Bohm criterion, argue that either f ise(v) = 0 for v
below some positive cut-off velocity, or that for small v, f ise(v) ∝ vα , and
find the value of α (range). Comment on the significance of your findings.

2.13. Derive equation (2.55a).

2.14. (a) For the electrically biased configuration shown in figure 2.9, and
analysed in section 2.6, calculate the I –V characteristic, figure 2.15.
Assume nse = 1019 m−3, Te = Ti = 10 eV, H+ plasma. Take the
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area of each end plate-electrode to be 3 × 10−4 m2. Plot current I [A]
against Vapplied (V), also the voltage on the left and right plate-electrode,
V� and Vr against Vapplied. Evaluate the saturation current I+sat [A].

(b) Prove that

I/I+sat = − tanh[eVapplied/2kTe],
the double-probe characteristic.

(c) Show how you could analyse the I –V characteristic (pretending that it
had been obtained by experiment) to extract measured values of ne and
Te. Show that there is a simple relation between Te and dI/dVapplied,
evaluated at Vapplied = 0. This constitutes a double-probe analysis.

2.15. Derive equation (2.67).

2.16. Repeat problem 2.14(a) but now for a single probe by assuming that the left
plate-electrode probe has area 3 × 10−4 m2 while the right plate-electrode
probe has an area much larger. Assume there is no B-field. In order to avoid
having to deal with the transition to electron current saturation, just calculate
and plot for values of Vapplied which give net ion current collection. As for
problem 2.14(c) find the relation here between Te and dI/dVapplied evaluated
at Vapplied = 0.

2.17. For plasma conditions at the se: ne = 1019 m3, Te = 10 eV, TD = 20 eV,
and assuming an electrically floating surface, calculate:

(a) �se, (b) Vs f , (c) qe
ss , (d) qe

se (e) qi
ss , (f) qi

se (g) γ and (h) the value of qe

and qi at a location part way through the Debye sheath, specifically at
the location where V = (1/3)Vs f . Use Vse = 0.

2.18. For the same plasma as in problem 2.17, find the values of qi
ss and qe

ss if
the solid is electrically biased so that there is no potential difference between
the plasma and the solid, i.e. no sheath. Compare with the results of the last
problem and comment.

2.19. The Chodura sheath. Plasma conditions: n0 = 1019 m−3, Te = 10 eV,
Ti = 20 eV, D+ plasma, B = 3 T. Take VMPSE = 0 and for ψ = 10 ◦, 50 ◦,
85 ◦ evaluate:

(a) the ion flux density parallel to B at the MPSE,
(b) the ion flux density perpendicular to the solid surface at the DSE,
(c) the ion flux density received by the solid surface,
(d) the potential at the DSE,
(e) the potential at the solid surface,
(f) the width of the MPS (estimate),
(g) the electric field in the MPS (estimate),
(h) the electric field in the DS (estimate),
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(i) the heat flux density parallel to B at the MPSE in the ion ‘channel’, and
in the electron ‘channel’,

(j) the total heat flux density received by the solid surface.
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Chapter 3

Experimental Databases Relevant to Edge
Physics

3.1 Ion and Atom Back-scattering from Surfaces

When ions or atoms strike a solid surface they suffer one of several fates:

(a) they may be directly back-scattered or reflected with some fraction of the
impact energy E0 (≡ Eimpact in chapter 2);

(b) they may be implanted in the near surface, where they will become thermally
accommodated, and be subsequently released as a thermal particle;

(c) as (b) but they remain trapped in the solids for some extended period of time.

In this context there are no significant differences between incident atoms
and ions. An ion approaching a solid surface extracts an electron as it enters
the solid, and so the actual interaction with the solid is the same as for an atom,
including any subsequent ionization of the projectile as it collides with the atoms
in the solid lattice. Furthermore, when the particle is reflected, the probability
that it will do so as a neutral is quite high, irrespective of the charge state of
the original projectile, since the velocity of the separation between the reflected
particle and the surface is slow compared with typical electron speeds and there is
time for an electron to be released from the surface and to neutralize a departing
ion. For H+ impacting on stainless steel, and E0 < 1 keV, less than 10% of the
particles are reflected as H+ or H−, with > 90% being H0 [3.1].

Back-scattering data are expressed in terms of the particle and energy re-
flection coefficients RN and RE , which depend on the impacting and substrate
species, impact energy E0, and the angle of incidence α, measured with respect
to the surface normal [3.1–3.4]. Acceleration of ions across the Debye sheath
tends to make the ions move unidirectionally, normal to the surface, and roughly
mono-energetically. When B is oblique to the solid surface, section 2.10, there
is a strong ‘straightening’ effect on the ion trajectories in the Chodura pre-sheath
(magnetic pre-sheath), although not enough to achieve normal incidence of the

111
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ions as they strike the solid surface. For practical applications, surface roughness
rather diminishes the importance of establishing the actual impact angle, and often
the normal incidence data are assumed to apply. If the data were experimentally
generated, they may well have been obtained for a roughened surface in any
case—if not originally rough, then rendered rough on the atomic scale by the
bombardment itself. Here we only consider normal incidence data.

The particle reflection coefficient RN is defined to be the number N of all
back-scattered particles divided by the number N0 of incident particles [3.1]:

RN (E0) = N/N0. (3.1)

Each back-scattered particle has some particular energy E < E0, spanning a
distribution. The energy reflection coefficient RE is defined as the total energy of
the reflected particles divided by the total energy of the incident particles [3.1]:

RE (E0) = E(E0)N

E0 N0
= E(E0)

E0
RN (E) (3.2)

Figure 3.1. Particle (or number) and energy reflection coefficients for (a) H on Fe, and
(b) D on C versus the impact energy [3.3].
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Figure 3.2. Particle and energy reflection coefficients versus mass ratio M2/M1, for
different reduced energies ε, equation (3.3), at normal incidence [3.3].

where E(E0) is the mean energy of the reflected particles. (Note: RE is not
simply defined as E/E0.)

Values of RN , RE are available in some cases from laboratory measurements.
For more extended coverage of projectile and substrate species, RN and RE are
calculated using computer codes such as TRIM [3.1–3.3]. Examples for H on Fe
and D on C are given in figure 3.1 [3.3]. From these examples one may note a
number of features:

(1) RN , RE drop as E0 increases. The projectiles bury themselves in the solid
more effectively at higher E0, figure 3.1.

(2) Reflection is more effective the larger the ratio Msubstrate/Mprojectile, where
M is atom mass, figure 3.2. Light projectiles reflect from a heavy atom
substrate like a ping pong ball hitting a billiard ball.

For other projectile/substrate pairs one may use calculated universal profiles
such as figure 3.2 [3.3] where the reduced energy ε is defined [3.3]:

ε ≡ 0.032 534E0[eV]M2/[(M1 + M2)Z1 Z2(Z2/3
1 + Z2/3

2 )1/2]. (3.3)
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M2 ≡ Msubstrate, M1 ≡ Mprojectile and the Zs are the charges of the bare nuclei.
From figure 3.2 it is evident that reflection becomes negligible for M2/M1 � 0.5.
A number of convenient fitting formulae are available for RN (ε) and RE (ε) [3.1–
3.3, 3.5].

3.2 Particle-Induced Electron Emission

Electrons released from the solid surface into the plasma reduce the (floating)
sheath potential drop, and alter the sheath heat transmission coefficient γ , sec-
tion 25.5, figure 2.8. It has to be noted however, that a low energy electron
released from a surface, when B is rather oblique to the surface, has a finite
Larmor radius and thus has a good chance of immediately returning to the surface
within one Larmor period; see problem 3.2. The effective electron emission
coefficient for fusion devices is thus sometimes taken to be zero, regardless of
the original release rate.

Electrons can be released from solids by impact of electrons, ions, photons,
excited neutrals, etc. Here we consider only electron impact which shows peak
yields for E0 = hundreds eV. Peak ion yields occur at E0 = hundreds of keV,
although there are non-negligible yields at hundreds of eV [3.4, 3.6]. Usually
electron impact is the most important release process.

The total yield ξ of emitted electrons per primary electron is defined to be:

ξ = δ + η. (3.4)

δ is due to the true secondary electrons and η represents reflected or back-scattered
electrons. While strictly these two contributions cannot be separated, the energy

Figure 3.3. Representative energy distribution of electrons emerging from a solid as a
result of electron bombardment at a primary energy E (200 eV). Peak I is the main reflected
peak with structure at slightly lower energies due to specific energy loss processes. Peak II
is the main secondary electron peak. The minor peaks at III are from Auger transitions.
The secondary emission coefficient δ includes all electrons ejected at energies below 50 eV.
The reflection coefficient η is taken as including all electrons ejected at energies above
50 eV [3.6].
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Figure 3.4. Reflection coefficient as a function of incident electron energy for C, Fe and
W [3.6].

Figure 3.5. Normalized secondary electron emission coefficient δ/δmax as a function of
normalized energy E/Emax. The circles are data for Li, Mg, Al, Si, Ti, Fe, Cu, Ni, Ga,
Ge, Rb, Nb. The other data points are for TaC (×), TiC (�) and ZrC (�). The line is the
semi-empirical curve, equation (3.5), [3.6].

of the electrons emerging from the solid provides a basis for estimates; see fig-
ure 3.3 [3.6]: peak I is due to the back-scattered electrons, peak II to the true
secondaries which typically have only a few eV energy (peak III is due to Auger
transitions). Figure 3.4 [3.6] gives some example values of η. The form of δ, for
many materials, can be approximated by the relation [3.6]

δ

δmax
= (2.72)2 E0

Emax
exp

[
−2

(
E0

Emax

)1/2]
(3.5)

where δ has a maximum value of δmax, when E = Emax. Values of δmax and Emax
for different materials are given in table 3.1 [3.6] and the comparison with data
is shown in figure 3.5 [3.6]. For almost all practical purposes the sum ξ is used;
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Table 3.1. Maximum of the secondary electron emission yield, δmax, and projectile energy
at which it occurs, Emax, for selected elemental metals and certain other materials [3.4].

Target Z δmax Emax[eV]

Be 4 0.5 200
C (graphite) 6 1.0 300
C (pocographite) 6 0.55 500
Al 13 1.0 300
Ti 22 0.9 280
Fe 26 1.3 400
Ni 28 1.35 550
Mo 42 1.25 375
W 74 1.4 650
TiC 1.0 460
TaC 0.84 270
ZrC 1.25 340
TiN 0.95 350
Stainless steel 1.22 400

Data are for normal incidence.

δ usually dominates over η, so most of the electrons can be taken to be of low
energy.

It is worth noting [3.6]: ‘δ is very sensitive to surface conditions and topog-
raphy; it is likely to change significantly during operation of a plasma device.
Reliable values of δ can be obtained only by a study of the material in the condi-
tion found in the plasma device’.

3.3 Sputtering

When energetic ions (or neutrals, e.g. from charge exchange occurring in the
plasma) strike a solid surface, sufficient momentum can be transferred to an atom
in the solid lattice to eject it. This removal via momentum transfer is termed
physical sputtering and is distinguished from chemical sputtering. In chemical
sputtering the chemical potential energy of the H atom or ion is involved (the
reactivity of the H2 or O2 with carbon is negligible in comparison with H0, H+,
O0, O+). This potential energy is available to break C–C lattice bonds, and make
C–H bonds, eventually leading to the formation of volatiles such as CH4 which are
released from the surface. Thus, even H atoms with negligible kinetic energy are
effective—although the chemical reactivity is greatly enhanced for higher impact
energy, section 3.3.2.

Impurities which have been injected into the plasma are ionized but eventu-
ally return to strike a solid surface, giving rise to self-sputtering. Since momentum
transfer between like masses is very effective, this sputtering process can be
particularly damaging.
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All sputtering processes are characterized by the sputtering yield, Y , which is
the number of atoms or molecules ejected per impacting particle. Y is dependent
on impact energy, E0, angle of impact α and the two species involved. For phys-
ical sputtering Y is either measured, typically employing an ion accelerator, or is
calculated using, for example, the TRIM code [3.7–3.10]. Chemical sputtering
yields are measured experimentally. Self-sputtering yields often exceed unity,
thus indicating the danger of a runaway self-sputtering cascade. Physical sput-
tering yields for H/D/T are generally a few per cent at the maximum. Chemical
sputtering yields of C by H are up to a few per cent. The chemical sputtering of C
by O has about 100% yield [3.11], indicating the importance of achieving clean
vacuum conditions; even if bulk carbon/graphite is not present in the machine,
carbon tends to be ubiquitous in vacuum systems, and a nearly steady-state C
+ O recycling process can occur. Deposition (gettering) on surfaces by reactive
elements such as Li, Be, B, Ti, etc, to form thin layers which rapidly react with
oxygen to form stable oxides, can be used to deal with the stubborn oxygen
problem [3.12].

The charge on the incident particle is relevant inasmuch as an ion will be
accelerated by the sheath. Once the ion reaches the surface, however, it is neutral-
ized and the yield is the same for ions and atoms of the same energy impacting
the surface. The ejected particles are primarily neutral atoms, atom clusters or
molecules.

For physical sputtering to occur, enough momentum must be transferred to
the lattice atom to overcome the surface binding energy; thus a threshold energy
Eth exists for physical sputtering, below which no sputtering occurs. The value of
Eth can be estimated simply from known, measured values of the surface binding
energy EB—which may be taken as the heat of sublimation; EB(Li) = 1.67 eV,
EB(Be) = 3.38 eV, EB(C) = 7.4 eV, EB(Fe) = 4.3 eV, EB(Mo) = 6.9 eV,
EB(W) = 8.8 eV for example (3.13). From simple analysis of momentum
transfer in a head-on collision between two particles of mass M1 (projectile) and
M2 (substrate), we know the maximum energy fraction that can be transferred is:

γ = 4M1 M2

(M1 + M2)2
. (3.6)

(Note: γ here is not to be confused with the sheath heat transmission coefficient
of chapter 2.)

The most common sputtering event for light incident ions involves two col-
lisions between the projectile and lattice atoms: the first collision occurs in the
lattice reflecting the projectile back toward the layers nearer the surface; the
second collision involves an impact, say on a first-layer atom, from below, ejecting
it. Thus, for sputtering due to collisions which are head-on—the most extreme
case—one has:

Eejected = E0γ (1− γ )− EB . (3.7)
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Thus, when E0 = Eth , then Eejected = 0 giving:

Eth = EB

γ (1− γ )
. (3.8)

This provides a good estimate for Eth ; for example, for H on C, γ = 0.284,
and one obtains from equation (3.8) Eth = 37 eV, close to the value tabulated
in [3.9] of 35 eV. One should, however, use the fitted values of Eth provided
in [3.7–3.10].

Equation (3.8) also indicates the high Eth for high Z substrates; for example,
H on W, for which γ = 0.0215, and EB = 8.8 eV, equation (3.8) gives Eth =
418 eV. One also sees the reduced Eth for impurity sputtering; for example, for O
on W, for which γ = 0.294, equation (3.8) gives Eth = 42 eV.

For substrates such as W, there exists the attractive prospect of having no
sputtering at all: if the plasma temperature at the target is low enough then the
(floating) sheath potential drop may be low enough that E0 < Eth ; there will also
then be no self-sputtering. This attractive option is compromised, at least to some
degree, by:

(a) the fact that the impacting H/D/T ions are not precisely monoenergetic, but
there exists a high energy tail of their distribution. The sputtering can be
dominated by this tail [3.10];

(b) the inevitable presence of light impurities such as C and O which result in
impurity sputtering, and subsequently self-sputtering [3.14].

This high Z substrate option (which exploits the fact that generally the higher
the Z , the higher Eth) nevertheless remains a very important one [3.15].

3.3.1 Physical Sputtering

Convenient formulae have been developed [3.7–3.10, 3.16] for Y (E0, α) covering
many projectile–substrate pairs. As for ion back-scattering, section 3.1, we only
cite here the results for normal incidence ions, α = 0. While for nearly perfect
crystal surfaces Y can change by an order of magnitude with angle, for roughened
(practical) surfaces, at glancing angles, there is much less dependence of Y on
α [3.9]. In addition—as for ion back-scattering—there exists the ‘straightening’
effect of the sheaths on the ion trajectories—tending to make the ion impact
approach normal incidence. A first approximation allowing for the effects of
roughness and non-tangential targets could be simply to double the normal for-
mula for physical sputtering yield [3.17].

Experimentally measured yields for physical sputtering follow the conve-
nient Bohdansky formula fairly well [3.7–3.10]:

Y (E0, α = 0) = QSn(ε)g(Eth/E0) (3.9)
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where Q is called the ‘yield factor’. Q depends on the surface binding energy
EB and the projectile and target masses, M1 and M2, respectively. The analytic
expression for the nuclear stopping cross-section Sn(ε), which is based on the
Thomas–Fermi potential, is given approximately by:

Sn(ε) = 3.441
√

ε ln(ε + 2.718)

1+ 6.355
√

ε + ε(6.882
√

ε − 1.708)
. (3.10)

ε is the reduced energy defined by equation (3.3). ε ≡ E0/ETF, where ETF is the
Thomas–Fermi energy [3.9]. The function g in equation (3.9) takes into account
threshold effects and is given by:

g(δ) = (1− δ2/3)(1− δ)2 (3.11)

with δ = Eth/E0 here (which is not the δ of the last section!). Compilations of
ETF, Eth and Q are given in [3.7–3.10]. Sample values [3.9] are given in table 3.2.
One notes from equation (3.11) that indeed Y → 0 for E0 → Eth .

Figure 3.6 gives some examples of yields for normal incidence physical
sputtering; these results are from code, TRIMSP [3.10], calculations. Experi-
mental data are typically within a factor of two of code calculations, which is
also representative of the data scatter. This significant uncertainty in the basic
data of physical sputtering should always be borne in mind when interpreting
tokamak edge experiments. Agreement between modelling and experiment by a
factor better than 2 must be fortuitous. Errors in physical sputtering yields can be
very large near the threshold energy due to uncertainties in the threshold value,
and the very rapid variations in yield involved there. The uncertainties are usually
attributed to variations in surface conditions affecting the binding energy.
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Figure 3.6. Normal incidence physical sputtering yields for D on Be, C and W surfaces,
calculated using the TRIMSP code [3.10]. Experimental data are typically within a factor 2
of code calculations, which is also typical of the data scatter.
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Table 3.2. Parameters for the physical sputtering yield [3.9].

Target H D T 4He C O self

Beryllium
Eth (eV) 20 9 21 30 40 70 25
ETF (eV) 256 282 308 780 4152 6970 2208
Q (atoms/ion) 0.1 0.3 0.24 0.59 1.6 1.3 1.4

Graphite
Eth (eV) 35 30 30 29 42 42
ETF (eV) 415 447 479 1087 5687 9298 5687
Q (atoms/ion) 0.035 0.10 0.20 0.32 1.5 1.5

Iron
Eth (eV) 64 44 40 33 35 40
ETF (eV) 2544 2589 2634 5514 20 247 29 839 174 096
Q (atoms/ion) 0.042 0.13 0.21 0.44 3.2 13

Molybdenum
Eth (eV) 199 90 70 46 55 64
ETF (eV) 4718 4767 4816 9944 34 183 48 322 533 048
Q (atoms/ion) 0.007 0.023 0.045 0.12 0.93 18

Tungsten
Eth (eV) 443 220 140 110 80 40 65
ETF (eV) 9870 9923 9977 20 373 66 507 91 979 1998 599
Q (atoms/ion) 0.007 0.019 0.038 0.106 0.93 2.2 20
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One notes the very rapid drop in Y as E0 → Eth . Peak yields occur for
E0 in the hundreds to thousands eV, and drop again for very high E0 where the
impacting ions deposit less energy in the surface layers, penetrating deeper into
the lattice structure.

3.3.2 Chemical Sputtering of C by H

In fusion devices carbon is much favoured for application as the plasma-facing
material used for limiters, divertor targets and walls. Being low Z , it can be
tolerated at the level of one per cent or so in the hot core plasma, without resulting
in the unacceptably high radiation cooling that a high Z element would cause at
such levels. It is also refractory, inexpensive, non-toxic, easy to fabricate, strong
(as graphite fibre material), etc. Unfortunately—as has been long known—carbon
is susceptible to chemical sputtering by hydrogenic species, to produce CH4 and
higher hydrocarbons.

No threshold (kinetic) energy of impact exists for chemical sputtering, and
yields even for sub-eV H0 are not negligible; the yield of CH4 for sub-eV H0

is ∼ 5 × 10−4, while the total chemical yield (all hydrocarbons) is ∼ 5 ×
10−3 at the maximum (substrate) temperature for chemical sputtering [3.18].
The strong dependence on substrate temperature is one of the key signatures of
chemical sputtering, see figure 3.7 [3.19] with a peak yield occurring at a substrate
temperature which depends on E0, but generally lying in the region of 700 K. A
clear tendency for Y to decrease with decreasing E0 is evident, figure 3.8 [3.20],
but the decrease at low E0 is not as dramatic near the threshold as for physical
sputtering, figure 3.6. One may also note from figure 3.8 that CH4 is only part—
and sometimes a small part—of the total hydrocarbon production.

By comparing figure 3.6 and 3.8, it is evident that chemical sputtering dom-
inates for E0 ≤ 100 eV, except at extremely high substrate temperature. For
E0 ≈ hundreds eV chemical sputtering yields are comparable to or larger than
physical sputtering yields. It is sometimes thought that chemical sputtering can be
largely avoided by using room temperature substrates, i.e. by avoiding operation
in the Ts = 700 K range. While for high E0 ∼ 200 eV there is indeed a strong
Y (Ts) variation, this is much weaker for the low E0 of greatest practical interest,
and room temperature chemical sputtering is seen to be significant, figure 3.7.

Chemical sputtering was originally characterized in the 1970s using
accelerators employing rather high particle energies, typically greater than
10 keV, and starting in the 1980s with accelerators operating in the 100–1000 eV
range. Ion flux densities were also quite low in these experiments, i.e. less than
1020 H+ m−2 s−1, typically. Under these circumstances quite high yields for
chemical sputtering are found, for example up to Y ∼ 0.1 for the peak substrate
temperature of ∼ 800 K. More recently experiments have been performed at the
higher flux densities and lower particle energies appropriate for divertor target
operation. With regard to flux dependence, figure 3.9 [3.20], the yields reported
for low impact energy span a very wide range. In some cases a significant
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Figure 3.7. Methane yield of pyrolytic graphite as a function of temperature for
(a) hydrogen and (b) deuterium impact at 10, 15, 25, 50, 100 and 200 eV/atom. Spline
curves are drawn to aid the eye [3.19].

reduction is found, while in others even increases are seen. These measurements
cannot be made with accelerators but employ plasma exposure, thus introducing
various uncertainties. For example, spectroscopic measurements of C-influx are
complicated by the uncertainty of the photon efficiency, section 3.5.1, of C+ or
CD-band light from methane (and other hydrocarbons). It is evident that a yield
saturation must set in at some point, but it is still an open question at what flux
density this occurs. Nevertheless, there is some grounds for optimism that yields
may be reduced at the high flux densities characteristic of target plate exposure in
tokamak divertors [3.21]. Wall release of carbon may be a more important cause
of core contamination than target release, due to the closer proximity of the wall
to the main plasma. Since impacting flux densities are not as high at the wall,
this issue (of flux dependence) may not be so critical as is the issue of the yields
at low impact energy.

In tokamaks a useful technique for distinguishing the roles of chemical and
physical sputtering is to replace deuterium with helium as the fuel, keeping the
plasma parameters the same [3.22].
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Figure 3.8. Incident energy dependence of the methane yield and the total chemi-
cal erosion (i.e., Chemtotal = CH4 + 2(C2H2 + C2H4 + C2H6)+ 3(C3H6 + C3H8)) of
graphite due to H+ impact. The legend in (d) also applies to (a), (b) and (c) [3.20].

The field of chemical sputtering measurements continues to be characterized
by variations in reported yields, particularly in the low E0 range, which is of great-
est interest. Uncertainties are probably greater than for physical sputtering—and
are at least a factor of 2.

It is known, from laboratory experiments done since the early 1980s, that
a synergistic chemical sputtering process exists [3.23]: when a small flux of
energetic H+ ions, say at 1 keV, is added to a larger flux of sub-eV H0, the
resulting total yield is greatly increased over that due to the H+ and H0 fluxes
separately. The presence of just one energetic ion to 20 low energy atoms raises
the sputtering rate of the atoms to that of the energetic particle. Solid surfaces
in tokamaks are exposed to a wide range of impacting energies—often with the
most intense fluxes occurring at low energies, but with smaller, high energy com-
ponents being present also. When assessed separately it may be that neither
component gives significant sputtering, in some specific situation—whereas if
synergistic sputtering is a real effect in the tokamak environment, then substantial
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Figure 3.9. Flux dependence data of the chemical erosion of graphite shows very wide
variation, making it difficult to identify a trend [3.20]. (See references in [3.20].)

sputtering may actually occur. To date the role in tokamaks of such a synergism
appears not to have been addressed.

For recent reviews of chemical sputtering see [3.24, 3.25].

3.3.3 The Energy of Sputtered Neutrals

The depth of penetration of an impurity neutral into the plasma before it is ionized
will be shown in section 6.5 to have a strong influence on the resulting impurity
density within the plasma, nz . Impurity penetration depends on the energy with
which the neutral is launched from the surface, and also the angular distribu-
tion of emission. Since practical surfaces are rough, a cosine angular emis-
sion distribution is probably a reasonable approximation. Evaporated and chem-
ically sputtered neutrals have thermal velocities characteristic of the substrate
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temperature. Physically sputtered neutrals often obey a Thompson [3.26] velocity
and energy distribution to a first approximation [3.7]:

dY

dEz
∝ Ez

(Ez + EB)3
(3.12)

where Ez is the energy of the ejected impurity neutral.
This distribution has a maximum at Ez = 1/2EB and falls off at high

energies as E−2
z . Note also, from equation (3.7), that there is a maximum energy

Emax
Z which is dependent on the impacting energy:

Emax
Z = E0γ (1− γ )− EB . (3.13)

For self-sputtering, where like-mass collisions are involved, energy-transfer is
quite effective and Emax

Z ≈ E0. While a chemically sputtered molecule such as
CH4 is released with thermal energies, its break-up into fragments by electron
impact in the plasma effectively accelerates the fragments to ∼ 0.5 eV energy by
Franck–Condon dissociation [3.27].

3.3.4 Radiation-Enhanced Sublimation, RES

In the early 1980s a new and worrying mechanism for carbon release was
discovered in studies using accelerators, radiation-enhanced sublimation,
RES [3.28, 3.29], where for substrate temperatures as low as 1200 K, strongly
enhanced sublimation occurred under ion impact. It is not clear whether RES
occurs in tokamak environments; some studies show clear evidence for it [3.30],
others not [3.31]. High incident fluxes are known to reduce RES [3.32].

3.4 Trapping of Hydrogen in Surfaces

The impacting hydrogen particles which are not instantly back-scattered, sec-
tion 3.1, are trapped in the solid for some period of time—perhaps permanently.
When they are released they come off as thermal molecules. The plasma is re-
fuelled by both types of released neutral and the fraction of the incident particles
re-cycled thus varies from RN up to unity (or even, transiently, > 1 since previ-
ously trapped hydrogen can be released).

The trapping properties of plasma-facing materials are therefore important
for understanding the fuel recycling process. A separate reason that trapping is
important is the radioactive tritium inventory tied up in these components. There
are several different trapping mechanisms—at least for carbon—and the type of
trapping which is most important for re-cycling differs from those which control
inventory.

Initially 100% of the non-back-scattered flux is trapped, when low temper-
ature solid surfaces containing no hydrogen are exposed to energetic hydrogenic
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Figure 3.10. Comparison of thermal annealing of Be and C that were implanted with
deuterium at room temperature [3.36]. (See references in [3.36].)

bombardment. Above a certain total fluence (time integral of the flux), which de-
pends on E0 and the solid temperature Ts , the retained amount of hydrogen satu-
rates and all further incident hydrogen is promptly released as thermal molecules.
At room temperature, carbon saturates at a maximum concentration of 0.4–0.5
H/C [3.33]; Be saturates at ∼ 0.3 H/Be [3.34–3.36]. The H can be released by
then raising the temperature, i.e., by thermal desorption, see figure 3.10 [3.36].

Four types of hydrogen retention have been identified as occurring in carbon:

(a) Saturation of the implanted layers. This is primarily what is involved in
figure 3.10, and is, in fact, a retention process for all solids.

(b) Co-deposition, an important process for carbon and possibly for other mate-
rials, depending on diffusivity and solubility for hydrogen. In co-deposition,
hydrogen is buried and trapped by re-depositing carbon.

(c) Absorption on internal porosity.
(d) Transgranular diffusion with trapping, which is important for carbon at high

temperatures.

The saturated implant layer retention, (a), dominates re-cycle while the other
retention mechanisms—particularly co-deposition—tend to control tritium inven-
tory in carbon; see, for example, [3.37].

Figure 3.11 from [3.34] is a schematic representation of the development of
‘local saturation and mixing’ [3.38] at low fluence φ0 and multiples of it. The
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Figure 3.11. Schematic representation of the model of local saturation and mixing,
showing depth profiles at low fluence φ0 and multiples of it [3.34].

Figure 3.12. Depth profiles obtained from the model calculations at different implantation
fluences (range of fluences 1×1017 to 2×1018 cm−2 at 3 keV, 2×1016 to 4×1017 cm−2

at 300 eV). The ion flux is 1015 cm−2 s−1 [3.34].
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Figure 3.13. Saturated retained amounts of deuterium implanted into graphite as function
of temperature and ion energy. Comparison of experimental data and model calculations.
Solid lines: analytical approximation, dashed line: numerical result. The calculations
were performed for an ion flux of 1015 cm−2 s−1 and a trap concentration of maximum
value 0.42; see [3.34] for details.

Figure 3.14. Illustration of the main mechanisms for the formation of hydrogen inventory
in graphite [3.34].

depth of penetration depends on E0, figure 3.12 [3.34]. It is believed that when
the graphite is locally saturated at a point, then all excess hydrogen recombines
throughout the implantation zone. The hydrogen diffuses as atoms and molecules
(via porosity), mostly to the surface and is released [3.39]. Diffusion into the bulk
also occurs; but, since the concentration gradient toward the surface is steeper,
most of the particles diffuse to the surface, with the bulk only filling up very
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Figure 3.15. Retained amount of 100 eV hydrogen implanted to saturation from a
model calculation (dashed line), and due to grain boundary or poroxity diffusion, and
transgranular diffusion, from experiment [3.34].

slowly. Diffusion is also enhanced near the surface by the ion bombardment. The
retained hydrogen thus saturates at some level, typically of order 1021 H m−2 in
C, figure 3.13 [3.34].

The diffusivity of hydrogen is greater in metals such as Be than in graphite
[3.36]. Thus, hydrogen thermal desorption occurs at lower temperatures, fig-
ure 3.10.

Figure 3.14 [3.34] illustrates types (a), (c) and (d) of retention in graphite.
Figure 3.15 [3.34] shows that, for carbon, the two deeper retention mechanisms,
(c) grain boundary (porosity) diffusion and (d) transgranular diffusion, dominate
over implanted layer retention, so far as inventory is concerned. At the same time,
the (c) and (d) mechanisms are slow responding and thus (a) dominates re-cycling.

Co-deposition, type (b), is however, likely to be the most important retention
mechanism for tritium inventory in graphite (3.35). Carbon sputtered from the
more exposed parts of the limiters and divertor targets tends to deposit on less
exposed surfaces, trapping H/D/T to a concentration level of 0.5 or higher as it
does. That is, regions of net carbon re-deposition build up, which are at the same
time co-deposits of H/D/T. Since there is no apparent saturation for this process,
it appears that virtually unlimited inventories of tritium could build up in this way.
Due to the stress at the interface caused by mis-matched thermal expansion, layers
of thickness >∼ 100 µm tend to flake off due to poor adhesion—but new deposits
continue to form. On the other hand, most of this trapped H/D/T is too deep to
play a role in re-cycle.

The two retention problems—re-cycle and (tritium) inventory—are thus
largely separate, for carbon. Metals with high diffusivity tend not to have a major
inventory problem—although there are exceptions such as Ti and Zr in which
hydrogen is very soluble.
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3.5 Atomic Databases for Ionization, Dissociation and Radia-
tion Rates

In figure 1.25, the reaction rates for some of the most important hydrogen atomic
and molecular volume processes are shown. It is evident that considerable com-
plexity is involved in hydrogen re-cycling because (a) much of the release from
the surface is as molecules, (b) the charge exchange rate is rather large compared
with ionization rates. It is to be noted that the dissociation process, reaction (2)
in figure 1.25, yields fast dissociation products, so-called Franck–Condon neutral
atoms of about 3 eV kinetic energy [3.40], which penetrate more deeply into
the plasma than the thermal molecules. A survey of the elementary processes in
hydrogen/helium plasmas is provided in [3.40], including the kinetic energy of
the product particles.

Extensive reviews of atomic and molecular data for hydrogen, hydrocarbons
and atomic impurities are to be found in the series ‘Atomic and plasma-materials
interaction data for fusion’, supplements to the journal Nuclear Fusion 2, 1992; 3,
1992; 4, 1993, 6, 1995. Ongoing literature surveys relevant to atomic and molec-
ular data for fusion are published in the irregular series International Bulletin on
Atomic and Molecular Data for Fusion published by The International Atomic
Energy Agency, Vienna. These data compilations also include data for line and
other radiation for hydrogen and impurity atoms and ions.

The most useful form of these data are as reaction coefficients σv [m3 s−1],
where, for electron-driven reactions, a Maxwellian distribution of the electrons
is assumed, and so values of σv(Te) can be tabulated. There may also be a
(generally) weaker dependence of σv  on ne. Thus, for example the electron-
impact ionization rate for hydrogen molecules is:

Siz = nenH2σv
H2
i z  (Te) [m−3 s−1] (3.14)

where σv
H2
i z  (Te) is given by plot (1) in figure 1.25.

For purposes of simple calculations and estimates, such single reaction rates
can be obtained from these databases. For many applications, however, it is neces-
sary to analyse entire atomic/molecular systems i.e. systems of charge stages and
the excited states of each charge stage interacting via chains of single reactions.
This typically involves so many basic processes that it has to be carried out using
a numerical code.

3.5.1 Atomic Databases for Impurities

Recommended ionization rates for impurities are available [3.41, 3.42]. Examples
for C, O and Ne are given in figures 1.26–1.28. One may note the relatively small
σvi z for the He-like (two orbital electrons) charge states. Thus C4+, O6+, Ne8+
can be common states in the edge plasma.

Consider first the analysis of an atomic system without transport: the plasma
is assumed to be infinite in extent and of uniform ne and Te. We may consider
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as an example, carbon atom and ion populations in a steady state. This implies
a balance of ionization and recombination and of excitation and de-excitation in
such a plasma, which determines the distribution over the seven charge stages
of carbon, and over the various excited states of each charge stage. Further
assumptions are often justified, including the following.

(a) The plasma is optically thin, i.e. no radiation trapping.
(b) The coronal picture also exists: excitation and ionization are by collisions

and de-excitation and recombination involve photon emission. (‘Coronal’
from the Sun’s corona, where ne is small.) All excited states, including
metastable ones, decay radiatively on a time scale shorter than any colli-
sional time [3.43], i.e. the electron impact de-excitation time is longer than
the radiative decay time. In some analysis, electron impact de-excitation of
metastables is included [3.44].

(c) Excitation and ionization is due to electron impact only.
(d) Recombination by photon emission including two-body (e and i combine

with a photon being released, taking away the potential energy) and dielec-
tronic (similar but with two photons released); three-body recombination (a
second electron takes away the potential energy of recombination) is not
included if the equilibrium is a coronal one; in some cases charge exchange
re-combination is included, requiring that the neutral hydrogen density and
temperature be specified.

Then, if the picture is coronal, and the system is in equilibrium, the distri-
bution of the impurity particles amongst the different charge states is purely a
function of Te, with no dependence on ne [3.45]. Figure 3.16 shows the example
of carbon. As can be seen, at any particular value of Te, most of the carbon is in a
single charge state, i.e. the fractional abundance curves are strongly peaked. One
may note from this figure that the range of temperatures for C to be in the He-like
(C4+) state corresponds to the typical range of SOL temperatures, Te ∼ 10–60 eV.

The ionization–recombination equilibrium in plasmas with realistically high
electron density—although this equilibrium may still be local and not influenced
by transport—is not necessarily given by the coronal picture, since at higher ne,
electron-collisional de-excitation competes with spontaneous emission. Three-
body recombination, with an electron acting as the third body to take away the
recombination energy, ultimately exceeds two-body recombination at high ne.
In that case, the effective excitation, de-excitation, ionization and recombination
rates are functions of both Te and ne and a charge-state abundance plot such as
figure 3.16 is somewhat different for different values of ne.

The reactions connecting all the charge stages and their excitation states are
included in the analysis, and solution of the linear, coupled population equations
then gives the equilibrium distribution of carbon in every stage and state, as a
function of Te (and ne, which goes over to the coronal picture as ne → 0). At the
same time, the self-consistent production of radiated power—the radiation loss
rate Prad[W m−3] and the electron cooling rate, Pcool[W m−3], Zeff, the average
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Figure 3.16. The carbon equilibrium ionization state distribution [3.46].

Figure 3.17. The dependence of the radiative loss function on temperature, for carbon, at
steady ionization balance (no transport effects) [3.46]. The two dominant contributions are
line radiation (plt) and bremsstrahlung radiation (prb).

charge state Zavg, etc are computed.
The radiation loss rate Prad is the rate at which energy is lost by radiation, per

unit volume, in an optically thin plasma [3.44]. This quantity is experimentally
measurable using bolometers. It is to be distinguished from the electron cooling
rate Pcool, which is the rate at which the plasma electrons lose energy by inelastic
collisions with ions and atoms; it is not directly measurable; its chief use is in
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Figure 3.18. The carbon mean ionic charge 〈Z〉, at various values of neτ (solid lines), and
the equilibrium values with neutral hydrogen present (broken line) [3.46]. τ is the dwell
time of the impurity in the plasma and thus introduces the effect of transport. n0 is the
neutral hydrogen atom density.

modelling the electron power balance. Figure 3.17 [3.46] gives Pr for carbon for
coronal equilibrium.

What is actually shown in figure 3.17 is the normalized Prad, termed the
radiative loss function or radiative power function, defined as Prad divided by ne

and by the total (all charge stages) impurity particle density nz , i.e., Prad/nenz .
The (normalized) electron cooling function is defined similarly.

Figure 3.18 [3.46] gives 〈Z〉(Te) for carbon.
The foregoing picture is one in which the transport of carbon atoms/ions can

be neglected (τ = ∞ in figure 3.18). In real situations, carbon atoms might be
sputtered into a plasma of, say, Te = 100 eV. Figures 3.16 and 3.18 indicate that—
in equilibrium—carbon will be almost completely stripped at 100 eV, existing
mainly as C6+. But with impurity transport taken into account this will not be the
case, and many low charge states of carbon will exist for a steady inflow of C0

into 100 eV plasma.
In figure 3.18, τ is the elapsed time since the carbon neutral entered an

infinite plasma characterized by uniform values of Te and ne. As can be seen,
for short times τ , the carbon will be at a lower charge state for a specified Te,
than would be the case in ionization–recombination equilibrium, i.e. for τ →∞.
The results shown in this figure do, however, assume radiative decay processes
only. A separate matter is also indicated by figure 3.18, namely, the effect of
neutral hydrogen, which is also important, through the process of charge exchange
recombination: the equilibrium (neτ →∞) value of 〈Z〉 is shifted downward for
even small relative abundances of neutral hydrogen, n0/ne. Since low charge
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states have more orbital electrons they are more efficient radiators (more line
radiation), and the principal consequence of this non-local equilibrium is an in-
crease radiated power for a given ne, Te, nz ; see below. In order to model these
more realistic situations one needs two coupled codes: (a) a transport code and
(b) an atomic system analysis code, such as described above. In this approach,
the transport code follows the motion of the atoms/ions throughout the spatially
varying plasma. It is not assumed that the carbon is in coronal or other equilibrium
at each point in the plasma—at least not as to the distribution of charge stages.
It is, however, assumed that for each individual charge stage, the population of
the excited levels of that stage are in collisional–radiative equilibrium at the local
Te and ne with the ground state population of that particular ionization stage in
a quasistatic balance. Sometimes metastables are treated as separate populations.

(a)

(b)

Figure 3.19. (a) The radiative loss coefficients, i.e. the emissivity, computed for
helium-like carbon as a function of temperature. The various contributions are indi-
cated [3.46]. (b) The cooling coefficient computed for helium-like carbon as a function
of temperature. The various contributions are indicated [3.46].

Copyright © 2000 IOP Publishing Ltd.



Atomic Databases for Ionization, Dissociation and Radiation Rates 135

The transport code thus follows, in effect, the transport of ground state (actually
total) populations of each charge stage, calculating ionization to the next stage
higher and recombination to the stage lower, and using the tabulated σvi z(Te, ne)

and σvrec(Te, ne) rate coefficients and the local values of Te, ne. The atomic
systems analysis code is required to provide P jrad and P jcool for each charge stage
j in this approach by provision of the calculated radiative and cooling coefficients
defined as P jrad and P jcool divided by nen jz , where n jz is the local density of carbon
ions of charge j . These coefficients are thus just the single-stage analogues of
the functions for the total ion population, which are not to be used for transport-
influenced equilibrium (so-called ‘non-coronal equilibrium’).

Figures 3.19(a), (b) [3.46], show the radiative loss coefficient and electron
cooling coefficient for C4+. The different contributions are described in the
figures.

There is much similarity between P jrad and P jcool but differences are also ap-

parent: at low temperature, P jrad is dominated by radiative cascade and continuum

radiation, while P jcool is dominated by the rate at which recombining electrons

lose their kinetic energy. It may seem paradoxical that P jrad > P jcool; however, it
must be kept in mind that figures 3.19(a), (b) do not represent a true equilibrium
situation: the very existence of C4+ at Te < 10 eV implies a non-equilibrium
situation, see figure 3.16. The energy to provide the (relatively) large P jrad at
Te ≤ 10 eV is drawn from the potential energy transported into the local region
in the form of C4+, and is not taken from the local electron heat content.
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Figure 3.20. The carbon radiation power functions, Prad/(nenz), at various values of neτ

(solid lines), i.e. for transport-influenced equilibrium (‘non-coronal equilibrium’) and the
equilibrium functions with neutral hydrogen present (broken lines) [3.46]. Compare with
figure 3.17, the equilibrium (‘coronal’) case (neτ = ∞).
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As mentioned above, a major consequence of transport-influenced equilib-
rium (‘non-coronal equilibrium’) behaviour is an enhanced Prad [3.45]. Fig-
ure 3.20 [3.46] shows the radiative loss function for carbon, for finite dwell time
in the plasma τ ; the results can be generalized by using neτ as the parameter. One
may picture a steady inflow of C atoms injected into a plasma of fixed density ne,
temperature Te, the atoms staying there for time τ [s], then leaving. This radiative
loss function may be compared to the equilibirum (‘coronal’) result of figure 3.17.
For very long τ (ne > 1018 m−3 s), and no neutral hydrogen (i.e. no charge
exchange recombination), the results go over to the ‘coronal equilibrium’ result.
For shorter τ , Prad increases—even by a couple of orders of magnitude—since the
carbon exists as strongly radiating low charge stages for much of their dwell time.
Increasing neutral hydrogen also raises Prad due to the increased populations of
low charge stages, caused by the charge exchange recombination.

The behaviour of impurities in the edge is often reasonably approximated by
the scenario just described, namely direct entry of a neutral atom into a fairly hot
plasma, with a fairly short dwell time, 1 ms or less. In addition neutral hydrogen
densities are highest near the edge. It is thus evident that the transport—i.e. the
finite dwell time—of the particles is as important to model as is the atomic system
itself. The transport modelling, in effect, calculates the dwell time τ .

The foregoing example of carbon is only for illustration and similar atomic
system analyses can be performed for other impurities, and also for hydrogen,
next section. Various atomic systems analysis codes are available such as ADAS,
Atomic Data and Analysis Structure [3.46]. Edge impurity transport is han-
dled in most 2D edge fluid codes and by Monte Carlo impurity codes such as

Figure 3.21. Radiative loss functions (‘coronal equilibrium’) for Be, B, C, Ne, Ar and
Kr [3.46].
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Figure 3.22. Radiation potential versus edge Te, measured in TEXTOR for neon and
silicon [3.55].

DIVIMP [3.47]. The transport of neutral hydrogen is treated by Monte Carlo
codes such as EIRENE [3.48], NIMBUS [3.49], DEGAS [3.50], etc, as well as
using fluid treatments [3.51].

In figure 3.21 [3.46], the ‘coronal equilibrium’ radiative loss functions are
compared for Be, B, C, Ne, Ar and Kr. The total amount of energy radiated
by a single particle during its lifetime in the plasma is defined as the radiation
potential, Erad,pot,z [eV, keV, J, etc] [3.53, 3.54]. It would greatly simplify mod-
elling if Erad,pot,z were a constant for each element independent of specific plasma
conditions and τz . Unfortunately, this quantity is not constant although for low
Z elements and for typical τz-values of ∼ ms, Erad,pot,z is typically in the range
∼ 1–10 keV. This therefore provides a rough guide for relating impurity particle
influx rates φz—whether due to sputtering or artificial injection—and the total
radiated power:

Ptotal rad = Erad,pot,zφz [W]. (3.15)

Figure 3.22 gives values of Erad,pot for Si and Ne measured on
TEXTOR [3.55]. Codes such as ADAS can also be employed to generate
the extremely useful photon efficiency numbers:

PE(Te, ne) = br 〈σvexc,lm〉/〈σvi z〉 (3.16)

where 〈σvexc,lm〉 is the excitation rate coefficient for transition from state l to
m, giving rise to the subsequent release of a photon of a particular wavelength,
and where one takes into account the branching ratio br for the particular optical
transition; 〈σvi z〉 is the ionization rate coefficient to the next charge state. When
an ion or atom enters a plasma sufficiently hot that it will eventually ionize, then
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the number of photons of a particular wavelength that will be released during the
lifetime of the particle in that charge state is PE. Thus, by measuring the total
number of those photons released, the particle influx into that charge state can
be deduced. This constitutes photon influx spectroscopy [3.56]. If the photons
are from neutrals then a measurement of the original particle influx φz , e.g. due
to sputtering, is obtained. If the plasma conditions are strongly ionizing and if
none of the atoms/ions are transported out of the measurement region—say by
redeposition on the solid surface—then one can also obtain redundant, confirma-
tory measurements of the influx as the ions pass through the various charge states.
Influxes into separate ground and metastable states can also be measured.

It is to be noted that sometimes the inverse of PE is quoted in the literature,
i.e. ionizations/photon, i.e. inverse photon efficiencies.

3.5.2 Atomic Databases for Hydrogen

Figure 1.25 gives the reaction coefficients for direct ionization, e.g. an electron
strikes a hydrogen atom in the ground state and ionizes it in a single step. At
low ne this is the only important electron impact ionization process, but for high
ne, multi-step ionization becomes important where ionization from excited states
contributes significantly. The same process occurs for impurities and is taken into
account, for example, in ADAS, but here we will consider in detail only the case
of hydrogen.

The first consequence of multi-step ionization is the obvious one that the
effective ionization rate σveff

i z,H increases, figure 3.23 [3.52]. One calculates the

ionization rate Siz [ion pairs m−3 s−1] for the atoms as Siz = nenHσveff
i z,H, where

nH is the total atom density, for all excitation states. Thus one can proceed as if

Figure 3.23. σveff
i z,H, σveff

rec,H, hydrogen ionization and recombination rate coefficients.
For no radiation trapping [3.52].
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Figure 3.24. pH
cool,i z , the hydrogen cooling rate of electrons due to ionization [3.48]. For

units [Wm3], multiply by 1.6× 10−25.

all the atoms were in the ground state. One may note from figure 3.23 that for
high ne, say 1022 m−3, σveff

i z,H increases by factors of 2 or more, depending on Te,
compared with low ne.

Multi-step processes also influence the hydrogenic cooling rate for elec-
trons, PH

cool,i z , figure 3.24 [3.48], and the hydrogenic radiation loss rate, PH
rad,i z ,

figure 3.25 [3.52]. The subscript i z  indicates power associated with ionizing
conditions, to be distinguished from recombining conditions, below. One may
note how much PH

rad,i z is reduced for increasing ne, since radiative de-excitation
comes to be replaced by collisional de-excitation. Note also that:

PH
cool,i z = PH

rad,i z + Ii zσveff
i z,H (3.17)

where Ii z = 13.6 eV, the ionization potential energy. Equation (3.17) indicates
that regardless of how many collisional steps are required to ionize the atom, the
non-photon energy ‘cost’ to the electron population is just Ii z , since de-excitation
collisions return potential energy to the electrons.
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Figure 3.25. PH
rad,i z , hydrogen radiation emission rate coefficients due to ionization. For

no radiation trapping [3.52].

Figure 3.26. PH
rad,rec, the hydrogen radiation rate due to recombination [3.48]. For units

[Wm3], multiply by 1.6× 10−25.
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Figure 3.27. σveff
i z,H, σveff

rec,H, hydrogen ionization and recombination rate coefficients
with Lyman transitions suppressed [3.52].

At very low temperatures, Te < 1 eV, recombination is more important
than ionization, figure 3.23. Again, multi-step processes influence the effective
recombination rate σveff

rec,H, causing a dependence on ne. We are also interested

in PH
rad,rec, figure 3.26 [3.48], and PH

cool,rec which can be calculated from:

PH
cool,rec = PH

rad,rec − Ii zσveff
rec,H (3.18)

i.e. the potential energy of recombination heats the electrons, at least for three-
body, collisional recombination. At low ne, where radiative two-body recombi-
nation dominates, it is readily seen that PH

cool,rec → 0, and the ionization energy
simply converts to photon energy, leaving the electron population neither heated
nor cooled. At high ne one can also readily show that PH

cool,rec < 0, i.e. the
electrons are heated by the (three-body) recombination, with the second electron
taking away the energy.

When the plasma is large in size or nH is high, then the resonance Lyman, Lα ,
photons can be radiation trapped. This raises σveff

i z,H; compare figure 3.27 [3.52]

and figure 3.23; σveff
rec,H is also altered, figure 3.27. At the same time, as would be

expected, PH
rad,i z  decreases; compare figure 3.28 [3.52] and figure 3.25. PH

rad,rec,
not shown, is also altered.

One of the most important photon efficiencies is for the convenient hydro-
genic Hα Balmer line at 656.3 nm, since this can be used to deduce hydrogenic
influxes. Figure 3.29 [3.57] gives the so-called Johnson–Hinnov factor (an inverse
photon efficiency). As can be seen there is approximately one Hα photon released
for every ten or so entering H atoms (all of which are assumed to ionize). Hα

and Dα radiation—i.e. atomic line radiation—is also emitted when H2 or D2
molecules enter a plasma: the process of break-up of the molecule by electron
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Figure 3.28. PH
rad,i z , hydrogen radiation emission rate coefficients, due to ionization and

with Lyman transitions suppressed [3.52].
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Figure 3.29. The Johnson–Hinnov [3.57] factor: number of ionizations per Hα Balmer
photon released [3.46]. Assumes hydrogen enters plasma as atoms.

impact results in the release of such radiation, which therefore has to be consid-
ered when interpreting Hα or Dα intensities as a hydrogenic particle influx [3.58].
There are further contributions from dissociation of molecular ions and from
negative ions, which are included in the EIRENE code [3.48]. Figure 3.30 [3.46]
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Figure 3.30. Examples of some (inverse) photon efficiencies for ionizing conditions [3.46].
The four lower curves are for low ne. The two upper curves are for ne = 5× 1019 m−3.

exc., n0 = 1020 m–3

exc., n0 = 1019 m–3

exc., n0 = 1018 m–3

rec., n0 = ni = 1020 m–3

Figure 3.31. The Hα Balmer photon emission rate due to recombination (rec) and
ionization (excitation: exc), for the particular value of ne = 1020 m−3 and different values
of atom density, n0 [3.46, 3.59].

shows examples of inverse photon efficiencies for a number of impurity lines, as
well as for H.

At the very low temperatures, Te � 1 eV, it can be more appropriate to
speak of ‘photons per recombination event’. Figure 3.31 [3.59] gives the photon
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Figure 3.32. The ratio of Hγ /Hα intensities for recombining and ionizing (excitation)
conditions [3.46, 3.59]. Note that since ionization is stronger than recombination for
Te > a few eV, figure 3.23, the recombination curves shown here are not of any practical
significance for such temperatures. Different values of ne.

Figure 3.33. Measurements (diamonds) and calculations (lines) of hydrogen excited state
population densities for conditions in the C-MOD divertor [3.61].

emissivity [Hα photons m−3 s−1] as a function of Te and n0 (the atom density)
for the specific value of ne = 1020 m−3, as calculated using ADAS. A useful
signature of the presence of volume recombination is a substantial increase in
the ratio of Hγ /Hα lines, figure 3.32 [3.59, 3.60]. Under recombining conditions
the population distribution of excited charge states changes radically; instead of
decreasing rapidly with increasing quantum number, the opposite trend occurs,
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Figure 3.34. The atomic hydrogen electron cooling energy per ionization event, ε

[eV/ionization] [3.48]. For ne = 1014, 1016, 1018, 1020, 1022 m−3 (the higher the value
of ne the lower the value of ε).

figure 3.33 [3.61]. It is this which causes the large change in the intensity ratio
of Hγ /Hα and other line pairs. Clearly the interpretation of line intensities is
radically different if the plasma is not in ionizing conditions.

Terry et al [3.62] have calculated the number of recombination events per
Hγ photon as a function of Te, which can provide a method of measuring the
recombination rate in a plasma. This ratio is rather sensitive, however, to whether
or not the plasma is thick enough to absorb (trap) the Lyα,β lines.

It is useful to evaluate the electron cooling energy per ionization event for
atomic hydrogen, ε ≡ PH

cool,i z/σveff
i z,H, figure 3.34. At very high ne, the ‘cost’

of an ionization event is little more than Ii z , while for lower ne, more energy is
invested in photon production. A ‘ball-park’ figure is ε ≈ 25 eV, i.e. about 2Ii z .
The very high values of ε at T < a few eV are not of much practical importance
in fusion devices where Te varies spatially and so neutrals will tend simply to pass
through regions of low Te, to be excited and ionized at higher temperatures where
ε is smaller.
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Problems

3.1. Particle and energy reflection coefficients. For the case of normally incident
H+ on Fe, consider how consistent the specific normally incident H+ on Fe,
consider how consistent the specific experimental data for Fe in figure 3.1(a)
are with the general forms for RN and RE given in figure 3.2. Consider for
10, 103 and 104 eV H and comment.

3.2. Prompt re-capture of a secondary electron released from an oblique tar-
get. Suppose the emitted electron has velocity v‖ along B and initially
the velocity v⊥ perpendicular to B is in the plane shown in figure 3.35.
The larmor radius is rLe = mev⊥/eB. The Larmor frequency is #e =
eB/me [radians s−1]. Find the condition involving $, v⊥, v‖ that will allow
the electron to escape from the surface without striking the surface again
during its first orbit.

ψ

v⊥

B

vII

e

Figure 3.35. For a surface at glancing angle to B, an emitted electron may be re-captured
during its first Larmor orbit.

Hint: Note that in the figure the projection of the orbit onto the plane is
shown. For the electron which just escapes, what fraction of its first gyro-
orbit has it completed as it just misses striking the solid surface? Show that
escape occurs if v‖ ≥ f (v⊥, $), i.e. some function of v⊥ and $, and that
this result does not depend on the mass of the electron or the magnitude of
B.

3.3. Secondary electron emission yield. Confirm that equation (3.5) for the sec-
ondary electron emission yield is consistent with figure 3.5. Compare δ for
100 eV electrons for Be, C, Fe, Mo and W.

3.4. Derive equation (3.6). Draw diagrams to illustrate equation (3.7), showing
the energy of each particle at each stage. Consider now a head-on collision
of projectile particle M1 on a substrate particle M2 in the first lattice layer,
and that this M2 then has a head-on collision with a second M2 particle in
the second lattice layer. Does this result in the back-scatter ejection of the
first M2 particle? If so, at what energy?

3.5. Energy threshold for physical sputtering. Roughly estimate Eth for D+ im-
pact on substrates of low, medium, and high Z .
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3.6. Show that the specific sputtering yields given in figure 3.6 are broadly consis-
tent with the general formulae, equation (3.9)–(3.11), for the choice of one
of the elements Be, C or W, evaluating for D+ at Eimpact = 2, 20, 200× Eth .
How consistent?

3.7. Calculate the rate of carbon removal [atoms m−2 s−1] and [kg m−2 s−1] due
to physical sputtering for a D+ plasma of ne = 1019 m−3, Te = 30 eV,
Ti = 25 eV. You will need to calculate the D+ particle flux density striking
the surface and also the floating potential (assume the carbon surface is
electrically floating). Assume the D+ ions are at normal incidence. At what
rate will the surface recede [m s−1] and [m/year], assuming no re-deposition
of the sputtered particles? Would this erosion rate be acceptable for a high
duty-factor reactor?

3.8. Repeat problem 3.7 but for a tungsten surface. Also repeat for W but with
the plasma temperatures raised tenfold. Compare C and W with regard to
their erosion resistance to plasma contact.

3.9. Repeat problem 3.7 for carbon again, but this time assuming chemical sput-
tering only. Assume two values of the surface temperature: 300 K, 700 K.
Actually, physical and chemical sputtering are additive. Compare these two
contributions.

3.10. Repeat problem 3.7 for carbon, including both physical and chemical sput-
tering, for the surface temperature 300 K, ne = 1020 m−3, Te = 2 eV,
Ti = 2.5 eV. Such a cold plasma might be expected to cause almost no
sputtering, but is this true? Compare the sputtering rate here with that for the
hotter plasma of problem 3.9 and comment.

3.11. The Thompson energy distribution of physically sputtered particles, equa-
tion (3.12). Ignoring the cut-off of the distribution at high energy:

(a) Plot dY/dEz , normalized to unity total yield. What is the normalization
factor for equation (3.12)?

(b) Prove that the most probable sputtered energy is 1
2 EB .

(c) What is the average sputtered energy? Comment on the implications of
this result.

3.12. Repeat problem 3.11, but now include the effect of the high energy cut-off
and carry out your calculations for the specific case of 100 eV D+ on C.
What is the value of Emax

z ?

3.13. Repeat problem 3.12 for 100 eV, also 300 eV, D+ on W. Comment on the
comparison with D+ on C.

3.14. Repeat problem 3.12 for carbon self-sputtering. Compare with the results
for D+ on C and comment.
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3.15. Distribution of the population amongst the different charge states for ‘coro-
nal equilibrium’.

(a) Write down an equation relating the densities in charge states: j − 1, j ,
j + 1 in terms of ne and of σvi z  and σvrec for the different transitions
that are involved. How does the temperature come into the problem?

(b) For the case of carbon how many such coupled equations are there?
(c) Solution of these coupled equations simultaneously gives the fraction of

the total C in the plasma that is in the different charge states, figure 3.16.
Solution of the complete set of equations cannot be done analytically;
however, by focusing on a narrow Te-band we may check part of fig-
ure 3.16 rather simply. Argue that for 50 eV ≤ Te ≤ 90 eV one might
expect the density ratio of nC4+/nC5+ to be approximately:

nC4+
nC5+

≈ σv5+
rec

σv4+
i z

.

Use the fact that in this temperature range the two-body radiative re-
combination rate σv5+

rec is almost constant, at 9×10−19 m3 s−1; also use
values of σv4+

i z from figure 1.26. Confirm that the density ratios given
in figure 3.16 for nC4+/nC5+ for this range of Te are approximately in
accord with this relation.

(d) The ionization potentials for the charge states of carbon are:

State C0 C+ C2+ C3+ C4+ C5+

Ii z  [eV] 11 24 48 64 392 490

Why do the charge states become depopulated at values of Te well below
Ii z?

3.16. Assuming the coronal picture, find the amount of power radiated by carbon
from 1 m3 of plasma where ne = 1019 m−3, the total carbon density nc =
3 × 1017 m−3, and Te = (a) 5 eV, (b) 50 eV, (c) 5000 eV. Compare and
comment on the implications for a fusion reactor.

3.17. Compare the electron radiative loss function Prad for C4+, figure 3.19(a),
with the electron cooling function Pcool, figure 3.19(b), at high Te. What is
the main cause of the difference between the two functions there? Confirm
this difference quantitatively by using figure 1.26 and the data from prob-
lem 3.15(d).

3.18. From figure 3.18 it is seen that 〈Z〉 decreases with decreasing ne, or de-
creasing τ , or increasing neutral hydrogen density n0. Explain physically
why these trends exist.

3.19. ‘Non-coronal’ radiated power. Carbon atoms are injected continuously into
a plasma of uniform temperature and density ne = 1019 m−3. The carbon
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experiences ionization and recombination, spending a total time of 10 ms in
the plasma before returning to a solid surface where it is re-deposited. The
total (all charge states) density of carbon in the plasma is 2 × 1017 m−3.
Assume the hydrogen neutral density is negligible. Find the radiated power
density associated with the carbon for T = 5 eV, 50 eV, 500 eV. Now
repeat the calculations assuming a dwell time of 0.1 ms. Compare results
and comment on the implications.

3.20. ‘Non-coronal’ radiation and physical sputtering. A carbon target is exposed
to a plasma with ne = 1019 m−3, Te = 20 eV, TD+ = 30 eV.

(a) Calculate the impact energy of the ions on the graphite and the physical
sputtering yield, assuming normal incidence. Ignore chemical sputter-
ing.

(b) The target is at $ = 85◦ to B and has a plasma-wetted area of 1 m2, that
is the bombarding particles impact over 1 m2 of actual carbon surface.
Calculate the number of D+ striking the carbon per second, and the
number of carbon particles sputtered per second.

(c) Assuming the carbon particles are distributed uniformly throughout the
plasma and remain in the plasma for a dwelltime of 10−3 s, and the
total plasma volume is 5 m3, find the total impurity density nc [carbon
particles m−3], the total radiated power [W] and the radiation potential
Erad,pot,z [eV].

3.21. Consider a simplification of a divertor tokamak with a main plasma of vol-
ume 100 m3, at uniform density of 1020 m−3 and uniform temperature 1 keV,
plus a divertor plasma of volume 1 m3 also at uniform density 1020 m−3

but with uniform temperature 5 eV. Either Be, B, C, Ne or Ar is present
as an impurity at a density 5% of ne in each region. Assuming ‘coronal’
radiation, calculate the total impurity radiation power [W]. Compare the
different impurities and the different contributions from the SOL and from
the main plasma, commenting on the implications.

3.22. A flux of 1023 H atoms per second enters a uniform plasma of 5 m3 main-
tained at a constant ne = 1019 m−3 and Te = TH+ = 20 eV.

(a) Assuming that all of the atoms become ionized, i.e. none return as atoms
to a solid surface, and that no H+ recombines, calculate the number of
Balmer Hα photons that are released per second.

(b) Calculate the recombination rate of H+ and thus show that this process
is indeed unimportant here.

(c) Calculate the average time that the H atoms take before becoming ion-
ized. Suppose that the average loss time of atoms for re-deposition as
atoms on a 100%-absorbing solid surface is half this ionization time.
What is the number of Hα photons produced per second now? Comment
on the implications.
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3.23. Repeat problem 3.22, but now assuming T = 300 eV, also 2 eV. Comment
on the comparisons with T = 20 eV.

3.24. A steady flux of 1021 C atoms per second enters a uniform plasma of ne =
1019 m−3 and Te = 30 eV. Assume that conditions are strongly ionizing
such that recombination can be ignored and no C particles re-deposit until
they have reached a high stage of ionization. Calculate the total number of
photons released at: 514 nm (a CII line) and 464 nm (a CIII line).

3.25. Consider a pure, uniform hydrogen plasma of volume 3 m3 of T = 20 eV
and various densities ne = 1017, 1019, 1021 m−3. The average neutral atom
density is 5% of ne. Calculate the total hydrogen radiated power [W] with
and without re-absorption of the Lyman transitions. Compare these total
radiated powers with the power radiated just in Hα photons (assume no
radiation trapping). Comment on your findings.

3.26. We wish to sustain a uniform plasma of volume 1 m3 at ne = 1020 m−3 and
T = 10 eV by injecting a flux of H atoms φ0 [H0 s−1]. We also require that
the neutral density in the plasma be n0 = 1020 m−3, which we will assume
is uniform over the volume. Assuming the hydrogen enters from the walls as
2 eV atoms, how might it be possible to achieve a uniform density, roughly?

(a) Calculate the ionization time of the atoms.
(b) Find the value of φ0 required to result in a neutral density of n0 =

1020 m−3.
(c) Calculate the rate of production of Hα photons [Hα s−1] in two ways,

and show they are equal:

(i) use the Johnson–Hinnov result of figure 3.29;
(ii) use the results given in figure 3.31.

(d) If the plasma density is to remain constant at ne = 1020 m−3, what must
the H+ loss time be?

3.27. Repeat problem 3.26 but now assume that after an initial filling of the
volume with gas and plasma to the level of ne = n0 = 1020 m−3, the flux
φ0 is turned off and assume also that no loss of atoms or ions to the surfaces
occurs. A low temperature is now required to support a steady state. What
temperature? How many Hα photons are now produced [Hα s−1]? Although
no particle influx is required to sustain this steady state, what steady external
input is required?
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Chapter 4

The Simple SOL and the Transition to the
Complex SOL

4.1 The Simple SOL: The Sheath-Limited Regime

We have defined the simple SOL in chapters 1 and 2 to be characterized by:

(1) Te and Ti constant along each flux tube (and both species are Maxwellian).
(2) Electrons and ions are thermally de-coupled from each other, i.e. thermal

equipartition is weak.
(3) Cross-field transport of particles from the main plasma provides the only

particle source in the SOL. No ionization within the SOL.
(4) No volumetric recombination.
(5) No neutral friction.
(6) The sheaths at the limiters or divertor targets are the only particle and heat

sinks. No radiative or charge-exchange cooling.

It is assumed that the only source of power is cross-field convection and conduc-
tion from the main plasma.

4.2 ‘Straightening Out’ the SOL for Modelling Purposes

In section 1.6, it was noted that plasma collisionality in the SOL is strong
enough—due to the low temperature—that the charged particles follow B
and neo-classical effects, such as banana orbits, can be ignored. We can thus
‘straighten out’ the SOL, as in figure 4.1.

The portion of the SOL shown is bounded by the following:

(1) Opposite-facing solid surfaces at each end. These could be the two divertor
targets at each end of a flux tube which extends all the way around the torus.
Or they could be two opposite-facing limiters, or even the back and front
side of a single poloidal or toroidal limiter.

153
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2L

B

r

LCFS

W

Γ⊥=–D⊥ 
dn
dr

SOL

Figure 4.1. The SOL ‘straightened out’.

(2) The last closed flux surface, LCFS, or separatrix on the top side and the
vessel wall on the bottom side.

(3) The two side surfaces are taken to be separated by width w. One could
take w to be a 1 metre portion of the SOL. Note that the w coordinate is
perpendicular to both the parallel (B) direction and the radial cross-field
direction r . Thus w is in the second orthogonal, cross-field direction.

Therefore, if a circular poloidal limiter is involved, section 1.4.1, and if q is very
large (so that B is almost purely in the toroidal direction, section 1.3), then w is in
the poloidal direction and for w = 2πa, the poloidal circumference of the limiter,
figure 4.1, would represent the entire SOL, figure 4.2. For a toroidal limiter or
a poloidal divertor, of major radius R, the distance around the machine is 2π R;
however, since w is orthogonal to B, then w = 2π RBθ /B gives the effective
length orthogonal to B and r , figure 4.3. Also recall, from section 2.10, that
when B is oblique to the actual solid surface, the plasma does not ‘know’ this,
and the parallel-to-B flow is sonic at the Chodura sheath edge. Thus, we must
project the actual length of the limiter perpendicular to B, i.e. w = 2π RBθ /B in
these cases.

aR

w = 2πa 2L ≈ 2πR

Figure 4.2. A single poloidal ring limiter.

Copyright © 2000 IOP Publishing Ltd.



Relating Density Scrape-Off Length λn to DSOL⊥ 155

2πR

2L = 2πRq

w =
 2

πR
 (B

θ /
B)

Bθ

Bφ

BB

toroidal limiter or poloidal divertor target

Figure 4.3. For a single toroidal belt limiter the effective width is w = 2π R(Bθ /B).

Although the solid target surfaces in figure 4.1 are shown to be perpendicular
to B, the actual target surfaces are usually not perpendicular to B. These surfaces
in figure 4.1 are the effective surfaces, so far as the sink action on the SOL plasma
is concerned: they are the surfaces as projected perpendicular to B. The Chodura
sheath criterion, section 2.10, is most useful in justifying this (further) distortion
of the actual geometry: for purposes of analysis the SOL is not only straightened
out, but it is also turned into a 3D rectangular box.

Finally, we may note that—for purposes of calculating the heat load received
by the solid surfaces—one uses the actual surface area, not the projected one. It
is only for purposes of calculating the sink action exerted by the solid surfaces on
the SOL plasma that one uses the area projected perpendicular to B. Thus, while
the plasma does not ‘notice’ whether the actual solid surface is perpendicular to
B or not, the solid certainly does! By making B more glancing, one can reduce
surface heating and melting, yet without influencing the plasma itself.

4.3 Relating Density Scrape-Off Length λn to DSOL
⊥

For the simple SOL one can derive a relation between the directly measurable
quantity λn , the characteristic decay length of density in the radial direction,
and DSOL⊥ , the cross-field diffusion coefficient in the SOL. Cross-field transport
coefficients such as D⊥ can still not be calculated from first principles, but are
anomalous and have to be extracted, by some means, from experimental data,
i.e. they are empirical. Clearly knowledge about these coefficients is critical to
predicting the confinement properties of magnetic plasmas.

For the simple SOL, where the source of particles for the SOL is entirely
due to cross-field transport, it is apparent that a fairly simple relation should exist
between the radial density profile ne(r) and DSOL⊥ . Consider figure 4.1. The total
particle out-flow from the confined plasma, crossing the LCFS into the SOL is
given by:

φ⊥ = −DSOL⊥
dn

dr

∣∣∣∣
LCFS

2Lw [particles s−1]. (4.1)

We define λn to be the characteristic length of radial density decay:

λn ≡ −
(

1

n

dn

dr

)−1

. (4.2)
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Thus dn/dr = −n/λn and:

φ⊥ = DSOL⊥ (nLCFS/λn)2Lw. (4.3)

The total particle flow to the (two) solid surfaces is:

φ‖ = 2w

∫ ∞

r=LCFS
ncsdr (4.4)

where we have used the Bohm/Chodura sheath criteria, section 2.3. We will ap-
proximate the integral in equation (4.4) as the value of ncs at the LCFS multiplied
by λn . This result is exact if cs(r) is constant and if n(r) is actually exponential:

n(r) = nLCFSe−r/λn (4.5)

which is often found experimentally to hold approximately. Thus we have

φ‖ = 2w 
1

2
nLCFScsλn . (4.6)

For the simple SOL there are no other particle sources or sinks, and particle
balance, φ⊥ = φ‖, gives:

λn = (2DSOL⊥ L/cs)
1/2 (4.7)

which is almost exactly what was estimated earlier, equation (1.10). The fac-
tor 21/2 difference results from allowing for the drop in density by a factor 2,
along the SOL, as the flow is accelerated to the sound speed. Thus DSOL⊥ can
be evaluated from, for example, Langmuir probe measurements of ne(r) (for
λn) and TLCFS (for cs,LCFS)—and using L = π Rq for the case of a poloidal
divertor geometry. The foregoing ignores the radial variation cs(r), i.e. of T (r),
in equation (4.4). This effect is included in the next section.

Various authors have reported sets of empirical DSOL⊥ values obtained using
equation (4.7). Figure 4.4(a) shows an example from a set of ohmic discharges in
JET operated with limiters [4.1].The data for this set shows an inverse dependence
on ne, the average plasma density in the main plasma. Most reported values
of DSOL⊥ are in the range 0.1 to 10 m2 s−1, but it is still not clear what DSOL⊥
correlates with. In the 1940s, David Bohm carried out studies on non-toroidal
magnetic plasmas, reporting the empirical result [4.2]:

DBohm⊥ ∼= 0.06Te/B (4.8)

with D [m2 s−1], T [eV], B [T]. Such transport is now called Bohm diffusion.
This expression does give values in the same range as has been found for toka-
maks where B ≈ 2–10 T and TLCFS = 10–100 eV are representative, giving
DBohm⊥ ∼ 0.05 to ∼ 30 m2 s−1. It is not clear, however, that in tokamaks DSOL⊥
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(a)

(b)

Figure 4.4. (a) Values of DSOL⊥ extracted from measurements of λn on JET operated with
toroidal limiters, ohmic discharges [4.1]. Langmuir probe data: ◦ I p = 1 MA, � 2 MA,
� 3 MA, � 4 MA,• 5 MA. Solid line: D⊥ = 1019/n̄e [4.1]. (b) Values of DSOL⊥ extracted
from measurements of λn made on the FTU tokamak operated with a poloidal ring limiter.
θ = 0 is the outer mid-plane, and positive direction is upward [4.5]. ne tilde/ne is the
normalized density fluctuation level, see chapter 8.
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actually does vary as Te and as B−1; some studies report behaviour roughly in
accord with these dependences [4.3], while others show little or no such correla-
tion [4.4].

Figure 4.4(b) shows values of DSOL⊥ extracted from measurements of λn

made on the FTU tokamak, using equation (4.7) [4.5]. FTU employed a poloidal
limiter and since B is almost in the toroidal direction, individual SOL flux tubes
‘sample’ virtually a single poloidal angle. Significant poloidal variations of λn

can thus exist since, with a poloidal limiter, an individual SOL flux tube does
not experience poloidally averaged conditions—as it does for a toroidal limiter.
Such poloidal variations were first observed on the Alcator C tokamak [4.6]. The
FTU results in figure 4.4(b) indicate a DSOL⊥ value which tracks DBohm⊥ to within
an approximately constant factor 2. Fluctuation levels were also found to track
DSOL⊥ , supporting the idea that (anomalous) cross-field transport is caused by
plasma fluctuations, chapter 8. In any case, the Bohm value comes much closer
to matching experiment than does classical cross-field diffusion (based on e–i
collisions in a fully ionized plasma) [4.7]:

Dclassical⊥ = 2ρ
spitzer
‖ n(kTe + kTi )/B2 (4.9)

where ρ
spitzer
‖ is the classical, parallel electrical resistivity of a fully ionized

plasma [4.8].

ρ
spitzer
‖ ≈ 8× 10−4/T 3/2

e (4.10)

for T [eV], ρ [ohm m]. For the above range of representative SOL conditions,
and nLCFS = 1019–1020 m−3, one finds Dclassical⊥ ∼ 10−6 to ∼ 10−4 [m2 s−1].
Also one may note that D⊥ classical ∝ B−2, a much stronger dependence than is
measured.

It is clear that DSOL⊥ is highly anomalous. The value of DBohm⊥ may not be a
bad first estimate; but, in the absence of measured values for a specific machine
under specific operating conditions, there may be nothing to justify anything more
than simply taking DSOL⊥ ∼ 1 m2 s−1.

Unfortunately, as noted earlier, some of the reported measurements of DSOL⊥
have incorrectly applied equation (4.7) to complex SOLs, where local particle
sources due to ionization are involved in the particle balance, and this has con-
tributed to the uncertainties in this field.

4.4 Modelling λn, λTe , λTi , etc Simultaneously

The radial decay lengths of Te and Ti are λTe , λTi , defined similarly to equa-
tion (4.2). Here we will assume exponential decays:

n(r) = nLCFS exp(−r/λn) (4.11)

Te(r) = Te,LCFS exp(−r/λTe ) (4.12)

Ti (r) = Ti,LCFS exp(−r/λTi ). (4.13)
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Other quantities varying across the SOL:

pe(r) = nkTe (4.14)

pi (r) = nkTi (4.15)

qe‖(r) = 1
2 ncsγekTe (4.16)

qi‖(r) = 1
2 ncsγi kTe (4.17)

where pe,i are the electron and ion pressures, qe,i
‖ are the parallel electron and

ion power flux densities, γe,i are the electron and ion sheath heat transmission
coefficients, section 2.8. (Note the convention of employing Te in the expression
for qi‖; see section 25.5.) Equation (4.16) and (4.17) are actually the expressions
for the sheath entrances, but since there are no volumetric power losses in the
simple SOL, q‖ is constant on each flux tube.

We thus have for the pressure decay lengths:

1

λpe

= 1

λn
+ 1

λTe

and
1

λpi

= 1

λn
+ 1

λTi

. (4.18)

One would like to also evaluate λe
q‖, λi

q‖. However, since cs = [k(Te+Ti )/mi ]1/2,
this does not result in simple expressions, except for special cases. If, for example,
e–i equipartition is strong and Te = Ti = T at each point in the SOL, then one
has the simple relations:

1

λe
q‖
= 1

λi
q‖
= 1

λn
+ 3

2λT
. (4.19)

Problem 4.1. Prove that equation (4.19) follows from the fact that q‖ ∝ ncs T ∝
nT 3/2. Prove the similar relation, equation (4.33). Hint: λn ≡ −((1/n)∂n/∂r)−1,
etc.

The simple SOL regime, however, is not characterized by strong equiparti-
tion. It will be argued below that usually Ti > Te for the simple SOL, section 2.9.
In fact T SOL

i > T SOL
e is observed experimentally [4.9, 4.10], although measure-

ments of T SOL
i are sparse. In this case one has approximately the same results as

equation (4.19) but with T → Ti . It will also be argued below that for the simple
SOL there is a tendency toward λTi →∞; in this case one has approximately:

1

λe
q‖
= 1

λn
+ 1

λTe

and
1

λi
q‖
= 1

λn
. (4.20)

Applying logic similar to that employed in the last section, but now extending it to
cover electron and ion power balances as well, we obtain equations (4.23)–(4.25)
below. We assume that both cross-field convection and conduction contribute to
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the electron power flow into the SOL. We assume the cross-field conduction to
be anomalous and write it in the standard form which, by introducing a factor n,
ensures that χ⊥ and D⊥ have the same units:

qcond⊥ ≡ −K⊥
d

dr 
kT ≡ −nχ⊥

d

dr 
kT [W m−2]. (4.21)

Although χ⊥ is anomalous we anticipate χ⊥ ≈ D⊥ from analogy with classical
transport. The cross-field convection may be taken to be:

qconv⊥ = −5

2
kT D⊥

dn

dr
. (4.22)

Then from particle balance:

L D⊥
nLCFS

λn
= 1

2 nLCFScsλn (4.23)

while from electron and ion energy balances:

L

(
nLCFSχe⊥

kTe,LCFS

λTe

+ 5

2
kTe,LCFS D⊥

nLCFS

λn

)
= 1

2 nLCFScsγekTe,LCFSλe
q‖

(4.24)

L

(
5

2
kTi,LCFS D⊥

nLCFS

λn

)
= 1

2 nLCFScsγi kTe,LCFSλi
q‖.

(4.25)

It will be noted that in equation (4.25), we have made the simplifying assumption
that qcond,i

⊥ � qconv,i
⊥ which has therefore been neglected. There is some evidence

that in the core plasma cross-field ion conduction can fall to neo-classical levels,
while χe⊥ and D⊥ remain anomalously high, although there is currently little
information on this for the SOL. This assumption, even if only a rough approx-
imation to the actual situation, gives some important results which appear to
correspond approximately to experiment. Since the ion sheath heat transmission
coefficient, section 2.8, is approximately γi ≈ (5/2)Ti/Te, we see that each ion
entering the SOL from the main plasma brings with it 5/2kTi,LCFS (assuming that
only qconv,i

⊥ is involved in q⊥), while at the sheath edge 5/2kT i
sheath is removed.

Therefore the ions are not cooled in passing through the SOL: in this approxi-
mation Ti (r) = TLCFS, i.e. λTi = ∞. The ion power flows through the SOL,
being lost to the limiter but without ion cooling. We will thus assume further that
Ti,LCFS > Te,LCFS which makes cs ≈ (kTi,LCFS/mi )

1/2 ≈ constant across the
SOL.

Problem 4.2. With these assumptions, show that equation (4.25) reduces to equa-
tion (4.23) which gives the same result for λn as before, equation (4.7). Show that
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equation (4.24) then gives the relation for λTe :(
1+ λn

λTe

)(
5

2
+ χe⊥

D⊥
λn

λTe

)
= γe. (4.26)

Thus λTe/λn is a function of χe⊥/D⊥.

Problem 4.3. For the example: χe⊥/D⊥ = 1 and γe = 5, section 2.8, show that:
λTe/λn = 1.64, λTi = ∞, λpe/λn = λe

q‖/λn = 0.62, λpi /λn = λi
q‖/λn = 1. As

χe⊥/D⊥ increases, λTe/λn increases; show that for χe⊥/D⊥ = 10, λTe/λn = 5.7.
While λTe/λn increases more slowly than χe⊥/D⊥, show that the ratio

qcond,e
⊥ /qconv,e

⊥ < 1, and this ratio only reaches equality as χe⊥/D⊥ →∞.

Thus, the electron power entering the SOL is always � 5kTe,LCFS per elec-
tron, and Te(r) must decrease radially in order that the average thermal energy of
the electrons leaving the SOL, and entering the target sheaths, is less than Te,LCFS.
That is, the SOL not only removes electron power, but cools the electrons as they
pass through the SOL. This creates a tendency for T SOL

e < T SOL
i , since the ions

experience little cooling in the SOL.
The foregoing analysis may be made more general, at the price of increasing

the complexity of the analysis, by including qcond,i
⊥ �= 0, etc. Also, in equa-

tions (4.23)–(4.25) the form of the RHS implies that the cross-field flux densities
across the separatrix do not vary along the length of the SOL, although the use
of the factor 1/2 on the RHS implies a density drop along the SOL; this small
discrepancy can also be roughly corrected for by including a factor of ∼ 0.75 on
the LHS of these equations, i.e. ‘splitting the difference’. Finally, the assumption
of the factor 5/2 in equations (4.22) etc. has resulted in convenient simplifications
which are somewhat modified if a factor 3/2 is used instead, see chapter 8.

4.5 Relating the Properties of Main and Edge Plasmas

The plasma density and temperature in the confined plasma of a fusion power
device must satisfy the Lawson criterion nmainτE ≥ 1020 m−3 s. What plasma
conditions in the SOL will correspond to such main plasma conditions? And
generally, what are the relations governing the connection between the plasma
temperature and density in the confined plasma, and those of the SOL?

This central question can be addressed at several levels of completeness and
self-consistency. Here we present an initial treatment which does not treat the
combined main plasma+ SOL system in a self-consistent way, but takes as given
either:

(a) the total ion (thus also electron) particle flow rate into the SOL from the main
plasma, φin

SOL [charged particles s−1] and the total power flow from the main
plasma into the SOL, Pin

SOL [W], or
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(b) the particle and energy confinement times of the system, τp and τE [s]. As
shown next, Pin

SOL and τE are simply related. For the simple SOL, which is
all that is being considered here, φin

SOL and τp are also simply related.

Since most of the particle and energy content lies inside the LCFS one is tempted
to think of φin

SOL, Pin
SOL, τp and τE as being properties purely pertaining to the main

plasma. This is reasonable for the energy, since the power input is generally in the
main plasma. Particle refuelling, however, is intimately tied up with the SOL and
as will be discussed in section 4.6, φin

SOL and τp therefore have as much to do with
the SOL as with the main plasma. Nevertheless, for this first treatment we will
take φin

SOL, Pin
SOL, τp and τE as given quantities—independent of the SOL—and

will use them to specify the particle and power inputs to the (simple) SOL. That
is the total particle flow into the SOL is given by either φin

SOL or τp:

φin
SOL =

nmainVmain

τp
[ion pairs s−1] (4.27)

where nmain is the average plasma density in the main plasma of volume Vmain(≈
2π Rπa2). Ignoring for now radiative losses, the total power entering the SOL
from the confined plasma is given by Pin

SOL or τE since:

Pin
SOL = 

3nmainkT mainVmain

τE
[W] (4.28)

where the average ion and electron thermal energy per particle in the main plasma
is 3

2 kT main. Here Pin
SOL is measured as the total power into the tokamak, P . τE is

then calculated from measurements of nmain, T main, and equation (4.28).
As noted in section 3.5, φin

SOL can be inferred from the intensity of the
spectroscopic emission of the recycling hydrogenic atoms, usually the Dα line.
This can be interpreted to give a value for the total flux of neutrals entering
the plasma, φneut [neutrals], all of which are assumed to ionize, i.e. to fuel the
plasma, creating ion pairs which eventually enter the (simple) SOL. The particle
content, nmainVmain can also be measured, e.g. using interferometry. τp is then
simply taken to be nmainVmain/φneut i.e. φin

SOL = φneut is assumed. Empirical
expressions have been published for τp for specific machines operating under
specific conditions. For example, for JET operated with limiters and for ohmic
heating, Cohen et al [4.11] reported:

τp ≈ 1.3× 1014 Ra2(nmain)
−0.8 (4.29)

for τ [s], R, a [m], n [m−3]. Again, it should be emphasized that an
expression such as equation (4.29) for τp merely correlates τp with main plasma
conditions—but ‘hides’ the connection to SOL properties. Thus, as noted, this
first approach does not constitute a fundamental analysis.

The foregoing makes it clear that τp and τE are not basic, measured quan-
tities. Rather they are convenient groupings of the basic, measured quantities:
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nmain, T main, Vmain, φneut, and P . While it is often more convenient to work with
τp and τE than the latter, the origin of τp and τE should always be kept in mind.
It is tempting, but often seriously misleading, to invest these ‘confinement times’
with meanings suggested by intuition. This is particularly the case for τp where it
is tempting, but wrong, to think of τp as representing the dwell time of most of the
particles in the plasma, or that τp depends exclusively on D⊥ and the plasma size
(minor radius) a. This matter is addressed in the next section. So long as these
times are used simply as convenient groupings of other, measured quantities—as
done here—then there is no difficulty. It is also emphasized again that the results
of this section only apply to the simple SOL.

While there are relatively few published correlations for τp, such as equa-
tion (4.29), by contrast it has always been a high priority in fusion energy research
to correlate τE with main plasma conditions, machine size, etc. Data fits to
the measured τE values for most past and present tokamaks are published and
updated regularly. An example of such a scaling expression is that for L-mode
confinement [4.12]:

τ ITER89-P
E = 0.048 

I 0.85
p R1.2a0.3κ0.5(nmain)

0.1 B0.2 A0.5

P0.5 
(4.30)

for τ [s]; Ip, the ohmic current [MA]; P , the total power into the tokamak [MW];
nmain [1020 m−3]; B [T]; κ = b/a, the plasma elongation (elliptical poloidal
cross-section with a the horizontal minor radius, and b the vertical); A = 1, 2, 3
for H, D, T. It is to be noted that expressions for τE such as equation (4.30) are not
calculations from first principles, but empirical fits to measurements. In contrast
with τp, it does seem plausible that τE is largely or entirely governed by main
plasma parameters.

We now have the information needed to relate the main and SOL plasmas.
Specifically we can now relate the two principal SOL parameters, (nLCFS, TLCFS)
to the two main plasma parameters, (nmain, T main), since we have two relations—
for particle and power balance. From particle balance:

nmainVmain

τp
= 1

2
nLCFScs,LCFS A�‖ (4.31)

where A�‖ is the target-wetted area for particle flux, measured ⊥ B:

A�‖ = λ�w (4.32)

where, following similar reasoning to that used to obtain equation (4.19):

1

λ�

= 1

λn
+ 1

2λT
(4.33)

and here w is the effective plasma-wetted length of target, see section 4.2:

w ∼= 4π R(Bθ /B). (4.34)
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Now allowing for radiative loss, power balance gives:

Pin
SOL = P − Prad,main = (1− Prad,main/P)

3nmainkT mainVmain

τE
(4.35)

= (1/2)nLCFScs,LCFSγ kTLCFS Aq‖

where Aq‖ is the target plasma-wetted area for power and Aq‖ = λq‖w with
1/λq‖ = 1/λn+3/2λT ·γ is the sheath heat transmission coefficient, section 2.8.
We have here allowed for the fact that a significant fraction of P may never reach
the SOL, being radiated as photon energy from the main plasma; this fraction will
have to be included here as an additional specified input. Here τE corresponds to
the loss of power by all processes, including radiation. The λn , λT values can be
calculated, section 4.4, although this requires knowledge of DSOL⊥ , χSOL⊥ . Since,
in reality, any such information probably came from measurements of λn and λT

in the first place, one might as well take λn , λT as further empirical input, like
τE and τp. We now combine equations (4.31) and (4.35), eliminating density, to
obtain a relation between main and SOL temperature:

TLCFS

T main
= 3

γ
(1− Prad,main/P)

τp

τE

A�‖
Aq‖

. (4.36)

For simplicity we take A�‖ ≈ Aq‖ and γ ≈ 10 to obtain

TLCFS

T main
≈ 0.15τp/τE (4.37)

where we have also assumed Prad,main/P = 0.5 as an estimate.

Problem 4.4. For a JET example of ohmic heating [4.13], R = 3 m, a = 1.2 m,
nmain = 3 × 1019 m−3, Ip = 3.6 MA, P = 2.4 MW, B = 3.4 T, κ = 1.5,
D plasma, show that: τp ≈ 0.15 [s], τE ≈ 0.71 [s], (actual measurements
for this specific JET shot, No 5507, gave τE = 0.9 s). Show that this gives
TLCFS/T main ≈ 0.032, which compares well with the average of T e,main and
T i,main ≈ 2 keV for this shot, and the measured edge conditions for similar shots,
figure 4.5, of Te,LCFS ≈ 60 eV, and thus TLCFS/T main ≈ 0.03.

One can also combine equations (4.31) and (4.35) to obtain an estimate for
TLCFS by itself:

kTLCFS = τp

nmainVmain

(
P − Prad,main

γ

)
A�‖
Aq‖

. (4.38)

Taking τp from equation (4.29), Vmain = 2π Rπa2κ , κ = 1.5, Prad,main/P = 1/2,
γ = 7, A�‖/Aq‖ = 1 gives:

TLCFS = 2× 1030(nmain)
−1.8 P (4.39)
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Figure 4.5. Probe results from JET operated with toroidal limiters [4.14]. Te at the last
closed flux surface, LCFS, as a function of the density in the main plasma ne, and the
plasma current Ip . Ohmic conditions. � I p = 1 MA, B = 2.1 T; • 2 MA, 2.1 T; ◦
3 MA, 3.4 T; + 4 MA, 3.5 T; � 5 MA, 3.5 T. The solid lines are from equation (4.42)
[4.23].

for T [eV], n [m−3], P [W]. One may note from equation (4.39) the tendency for
edge temperature to decrease rapidly with increasing density in the main plasma:

TLCFS ∝∼ (nmain)
−2 (4.40)

and to increase with power reaching the SOL, TLCFS ∝ PSOL. In section 4.6 we
will try to explain these dependences in a more self-consistent way.

For JET ohmic discharges P and Ip are experimentally related [4.14]:

P = 0.7 I 1.15
p (4.41)

for P [MW], Ip [MA]. Inserting equation (4.41) into (4.39) finally gives a predic-
tion for TLCFS in terms of tokamak operational parameters:

TLCFS ≈ 1.4× 1036(nmain)
−1.8 I 1.15

p (4.42)

for T [eV], n [m−3], Ip [MA]. Equation (4.42) is compared in figure 4.5 with
measurements made on JET using Langmuir probes [4.14]. The reasonable agree-
ment encourages the belief that the controlling phenomena have been at least
approximately accounted for.
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Figure 4.6. As figure 4.5 but for density at the LCFS. Solid lines are from equa-
tion (4.45) [4.14, 4.23].

Equation (4.31):

nLCFS = 2nmainVmain

τp A�‖cs,LCFS
(4.43)

can also be combined with equation (4.35) to give an estimate for nLCFS,
where now we can use equation (4.42) for TLCFS to calculate cs,LCFS =
(2kTLCFS/mi )

1/2 and equation (4.29) for τp. This yields:

nLCFS ∝ (nmain)
2.7 P−1/2(A�‖)−1. (4.44)

For JET operated with discrete limiters [4.14, 4.15], one can estimate A�‖ roughly
as being that for a single continuous toroidal limiter at the outside wall, RW ≈
4 m, λ� ≈ 10−2 m and magnetic pitch angle ∼ 0.1; thus A�‖ ≈ 4π RW λ�0.1 ≈
0.1 m2. This quantity varies somewhat with nmain and Ip but this is ignored here,
giving finally for these JET, limiter, ohmic discharges:

nLCFS ≈ 1.6× 10−31 P−1/2(nmain)
2.7. (4.45)

n [m−3], P [W] and P is related to Ip by equation (4.41) for these shots. Com-
parisons with values of nLCFS measured with Langmuir probes are shown in
figure 4.6. Again, the reasonable agreement, both as to trend as well as absolute
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magnitude, indicates that the controlling processes have been at least approxi-
mately accounted for.

Let us recapitulate what we have done in this section. We took as input:
nmain, T main, Vmain, φneut, P , Prad,main, λn , λT , and R(Bθ /B), while we obtained
as output: TLCFS and nLCFS. Thus, for the simple SOL we have achieved our
objective of establishing the dependence of the SOL plasma properties on those
of the main plasma. This approach is based directly on measured experimental
quantities; we have not used extracted quantities such as χ⊥ and D⊥. While this
approach has its advantages we can reduce the required number of input data if
we work with χSOL⊥ and DSOL⊥ . Since the latter anomalous quantities are actually
derived from the same basic measured data as already used, this does not lead
to anything fundamentally different, but it can be a conceptually more attractive
approach. It can also provide valuable insights. We turn to this approach next.

4.6 Particle Confinement Time, τ p

In section 4.5 we treated τp as a given parameter so far as the SOL was concerned.
In fact τp is very much governed by processes occurring in the SOL and should,
therefore, be solved for consistently with the rest of the SOL analysis. To do this
in a complete way is non-trivial but insight is provided by a simple model, the
Engelhardt model [4.16, 4.17], which is described below. This will also serve to
bring out the major difference that in principle exists between energy confinement
time τE , and particle confinement time τp.

It is important to note, that in contrast with most of the analysis so far, the
geometry considered in this section is radial. We will focus on the radial depth of
the hydrogenic ionization relative to the LCFS. This section is therefore directly
relevant to limiter operation where ionization tends to occur in the main plasma,
figure 4.7. Divertor tokamaks are designed to achieve ionization localized within
the divertor SOL, near the targets, figure 4.8. To the degree that a divertor achieves
that objective, the results of this section are totally inapplicable. In practice, diver-
tors may have significant ionization in the main chamber due to neutral ‘leakage’
out of the divertor or (undesired) plasma contact with the main vessel walls. In
that case the results of this section may be applicable to divertor operation also.

Consider a slab geometry, figure 4.9. Two infinite planar walls at r = ±a
define a plasma with B parallel to the walls. (Again note that figure 4.9 is not
the along-B picture that we have been using almost exclusively up to this point in
this book, but is a cross-field view.) We assume all heat input occurs at the centre,
along r = 0, at rate q⊥ [W m−2]. We also assume that the walls are saturated
with hydrogen and a steady-state refuelling exists with a uniform neutral influx
of �neutral [atoms m−2 s−1] occurring from each wall. The neutrals are assumed
to penetrate a distance λi z from the walls, all of them being ionized at the precise
radial location r = a−λi z . In steady state that results in a uniform ion out-flow to
the wall at flux density �ion⊥ = �neutral⊥ , the neutral inflow to the plasma. We take
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Recycling
neutrals

limiter SOL

Main plasma

SOL

LCFS

Wall

LCFS

Wall

B

Figure 4.7. For limiters, the recycling hydrogen tends to be ionized in the main plasma.

ionization
near

targets

neutrals

Figure 4.8. For divertors, the recycling hydrogen can be ionized near the targets, outside
the main plasma.

simple boundary conditions for plasma density and temperature at the perfectly
absorbing walls: T (a) = n(a) = 0 (the so-called ‘hard’ boundary condition).
Note that we have no limiters protruding into the plasma here, thus no SOL and
no parallel flows are involved. In this first simple approximation the sink action
is purely radial. We will include SOL action later. It will be found not to change
the basic picture.
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Figure 4.9. Radial profiles of temperature tend to be centrally peaked since power input
tends to be central. Radial profiles of plasma density tend to be flat since recycling neutrals
tend to be ionized near the edge, i.e., the plasma particle source is near the edge.

4.6.1 The Case with the Hard Boundary Condition

We now show that the n(r) profile is of plateau shape, figure 4.9, when only cross-
field diffusive transport is involved—which is the most common assumption for
magnetic confinement:

�ion⊥ = −D⊥
dn

dr
. (4.46)

Since neither source nor sink exist inside r = a − λi z , then �ion⊥ = 0 there. Thus:

n = n(0), constant for 0 < r < a − λi z . (4.47)

For a − λi z < r < a, the ion flux density is constant and equal to the neutral
influx density �neutral⊥ :

−D⊥
dn

dr
= �neutral⊥ for a − λi z < r < a. (4.48)

Together with the boundary conditions n(a − λi z) = n(0) and n(a) = 0 this then
gives a linear variation of n(r) in this region and:

D⊥
n(0)

λi z
= �neutral⊥ . (4.49)

Thus the density profile is given by:

n(r) =
{

n(0) = λi z�
neutral⊥ /D⊥ 0 < r < a − λi z

(n(0)/λi z)a(1− r/a) a − λi z < r < a
(4.50)
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i.e. the flat plateau profile shown in figure 4.9. For large tokamaks it is likely
λi z  � a and so a very broad, flat density profile is anticipated—and is often
observed, approximately.

It may not seem obvious that the n(r) profile will be flat inboard of the
ionization, i.e. source, location. It must be kept in mind however, that this is
a steady-state result. At early times, following plasma start-up, there will be a
density peak at r = a − λi z  which will ‘feed’ the central region, ‘back-filling
it up’; see problem 6.19. In steady state, random particle fluxes will exist in
this region, both in and out, but the net flux �ion⊥ will be zero. Flat profiles are
the direct consequence of (a) purely diffusive transport, and (b) source and sink
both located close to the outer boundary. (One may consider the analogue of the
temperature profile in a room where the source of heat, e.g. radiators, are placed
right next to the sinks, the windows.)

We consider next the temperature profile T (r) and the power balance. It is
seen that if q⊥ is deposited on axis, r = 0, and if it is transported cross-field
purely by conduction (certainly there is no convection for 0 < r < a − λi z since
�ion⊥ = 0), then:

q⊥ = −n(0)χ⊥
dkT

dr
(4.51)

and a triangular T (r) profile results, figure 4.9.

kT (r) = aq⊥
n(0)χ⊥

(1− r/a). (4.52)

One notes what an important difference the source location makes to profiles.
We can now calculate τp and τE . We take the volume in slab geometry to be

that of depth a and area 1 m2, thus:

τp ≈ n(0)a

�neutral⊥

τp ≈ λi za

D⊥
(4.53)

where we assume λi z � a so that n(r) ≈ n(0) for all 0 < r < a and used
equation (4.49). JET-size example: a = 1.5 m, λi z = 0.1 m, D⊥ = 1 m2 s−1,
thus τp � 0.15 s.

To calculate τE , we may note that T = T (0)/2, thus:

τE ≈ 3/2n(0)kT (0)a/q⊥

τE ≈ a2/χ⊥. (4.54)

For the same JET-size example and χ⊥ = 2 m2 s−1: τE � 1 s.
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Equations (4.53) and (4.54) indicate why τp and τE are, in principle, very
different: the source locations are usually very different. Even if D⊥ � χ⊥, these
two times are in principle quite different. This means that, while χ⊥ and τE just
represent the same information (for a given machine size)—D⊥ and τp on the
other hand actually contain different information and the one is not equivalent
to the other. This state of affairs is unsatisfactory to some people who take the
view: ‘But the way you have defined τp really makes it dependent on ‘edge
confinement’, not just core confinement’—as if you had any choice in how to
define ‘confinement time’! There really is no choice, since ‘confinement time’ is
understood in all fields of science and engineering to mean (total content)÷ (total
source or loss rate) in steady state. The thought behind such comments, however,
is understandable: some people would prefer τp to directly and purely indicate
D⊥, just as τE indicates χ⊥ directly. They would prefer it if τE/τp = D⊥/χ⊥ so
that this ratio would tell us directly about the relative ability of the magnetic field
to confine particles and energy.

While complicated redefinitions of τp can be formulated in order to achieve
a direct, simple relation between τp and D⊥, this is probably inadvisable as it can
result in creating more confusion. It is recommended that the classical definition
of τp just be accepted and that other times be defined to deal with this matter.
If neutrals are injected right to the axis before ionizing, e.g. by pellets, then
λi z → a, and τp →∼ a2/D⊥. One would also expect total particle content
to show a decay time, τdecay � a2/D⊥ following the termination of the source.
One expects the initial filling-up time of the density profile resulting from edge
fuelling to also take about this time. τp itself is not only a function of the system
parameters, a and D⊥, but also of the source location, here λi z .

We turn now to the point that τp(≈ aλi z/D⊥), is largely a function of edge
rather than central plasma processes:

(a) λi z , the penetration distance of the neutrals before ionizing is dependent on
edge ne and Te:

λi z = vn/(neσvi z(Te)) (4.55)

assuming all the neutrals have velocity vn inward.
(b) If D⊥ varies radially, it is only the average value of D⊥ in the region, a−λi <

r < a, that influences τp. The values of D⊥ radially further in will effect the
filling-up time, τdecay, but not τp, which is a steady-state quantity.

An important benefit that results from sticking with the classical definition of τp

is that both total content and total source rate are measurable—and their ratio
is τp. The content can be measured from the ne(r) profiles using, for example,
interferometry. The source can be measured in one of two ways:

(a) Target Langmuir probes provide values of I+sat, i.e. the particle flux density
striking the targets which when measured over the entire targets, and inte-
grated, gives the total charged particle outflow, assuming negligible volume
recombination.

Copyright © 2000 IOP Publishing Ltd.



172 Simple SOL

Figure 4.10. Comparisons between the deuterium influx by ionization, �Dα , measured
spectroscopically, and the outflux, �probe, measured on JT-60 [4.19]. The results for
inner and outer divertor regions are represented by closed and open circles, respectively.
Agreement between these two methods of measuring steady-state particle source strengths
is to within a factor of about 2.

(b) Each neutral hydrogen entering the plasma emits about 0.1 Dα photon before
becoming ionized, section 3.5. Thus by measuring the total Dα intensity the
total fuelling rate can be deduced.

These two methods have been compared and found to agree generally [4.18].
Figure 4.10 [4.19], shows total hydrogenic fluxes measured in these two ways on
the JT60-U divertor for a range of operating conditions. The agreement between
the two methods is to within a factor of two or better. Further improvement
might be achieved by (a) allowing for the contribution of molecule-related Dα

radiation, (b) allowing for the spatial distribution of ne and Te throughout the Dα-
emitting region, as it effects the photon efficiency, (c) including the contributions
of impurities to the probe I+sat measurements, etc. Figure 4.11 gives some τp mea-
surements for several tokamaks using the two methods of measuring the fuelling
rate. The tendency is for τp to decrease with increasing ne and with decreasing
machine size although the dependence on ne is not always strong, as for example
on TEXTOR [4.20].

We will now attempt to explain these basic aspects of τp using the Engelhardt
model [4.16, 4.17]. We estimate λi z  using equation (4.55), that is assuming that
the neutral inward velocity can be estimated using a single, characteristic speed
vn . In reality, hydrogenic penetration of a plasma is complicated with various
atomic, molecular and charge-exchange processes being involved, section 3.5.
The NIMBUS Monte Carlo neutral hydrogen code, which includes all such pro-
cesses, has been used [4.21] to analyse a variety of JET limiter discharges. It
was found that the ionization depth could be well approximated for that situation
by assuming vn � 3 × 104 m s−1 and using ne = 1

2 ne in equation (4.55)
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Figure 4.11. Particle confinement time. The straight lines are from τp ≈ 3 × 1018

a/(D⊥ne) (see discussion in [4.23, 4.43]) where values of D⊥ were extracted from
measurements of λn .

with σvi z  � 3 × 10−14 m3 s−1. (ne is essentially the main plasma density, in
0 < r < a − λi z .) This neutral velocity is that which ∼ 10 eV D atoms would
have and thus indicates that some ‘acceleration’ by charge-exchange processes
has occurred. This value cannot be taken as being universally valid but may be
reasonably reliable for limiter geometry. We consider other estimates below. The
use of ne = 1

2 ne in calculating λi z  is reasonable since ne(r) rises linearly in the
ionization zone from a low value to ∼ ne. The use of σvi z � 3 × 10−14 m3 s−1

is reasonable since this is a close approximation to the hydrogenic ionization rate
for 20 eV ≤ Te ≤ 500 eV, figure 1.39. We thus obtain for the total neutral influx
and ion outflux for the tokamak:

φ = �neutral⊥ Aplasma (4.56)

where Aplasma � 2π R2πaκ1/2.
Combining equations (4.49), (4.55), (4.56):

φ = σvi z D⊥Aplasman2
e

2vn
. (4.57)

Note that total flux φ ∝ n2
e .
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Problem 4.5. For the JET-size example of Aplasma � 200 m2, D⊥ = 1 m2 s−1,
show that φ � 10−16n2

e , so that for ne = 2 × 1019 m−3, show that φ � 4 ×
1022 s−1 ≈ 1000 torr litre s−1.

It may be noted that this recycling source strength is much larger than most
external fuelling rates, e.g. from a gas-puffing valve. We also have:

τp � avn

D⊥neσvi z
. (4.58)

The numerical factor 3×1018 used in figure 4.11 allows for some inward ‘pinch’,
see below.

Problem 4.6. Derive equation (4.58).

We may note that τp ∝ n−1
e , which is about as seen, often, for limiter tokamaks,

figure 4.11. Also recall from section 4.5 equation (4.29), the empirical relation
found for JET limiter, ohmic shots: we may compare with the theoretical relation
equation (4.58) for a = 1.2 m, ne = 2 × 1019 m−3, D⊥ = 0.5 m2 s−1, fig-
ure 4.4(a), which gives τp = 0.12 s. This is not too far off the τp = 0.20 s from
equation (4.29) for R = 3 m. Note also from equation (4.58) the prediction that
τp ∝∼ a which is also about as seen experimentally, figure 4.11.

Superficially, equation (4.55) for λi z  seems to imply that only the ionization
process influences the depth that the neutral hydrogen penetrates before ionizing.
The value of vn � 3 × 104 m s−1 extracted from the NIMBUS analysis [4.21]
however, is far greater than the thermal velocity of molecules—thus indicating
the contributions principally of:

(a) prompt back-scattering of energetic D+ as D0, section 3.1;
(b) production of 2–4 eV Frank–Condon atoms by electron-impact disassocia-

tion of molecules, section 3.5;
(c) charge-exchange collisions between ∼ eV D0 and hotter D+, section 3.5.

Other analytic expressions have been produced for the penetration depth, λpen,
where we have defined the latter term to distinguish it from λi z , equation (4.55).
For example Alexander et al define [4.22]:

λpen = (σeffn)−1 (4.59)

where σeff is an effective cross-section combining the effects of ionization and
charge exchange:

σeff ≡ (σvi z(σvi z + σvcx ))
1/2/(kT/matom)1/2. (4.60)

Problem 4.7. Show using figure 1.25 that the value of σeff is approximately con-
stant for 10 � T � 1000 eV, at ∼ 3× 10−19 m2 [4.22].

Similar expressions have been used by other authors, see references in [4.23].
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4.6.2 The Case with the Soft Boundary Condition

We now relax the ‘hard’ boundary condition, n(a) = 0 (which may be appropriate
when the wall itself constitutes the sink rather than limiters, section 25.2), to the
assumption of n(a) = nLCFS �= 0, which corresponds to a limiter-with-SOL sink,
i.e. the ‘soft’ boundary condition.

Consider the first case where ionization occurs inside the main plasma. Then
within a − λi z  < r < a

�ion⊥ = D⊥(ne − nLCFS)/λi z  (4.61)

and at the LCFS the flow into the SOL is:

�ion⊥ = D⊥nLCFS/λSOL
n . (4.62)

We may note that the strength of the SOL sink action for particles is given by
λSOL

n ≈ (D⊥τSOL)1/2 ∼ (D⊥L/cs)
1/2, section 4.3: the stronger the sink action,

the shorter is τSOL, thus also λSOL
n ; for a given �⊥ neutral (= �ion⊥ ion in steady

state), equation (4.62) shows that nLCFS also goes down.
By combining equations (4.61) and (4.62), we thus obtain a simple expres-

sion relating nLCFS to ne

nLCFS

ne
= λSOL

n /(λi z + λSOL
n ) (4.63)

which for nLCFS � ne gives:

nLCFS

ne
� λSOL

n

λi z
. (4.64)

Thus also:

nLCFS � λSOL
n σvi zn2

e

2vn
(4.65)

and

ne = (λi z + λSOL
n )�neutral⊥ /D⊥. (4.66)

Note that equation (4.65) predicts that nLCFS ∝ (ne)
2, which has been seen ex-

perimentally on JET approximately, figure 4.6. Note that relaxation from the hard
boundary condition has increased ne by the factor (λi z + λSOL

n ), equation (4.66),
compared with just λi z , see equation (4.50). τp, equation (4.53), also now has λi z

replaced by (λi z + λSOL
n ).

Consider now a second case: for sufficiently high edge density the ioniza-
tion location will no longer be in the main plasma, but will be in the SOL, at
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a a+λiz

n=nLCFS

Plasma
density

r

npeak

Figure 4.12. Radial profile of plasma density. For sufficiently high edge density, ionization
of the recycling neutrals tends to occur within the SOL, leading to a density peak outboard
of the LCFS, assuming transport is diffusive. The limiter edge, LCFS, is at r = a.

r = a + λi z . The analysis in this case yields the profile shown in figure 4.12,
given by:

n(r) =


nLCFS for r < a

1
2 nLCFS[exp((a − r)/λSOL

n )+ exp((r − a)/λSOL
n )] for a < r < a + λi z

n(a + λi z) exp[−(r − a − λi z)/λ
SOL
n ] for r > a + λi z

(4.67)

where:

ne = nLCFS = �neutral⊥ λSOL
n

D⊥
exp(−λi z/λ

SOL
n ) (4.68)

and a density peak exists in the SOL at r = a + λi z of magnitude:

npeak = n(a + λi z) = �neutral⊥ λSOL
n

2D⊥
[1+ exp(−2λi z/λ

SOL
n )]. (4.69)

Note from equation (4.68) that as the ionization location moves further outboard
of the LCFS, the density in the main plasma, n = nLCFS, drops, exponentially.

This case of a SOL-ionization source brings out the important phenomenon
of plasma fuelling of the main plasma—as distinct from the neutral fuelling which
occurs when neutrals penetrate inside the main plasma. For a SOL-ionization
source, it is to be noted that the entire main plasma fills up, i.e. is ‘fuelled’, by
charged particles diffusing (or otherwise being transported) across the magnetic
field. Fuelling of the main plasma then is by plasma transport, not neutral trans-
port.
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The foregoing pure-diffusion transport can be extended to allow for the effect
of an inward pinch, which adds radial convective transport of plasma to the diffu-
sion, i.e. an inward drift velocity. Sometimes n(r) is observed in experiments to
be peaked—and not flat as is implied by the combination of pure diffusion plus an
ionization source near the edge. In that case an anomalous inward pinch velocity
may be hypothesized to exist, perhaps of the form vin = SD⊥r/a2, where S is an
adjustable numerical factor. Provided S is not extremely large then vin is small
compared with the effective diffusive velocity at the edge, vD⊥,eff � D⊥/λi z ,
since λi z is short, and so the effect of vin is simply to add a Gaussian n(r) profile
on top of the ‘density plateau’ which is associated with pure diffusion:

n(r) = nplateau exp[0.5S(1− r2/a2)] (4.70)

where nplateau is given by n(0) of equation (4.50) (the hard BC), or ne of equa-
tion (4.66) (the soft BC and ionization in the main plasma) or nLCFS of equa-
tion (4.67) (soft BC and ionization in the SOL). Thus if S = 2, for example,
then a modest density peaking factor of n(0)/nplateau = e1 ≈ 2.7 results. This
increases the average plasma density to:

n/nplateau ≡ f (S) ≡ 2(eS/2 − 1)/S. (4.71)

Problem 4.8. Prove that, including a pinch, τp, equation (4.58), should be multi-
plied by f 2 while particle flux φ, equation (4.57), should be divided by f 2.

At this point it is useful to return to the issue of defining τp. Sometimes,
in an attempt to come up with a re-defined τp that will be exclusively a function
of processes in the main plasma, some authors have defined a τp based on the
content of the main plasma, and the ionization rate of neutrals occurring inside
of the LCFS. The latter quantity can be calculated using a neutral hydrogen code
such as DEGAS, NIMBUS, etc. They then define this to be ‘the core particle
confinement time’. This is probably inadvisable since the fuelling of the main
plasma may be due to ionization outboard of the LCFS. Consider a mixed case
where the ionization is partly in the SOL, partly in the main plasma—the usual
situation, in fact. Assume for simplicity that the actual spatial distribution can be
approximated by two sources, one inside the LCFS at a distance λmain

i z , one outside
the LCFS at a distance λSOL

i z . From the foregoing we have the two confinement
times for these two sources:

τmain i z
p = (λmain

i z + λSOL
n )a/D⊥ (4.72)

τSOL i z
p = exp(−λSOL

i z /λSOL
n )aλSOL

n D⊥ (4.73)

where equation (4.72) can be derived from equation (4.64) and equation (4.73)
from equation (4.68). These two times are the same for λSOL

i z = λmain
i z = 0, of

course. Total particle content N [particles m−2] for slab geometry:

N ≈ ane = �main i zτmain i z
p + �SOL i zτSOL i z

p [m−2]. (4.74)
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Problem 4.9. For the example a = 1.2 m, λSOL
n = λSOL

i z = λmain
i z = 10−2 m,

D⊥ = 1 m2 s−1, ne = 3 × 1019 m−3, and �main i z/�SOL i z  = 10−1, i.e.
taking most of the ionization to be in the SOL, show that: τSOL i z

p = 4.4 ms,

τmain i z
p = 24 ms, �main i z = 5.3 × 1020 m−2 s−1, the content N due to �SOL i z

is 2.3 × 1019 m−2 and that due to �main i z  is 1.3 × 1019 m−2, i.e. the content is
due primarily to the SOL ionization. If one were to re-define τp to be N/�main i z ,
show that this would give 68 ms, which is clearly misleading and not a useful
number.

It is also questionable whether it is useful to define a ‘SOL shielding factor’,
as is sometimes also done. One might define this to be the fraction of the neutrals
which are ionized inboard of the LCFS, i.e. ‘shielding factor’≡ �main i z/�total i z .
One might then draw the erroneous conclusion that it is only those neutrals which
fuel the main plasma. As noted, this would be wrong since it ignores plasma
fuelling. Furthermore, this approach also would imply that it is only the ratio
�main i z/�total i z  that matters—whereas the actual depth inside the LCFS where
the ionization occurs, λmain

i z , is also critical, equations (4.72), (4.74).

Problem 4.10. For the same values of a and λSOL
n as in problem 4.9, show that

if one were to approximate the situation by assuming (a) that only �main i z(=
5.3×1020 m−2 s−1) matters, and (b) λmain

i z � 0, then one would obtain τmain i z
p =

12 ms and N = 6.4 × 1018 m−2 which is a poor approximation to the actual
N = 3.6× 1019 m−2.

It is clear that it is as important to estimate λmain
i z reliably as it is to estimate

any so-called ‘shielding factor’, such as �main i z/�total i z . Actually there is no
need to attempt to define ‘shielding factors’, ‘fuelling efficiencies’, etc., since
the quantitative capability of any specific source to fuel the plasma is entirely
expressed by the value of τp for that source.

The foregoing strictures against the concept of a shielding factor are directed
solely at the matter of understanding the relation between fuelling, τp and ne(r)

profiles. A separate issue is the presence of neutrals and ionization in the main
plasma, and the attainment of H-mode confinement [4.24], see chapter 7, which
have sometimes been found to be anti-correlated [4.25]. For such studies the
concept of a shielding factor can be useful.

The simple analysis in this section is based on 1D radial transport, either
ignoring parallel transport, or treating it using a single parameter, λSOL

n , for the
soft boundary condition case. Thus 2D or 3D effects are largely ignored. For
ionization inside the LCFS, even if it occurs in a 2D or 3D localized way, since
parallel transport is so much faster than perpendicular transport, then effectively
the ionization occurs uniformly (poloidally/toroidally) and a 1D radial transport
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analysis is a good approximation, so far as the region inside the LCFS is con-
cerned. The particles then enter the SOL uniformly along the length and so our
1D, along-B analysis provides a good estimate for τSOL and thus λSOL

n . Thus, al-
though the SOL is inherently 2D (at least) the 1D radial approximation employed
above—where the parallel loss to the targets is simply replaced with an effective
and localized sink, n(r)/τSOL—should often be reasonable.

Consider next, the case of a limiter but with most of the ionization occurring
in the SOL. Inevitably this will not occur uniformly along the length of the SOL
but will be strongest near the limiter—and may perhaps be highly localized there.
So long as the SOL is approximately isothermal, however, it does not significantly
affect the SOL average dwell time, τSOL, whether the ion particle source is dis-
tributed uniformly along the SOL, or is entirely near the limiter. In either case
the flow velocity at the sheath reaches cs , while the density at the sheath edge,
n, is half the far-upstream density, nup, equation (1.50) (t for target, nt = nse,
se for sheath edge). The only difference is the spatial distribution of n(s‖) along
the SOL: when the source is close to the sheath, most of the drop occurs very
near the target, rather than occurring in a somewhat more extended region; see
problem 1.20. Since τSOL is the total content of the SOL flux tube divided by the
sheath outflux, the spatial distribution of the source along B is of little importance.
Thus, the sink rate of the SOL, ∼ n/τSOL, remains about as before. It would also
give a first approximation to take λSOL

i z in equations (4.73), etc to be the average
radial location of the ionization, even though it is not actually uniform along B.

Turning to the divertor SOL: when there are no significant parallel T -
gradients the results should be the same as for the limiter case just considered
even if ionization is primarily outside the LCFS and near the targets. When
significant T -variations are present, however, the simple estimate for τSOL fails
since (a) n(s‖)-variations are now significant, making the calculation of the
SOL content complicated, and (b) the out flux rate to the targets is a function
of particular values of n and T in the SOL, namely nt and Tt . Therefore λSOL

n
should not be estimated from (Lc D⊥/cs)

1/2 and τp is not reliably given by the
expressions derived in this section.

4.6.3 The Global Recycling Coefficient

So far we have only considered the case where the solid surfaces are hydrogen
saturated and so φion⊥ = φneutral⊥ , and the latter is just the total flux spontaneously
released from the saturated surfaces. Such a situation will exist for long pulse
fusion reactors. It can also occur for present day shorter pulse, devices, espe-
cially when operated at elevated surface temperatures where saturation sets in
more quickly. Otherwise one often has φion⊥ > φneutral⊥ (the opposite inequality
can also occur temporarily, for example, when previously deposited hydrogen is
‘degassed’), and the only way to achieve a constant ne is by external fuelling,
e.g. with a gas valve, pellets or neutral beam injection. In addition to this wall
pumping effect, there may be active pumping due, for example to a cryo pump.
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For either type of pumping we define the global recycling coefficient R by:

φ
recycle neutral
⊥ = Rφion⊥ . (4.75)

Thus, if one turns off all external fuelling, ne will decay with a measured decay
time τ ∗p :

ne volume

τ ∗p
= −d(ne volume)

dt
. (4.76)

We have that:

d

dt
(ne volume) = φ

recycle neutral
⊥ − φion⊥ = Rφion⊥ − φion⊥ (4.77)

and since
ne volume/τp = φion⊥ (4.78)

we obtain:

τ ∗p =
τp

1− R
. (4.79)

Note that as R → 1, τ ∗p → ∞ and there is no decay, i.e. 100% recycling. Also

as R → 0, τ ∗p → τp, which corresponds to very powerful pumping and zero
recycling.

(Actually, as R → 0, the observed decay time would not actually drop to a
value as low as τp: equation (4.79) was developed assuming a quasi steady state
where, at all times, the ne(r) profile is in radial equilibrium with the recycling
source. This requires that any changes occur on a time scale longer than what one
might term the ‘radial equilibration time’, τr.eq. ≈ a2/D⊥. The observed decay
time cannot fall below τr.eq., which is generally longer than τp ≈ aλi z/D⊥.)

It is not practical to calculate R from basic data since so many surfaces, with
very different plasma exposures and levels of saturation, are involved, but it can
be found from measured τ ∗p and τp values. Figure 4.13 shows an example of
ne(t) for TFTR operated with a hydrogen-saturated limiter [4.26]. The external
gas puff was turned off at t = 1.5 s, and, as can be seen, ne(t) hardly decayed
at all, indicating τ ∗p � 10 s. The carbon walls of TFTR were then depleted of
hydrogen using extensive helium conditioning discharges resulting in hydrogen
discharges with τp � 0.15 s, which is presumably approaching τr.eq.. Since
without conditioning, τ ∗p � τp, it is evident that present day tokamaks usually

operate with R close to unity. This also implies that normally in steady state
φneutral fuel � φ

neutral recycle
⊥ . That is, tokamaks are usually largely self-fuelled

and the external fuelling can be ignored for most purposes as a small effect.
The walls—particularly carbon walls—nevertheless constitute pumps for hy-

drogen and it can sometimes be necessary (in contrast with figure 4.13) to employ
a constant φneutral fuel in order to achieve a constant ne. The pumping capacity
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(a)

(b)

(c)

(d)

Figure 4.13. Measurements of τ∗p on TFTR [4.26]. Going from (a) to (d), the carbon walls
were depleted more and more completely of hydrogen by helium conditioning discharges.

of tokamak carbon walls has been determined experimentally to be in the range
of 100 to 1000 times the plasma content [4.27–4.29], indicating that wall pumping
may be effective for up to 1000 particle confinement times—or more, if co-
deposition trapping of hydrogen is significant, section 3.4. Sophisticated models
have been developed to explain transient wall pumping effects [4.30] and have
been successfully used to explain observations in Tore Supra where the plasma
contact with graphite surfaces was moved to induce transient wall pumping ef-
fects [4.31].

4.7 The Simple versus Complex SOL

In sections 1.9 and 4.1, the distinctions between the simple and complex SOL
were introduced. For the complex SOL we must allow for the possibilities of:
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(1) parallel gradients of temperature;
(2) ionization of the re-cycling neutral hydrogen within the SOL; volume

power loss due to radiation—both hydrogenic and impurity—and to
charge-exchange neutrals;

(3) momentum loss by the plasma flow to neutral hydrogen;
(4) volume recombination if T drops below a few eV;
(5) collisional transfer of energy between electrons and ions.

Many other complicating effects could also be included, such as viscous
drag, the loss of particles, momentum and energy from the SOL into the private
plasma, etc. As already noted, section 4.4, the level of electron–ion thermal
coupling or equipartition is a moderately complicating effect.

Limiter SOLs are often simple. Divertor SOLs are often complex. A dis-
cussion of the reasons for this will be returned to later. While the complex SOL
is harder to understand and analyse than the simple SOL, for practical reasons
it is most advantageous to operate a tokamak employing a complex SOL. The
following discussion of the reasons for this is mainly pertinent to the divertor
SOL [4.32].

(1) Large T -gradients along the SOL mean that the plasma in actual contact
with the solid divertor targets can be cool—reducing sputtering—while at the
upstream end of the SOL, the edge plasma contacting the confined plasma
can be hot. It was seen in the last section that in the absence of parallel tem-
perature gradients (the simple SOL), the only way to have a very low value of
TLCFS is to employ high values of nmain, for a given P , equation (4.39). This
may cause instability of the main plasma which is subject to an upper density
limit [4.33]. Further, it seems plausible that the higher the temperature of
the edge plasma—which constitutes the boundary of the main plasma—the
better will be the energy confinement of the main plasma. Certainly it is
known that the high temperature just inside the separatrix is associated with
good energy confinement [4.34], although the relation of plasma conditions
on each side of the LCFS is not well understood.

(2) When ionization of the recycling neutrals occurs in the main plasma—the
simple SOL—the resulting outflow of plasma particles into the SOL occurs
more-or-less uniformly along the length of the SOL. This gives significant
parallel plasma flow—and hence parallel heat convection—all along the
length of the SOL. This convection means that the parallel conduction carries
less of the power flow along the SOL than it would otherwise—thus decreas-
ing the parallel drop in T . This, as noted, is not desirable. By contrast, when
ionization mean free paths are short, ionization occurs mainly in the SOL–
and it will also generally occur mainly close to the source of the recycling
neutrals, i.e. to the targets. Thus, the role of heat convection is reduced on
average, and the temperature drop associated with conduction is greater.

(3) Volume power losses are desirable since they tend to deposit power in a very
diffuse way over a substantial portion of the total wall area. By contrast,
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the power deposited on the target by electron and ion impact occurs in a
comparatively small area—the ‘plasma-wetted’ area—potentially causing
over-heating and melting.

(4) When the plasma temperature near the targets is low, a further benefit results:
the recycling neutrals can cause neutral frictional drag on the plasma flow to
the targets before they are ionized. This obstruction to the outflow reduces its
magnitude for fixed upstream conditions (‘plugged drain effect’), i.e. the in-
tensity of recycle is reduced, i.e. particle confinement (for the entire system,
SOL plus main plasma) increases, chapter 16. This then also reduces the
concentrated particle power deposition on the targets. This neutral cushion
protects the target.

(5) If the plasma temperature at the targets drops still further, to � 1 eV, then an-
other benefit arises: volume recombination becomes strong [4.35], replacing
the sink action of the solid target, with a gaseous target. Erosion and heating
of the target is then further reduced. This scenario—as well as the neutral
cushion one—generally requires that volume power loss processes remove
most of the power that entered the SOL before it reaches the targets.

4.8 Comparison of High Recycling, Strongly Radiating and
Detached Regimes

As the plasma temperature near the divertor targets, Tt , is reduced further and
further, a sequence of progressively more attractive complex SOLs is achieved.
At the high values of nt involved, the ionization occurs close to the targets.
In section 5.2 the means of forcing Tt down are considered. Here are briefly
described the consequences of low Tt .

(1) The high recycling regime. It is a remarkable, and perhaps surprising, fact
that as Tt drops, the particle flux to the targets, φt , increases, section 5.2.
One’s first thought is perhaps that the plasma outflow φt ought to be more
constrained, somehow. We are tempted to feel that it must be ‘constrained to
match the particle source’. It has to be remembered, however, that when the
solid surfaces become fully saturated with hydrogen, section 3.4, a steady-
state recycle refuelling sets in: no external source of fuel is then required—
and the plasma sustains itself, so far as particles are concerned. Thus the
plasma (ion) outflow, φ+t is automatically matched to the neutral inflow rate,
φ0

recycle—at whatever level is consistent with the other balances, i.e. those of
pressure and power. Thus the low Tt regime will also be a high recycling
regime, high φt .
The high rate of recycling is in itself of no obvious advantage. The chief
practical point about the ‘high recycling regime’ is that Tt is low, thus also
the sputtering yield is low. Unless the volume power losses change, all the
power still reaches the targets, so the over-heating problem is not affected
(although the SOL width may increase, lowering peak power loads).
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Table 4.1. Fraction of ionization occurring with the SOL of limiter tokamaks (using
multi-dimensional neutral codes)a .

ne nLCFS Ionization
fraction in

Tokamak Refs Code (1019m−3) (1018m−3) SOL(%)

PLT Ruzic
(rail limiters) et al [4.39] DEGAS 5.5 5 31

DITE Maddison 2 5 14
(poloidal et al [4.40] DEGAS 2 2 7
limiter)

JET Simonini NIMBUS 1.4 1.2 21
(eight rail et al [4.41] 1.6 1.7 26
limiters) 2.1 2.2 30

2.1 2.2 25
2.6 3.0 25
3.25 4.1 24
1.79 2.8 28
2.6 4.0 30
3.05 5.5 31
3.63 7.5 31
3.95 10 36

T-10 Pigarov and TNG 2.6 4.5 43
Vershkov (1.8) (14.4) 63
[4.42]

a For ohmic heating; the two values in brackets are for ECH, electron cyclotron heating.

The terms ‘conduction-limited regime’, section 1.9, and ‘high recycling
regime’ are often used interchangeably since the practical point is the
achievement of low Tt . A further practical advantage is that for constant
plasma pressure, nt is large. This tends also to give large neutral densities
near the divertor which aids pumping.

(2) The strongly radiating regime. There is no precise transition from the high
recycling to the strongly radiating regime, since as the intensity of the hydro-
genic recycle increases, the associated strong radiative losses also increase,
section 3.5. Thus, in fact, the high recycling regime already enjoys, partially,
the benefits of this regime. As Te decreases, the amount of radiative en-
ergy loss per recycling hydrogen increases, figure 3.34 (although note that
ε includes Ii z  and this potential energy still ends up being deposited on
the targets). This occurs primarily because at lower Te more excitations
occur before ionization. At very low T , below a few eV, recombination
contributes to the radiated power. In addition, the impurity radiation has to
be considered. For low Z elements, the radiation function is largest at very
low Te, figure 3.21. Thus, for progressively lower Tt , an attractive strongly
radiating regime can be achieved. If the radiating zone is close to the targets
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then the radiative heat load on the targets can be significant, however.
(3) The detached regime. For the lowest Tt , as already noted in section 4.7,

both neutral frictional drag and volume recombination may become strong,
resulting in the detached divertor state with significantly reduced nt , Tt and
�t , chapter 16, which further reduces target sputtering and heating.

These attractive SOL regimes are easier to achieve with divertors than with lim-
iters. The recycling surface of a limiter is in direct contact with the main plasma,
see figure 4.7, and it is unavoidable that a significant fraction of the ionization of
the recycled neutrals will occur in the main plasma. By contrast, in the divertor
configuration, the targets may be located so remotely from the main plasma that
the ionization can occur virtually entirely in the SOL near the targets, figure 4.8.
This avoidance of significant ionization in the main plasma is a pre-requisite for
achievement of the complex SOL, and thus for the attractive regimes described
above.

Table 4.1 gives code-calculated results for the location of the hydrogen recy-
cle ionization for a number of limiter tokamaks. As can be seen, typically most
of the ionization does not occur in the SOL. At the highest value of nLCFS >

1019 m−3, this starts to change—but for limiter tokamaks such edge densities are
untypically high, see figure 4.6. By contrast, most of the hydrogen is normally
ionized in the SOL for divertor tokamaks—except at low ne.

4.9 The Effects of Ionization within the SOL

As already noted, the most important consequence of ionization within the SOL
is the tendency to produce the high recycling/conduction-limited regime, sec-
tion 4.8. Here we consider further effects: (a) the influence on the radial density
profile ne(r), and (b) the influence on the plasma flow pattern within the SOL.
These phenomena are closely connected.

We start with an idealized scenario where the plasma flow pattern is not
significantly altered. For each neutral ionized in the main plasma, let there be
(FR − 1) ionizations within the SOL, uniformly distributed along L . (This uni-
formity is unphysical, of course, and constitutes the essence of the idealization
involved here.) Thus 1 ≤ FR < ∞. The total source of particles for the SOL is
now given approximately by:

φ+ ≈ 2LwDSOL⊥
nLCFS

λn
+ 2(FR − 1)LwDSOL⊥

nLCFS

λn
(4.80)

where the first contribution is the cross-field ‘source’ from the main plasma, as
in section 4.3, and the second contribution is the local ionization source within
the SOL. As in section 4.3 this source is equated to the target sink strength of
nLCFScs,LCFSλnw, which then gives the new expression for λn :

λn = (2L DSOL⊥ FR/cs)
1/2. (4.81)
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Figure 4.14. A schematic representation of one leg of a deep slot divertor with the
separatrix along the centre line. The temperature tends to peak near the separatrix due
to the power inflow from the main plasma, which then tends to cause the ionization to
occur near the separatrix, and peaking of ne there.

We may note that the effect of SOL ionization—in this idealized scenario—is to
broaden the SOL: as the SOL becomes more and more ‘self-sustained’ the density
gradient, which is needed to draw plasma from the main plasma, can gradually
disappear and the SOL plasma would eventually extend indefinitely radially!

The first point to be drawn from the foregoing is that it is not valid to use the
now-familiar expression relating λn and DSOL⊥ , equation (4.7), when ionization
within the SOL is significant.

In the idealized scenario, Te(r) would still decay radially since the SOL is
only self-sustained in a particle sense (not in a power sense) and a radial T -
gradient is always needed to conduct power into the SOL. As Te drops, then
at some radius the plasma will become too cold to ionize neutrals which will
just pass through such regions to reach more ionizing regions further in. Thus
the Te(r)-profile will always tend to control the ne(r)-profile, even when SOL
ionization totally dominates particle balance.

As a first step toward developing a less idealized scenario we consider fig-
ure 4.14, which could represent one leg of a deep slot divertor. The centre line
is the separatrix, the right side is the SOL and the left side is the private plasma.
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Power balance largely controls the Te(r)-profile, which we will therefore take as
being fixed, and then consider how the ne(r)-profile would evolve in response to
this Te(r)-profile. However wide ne(r) might have been initially, it will quickly
narrow down to the region where Te ≥ Ii z , the ionization potential energy. Any
neutrals recycling from the target further out could only ionize within the hotter
region near the separatrix. That creates plasma primarily in the hot region (with
some diffusion on to the colder flux tubes). At the same time the neutrals recycling
from the target in the hotter zone tend to ionize within the hotter zone.

This scenario is still idealized since it ignores the large-scale recirculation
patterns of plasma flow, including flow reversal, which are implicit in this sce-
nario. We return to this effect in chapter 15. It is sufficient to note here that
when ionization in the SOL becomes significant, the power and particle balances
become entangled and simple expressions for λn such as equation (4.7) become
invalid. The situation seems to be so complicated that one’s first thought is that
no simple relations of any sort are possible for λn here. In chapter 21, it will be
shown that some simple relations may nevertheless tend to occur between λn and
λT even in situations where SOL ionization dominates.

4.10 Parallel Temperature Gradients Along the SOL

4.10.1 Calculating T (s‖)

For strong parallel T -gradients to form in the SOL, it is generally necessary
(although not sufficient) that parallel heat conduction dominate over parallel heat
convection. Parallel heat convection density q‖conv [W m−2] for the plasma (elec-
trons plus ions combined) is, section 9.9, equation (9.65):

q‖conv = (5kT + 1/2miv
2‖)�‖ (4.82)

assuming Te = Ti . The classical (Spitzer) parallel heat conduction density q‖cond
[W m−2] is, section 9.6:

q‖cond = −κ0T 5/2 dT

ds‖
(4.83)

for each species separately, using Te or Ti in equation (4.83), where the thermal
conductivity K‖ = κ0T 5/2, equation (9.46). For a pure hydrogenic plasma, the
coefficients κ0 for electrons and ions are κ0e � 2000, κ0i ≈ 60, for q [W m−2],
T [eV], dT/ds‖ [eV m−1]. Thus usually qe

‖cond � qi
‖cond and so, if electrons and

ions are thermally well coupled, electron conduction is used to approximate the
transport of the total conducted power.

It is important to note the very strong dependence of the heat conduction
coefficient K‖ on T , K‖ ∝ T 5/2. This turns out to result in a number of useful
simplifications. It means that the upstream temperature is a very robust quantity,
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depending very little on the power in the flux tube, q‖, and indeed on all other
parameters. Even a large change in q‖ can be accommodated by a small change
in T since the dependence of K‖ on T is so strong. To within a factor of 3,
T up

e,LCFS � 100 eV, for divertor tokamaks, usually.
A critical factor influencing the formation of parallel T -gradients is the ratio

of heat flux to particle flux density. Let us consider two extreme cases, figure 4.15:

sII = 0sII = L

qIIconv ≈ qin
qin

qin

Γin

a)

qIIcond ≈ qin

b)

Γ

Figure 4.15. Two extreme scenarios of divertor SOL behaviour regarding particle source:
(a) with ionization in the main plasma and thus particle inflow more or less at the upstream
end; (b) the high recycling regime with most of the ionization occurring near the targets,
in the SOL.

(a) All the particles and all the power enter at the top end of the flux tube,
figure 4.15(a). The parallel flow will then be at about the sound speed
all along the length, section 9.10, hence q‖conv will carry ≈ 6kT per ion
pair. Since the sheath only removes ∼ 7kTt per ion pair, sections 2.8, 25.5,
there will be little variation of T along the flux tube, provided also that any
volumetric power loss is not too large. This is the sheath-limited regime.

(b) All the power enters at the top end, but all the particle source is immediately
in front of the targets, i.e. the high recycling regime, figure 4.15(b). This
would result from power being purely conducted out of the main plasma,
with qLCFS⊥conv being negligible. In this case q‖cond will have to carry all the heat,
and a large value of dT/ds‖ may be required, depending on the magnitude
of q‖ and κ0T 5/2. This is the conduction-limited regime.

Let us consider this latter extreme case then where q‖cond dominates. The heat
enters the SOL from the main plasma with some specific spatial distribution. It
turns out that the resulting T (s‖) profile is remarkably insensitive to the details of
this spatial distribution. We consider two virtually opposite extremes of the heat
input distribution, figure 4.16:

(a) All of PSOL enters at the upper end and is conducted without loss for length
L to the target where it is removed via the sheath, figure 4.16(a).

(b) PSOL enters uniformly over length L , figure 4.16(b).
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sII = 0sII = L

PSOL

PSOL 
Aq||

B

a)

b)

Figure 4.16. Two extreme scenarios of divertor SOL behaviour regarding power source,
PSOL: (a) PSOL enters at upstream end; (b) PSOL enters uniformly along the length of the
SOL.

For case (a) we have:

q‖cond = (PSOL/Aq‖) = −κ0T 5/2 dT

ds‖
(4.84)

where Aq‖ is the total cross-sectional area of the SOL for power flow; see sec-
tion 5.7. Aq‖ is thus perpendicular to the parallel flow direction, i.e. is perpen-
dicular to B. Here we measure s‖ toward the target, from s‖ = 0 at the upper
end. Equation (4.84) is readily integrated to give T (s‖) in terms of either Tu , the
temperature at the upstream end, or Tt , the target temperature:

T (s‖) =
[

T 7/2
u − 

7

2

(PSOL/Aq‖)s‖
κ0

]2/7

(4.85)

also:

T (s‖) =
[

T 7/2
t + 

7

2

(PSOL/Aq‖)(L − s‖)
κ0

]2/7

. (4.86)

We are most interested in the situation where there is a significant temperature
drop along the SOL, i.e. Tu � Tt . Now, because of the large exponent involved
for Tt in equation (4.86), then if T is even slightly above Tt , one can neglect this
term, resulting in the important simplification:

Tu �
(

7

2

(PSOL/Aq‖)L

κ0

)2/7

. (4.87)

Next for case (b), where PSOL enters uniformly along L , figure 4.16(b):

d

ds‖
(q‖cond) = (PSOL/Aq‖)

L
(4.88)
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Figure 4.17. Some examples of the spatial distribution of temperature along the SOL,
T (s‖), assuming parallel (electron) heat conduction only. L = 100 m. For factor = 7/2,
PSOL enters at upstream end. For factor = 7/4, PSOL enters uniformly along length.
q‖ ≡ (PSOL/Aq‖). (See problems 4.11.)

which gives:

T (s‖) =
[

T 7/2
u − 

7

4

(PSOL/Aq‖)
L

s2‖
κ0

]2/7

(4.89)

and also:

T (s‖) =
[

T 7/2
t + 

7

4

(PSOL/Aq‖)
L

(s‖ − L)2

κ0

]2/7

. (4.90)

As for case (a), we are most interested in the situation where Tu > Tt , hence:

Tu �
(

7

4

(PSOL/Aq‖)L

κ0

)2/7

. (4.91)

It is clear that these extremely different (in fact, essentially opposite) assumptions
concerning the spatial distribution of the entering PSOL have almost no effect on
the upstream temperature Tu : the difference between equations (4.87) and (4.91)
is only a factor of (1/2)2/7 ≈ 0.82, i.e. 18%. This is a direct consequence of
the very strong temperature dependence of parallel heat conduction: a very small
change in T can accommodate large changes in the magnitude or distribution of
PSOL. Indeed, it can be seen that Tu is remarkably insensitive to virtually all
parameter variations, as noted earlier.

In figure 4.17 several examples of T (s‖) are given. It has been assumed here
that the sheath is the only heat sink, i.e. there are no volumetric power losses such
as Prad, thus from section 2.8:

(PSOL/Aq‖) = γ kTt nt cst . (4.92)
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We also assumed simple pressure balance with Mu = 0 and Mt = 1, thus, see
section 9.9:

nu Tu = 2nt Tt . (4.93)

If we assume PSOL enters at the upper end then we have from equation (4.85):

Tt =
[

T 7/2
u − 

7

2

(PSOL/Aq‖)L

κ0

]2/7

. (4.94)

Problem 4.11. Take as specified parameters: nu = 3 × 1019 m−3, L = 100 m,
κ0 = 2000, γ = 7, D+ ions and sample values of (PSOL/Aq‖) = 107, 108,
109 W m−2. Combine equations (4.85), (4.92), (4.93), eliminating Tt , nt , Tu

and obtain the relation for T (s‖) plotted in figure 4.17. For the 108 W m−2

case also replace equation (4.85) with equation (4.89) (and the equivalent to
equation (4.94)) in order to illustrate the effect of PSOL entering uniformly along
L .

A number of important features of the conduction-limited regime are illustrated
by figure 4.17:

(1) A sufficiently small (!) power flux density, (PSOL/Aq‖), is required in or-
der to achieve a large T -gradient, not a large one as might be one’s first
thought. When (PSOL/Aq‖) is large then T becomes large, making the heat
conductivity, −κ0T 5/2, very large—and so a small dT/ds‖ is then adequate
to transport even a large (PSOL/Aq‖). This result is perhaps counter-intuitive
because of our familiarity with non-plasma heat conductivity which is ap-
proximately temperature-independent. For very high (PSOL/Aq‖), in fact,
the SOL becomes almost isothermal along each field line.

(2) When temperature drops are significant, i.e. Tu/Tt � 1, then most of the
drop occurs near the target and most of the flux tube is, again ∼ isothermal
for most practical purposes.

(3) Tu is far less dependent on PSOL than is Tt , see problem 4.12.

Problem 4.12. The table below gives examples of temperature changes along
the SOL for conduction-controlled heat transport. Assume the same condi-
tions as in problem 4.11. Confirm the numbers in the table.

(PSOL/Aq‖) PSOL Tu Tt Estimated Tu [eV]
Case [W m−2] distribution [eV] [eV] equation (4.87) or (4.91)

1 107 In at top 61 1 61

2 108 " 117 27 117

3 109 " 342 317 226
4 108 Uniform 97 39 96
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One may note that the Tt = 1 eV value for the low power case is not realistic
since volumetric power losses would be important, section 3.5.

(4) The spatial distribution of input power along the separatrix to the SOL is not
very important.

(5) The estimates for Tu from equations (4.87) and (4.91) are poor for Tu/Tt �
1.1, as would be expected (last column of table, above).

4.10.2 Criteria for Existence of Parallel Temperature Gradients

We turn next to establishing criteria for the existence of substantial temperature
gradients in the conduction-limited SOL. We define the temperature-gradient fac-
tor fT :

fT ≡ Tu/Tt . (4.95)

One also has the density-gradient factor fn ≡ nu/nt = 2/ fT . For PSOL entering
at the top, we combine equations (4.92) and (4.94) which gives fT in terms of the
lumped parameter nt L/T 2t :

nt L

T 2t
= C1( f 

7/2
T − 1) (4.96)

n [m−3], L [m], T [eV], and where:

C1 ≡ 2κ0

7γ ecs0
. (4.97)

Problem 4.13. Derive equations (4.96) and (4.97).

The factor 2
7 in equations (4.97) is replaced by 4

7 when PSOL enters uniformly;
e = 1.6×10−19 [J eV−1]; cs0 = sound speed for T = 1 eV. The relation between
Tu/Tt and nt L/T 2

t is illustrated in figure 4.18 for D+ ions, Te = Ti , cs0 =
9788 m s−1, γ = 7, κ0 = 2000. We thus have the criteria:

(a) for negligible T -gradient, specifically for Tu < 1.5Tt :

nt L

T 2
t

� 1017 (4.98)

n [m−3], L [m], T [eV];
(b) for significant T -gradient, specifically for Tu > 3Tt :

nt L

T 2
t

� 1018. (4.99)
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Figure 4.18. Predicted relation between Tu/Tt and the collision parameter evaluated for
target plasma conditions. For D+ plasma, with Te = Ti , γ = 7 and all power carried by
parallel electron heat conduction. PSOL entering at the upstream end.

Since target conditions are not necessarily known a priori it is useful to find
the equivalent criteria expressed in terms of nu , L , Tu . This can be obtained by
combining the same operations as before, now adding pressure balance, equa-
tion (4.93), giving:

nu L

T 2u
= C2 f 

1/2
T (1− f −7/2

T ) (4.100)

where

C2 ≡ 
4

7

κ0

γ ecs0
. (4.101)

This applies when PSOL enters at the top; the factor 4/7 in equation (4.101) is
replaced by 8/7 if PSOL enters uniformly. For κ0 = 2000, γ = 7, cs0 = 9.79 ×
103 m s−1 (for D+): C2 = 1.04× 1017. This relation is illustrated in figure 4.19
for the same parameters as for figure 4.18. Comparison of these two figures
illustrates again that target conditions are much more variable than upstream ones.
When expressed in terms of the latter the transition from negligible temperature
gradient to substantial gradient occurs for small changes in the lumped upstream
parameter nu L/T 2

u : for negligible T -gradient, specifically for Tu ≤ 1.5Tt :

nu L/T 2
u � 1× 1017 (4.102)

n [m−3], L [m], T [eV]. For significant T -gradient, specifically for Tu > 3Tt :

nu L/T 2
u � 1.5× 1017. (4.103)
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Clearly these criteria correspond to measures of SOL collisionality. The electron
and ion self-collisionality lengths, section 1.6, are:

λee ≈ 1016T 2e /n λi i ≈ 1016T 2i /n (4.104)

for n [m−3], T [eV], λ [m]. It can be useful to define SOL collisionality parame-
ters based on upstream plasma values:

ν∗SOL,e ≡ L/λee ≈ 10−16nu L/T 2eu ν∗SOL,i ≡ L/λi i ≈ 10−16nu L/T 2iu

(4.105)

and when

Te = Ti then ν∗SOL ≡ L/λee i i ≈ 10−16nu L/T 2u . (4.106)

Thus equation (4.102) states that T -gradients are small when:

ν∗SOL � 10 (4.107)

while equation (4.103) states that they are significant when:

ν∗SOL � 15. (4.108)

Also, from equation (4.100) we have that fT (ν∗SOL) is given by the solution of:

1016ν∗SOL ≈ C2 f 
1/2
T (1− f −7/2

T ). (4.109)

See figure 4.19.
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Figure 4.19. As figure 4.18 but plotted against the collision parameter evaluated at the
upstream plasma conditions.
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Problem 4.14. Usually nu and Tu are not considered to be the independent
parameters characterizing the SOL, but more typically nu and PSOL—or here
(PSOL/Aq‖)—are taken to be the independent parameters; Tu is then a dependent
variable. It is therefore useful to have the above criteria expressed in terms of
nu and (PSOL/Aq‖). This is achieved using the same set of equations as for the
nu L/T 2u criteria. Show that this gives:

(PSOL/Aq‖)
n7/4

u L3/4
= C3 f

−7/8
T (1− f −7/2

T )−3/4 (4.110)

(PSOL/Aq‖) [W m−2], n [m−3], L [m], where

C3 ≡
(

7

2κ0

)3/4(eγ cs0

2

)7/4

. (4.111)

Show that this holds for PSOL entering at the top and that the factor 7/2 in equa-
tion (4.111) is changed to 7/4 if PSOL enters uniformly. Show that this gives the
criteria:

(a) for negligible T -gradient, specifically for Tu ≤ 1.5Tt

(PSOL/Aq‖)
n7/4

u L3/4
� 10−27 (4.112)

for (PSOL/Aq‖) [W m−2], n [m−3], L [m].
(b) for significant T -gradient, specifically for Tu ≥ 3Tt :

(PSOL/Aq‖)
n7/4

u L3/4
� 4× 10−28. (4.113)

Note again that (PSOL/Aq‖) must not be too large if one wants to achieve a
significant temperature drop.

When there is in fact no significant T -gradient, then equations (4.92) and (4.93)
give the relation between the constant T and the independent parameters
(PSOL/Aq‖) and nu :

T =
(

2(PSOL/Aq‖)
nueγ cs0

)2/3

. (4.114)

Example : D+ ions, Te = Ti , cs0 = 9788 m s−1, γ = 7:

T = 3.2× 109
(

(PSOL/Aq‖)
nu

)2/3

(4.115)

T [eV], (PSOL/Aq‖) [W m−2], n [m−3]. One notes from equation (4.115), that

T ∝ n−2/3
u , indicating an ‘energy dilution’ effect.

These considerations lead naturally into divertor SOL analysis, chapter 5,
where these matters are considered further.
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4.11 Parallel Temperature Gradients in the Context of
Electron–Ion Equipartition

4.11.1 An Initial Estimate of the Role of Equipartition in the SOL

Because of their very different masses, ions and electrons have a tendency to
thermally de-couple, Te �= Ti . For sufficiently strong collisionality, however,
Ti → Te. In general the two temperatures relax toward each other according to:

dTi

dt
= Te − Ti

τeq
(4.116)

where τeq is the temperature equilibration time [4.36]:

τeq = 3π(2π)1/2ε2
0mi T

3/2
e

ne Z2e4m1/2
e ln &

(4.117)

≈ 4.2× 1013T 3/2
e /ne ≡ Ceq T 3/2

e /ne (4.118)

for τ [s], ne [m−3], T [eV] and D+ ions and we have defined Ceq ≡ 4.2× 1013.
One may note that, as with all charge-particle collision times, τeq decreases for
low temperatures, i.e. as collisionality increases. Thus, even though τSOL is short,
of order ms, τeq may be short enough in the cool edge to bring about Te ∼ Ti .

We now attempt a first estimate for a criterion which will indicate when
collisionality would be strong enough to force Ti → Te. We will make what
seems like an innocent assumption, namely that the SOL is isothermal along
its length. We will show in the next section that this is, in fact, an unlikely
combination, i.e. an isothermal SOL with Te ∼ Ti . We proceed, however, with
this assumption for now and, by combining equation (4.117) with equation (4.28)
and equation (4.92), estimate the SOL energy confinement time τSOL

E as:

τSOL
E � 3nLCFSkTLCFSL

γ kTLCFSnLCFScs,LCFS

� 3L/γ cs . (4.119)

We anticipate Ti → Te will tend to occur when τeq � τSOL
E which gives

nLCFSL

T 2
LCFS

� 1018 i.e. ν∗SOL � 100 (4.120)

n [m−3], L [m], T [eV], D+ ions, γ = 7.
We note that the criteria of equation (4.120) regarding equipartition involves

the same collisionality parameter as appeared in the criteria of equations (4.102)
and (4.103) regarding the existence of significant parallel T -gradients. It is thus
appropriate to define four SOL types, A–D:
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No T -gradient Significant T -gradient

Te = Ti Type A Type B
Te �= Ti Type C Type D

4.11.2 Case A. Te = Ti . No T -Gradient

Equation (4.102) states that there will be negligible gradient when ν∗SOL � 10.
Equation (4.120), however, requires that ν∗SOL � 100 in order for Te ≈ Ti . We
conclude therefore that case A is unlikely to exist. This is the reason why the
simple SOL was defined to have negligible gradients and to be characterized by
thermally de-coupled electrons and ions. From the viewpoint of mere mathemat-
ical convenience, the assumption that Te = Ti would have been still simpler, but
it is not realistic. As discussed in section 4.4, case A is not impossible, however.

4.11.3 Case B. Te = Ti . Significant T -Gradients Exist (Very Strong Colli-
sionality)

Equation (4.103) states that significant T -gradients exist when ν∗SOL � 15. We
now wish to compare this with the criterion that Te ≈ Ti . We cannot use equa-
tion (4.120), however, since this assumed no T -variation along the SOL. We need,
therefore, to derive the equivalent expression to equation (4.120) for the case
where T varies. This is a more complicated situation, and we have to consider
the upstream and target ends separately.

Consider the upstream end where we have seen that when equilibration col-
lisions were ignored, there is a tendency for Tiu > Teu , section 4.4. We anticipate
that this tendency will be overcome and that Teu → Tiu when qup

eq � q‖,i,u where
qup

eq [W m−2] is the integrated equipartition power transfer occurring above the
X-point. We will generally assume that the X-point-to-target distance is small
compared with the total connection length of the SOL. Assuming that the ion
power is conducted rather than convected, then:

q‖,i,u � 4

7
κ0i T

7/2
iu /L . (4.121)

Also:

qup
eq �

∫ L

0

3

2

ne(kTiu − kTeu)ds‖
τeq

. (4.122)

We take Tiu ≤ 1.3Teu as indicative of approximate temperature equality and using
equations (4.118), (4.121), (4.122) obtain the criterion for Teu � Tiu :

nu L

T 5/4
iu T 3/4

eu

� nu L

T 2
u
�∼ 1.5× 1017 (4.123)
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Figure 4.20. Code results for Tiu/Teu against the (upstream) collisionality parameter. •
from the EDGE2D code for CMOD cases [4.37]. × from onion-skin modelling [4.44] for
JET cases. The solid line is only to aid the eye. For ν∗SOL � 50, Tiu ≈ Teu .

n [m−3], L [m], T [eV] i.e. ν∗SOL �∼ 15.
There are very few measurements of Tiu ; however 2D fluid edge codes

calculate Teu and Tiu , allowing for equipartition. In figure 4.20 are shown exam-

ples of Tiu/Teu against nu L/T 
2
u and against ν∗SOL calculated using the EDGE2D

code [4.37], for an Alcator C-MOD geometry and assuming various values of nu

from 3.4×1019 to 9.6×1019 m−3. Also shown are results from the application of
an ‘onion-skin method’, OSM, code, chapter 12 [4.44], applied to JET geometry
and covering a range of plasma conditions. As can be seen, the transition to
Teu ≈ Tiu does not actually occur until ν∗SOL increases above ∼ 50. These
code results confirm that Teu and Tiu do differ by less than a factor of 2 for
ν∗SOL ≥ 15; however, for most people ‘temperature equality’ tends to mean a quite
small difference, ≤ 25%, perhaps. We will therefore adjust this first estimate,
equation (4.123), to take these numerical results into account, so that the criterion
for Teu � Tiu is altered to:

nu L

T 5/4
iu T 3/4

eu

� nu L

T 2u
� 5× 1017 (4.124)

i.e.
ν∗SOL � 50.

The JET results are re-plotted in figure 4.21 with the correlation parameter now
being [(PSOL,i/PSOL,e)/ν

∗
SOL]2/7. Although the theoretical basis for such a
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Figure 4.21. Values of Tiu/Teu computed using an onion-skin method, OSM, code,
applied to JET geometry for a range of conditions [4.44]. Evidently the upstream
temperature ratio correlates well with [(PSOL,i /PSOL,e)/ν

∗
SOL]2/7, although the reason

for this is not entirely clear. The solid line is simply to guide the eye.

correlation is not entirely clear, it results in a reduction of the scatter and thus
may indicate a useful predictive relation.

The criterion for significant T -gradients, equation (4.103), is similar to equa-
tion (4.124), but is less demanding, therefore case B corresponds to:

nu L

T 2
u
≥ 5× 1017 i.e. ν∗SOL � 50. (4.125)

Problem 4.15. In terms of (PSOL/Aq‖) and nu , show that criterion (4.125) be-
comes:

(PSOL/Aq‖)
n7/4

u L3/4
� 1.2× 10−28 (4.126)

(PSOL/Aq‖) [W m−2], n [m−3], L [m]. Note again that this strongly collisional
regime requires that PSOL be not too high. Show that for the example
(PSOL/Aq‖) = 108 W m−2, nu = 5× 1019 m−3, L = 80 m satisfies (4.126).

4.11.4 Case C. Te �= Ti . No Significant T -Gradients. Weak Collisionality
(The Simple SOL)

Clearly case C occurs for the opposite conditions to case B, i.e. for very weak
collisionality. It thus corresponds to the simple SOL.
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In section 4.9 we derived the ν∗SOL criterion for the existence of T -gradients,
however we assumed Te = Ti . The alterations to equations (4.100), (4.101) to
allow for the separate treatment of de-coupled electrons and ions are straightfor-
ward and give for Tu/Tt ≤ 1.5:

nu L/T 2eu � 1.5× 1017 i.e. ν∗SOL,e � 15 (4.127)

nu L/T 2iu  � 1016 i.e. ν∗SOL,i � 1 (4.128)

n [m−3], L [m], T [eV], D+ ions.
All the analysis to date has implicitly assumed short mean free paths com-

pared with any relevant scale length, such as parallel T -gradient lengths, or L ,
etc. When this is not true then, strictly, kinetic analysis is required, in which
the details of the particle velocity distributions are calculated. At a minimum,
kinetic corrections should be introduced to the foregoing collisional theory, chap-
ter 26. We appropriate here one specific finding of kinetic analysis concerning
heat conductivity: it is the high velocity particles which contribute most to the heat
conductivity. The typical hot particle dominating conduction has random velocity
vhot ∼ 3–5vth [4.38], where th indicates the thermal, or typical particles in the
distribution, and so it has a much longer mean free path, λhot ∼ 20λth , chapter 26.
Therefore for the electrons the transition to conduction-limited behaviour and the
formation of Te-gradients happens to coincide with L/λhot

ee � 1 and criterion
equation (4.127) may be a valid criterion. For ions, however, the transition given
by equation (4.128) would imply that L/λhot

i i � 1, and so this criterion is probably
too severe; it may be that when kinetic effects are taken into account for ions, the
transition occurs for nL/T 2i higher than 1016, e.g. at lower Tiu .

Problem 4.16. Show that one can put criteria (4.127), (4.128) into forms involv-
ing (PSOL/Aq‖e), (PSOL/Aq‖i ) and n:

(PSOL,e/Aq‖)
n7/4

u L3/4
� 10−27 (4.129)

(PSOL,i/Aq‖)
n7/4

u L3/4
� 3× 10−27. (4.130)

Assume, for simplicity, PSOL,e = PSOL,i and also assume Ti � Te in calculating
cs and the power flows along isothermal SOLs to the target. Show that for an
ITER-size example: (PSOL/Aq‖) = 109 W m−2, L = 100 m, nu = 4×1019 m−3,
makes this ratio ∼ 1.6 × 10−27, and so this case would apply. There would be
a major practical problem at the targets where the very high temperature would
result in strong sputtering. One solution would be to raise the density.

From the last section it is clear that if the criterion for ∇‖T ≈ 0 is satisfied, equa-
tions (4.127), (4.128), then the criterion for thermal de-coupling, Te �= Ti , is likely
to be satisfied, equation (4.125). We return to the latter issue in section 4.11.6.
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4.11.5 Case D. Te �= Ti . Significant Temperature Gradients Exist. Interme-
diate Collisionality

Adapting equation (4.100) for separate electrons and ions we obtain the criteria
for significant Te- and Ti -gradients (specifically for Teu/Tet , Tiu/Tit ≥ 3):

nu L

T 2
eu

� 2.5× 1017 i.e. ν∗SOL,e � 25 (4.131)

nu L

T 2
iu

� 1.8× 1016 i.e. ν∗SOL,i � 1.8. (4.132)

The actual threshold for this case is given, of course, by equations (4.127),
(4.128) which correspond to Teu/Tet , Tiu/Tit ≥ 1.5.

Tiu �= Teu requires the opposite of equation (4.124), namely:

nu L

T 5/4
iu T 3/4

eu

≤ 5× 1017. (4.133)

Problem 4.17. Show that the equivalent criteria in terms of power are:

(PSOL,e/Aq‖)
n7/4

u L3/4
� 0.4× 10−27 (4.134)

(PSOL,i/Aq‖)
n7/4

u L3/4
� 10−27 (4.135)

(PSOL,e/Aq‖)5/8(PSOL,i/Aq‖)3/8

n7/4
u L3/4

� 10−29. (4.136)

There thus exists this intermediate level of collisionality which allows Tiu �= Teu

to exist simultaneously with parallel T -gradients: roughly speaking (i.e. ignoring
the distinction between Te and Ti ) the window for this regime of intermediate
collisionality is

15 � ν∗SOL � 50 (4.137)

where we have pushed the lower limit down to 15 to avoid having a gap.

4.11.6 Equipartition near the Target

When T -gradients are significant then Tt is low, nt is high and so collisionality
near the target is generally quite high. One can construct criteria for identifying
when Tet � Tit , similar to the foregoing ones for Teu, Tiu . However, still stronger
assumptions have to be made to keep the analysis simple. At low Tt , radiative
cooling and other volumetric power loss or gain processes become important and
the relevant comparison is no longer merely between qeq and q‖.
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Figure 4.22. Values of Tit/Tet calculated for a variety of cases using an onion-skin method
code [4.44]. The power input to the electrons and ions was varied. Equipartition and
volumetric (hydrogen recycle) losses were included. The trends are broadly as might be
expected, but no attempt has been made here to model this behaviour with an analytic
expression.

We turn therefore to computer codes for an indication of trends. Figure 4.22
presents results from an onion-skin model code [4.44], chapter 12, for the ratio of
Tit/Tet for the same cases as figure 4.21. Equipartition and volumetric power
losses associated with recycling were included in the code. Various ratios of
input power into the ion and electron ‘channels’ were assumed as input. Again
a correlation parameter based on the ratio PSOL,i/PSOL,e and on ν∗SOL—defined
now either for upstream, figure 4.22(b), or target, figure 4.22(a), conditions—has
been used. Not surprisingly the correlation with target ν∗SOL is clearer than for the
upstream ν∗SOL, although neither correlation for Tit/Tet is as clear as for Tiu/Teu ,
figure 4.21. Target conditions are evidently more ‘volatile’ than upstream ones, a
matter we return to in chapter 5.

Although it is not safe to make strong generalizations based on such informa-
tion, it may be reasonable to conclude that for weak collisionality, ν∗SOL,e � 10,
Tit and Tet can be rather de-coupled; for intermediate collisionality Tit may tend
to lie above Tet at the weaker collisionality end, going over to Tet ≈ Tit for strong
collisionality, ν∗SOL,e � 50.

4.11.7 Caveats Concerning Criteria for Equipartition and Existence of T -
Gradients

The criteria developed in the last two sections are merely a first approximation
and for some cases may not even provide a very good first estimate:

(a) The entire analysis is based purely on parallel heat conduction, ignoring heat
convection. This can be particularly serious for ions since their conductivity
is poor. Inclusion of convection as a correction factor reduces the transition
values of ν∗SOL calculated in the last two sections, and, of course, when
parallel convection dominates the parallel heat transport, then as pointed out

Copyright © 2000 IOP Publishing Ltd.



Parallel Temperature Gradients 203

T
eu

/T
et

T
eu

/T
et

nuL/Te,u
2 (1017)ntL/Te,t

2 (1020)

equ. (4.96)

equ. (4.100)
0

2

4

6

8

10

12

14

16

0

2

4

6

8

10

12

14

16

0 0.5 0 3211.0 1.5 2.0
(a) (b)

Figure 4.23. Teu/Tet as calculated using an OSM code [4.44], including various
complicating effects such as convection, equipartition and volumetric loss processes, for
a variety of conditions, JET geometry. Figure 4.23(a) shows the correlation with target
ν∗SOL, and as can be seen the effect of the complicating processes is not major; compare
with Figure 4.18. By contrast, these same complicating processes have a major effect when
the correlation with upstream ν∗SOL is employed; compare figures 4.23(b) and 4.19.

in section 4.10.1, this results in nearly isothermal conditions regardless of
whether the foregoing conduction-based criteria are satisfied or not.

(b) The targets have been assumed to be the only heat sinks. Volumetric losses
and transport loss into the private plasma can be important. Such processes
can cause reduction of Tt , even when no significant T -gradient related to
finite heat conduction exists. In section 5.4, equations (5.33), (5.34), it is
shown that volumetric losses of power and momentum can substantially alter
the criteria for the existence of parallel temperature gradients.

(c) Other volumetric sources and sinks have also been neglected, such as recom-
bination and ion–neutral friction. Since these processes are important at low
temperature, the criteria developed become inapplicable when Tt ≤ 5 eV.

As an indication of the effects of including such complicating effects as
convection and volumetric loss processes, the same OSM code results of fig-
ure 4.21 [4.44], are plotted in figure 4.23: figure 4.23(a) is to be compared with
figure 4.18, figure 4.23(b) with figure 4.19. As can be seen, based on target
ν∗SOL, the Tu/Tt ratio is roughly the same when complicating effects are in-
cluded, figure 4.23(a), as for pure conduction, figure 4.18. By contrast, the
same complicating factors have a much more disturbing effect when estimates
are based on upstream ν∗SOL, compare figure 4.23(b) and figure 4.19. When using
upstream ν∗SOL one is, in effect, attempting to predict the target conditions, and
these results again make it evident that upstream conditions are more ‘robust’
than the ‘volatile’ conditions near the target, an important effect we will return to
in chapter 5. It is also clear that a simple picture based on parallel electron heat
conduction alone is not always a reliable guide.

The criteria derived in this chapter are therefore only a rough guide.
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4.11.8 Overview of the Criteria for Equipartition and T -Gradients. SOL
Collisionality

Based on upstream ν∗SOL:

(1) For ν∗SOL,e � 10 one tends to have the simple SOL with:

(a) ∇‖Te,i ≈ 0.
(b) Ti > Te, or even Ti � Te.

(2) For 10 � ν∗SOL,e � 50 one has a regime of intermediate collisionality where:

(a) ∇‖Te is significant.
(b) ∇‖Ti may or may not be significant.
(c) Tiu > Teu .
(d) Tit  > Tet for the weaker collisionality end of the regime and Tit ≈ Tet

for the stronger collisionality end.

(3) For ν∗SOL,e � 50 one enters the strong collisionality regime where:

(a) Te(s‖) ≈ Ti (s‖).
(b) ∇‖T is significant.

This picture is summarized in figure 4.24.
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nuL [1020 m–2]

Strong collisionality

Intermediate collisionality
Weak collisionality

T
eu

 [e
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Case C
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∇||Te,i ≈ 0
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Tiu > Teu
|∇||Te,i|> 0 or ≈ 0
Tit > Tet or ≈ Tet
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Ti ≈ Te

|∇||T| >>0

nu L
= 1.5 x 1017, ν∗

SOL ≈ 10
Teu
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nu L
= 5 x 1017, ν∗
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2

Figure 4.24. The different collisionality regimes, section 4.11, regarding (a) the tendency
to temperature equality Te ≈ Ti and (b) the presence of parallel T -gradients.

Additional Problems

4.18. As a check on our picture of SOL geometry, we can calculate the volume of
the SOL in two different ways. The first way is to multiply the surface area
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of the plasma, Ap = 2πr2π R, for a circular ‘cylindrical tokamak’ of length
R, by the SOL thickness λ, giving VSOL = 2πr2π Rλ. Next consider the
specific case of a thin toroidal belt limiter at the outside midplane, figure 4.3,
and the ‘unfolded’ SOL:

B B

D

C

Figure 4.25. The shaded regions represent the belt limiter, i.e. it appears twice in this
representation.

(a) Each point marked appears at four different locations in this picture.
Mark the other three C points and D points.

(b) Mark the length L , the pitch angle θpitch, and the width w (see figure 4.3)
on figure 4.25.

(c) Calculate VSOL a second way based on w and L , confirming the first
calculation.

(d) Argue that figure 4.25 could be altered to a rectangular shape of sides L
and w without changing the plasma behaviour. Are the original, and the
altered configurations equivalent so far as the limiter is concerned, i.e.
are the particle and heat fluxes it receives per unit area of solid surface
affected?

4.19. (a) For the simple SOL and assuming Te = Ti , find the relation between
the ratio of radial decay lengths of pressure and of parallel heat flux
density and the ratio of radial decay lengths of density and temperature.

(b) What is the relation if Te = 1
2 Ti at all points?

4.20. Calculating the dependence of λn and λT on D⊥ and χ⊥ for the case of
Te(r) = Ti (r) across the SOL. (Although e–i thermal collisional coupling
(equipartition) is associated with the existence of the complex SOL, even for
a weakly collisional SOL it can happen by coincidence that Te ∼ Ti . Little
is known experimentally or theoretically about the split in power, between
ions and electrons, entering the SOL—and, by coincidence, it could happen
that the ratio Pin,i/Pin,e ≈ γi/γe which would then result in Te ≈ Ti
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when ∇‖T = 0.) Repeat the analysis of section 4.4, now including cs =
(2kT (r)/mi )

1
2 and neglecting, as before, qcond,i

⊥ .

(a) show that one obtains:

λ2
n =

2L D⊥
cs,LCFS

(
1+ λn

2λT

)
(

5+ λn

λT

χ⊥
D⊥

)(
1+ 3λn

2λT

)
= γ

(
1+ λn

2λT

)
.

(b) Assuming TLCFS = 40 eV, L = 40 m, γ = 8.5 and χ⊥/D⊥ = 2, D+
plasma, find the expected ratio λn/λT .

(c) Suppose that instead of using the above expression for λn , one had used
the simple relation between D⊥ and λn , equation (4.7). How large
would the error be in the value of D⊥ extracted from a measured value
of λn?

(d) Continuing on from (b), and further, supposing that the measured value
of λn is 1 cm. What is the extracted value of D⊥? Assuming that, in
fact, χ⊥/D⊥ = 2, what should the measured value of λT be?

(e) If the measured value of λT is found, in fact, not to be this expected
value (based on the assumed ratio χ⊥/D⊥ = 2) then the implication is
that this is not the correct ratio. Find D⊥ and χ⊥ if the measured decay
lengths are λn = 1 cm, λT = 3 cm. (In reality, of course, one does not
know the values of D⊥ and χ⊥ in advance and so one has to work from
the measured values of λn and λT in order to extract the values of D⊥
and χ⊥.)

4.21. Relating plasma properties of the main plasma and the (simple) SOL plasma
for the ohmic, start-up phase of a large, circular tokamak with a toroidal
belt limiter at the outside midplane. Assume: D+, R = 6 m, a = 3 m,
Ip = 15 MA, Bφ = 5 T.

(a) Although L-mode and ohmic confinement times differ, take
equation (4.30) to give an estimate for here. Assume nmain =
5 × 1019 m−3. In order to calculate the input power P assume a loop
voltage of 1 volt, i.e. the transformer induces an emf of 1 volt per
turn in the secondary, i.e. the tokamak plasma. Find P and show that
τE = 2.7 s.

(b) Find the volume of the plasma and show that T main = 1580 eV. Calcu-
late the loop voltage from the plasma resistivity, assuming the radius of
the current channel is a; comment on what you find.

(c) Assume that Prad,main/P = 0.3 and that A�‖/Aq‖ = 1. Show that
TLCFS ≈ 200 eV

(d) Calculate the magnetic pitch angle and safety factor q at the limiter
radius. Approximate the tokamak as a straight cylinder of length 2π R.
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Show that Bθ /B = 0.2 ≈ θpitch, q(a) = 2.5. Find the connection
length.

(e) Assume λn = λT = 3 cm. Find λ� and show that A�‖ = 0.4 m2.
Assuming that at the LCFS Te = Ti show that nLCFS ≈ 1.5×1018 m−3.

(f) Show that the parallel heat flux density at the leading edge of the limiter
is ≈ 25 MW m−2. What is the deposited heat flux density actually
experienced by the limiter, assuming it is flat sided, see figure 1.18(A)?
How would you suggest the limiter be designed to make the deposited
heat flux density lower?

(g) Would you anticipate a reasonably long operating life for such a ‘start-
up limiter’ made, for example, of graphite? Estimate the plasma op-
erational time that would cause the loss of 1 cm of C thickness at the
leading edge of the limiter, assuming that no re-deposition occurs at that
location.

4.22. Develop equations (4.85) to (4.91). How small does the ratio Tt/Tu have to
be in order for the approximations of equations (4.87) and (4.91) to give the
value of upstream temperature Tu correct to within 3%?

4.23. Develop the equivalent to equation (4.89) assuming that the power enters the
SOL uniformly over 0 ≤ s‖ ≤ Lx , where Lx is the distance from upstream
to the X-point, with Lx/L = 0.8. Assume no power loss or gain in Lx ≤
s‖ ≤ L . The target is at s‖ = L .

4.24. Repeat problem 4.23, but now assume that 15% of the total power which
entered the SOL above the X-point, is lost uniformly by cross-field transport
to the private plasma over Lx ≤ s‖ ≤ L .

4.25. For the sample conditions used in figure 4.17, plot the equivalent curves
obtained in problems 4.23, 4.24. Add your numbers to the table of prob-
lem 4.12. Compare and comment.

4.26. For the four examples shown in figure 4.17 show that the various criteria for
the existence, or non-existence, of significant parallel T -gradients are consis-
tent with the results of this figure, i.e. the criteria based on: (a) target plasma
conditions, (b) upstream plasma conditions, (c) ν∗SOL, (d) (PSOL/Aq‖). How
good is equation (4.114) at estimating the (average) temperature in the SOL?

4.27. Derive equations (4.123) and (4.126).

4.28. Derive equations (4.127) and (4.128).

4.29. (a) Show that the values of the constants C1, equation (4.97), C2, equa-
tion (4.101), C3, equation (4.111), for the conditions assumed in sec-
tion 4.10.2 are as given in the table below.

(b) In order to evaluate the temperature gradient factors for the case where
electrons and ions are thermally de-coupled, fTe , fTi , these constants
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have to be re-computed appropriately. Show that for D+ the values
for the two different assumptions about the spatial distribution of power
entering the SOL (uniformly or all in at the top) are as given in the
following table:

C1 C2 C3

1. Te & Ti coupled. 5.21× 1016 1.04× 1017 9.4× 10−28

PSOL in at top.
2. Te & Ti coupled. 1.04× 1017 2.1× 1017 5.6× 10−28

PSOL enters
uniformly.

3. Te & Ti de-coupled. C1e = 7.3× 1016 C2e = 1.5× 1017 C3e = 5.2× 10−28

PSOL in at top. C1i = 5.5× 1015 C2i = 1.1× 1016 C3i = 1.5× 10−27

4. Te & Ti de-coupled. C1e = 1.5× 1017 C2e = 2.9× 1017 C3e = 3.1× 10−28

PSOL enters C1i = 1.09× 1016 C2i = 2.2× 1016 C3i = 8.7× 10−28

uniformly

4.30. The effect on the radial density profile given by equation (4.66) of a wall
located radially outside the LCFS: assume that a limiter defines a LCFS
‘radius’ a in slab geometry and that radially further out at radius aw, a
wall exists and that the hard boundary condition holds there, n(aw) = 0.
Ionization inside the LCFS. Prove that n(0) is then given by

n(0) = �neutral⊥
D⊥

[λi z + λSOL
n tanh[(aw − a)/λSOL

n ]]

and thus show that this gives equation (4.66) when (aw − a)� λSOL
n .

You may find it useful to proceed as follows:

(a) For the region a < r < aw argue that n(r) must satisfy:

d

dr

(
−D⊥

dn

dr

)
= − n

τ‖

where τ‖ = L/cs . See section 1.8.2.4.
(b) Prove that the general solution to this differential equation is:

n(r) = A exp[−(r − a)/λSOL
n ] + B exp[(r − a)/λSOL

n ]
where A, B are unknown constants to be evaluated from boundary con-
ditions and where λSOL

n ≡ [L D⊥/cs]1/2.
(c) Argue that the boundary conditions include:

�neutral⊥ = −D⊥
dn

dr

∣∣∣∣
r=a
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and thus obtain the above result.

4.31. Objective: to show that the radial density profile, n(r), equation (4.50) that
was calculated for planar slab geometry can be a good approximation for
cylindrical geometry.

(a) For cylindrical geometry show that the radial density profile satisfies:

dn

dr
= − 1

r D⊥

∫ r

0
r ′S′(r ′)dr ′

where S is the ionization source rate [ions m−3 s−1].
(b) Assume that S(r) is a delta-function source located at r = a−λi z . Take

the neutral particle influx rate to be 2πa�neutral⊥ [ions per m length of
cylinder per s]. Show that the radial density profile is given by:

n(r) =
{

n(a − λi z) 0 < r < a − λi z

n(a − λi z)− a�neutral⊥
D⊥ ln(r/a − λi z) a − λi z  < r < a.

One notes that, as for slab geometry, n(r) is flat inside the source radius.
(c) For λi z  small compared with a—which is common for large plasmas—

and assuming the ‘hard’ boundary condition, n(a) = 0, show that n(r)

becomes the same as for slab geometry, equation (4.50).

4.32. (a) Derive equation (4.67). You will need to make the assumption that a
‘hard’ boundary condition still applies, but now at the location of a wall
at r = aw > a, n(aw) = 0. In order to obtain equation (4.67) you will
need to assume that aw � a.

(b) Start with the general case, i.e. do not assume that (aw − a) � λSOL
n ,

and by using the hints in problem 4.30 show that:

n(0) = nLCFS = �neutral⊥ λSOL
n

D⊥
sinh[(aw − a + λi z)/λ

SOL
n ]

cosh[(aw − a)/λSOL
n ] .

(c) Finally, assume (aw − a)� λSOL
n .

4.33. The density profile for a spatially distributed source of ionization [4.17].
Assume slab geometry and that neutrals enter from the edge with constant
inward velocity vn . Take the wall to be far outside the LCFS, (aw − a) �
λSOL

n . Assume that the neutral influx is attenuated by the ionization process
so that the neutral density and flux density vary as:

�neutral⊥ ∝ nn ∝ e−y/�i z

where y is measured inward starting at radial location r = a + �, with �

being a specified parameter of the problem. �i z is the distance over which
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the ionization occurs, a specified parameter. We want to allow for � > 0 or
� < 0, i.e., for the ionization to start at a location, either inboard or outboard
of the LCFS, and to extend inward. Show that

n(0) = �i z�
neutral⊥

D⊥
e−�/λSOL

n

[
e�/λSOL

n (1−λSOL
n /�i z) − (λSOL

n /�i z)
2

1− λSOL
n /�i z

]
.

Thus, for �i z → 0 show that the result goes to that of equation (4.68).

4.34. Derive equations (4.70), (4.71).

4.35. Along the same lines as the example following equation (4.74), find ne

for the case of a = 0.5 m, λSOL
n = 2 cm, λSOL

i z = 2 cm, λmain
i z = 1 cm,

D⊥ = 0.3 m−2 s−1, �main i z = 1021 m−2 s−1 and �main i z/�SOL i z = 0.2.
Also find τSOL i z

p , τmain i z
p and the contribution to the total plasma content

due to the two ionization locations.
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Chapter 5

The Divertor SOL

5.1 Why use Divertors Rather than Limiters?

A number of issues are involved in the decision of whether to use a divertor or
limiter. This is a large question. This introduction to the Divertor SOL only
touches on the main issues involved. We will find that two of the most important
benefits of divertors are improved energy confinement (the H-mode, H for high
energy confinement, chapter 7) and better He pumping.

The original motivation for introducing divertors into magnetic confinement
devices was to reduce the impurity content of the main plasma; see review [5.1].
The first few items on the list below therefore pertain to impurities. One can
model impurity behaviour on the basis of three steps, chapter [6]: (i) production,
(ii) transport within the edge, (iii) transport within the main plasma. Production
of impurities is largely due to sputtering—physical and chemical, section 3.3—by
ion and atom impact on limiters, divertor targets and walls. To a first approxima-
tion it is appropriate to treat impurity ion transport within the main plasma as 1D,
radial. By some point not very far into the main plasma, any poloidal/toroidal
variations in impurity density caused by the localization of edge impurity pro-
duction are ‘washed out’ by the rapidity of parallel-to-B transport. Indeed, when
the impurity neutrals are all ionized well outside the separatrix, it may be that
the impurity density will be approximately constant all along the separatrix, at
least from X-point to X-point. In that case ‘edge transport’ would refer to the
impurity motion—both as neutrals and ions—from the sites of production, to the
separatrix, so that ‘edge transport’ and ‘SOL transport’ would be synonymous. In
the case of limiters one would include the location of the plasma lying inside the
LCFS to a depth of the impurity ionization, λz

i z , in the category of ‘edge transport’,
figure 5.1.

In the following we consider the differences between limiters and divertors
with regard to impurity: (i) production, (ii) edge transport.

212
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LCFS

λiz
z

Neutrals

Figure 5.1. The region designated as involving ‘edge transport’ extends to a distance λi z ,
the ionization depth, inside the LCFS.

5.1.1 Production of Impurities by Ion Impact

The location of plasma contact with solid surfaces is usually the strongest source
of impurity production, due to physical and chemical sputtering by ion impact,
section 3.3. Sputtering yields are minimized when the plasma temperature at
the sheath is minimized. Limiter tokamaks almost always operate in the sheath-
limited regime, section 1.9, with little temperature variation existing along the
LCFS. Therefore rather high plasma temperatures can exist at the sheath, at the
strike point, i.e. where the LCFS strikes the limiter, up to ∼ 100 eV, figure 4.5.
Divertor tokamaks can be operated in the conduction-limited regime, section 1.9;
while the ‘upstream’ temperature along the LCFS or separatrix may be high,
� 100 eV, at the sheath temperatures of only a few eV may exist, thus minimizing
sputtering. In principle, it might be possible to arrange for the upstream temper-
ature to be very low—using either a limiter or divertor tokamak; this, however,
requires low power into the SOL and/or very high SOL density, which is often
not consistent with desired conditions in the main plasma. It seems likely that
the hottest possible periphery of the confined plasma, combined with the coldest
possible plasma in contact with the solid surfaces, is an ideal to be aimed for. This
is more readily achieved using divertor configurations than using limiters.

The divertor targets can be located at an arbitrarily large distance (along B)
from the last point where the SOL separatrix flux tube had contact with the hot
confined plasma—i.e. at the X-point—by arranging for the divertor to be as ‘deep’
as wanted. The largest parallel T -drop occurs between the X-point and the targets,
which is the last point along the SOL where heat can enter the flux tube.
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5.1.2 Impurity Production by Neutral Impact on Walls

Charge-exchange collisions and Franck–Condon processes result in bombard-
ment of targets and walls by neutrals over a wide range of energies. The neutral
flux is most intense at very low energy, a few eV, but with some neutrals having
energy equal to the hottest ions in the core plasma. Neutral flux densities are
largest at/on the limiters and divertor targets—i.e. where the recycling occurs—
but finite fluxes exist over the entire inner walls of the vessel to some degree,
figure 5.2. It is thus likely that the temperature of the ions involved in the average
cx collision event is lower for the divertor case than for limiters—so that total
sputtering may also be less. That is not guaranteed however, since the magnitude
of the recycling—perhaps surprisingly—increases as the plasma temperature in
the divertor is reduced, section 5.2, and all associated fluxes, including cx neutral
fluxes are also increased.

Ho H+ H+

Ho

Ho

Figure 5.2. Due to recycling at the divertor targets, neutral hydrogenic bombardment of
the walls near the target, and also the targets themselves, can be intense. Neutral fluxes, at
lower intensities, also strike the distant walls.

In any event, this region of most intense cx flux may not be the critical region
so far as contamination is concerned, as discussed next.

5.1.3 Transport of Impurities to the Main Plasma

5.1.3.1 Impurities Produced by Ion Impact

The limiter is in intimate contact with the main plasma and its leading edge—
which is the site of the most intense ion bombardment—actually defines the LCFS
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and the edge of the main plasma, figure 5.1. It is therefore not possible to do a
great deal to prevent the transport of impurities into the main plasma. Of course,
the actual depth at which the impurity neutrals are ionized inboard of the LCFS
has a major effect on the impurity content of the main plasma, i.e. the impurity
confinement time τz ; see sections 4.6, 6.4, regarding the Engelhardt model, which
may be applied to impurities as well as hydrogen.

The shorter the ionization depth, λz
i z , the smaller is τz ; see equation (4.53).

Thus the higher ne,LCFS, Te,LCFS are, the lower will be τz . Unfortunately, such an
intense plasma at the LCFS increases impurity production, and so the net effect
can actually be an increase in impurity content of the main plasma when ne,LCFS
and Te,LCFS are increased.

The divertor targets may be located at arbitrarily large distances from the
main plasma, reducing or entirely eliminating the penetration to the main plasma
of impurity neutrals from the targets. One must still consider transport as ions,
along the SOL, then cross-field across the separatrix, section 6.5; however, it is
clear that, in principle, the divertor configuration provides opportunities which
are not available to limiters for reducing impurity transport to the main plasma
of ion-sputtered particles. In practice, this ideal is sometimes compromised and
direct plasma (ion) contact with the parts of the main vessel walls—i.e. outside the
divertor itself—may be an important impurity source. That is, the wall clearance
is not always large enough to ensure that 100% of the plasma–solid contact is at
the divertor targets.

5.1.3.2 Impurities Produced by Neutral Impact

The largest part of neutral impact sputtering occurs at/near the limiters or divertor
targets and the same considerations as in 5.1.3.1 hold. Unfortunately, the rela-
tively weak part of this source, located some distance from the ion-impact regions,
may be an important contributor to the impurity content of the main plasma [5.1].
As is discussed in section 6.5, the sink action exerted by the SOL on such remote
sources can be weak, making the τz of such contributions long, i.e. their efficiency
of contamination can be very high. It is not clear what differences exist between
limiter and divertor tokamaks in this regard.

5.1.4 Removal of the Helium Impurity, Pumping

While edge impurity production can, at least in principle, be avoided, helium is
unavoidably produced as a contaminant in DT fusion. It must be removed to avoid
unacceptable fuel dilution [5.2, 5.3]. Since this impurity is uniquely created in the
centre of the plasma, its initial confinement time is particularly long, τ

primary
He ≈

a2/D⊥, section 4.6. When it reaches the edge it must be pumped with good
efficiency since, unlike C, etc, it naturally recycles. Indeed, even with efficient
removal by active pumping, it is probable that the helium recycling source will
exceed the primary (DT fusion) source. Even though the recycle He confinement
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time τ
recycle
He < τ

primary
He , the contribution to the total He content of the plasma can

be dominated by the recycle source, see section 6.7.

One needs, therefore, to be able to pump away a reasonably large fraction of
the recycling He atoms, before they re-ionize. When using a limiter, the simplest
approach is to locate active pumps at the walls near the limiters. This was done on
TFTR (Tokamak Fusion Test Reactor) [5.4] (although for the purpose of pumping
hydrogen, not helium) using Zr–Al getter panels mounted on the walls; however,
the removal rate was poor due to the substantial re-ionization within the SOL
and main plasma, i.e. the neutral pressure at the walls is generally very low. The
pumped limiter, figure 5.3, involves a pump duct opening very near the leading
edge of the limiter, and thus the LCFS, and so a significant fraction of the total
ionic outflux from the plasma is neutralized on the target plate within the pumped-
limiter duct. This allows a reasonable fraction of the recycling neutrals to be
transported into the pump itself and removed, without re-ionizing. One drawback
of the pumped limiter is that of sharp leading edges in regions of intense heat
fluxes with attendant risks of melting.

plasma
flow

SOL

LCFS
B

pump

Figure 5.3. Schematic diagram of a pumped limiter.

The divertor configuration rather naturally allows the divertor plasma leg to
be ‘stuffed’ into the pump opening, figure 5.4, while at the same time employing
exclusively surfaces which are nearly tangential to B. This can result in strong
compression and the achievement of quite high neutral pressures in the pump en-
trance; on CMOD pressures � 100 mtorr (hydrogen) have been achieved—orders
of magnitude higher than pressures at the main vessel walls [5.5]—implying that
He could also be effectively pumped. This makes possible efficient and compact
pumping systems which can minimize the recycle He source.
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Figure 5.4. Schematic diagram of the lower divertor of DIII-D showing the location of the
baffle plate and cryocondensation pump. Also shown are two magnetic equilibria with the
outer strike point (OSP) close to the pumping plenum entrance (solid lines) and with the
OSP far away from the entrance (dashed lines) [5.64].

5.1.5 Removal of Hydrogen, Pumping

It is advantageous to employ various processes in tokamaks which have the con-
sequence of adding to the DT fuelling, even if that was not the primary purpose.
For example, neutral beam injection used to heat the plasma also fuels it. Pellet
fuelling of the centre of the main plasma is used to achieve peaked radial profiles
which give improved fusion performance. It may be useful to puff additional
hydrogen into the SOL, far from the targets, so as to set up SOL plasma flows
to ‘flush’ impurities out of the SOL. All such fuelling processes can change the
main plasma density n̄e, causing it to deviate from the value specified by other
considerations, for example, the Lawson criterion or the avoidance of density
limits. It is therefore desirable to be able to de-couple fuelling and density control.
This requires active pumps for hydrogen.

This problem thus amounts to essentially the same one as for helium and
the divertor again has an important advantage over the limiter. Although much of
the original motivation for introducing the divertor was for control of impurities
produced by sputtering, it may be that the superior pumping of the divertor config-
uration for hydrogen—and even more for helium—is a more important advantage.

5.1.6 Efficient Use of Magnetic Volume

The volume within the toroidal-field magnets is very expensive and ideally as
much of it as possible should be filled with hot, D–T-burning plasma. The limiter
configuration comes closer to this ideal than the divertor. Very ‘deep’ divertors,
i.e. with long X-point-to-target distances, are particularly inefficient by this mea-
sure.
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Figure 5.5. Poloidal cross-section of a wall-limiter geometry characterized by a large
plasma-wetted area.

5.1.7 Size of Plasma-Wetted Area

A limiter-controlled tokamak can involve plasma-wetted areas spanning a large
range. At one extreme, a single fistlike ‘probe limiter’, extending only a few cm
in the toroidal and poloidal directions, can be inserted to define the LCFS. The
plasma-wetted area, where the ions and electrons strike, would then only be a few
tens of cm2, assuming a λSOL of a few cm. Unless the total power is small, or
the pulse is short, the power flux density onto such a limiter would be so high as
to destroy it quickly. Multiple limiters can be inserted, however, increasing the
plasma-wetted area. A very large increase of area can be achieved by carefully
shaping, say, the inner wall of the vessel so that it has almost the same curvature
as the magnetic flux surfaces, figure 5.5. On TFTR and TORE-SUPRA this has
resulted in the achievement of very large plasma-wetted areas of ∼ 1–10 m2 [5.6,
5.7]. In principle, this approach could be pushed to the limit where the shape
of the entire vessel wall was made to conform almost precisely to that of the
magnetic flux surfaces—causing the entire interior wall to become plasma wetted,
∼ 100 m2 for a JET-size tokamak. Such an arrangement would be at the cost of
the loss of operational flexibility in terms of magnetic shape of the plasma. The
required precise positioning of the plasma would be difficult. The engineering of
the protective tiles so as to avoid exposed edges would be demanding, particularly
because λSOL would become very short. Nevertheless, the limiter approach does,
in principle, permit the achievement of very large plasma-wetted areas, and thus
a wide dispersal of the power deposition over the solid structure.

The poloidal divertor configuration can also include arrangements where the
target surface is made almost parallel to B, thus maximizing the plasma-wetted
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area. Nevertheless, it is evident that the area theoretically available cannot ap-
proach that available to wall limiters—unless the volume occupied by the divertor
approaches that occupied by the main plasma.

This problem of power dispersal in the divertor is a serious one for reactors,
see sections 5.6, 5.7.

5.1.8 Opportunity for Power Removal by Volumetric Loss Processes

As noted under 5.1.7, it is problematical to achieve removal of all the plasma
power by charged particle impact through target sheaths. The power densities tend
to be unacceptably high for reactor conditions. Power reaching the edge can also
be dissipated by volumetric processes, principally (a) radiation (hydrogenic and
impurity) and (b) charge-exchange neutral hydrogen fluxes. The great advantage
of these processes is that the power can be deposited over larger areas, rather than
being restricted to the small plasma-wetted (sheath) areas.

Some hydrogenic radiation always occurs as part of the recycling process.
For the sheath-limited regime, however, the recycle source is not as great as for
the conduction-limited regime, section 5.2, and this favours divertors. Impurity
radiation also occurs naturally, but is enhanced at low Te, section 3.5—at least
for low Z elements which tend to be favoured for edge structures: at the high
temperatures in the centre of the main plasma, low Z elements have the opposite
property—they radiate little (they are fully ionized and therefore do not line
radiate; also bremsstrahlung radiation is proportional to Z2, thus low). This also
favours divertors, which can achieve low Te near the targets.

One may also increase radiation by puffing impurities such as N or Ne,
etc into the vessel, chapters 22–24. In principle this is risky since the benefits
(power dispersal) may be offset by fuel dilution and cooling of the core. At first
glance the divertor might have the advantage here since it is conceivable that the
injected impurities could be largely confined to the divertor volume, section 6.5,
radiating much of the power away there, while leaving the main plasma relatively
uncontaminated. It is not clear that such efficient divertor retention of impurities
has been achieved to date and when adequate radiative cooling is achieved by
impurity injection, the contamination of the main plasma may be too high for
reactor operation [5.8]. It is also important that as much of the divertor volume
as possible be filled with radiating plasma, but the radiation region can become
localized, forming MARFEs (multifaceted asymmetric radiation from the edge)
chapter 22, thus making the utility of a ‘deep’ divertor questionable [5.9].

While the limiter configuration would appear to be at a disadvantage com-
pared with divertors in this respect, neon injection into the TEXTOR limiter
discharges gave about as good a performance as divertors in terms of high Prad
together with a low Zeff [5.10]. In this case the impurity radiating layer extends
well inside the LCFS, so a strong link to the central impurity level may be a
problem, although the TEXTOR experiments have achieved low central impurity
levels, chapter 23.
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Substantial charge-exchange cooling would not be acceptable if it occurred
in the main vessel:

(a) The resulting impurity production through cx sputtering is particularly effec-
tive at contaminating the main plasma, see 5.1.3.2 above.

(b) The achievement of H-mode energy confinement has been negatively corre-
lated with neutral hydrogen levels in the main vessel in some cases, [5.11,
5.12] (although not in others [5.9, 5.13]).

This favours the divertor where charge-exchange cooling can be restricted to the
divertor volume. For limiters it is not possible to avoid the presence of recycling
neutrals in the main vessel.

5.1.9 Achievement of Plasma Detachment

Limiter detachment can be achieved by injecting neon to create a radiating mantle
at or inside the LCFS, thus reducing TLCFS to extremely low levels—effectively
detaching the plasma from the limiters [5.10]—at least so far as power flow is
concerned, chapter 23. As noted under 5.1.8, however, substantial contamination
of the main plasma may be a concern.

Divertor detachment also occurs with both target density and temperature,
nt and Tt , dropping to low levels [5.14]. This can be achieved by impurity
injection and radiative cooling, but it can also be achieved simply by raising n̄e:
for the conduction-limited regime this can reduce Tt to low levels, section 5.2. At
sufficiently low Tt volume recombination and ion–neutral frictional drag on the
parallel plasma flow become important, also reducing nt , and thereby ‘detaching
the plasma from the targets’, chapter 16.

Detached plasma regimes are attractive for reactors since erosion and melting
of edge structure are reduced. Both configurations show promise in this regard.

5.1.10 Energy Confinement

Improved energy confinement modes, typically H-modes, chapter 7, were first
achieved in divertor tokamaks. While the H-mode has subsequently also been
achieved in limiter tokamaks, it is more difficult to achieve and the increase in τE

is less. This is undoubtedly one of the main reasons that divertors are favoured
currently.

5.1.11 Conclusions

Many factors are involved in choosing between limiters and divertors. With regard
to most of the issues understanding continues to evolve. While the balance of
consideration presently favours divertors it is likely that limiters will continue to
find application and could regain their previous widespread use.
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Figure 5.6. ASDEX: radial profiles of electron temperature and density at two character-
istic positions along the SOL, namely in the torus midplane (upstream) (‘neb, Teb’) and in
the divertor chamber (target) (‘ned , Ted ’), for a beam heated discharge (PNI = 2.5 MW).
The midplane values are measured by laser scattering; the divertor data are obtained from
a Langmuir probe [5.15].

5.2 The Basic Two-Point Model of the Divertor SOL

One of the principal objectives of using a divertor is to achieve a large temperature
drop along the length of the SOL, with the plasma temperature at the target end,
Tt , being low, e.g. � 10 eV. ASDEX was one of the earliest divertor tokamaks to
demonstrate this; in figure 5.6 are shown measurements of the electron tempera-
ture at the target, Tet (x), (‘d’ = ‘t’) where x is measured across the SOL, and
also for the upstream temperature, Teu(x) (‘b’ = ‘u’) [5.15], demonstrating that
this objective can be achieved. One also notes that the plasma densities behave
inversely, i.e. neu < net , Teu > Tet .

We describe in this section the basic two-point model of the divertor
SOL [5.16–5.20] in order to model results such as those in figure 5.6. The two
points referred to are:

(a) The upstream, ‘u’, location which can be taken to be half-way between
targets, figure 5.7. We will see later that there is little change if the
mid-plane is used instead for ‘u’. Here we assume a single-null, i.e.
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Figure 5.7. For purposes of simple modelling, the divertor SOL is ‘straightened out’.
Since (calculated) parallel gradients are usually small at locations far from the targets, the
precise location chosen to represent the ‘upstream’ point is not critical.

single-X-point, poloidal divertor geometry, with targets at the top or bottom
of the vessel.

(b) The target, ‘t’. As usual for SOL analysis, we then ‘straighten out’ the SOL
for conceptual purposes, figure 5.7.

The reason that the model is called ‘two point’ is that one makes no attempt
to model Te(s‖), etc, i.e. the temperature as a function of parallel distance s‖
along the SOL. Rather, one is content with the lesser objective of simply relating
Teu and Tet , etc, or, generally, upstream and target conditions. This is therefore
the simplest divertor model. It is sometimes called the ‘0D’ (zero-dimensional)
divertor model.

The principal assumptions for the basic two-point model are now described.

(1) Particle balance. It is assumed that neutrals recycling from the targets are all
ionized in a thin layer immediately in front of the target. Further, a neutral
which resulted from an ion impacting the target while travelling along a
particular magnetic field line is assumed to be re-ionized on that same field
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Figure 5.8. In the conceptually simplest situation, the neutrals recycling from each element
of target surface are entirely ionized within the flux tube terminated by that element. As a
result particle balance occurs for each flux tube individually and there is no flow reversal,
chapter 15. The ionization region may also exist very near the target, resulting in stagnant
plasma conditions over most of the length of the SOL.

line figure 5.8. In steady state, therefore, each flux tube has its own, highly
localized particle balance with the same particles just recycling over and
over, spending part of their time as ions and part of their time as neutrals.
The only parallel plasma flow is in a very thin layer between the ionization
point and the target. There is no parallel flow, therefore, throughout essen-
tially all of the SOL, while in this very thin layer the flow velocity increases
from zero—at the start of the ionization zone—up to the sheath entrance
speed. The latter is taken to be the sound speed, section 2.3. There is no
cross-field particle flow—either as neutrals or ions. There is therefore also
no flow reversal, chapter 15. The particle balance is purely one dimensional.
There is no volume recombination, the target being the only particle sink.

(2) Pressure balance. It is assumed that there is no friction between the plasma
flow in the thin ionization region and the target and no viscous effects. Thus
throughout the entire length of each SOL flux tube, section 9.11:

p + nmv2 = constant. (5.1)

Te = Ti is assumed, thus the plasma (static) pressure p:

p = nkTe + nkTi = 2nkT . (5.2)

The dynamic pressure is pdyn ≡ mnv2. The total pressure is p + pdyn. The
entire length of the flux tube from ‘u’ down to the start of the thin ionization
zone is characterized by v = 0, while at the target, vt = cst = (2kTt/mi )

1/2,
section 2.3. Thus, we have the relation between upstream and target total
pressures:

nt (2kTt + mv2
t ) = 2nukTu (5.3)
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i.e.
2nt Tt = nu Tu . (5.4)

(3) Power balance. Since v = 0 over almost the entire length L of the flux
tube, parallel heat convection is absent and the parallel power flux density
q‖[W m−2] is carried by conduction. If it is assumed that q‖ entered entirely
at the upstream end, and was removed at the target, distance L downstream,
then from section 4.10:

T 7/2
u = T 7/2

t + 
7

2
q‖

L

κ0e
(5.5)

where the electron parallel conductivity coefficient κ0e is used, assuming
electrons and ions are thermally coupled, and neglecting parallel ion heat
conductivity as comparatively small, section 9.6. It has been assumed that
there are no volumetric power sources or sinks in the flux tube. In principle
there is a temperature change across the ionization zone, but, as this is taken
to be a very thin region, this is ignored and thus Tt in equation (5.5) is the
temperature at the target sheath edge. Thus we also have for q‖, section 2.8:

q‖ = qt = γ nt kTt cst (5.6)

where qt is the heat flux density entering the sheath, γ is the sheath heat
transmission coefficient, γ ≈ 7.

Summing up, we thus have three equations in the three unknowns, nt , Tt , Tu

of the two-point model:

2nt Tt = nu Tu (5.4)

T 7/2
u = T 7/2

t + 
7

2

q‖L

κ0e
(5.5)

q‖ = γ nt kTt cst (5.6)

with nu and q‖ as specified control parameters, i.e., the independent variables; L ,
γ and κ0e are specified constants of the problem.

We have not yet addressed explicitly the question of what radial portion of
the SOL is involved here. In the crudest model we ignore radial variations of nu ,
Tu , nt , Tt , etc across the SOL or take the values to be radially averaged ones. In
a more refined approach we apply equations (5.4)–(5.6) to individual flux tubes
within the SOL. The concept of flux tubes is considered further in chapter 12.
Here we take it that the SOL can be sub-divided radially into long, narrow regions,
aligned with B, of constant cross-sectional area, along which the plasma flows to
the targets.

It seems natural to treat nu and q‖ as the control parameters. The two prin-
cipal ‘control knobs’ available to tokamak operators are the input power Pin [W]
and the main plasma density n̄e. In the simplest scenario where all solid surfaces
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nt

nu

ne

nLCFS

Figure 5.9. Relating the upstream density, nu , of 1D parallel-to-B analysis, and the nLCFS
of 1D radial analysis. The separatrix constitutes the last closed flux surface, LCFS.

would remain 100% hydrogen saturated from the very start of the discharge, and
no pumping of any form existed, n̄e would simply be given by the number of gas
atoms in the original gas-fill of the vessel—an externally controlled quantity. The
existence of non-saturated surfaces, of hydrogen-releasing surfaces and of active
pumping complicates control of n̄e, but in principle n̄e is a controllable quantity.
The relation between n̄e and nLCFS was discussed in section 4.6. for the limiter
case. Assuming all ionization occurs in the SOL—which is the assumption here—
and assuming only diffusive radial transport in the main plasma, then n̄e = nLCFS.
The presence of an inward drift velocity (‘pinch’) vin  in the main plasma alters
the ratio nLCFS/n̄e, section 4.6, but for purposes of edge analysis, we may treat
nLCFS as being just as much controlled or imposed as is n̄e.

We next ask: what is the relation between the ‘nLCFS’ of the 1D radial
analysis of section 4.6 (the Engelhardt model) and the ‘nu’ here, which is part
of a 1D parallel-to-B model (figure 5.9)? Let us assume here that we are using
the crude approach where nu , etc represent radially averaged values. This still
leaves an apparent problem, however: n is not constant with distance s‖ along the
SOL, raising the question of which location along the SOL to take as the one to
equate to the density nLCFS. It would certainly be questionable to equate nLCFS
and nu if it turned out that n(s‖) varied greatly along the flux tube from X-point to
upstream end—i.e. the interface with the main plasma. Fortunately, a key feature
of the conduction-controlled SOL saves the day: we have seen in figure 4.17 that
T (s‖) varies little except rather near the target, and so is nearly constant above
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the X-point. We also have from equation (5.1) that p(s‖) is constant, therefore
n(s‖) is also, approximately. (For the sheath-limited regime n(s‖) is also nearly
constant, of course.) Therefore, we may with little error equate nLCFS and nu .
In the refined approach we equate nLCFS to nsep

u , the upstream density on the
separatrix flux tube, i.e. the first sub-layer of the SOL just outside the separatrix.
Thus, we may treat nu as being almost as directly controllable a quantity as n̄e—at
least for purposes of edge analysis.

Of course, just as for limiters, some of the ionization may occur inside the
LCFS and so we do not expect that nLCFS is actually equal to n̄e. Inward pinches
and other radial transport effects such as H-mode transport barriers, chapter 7,
occurring just inside the LCFS also influence the nLCFS/n̄e, i.e. nu/n̄e, ratio,
chapter 19. These effects occur in the main plasma, not the SOL, and therefore
we will treat nLCFS/n̄e as a SOL input parameter, to be taken from experiment,
ideally.

We will show shortly that target conditions—nt , Tt , etc—turn out to be
strongly dependent on nu . Unfortunately nsep

u is not regularly measured on most
tokamaks. Measuring nsep

u , or inferring it from other measurements, is often
difficult. On the other hand, n̄e is always measured. It is therefore of great
practical importance to establish the relation between nsep

u and n̄e. For cases
where it has been possible to measure or infer nsep

u , data have been collected on
this important ratio, nsep

u /n̄e, see chapter 19. Here, we treat nu or nsep
u as a SOL

control variable, equivalent to n̄e.
We turn next to q‖. This, unfortunately, is not given directly by the control-

lable quantity Pin . These quantities have different units: q‖ [W m−2], Pin [W].
In order to relate q‖ and the power entering the SOL, PSOL ≡ Pin − Pmain,rad,
where Pmain,rad is the power radiated from the main plasma, we have to know
Aq‖ , figure 4.16, and thus the power width in the SOL. We return to this matter
in section 5.7. For now we assume that q‖, like Pin , is an externally controllable
variable.

From a mathematical viewpoint, of course, one can choose any three of
the quantities in equations (5.4)–(5.6) as being the unknowns, treating the other
quantities as independent variables or parameters. (For purposes of generating
solutions, this in fact is often useful.) We now proceed to obtain nt , Tt , Tu in
terms of nu and q‖.

(1) Upstream temperature Tu . We have seen earlier, section 4.10, the useful
simplification that occurs when even a slight T -drop exists, sufficient to
make T 7/2

t � T 7/2
u , and thus from equations (4.87), (5.5):

Tu �
(

7

2

q‖L

κ0e

)2/7

(5.7)

T [eV], q‖ [W m−2], L [m].κ0e � 2000, section 9.6. Equation (5.7) assumes
all the power enters at the ‘top end’. For power entering along the length L ,
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the factor 7/2 → 7/4, equation (4.91). There are a number of important
implications of equation (5.7):

(a) Tu is not a function of nu . It is a remarkable feature of fully ionized
plasmas that neither electrical conductivity nor heat conductivity depend
on the number of carriers, i.e. on ne—something which is quite foreign
to our ordinary experience of material properties. It is this which makes
Tu independent of nu .

(b) Tu is quite insensitive to q‖. Indeed Tu is quite insensitive to all pa-
rameters. This is the consequence of the fact that the heat conductivity
K‖ of a fully ionized plasma is such a strong function of temperature,
K‖ ∝ T 5/2, section 9.6. By changing T a small amount, T 5/2 changes a
lot, and this can accommodate large changes in other factors. This leads
to a relation between q‖ and ∇‖T which is the opposite of our ordinary
experience, see section 5.3.

(2) Target temperature Tt . Combine equations (5.4) and (5.6) to obtain:

Tt = mi

2e

4q2‖
γ 2e2n2

u T 2
u

(5.8)

T [eV], mi [kg], q‖ [W m−2], n [m−3], e = 1.6 × 1019. It may be noted
that equation (5.8) is actually more general than is needed here, since it
holds regardless of how q‖ is transported from ‘u’ to ‘t’: it holds whether
parallel convection is present or not, since it only assumes pressure and
power conservation. Equation (5.8) is not, however, directly usable since
the unknown Tu also appears on the RHS. This can be eliminated using
equation (5.7) to yield:

Tt = mi

2e

4q2‖
(

7

2

q‖L

κ0e

)−4/7

γ 2e2n2
u

(5.9)

i.e.
Tt ∝ q10/7

‖ /L4/7n2
u . (5.10)

This expression for Tt , equation (5.9), is of course only for the case where
parallel heat transport is conductive. Now we want Tt to be as low as possi-
ble; we may note:

(a) Tt increases faster than linearly with q‖, unfortunately.
(b) Tt decreases with increasing length of the SOL, but the effect is rather

weak and this is probably not a practical way to reduce Tt , target sput-
tering, etc.

(c) Fortunately Tt is a strong function of upstream density, Tt ∝ n−2
u and

this is the most direct way to drive down divertor temperature—i.e. op-
erate the tokamak at higher n̄e. Fortunately, high n̄e is also required for
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high fusion power. The importance of knowing the relation between n̄e

and nu , chapter 19, is also evident—but presumably n̄e and nu increase
together. For reactor operation it is necessary that density limits on n̄e

not be so low as to make nu too low, with unacceptably high Tt resulting.

Note that Tt ∝ n−2
u is a rather strong form of dilution cooling. From

equation (5.8), which is general and does not assume that a large T -drop
necessarily exists, we see that for negligible drop, Tu ∼ Tt and one has
T ∝ n−2/3, a much weaker dilution cooling effect. The key is, again, the fact
that Tu is virtually a constant for the conduction-limited regime. Thus, this
powerful dilution cooling can also be traced back to the fact that K‖ ∝ T 5/2.

(3) Target density nt . From equations (5.4), (5.7), (5.9):

nt = 
n3

u

q2‖

(
7

2

q‖L

κ0e

)6/7
γ 2e3

4mi
(5.11)

nt ∝ n3
uq−8/7
‖ L6/7. (5.12)

One notes that nt is a particularly strong function of nu , nt ∝ n3
u .

(4) Particle flux density �t . Recycling rate. The particle flux density onto
the target �t [ion pairs m−2 s−1] is given by �t = q‖/γ eTt , thus from
equation (5.9):

�t = 
n2

u

q‖

(
7

2

q‖L

κ0e

)4/7
γ e2

2mi
(5.13)

�t ∝ n2
uq−3/7
‖ L4/7. (5.14)

(e = 1.6 × 10−19 C enters these expressions since T is in [eV] in equa-
tion 5.7.) One may note the strong dependence of �t on nu . Thus the
Langmuir probe I+sat for probes at the target are also expected to show a
variation like I+sat ∝ n̄2

e in this regime (again, assuming that nu and n̄e are
tightly linked, see chapter 19). The total intensity of the recycling flux at
the targets φrecycle is equal to the product of (Bθ /B)t�t and the effective
wetted area of target, Awet. One thus also anticipates φrecycle ∝ n̄2

e . Since
particle confinement time τp = n̄e × volume/φrecycle, τp ∝ n̄−1

e , which was
also seen approximately for limiters, although for quite different reasons,
equation (4.58). One notes again, as in section 4.6, that particle confinement
time is not purely a property of the confined plasma, e.g. of Dmain⊥ , but is also
very sensitive to the details of what happens in the SOL. Since the ionization
is assumed to occur in a thin layer in front of the targets, the main plasma
is 100% ion fuelled: no ionization of neutrals occurs inside the separatrix.
The entire SOL (above the thin ionization layer) plus the main plasma are all
‘back-filled’ by particles from the recycling zone right at the targets. Since
the latter regions are self-sustained in a particle sense (neutral inflow = ion
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outflow) the recycle can operate at any level of intensity—so long as this is
consistent with conservation of momentum and power along the flux tubes,
i.e. equation (5.13) has to be satisfied, i.e. φrecycle ∝ n̄2

e . Otherwise there is
no constraint on the intensity of φrecycle—an initially surprising fact. It is
not correct to assume similarity between power and particle balance in this
regard, since the power input is a specified boundary condition of the system.
Taking n̄e = nu for simplicity, then the particle confinement time, τp, is
approximately:

τp = q‖
nu( 7

2 q‖L/κ0e)4/7

2mi

γ e2

volume

Awet(Bθ /B)t
. (5.15)

As noted τp ∝ n−1
u , thus approximately τp ∝ n̄−1

e , as for the limiter
case, equation (4.58). It is clear that this is coincidental since, unlike
equation (4.58), equation (5.15) has no dependence on Dmain⊥ ; also there

now appears a new dependence, namely on power, τp ∝ q3/7
‖ . It is

noteworthy that in this scenario τp has no dependence at all on the cross-
field transport in the main plasma. As discussed in section 4.6, energy
and particle confinement are not necessarily related in any way—which is
perhaps surprising.

Problem 5.1. One may also note how small τp is in this regime: show for
a JET-size example, q‖ = 108 W m−2, nu = 3 × 1019 m−3, L = 50 m,
γ = 7, volume = 100 m3, Awet = 1 m2, (Bθ /B)t = 0.02, D+plasma, that
τp = 70 ms.

It is noteworthy that the recycle flux, φrecycle and �t , have no important or
significant relationship with other particle fluxes, for example, the net parti-
cle ion flux entering the SOL from the main plasma, φ+LCFS: in the present
scenario in fact, φ+LCFS = 0. It is therefore not useful or informative to define
a quantity such as the ‘particle flux amplification, or multiplication factor’
R ≡ φrecycle/φ

+
LCFS ≡ �t/�u , although this is sometimes done [5.21].

While this does give the result kTt = q‖/γ�u R, implying that one needs
to raise R in order to reduce Tt —i.e. one needs to achieve a ‘high recycling’
divertor with large R—this reasoning is based on the incorrect assumption
that it is �u or φ+LCFS that are given, rather than nu or n̄e. As discussed in
section 4.10.1, the reason that high recycling is important is that it allows
conduction to transport most of the power, making possible large ∇‖T , and
low Tt .
Since there is a finite amount of energy radiated for each recycle event,
section 3.5, this also means that by raising n̄e, hydrogenic radiation losses
can be substantially increased.
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(5) Sputtering production. We have seen generally that the sputtered flux density
�sput:

�sput = Y�t (5.16)

where Y is the sputtering yield, section 3.3. Targets are usually operated in
the regime where Y is an increasing function of impact energy, hence of Tt .
Since Tt ∝ n−2

u while �t ∝ n2
u it is not immediately clear whether increasing

n̄e and nu will increase or decrease sputtering. For physical sputtering, Y
can be a strong function of Tt , Y ∝ T mt , with m = 2 or more. In that case
�sput will decrease with increasing n̄e. For chemical sputtering of carbon by
hydrogen, section 3.3.2, the dependence of Y on impact energy can be weak,
depending on the carbon substrate temperature. When Y (Tt ) varies more
weakly than linearly, the �sput will increase with increasing n̄e. Chemical
sputtering is therefore a potential problem for this regime.

Before leaving this section we return to the assumption that the ionization region
is very thin: since L enters the expressions for Tt , nt , etc only relatively weakly,
this assumption turns out not to be critical. Consider, for example, the effect on
Tt . Let all the ionization occur at distance L1 upstream from the target. Starting at
that point, parallel heat convection will be quite strong and, since q‖conv ≈ 6kT �

for sonic flow, section 9.10, this transport process by itself could carry all of
q‖(= qt ≈ 7kTt�t ) at a value of T slightly above Tt . Thus, from the ‘ionization
front’ to the target, T will be almost constant at approximately the target value, Tt ,
i.e. strong convection flattens any parallel temperature variation. We now apply
the foregoing two-point model to the region from s‖ = L1 to L , and so obtain the
same results as before, provided L1 is not too large a fraction of L . For example,
for L1/L = 0.2, Tt is raised by only a factor (0.8)−4/7 ≈ 1.14.

5.3 The Conduction-Limited Regime. The High Recycling
Regime

As discussed in section 1.9, the conduction-limited regime CLR is characterized
by significant parallel T -drops due to the finite value of heat conductivity. The
high-recycling regime HRR is a term inspired by the observation, last section, that
φrecycle ∝ n̄2

e in the CLR. The two regimes are therefore almost coincident, with
the HRR lying toward the higher n̄e end of the CLR. The use of ‘high’ raises
the obvious question: high compared with what? Certainly if one kept q‖, L , etc
fixed and raised n̄e, nu , then the divertor would evolve from the sheath-limited
regime, SLR (which is also the low recycling regime, LRR) to the CLR/HRR
and in doing so φrecycle would rise. But something stronger is intended here by
the expression ‘high’: namely, one goes from a linear increase of φrecycle with
n̄e to a quadratic (or even stronger) dependence. The increased T -drop ‘causes’
the increased φrecycle through the conservation of momentum and power. More
correctly one should say that large φrecycle and low Tt are associated because of
momentum and power conservation.
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Figure 5.10. For the case of all parallel power carried by (electron) heat conduction,
significant parallel temperature gradients only arise when the heat flux density q‖ is not
too high—i.e., the opposite of ordinary experience. Case of L = 100 m, D+ plasma,
γ = 7.

The criteria for the transition to these attractive regimes are therefore quite
important, see section 4.11. In figure 5.10 we plot the criteria based on q‖, nu and
L from equation (4.110), for the example of L = 100 m. Again, we note that if
q‖ is too high then the T -drop will be negligible.

It may be considered that the achievement of a satisfactory temperature dis-
tribution within the SOL requires something more than just a large T -drop. For
example, if Tu/Tt = 1000 eV/100 eV one would still be concerned about the
large value of Tt and the problem of sputtering, while if Tu/Tt = 10 eV/1 eV one
might be concerned about such a low temperature being present at the boundary
of the confined plasma. Let us require, therefore, that the following criteria be
satisfied simultaneously: (i) Tu � Tt , (ii) Tu ≥ 100 eV, (iii) Tt ≤ 10 eV.
Using equations (5.7) and (5.9) this requires that just the two following criteria be
satisfied in fact:

5.7× 109L−1 ≤ q‖ ≤ 3.2× 10−21n7/5
u L2/5

(for Tu ≥ 100 eV) (for Tt ≤ 10 eV)
(5.17)

q [W m−2], L [m], n [m−3]. Equation (5.17) used the factor 7/4 in equation (5.7)
for Tu , equation (4.91), i.e. power input is assumed to be constant along the length
L .
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Figure 5.11. For pure parallel (electron) heat conduction, the four temperature regimes.
For L = 100 m, D+ plasma, γ = 7.

The preferred regime is shaded in figure 5.11 for the example of L = 100 m,
D+ ions, γ = 7. What is required is a high enough value of nu together with a
value of q‖ which is not so low as to cause Tu < 100 eV, nor so high as to cause
Tt > 10 eV. It may be appreciated that these are demanding criteria and it may
not be possible for reactors to satisfy them.

Problem 5.2. Consider the example of an ITER-size tokamak where the SOL
cross-section area for carrying the power, Aq‖ , may be only of order ∼1 m2

or less, section 5.7. For PSOL = 108 W, then q‖ ≈ 108 W m−2. Show that
achievement of Tt < 10 eV for L � 100 m would require nu > 6 × 1019 m−3,
which might correspond to n̄e-levels above the density limit of the main plasma.
Show that the achievement of a significant T -drop, however, would require only
nu > 2.5 × 1019 m−3, figure 5.10. If nu = 3.5 × 1019 m−3, for example, then
show that Tu ∼ 120 eV, Tt � 20 eV.

5.4 Extensions to the Basic Two-Point Model. ‘Corrections’

The basic model can readily be extended to provide estimates for the effect of
including various processes which were excluded originally.
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Volumetric power losses due to radiation and charge exchange loss, qSOL
rad ,

qSOL
cx [W m−2] can be included by introducing a power loss factor fpower:

qSOL
rad + qSOL

cx ≡ fpowerq‖. (5.18)

Thus
(1− fpower)q‖ = qt = γ kTt nt cst (5.19)

and so the power equation (5.6) is only modified slightly. At the end of section 5.2
it was argued that the ionization zone need not be vanishingly thin, and that so
long as the ionization zone does not occupy a large fraction of the total SOL length
L , the effect on nt , Tt , etc is small. A similar argument holds with regard to the
spatial distribution of qSOL

rad , qSOL
cx : so long as these losses occur primarily below

the X- point one can simply use (1 − fpower)q‖ in place of q‖ in the expressions
for nt , Tt , etc, with little error.

The plasma flow toward the target may experience momentum loss due to the
frictional collisions with neutrals, viscous forces and volume recombination. We
define a momentum loss factor fmom:

pt ≡ fmom 
1
2 pu (5.20)

that is:
2nt Tt ≡ fmomnu Tu . (5.21)

As earlier, it is assumed that Mt = 1.
In general, parallel heat convection plays some role even if parallel conduc-

tion dominates. The tendency is for convection to reduce T -gradients. The T -
gradient is largely due to the fraction of the parallel power carried by conduction.
It is therefore useful to introduce a conduction factor fcond:

q‖cond ≡ fcondq‖. (5.22)

Thus equation (5.5) becomes

T 7/2
u = T 7/2

t + 
7

2

fcondq‖L

κ0e
. (5.23)

Note that one does not, however, insert the fpower factor into equation (5.23) since
it is assumed that the volumetric power losses occur below the X-point. Thus over
most of SOL length L , the conduction equation (5.23) applies: q‖ supplies both
the volumetric and target power losses at essentially the same distance from the
upstream end. It is implied in equation (5.23), however, that the convection occurs
approximately uniformly over length L . At the end of section 5.2 we considered
the effect of convection becoming strong just near the target and showed that this
had no large effect.

The effects of these correction factors on the basic two-point model are
considered next.
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(1) Upstream temperature Tu . Assuming Tu is at least slightly greater than Tt

then:

Tu �
(

7

2

fcondq‖L

κ0e

)2/7

(5.24)

Tu ∝ f 2/7
cond. (5.25)

Neither momentum loss nor volumetric power loss affects Tu , and the effect
of upstream convection, making fcond < 1, is very small. As before, Tu

is insensitive to almost all factors. One notes, nevertheless, that upstream
convection does tend to reduce Tu .

(2) Target temperature Tt . It is readily shown that the original result of equa-
tion (5.9) is to be multiplied by a factor such that:

Tt ∝ (1− fpower)
2

f 2mom f 
4/7
cond

. (5.26)

One notes that volumetric power loss strongly decreases Tt while momentum
loss strongly increases Tt : the latter is perhaps not intuitively obvious. The
effect of upstream convection is not strong but tends to raise Tt . The cooling
effect of volumetric power losses is intuitively obvious, although the strength
of the effect is possibly not. It should be noted that some power loss pro-
cesses, e.g. due to charge exchange, would be accompanied by momentum
loss, i.e. ion–neutral collisional friction. Whether the net result will be a
reduction or an increase in Tt is not immediately clear and will depend on
the details of the processes involved. Since the tendency for volumetric loss
processes to become important can be strongly dependant on Tt —generally
increasing as Tt drops—the overall balance may be complicated, chapter 16.

(3) Upstream/downstream T -ratio. Tu/Tt . From the above:

Tu/Tt ∝ f 6/7
cond f 2

mom

(1− fpower)2
. (5.27)

One notes, as earlier, the effect of convection is to reduce/eliminate parallel
temperature gradients.

(4) Target density nt . It is readily shown that:

nt ∝ f 3
mom f 6/7

cond

(1− fpower)2
. (5.28)

The effect on target density of momentum loss by the plasma flow is quite
dramatic, involving a cubic relation. The influence of volumetric power loss
is also quite strong. The role of upstream convection is significant. Since
some volumetric processes, such as recombination, are strongly dependent
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on n as well as T , and since power and momentum losses influence nt

oppositely, the overall balance can be made more complex.
(5) Target particle flux density �t . Recycle intensity. One can show that:

�t ∝ f 2mom f 
4/7
cond

1− fpower
. (5.29)

Momentum loss quite strongly suppresses fluxes to the target (‘plugged
drain’ effect) and hence, in steady state, the total recycling source; this prob-
ably plays an important role in divertor detachment, chapter 16. Power loss
has the opposite influence on �t , but is weaker. Since hydrogenic volumetric
power losses are proportional to �t , a positive feedback effect can result.

(6) Sputtering production. Let us assume that sputtering yield Y ∝ T mt with m
a parameter. Then, the sputtering flux φz ∝ Y�t is:

φz ∝
q

10
7 m− 37‖

L 
4
7 (m−1)n2(m−1)

u

(1− fpower)
2m−1

f 2(m−1)
mom f

4
7 m− 27

cond

. (5.30)

Physical sputtering yield can be strongly dependent on impact energy. For
example, assuming m = 2:

φ
phys
z ∝ q

17
7‖

L 
4
7 n2

u

(1− fpower)
2

f 2mom f 
6/7
cond 

. (5.31)

Thus, it would be advantageous to (a) decrease the power into the SOL (thus
q‖), (b) raise the volumetric power loss, (c) raise the upstream density and
(d) minimize momentum loss.
Chemical sputtering yields are rather insensitive to impact energy for some
conditions, section 3.3. Assuming for example m = 0:

φchem
z ∝ 

n2
u L

4/7

q3/7
‖

f 2mom f 
2/7
cond

(1− fpower)
. (5.32)

One may note that all the things one would do to decrease physical sputter-
ing would increase chemical sputtering—for these m-values at least. It is
essential, therefore, to establish which type of sputtering is more important
to know how to control it.

(7) Criteria for existence of large parallel T -gradients. The prescriptions of
section 4.10 for existence of a significant T -gradient, Tu ≥ 3Tt specifically,
equations (4.103) and (4.113), are now changed to:

nu L

T 2
u
≥ 1.5× 1017 (1− fpower)

fmom fcond
(5.33)

q‖
n7/4

u L3/4
≤ 4× 10−28 f 7/4

mom f 3/4
cond

(1− fpower)7/4
. (5.34)
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Figure 5.12. The effect of the two-point model ‘correction factors’, fcond, fmom, fpower.
The ‘hats’ indicate values normalized to values for fcond = fmom = 1− fpower = 1. The
effect on Tt of increasing momentum loss (decreasing fmom), for example, is for Tt to rise.

As is intuitively obvious, volumetric power losses make it easier to achieve
significant T -drops: this can be achieved at lower nu L , and higher Tu and q‖
than without power losses. Perhaps less intuitively, momentum loss makes it
harder to achieve large T -drops.

(8) Criteria to achieve Tt < 10 eV and Tu > 100 eV simultaneously. The criteria
of equation (5.17) now become:

5.7× 109

L f 2/7
cond

� q‖ � 
3.2× 10−21n7/5

u L2/5 f 7/5
mom f 

2/5
cond

(1− fpower)
7/5

(for Tu ≥ 100 eV) (for Tt ≤ 10 eV)

(5.35)

The effect is mainly on Tt : volumetric power loss eases the constraint on q‖
(higher q‖ is allowed).

Problem 5.3. For the same conditions as in problem 5.2, q‖ = 108 W m−2, L =
100 m, then if fpower = 1/2, show that a density of nu ≥ 4× 1019 m−3 would be
adequate to ensure Tt ≤ 10 eV, compared with nu > 6× 1019 m−3 if fpower = 0.
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A number of these SOL variables are plotted in figure 5.12 as functions of fcond,
fmom and fpower, to bring out how insensitive to these correction factors the
upstream quantities are, and, by contrast, how extremely sensitive all of the target
quantities are.

5.5 Including the Hydrogen Recycle Loss Energy in the Two-
Point Model

In the case of the electron power sink caused by the hydrogenic recycle process,
it is possible to formulate an explicit treatment, rather than use just the general
form, fpower, equation (5.18). If it can be assumed that all of the neutral hydrogen
recycling from the target is excited and ionized near the target in a plasma at
temperature and density Tt and nt , then the energy lost by the electrons due to
each recycled neutral ε [eV] is readily available, figure 3.34. Although ε is a
function of (Te, ne), we will take ε = 25 eV, constant, here for illustration. Note
that we use the value of ε corresponding to the cooling rate, Pcool, rather than
the radiation loss rate, Prad, section 3.5: the former includes, for example, the
energy of ionization, Ii z , which is excluded from the latter. While this energy—
unlike the photon energy lost by excitation—does remain in the plasma, it does
so as potential energy, and for the purpose of calculating n, T , etc this energy has
‘disappeared’ just as effectively as has the photon energy. When calculating the
power flux actually deposited on the target, of course, this potential energy flow
density, Ii z�t , has to be added to the kinetic/thermal power flux density γ kTt�t ;
one should also include the atom–atom recombination energy in the potential
energy flow. Note that the direct cooling effect of the target on the plasma is
still γ kTt�t .

As before we assume that the region of recycle power loss is below the X-
point. Thus: the power flux density into the recycle region supplies eε�t as well
as the sheath power flow:

q‖ = eε�t + qt = eε�t + γ kTt�t = γ

(
1+ ε/γ

Tt

)
kTt�t . (5.36)

The other equations of the two-point model remain unchanged, equations (5.4)
and (5.5), with equation (5.36) replacing equation (5.6): the latter two differ only
by the factor (1+ (ε/γ )/Tt ).

(1) Upstream temperature Tu . This is unchanged, equation (5.7).
(2) Target temperature Tt . Equation (5.8) is now multiplied by the factor (1 +

(ε/γ )/Tt )
−2. Let us define the ‘upstream forcing function’ Fu from equa-

tion (5.8):

Fu ≡ mi

2e

4q2‖
γ 2e2n2

u T 2
u

. (5.37)
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Figure 5.13. Two-point model including hydrogen recycling loss. The dependence of Tt

on Fu , the upstream forcing function, equation (5.37).

Whenever Tu is even slightly larger than Tt , then:

Fu � mi

2e

4q2‖
γ 2e2n2

u

(
7

2

q‖L

κ0e

)−4/7

. (5.38)

Note that Fu depends on the standard control parameters only: q‖, nu and
L . Conveniently Fu has units [eV] (in fact Fu = Tt (ε = 0)). We thus have
when ε �= 0:

Tt = Fu

(
1+ ε/γ

Tt

)−2

. (5.39)

F [eV], T [eV], ε/γ = 25/7 = 3.57 here.
Equation (5.39) thus provides the implicit functional relation Tt (Fu), i.e. the
dependence of Tt on the upstream conditions, represented by the lumped
parameter Fu ; see figure 5.13. We see a number of important results in this
figure.

(a) At high temperature, Tt is lowered by an amount 2ε/γ ∼ 7 eV com-
pared with the case when ε = 0. The reduction is greater at low
Tt ≤ 15 eV.

(b) The upstream forcing function cannot be reduced below a certain min-
imum value Fmin

u = 4ε/γ ≈ 14.3 eV, at which point Tt = T crit
t =

ε/γ ≈ 3.57 eV.
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Figure 5.14. Two-point model including hydrogen recycling loss. The fraction of the
entering power flux density which reaches the target, qt/q‖, and the fraction that is lost in
hydrogen recycling processes, eε�t/q‖, as functions of the upstream forcing function Fu .

(c) For any Fu > Fmin
u , there are two branches to the solution: a high

temperature branch with Tt > T crit
t , and a low temperature branch,

with Tt < T crit
t , i.e. a bifurcation exists. We show below that the lower

branch solution is unstable and therefore will not actually occur.

What happens if q‖ is lowered further, or nu raised further, forcing Fu to fall
below 4ε/γ ? Then, either:

(a) a non-steady-state occurs, or
(b) other physical processes neglected in this simple model come into play,

e.g., power transfer to neutrals, volume recombination, etc. Thus, Fmin
u

and T crit
t strictly should not be thought of as absolute limits, but repre-

sent the limits of the regime in which only the simple physical processes
so far considered are the controlling ones.

It is illuminating to consider the power split. See figure 5.14 which gives
eε�t/q‖ and qt/q‖ as functions of Fu . The sum of the two is unity, of course.
Figure 5.14 can be taken to represent this situation for the high temperature
branch, in which case the upper curve gives qt/q‖ and the lower curve gives
eε�t/q‖. At the critical Fmin

u , the two fractions are equal, 1/2. Alternatively,
this figure represents the low temperature branch, in which case the upper
curve is eε�t/q‖, the lower qt/q‖. With regard to the deposited power:
estimating Ii z ≈ eε/2 then the deposited power is never less than 75% of
the input power q‖, at least for the assumptions made here.
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Figure 5.15. Two-point model including hydrogen recycling loss. Target density
(normalized) as a function of the upstream forcing function, Fu .

One may note that the effect of including ε is perhaps stronger than might be
thought at first. For example, Tt (ε = 0) = 15 eV is reduced to Tt ≈ 5 eV
by including ε = 25 eV. One might have thought—since at Tt = 15 eV,
there is ∼ 105 eV carried into the target per ion pair, while only ∼ 25 eV
is consumed by recycle processes—that therefore the correction should be
modest. Note, however, that the appropriate comparison has to be made at
the altered temperature, here ∼ 5 eV, where only ∼ 35 eV is carried per
ion pair into the sheath. Thus fpower, equation (5.18), is (1 − fpower) ≈
35/(35 + 25) ≈ 0.58, and so according to equation (5.26) one expects Tt

to be reduced by ∼ 0.582 ∼ 0.34, i.e. to ∼ 5 eV from 15 eV. One notes
again, therefore, how sensitive target conditions are to almost all parameter
variations.

(3) Target density nt . The target density can be represented in a ‘normalized’
way which shows that it is solely dependent on upstream quantities:

nt
1
2 nu Tu

= (1+ (ε/γ )/Tt )
2/Fu . (5.40)

See figure 5.15. For a specified Fu , the corrections at low Tt are very large.
Note, however, that if instead Tt is taken to be specified then nt is unchanged
since 1

2 nu Tu = nt Tt .
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Figure 5.16. (a) Two-point model including hydrogen recycling loss. The (normalized)
particle flux density to the target as a function of the upstream forcing function, Fu . (b) As
(a), but as a function of target temperature Tt .
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(4) Particle flux density �t . Recycling rate. We now have an expression for ‘nor-
malized’ �t , i.e. expressed so as to depend solely on upstream parameters:

�t

q‖/γ e
=

(
1+ ε/γ

Tt

)
/Fu . (5.41)

See figure 5.16(a) plotted against Fu and figure 5.16(b) plotted against Tt .
One notes from figure 5.16(b) the standard pattern that the intensity of recy-
cling, �t , increases rapidly as Tt falls—a simple and direct consequence of
the conservation of momentum and power, as already noted. This basic pat-
tern is not essentially changed by including ε. While, from equations (5.39)
and (5.41) qt ∝ Tt�t ∝ (1+ (ε/γ )/Tt )

−1 → 0, as Tt → 0, on the one hand,
on the other hand, eε�t goes on increasing as Tt drops. This is the reason
why a minimum q‖ exists, i.e. a Fmin

u exists, figure 5.13: enough power must
be ‘reserved’ to supply eε�t . On the other hand, if ε = 0, then q‖ may be
lowered to 0, with Tt then going to 0 also.

It is illuminating to re-plot figure 5.13 as F−1/2
u against Tt which for fixed q‖

and L is effectively a plot of nu against Tt , see figure 5.17. Again one notes the
high Tt and low Tt branches. Now it is apparent that a maximum nu exists:

nmax
u = q‖

Tu

(
mi

2e3εγ

)1/2

. (5.42)
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Problem 5.4. For the example q‖ = 108 W m−2, Tu = 150 eV, D+, ε = 25 eV,
γ = 7 show that nmax

u = 3.2× 1019 m−3.

It has been proposed that this may be a cause of the density limit of toka-
maks [5.19, 5.22] (assuming also the existence of a close connection between
nu and n̄ in the main plasma, chapter 19). Any higher nu would reduce Fu

below Fmin
u , resulting in either non-steady-state behaviour or the onset of physical

processes not considered in this simple model.
In order to include the effect of friction we combine the formulations of

this section with the fmom-factor of section 5.4 to obtain expressions for the
(normalized) q‖ and �t in terms of the normalized Tt :

q̂‖ = [ f 2momT̂t (1+ (T̂t )
−1)2]7/10 (5.43)

�̂t = q̂−3/7
‖ f 2mom(1+ (T̂t )

−1) (5.44)

where we define:

�̂t = �t/(C(eεC)−3/10) (5.45)

q̂‖ = q‖/(eεC)7/10 (5.46)

C ≡ e2γ n2
u

(
7L

2κ0

)4/7

/2mi (5.47)

T̂t = Tt/(ε/γ ). (5.48)

For illustration, let us assume that momentum loss increases as Tt decreases,
according to the arbitrary, but convenient prescription:

fmom =
{

T̂t/3 for T̂t ≤ 3
1 for T̂t > 3. 

(5.49)

One can then calculate �̂t (q̂‖), figure 5.18, which shows that ‘starving the SOL for
power’, i.e. reducing q‖ for fixed L , nu , etc, will then also drive down the particle
flux to the target. This only happens, however, when a momentum-loss process is
also present, fmom < 1. Figure 5.18 includes the result for fmom = 1, showing
that in that case there is no drop in �t as q‖ is reduced. This effect is apparently
a feature of divertor detachment, chapter 16. The foregoing simple assumptions
still give a monotonic dependence of �t on nu , for fixed q‖; if ε is also assumed
to increase with decreasing Tt , however, then a non-monotonic �t (nu) results.

It is illuminating to consider how the equilibrium values of Tt may be found
by using a graphical method, since this will also demonstrate that the lower
branch solutions are unstable, and therefore will not actually occur.
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Figure 5.18. Two-point model including hydrogen recycling loss. The (normalized)
particle flux density to the target increases with decreasing power flux into the SOL,
unless momentum loss also occurs. Illustrated for a specific momentum-loss assumption,
equation (5.49).

Problem 5.5. This is best illustrated by considering a concrete example: q‖ =
120 MW m−2, L = 50 m, nu = 5 × 1019 m−3, D+plasma. Show that this gives
Tu = 101 eV, Fu = 18.7 eV. Show that from figure 5.13 we therefore anticipate
a high temperature solution at Tt ≈ 10 eV and a low temperature solution at
Tt ≈ 1 eV. One has enough information to also calculate eε�t and qt individually
as functions of Tt ; confirm that these are as given in figure 5.19. The only possible
(equilibrium) solutions, of course, occur when the sum eε�t + qt equals the input
q‖ . Show from figure 5.19 that this does indeed occur for Tt ≈ 10 eV and≈ 1 eV.

Now consider the system existing at the high temperature solution and that
a positive perturbation to Tt occurs. This will temporarily increase the total
power loss rate, eε�t + qt , above the input q‖, which is actually physically
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Figure 5.19. Two-point model including hydrogen recycling loss. Graphical procedure
to find the two solutions that can exist for a given power input q‖. The low temperature
solution is unstable.

possible since—in a time-dependent situation—heat can be drawn from the di-
vertor plasma by it cooling down. The high temperature solution is therefore
stable. A negative temperature perturbation to the high temperature solution also
experiences natural self-stabilization. By contrast, the low temperature solution is
unstable: a negative temperature excursion increases the power loss, thus cooling
the plasma further, and the situation runs away as a result of this positive feedback.

5.6 The Plasma-Wetted Area of Limiters and Divertors. The
Parallel Flux Area of the SOL

It is important to distinguish between Awet, the plasma-wetted area of the limiters
and divertor targets, and ASOL‖ , the cross-sectional area of the SOL perpendicular
to B, that defines the parallel heat flux density in the SOL (as well as other parallel
flux densities). See figure 5.20(A).
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Figure 5.20. (A) For both (a) and (b) ASOL‖ is the same but (a) has larger Awet. (B) Poloidal
ring limiters: (a) flat sided, (b) rounded, (c) bevelled. For (b) and (c) the plasma-wetted
area is greater than for (a), thus better distributing the power load.

We start by considering a case of such artificial simplicity that in fact Awet =
ASOL‖ : a tokamak of circular cross-section in the cylindrical approximation (i.e.
the torus is ‘unwound’ to make a cylinder and no toroidal corrections are made)
with a single poloidal flat-plate ring limiter and q = ∞, i.e. Bθ = 0. The
magnetic field lines strike the sides of the limiter at 90◦. Then Awet = ASOL‖ =
4πaλ where λ is the SOL scrape-off length; for λ = λq‖ the areas are for power
deposition, Aq‖ , while with λ� they are for particle deposition, A�‖, etc. Now for
this same configuration, let q be finite so that the field lines strike the sides of the
target at angle α = tan−1(Bθ /Bφ), figure 5.20(B(a)). Recall from section 2.10
that the plasma is not ‘aware’ of whether a SOL flux tube is terminated by a solid
surface which is orthogonal to B, or is at some finite angle. Thus, while Awet
remains as before, ASOL‖ is now the projected area of Awet perpendicular to B,

ASOL‖ = 4πaλ cos α. Of course, if Bθ /Bφ is small, as is usual, then cos α ∼ 1
and this is not an important correction. Thus, for poloidal flat-plate ring limiters,
Awet ≈ ASOL‖ .

It is desirable, however, to spread the heat load over as large an area of solid
surface as possible, i.e. to increase Awet. Rather than use a flat plate for the
poloidal ring limiter, one may round it, or bevel it, figure 5.20(B(b),(c)), so as
to increase Awet. For a bevel angle β, figure 1.38, Awet is thus increased by the
factor (sin β)−1, which could be made very large. Note, however that ASOL‖ is
unchanged.

Consider next a toroidal flat-plate ring limiter located at the outside of the
torus at radius RL . Now if q = ∞ there is no limiter action, but for q finite,
all parts of the SOL contact this limiter. Thus Awet = 4π RLλ while ASOL‖ =
4π RLλ(Bθ /Bφ), figure 5.21. We may check these formulae by calculating the
SOL volume two ways: VSOL = πa Awet = L ASOL‖ = 2πa2π Rλ. Let us now
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Figure 5.21. Toroidal ring limiters: (a) flat-sided, (b) rounded. The latter has increased
plasma-wetted area.

bevel the toroidal limiter, which also increases Awet by the factor (sin β)−1 but
leaves ASOL‖ unchanged. On JET such ‘toroidal belt limiters’ [5.23] achieved

plasma-wetted areas of more than 1 m2.
Consider next the wall limiter where the inner wall, for example, may be

shaped to match the curvature of the flux surfaces closely, figure 5.5. Consider
the simple case of the inner wall being a straight vertical cylinder of major radius
Rs , figure 5.22. Let a be the radius of the magnetic flux surface which is tangential
to the inner wall at the mid-plane, i.e. a is the minor radius of the plasma since this
point of contact with the inner wall defines the LCFS. The flux surface of radius
a+ λ cuts the inner wall at z ≈ ±(2aλ)1/2, thus making Awet = 2(2aλ)1/22π Rs .
For all toroidally symmetrical limiters or divertor targets, the value of ASOL‖ is

essentially the same, here ASOL‖ ≈ 4π Rsλ(Bθ /B). When the inner wall has a
compound curvature, with radius in the poloidal plane aw � a then the foregoing
expression for Awet is changed somewhat, figure 5.5. Inner wall limiters on JET
and TFTR achieved quite large values of Awet ≈ 5 m2 [5.6].

Rs

a

Figure 5.22. An (inner) wall limiter can have particularly large plasma-wetted area.

It should be noted that the flux densities actually deposited on limiters with
curved surfaces (and the wall limiter even without double curvature) do not fall
off in a simple exponential way, even if the parallel flux density decays strictly
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Figure 5.23. Poloidal cross-section of the SOL magnetics for a poloidal divertor. The
cross-sectional shape of a magnetic flux bundle, in black, changes greatly following the
flux line from upstream to X-point to target. The cross-sectional area of the flux bundle,
however, changes much less and it is often assumed to be constant.

exponentially. If fluxes reach the surface purely as the result of parallel motion,
then the deposited flux density at the LCFS for a curved limiter must be zero since
the solid surface at that point is exactly tangential to B. In experiments, however,
fluxes are observed to be incident at such locations. This matter is discussed
further in section 25.2.

We now turn to the poloidal divertor—with a toroidally symmetrical target
system. The variation of Bθ /B along SOL flux tubes is so great that it is necessary
to account for it, even for first estimates. For example, at the outside mid-plane,
Bθ /B might be 1/3 or even larger, while near the X-point, Bθ /B → 0; it then
increases back to perhaps ∼ 1/10 at the targets. The total magnetic field strength
varies much less, B ∝ R−1 [5.24], and so the cross-sectional area ASOL‖ of any
specific SOL flux tube, i.e. magnetic flux bundle, does not vary too greatly along
the SOL, ASOL‖ ∝ B−1 ∝ R. The greatest variation in ASOL‖ is from inside to
outside mid-plane, a factor of ∼ 2 for JET, for example, where a/R ∼ 1/3. For
simple modelling of the SOL, however, one considers one half of the SOL, and
so the variation of ASOL‖ is small. Here we ignore such variation.

What does change very substantially, however, is the cross-sectional shape
of the flux tube for different locations along the SOL. Let us picture a flux tube
with square cross-section at the outside midplane, figure 5.23. We take Bθ /B ≈
1/4 for illustration. By the time this tube has reached the X-point region, it has
become wide and thin in cross-section: the poloidal flux surfaces have become
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well separated due to the weak Bθ near the X-point, so in order that ASOL‖ may
remain approximately constant, the cross-sectional shape has become wide and
thin. Right on the separatrix B/Bθ → ∞ at the X-point, in principle, but a few
mm out, a value of 20 might be representative. By the point where the flux tube
reaches the target, then perhaps Bθ /B ∼ 1/10 and so the cross-sectional area
is less elongated and thin than near the X-point, but more so than at the mid-
plane. (What is not shown in figure 5.23 is the effect of magnetic shear: since
L decreases across the SOL, an initially square cross-sectional shape does not
remain even rectangular, but it experiences a shear distortion into a parallelogram,
approximately; ASOL‖ , however, still remains approximately constant.)

We thus have that the width of the flux tube in the poloidal plane, �, measured
‘radially’, varies as:

�(Bθ /B) ≈ constant (5.50)

since the width (in the orthogonal direction, within the poloidal plane) varies as
B/Bθ and we are taking ASOL‖ = constant. Thus:

ASOL‖ ≈ 4π Rλu(Bθ /B)u ≈ 4π Rλt (Bθ /B)t . (5.51)

We can then define the flux expansion as:

flux expansion ≡ �t

�u
≡ λt

λu
� (Bθ /B)u

(Bθ /B)t
. (5.52)

Thus, if the targets are orthogonal to the flux surfaces as projected in the poloidal
plane (which means, of course, that they are already rather oblique to B because
|Bφ | � |Bθ |, typically), then Awet is greater than ASOL‖ by the factor (Bθ /B)

since:
Awet ≈ 4π R · λt . (5.53)

For the above example, this would make Awet/ASOL‖ ≈ 10. In order to further
Awet increase, the targets may be slanted at an oblique angle β relative even to
the flux surfaces as projected in the poloidal plane, figure 5.24, thus reducing the
angle between B and the tangent to the target surface to � 1◦, and increasing the
ratio of Awet/ASOL‖ to perhaps 100. There are practical limitations to proceeding
further, however, related to divertor target tile edges.

In order to accommodate thermal expansion of the target structure, the target
is usually constructed of separate tiles. This also facilitates target installation
and replacement. At small glancing angles of B the exposed tile edges will
receive a large part of the total heat flux, figure 5.25(a). This heat is deposited
on a small area and can result in damage. In order to protect the tile edges,
the tiles can be tilted slightly so that each tile shields the edge of the next one,
figure 5.25(b). This, however, reduces operational flexibility of the tokamak
since the tilt angle is only ideal for one particular value of the magnetic pitch
at the target, (Bθ /B)t . For larger (Bθ /B)t the tile edges are again exposed, while
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β

Figure 5.24. Non-orthogonal divertor targets increase the plasma-wetted area. The
poloidal projection of the magnetic field is all that is seen in this figure, thus it is not
apparent that B is already at a shallow angle to the surface, even for β = 0. Increasing β

makes the angle of incidence yet smaller.

a)
B

b)
B

φ

φ

Figure 5.25. By employing a ‘ski-slope’ design of the target tiles, (b), over-heating of
exposed tile corners can be avoided, (a). φ is the toroidal direction.

for smaller (Bθ /B)t , shadows are created on the tile front faces, which reduces
Awet and thus necessarily raises qt on the loaded surfaces. Also operation of the
tokamak with reversed direction of Bφ or Iφ is not possible, reducing operational
flexibility.

Large increases in Awet/ASOL‖ are possibly necessary since q‖ can exceed

109 W m−2 for reactor conditions. Limitations of heat-transfer technology make
heat removal at levels above ∼ 5 MW m−2 problematical. (For comparison, the
heat flux for the interior of a rocket nozzle is about 1 MW m−2 and for a missile
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qdep = (Bθ/B) qII

qII ∝ nt Tt
5/2

ΓII ∝ nt Tt
3/2

Γdep = (Bθ/B) ΓII

The qdep peak is displaced
from the separatrix.

(Bθ/B)

nt

Tt

target
SOLprivate plasma

separatrix

Figure 5.26. Even if parallel particle, �‖, and heat, q‖, fluxes peak at the separatrix, the
deposited fluxes, �dep, qdep, may not do so due to strong variation of Bθ /B across the
target. The latter occurs, for example, when the X-point-to-target distance is short [5.25].

nose cone during ballistic re-entry it is about 4 MW m−2.) Assuming the example
R = 8 m, that λqu = 5 × 10−3 m, λqt = 5 × 10−2 m, and λqdeposited = 0.5 m,
then Awet ≈ 50 m2, which for PSOL = 150 MW gives a tolerable qdeposited =
3 MW m−2.

Because �deposited/�‖ = qdeposited/q‖ ≈ Bθ /B (for the case of orthogonal
targets), deposited flux densities do not necessarily peak at the separatrix, even if
the parallel flux densities do [5.25]. For a ‘deep divertor’ with the targets far from
the X-point, Bθ /B ≈ constant with distance dt across the target. For a ‘shallow
divertor’, however, i.e. the X-point very close to the targets, Bθ /B is a strongly
varying function of dt , being small near the strike point and rising further out.
When this variation is stronger than the radially decaying parallel flux densities,
then the deposited flux densities peak at some distance away from the separatrix
(strike point), figure 5.26.
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5.7 Expressions for the Power Scrape-Off Width, etc

5.7.1 Introduction

The power scrape-off width λq‖ is perhaps the most important parameter of the
edge plasma. All our prescriptions thus far have been expressed in terms of q‖.
We wish to use PSOL, instead, since this is much closer to being a true control
variable. That requires relating λq‖ to the control variables, nu , PSOL, L , and
to χ⊥, etc. Assuming that PSOL [W] enters the SOL entirely via perpendicular
conduction then:

PSOL ≈ A⊥nuχ⊥kTu/λTu (5.54)

where K⊥ ≡ nuχ⊥ is the anomalous heat conduction coefficient; A⊥ is the
surface area of the LCFS from X-point to X-point; A⊥ � 2π R2πaκ1/2, where κ

is the plasma elongation, κ = b/a. (Elliptic poloidal shape with a = horizontal
minor radius, and b = vertical; hereafter the κ is absorbed into a, converting it
into an effective minor radius.) It has been assumed that q⊥cond occurs uniformly
over area A⊥. It should be noted that now nu designates nsep

u specifically, and not
some radially averaged density—which was one of the possible interpretations of
the two-point model expressed in terms of q‖, section 5.2. Throughout the present
section, nu generally means nsep

u .
Equation (5.54) identifies a problem: if A⊥, nu , χ⊥, Tu , are fixed, then as

PSOL is raised, λTu decreases. From equation (5.7) we have the important relation
between power decay length and temperature decay length for the conduction-
limited regime:

λq‖ = 2
7λT . (5.55)

Thus λq‖ will also decrease as PSOL increases and we have q‖ ∝ PSOL/λq‖ ∝
PSOL/λTu ∝ P2

SOL, i.e. q‖ will grow even faster than PSOL. This is clearly
a concern. We note, however, that nu , χ⊥ and Tu are not necessarily constant
and in the following we will take that into consideration. Nevertheless, the final
conclusion is that there is a tendency for q‖ to increase at least as fast as PSOL.

5.7.2 Case of Negligible Parallel T -Gradient

We start by considering the case of weak parallel gradients . Then instead of
equation (5.55), we have, section 4.4:

λq‖ =
(

λ−1
n + 3

2λ−1
T

)−1

. (5.56)

For simplicity take λn ∼ λT , thus:

λq‖ � 2
5λT . (5.57)
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We also have:

PSOL = 1
2γ ncskT ASOL‖q (5.58)

ASOL‖q = 4π Rλq‖(Bθ /B)u (5.59)

which when combined with equations (5.54) and (5.57) gives:

λq‖ =
(

2
5 nχ⊥eA⊥

)3/5

P1/5
SOL[(2e/mi )1/2γ en2π R(Bθ /B)u]2/5

. (5.60)

One can then express q‖ similarly, using equation (5.59), and also the deposited
power flux density qdep, using the flux expansion and cos β. For the case of
negligible T -gradients, the decrease of λq‖ with increasing PSOL is fortunately
quite weak. Indeed the dependence of λq‖ on all parameters is rather weak. Of
course, it must be kept in mind that χ⊥ is anomalous and may turn out to be
correlated with PSOL or other variables. One can also extract the temperature
from these same equations:

T = (2PSOL/(2e/mi )
1/2γ ne4π R(Bθ /B)uλq‖)

2/3. (5.61)

One notes, as earlier, equation (4.114), that the ‘dilution cooling’ effect, T ∝
n−2/3, is much weaker than for the case with T -gradients, where Tt ∝ n−2

u ,
equation (5.10). The ‘dilution cooling’ is also weaker than was found for the
limiter case, section 4.5, equation (4.39), where T ∝ n̄−2 was also found; there,
although there were also no T -gradients, the fact that the ionization occurred
inside the LCFS caused a fortuitous similarity with the case of a divertor with
T -gradients.

Problem 5.6. For the JET-size example PSOL = 10 MW, nu = 1019 m−3, χ⊥ =
2 m2 s−1, A⊥ = 200 m2, R = 3 m, (Bθ /B)u = 0.3, D+ plasma, show that
λq‖ ≈ 5 mm, ASOL

q‖ ≈ 0.06 m2, Tu � 200 eV, q‖ ≈ 170 MW m−2.

This would clearly be an unsatisfactory divertor characterized by both sputtering
and melting problems. One notes the unfortunate tendency for λq‖ to be very
small. It is disappointing that a large device, with such a huge area potentially
available for power removal, A⊥ ≈ 200 m2, only utilizes such a tiny area: even
multiplying ASOL

q‖ by the flux expansion, and by a further factor allowing for non-

orthogonal targets, still tends to result in Awet ≤ 1 m2.

5.7.3 Case of Significant Parallel T -Gradient

We turn now to the case of greatest practical interest, that of significant tempera-
ture gradients along the SOL, [5.16–5.20]. One can formulate an expression for
λq‖ in various equivalent ways.
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(a) First method. From the general behaviour of diffusive transport:

λq‖ ≈ (χ⊥τSOL
E )1/2. (5.62)

We estimate τSOL
E from:

3nkT SOLVSOL/τSOL
E = PSOL (5.63)

with:
VSOL = L ASOL‖ . (5.64)

From pressure balance:
nkT SOL ≈ nukTu . (5.65)

Thus:
λq‖ ≈ (3χ⊥nukTu L ASOL

q‖ /PSOL)1/2 (5.66)

and we may use

Tu �
(

7

2

PSOL

ASOL
q‖

L

κ0e

)2/7

(5.67)

to eliminate Tu from equation (5.66). We can also eliminate ASOL
q‖ using

equation (5.59). This gives an expression for λq‖(nu, χ⊥, PSOL, L , R,
(Bθ /B)u), see below.

(b) Second method. From power conservation we have

dq⊥
ds⊥

� −dq‖
ds‖

(5.68)

and with q⊥ = −K⊥dT/ds⊥, q‖ = −K‖dT/ds‖ one has:

λq‖ � (K⊥/K‖)1/2L . (5.69)

Using
K⊥ = enuχ⊥ (5.70)

for T [eV], and
K‖ = κ0eT 5/2

u (5.71)

one finds essentially the same expression as equation (5.66). Note also the
useful approximate result from equation (5.69):

λq‖ � (enuχ⊥/κ0eT 5/2
u )1/2L . (5.72)

(c) Third method. We combine equation (5.7):

Tu �
(

7

2

PSOL

ASOL
q‖

L

κ0

)2/7

(5.73)
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with the relation for decay lengths derived from this:

λq‖ = 2
7λTu . (5.74)

and:
ASOL

q‖ = 4π Rλq‖(Bθ /B)u (5.75)

also:
PSOL = nuχSOL⊥ kTu A⊥/λTu . (5.76)

Note that we are taking a single location along the separatrix—i.e. the ‘up-
stream’ point—as being representative of the perpendicular power flux den-
sity for the entire LCFS area A⊥. Although one could choose point ‘u’ to
be half way from target to target, it is more standard to take ‘u’ as being
at the midplane. Since there is little variation of T (s‖), etc along the upper
length of the flux tube, see figure 4.17, there is little error in doing this.
The reason for favouring the midplane is that the magnetic flux surfaces are
generally closest together there and, thus, if χSOL⊥ is spatially constant, this
is where most of the power enters the SOL. It would therefore be a good
choice for ‘u’ when assuming all power enters at the ‘upstream end’ (and
one would then simply take the region from the midplane to the top to be at
essentially constant T and n ). Sometimes, however, it is hypothesized that
the (anomalous) χSOL⊥ varies proportionately to the separation of the flux
surfaces in the poloidal plane, i.e. χSOL⊥ ∝ Bθ . In that case, power enters
virtually uniformly along the separatrix, X-point to X-point, and the choice
of midplane as the representative location is as good as any. One would be
better to use equation (4.91) in place of equation (5.7) in that case, but the
effect is clearly small.
In proceeding to combine equations (5.7), (5.74) and (5.75) we need to make
a decision about whether or not to attempt to relate (Bθ /B)u to L . If we make
the circular tokamak assumption then we may use:

q ≈ a

R

B

Bθ

(1.1)

and
L ≈ π Rq (1.7)

to replace (B/Bθ )u with either L or q, the safety factor (note: q is not the
power flux density here!). This makes for more convenient expressions and
such formulae are given below for λq‖ , etc. Unfortunately, for the typical
divertor geometry this can introduce substantial errors, particularly for q‖
and for the target region quantities such as Tt , etc. Generally (Bθ /B)u

is substantially larger than the circular tokamak expressions would imply
((Bθ /B)circular

u = aπ/L) and this can significantly underestimate the size
of ASOL

q‖ . It is better therefore to retain both L and (Bθ /B)u , which can be
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obtained from magnetics calculations for each tokamak discharge of inter-
est. In the following therefore we list three alternative expressions for each
quantity such as λq‖ , namely, in terms of (a) q, (b) L or (c) L and (Bθ /B)u .
The last one is preferred.

For power decay length λq‖ :

(a)

λq‖ =
(

7

8

)2/9(8π2

7

)7/9

(ensep
u χSOL⊥ )7/9 P−5/9

SOL κ
−2/9
0 q4/9 Ra5/9 (5.77)

(b)

λq‖ =
(

8π2

7

)5/9

(ensep
u χSOL⊥ )7/9 P−5/9

SOL κ
−2/9
0 L4/9(a R)5/9 (5.78)

(c)

λq‖ = 
85/9π4/3

75/9
(ensep

u χSOL⊥ )7/9 P−5/9
SOL κ

−2/9
0 L2/9(Bθ /B)

−2/9
u a7/9 R5/9.

(5.79)

As an example: equation (5.77) is obtained by (i) combining (5.73) and (5.76) to
eliminate Tu , (ii) using (5.74) to convert λTu to λq‖ , (iii) using A⊥ = 2π R2πa,
L = π Rq, and (Bθ /B)u = aπ/L . It is readily shown that these results are
essentially the same as from the first two methods. The expressions can be applied
separately to electrons and ions, or combined when equipartition is strong.

Problem 5.7. For a JET-size example: Pe
SOL = 5 MW, nu = 2 × 1019 m−3,

χSOL⊥ = 4 m2 s−1, R = 3 m, L = 50 m, a = 1.5 m, (Bθ /B)u = 0.3, use
the (c) formulation to show that: λq‖e = 10 mm, ASOL

q‖e = 0.11 m2, q‖e =
44 MW m−2. Using the results of section 4.10.2 show that one would therefore
anticipate that this SOL would have a significant Te-gradient.

Next use the (b) formulation to show that λq‖e = 13 mm, ASOL
q‖e = 0.046 m2,

q‖e = 110 MW m−2. Note how much smaller ASOL
q‖e is with formulation (b).

(It is necessary consistently to replace (Bθ /B)u with aπ/L in all expressions,
including that for ASOL

q‖e which becomes ASOL
q‖e = 4π2a Rλq‖e/L .) Show that using

the (b) formulation that one would not expect to find a significant Te-gradient.
Comment.

Note: These expressions for λq‖e—and the ones below for Tu , q‖e, Tt , etc—are
for a single-null divertor where PSOL, the total power into the SOL, goes equally
to the two targets.

Copyright © 2000 IOP Publishing Ltd.



Expressions for the Power Scrape-Off Width, etc 257

Problem 5.8. For analysis of each divertor leg separately, for a single-null diver-
tor PSOL is re-defined to be the power input to the one leg; argue that one also
changes to: A⊥ = 1

2 2πa2π R and ASOL
q‖ = 2π Rλq‖(Bθ /B)u ; argue that one still

uses L ≈ π Rq and (Bθ /B)circular
u = aπ/L .

For analysis of each divertor leg separately, for a double-null divertor, PSOL
is also re-defined to be the power input to one leg; argue that one then also uses:
L ≈ 1

2π Rq, (Bθ /B)circular
u = aπ/2L , ASOL

q‖ = 2π Rλq‖(Bθ /B)u and A⊥ =
1
4 2πa2π R.

The expressions for λq‖ , Tu , etc are then re-calculated in a straightforward
way and only the numerical factors change. Find the numerical factors for the two
cases for equation (5.77). These considerations also apply to the case of negligible
parallel T -gradients, section 5.7.2.

A number of observations may be made about these key expressions for the power
width. First, however, it is important to note that since χSOL⊥ is anomalous, it may
well be correlated with nu , PSOL, etc, and so these expressions should not be taken
to guarantee, for example, that λq ∝ n7/9

u , etc. However if χSOL⊥ is a constant then
a number of important conclusions follow:

(1) λq ∝ P−5/9
SOL . This is unfortunate, as it means that the power flux density will

increase even faster than the SOL power itself. This may be a rather robust
dependence since it is due to the simple and basic point already made in the
discussion following equation (5.54), namely that the principal way the SOL
handles extra power is by reducing λT .

(2) λq ∝ L4/9, so it is helpful to increase connection lengths. The dependence
is about the same as for the simple SOL, section 4.3, where λ ∝ L1/2.

(3) If electrons and ions are thermally de-coupled upstream—a common situ-
ation, section 4.11—then we may apply these relations to them separately.
Unfortunately, little is known about the power split entering the SOL, but if
Pe

SOL ≈ Pi
SOL, and if χSOLe⊥ ≈ χSOLi⊥ then λq‖e/λq‖i ≈ (κ0i/κ0e)

−2/9 ≈
(60/2000)−2/9 ≈ 2.2. That is, the ion power may be less concentrated
than the electron power. This may be one explanation of the experimental
observation that power profiles are not always single exponentials.

(4) With regard to the comparison of tokamaks of different sizes: for the same
PSOL, ‘bigger is better’, i.e. λq is bigger; specifically λq ∝ Ra5/9. However,
it is presumably also the case that PSOL ∝ volume ∝ Ra2 in which case
λq ∝ R4/9a−5/9, and so size would have little effect.

(5) Increasing density is helpful, λq ∝ n7/9
u ; however, the above caveat is noted:

χSOL⊥ may itself depend on nu . One usually wants the highest possible nu ,
n̄e in order to increase fusion power.

(6) From measurements of λTu

(= 7
2λqu

)
it is possible, in principle, to extract

χSOL⊥ from experimental data using the above expressions, or proceeding
equivalently, chapters 20, 21.
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In section 5.2 we obtained expressions for Tu , Tt , etc, but in terms of q‖ rather
than the true control variable PSOL. Now that we have λq in terms of PSOL, we
may express Tu , etc on the same basis.

It is to be noted that, just as nu represents nsep
u here, so the following expres-

sions for Tu , q‖u , Tt , nt , �t represent values at the separatrix. In the simplest
situations these are also the peak values in the SOL.

(1) Upstream temperature Tu.

(a)

Tu =
((

7

8π

)2 P2
SOLq2

ensep
u χSOL⊥ κ0a2

)2/9

(5.80)

(b)

Tu =
((

7

8π2

)2 P2
SOLL2

ensep
u χSOL⊥ κ0a2 R2

)2/9

(5.81)

(c)

Tu =
((

72

82π3

)
P2

SOLL

ensep
u χSOL⊥ κ0a R2(Bθ /B)u

)2/9

. (5.82)

As before, Tu is weakly dependant on all variables.

Problem 5.9. For the same JET-size example as above show Tu = 76 eV from
equation (5.82).

(2) Parallel power flux density q‖.

(a)

q‖ = 75/98−11/9π−23/9
(

P2
SOL

ensep
u χSOL⊥

)7/9 q5/9κ
2/9
0

a14/9 R
(5.83)

(b)

q‖ = 75/98−11/9π−28/9
(

P2
SOL

ensep
u χSOL⊥

)7/9 L5/9κ
2/9
0

(a R)14/9
(5.84)

(c)

q‖ = 75/98−11/9π−7/3
(

P2
SOL

ensep
u χSOL⊥

)7/9 κ
2/9
0

L2/9(Bθ /B)
7/9
u R14/9a7/9

.

(5.85)

The leading numerical factors above are: 0.0125, 0.006 59, 0.0161. The
same JET-size example gives 44 MW m−2 from equation (5.85). We note
that q‖ ∝∼ P3/2

SOL which shows, unfortunately, that the power flux density
does tend to increase faster than the SOL power itself (assuming χSOL⊥ con-
stant). Roughly q‖ ∝ (nuχSOL⊥ )−1, so that increasing density is helpful,
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as also is increased cross-field transport, χSOL⊥ . Also q‖ ∝∼ L1/2, so that
longer connection lengths are helpful. As to dependence on machine size,
assuming PSOL ∝ Ra2, then q‖ ∝ R5/9a14/9 ∝ (size)2, approximately,
which is unfortunate.

(3) The power flux density deposited on the target. The power flux density
deposited on the target, assuming no volumetric power losses in the SOL
and no heat transport from the SOL into the private plasma, is:

qdep = PSOL/Awet = cos β
(Bθ /B)t

(Bθ /B)u
(Bθ /B)uq‖. (5.86)

where we have included the cos β factor to allow for a possible tilt of the
targets relative to Bθ (‘non-orthogonal targets’), figure 5.24. One also notes
that qdep is increased relative to q‖ by the inverse of the flux expansion,
equation (5.52). Thus:

(a)

qdep = cos β
(Bθ /B)t

(Bθ /B)u
75/98−11/9π−23/9

(
P2

SOL

ensep
u χSOL⊥

)7/9 κ
2/9
0

q4/9a5/9 R2

(5.87)
(b)

qdep = cos β
(Bθ /B)t

(Bθ /B)u
75/98−11/9π−26/9

(
P2

SOL

ensep
u χSOL⊥

)7/9 κ
2/9
0

L4/9a5/9 R14/9

(5.88)
(c)

qdep = cos β
(Bθ /B)t

(Bθ /B)u
75/98−11/9π−7/3

(
P2

SOL

ensep
u χSOL⊥

)7/9

× κ
2/9
0 (Bθ /B)

2/9
u

L2/9 R14/9a7/9
. (5.89)

The leading numerical factors above are: 1.25× 10−2, 9.65× 10−3, 1.61×
10−2.

Problem 5.10. For the same JET-size example, and also assuming a flux expan-
sion of 10, cos β = 1 and (Bθ /B)u = 1/4 show for the (c) formulation that
qdep/q‖ = 0.025 and qdep = 1.1 MW m−2.

(4) Target temperature Tt .

(a)

Tt = 2× 72/98−14/9π−38/9
(

mi

γ 2e37/9

)
P20/9

SOL q2/9κ
8/9
0

(nsep
u )28/9(χSOL⊥ )10/9a20/9 R2

(5.90)
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(b)

Tt = 2× 72/98−14/9π−40/9
(

mi

γ 2e37/9

)
P20/9

SOL L
2/9κ

8/9
0

(nsep
u )28/9(χSOL⊥ )10/9(a R)20/9

(5.91)
(c)

Tt = 2× 72/98−14/9π−10/3
(

mi

γ 2e37/9

)

× 
P20/9

SOL κ
8/9
0

(nsep
u )28/9(χSOL⊥ )10/9L8/9(Bθ /B)

10/9
u a10/9 R20/9

(5.92)

The leading numerical factors above are: 9.66× 10−4, 7.49× 10−4, 2.67×
10−3.

Problem 5.11. For the same example as above show for the (c) formulation that
Tt = 28 eV for D+ ions and γ = 7. Next use the (b) formulations to calculate Tu

and Tt , thus showing that, as anticipated in problem 5.7, this formulation would
predict very little Te-variation along the SOL for these plasma conditions.

To a good approximation:

Tt ∝ P2
SOL/n3

u (5.93)

and one may note that Tt is even more sensitive to control parameters when
the effect on the power width is included; compare this to equation (5.10)
which gave Tt ∝ q10/7

‖ /n2
u . One notes that it is particularly effective to raise

the upstream density in order to reduce Tt and thus also target sputtering.
(4) Target density nt .

(a)

nt = 24/372/9π34/9
(

γ 2e35/9

mi

)
(nsep

u )35/9q2/9a16/9(χSOL⊥ )8/9 R2

P16/9
SOL κ

10/9
0

(5.94)
(b)

nt = 24/372/9π32/9
(

γ 2e35/9

mi

)
(nsep

u )35/9L2/9(a R)16/9(χSOL⊥ )8/9

P16/9
SOL κ

10/9
0

(5.95)
(c)

nt = 24/372/9π8/3
(

γ 2e35/9

mi

)

× (nsep
u )35/9L10/9a8/9 R16/9(χSOL⊥ )8/9(Bθ /B)

8/9
u

P16/9
SOL κ

10/9
0

. (5.96)
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The leading numerical factors above are: 293.3, 227.4, 82.2.

Problem 5.12. For the same example as above for the (c) formulation show that
nt = 2.7× 1019 m−3 and confirm this answer using pressure balance directly.

Approximately,

nt ∝ n4
u/P3/2

SOL (5.97)

and thus the target density is even more sensitive to the control parameters
than Tt . The sensitivity has also increased compared with the result neglect-
ing the variation in λq‖; compare equation (5.97) with equation (5.12) where

nt ∝ n3
u/q8/7

‖ .

(6) Target particle flux density �t . Recycle intensity.

(a)

�t = 71/3π5/3
(

γ e7/3

mi

)
(nsep

u )7/3q1/3a2/3(χSOL⊥ )1/3 R

P2/3
SOLκ

2/3
0

(5.98)

(b)

�t = 71/3π4/3
(

γ e7/3

mi

)
(nsep

u )7/3L1/3(a R)2/3(χSOL⊥ )1/3

P2/3
SOLκ

2/3
0

(5.99)

(c)

�t = 71/3π

(
γ e7/3

mi

)(
(nsep

u )7L2a R2χSOL⊥ (Bθ /B)u

P2
SOLκ2

0

)1/3

. (5.100)

Problem 5.13. For the above example use the (c) formulation to show that �t =
1.4 × 1024 ion pairs m−2 s−1 and confirm the answer using the value of sound
speed calculated for Tt from problem 5.11.

Approximately:
�t ∝ n2

u (5.101)

which is about the same relation as when the variation of λq‖ was not in-
cluded, equation (5.14).

One may introduce, as in section 5.4, the same correction factors, fpower
equation (5.18), fmom, equation (5.20), and fcond, equation (5.23). This intro-
duces slightly different correction multiplying factors than found earlier when
variations of λq‖ were not included:
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Quantity Allowing for λq‖ variation Neglecting λq‖ variation

λq‖ ( fcond)
2/9 —

Tu ( fcond)
2/9 ( fcond)

2/7

q‖, qdep ( fcond)
−2/9 —

Tt
(1− fpower)

2

f 2mom f 
8/9
cond

(1− fpower)
2

f 2mom f 
4/7
cond

nt
f 3mom f 

10/9
cond

(1− fpower)
2

f 3mom f 
6/7
cond

(1− fpower)
2

�t
f 2mom f 

2/3
cond

(1− fpower)

f 2mom f 
4/7
cond

(1− fpower)

Tu/Tt
f 2mom f 

10/9
cond

(1− fpower)
2

f 2mom f 
6/7
cond

(1− fpower)
2

The upstream quantities λq‖ , Tu , q‖ remain robust while the target quantities
are even more sensitive than before. The power width is perhaps the most critical
edge quantity, owing to its great practical impact, and therefore its insensitivity
to virtually all factors warrants further discussion. Note from equations (5.77)
to (5.79) that λq‖ depends only on upstream quantities—and is independent of the
volatility which is characteristic of target quantities—as indicated by the forego-
ing table. The power width entering the divertor—even if volumetric losses are
strong—is thus also robust, although in this case the power reaching the actual
target is no longer a robust quantity. One positive consequence of this robustness
is a useful simplification for our understanding of divertor behaviour. A serious
negative consequence, that it is difficult to do anything about the power width,
which given its tendency to being thin, is a major concern.

It may seem not only unfortunate but surprising that λq‖ cannot be influenced
by manipulation of target conditions, for example through the secondary electron
emission coefficient of the target—which does influence power widths for the
simple SOL, the sheath-limited regime: see equation (5.60) which indicates that
λq‖ is sensitive to the sheath transmission coefficient γ , which in turn is sensitive
to secondary electron emission. Certainly we are free to write the power balance
equation:

A⊥nukTuχ⊥/λ ≈ 4π Rλγ (B/Bθ )t nkTt cst (5.102)

where for simplicity we ignore here the fact that ‘λ’ on the RHS is λTu , while
‘λ’ on the LHS is λ

target
q‖ . Together with pressure balance, nu Tu = 2nt Tt , this

gives [5.20]:

λq‖ ∝
(

2A⊥χ⊥
γ cst 4π R

)1/2

. (5.103)
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From this equation it appears that λq‖ is sensitive to target quantities, specifically
γ , cst . This is not true however, since it is also necessary to satisfy:

2
7 T 7/2

u κ0/L ≈ γ nt kTt cst (5.104)

= γ cst 
1
2 nukTu . (5.105)

Since Tu , κ0, L and nu are essentially fixed, then so must be the product γ cst , and
thus from equation (5.103) it is evident that one cannot influence λq‖ by changing
γ .

We thus see that in the conduction-limited regime, the sheath is indeed not
a limiting factor—at least so far as the upstream quantities q‖, λq‖ , Tu are con-
cerned, and the sheath heat coefficient γ therefore does not appear in the expres-
sions for these quantities. For target quantities, Tt , nt , etc, the sheath does play a
role and γ appears in the expressions for these quantities.

In section 4.11.3 we showed that significant T -drops occur (Tu/Tt ≥ 3)

when:
q‖ ≤ 1.3× 10−28n7/4

u L3/4. (5.106)

The corresponding expression in terms of the true control valuable PSOL is ob-
tained by combining this equation with equation (5.82):

PSOL ≤ 4.4× 10−27n13/8
u L5/8[(Bθ /B)u R2aχSOL⊥ ]1/2 (5.107)

for P [MW], n [m−3], χ [m2 s−1], a, R, L [m]. The previous JET example
gives 4.7 MW and recall that for the assumed Pe

SOL = 5 MW it was found that
Tu/Tt = 76 eV/28 eV ≈ 3. Equation (5.107) was calculated using κ0e = 2000;
the numerical coefficient in equation (5.107) varies as κ

−1/7
0 , thus making it

slightly larger for ions.
When the fpower and the other corrections are included, then a multiplying

factor:
f 7/4
mom f 35/36

cond

(1− fpower)7/4
≈ f 2

mom fcond

(1− fpower)2
(5.108)

appears on the RHS of equation (5.107).
Volumetric power loss can be quite effective at changing the SOL from being

sheath limited, ∇‖T ∼ 0, over to one having a large T -drop, thus reducing
problems at the target.

Problem 5.14. Consider an ITER-size example: nu = 3 × 1019 m−3, Pe
SOL =

100 MW, χ⊥ = 4 m2 s−1, R = 8 m, a = 3 m, L = 100 m, (Bθ /B)u = 0.3. Ap-
plying equation (5.107) show that Pe

SOL must be 53 MW for a significant T -drop
to exist, so this SOL will be characterized by ∇‖T ∼ 0. Next use equation (5.61)
to show that Te ≈ 150 eV. Clearly sputtering will be extremely strong since ion
impact energies will be of order 1 keV. Show that q‖e ≈ 300 MW m−2 so that the
angle between B and the target surface will have to be quite glancing, � 1◦, to
avoid deposited heat loads exceeding 5 MW m−2.
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We may conclude that the situation in problem 5.14 is probably not a practical
divertor solution. One solution would be to raise the density. Let us also consider
a different solution, namely one that includes volumetric power loss, say, fpower =
2/3; we will keep fcond = fmom = 1.

Problem 5.15. Use equation (5.108) to show that now values of Pe
SOL up to ≈

350 MW will still give a large T -drop. Therefore, for the same example as in
problem 5.14, except now with fpower = 2/3, use equation (5.79) to show that
λq‖u = 8.9 mm, equation (5.82) to show that Tue = 170 eV, and equation (5.92) to
show that Tte = 20 eV, a much lower value and one which will reduce sputtering
considerably. Show that the parallel electron power flux density reaching the
target is 125 MW m−2, which will make power removal more practical.

We see from problem 5.15 the benefits of removing two-thirds of the SOL
power by volumetric processes. We must, however, also consider how feasible
it is actually to remove such a large fraction of the power. It will probably be
necessary to exploit impurity radiation in order to achieve fpower = 2/3, i.e.
67 MW of total volumetric power loss.

Problem 5.16. Consider the hydrogenic recycle radiative loss, say εrad
recycle =

25 eV/recycling neutral, section 3.5. For the last example show that the
target particle flux density is �t = 5.6 × 1024 m−2 s−1, and taking
A‖� ≈ A‖q as an (under-) estimate, show that the total recycling flux
becomes φrecycle = 1.5 × 1024 s−1. Thus show that the recycle radiative
loss = εrad

recycleφrecycle = 6 MW. There will also be charge-exchange neutral
losses: let us suppose there is one cx neutral deposition event per recycling
neutral. Show that this gives a power loss of ≈ 3

2 kTeφrecycle = 7 MW here.
The total power radiated by impurities, section 3.5: Prad,z = Erad pot,zφz

where the total impurity influx rate, φz = Yφrecycle and Y is the average yield at
the target. For illustration, take Y = 0.03 and Erad pot,z = 5 keV per sputtered
particle. Show that this gives Prad ∼ 40 MW. This is of the order required. Show,
however that this erosion rate for carbon targets corresponds to about 10 cm/year,
neglecting re-deposition, and assuming the target is tilted to the field lines such
that Awet/A‖ ∼ 100. It is also a concern that the resulting contamination level of
the main plasma may be unacceptably high.

5.8 SOL Collisionality and the Different Divertor Regimes

In the conduction-limited regime the temperature ratio, Tu/Tt , is a simple func-
tion of the collisionality parameter, ν∗SOL. One can combine equations (4.91),
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(4.105), (5.4), and (5.19) to obtain:

Tu

Tt
=

(
7eγ

8× 10−16κ0(mi/2e)1/2

)2( ν∗SOL

1− fpower

)2

≈ 2.3× 10−3
(

ν∗SOL

1− fpower

)2

(5.109)

where e = 1.6× 10−19, κ0 = 2000, γ = 8, mi = 2× 1.67× 10−27 were used in
equation (5.109) and ν∗SOL is given by equation (4.106).

The definition of the transition from the conduction-limited to the sheath-
limited (constant T along flux tube) regimes is somewhat arbitrary, but let us take
the transition to occur at:

Tu/Tt ≈ 1.5. (5.110)

Thus, taking fpower ≈ 1/2 as representative, one arrives at the collisionality
criterion for the transition:

ν∗SOL|cond↔sh ≈ 10 (5.111)

This then gives also:

Tu |cond↔sh ≈ 3.2× 10−9(nu L)1/2. (5.112)

Next we consider the transition from the conduction-limited regime to the de-
tached regime. The properties of the detached divertor are discussed in more
detail in chapter 16. Here we will simply assume that detachment sets in when
Tt has been reduced to a few eV, at which point the principal physical processes
governing detachment—ion-neutral friction and volume recombination—become
important. This criterion only involves Tt , not Tu , and so strictly we cannot use
the convenient relation between Tu/Tt and ν∗SOL, equation (5.109), to obtain a
simple quantitative criterion equivalent to equations (5.111) and (5.112). We may
recall, however, that Tu is rather insensitive to all control parameters and for a first
approximation we may simply take Tu to be 100 eV, fixed. We will also arbitrarily
take Tt = 1.5 eV to be indicative of a low enough temperature for detachment to
set in. Thus we insert the ratio Tu/Tt = 100/1.5 into equation (5.109) (although
otherwise Tu is left free of course) to obtain the criterion for transition from the
conduction-limited regime to the detached regime:

ν∗SOL|cond↔det ≈ 85 (5.113)

and thus
Tu |cond↔det ≈ 1.1× 10−9(nu L)1/2. (5.114)

The obvious benefit of this approximate treatment is that both transitions, equa-
tions (5.112) and (5.114), occur along straight lines on a Tu–(nu L)1/2 plot; see
figure 5.27. One can also then say that, to within a factor of ≈ ±50%:

Tu ≈ 2× 10−9(nu L)1/2 (5.115)
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Figure 5.27. Values of upstream electron temperature Teu on JET as a function of
(neu L) [5.26]. The values of Teu and neu were calculated using onion-skin method
analysis, chapter 12, based on target Langmuir probe measurements. The solid lines are
from equations (5.112) and (5.114). The JET discharges had been pre-selected, before the
OSM analysis, as ones which were known not to be detached. JET tends not to run in
the sheath-limited regime, except perhaps in so-called ‘hot ion H-mode’ shots, where low
values of n̄e are employed, together with strong beam heating, in order to maximize fusion
power output [5.65]. Such shots are likely to be low recycling/sheath limited, and had
also been excluded from the original data set. The remaining JET shots might therefore
have been expected to be conduction limited, which is seen in fact to be consistent with
the predictions of equations (5.112) and (5.114). The dashed line is equation (21.13),
chapter 21.

is representative of upstream plasma conditions in the conduction-limited regime.
It is perhaps surprising that Tu and nu are so closely related in the

conduction-limited regime, but this has been reported for some tokamaks [5.26],
figure 5.27.

It is not necessary to use the assumption that Tu = 100 eV, fixed, although
the quantitative criterion is then no longer expressible purely in terms of ν∗SOL.
We may combine equations (5.7) and (5.8) with the same assumption as before
that detachment sets in at Tt = 1.5 eV to obtain:

Tu |cond↔det = 1.7× 10−7(nu L)2/5 (5.116)

where the same values of the constants were used as before. One may note that
the constant in equation (5.116) only depends on Tt as T 1/5

t , and so the precise
choice of Tt to represent the transition to detachment is not critical.

It is also useful to obtain a criterion for this transition in terms of the power
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entering the SOL. Combining as before equations (5.7) and (5.8) and using the
same constants as before gives:

Tu |cond↔det = 3.6× 10−21n7/5
u L2/5 (5.117)

q‖ [W m−2], nu [m−3], L [m]. The numerical factor in equation (5.117) depends

on the choice of Tt as T 7/10
t .

Problem 5.17. For nu = 3 × 1019 m−3, L = 50 m show that q‖|cond↔det =
3.2× 107 W m−2.

It is more useful to express this criterion in terms of PSOL, rather than q‖. We now
use equation (5.91) inserting Tt = 1.5 eV to give the transition:

nu |cond↔det = 4.2× 1015 P
5/7
SOLL1/14(1− fpower)

9/14

χ
5/14
⊥ (a R)5/7

(5.118)

n [m−3], P [W], L [m], χ [m2 s−1], a [m], R [m], and where the same constants
were used as before. The numerical factor in equation (5.118) only depends on
the choice of Tt as T−9/28

t , and is thus not critical. The dependence on χ⊥ in
equation (5.118) is rather weak and we will use χ⊥ = 0.3 m s−1 for an estimate
here. The dependence on L , thus on safety factor q, is particularly weak and we
will use L = 50 m for an estimate. The dependence on volumetric power loss
in the divertor, fpower, is more significant, but for a rough estimate we may take
fpower = 1/2, fixed, as before. Thus:

nu |cond↔det = 5.5× 1015(PSOL/a R)5/7. (5.119)

Problem 5.18. For a JET-size example, PSOL = 1 MW, a = 1.5 m, R = 3 m,
show that nu |cond↔det = 3.6 × 1019 m−3. Find the transition for a CMOD-size
example: PSOL = 0.5 MW, a = 0.25 m, R = 0.6 m.

Equations (5.118), (5.119) indicate that nu |cond↔det ∝ q5/7
⊥ , where q⊥ is the

power flux density into the SOL. As noted above, the dependence on fpower, equa-
tion (5.118), is non-negligible, 9/14 ≈ 0.64, and in reality variations in this pa-
rameter with nu and PSOL would probably weaken the dependence of nu |cond↔det
on q⊥. The foregoing should therefore only be considered as crude estimates.

If we make the further crude simplification that nu ≈ n̄e, see however
chapter 19, then equation (5.119) provides an estimate for the onset of detachment
in terms of the main control parameters of a tokamak, n̄e and power input.

5.9 Divertor Asymmetries

It is important to achieve as large a plasma-wetted area as possible, section 5.6,
and to distribute the power load as evenly as possible over this area. Divertor
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asymmetries are therefore a concern. An early disappointment was the discovery
that double-null divertors essentially use only the two outer targets for power
loading; see review [5.1]. This appears to be largely due to two geometrical
factors:

(a) A torus has a larger area over its outer half than over its inner half and if the
power outflow density across the separatrix is uniform, the outside SOL will
receive more power than the inside.

(b) The magnetic flux surfaces on the outboard side are usually compressed with
respect to the inboard-side due to the Shafranov shift [5.27] and if the cross-
field heat flux is proportional to radial gradients, the outboard side is further
favoured.

Asymmetries in target power loading are much smaller for single-null divertors—
typically of order 2X, favouring the outside—presumably due to the fact that the
SOL then strongly connects the inside and outside and because parallel transport
is so rapid. The fluctuation levels are different in the inner and outer SOLs [5.1]
presumably indicating that the cross-field transport coefficients vary poloidally.
That would also contribute to the strong inside/outside asymmetries observed for
double-null divertors, but would be smoothed out for single-null divertors.

Even for single-null divertors some asymmetry persists and typically:

Tinner < Touter

ninner > nouter

P rad
inner > P rad

outer

P target
inner < P target

outer . (5.120)

As n̄e is raised the inner divertor tends to enter the conduction-limited regime
before the outer divertor and then tends to detach before the outer does.

It is conceivable that these asymmetries are due to an asymmetry in the total
power reaching each divertor leg, P total

div :

P total
div ≡ P rad

div + P target
div . (5.121)

It may be that the power enters the SOL primarily near the outside midplane
due to strong fluctuations there associated with ‘bad curvature’ [5.28]. Thus the
distance from source to sink is shorter for the outside target, apparently implying
P total

outer > P total
inner. Careful measurements of P rad

div and P target
div on JT60-U [5.29],

however, showed not much asymmetry in P total
div , figure 5.28. There is not even a

very significant dependence in the JT60-U results on the direction of the toroidal
magnetic field, which might have been expected to have some effect via drifts,
chapter 18. See [5.1] for further references on in/out asymmetries in divertor
tokamaks. Similar near-balance in P total

div (in : out ∼ 1 : 1.3) was reported on
DIII-D [5.30]. The picture is not, however, totally consistent, with substantial
asymmetries in P total

div , favouring the inside, being reported on JET [5.31].
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Figure 5.28. Data from JT-60U for the inner divertor share of the radiated power, deposited
power and the sum of the two as a function of density for the two field directions for
L-mode discharges [5.29].

It is not clear at this time what the underlying cause is of these asymme-
tries in single-null divertors. It may well be, however, that some small, hard to
identify factor acts as a trigger for a strong, positive feedback effect: if for some
reason the level of P rad

div should increase then Tdiv will drop, and through pressure
balance, ndiv will rise. Hydrogenic and low Z impurity radiation increases in
efficiency with decreasing Te, section 3.5, and increases in absolute intensity with
increasing ne. Thus a positive feedback results, further raising P rad

div and nt while

reducing P target
div and Tt , etc. The feedback would be further strengthened by the

great sensitivity of nt and Tt in the conduction-limited regime as discussed in
section 5.4:

Tt ∝ (1− fpower)
2, nt ∝ (1− fpower)

−2. (5.122)

A number of effects have been proposed as possible asymmetry triggers, including
thermoelectric current instabilities [5.32–5.34], gyro-orbit effects [5.35], etc.
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5.10 The Effect of Divertor Geometry

The volume devoted to the divertor involves a reduction of the volume available
for the main, fusion-producing plasma within the expensive toroidal magnets. It
is therefore important to optimize the geometry of the magnetic field and the
solid structures within the divertor, so as to maximize the dispersal of the exhaust
power, while minimizing structural erosion and leakage of impurities and hydro-
genic neutrals to the main plasma. It is also desirable to compress the helium
impurity produced as DT fusion ash, in the divertor to facilitate efficient removal
at the pumps.

In the 1990s, substantial variations of divertor geometry were evaluated
on JET [5.9, 5.13, 5.36–5.38]; ASDEX-U [5.39–5.42]; JT-60 [5.43–5.45];
DIII-D [5.46, 5.47]; CMOD [5.48–5.50]; JFT-2M [5.51]. This topic is a complex,
multi-faceted one that we cannot examine further here. Broadly, it is found that
changes to divertor geometry tend not to have large effects on the main plasma
properties, but can result in significant changes to the way the divertor itself
performs, primarily with regard to the neutral pressure near the divertor, where a
pump is most naturally located. Given the major cost implications of this issue, it
will remain an evolving focus of tokamak research.

5.11 The Ergodic Divertor

As was pointed out in chapter 1, magnetic confinement is actually too good at
the plasma edge, making scrape-off layers thinner than is desirable for good
spatial distribution of the power exiting the plasma and depositing on the solid
structure. It would therefore be advantageous if one could engineer an ‘edge de-
confined volume’ [5.52], i.e. a region localized at the edge where the magnetic
confinement is significantly degraded. Such an approach—termed the ergodic
divertor—was proposed by Feneberg in 1977 [5.53–5.55], involving creation
of a layer in the plasma by applying an harmonic perturbation to the tokamak
magnetic equilibrium using special magnetic coils. This introduces ergodicity
to the magnetic field at the edge and a stochatization of the edge plasma. A
chain of magnetic islands is created near the edge. When overlapping of the
islands occurs, stochasticity of the field lines is generated. Particles can thus
move across the equilibrium (unperturbed) magnetic field because of what is, in
fact, motion along the actual, local magnetic field. The result is effective cross-
field transport coefficients, which are much enhanced over the usual anomalous
ones. On TORE SUPRA, χeff⊥ values exceeded 10 m2 s−1 over the perturbed edge
region, exceeding 100 m2 s−1 at its outer boundary [5.52].

The result of such enhanced cross-field transport can be significant flattening
of radial profiles. Figure 5.29 shows an example of the flattening of the Te(r)

profile on the TEXT tokamak with/without an ergodic magnetic limiter [5.56].
One of the original, explicit motivations for the creation of ergodic layers,
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Figure 5.29. Edge temperature profile in the TEXT tokamak in the limiter and ergodic
magnetic limiter (EML) configurations [5.56].

Figure 5.30. TORE SUPRA. Carbon content of the bulk plasma in limiter and ergodic
configuration as a function of 〈ne〉. The squares are for shots with pellet injection [5.57].

and enhanced radial transport, was the reduction of impurity levels in the main
plasma [5.54]. As found in section 4.6 central density levels are inversely propor-
tional to D⊥ (in section 4.6 this was demonstrated for the hydrogenic plasma, but
the arguments apply equally to impurities, section 6.4.1). Indeed, such reductions
have been found experimentally, see figure 5.30 [5.57], which shows a reduction
of the carbon content in TORE SUPRA. The explanation of such reductions,
however, may be more complex than originally thought [5.52].
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Figure 5.31. TORE SUPRA. Experimental evidence of divertor density regimes achieved
with the ergodic divertor when 〈ne〉 is increased [5.62, 5.63]. Parameter fG is the value of
〈ne〉 as a function of the Greenwald density limit, section 22.1. For fG < 28%, ndiv is in
the linear regime with detachment setting in at fG ∼ 33%. The lines in lower figure, for
Tdiv, are from a 1D model which assumed different impurity fractions, cz .

Another principal motivation for use of ergodic layers was the wider dis-
persal of exhaust power over the solid edge structures, i.e. larger plasma-wetted
areas. It turns out that the heat flux deposition resulting from ergodic layers is
not homogeneous, as might have been expected from original thinking, largely
because a non-stochastic, laminar layer (classical SOL) exists near the solid struc-
tures, with the stochastic layer existing radially further in [5.58–5.60]. The large
volume of the ergodic region gives particularly high levels of radiative cooling of
the edge [5.61].

The same three regions as observed with standard divertors—sheath lim-
ited, conduction limited and detached—have been found on TORE SUPRA, fig-
ure 5.31, [5.62, 5.63]. At low density ndiv varies linearly with n̄e, then at high
density, a more rapid variation is found, ndiv ∝∼ (n̄e)

3, finally resulting in
detachment, i.e. a drop in ndiv, chapter 16 [5.63].

The ergodic divertor thus involves much of the same physics as standard
(X-point) divertors, but with possibilities for larger divertor plasma volumes and
increased operational flexibility.
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Additional Problems

5.19. Derive equation (5.13).

5.20. (a) Basic two-point model. Use equation (5.7) for Tu and equation (5.9)
for Tt to confirm the results shown in figure 4.17; nu = 3 × 1019 m−3,
L = 100 m, κ0 = 2000, γ = 7, D+ ions.

(b) For the examples shown in figure 4.17 use the two-point model to find
nt , �t and the average impact energy of D+ ions on the targets.

(c) Assuming a plasma volume of 1000 m3, a plasma-wetted area of 10 m2

and (Bθ /B) = 0.03 at the target, estimate the total recycling flux and
the particle confinement time. Take the average plasma density to be
approximated by nu .

(d) For the above assumptions, and assuming a carbon target, use the sput-
tering yields of section 3.3 to estimate physical and chemical sputtering
rates. Assume the carbon temperature is 600 K. If the average impu-
rity density in the plasma is 3 × 1017 m−3, estimate the impurity ion
confinement time.

5.21. Use the basic two-point model to calculate how large a value of nu would
be required to result in negligible sputtering of tungsten targets. Assume
PSOL = 108 W, Aq‖ = 0.3 m2, L = 100 m, κ0 = 2000, γ = 7, D+-ions.
The sputtering yield for D+ on W is given in figure 3.6.

5.22. The effect of raising nu on φrecycle, τp and Hα production. Use the basic
two-point model with the assumptions q‖ = 108 W m−2, L = 50 m, κ0 =
2000, γ = 7, D+-ions, Awet = 0.5 m2, Vplasma = 100 m3, (Bθ /B) at
the target of 0.02, to calculate φrecycle, τp and the Hα production rate as a
function of nu . Plot your results for a range of nu . For the sheath-limited
regime use equation (4.115), etc. Use figure 3.29 for Hα production rates.
Compare your τp(nu) plot with figure 4.11 and comment.

5.23. Plot the equivalent of figure 5.10 for L = 50 m, for 10 m. Discuss the effect
of changing L .

5.24. Plot the equivalent of figure 5.11 for L = 50 m, for 10 m. Discuss the effect
of changing L .

5.25. Derive equations (5.27), (5.28).

5.26. Derive equations (5.17), (5.35).

5.27. Extended two-point model, section 5.4. In a tokamak, the upstream density
was raised in two steps, from nu = 4 × 1019 m−3 to 5 × 1019 m−3, then to
6× 1019 m−3, with all other control parameters held fixed. It was observed
that at the lowest density 35% of PSOL was radiated in the SOL, increasing
to 45%, then 65% as nu was raised. At the two lowest densities, probe
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measurements upstream and at the targets showed pu = 2pt , but when nu

was increased to 6 × 1019 m−3, the plasma detached, chapter 16, and the
target pressured plunged, pt → 0.1pu . Predict the relative variation of the
target recycle flux φ

target
recycle as nu was changed.

5.28. Including the hydrogen recycle loss energy in the two-point model, sec-
tion 5.5. Assume PSOL = 107 W, Aq‖ = 0.1 m2, L = 70 m, H+ ions,
γ = 8, κ0e = 2000, ε = 32 eV. Find as a function of nu , from 1019 m−3 up
to nmax

u : Fu , Tt , nt , �t , qt . What is the value of nmax
u ? Assuming that half

of ε is due to radiation, find the maximum radiation loss fraction. Assume
friction to be absent.

5.29. Calculate the total plasma-wetted area for a double-null poloidal divertor
configuration, assuming R = 3 m, a = 1 m, λu = 10−2 m, (Bθ /B)u = 0.3,
(Bθ /B)t = 0.03, and with non-orthogonal divertor targets at an oblique
angle β = 60◦ relative to the local poloidal field (figure 5.24). What is the
angle between B and the target surface?

5.30. Inner wall limiter. For the geometry of figures 5.5, 5.22, derive the result
that Awet ≈ 4π Rs(2aλ)1/2.

5.31. (a) Power scrape-off widths. For the example of PSOL = 2 MW, nsep
u =

3 × 1019 m−3, L = 50 m, (Bθ /B)u = 0.3, a = 1 m, R = 3 m,
χSOL⊥ = 1 m2 s−1, D+plasma, γ = 7, find λq‖ for a single-null poloidal
divertor.

(b) Find Aq‖ and q‖, assuming orthogonal targets.
(c) Find Tu and use equation (5.72) as a rough check of the value of λq‖

found in part (a).
(d) Find the peak deposited heat flux density, assuming (Bθ /B)t = 0.02

and β = 70◦.
(e) Find Tt , nt and �t .
(f) Find the value of PSOL

rad required to lower Tt to 4 eV.

5.32. Show that equation (5.66) gives essentially the same result for λq‖ as equa-
tion (5.78).

5.33. Derive equation (5.109).

5.34. Derive equation (5.118).
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Chapter 6

Plasma Impurities

6.1 Introduction: Harmful and Beneficial Effects of
Impurities

Ideally, DT fusion would involve the presence of only hydrogenic species in the
plasma. Plasma impurities, however, are unavoidable. At a minimum, He ash
from the DT fusion reactions will be present. Plasma-surface interactions are also
inevitable, resulting in the release into the plasma of atoms and molecules from
the solid structural components by evaporation, sputtering, etc.

Plasma impurities have both harmful and helpful consequences. The princi-
pal harmful consequence is cooling of the main plasma, an effect which histori-
cally limited progress toward the high central temperatures needed for fusion [6.1,
6.2]. In the magnetic fusion devices of the 1950s, the combination of (a) poor
vacuum conditions—including the lack of baking, (b) the use of medium Z , non-
refractory structural materials such as steel in contact with the plasma and (c)
imperfect magnetic field geometry resulted in impurity radiation accounting for
almost all the energy loss from the central regions of the main plasma. The heat
insulating effect of the magnetic field was thus sabotaged. During the 1960s and
early 1970s the impurity problem was considerably improved by introduction of
ultra-high vacuum technology, control of stray magnetic fields and the use of
refractory materials such as tungsten and molybdenum for the limiters. Starting in
the mid-1970s, low Z materials were largely used for limiters and divertor target
plates, particularly the refractory, carbon. Gettering with low Z materials such
as Li, Be, and B [6.3] is used regularly on many devices to control the stubborn
problem of oxygen contamination.

The radiation power function, section 3.5, varies greatly amongst elements,
see figure 6.1. That fractional impurity level which results in radiation power
equal to 50% of the alpha-heating power is shown in figure 6.2. Such impurity lev-
els would make ignition impossible, ruling out practical fusion reactors. Clearly
it is much more damaging to have high Z elements present in the core, than
low Z ones. Figure 6.1 brings out a second critical difference between low Z and
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Figure 6.1. (a) The radiation loss or power function R (defined as L in section 3.5) and (b)
the mean charge Z as functions of Te for C, O, Fe and W [6.5].

Figure 6.2. Fractional impurity level which produces a radiation power equal to half of the
alpha-heating power [6.5].

high Z impurities, regarding their radiative properties: low Z elements become
completely stripped of their orbital electrons at relatively low temperatures, Te ≤
1 keV; this results in a drastic fall of the radiation power function to the low
residual level given by bremsstrahlung radiation. The high Z elements, however,
retain some orbital electrons even at the high temperatures of the core plasma and
their line radiation continues to make them efficient radiators. Fortunately, the in-
trinsic impurity helium can be tolerated more than other impurities. Nevertheless
a maximum level of about 10% is acceptable for a reactor-like device [6.4].

Impurities present in the fusion core of the plasma are also harmful because
of fuel dilution. The total plasma pressure, for a given field strength B, is lim-
ited by MHD instabilities; the plasma β (≡ ∑

i ni kTi/(B2/2µ0) summed over
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electrons and all ion species cannot exceed the Troyon beta limit [6.6]:

βmax[%] = 2.8Ip

aB  
(6.1)

Ip [MA], B [T], a [m]. The electrons released by the impurities can ‘use up’ a
lot of this permitted maximum plasma pressure even for impurity fractions which
are rather low. One cannot just ‘overwhelm’ the impurity content with more fuel
particles.

Problem 6.1. For the example of carbon and nC6+/ne = 4%, show that nDT/ne =
0.76 and Zeff = 2.2 and that, for fixed ne and T , the fusion power is reduced by
a factor (0.76)2 = 0.58, i.e. almost half. Such a degradation of performance
would be equivalent to the loss of the improvement of τE by two times, i.e. what
is obtained in H-modes, chapter 7, and is therefore unacceptable.

Low Z impurities radiate rather near the edge of the main plasma, where
Te is low enough that the ions are not fully stripped. This is potentially very
advantageous, as will be discussed. It is also potentially harmful. Sufficiently
strong radiation in the periphery of the confined plasma can reduce the electrical
conductivity so much that the tokamak current profile contracts leading to an
increased destabilizing current gradient inside the q = 2 surface [6.7]. This then
results in a disruption of the current. This is effectively a type of density limit
disruption since the impurity radiative power is proportional to the product nenz .

Density limits are also often preceded by the formation of MARFEs, (mul-
tifaceted asymmetric radiation from the edge), see chapter 22, which are also
characterized by strong, low Z impurity radiation near the edge. In contrast with
the first-described case involving the q = 2 surface, MARFEs involve poloidally
localized radiation, typically at the inner wall or the X-point.

Unless impurity levels are kept below a critical level, there is the risk of
a sputtering run-away catastrophe. While the normal incidence ion yields of
hydrogenic species on all substrates are less than unity, self-sputtering yields
often exceed unity [6.8]. Since most sputtered neutrals become ionized within the
plasma they can return to the solid surfaces as multiply charged ions and be accel-
erated by the sheath potential drop to very large impact energies. (Fortunately, this
would cool the edge plasma due to impurity radiation, giving a negative feed-back
effect and reducing the risk of catastrophe.)

Plasma impurities are not all bad news and we consider next their beneficial
effects. As already mentioned, the greatest benefit of impurities is volumetric
power loss, so long as it occurs either in the SOL or near the periphery of the
main plasma, and does not compromise the energy confinement of the magnetic
device: after all, 100% of the heat must be lost at the edge one way or another.
Such disposal of the exhaust power is greatly preferable to the intense, highly
localized power deposition by particle impact on the very small plasma-wetted
areas,∼1 m2, that tend to characterize magnetically confined devices, section 5.6.
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The photons can distribute the exhaust power over most of the very large wall
area—hundreds of m2 for a reactor-like device. Furthermore, photons do not
cause sputtering. It is almost certainly essential that reactor-like devices dispose
of a substantial portion of the exhaust power through SOL radiation—and with
much of it as impurity radiation. Experimentally, it has been demonstrated in
most divertor tokamaks that by injecting impurity gases such as N, the radiated
power can exceed 50% of the input power [6.9–6.17].

Peripheral radiation by impurities in the main plasma also shows consider-
able promise. This was first proposed in the 1970s [6.18, 6.19], and called the
cold plasma mantle. An early successful demonstration of peripheral radiation
was on TFTR [6.20]. On TEXTOR [6.10] neon puffing has been used to radiate
85% of the input power in plasmas attached to the limiters, see chapter 23.

Because hydrogenic species have only one orbital electron, which they
quickly lose in even a cool plasma, the spectroscopic diagnostic possibilities are
much less than for impurity species. Even if impurities were not naturally present
in magnetic confinement plasmas, they would be injected for diagnostic purposes.
Atomic beams of impurity atoms have been injected into plasmas in order to
make core measurements of q-profiles [6.21] and to make edge measurements
of ne and Te [6.22]. High Z beams are used to measure the electric potential
within the core plasma and also fluctuations [6.23]. The Doppler shift of impurity
radiation can be used to infer rotational velocities of the hydrogenic plasma,
while impurity line widths provide measurements of local temperature, assuming
equilibration, Tz = Ti (background). Injection of impurities in short bursts, by
laser blow-off or brief gas puffs, is used to deduce the transport coefficients in
the main plasma. In the SOL the 2D spatial distribution of impurities provides a
multitude of opportunities for inferring the properties of the SOL ‘background
plasma’, section 6.6.

The plasma impurity story is also an important one to understand because
of the information it can provide about the erosion of the solid structure. In
experimental devices this is not a problem, but for reactors with their long duty
cycles it will be a major concern. Even for experimental devices, the erosion prob-
lem is important when tritium is used: the eroded material, when it re-deposits,
traps H/D/T and this re-deposition trapping—or co-deposition—is the principal
removal mechanism of H/D/T when carbon structures are used, section 3.4.

Therefore, if magnetic fusion cannot live without impurities, it will have to
learn how to live with them. Impurities are not an extraneous detail but an intrinsic
part of the fusion story. We must therefore understand how they enter plasmas,
how they behave while they are there, and how they are removed.

6.2 The Three Principal Links in the Impurity Chain

In the simplest case the source and sink of impurities are the same, namely the
limiters or divertor targets. Impurity neutrals are released at these solid surfaces,
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typically by sputtering or evaporation. Most neutrals enter the plasma and are
ionized. Most impurity ions promptly return to the solid surface but some are
transported further into the plasma and some reach as far as the centre of the main
plasma. All ions, however, eventually return to the limiters or targets, in this
simplest case, i.e. to these particle sinks. Let us consider the impurity chain of
processes connecting the source of impurities at the limiter/targets to the impurity
density at the centre of the main plasma. This chain may be considered to consist
of three principal links, see figure 6.3:

(1) the source;
(2) edge transport;
(3) transport in the main plasma.

Taking each of these links in turn:

S
O

L

LC
FS

3

2

1

Figure 6.3. The three principal links in the impurity chain: (1) the source, (2) edge
transport, (3) transport in the main plasma.

6.2.1 The Source

Section 3.3 describes the principal source of intrinsic impurities—sputtering. Un-
usually, other processes can also release impurities from edge structures [6.2].

Ideally, the only plasma contact is with the limiters or divertor targets. In
practice this is not always achieved and ion-impact sputtering can occur on the
walls and on the structure at the entrance to the divertor. Even if there is no
plasma–wall contact, charge-exchange neutrals bombard all edge surfaces, in-
cluding walls. The largest component of such neutral fluxes is too low in energy to
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Figure 6.4. Neutral hydrogen flux spectrum measured at the walls of the ASDEX-U
tokamak using the LENA diagnostic, for two different separatrix densities [6.24].

cause physical sputtering, but it causes chemical sputtering where carbon is used,
section 3.3.2. Figure 6.4 shows the measured flux of neutral hydrogen reaching
the outside wall of ASDEX-U, near the midplane [6.24]; the most probable energy
is∼25 eV; the spectrum shifts to lower energies as the plasma density is increased,
since the charge-exchange neutrals then come from regions closer to the edge of
the plasma.

For recycling impurities (i.e. naturally gaseous ones), either the intrinsic
He, or injected ones such as Ne, the source remains at the limiters or targets.
Here, however, one is interested in an additional link, namely that coupling the
ionic population in the SOL—say next to the divertor target plates—and impurity
neutral density or pressure in a pumping duct adjacent to that edge plasma region,
section 6.7. Understanding and modelling this link requires solution of a neutral
transport problem.

In section 6.3, we consider measurements of impurity sources in tokamaks.
In section 6.7, we briefly consider the special helium impurity case. In chapter 27,
the general case of recycling impurities is taken up.

6.2.2 Edge Transport

For impurity (or hydrogenic) transport purposes we may define the ‘edge’ as
follows.

(a) When ionization of neutrals occurs entirely outside the LCFS, then ‘edge
transport’ is considered to be that which occurs outside the LCFS.

(b) If the ionization of the neutrals extends inside the LCFS some distance λi z

then ‘edge transport’ is considered to be that which occurs outside radius
r = a − λi z , figure 5.1.
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In either case the impurity transport inboard of the edge region—i.e. the
transport in the main plasma—can usually be taken to be a 1D (radial) ion trans-
port problem. Even if all the neutrals were ionized at a single toroidal and poloidal
location at some point radially inboard of the LCFS, parallel transport is generally
so much faster than cross-field transport that the impurities will have become
uniformly distributed toroidally/poloidally before they have moved radially very
far from the ionization radius. For the case of ionization entirely outside the
LCFS, there can be spatial variation of impurity density along the LCFS itself,
but at radial locations even slightly inside the main plasma, the spatial distribution
will be uniform.

In the simplest picture, the behaviour of impurities is modelled using the
quasi-1D Engelhardt model, as applied in section 4.6 to hydrogen. This model
applies equally to impurities and is not repeated here. Generally, however, ion
impurity transport in the edge is 2D, or even 3D. Also, in edge transport one
must consider both neutral and ionic transport. Edge impurity transport is usually
inherently more complex than transport in the main plasma—since the latter can
often be taken to be 1D radial.

6.2.3 Transport in the Main Plasma

The 1D radial transport in the main plasma is usually described by:

�⊥ = −D⊥
dn

dr
− vpinchn (6.2)

where �⊥ is the (generally outward) perpendicular flux density of hydrogenic or
impurity species of density n. The cross-field transport coefficients, D⊥ and vpinch
(≡ vin , inward drift velocity) are not yet calculable from first principles; they
are anomalous, with typical values of the cross-field diffusion coefficient, D⊥ ∼
0.1–1 m2 s−1, and the pinch velocity, vpinch ∼ 10 m s−1 [6.25]. Experimentally
measured values of D⊥, vpinch are often found to vary radially.

If vpinch = 0 inboard of the edge region, as defined above, then in steady
state n is radially constant, whether D⊥ is radially constant or not, figure 4.9.
That is, the density throughout the main plasma is entirely given by the source
and by the edge transport. Even when vpinch �= 0, the radial density profile may
still be rather simply related to the edge density, section 6.4.1.

6.3 Measuring the Impurity Source

To start at the beginning, the first and principal quantity that must be measured
in order to understand impurity behaviour in a fusion plasma is the impurity
source(s). One needs to know:
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• the impurity species;
• the locations of all significant sources—walls, limiters, RF wave antennas,

divertor plates, etc;
• the absolute magnitude of the influxes;
• the location of first (neutral) ionization.

Until the 1980s, such impurity measurements were rarely made in tokamaks,
and spectroscopic impurity studies focused on the central plasma to measure
impurity levels there. Such impurity information is essential, but it provides only
limited information on the cause of the impurity problem and little indication of
how to solve it. First on ASDEX and then on JET, Behringer [6.26], developed
the technique of measuring impurity influxes on the basis of visible wavelength
emission spectroscopy; this powerful technique is now used on most magnetic
confinement devices. The method involved absolute measurement of the photon
intensity Iph [photons m−2 s−1 sterad−1] of specific lines of C I, C II,. . . ,  O  I,
O II,. . . Cr I, etc,  in the immediate vicinity of the sources. The particle influx of
impurities �in,z [particles m−2 s−1] is then given by:

�in,z = 4π Iph/PE (6.3)

where PE(ne, Te) is the photon efficiency, section 3.5, equation (3.16). The units
of PE are discussed below. Examples of calculated photon efficiencies, given
in figure 3.30 (which actually gives inverse PEs), emphasize the importance of
knowing the local electron temperature in the emission zone. The technique
can require sophisticated corrections when densities of atoms in the metastable
state are comparable to ground state densities; for Be I, for example, 50–70%
of the population can be in metastable states [6.27]. Table 6.1 gives examples
of measured influxes of Be, Cr, Ti, D and O from both walls and limiters in the
ISX-B tokamak [6.27] using Be limiters. It is noted that the limiters are, not
surprisingly, the main source of Be influx, although the walls are significantly
contaminated by Be, causing some influx; the influx from the wall increased by
more than an order of magnitude after the limiters suffered melting, indicating
that a large fraction of the wall was covered by Be. It may also be noted that the
ratio �Be

in /�D
in ∼ 7× 10−4 for the limiters corresponds to the physical sputtering

yield for BeO at 40 eV D+ impact [6.27], (� in [particles s−1]). The wall is seen
to be the dominant source of oxygen—a stubborn contaminant which can enter
vacuum systems by many routes.

The particle influxes given in table 6.1 were calculated assuming a constant
Te = 30 eV for the photon efficiencies, a value estimated to be characteristic
of the plasma conditions in the emission region. One may obtain such estimates
from Langmuir probe measurements of Te at, say, the LCFS near a limiter, or at
the separatrix ‘strike point’ on a divertor target. Unfortunately ne and Te can vary
rapidly in space near impurity sources making it difficult or impossible to come
up with a meaningful single temperature on which to base the photon efficiency.
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Table 6.1. Integrated fluxes from the wall and limitera on ISX [6.27].

Conditions Ion �w �L �w/�L Time point in
(s−1) (s−1) discharge (ms)

Before Be I 1.6× 1017 1.1× 1018 0.14 280
melting Cr I (a7S) 1.2× 1019 1.7× 1018 6.9 280
of Be Ti II (a4F) 4.7× 1018 4.7× 1017 10.0 280
(115 kA) Ti II (a2F) 2.0× 1018 1.6× 1017 12.8 280

D I  5.0× 1021 1.5× 1021 3.3 280
O II 19.0 280

Melting Be I 2.9× 1018 1.2× 1019 0.25 150
sequence Cr I 1.1× 1019 3.6× 1017 32.0 150
(150 kA) Be I 5.0× 1018 1.3× 1020 0.04 340

Cr I 7.3× 1018 3.2× 1017 24.0 340

After Be I 4.5× 1018 1.39× 1019 0.3 150
fluence test Cr I 5.5× 1018 8.3× 1017 6.6 150
(115 kA) Be I 3.3× 1018 7.2× 1019 0.05 290

Cr I 3.9× 1018 4.6× 1017 8.4 290

aThe electron temperature is assumed to be 30 eV.

This is one reason to employ an impurity code, section 6.6, in order to deal with
such spatial complexity.

When the line emission is from the neutral state, then equation (6.3) can be
used to deduce the impurity particle source rate, assuming:

(a) that the plasma is sufficiently strongly ionizing that it is opaque to neutrals,
i.e. that 100% of all neutrals are, in fact, ionized without redepositing first
on a solid surface: one notes that, strictly, equation (6.3) does not give the
entry rate of neutrals but rather their loss rate to the singly ionized state.
The implicit assumption in any simple, direct use of equation (6.3) is that
the entry rate equals the (ionization) loss rate. The idea behind the PE-based
approach is that both the excitation and the ionization rate vary as the product
nenz and so the number of photons emitted before a neutral or ion is ionized
depends only on the ratio σvexc/σvi z x(≡ PE, essentially). This ratio is
mainly dependent on the value of Te in the region involved, and hence if Te

is known then the theoretical value of this ratio can be used, together with a
measurement of Iph to deduce the value of �in—all assuming strongly ioniz-
ing conditions. One thus sees that the units of PE are [number of excitations
per ionization] or [photons/ionization] or [photons per entering particle].

(b) The plasma is hot enough that ionization totally dominates over recombina-
tion, so that there is ‘once-through traffic’. For Te > a few eV this is a good
assumption for neutrals, but under cold, e.g. detached, divertor conditions,
chapter 16, this assumption may not hold.
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Equation (6.3) can also be applied to higher ionization stages, if the above men-
tioned assumptions hold also for the higher stages—thus providing confirmatory
measurements of the source rate. It is less and less likely, however, that these
assumptions do continue to hold as one proceeds to higher ionization stages:

(a) plasma forces on the ions, section 6.5, can result in the low ionization stage
particles being lost back to the limiters/targets, i.e. re-deposition, before they
can ionize to the next stage;

(b) recombination becomes more probable for higher ionization stages.

It is necessary to employ an impurity source/transport code to deal with such
complicating effects, section 6.6.

It is equally important to know the average location of ionization of the
neutral impurities. As illustrated by the 1D radial case of the Engelhardt model,
next section, the depth of ionization relative to the LCFS, i.e. λi z , is just as
important as the source rate in setting the impurity density in the main plasma,
nz . As for PE, one can use simple estimates of the depth of penetration of the
neutral impurities using information on ne and Te near the source.

Problem 6.2. Consider the example of physical sputtering of C by D+ ions and
assume a uniform plasma temperature of 20 eV over the entire plasma-wetted
area. Take the impact energy to be E impact = 2kTi + 3kTe, section 2.9, Eimpact =
100 eV; show that for a Thompson energy distribution of the physically sputtered
neutrals one obtains a most probable C0 energy of Em.p.

C0 = 1
2 EB ≈ 3.7 eV,

with a maximum energy Emax
C0 ≈ 18 eV; this gives an average neutral energy of

EC0 ≈ 10 eV, section 3.3.3. Sputtered energies can sometimes be rather low; for
the example T = 10 eV, H+ on C, show that Emax

C0 ≈ 3 eV; this gives EC0 ≈ 1 eV.
One can then estimate the penetration distance from λi z = v0/(neσvi z). For the
example: EC0 = 10 eV (∴ v0 = 8900 m s−1), ne = 1019 m−3, Te = 20 eV show
that λi z = 0.019 m, using figure 1.26 for σvi z .

In reality a number of complications occur:

(a) Plasma temperature generally varies substantially across the plasma-wetted
surface. Thus the yield, Eimpact and E Z0 vary greatly in space.

(b) ne and Te generally vary significantly in the plasma region where the neutrals
are ionized, making the simple estimate, λi z = v0/(neσvi z), of uncertain
validity.

(c) The use of a single energy, E Z0 , or velocity to characterize the sputtered neu-
trals does not always adequately account for the effects of the energy/velocity
spectrum involved.

(d) Self-sputtering will also be present, generally, introducing a second set of
spatially varying E Z0 , etc.
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Again, it is necessary to employ an impurity source and transport code to deal
with such complications, i.e. to perform the ‘book keeping’.

While the measurements of the influx of impurity atoms and ions, where
PE values are often available, can be relatively straightforward, the PE values for
molecular species, such as the fragments of CH4, are harder to establish [6.28,
6.29]. On TEXTOR, Philipps has demonstrated using ‘sniffer probes’ [6.30,
6.31], that the production rates of volatiles such as CH4 can be measured by mass
spectroscopy, providing an alternative approach.

6.4 Models for 1D Radial Transport

6.4.1 The Engelhardt Model

In principle, impurity generation need not be damaging to tokamak operation. If
the impurities are ionized near the source and return to it directly, then there is
no net erosion and the main plasma is not contaminated. That such situations
can exist is indicated in figure 6.5 [6.26]. For JET discharge 6574, the carbon
limiter, contaminated with Cr, became hot late in the discharge and Cr evaporated
from it, as shown by the Cr I signal directly from the limiter; however, virtually
no Cr (Cr XXII) was seen in the centre of the plasma. By contrast, shot 7536—
a more conventional case evidently characterized by physical sputtering only—
showed low (Cr I) influx throughout, but relatively high central levels (Cr XXII).
The qualitative explanation is that the slow evaporated atoms were ionized in the
SOL near the limiter, where they were subject to drag and electrostatic forces
associated with the SOL plasma flow to the limiter, section 6.5, and promptly
returned to the surface. The faster sputtered atoms, by contrast, penetrated the
plasma to greater distances where the limiter directed forces were weak or absent,
and the resulting ions had a greater probability of reaching the core plasma before
eventually returning to the edge, figure 6.6.

We now attempt a quantitative description of these processes. First, we
briefly consider the overall impurity transport picture of the tokamak. Impurity
transport within the main plasma, section 6.2.3, has been a much studied subject
in fusion research and will not be dealt with in any detail here. Such studies are
based either on natural impurities or on injected ones, e.g. from laser ablation.
These studies generally take up the story starting at a point fairly far into the
plasma radially and with the impurity already highly stripped of electrons, i.e.
the complex processes near the edge and in the SOL are essentially ignored, and
the intensity and radial location of successive rings of the different ionization
stages are measured and modelled. Such studies provide information on D⊥
and vpinch for the main plasma. In some circumstances, a very high vpinch is
measured, associated theoretically with neo-classical impurity transport [6.32],
and experimentally with impurity accumulation, non-steady-state conditions and
even radiation collapse—a radiative catastrophe. Often, however, vpinch is found

to be low and the transport is dominated by diffusion with Dimp
⊥ ≈ Dfuel⊥ =
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Figure 6.5. JET limiter: intensities of Cr I (∝ chromium influx) and Cr XXII (∝ Cr density
in the main plasma) for cases of hypothesized sputtered Cr (top pair) and hypothesized
evaporated Cr (bottom pair) [6.26].
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Figure 6.6. (a) Slow neutrals, e.g. from evaporation, can be ionized within the SOL and
promptly returned to the limiter by the plasma flow while (b) fast neutrals, e.g., from
sputtering, may be ionized in the main plasma. The latter may have a long dwell time in
the plasma, efficiently contaminating it.
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Figure 6.7. Engelhardt model of radial profiles of impurity density nz(r): (a) (cross-field)
diffusion, no inward pinch, and ‘hard’ boundary condition, (b) as (a) but soft boundary
condition, i.e. a SOL is present. (c) As (b) but with inward pinch also. Central density
nz(0) increases as (a)→ (b)→ (c).

1 m2 s−1 and vpinch ≈ D⊥r/a2, or less [6.32]. Whatever the form of the central
transport, however, the boundary conditions are always, in a sense, controlling—
and it is therefore critical to understand the latter in order to deal with the ultimate
question of relating the central impurity density n̂z to the neutral impurity influx
�0

in  [neutrals s−1]. For the case of low vpinch, this relation appears, in principle,
to be quite simple and dominated by conditions near the edge; the conditions
within a few centimetres of the LCFS set the level of n̂z , with little dependence
on processes elsewhere in the plasma—a remarkable situation.

We consider the work of Engelhardt and Feneberg [6.33, 6.34], which pro-
vides a simple and useful model for relating central impurity levels to edge con-
ditions. The same model was applied in section 4.6 to the fuel species. Consider
figure 6.7. Over a plasma surface area Ap, a uniform, radial neutral influx density
of impurities �0

in/Ap is assumed; �0
in in [particles s−1]. All the neutrals are

assumed to be ionized at a distance λ0
i z inside the LCFS.

Assuming perpendicular transport to be governed purely by diffusion, the
resulting impurity ion density profile is very simple: a linear (in slab geometry)
decay to a level nz(a) at the LCFS and a profile inside r = a−λ0

i z which gradually
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‘back-fills’ up to a constant value in reaching steady state. One thus has, for the
hard boundary condition:

�0
in/Ap = �+out ≈ D⊥n̂z/λ

0
i z . (6.4)

Using the ‘soft’ boundary condition as discussed in section 4.6, equation (4.61):

�+out = D⊥(n̂z − nz(a))/λ0
i z = D⊥

nz(a)

λSOL
(6.5)

where λSOL is the characteristic decay length of impurities in the SOL. Thus,

n̂z = �0
in(λ0

i z + λSOL)

D⊥ Ap
(6.6)

and the edge plasma properties are seen to play yet a further role. The effect of
going from the hard boundary condition to the soft one is that n̂z is raised, all else
being equal; compare figures 6.7(a) and (b). If ionization is in the SOL, λ0

i z  < 0,
then it can be shown, section 4.6, that:

n̂z = �0
inλSOL exp(λ0

i z/λSOL)/D⊥ Ap (6.7)

i.e. essentially equation (4.68).

Problem 6.3. These simple models can give reasonably correct predictions. Con-
sider, for example, a typical limiter JET case where carbon sputtered from the
limiter governs �0

in . Spectroscopic measurements (C II, C III light) of influx
(also approximately confirmed by sputtering calculations based on the Langmuir
probe measurements of the JET SOL properties) give �0

in/� of the order 10−1,
where � is the hydrogenic flux and �0

in  is of the order of 1021 s−1. Take DSOL⊥ ∼
0.5 m2s−1 and Ap ≈ 200 m2. From Langmuir probe measurements, one mea-
sures or calculates λ0

in ≈ λSOL ≈ 2 cm. These values of D⊥ and λSOL(λn) are for
the D+ plasma, but are presumably also roughly indicative of impurity behaviour.
Insert these values into equation (6.6) to show that n̂e ≈ 4× 1017 m−3, i.e. a few
per cent of ne, which is, in fact, of the order of the central carbon levels measured
in JET and other tokamaks, chapter 24.

As in the case of the fuel ions, a number of further refinements to the simple
model can be readily incorporated. A weak, anomalous pinch vpinch ≈ 2SD⊥r/a2

(with the pure-number parameter S ≈ 1), often appears to be necessary to ‘ex-
plain’, i.e. replicate, slightly peaked nz(r) profiles. In steady state there is no
net radial motion and a balance exists between convective inflow due to vpinch
and diffusive outflow driven by the density gradient associated with the peaked
profile. For a pinch of this form, the flat part of the profile is simply multiplied
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Figure 6.8. For ionization in the main plasma, the ion source can be effectively uniform
along B because parallel transport is so much faster than perpendicular transport—even if
the actual ionization was localized near the limiters.

by a factor exp[S(1− r2/a2)], figure 6.7(c). For stronger pinches the plasma may
never attain a steady state, since the impurity accumulation can cause sufficiently
high radiation levels in the core to disrupt the discharge. Assuming, however, that
a steady state is reached, edge processes may still establish a ‘base level’, given by
equation (6.6) or (6.7), on which the inward convection builds the central impurity
density profile. This would require that the diffusive velocity at the edge, D⊥/λ0

i z ,
exceed local convective velocities, which should usually be satisfied considering
the small value of λ0

i z .
These expressions for n̂z are valid strictly only for a toroidally/poloidally

uniform influx of impurity neutrals, for example, a uniform wall source. Most
impurity sources are highly localized, e.g. from limiter sputtering. Real wall
sources are also typically quite non-uniform. One thus might think that these
1D model results would be unrealistic. In many situations, however, a 1D model
is likely to be a good first approximation:

(a) When λ0
i z  > 0, i.e. ionization is inside the LCFS, parallel transport is so rapid

compared with radial transport that a local source is an effectively uniform
one, figure 6.8. Thus the above estimate of core carbon density for a JET
limiter source can be reasonably accurate.

(b) Most wall sources, even if not uniform, and even if λ0
i z < 0, will result

in ionization not concentrated too closely to the limiter/divertor-target sink.
Thus parallel transport can again achieve reasonably uniform dispersal of the
ions before they are lost to the sink. In that case equation (6.7) can again be
a reasonable approximation.

Problem 6.4. For a limiter or divertor-target source, with λ0
i z < 0, e.g.

figure 6.6(a), a 1D radial model may not be applicable. Nevertheless, it is
noteworthy that equation (6.7) for λ0

i z < 0 already gives a smaller n̂z than
equation (6.6) for λ0

i z  > 0; show that the ratio of central densities for an example
of λ0

i z = ±λSOL is ∼5, while for λ0
i z = ±2λSOL it is ∼22.

As indicated by the JET Cr results shown in figure 6.5, however, yet larger
ratios have to be explained. This cannot be achieved with a purely 1D radial
model, since the ionization of the evaporated Cr is so close to the limiter that it
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is not effectively uniform. Such situations require the use of an impurity-source-
plus-transport code, and we will return to this discussion in section 6.6.

Following Tokar [6.35], the Engelhardt model can also be used to estimate
the impurity total radiated power P rad

z —due to line, bremsstrahlung, etc
radiation—when the impurity particle source is effectively uniform, typically for
λ0

i z  > 0, and the impurity radiation is in a uniform ‘radiating mantle’ inside the
LCFS. Let us also approximate equation (6.6) using:

n̂z = �0
inλ0

i z

D⊥ Ap
(6.8)

i.e. taking the hard boundary condition of nz(a) ≈ 0, section 4.6. We also use:

λ0
i z =

v0

neσv0
i z

(6.9)

where, for simplicity, we will take ne constant in the main plasma, and σv0
i z  is the

ionization rate for the impurity neutrals.
We have that the radiation loss rate, section 3.5, due to impurities

Pr,z[W m−3]:
Pr,z = nenz Lz (6.10)

where Lz is the radiative loss function, section 3.5, and ne and nz are the values
in the radiating volume and are taken as constants here, nz = n̂z , equation (6.8).
Thus the total impurity radiation power, Prad,z [W]:

Prad,z = nenz Lz Vrad (6.11)

where Vrad is the radiating volume. The latter is taken to be a uniform layer of
thickness δrad, and of area equal to that of the LCFS, i.e. the radiation is in a thin
mantle at/near the LCFS. We may estimate δrad by:

δrad ≈ (D⊥τrad)
1/2 (6.12)

where τrad is the time it takes for the impurity ion to be ionized to a sufficiently
high charge-state that its value of Lz drops significantly; this occurs when the ions
are reduced to the He-like state with two orbital electrons. Thus:

τrad ≈ (neσv∗i z)
−1 (6.13)

where σv∗i z  is the ionization rate of the Li-like state, figures 1.26–1.28. Combin-
ing equations (6.8)–(6.13) then gives:

Prad,z = v0Lz

σv0
i z(ne D⊥σv∗i z)

1/2
�0

in . (6.14)

We also have from equation (3.15) that:

Prad,z = Erad,pot�
0
in (6.15)
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where Erad,pot is the radiation potential. Thus Erad,pot and Lz are related:

Erad,pot = v0

σv∗i z(ne D⊥σv∗i z)
1/2 

Lz . (6.16)

Problem 6.5. Use equation (6.16) to estimate Erad,pot for a carbon example. As-
sume Te = 30 eV, ne = 1019 m−3, D⊥ = 1 m2 s−1, v0 = 104 m s−1 From
figure 1.26 find σv0

i z  and σv∗i z = σv3+
i z and from figure 3.19 find Lz (assume a

value for non-coronal radiation, i.e. a short dwell time τ ). Show that this gives
Erad,pot = a few keV per entering atom.

The result from problem 6.5 is comparable to the values for the low Z
impurities Si and Ne which have been measured on TEXTOR, figure 3.22, and
is much larger, of course, than for hydrogen, ∼25 eV, figure 3.34. This type of
estimate, however, can only be rough. As can be seen from figures 1.26–1.28,
σv∗i z  varies extremely rapidly with Te; and figure 3.20 shows that Lz also varies
extremely rapidly with Te and τ ; from simple estimates one is uncertain about
what values of Te and τ to assume; an impurity source/transport code is needed
for more reliable estimates.

6.4.2 The Controlling Role of Edge Processes in Impurity Behaviour

It is remarkable, and perhaps surprising, that the impurity ‘story’ is largely one
of edge processes. First, the source of impurities—for intrinsic ones—is entirely
due to processes occurring at the edge. Even for He, whose original source is
in the core, the recycling He source dominates the total He source unless the He
pumping is very strong, and so even in this case the source depends on edge
processes. As to the edge transport link, this is obviously entirely dependent
on the properties of the edge plasma. Regarding the third link in the chain,
transport in the main plasma: in the simplest case of vpinch = 0, and for steady-
state conditions, the entire impurity content of the plasma is simply given by the
density of impurity ions at the edge of the main plasma—regardless of the value,
or variation, of D⊥(r) in the main plasma.

The value of D⊥ used in equations (6.6) and (6.7) is Dedge
⊥ , the average value

of D⊥ outboard of the ionization radius. Thus, in this case, the impurity density
throughout the main plasma—which is of size a ∼ several metres perhaps—is
entirely governed by processes occurring in the edge—typically in a region of
radial extent a few cm only.

6.4.3 The Questionable Concept of ‘Impurity Screening’

We have an intuitive sense that the edge plasma can be seen as having a greater
or lesser ‘impurity screening’ effect on the main plasma. While this concept may
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Figure 6.9. A uniform wall influx of impurities, �0
in(0), is attenuated with characteristic

(radial) decay length li z , starting at the ‘outer edge’ of the SOL, y = 0.

be intuitively satisfactory, it turns out to be somewhat difficult to give it a precise
quantitative definition and the utility of this concept is questionable.

A simple and common definition of ‘screening efficiency’ is the fraction
ηscreen of the neutrals which are ionized within the SOL. The screening concept
appears to be based on the erroneous idea that only the neutrals ionized inside
the LCFS contribute to n̂z . Thus for a wall source of impurities one might define
ηscreen:

ηscreen = 1− exp(−�SOL/ l0
i z) (6.17)

where �SOL is the total thickness of the SOL and l0
i z is the (radial) attenuation

length of the impurity neutrals as they are ionized while entering the SOL from
the wall, figure 6.9. It is reasonable to estimate �SOL as being ≈ λSOL. On the
other hand, λ0

i z and l0
i z differ: λ0

i z represents the single radial location, relative to
the LCFS, where all of the ionization is taken to occur; on the other hand, l0

i z is
an attenuation length, implying a radially distributed ionization source. Let us
for illustration, however, consider the case of λSOL/ l0

i z � 1, i.e. all the ionization
occurs right at the edge of the SOL, i.e. λ0

i z = −λSOL. While one then has
ηscreen = 1, apparently implying negligible contamination of the main plasma,
equation (6.7) gives a significant impurity level, n̂z ≈ 0.37�0

inλSOL/D⊥Ap. Even
for more penetrating neutrals, so long as all of the ionization occurs in the SOL,
any simple definition of ‘screening’ would still give ηscreen = 1.

‘Screening’ concepts make too great a distinction between neutrals which
are ionized just inside and just outside the LCFS; in fact, a source of neutrals
ionized just inside the LCFS results in virtually the same value of n̂z as a source
of neutrals ionized just outside the LCFS! (Compare equations (6.6) and (6.7).)
This, of course, is the same point that was made in section 4.6 with regard to
the concept of a ‘SOL shielding factor’ as applied to the hydrogenic species. For
both impurities and hydrogen it is important to recognize that the main plasma
can just as well be fuelled/contaminated by ion fuelling as by neutral fuelling.
Indeed, it may well be that the neutrals, whether hydrogen or impurities, may all
be ionized in ‘a remote corner’ of the 2D or 3D system—typically near a divertor
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target plate—with all the rest of the plasma being fuelled by the parallel, and
perpendicular transport of ions.

Clearly the modelling of such situations is difficult or impossible to do an-
alytically and impurity source/transport codes are required. We do not deal with
that topic until section 6.6; but, we wish to consider here the basis for defining a
meaningful measure akin to the questionable ηscreen. We will define an impurity
reduction factor f zrdn:

f zrdn ≡ n̂z/n̂ref
z (6.18)

where n̂ref
z is the value calculated from the analytic formulae of equations (6.6)

or (6.7) (which assumes uniform neutral influx) and n̂z is the code-calculated
value for the actual (spatially localized) source; the same values of �0

in , D⊥, Ap

are assumed in each case. Note that with such a definition, f zrdn is essentially
insensitive to the value of vpinch, since it will affect n̂z and n̂ref

z virtually equally.
The DIVIMP impurity transport code, section 6.6, was used to generate sample
values of f zrdn. For example, for TLCFS = 25 eV, nLCFS = 8 × 1018 m−3,
λn = λT = ∞, D⊥ = 1 m2s−1, vpinch = 0, a = 1.2 m, L = 40 m. A
value of f zrdn = 0.013 was obtained for a source of carbon neutrals that are
all ionized at a point at a depth of 1 cm outside the LCFS and 2 cm along B,
away from a flat-sided limiter; n̂ref

z was then calculated for λ0
i z = −1 cm and

λSOL = (D⊥L/cs)
1/2 in equation (6.7). This shows that such a localized source

would be only 1.3% as effective as a uniformly distributed source, both located
at the same distance outside the LCFS. This is thus an approximation to the JET
evaporative Cr cases described in section 6.4.1, figure 6.5. The f zrdn value has
to be calculated using a code for each case of interest (e.g. for limiter sources:
TLCFS, nLCFS, λn, λT , D⊥, vpinch, L , limiter shape, impurity species, ionization
source location). One may eliminate the source location as a required input by
calculating instead the spatial distribution of neutral ionization using a code. It is
then appropriate to change the definition of n̂ref

z since the ionization does not all
occur at one radius. An arbitrary but convenient re-definition of n̂ref

z is that value
which would hold if all the ionization occurred uniformly along the LCFS:

n̂ref
z = �0

inλSOL/D⊥Ap (6.19)

with

λSOL = (L D⊥/csa)1/2 (6.20)

csa = value of sound speed at LCFS; now values of f z
rdn < 1 correspond to

sources located deep in the SOL, near a limiter; values of f z
rdn > 1 correspond to

sources deep in the main plasma.
As with the hydrogenic species there is no need to attempt to define ‘screen-

ing factors’, etc, since the confinement time, here τz , for each specific impurity
source, entirely expresses the quantitative capability of that source to contaminate
the plasma.
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Figure 6.10. Impurities can reach the main plasma by neutral transport, or ion transport,
or by a combination.

6.5 Impurity Transport Parallel to B in the SOL

6.5.1 Introduction

The original motivation for employing a divertor, in magnetically confined plasma
devices, was to suppress the level of edge-produced impurity ions in the main
plasma. It seems plausible that if the location of the most intense plasma–surface
interaction is made more remote from the confined plasma, then core contamina-
tion will be reduced for a given impurity production rate. This would certainly
be true if the impurity particles were only transported from their release point to
the confined plasma as neutrals: a limiter is, by definition, in intimate physical
contact with the confined plasma since its inner tip defines the last closed flux
surface. Thus some of the neutral impurity particles sputtered, evaporated, etc.,
from the limiter tip always penetrate the confined plasma before being ionized. By
removing the divertor targets some distance from the confined plasma it should
be possible to prevent virtually all target-released neutrals from penetrating to
the confined plasma before ionizing. As already noted, we must also consider
the possibility that the impurity will be transported as an ion from its point of
ionization along the scrape-off layer (SOL) flux tubes—to the periphery of the
confined plasma where, by cross-field transport, it will gain entry to the main
plasma, figure 6.10. Even if the impurity can travel only a short distance as a
neutral from the target before being ionized, it is possible that leakage as an ion
may be very effective. For divertors this SOL parallel transport aspect of edge
impurity transport is almost always a critical link in the impurity chain connecting
the sources to the impurity density in the core plasma—i.e. the divertor leakage
or divertor retention problem.
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This parallel transport aspect of divertor impurity behaviour is the focus of
the present section. It is only the first step in answering the larger question of
whether a divertor can be expected to be an effective means of impurity control in
a tokamak. In order to answer the larger question one also has to consider:

(a) Such leakage as depends strongly on transport as neutrals, for example,
volatile impurities such as noble gases released at the target. Such volatiles
can make multiple bounces off solid surfaces to reach the main plasma,
figure 6.10.

(b) Wall-released impurities; these could be released by energetic charge ex-
change neutral hydrogen bombardment of the walls or by chemical sputter-
ing, etc, figure 6.10; the released material may include, not just the original
wall covering, but material from the targets which migrated by successive
sputtering steps along the walls.

(c) The core-produced impurity, helium.

It is appropriate to make some comments on these last three processes by
way of putting the present section in context. Divertor retention of volatiles such
as helium, neon and argon is an important impurity problem. Unfortunately, there
are a number of different routes by which impurities could reach the confined
plasma in such cases, and it is not straightforward to assess the relative importance
for each route: (a) the original puff location is generally not right at the target
plate and the core contamination is probably strongly dependent on puff location;
(b) some of these gases can be strongly recycling and the secondary source,
associated with recycling at the targets, can quickly become much stronger than
the primary (puff) source. Furthermore, the recycling coefficient is not necessarily
spatially or temporally constant.

It is beyond the scope of the present section to consider the case of strongly
recycling impurities that traverse a large part of the distance from the target to the
main plasma in the neutral state, perhaps via multiple wall reflections. We will,
however, consider the final step of such a process, namely, starting at the point
where the neutral is finally ionized—typically at some appreciable distance from
the target. This will be termed the ‘deep injection’ case.

Here then we take the impurity ion to be injected at a specified and arbitrary
distance from the target, either shallow or deep.

6.5.2 Defining the ‘Simple One-Dimensional Case’ for Modelling Impurity
Retention by Divertors

We define the simplest possible case that will still contain the most basic elements
of a divertor as they pertain to the retention/leakage of impurities:

(a) We start with the particle as an ion at some specified distance from the target
and assume that the impurity ions can move only along B, i.e. we are only
considering a 1D picture. The definition of ‘leakage’ is based either on
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the fraction of the injected ions that leak past a specified upstream point
(corresponding to the target-to-X-point distance, for example) or on the ratio
of impurity density far upstream to the impurity density near the target. The
background plasma, here taken as D+/e, is assumed to flow towards the
target at all points, or to be stagnant. Thus, flow reversal of the background
plasma, chapter 15, is not allowed, although in reality such two-dimensional
(2D) behaviour may be an important leakage mechanism. The 1D plasma
background is taken as specified, and not directly altered by the impurities.

(b) Impurity–impurity collisions are not included.
(c) Diamagnetic and E × B drifts, chapter 18, are not included.
(d) Steady state is assumed.
(e) The ionization state is taken to be frozen, typically as C4+ ions, with ioniza-

tion/recombination turned off.
(f) The impurity ion is taken to be everywhere in thermal equilibrium with the

deuterons or other background ion, Tz = TD .

6.5.3 The Parallel Forces on Impurity Ions

We will start with the physically plausible assumption that the force on an indi-
vidual impurity ion of mass mz and charge Z in the direction parallel to B can be
represented by:

Fz = − 1

nz

dpz

ds
+ mz

(vi − vz)

τs
+ ZeE + αe

d(kTe)

ds
+ βi

d(kTi )

ds
+ ∼ (6.21)

where s is distance measured in the parallel direction from the target in the up-
stream direction; the subscript i indicates the background ion species, e.g. D+.
Equation (6.21) can be derived from first principles. We do not attempt that here,
but start with a heuristic demonstration, in the same spirit as was used for the fluid
equations of chapter 1. We consider each of the terms in equation (6.21):

(1) FPG ≡ −(1/nz)(dpz/ds) is the impurity pressure gradient force. It has
the same heuristic explanation as in section 1.8.2.1, figure 1.24. A more
basic derivation is given in chapter 9, equation (9.14). One thus sees that
equation (6.21) constitutes a prescription for following individual particle
behaviour, based on a fluid description.

(2) FF ≡ mz(vi − vz)/τs is the friction force on the impurity ions moving with
fluid parallel velocity vz exerted by the background ions moving with fluid
parallel velocity vi ·τs is the stopping time, discussed below. In this heuristic
approach one takes this term simply as a physically plausible hypothesis.
Below we will substantiate this hypothesis from more basic considerations.

(3) FE ≡ ZeE is the straightforward, and fundamental electrostatic force ex-
erted by the parallel electric field E in the SOL.

(4) FeG ≡ αe(d(kTe)/ds) is the electron temperature gradient force, where αe

is a coefficient of order Z2.
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(5) FiG ≡ βi (d(kTi )ds) is the ion temperature gradient force, where βi is a
coefficient, also of order Z2.

These last two forces are not as intuitively obvious as the others. Their
origin lies in a fundamental aspect of the Coulomb interaction that occurs between
charged particles: the cross-section for momentum transfer decreases strongly
with the relative speed of the colliding particles. As a result the collision fre-
quency has a—perhaps surprising—inverse dependence on temperature, see sec-
tion 9.4:

νmom
ez ≈ Cnz Z2

m1/2
e T 3/2

e

(6.22)

νmom
i z ≈ Cnz Z2

m1/2
i T 3/2

i

(6.23)

where C = a constant. Therefore the electrons and background ions that strike
the impurity ion from the cold side impart more momentum to it than do the
particles striking it from the hot side. The result is forces that push the impurity
up the temperature gradients, dTe,i/ds. We may estimate the dependences and
magnitudes of these forces from the following simple model, illustrating for the
case of FeG.

The electrons striking the virtually stationary impurity ions at s0 from the left
(cold) side, had experienced their last collision with another electron at s0 − λee,
while those from the right (hot) side had done so at s0 + λee. Thus the impacting
cold electrons have temperature T0e − λee(dTe/ds), and the hot ones, T0e +
λee(dTe/ds). Therefore the net forward (to the right) force on the nz impurity
ions per m3 at location s0 is approximately:

Fez ≈ mecene [νmom
ez (s0 − λee)− νmom

ez (s0 + λee)] [N m−3] (6.24)

i.e., νmom
ez is evaluated at the two locations. Expanding and assuming

λee(dTe/ds)/Te � 1 (i.e., assuming temperature gradient lengths are larger than
λee), then:

Fez ≈ meceneν
mom
ezo

1

kTe

d(kTe)

ds
λee. (6.25)

Noting that λee ≈ ce/ν
mom
ee and taking equation (6.22) to give νmom

ee approxi-
mately when Z = 1, one obtains:

Fez ≈ nz Z2 d(kTe)

ds
. (6.26)

The force Fiz is derived similarly. We thus see that the FiG, FeG forces on each
impurity ion are as shown in equation (6.21) and with the coefficients αe, βi each
being of order Z2. More refined treatments have been carried out [6.36–6.38]

Copyright © 2000 IOP Publishing Ltd.



300 Plasma Impurities

FF FiG

FE FeG

target

EII

B

sII

Te,iviII

Figure 6.11. The principal parallel forces acting on impurity ions in the SOL.
The friction, FF, and electrostatic, FE, forces are usually toward the target while the
electron- and ion-temperature gradient forces, FeG, FiG, are usually away. Typically
|FF| > |FE|, |FiG| > |FeG|.

giving:

αe = 0.71Z2 (6.27)

βi = 3(µ+ 5
√

2Z2(1.1µ5/2 − 0.35µ3/2)− 1)

2.6− 2µ+ 5.4µ2
(6.28)

where

µ ≡ mz/(mz + mi ). (6.29)

For µ→ 1, βi → 2.6Z2.
Therefore FiG tends to be more important than FeG. This tendency is rein-

forced by the fact that ion heat conductivity is weaker than electron conductivity,
which tends to make dTi/ds > dTe/ds. It is important to remember that FeG and
FiG are, in fact, due to collisions since this fact is no longer obvious after the can-
cellation of the similar collision term involved in λee and νmom

ez , equation (6.25).
Other forces, such as due to viscosity (forces dependent on velocity gradi-

ents), etc, may also be important, but usually the above forces are thought to be
the controlling ones.

In principle each of the above forces can be in either direction—toward
or away from the target. However, in the simplest case the hydrogenic flow is
directed toward the target at all points, i.e. we assume no flow reversal and thus
FF is generally toward the target, i.e. it tends to suppress divertor leakage. This is
usually the principal parallel force acting on the impurities to make the SOL act
all along its length as an impurity sink, see figure 6.11.

The parallel temperature gradient is usually positive, dT/ds > 0, and so FeG
and FiG push the impurity ions in the upstream direction, toward higher T , i.e.
they tend to increase divertor leakage. It is readily shown that usually FiG > FeG.
Thus the force ‘competition’ tends to be between FF and FiG. Typically FE is in
the same direction as FF but weaker.
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It will be seen that FF weakens as plasma temperature increases, while FiG
strengthens. Thus the basic expectation is that divertor leakage will increase as
the divertor plasma temperature is raised. There thus exists this further practi-
cal reason to achieve low divertor temperatures. The impurity pressure-gradient
force generally acts in both directions, away from the location where the ions
are created by neutral ionization. The pressure-gradient force can be interpreted
on an individual ion basis as parallel diffusion (although self -collisions need
not be involved). Consider the simple case when (a) the only forces are the
impurity pressure gradient force and the force of friction with a stagnant plasma,
i.e. vi = 0 = E = dTe/ds = dTi/ds, (b) collisionality is strong enough that the
ion inertial term, mz(dvz/dt), can be neglected, the ions are in force balance, i.e.
Ftotal = 0 and (c) Tz = Ti , constant in space. One can rearrange equation (6.21)
to give:

�z ≡ nzvz = −τskTz

mz

dnz

ds
≡ −D‖

dnz

ds
(6.30)

where we have defined a parallel diffusion coefficient:

D‖ ≡ τskTz/mz ≡ τsv
2
th (6.31)

where vth is the thermal velocity of the impurity ion:

vth ≡ (kTz/mz)
1/2. (6.32)

Let us now take a second look at equation (6.21) and try to justify it from
a more fundamental viewpoint. Consider an impurity ion moving with parallel
velocity vz . What could cause vz to change in time? The most important effects
are a parallel electric field E and collisions with electrons and ions. All of the
terms in equation (6.21) are due to these effects. In a time �t , one expects vz to
change by amount �vz = ZeE�t/mz just due to the electric field. To this we
need to add the �vz resulting from collisions with electrons and ions. All three of
the forces, FPG, FF and FiG, are largely due to a single process: collisions with
ions. Ion collisions tend to dominate over electron collisions due to the fact that
mi � me; only FeG is due to electron–impurity collisions.

Let us focus, therefore, on the effect of ion collisions and try to improve
on our initial, purely heuristic approach. The collision rates between charged
particles (Coulomb interaction) have been calculated from first principles by
Spitzer [6.39] who formulated the problem in terms of the changes of velocity
caused by collisions, rather than changes of spatial location. Thus, the slowing
down rate of velocity (in the parallel, i.e. ‘forward’, direction defined by the initial
velocity) is calculated, also the diffusion of velocity in the parallel direction.
(The velocity diffusion in the perpendicular direction is also calculated, but
here we will not consider this further since it relates, in the present case, to
the gyroscopic motion of the impurity ions as their guiding centre moves along
B—an effect which is not of first importance.) It is readily shown from Spitzer’s
analysis that the slowing down process relates to τs and governs FF while the
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parallel velocity diffusion relates to a different collisional coefficient and governs
FPG. By establishing this correspondence between our heuristic development
of equation (6.21), and Spitzer’s analysis, we can directly put two of the terms,
FF and FPG, on a more fundamental basis. (For the moment, however, we will
continue to carry along the heuristic forms of FeG, FiG.)

We may consider the change in parallel velocity �vz of a particle at each
small time step �t which can be written following Spitzer:

�vz = 〈�w‖〉�t + [〈(�w‖)2〉�t] 1
2 rG +

(
ZeE

mz
+ αe

mz

(
d(kTe)

ds

)

+ βi

mz

(
d(kTi )

ds

)
+ ∼

)
�t (6.33)

where the collisional information calculated by Spitzer is entirely contained in
the Spitzer collisional coefficients 〈�w‖〉 and 〈(�w‖)2〉 which, despite appear-
ances, are two quite different functions of ni , Ti , mi , mz, Tz . Clearly they give
the changes in vz due to collisions. The Spitzer coefficients include the effect of
both small angle and large angle Coulomb collisions between the impurity and
background ion species. Owing to the small mass of the electrons, they do not
contribute significantly to these terms. rG is a number drawn randomly from a
Gaussian distribution with average value 〈r2

G〉 = 1.
We will now extract from Spitzer’s expressions simpler, more intuitive ex-

pressions to use in modelling impurity behaviour. This will also allow us to relate
FF and FPG to the Spitzer collision coefficients. Allowing for the average velocity
of vi of the plasma background it is readily shown that one can re-write Spitzer’s
results to give:

〈�w‖〉 ≡ (vi − vz)/τs (6.34)

where the value of τs is extracted from Spitzer’s results, his table 5.2; for simplic-
ity we may use Spitzer’s tabulated value for x ≡ � f w ≡ v/(2kTi/mi )

1/2 � 1 (x
and � f w are the symbols used by Spitzer) which gives:

τs = 1.47× 1013mzTi (Ti/mi )
1/2

(1+ mi/mz)ni Z2 ln &
(6.35)

τ [s], T [eV], m [amu], n [m−3] and for convenience, we take the Coulomb
logarithm ln & = 15, constant. Clearly this gives the friction force, FF. Turning
next to the impurity pressure gradient force, FPG, and its equivalent, parallel
diffusion, we can also rewrite from Spitzer:

[〈(�w‖)2〉�t]1/2 ≡
(

kTz

mz

)1/2(2�t

τ‖

)1/2

= vth

(
2�t

τ‖

)1/2

(6.36)
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where we have defined a parallel collisional diffusion time τ‖:

τ‖ = 1.47× 1013mzTz(Ti/mi )
1/2

ni Z2 ln &
(6.37)

τ [s], T [eV], m [amu], n [m−3]. While it is convenient to use this representation
for parallel diffusion and while it does make this process appear to depend on Tz ,
through the Tz in equation (6.36), it should be noted that the parallel diffusive
steps (in velocity space) do not actually depend on Tz (for the assumption here
of mz � mi ): vth ∝ T 1/2

z , however τ‖ ∝ Tz , also, and therefore a cancellation
results in equation (6.36).

We now replace τs with τ‖ in equation (6.31) to obtain an improved expres-
sion for the spatial diffusion coefficient D‖:

D‖ = v2
thτ‖. (6.38)

Interestingly, comparisons of velocity and spatial diffusion—using equa-
tion (6.38) for the latter—give very similar results [6.40], except for cases where
mean free paths are long compared with the problem scale length.

Finally we return to FeG and FiG. If it is really the case that FiG is also due
to ion collisions, then why is this force not automatically covered by the Spitzer
coefficients 〈�w‖〉 and 〈(�w2‖)〉, as FPG and FF were? Why do we continue to
include the heuristic form of FiG and FeG in equation (6.33)? The reason is that
Spitzer assumed a constant temperature in his analysis. In the analysis of [6.36–
6.38], however, the Spitzer approach was extended to include the effect of a
temperature gradient and the average effect on an ensemble of impurity ions—
i.e., the fluid forces—were calculated. We have appropriated these convenient
fluid expressions, dividing by nz , to obtain estimates for the forces on individual
impurity ions. These expressions are strictly appropriate only for fluid analysis of
impurity behaviour. For analysis which involves following the specific velocity
of individual particles, as in Monte Carlo analysis, these expressions are only
approximately valid since they do not include the effect of the specific velocity of
the impurity ion. Recently Reiser et al [6.41] have extended the Spitzer approach
to include the effect of an ion temperature gradient, and casting the results in a
form which is appropriate for following individual particles, allowing for their
specific velocity at each instant; thus one would replace the Spitzer coefficients
in equation (6.33) with Reiser’s coefficients, and drop the heuristic/fluid FiG
expression (the FeG term would remain, however).

6.5.4 A Simple 1D Fluid Model of Impurity Leakage from a Divertor

6.5.4.1 Introduction

The Engelhardt model provides a simple and useful picture of the 1D radial be-
haviour of impurities, section 6.4. It would be useful to have an equivalent model
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Figure 6.12. General impurity density profile along B allowing for friction, temperature
gradient forces, parallel diffusion, etc. For simplicity we consider the (background) plasma
flow velocity to be a step function.

for the 1D parallel impurity behaviour in the SOL, particularly for a divertor. We
outline such a model here. As with the Engelhardt model it will be necessary to
make strong assumptions, for example, that all the neutrals are ionized at a single
location—which here will be at some distance sinj (‘inj’ for ‘injection’) upstream
from the target.

It is useful to consider three regions, figure 6.12:

(a) Region A, closest to the target, 0 ≤ s ≤ sinj will be termed the ‘plateau’ or
‘prompt-loss region’.

(b) Further upstream, region B, will be termed the ‘impurity density decay’
region, sinj ≤ s ≤ sv where sv is defined as the limit of the hydrogenic
recycle region, and thus will be taken, in this simple picture, to be the region
over which vi is non-zero.

(c) Yet further upstream, sv ≤ s ≤ L , is region C, the ‘impurity build-up’ or
‘trap’ region. Since flow reversal, etc is assumed to be absent, then vi = 0,
for sv ≤ s ≤ L . Here FF ≈ 0 and FiG is unopposed, thus causing a build-up
of impurity density, i.e. an ‘impurity trap’. It is necessary to emphasize the
assumption made here that vi = 0 for s ≥ sv . In reality significant flow
may well exist over much or all of 0 ≥ s ≤ L , perhaps due to flow reversal,
chapter 15, or drift effects, chapter 18, but for this first, simple treatment we
assume such flows to be absent.

It is from this upstream SOL reservoir of impurities that particles diffuse into
the main plasma. Our principal object therefore is to relate the upstream impurity
density to the impurity injection rate �in‖ and to the parallel forces in the SOL.
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Γ⊥  [neutrals/m2/s]in

LCFS
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Figure 6.13. The Engelhardt model is used to analyse radial profiles, and one needs to
specify �in⊥ .

poloidal view toroidal view
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inΓII
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Figure 6.14. For analysis of parallel impurity profiles one needs to specify �in‖ .

�in‖ [particles m−2 s−1] is to be understood in a geometrically different way than

was used in the Engelhardt radial model, where �in
0 [particles s−1], section 6.4,

could be written �in⊥ Ap, i.e. as an influx in the radial direction, where �in⊥ is in
particles per s per m2 of total plasma surface area, Ap = 2πa2π R, figure 6.13.
By contrast, �in‖ is the injection rate of impurity ions per second per square metre
of area perpendicular to the plasma flow or parallel direction, figure 6.14. Thus,
if �in

0 represents the total influx of impurities for the entire tokamak then:

�in
0 = �in‖ ASOL‖ (6.39)

see sections 5.6 for the precise definition of ASOL‖ . In reality of course, �in‖ is

unlikely to be a constant across the SOL. Here, however, we simply take �in‖
as a control parameter of the problem. We can estimate �in‖ for the case of a

source due to target sputtering characterized by yield Y , i.e. �in
0 = Y�out

i . Since

Copyright © 2000 IOP Publishing Ltd.



306 Plasma Impurities

nz(s)

sinj

nplateau

0 s

Figure 6.15. In the absence of parallel forces on the impurity, with only parallel diffusion
acting, a parallel density profile results which is the analogue of the radial profile given by
the Engelhardt model (for perpendicular diffusion with no inward pinch).

�out
i /ASOL‖ = �i t , i.e. the particle flux density of the background ions striking the

target, then:
�in‖ = Y�i t . (6.40)

This result is only approximate since �i t varies across the target and the impurities
sputtered from one part of the target are not necessarily ionized on the same flux
tube.

6.5.4.2 Region A: The Plateau or Prompt-Loss Region

Let us start with the simplest situation of vi = 0 = E = dTe/ds = dTi/ds.
Assuming all the impurity ions are injected at location sinj, then in steady state
the impurity density profile of nz(s) will be the simple one shown in figure 6.15,
with a ‘plateau’ density

nz(sinj) ≡ n p ≈ sinj�
in‖ /D‖. (6.41)

A symmetry or reflection point is assumed to exist at s = L > sinj, where L is the
connection length, section 1.4.2.

Problem 6.6. The result in equation (6.41) is approximate since the density just
in front of the target, nz(0), has been assumed to be negligible compared with n p;
argue that in fact, nz(0) ≈ �in‖ /vth. By considering some example conditions,
however, show that often vth � vdiff, where

vdiff ≡ D‖/sinj. (6.42)

We used vdiff = v2
thτs/sinj = vth(λmfp/sinj) here, where

λmfp ≡ vthτs . (6.43)

Note that since we take Tz = Ti in this first treatment, therefore τs ≈ τ‖. Thus
argue that when the mean free path for collisions between impurity and plasma
ions λmfp is much less than sinj one can neglect nz(0) compared to n p.
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Since τs ∝ T 3/2
i /ni Z2, D‖ ∝ T 5/2

i and so n p ∝ T−5/2
i . For this case n p = nu ,

the upstream density, i.e. the density adjacent to the main plasma, this density
directly gives the leakage to the main plasma. Thus, the leakage will actually de-
crease strongly with increasing T , which is the opposite of expectations (and also,
one should emphasize, the opposite of more realistic situations, as considered
below). This result is not very physical, and therefore should not be considered
further.

For the collisionless extreme, λmfp/sinj � 1, we expect that n p ≈ �in‖ /vth

which gives a weaker, but still inverse temperature dependence, nz(L) ∝ T−1/2.
Consider next the case where the force of friction, FF, dominates all other

forces and also assume strong collisionality so that the acceleration (inertia) can
be neglected. In this case one has vz → vi and thus n p ≈ �in‖ /vi .

When the ion temperature force, FiG is dominant, with strong collisonality
and vi = 0, then one has, from equation (6.21)

vz ≈ vTi ≡ βiτs(d(kTi )/ds)/mz . (6.44)

(For T in [eV], rather than [degrees], replace k with e = 1.6 × 10−19 C.) One
therefore expects for the general case that approximately

n p ≈ �in‖ /vth for λmfp � sinj (6.45)

n p ≈ �in‖ /vprompt loss for λmfp � sinj (6.46)

where
vprompt loss = vdiff − (vi + vE − vTi − vTe ) (6.47)

with
vE ≡ τs ZeE/mz (6.48)

and
vTe ≡ αeτs(d(kTe)/ds)/mz . (6.49)

Note the negative sign applied to equation (6.47): our convention here is that the
positive direction is away from the target. Equation (6.47) is directly derived from
equation (6.21) by neglecting inertia, assuming T = constant, and approximating
−dnz/ds by nz/sinj. The expression is only approximate since Ti = constant was
used to estimate vdiff, but clearly that cannot be assumed when calculating vTi .
The signs in equation (6.47) assume the usual situation where FF and the electric
force, FE, are towards the target, while FiG and FeG are away from the target. As
earlier noted, it often turns out to be the case that |FF| > |FE| and |FiG| > |FeG|,
so that in the following FE and FeG are usually neglected for simplicity. (It is
not always true that |FF| > |FE|, of course: for weakly collisional cases FF → 0
while FE remains finite.)

The existence of a density ‘plateau’ extending from sinj to L , figure 6.15,
assumes vi = dTi/ds = 0 in the region upstream of sinj. If, in fact, |FF| < |FiG|
in this latter region, then there will not be any density plateau, but rather the
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density will build up, implying truly catastrophic leakage to the main plasma.
Clearly, then, a necessary (but, as will be shown, not sufficient) criterion for the
avoidance of leakage is that |FF| > |FiG| in the region upstream of the injection
point. This is the basis of the leakage criteria given by Neuhauser et al [6.42] and
by Krasheninnikov et al [6.43].

Problem 6.7. The Neuhauser criterion to avoid leakage is that

|Mi | > λi i/λT (6.50)

where Mi ≡ Mach number of the ‘background’, e.g. deuterium, plasma flow,
λi i ≡ the mean free path for collisions between deuterium ions and λT is the
characteristic scale length for variations of Ti along s. One has FF ≈ Mi csmz/τs

where cs ≡ background plasma acoustic speed and

FiG = eβi Ti/λT ≈ eZ2Ti/λT . (6.51)

With λi i ≈ csτi i (ci ≈ cs for Ti = Te) and τi i/τs ≈ mi Z2/mz show that
requiring |FF| > |FiG| is the same as equation (6.50).

Problem 6.8. The Krasheninnikov criterion to avoid leakage is that

|qi,conv
‖ | > |qi,cond

‖ | (6.52)

where qi,conv
‖ and qi,cond

‖ are the parallel ion heat flux densities along s carried
by convection and conduction, respectively. Neglecting, for simplicity, the con-
vected flow energy of 1

2 miv
2
i nivi one has qi,conv

‖ = 5
2 nivi kTi while q‖i,cond=

−κi0T 5/2
i (dTi/ds), where κi0 ≈ 60 for Ti [eV], dTi/ds [eV m−1], q [W m−2].

Show that requiring |FF| > |FiG| is the same as equation (6.52).

In the following we focus on the case where |FF| > |FiG| just upstream of
s = sinj since it will turn out that even when this necessary condition is satisfied,
leakage may nevertheless occur. We also note that when |FF| > |FiG|, then
generally there is not a density plateau at s = sinj, but rather a density peak
occurs, constituting a base level from which there is catastrophic leakage to the
main plasma. We will therefore call region A, 0 ≤ s ≤ sinj, the ‘prompt-loss
region’ and n p ≡ nz(sinj) will refer to this ‘prompt-loss’ or near-target impurity
density. The definition of efficient divertor retention or low divertor leakage will
then be that nu/n p � 1, where nu is the impurity density upstream, say at the
X-point, where the SOL first comes into contact with the confined plasma. For
the background plasma one often has niu/nip � 1 (owing to the tendency for
Tiu/Tip � 1 and also assuming pressure balance holds) but simple pressure
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balance does not apply to the impurity species. One may note that the question of
what constitutes acceptable divertor leakage, is a larger question, of course; that
also depends on the charge, Z , of the impurity element and the absolute impurity
production rate �in‖ , as well as the consequences of a specific absolute level of nz

existing in the main plasma.

6.5.4.3 Region B: The Impurity Density Decay Region

To recapitulate, we consider n(s) profiles such as those shown in figure 6.12,
consisting of three regions:

(a) Region A, the prompt-loss region, 0 ≤ s ≤ sinj, characterized by a density
n p typically near s = sinj.

(b) Region B is defined by sinj ≤ s ≤ sv , where vi �= 0 but vi → 0 at
s = sv . We assume that |FF| > |FiG|, hence that this is a region where
nz(s) decays. The characteristic scale length along s for vi , i.e. the value
of sv , is given by the spatial distribution of the ionization of the deuterium
(or other background) neutrals recycling from the plate. To calculate this
precisely requires sophisticated neutral codes such as DEGAS, EIRENE or
NIMBUS. Vlases and Simonini [6.44], guided by NIMBUS code results for
JET geometries, have obtained the approximation:

sv ≈ 0.25/(ne × 10−20) [m] (6.53)

where ne is the plasma density near the target. (Note that sv is measured
along B, and not in the poloidal direction.)

(c) Region C where we will assume vi = 0 and FiG is only opposed by (back-)
diffusion in this impurity build-up region. Region C spans sv ≤ s ≤ L .

The principal objective is to evaluate �leak, the forward flux of impurities at
sv , and also nu/n p. In steady state, of course, the forward and backward fluxes at
sv are equal.

Region B is a stagnant zone for impurities since it is upstream of both the
source (sinj) and the sink (at s = 0), thus vz = Ftotal = 0 here. (Other sources of
impurities, e.g. He produced in the main plasma as ash from DT fusion, have to be
analysed differently.) Assuming Tz = Ti , one can then integrate equation (6.21)
to obtain the result [6.44–6.46]:

nz(s) = n p exp[FFf(s)+ FEf(s)+ FeGf(s)+ FiGf(s)] (6.54)

where the ‘f’ refers to ‘factor’ and

FFf(s) ≡
∫ s

sinj

mzvi (s′)
kTiτs

ds′ (6.55)

FEf(s) ≡
∫ s

sinj

ZeE(s′)
kTi

ds′ = −
∫ V

Vinj

Ze

kTi
dV ′ (6.56)
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FiGf(s) ≡
∫ s

sinj

(βi − 1)(d(kTi )/ds′)
kTi

ds′

= (βi − 1) ln[Ti (s)/Ti (sinj)] (6.57)

(the−1 in βi −1 comes from the Ti dependence of the impurity pressure gradient
force); finally

FeGf(s) ≡
∫ s

sinj

αed(kTe)/ds′

kTi
ds′. (6.58)

In cases where the variation of Ti is small over sinj ≤ s ≤ sv one can ignore
the variations of Ti (s) and τs(s), making the evaluation of FFf(s), FEf(s) and
FeGf(s) much simpler. (Note that kTiτs ∝ T 5/2

i . Since these factors appear in an
exponential, small corrections to them can be important. For some cases one then
has to allow for this variation in the integral, but this is straightforward. Of course,
one cannot neglect Ti -variations in FiG since this force depends directly on the
gradient of Ti .) Let us take the case where this correction is unimportant; we
adopt also the convenient assumption that vi (s) = vi t , a constant over 0 ≤ s ≤ sv;
vi t  < 0 since flow is assumed to be toward the target. The subscript ‘t’ indicates
target values. Then for s < sv:

FFf(s) ≈ mzvi t s

kTiτs
= vi t

D‖
s ≡ − s

λ‖
(6.59)

where we have also assumed that s, sv � sinj and defined λ‖ ≡ −D‖/vi t . There-
fore, if we ignore the other forces we find that nz(s) decays with characteristic
length λ‖, which is directly related to the prescription of Roth et al [6.47] that to
avoid leakage one needs a short λ‖, and thus low temperature (since D‖ ∝ T 5/2,
then λ‖ ∝ T 2). Generally, however, one should include at least FiG, since βi

can be quite large, for example, about 32 for C4+ in D+, and so even a weak Ti -
gradient can influence the density decay length in region B, λdecay. Nevertheless,
λ‖ gives a first estimate of λdecay.

Thus, an impurity density minimum occurs at sv , figure 6.12:

nz(sv) ≈ n p exp[FFf(sv)+ FiGf(sv)] (6.60)

from which a build-up can then occur in region C.
When the variation of Ti in the denominators of equations (6.55)–(6.58) can

be ignored, then it is useful to define an impurity potential:

Vz ≡ −
∫

Fzds. (6.61)

Then:
nz(s) = exp[VZ/kTi ] (6.62)

i.e. a Boltzmann factor relation.
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6.5.4.4 Region C: Impurity Density Build-Up or Trap Region

In regions C, equation (6.54) applies again with nz(sv) replacing n p. While one
could combine regions B and C there are good reasons not to do this, as discussed
below.

Neglecting diffusion, leakage of impurities past point sv is given by the flux
density

�leak = vTi nz(sv) (6.63)

neglecting vTe ; in equilibrium, diffusion gives an equal leakage back out of the
trap located upstream of sv , i.e. region C. The density maximum in region C
generally occurs at s = L and can be of enormous magnitude since |FiGf(L)|
can be much larger than |FFf(L)|(= |FFf(sv)|), and the difference in these factors
appears in an exponential. It turns out that this result, fortunately, is an artificial
and physically unrealistic one. It is the consequence of assuming a strictly 1D
system, where the ions can only move along B, i.e. along s. It can readily be
shown that even very small cross-field losses will stop such an impurity build-up
from occurring [6.42]. We can define the parallel de-trapping time (based on loss
of ions, by diffusion, from the trap region back past sv in steady state) by:

τ
de-trap
‖ = Ntrap

ASOL‖ �leak
≈ ntrapL

�leak
(6.64)

where ntrap is the average impurity density in the trap, ntrap ≈ nu and Ntrap is
the total trap particle content. This time may be much more than 1 s. Consider,
however, the effect of a competitive loss mechanism, say, cross-field transport
into the private plasma or out to the periphery of the SOL, which will take τ⊥ ∼
10−3 to 10−2 s (for D⊥ ≈ 1 m2 s−1 and cross-field distances of the order of
centimetres). While there exists little understanding of how impurity ions behave
in these peripheral regions of the edge plasma, these may be regions of weak
collisionality and we will assume that ions which reach such flux tubes move
along B to reach solid surfaces in impurity thermal transit times, i.e. milliseconds.
That is we assume that an impurity trap does not exist on peripheral flux tubes; it
is therefore to be noted that this is a critical hypothesis. Proceeding then:

τ actual
de-trap = [(τ de-trap

‖ )−1 + τ−1
⊥ ]−1

and so τ actual
de-trap ≈ τ⊥. Thus, the actual value of ntrap is

ntrap = �leakτ⊥/L = nz(sv)vTi τ⊥/L (6.65)

ntrap =
�in‖

vprompt loss

(
nz(sv)

n p

)
vTi

τ⊥
L

(6.66)

where vprompt loss is given by equation (6.47), nz(sv)/n p is given by
equation (6.60), vTi is given by equation (6.44) and equation (6.46) has
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Figure 6.16. Calculated C4+ profiles using DIVIMP for a ‘deep injection’ case:
�in‖ = 1.73×1023[C4+m−2s−1], ne = 1019 m−3, Tt = 50 eV, sinj = 5 m, sv = 10.85 m,
MD = 0.1, fcond = 1 (discussed in section 6.5.5.1) and various values of τ⊥. Evidently,
only for τ⊥ ≤ 10 ms is divertor retention good for this value of Tt , and for these
parameters [6.40].

also been used assuming λmfp � sinj. Thus, fortunately ntrap/n p can be much
less than unity, i.e. divertor retention of impurities can be much better than is
indicated by a strictly 1D analysis. One may note from equation (6.65) the
usefulness in being able to calculate the one-way leakage rate at sv, �leak, since
together with an estimate of τ⊥ this gives the result of chief interest, namely the
value of ntrap. Figure 6.16 shows the effect of τ⊥ �= ∞.

Although the original objective here was to develop a one-dimensional
model for impurity behaviour, we see that if we stick strictly to 1D impurity
transport the departure from reality can be enormous. One must, therefore,
include at least this one particular 2D effect, which, fortunately, requires only
the foregoing simple correction. This correction is, however, only conceptually
simple since we now need to know how actually to evaluate τ⊥. We return to this
below.

It is thus seen that the larger the value of D⊥ (i.e. the smaller the value of τ⊥),
the smaller will be ntrap and thus, in steady state, the smaller will be the impurity
content of the main plasma. This, possibly counter-intuitive, conclusion is strictly
dependent on the assumption that the impurity content of the main plasma does
indeed reach steady-state equilibrium with the upstream impurity density in the
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SOL, ntrap. In other circumstances, such as ELMing discharges (ELM = edge
localized modes) where the main plasma is periodically purged of impurities,
chapter 7, there will be offsetting dependences on D⊥: large values of D⊥ will,
as before, carry impurities more effectively across the SOL into the (assumed)
sink at the far periphery of the SOL, lowering ntrap; however, large values of D⊥
will rapidly replenish the impurity content of the main plasma between ELMs,
perhaps increasing the time-averaged impurity content there. The analysis of such
time dependent situations is not undertaken here.

It is unfortunate that our ability accurately to calculate the impurity density in
the main plasma, nmain

z , which is given essentially by the value of ntrap, is directly
dependent on τ⊥, equation (6.66), since we do not know very much about this
quantity. It may depend on the properties of the ‘far periphery’ of the SOL, which
is a poorly understood region. For modelling the background plasma as well as
the impurities, it is generally found that the boundary conditions at the periphery
of the SOL influence solutions—and this remains an important issue in all edge
modelling, calling for attention. While our ability accurately to calculate nmain

z
is poor, fortunately it turns out that we can more reliably estimate the divertor
plasma conditions nt and Tt , which correspond to efficient divertor retention. The
reason for this is that the leakage probability is a strong function of nt and Tt , and
so the precise value chosen for τ⊥ is not greatly important for this purpose. We
may also roughly bracket the value of τ⊥:

(a) on the short side, by the time required for an ion to move at the hydrogenic
sound speed a distance along the SOL to the target, about 1 ms typically;

(b) on the long side, by the time required for an ion to cross-field diffuse out
to the walls, a distance of about �r ≈ 0.1 m, typically; �r ≈ (D⊥τ⊥)1/2,
which for D⊥ ≈ 1 m2 s−1 gives about 10 ms.

We may thus estimate 10−3 s � τ⊥ � 10−2 s.

6.5.5 Estimating Divertor Leakage

6.5.5.1 The Case of Ionization of Impurities Near the Target

We may now use equation (6.66) to calculate the divertor leakage �leak and the
impurity density upstream in the SOL, ntrap. We will consider two cases:

(a) Near-target ‘injection’ of impurities, i.e. the ionization of impurities occurs
near the target. This would be the typical situation for sputtering of
non-recycling impurities from the targets, e.g. C. For such cases we will
assume particularly simple approximations for the integrals in equations
(6.55)–(6.58).

(b) ‘Deep injection’, considered in section 6.5.5.3.

We will assume that the parallel force balance is between the FF and FiG
forces. Because an exponential is involved, the nz(sv)/n p factor, equation (6.54),
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can be the most sensitive one, and we start by considering it. For ‘shallow
injection’ we will assume that the integrand in equation (6.55) can be taken as
constant and be evaluated for the target values. Thus:

FFf(sv) = −mz Mi cst�s

kTtτst
(6.67)

where Mi = the (absolute magnitude of) Mach number of the background plasma
averaged over sinj ≤ s ≤ sv , Mi = |vi |/cst .

�s ≡ sv − sinj. (6.68)

One also then has:
FFf(sv) = −Mi�s/λ‖t (6.69)

where

λ‖t ≡ kTtτst

mzcst
(6.70)

i.e. the value of the Roth–Fussmann friction length, λ‖, equation (6.59), evaluated
for conditions at the target. Subscript t for target. For Tt in [eV], rather than
[degrees], replace k in equation (6.70) with e.

To evaluate FiGf(sv), equation (6.57), we will assume for simplicity and
illustration a constant temperature gradient exists over sinj ≤ s ≤ sv of the
value just at the target. (In reality the gradient right at the target differs from
that upstream, e.g. at sv .) Thus:

Ti (s) = Ti (sinj)+ (s − sinj)T ′t (6.71)

where the derivative T ′t can be evaluated from the heat conduction equation

−κ0T 5/2
t T ′t = fcondqt . (6.72)

Here it is assumed that over the region sinj ≤ s ≤ sv a fraction fcond of the total
parallel power flux density q‖ is carried by conduction, fcond ≤ 1. The target
power flux density:

qt = −γ nt cst kTt . (6.73)

For Tt in [eV], rather than [degrees], replace k with e. The effect of volumetric
power loss, e.g. radiation, in sinj ≤ s ≤ sv is to increase |q‖| and thus T ′t . In
an approximate way we can allow for this quantitatively by using values fcond
greater than unity. Thus we are interested in values of this generalized parameter,
in the range 0.1 ≤ fcond ≤ 10, roughly.

From equation (6.57) we have:

FiGf(sv) = ln

(
1+�s

T ′t
Tt

)βi−1

. (6.74)
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By combining equations (6.71)–(6.74):

FiGf(sv) = ln

(
1+ �s fcondeγ nt ĉst

κ0T 2
t

)βi−1

(6.75)

where
cst ≡ ĉst T

1/2
t (6.76)

T [eV]; e appears in equation (6.75) because T is in [eV] here. Thus for D+
-plasma, and Te = Ti , ĉst = 9788 m s−1. Equation (6.75) is convenient and
informative. It emphasizes the powerful effect of the FiG force on impurity
leakage since (βi − 1) is often a very large number; for example, for C4+, βi =
32.8. Thus even a modest temperature gradient can result in strong leakage.

Unfortunately, this formulation does not lend itself very well to a direct
comparison of the effects of the FiG force and the FF force. In order to do that we
will employ the approximations that ln(1+ x) � x for x small, which then gives:

FiGf(sv) � (βi − 1)�s fcondγ ent ĉst

κ0T 2
t

(6.77)

T in [eV]. In the following we will sometimes be considering situations where the
condition of this approximation is not well satisfied and, strictly, equation (6.75)
should be used.

Comparison of equations (6.67) and (6.77) show, perhaps surprisingly, that
the ratio of these two terms is independent of almost all the parameters of the
problem, and specifically is independent of nt , Tt and �s. The ratio is also
approximately independent of the impurity species—of mz and Z . Both terms
vary simply as:

�snt Z2/T 2
t . (6.78)

For a D+ plasma, with γ = 7, κ0 = 2000, ln & = 15, βi ≈ 2.6Z2, one finds:

FiGf(sv)

FFf(sv)
� −0.1

fcond

Mi
. (6.79)

Assuming Mi of the order of 1
2 , within sinj ≤ s ≤ sv , and fcond of the order

of 1, then one sees that fortunately the FF force is stronger than the FiG force,
tending to lead to effective divertor retention. Ratios of fcond/Mi are conceivable,
nevertheless, which would violate this. In addition, even when FiGf(sv) can be
neglected compared with FFf(sv), the absolute magnitude of �leak and ntrap may
not actually be acceptable, as discussed below.

We may therefore use:

nz(sv)

n p
= exp

[
−Mi�s

λ‖t

(
1− 0.1

fcond

Mi

)]
. (6.80)
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Problem 6.9. Consider the example of C4+, nt = 1019 m−3, Tt = 50 eV, �s =
1 m, Mi = fcond = 1, D+ plasma and show that this gives τst = 16 µs, λ‖t =
0.09 m, nz(sv)/n p = e−9.8 = 5.7 × 10−5, i.e. the divertor retention is quite
efficient (although we must also evaluate the other terms in equation (6.66)).

We may note that:

nz(sv)

n p
∝ exp[−�snt Z2/T 2

t ] (6.81)

and so this ratio is very sensitive to the control parameters of the problem.

Problem 6.10. Show that changing Tt to 25 eV and 100 eV in the above changes
nz(sv)/n p to (5.7 × 10−5)4 ∼ 10−17 and (5.7 × 10−5)1/4 ≈ 0.1, respectively,
i.e. quite enormous changes.

The onset of divertor leakage is a particularly strong function of the plasma tem-
perature in the divertor [6.44]. One also notes the following.

(a) The more extended is the ionization zone of the background plasma, i.e. the
larger is sv , then the greater is the divertor retention:

nz(sv)/n p ∝ exp[−(sv − sinj)].
(b) The closer to each other are the ionization zones of the impurity and the

background species, the greater the leakage.
(c) The higher the divertor plasma density, the lower the leakage: nz(sv)/n p ∝

e−nt .
(d) The higher the charge state, the less the divertor leakage: nz(sv)/n p ∝ e−Z2

.
One should note, however that the impurities tend to ionize rather quickly in
typical SOL conditions, up to the He-like state, and so estimates of leakage
should be made for such charge states. Hence the choice of C4+ used here.

We turn next to the other terms in equation (6.66), starting with
�in‖ /vprompt loss. The first step is to establish whether λmfp is greater than
or less than sinj, equations (6.45)–(6.47), for the particular case of interest. For
illustration here we will assume λmfp < sinj. Next we may note that the ratio
vTi /vi in the prompt-loss region is essentially the same ratio as FiGf(sv)/FFf(sv),
equation (6.79), friction dominates and so here we will take vprompt loss � cst .
Hence:

�in‖ /vprompt loss = �in‖ /cst . (6.82)

Next we evaluate the vTi term in equation (6.66). Using equation (6.72) and
now neglecting the fcond term as having a small effect here, also using |qt | ∼
2κ0T 7/2

u /7L , one obtains:

vTi =
2

7
βi

(
λ‖t
L

)(
Tu

Tt

)7/2

cst . (6.83)
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Thus the normalized leakage rate �̂leak is:

�̂leak = �leak

�in‖
= 2

7
βi

(
Tu

Tt

)7/2(
λ‖t
L

e−�s/λ‖t
)

(6.84)

where for simplicity we have neglected the contribution of FiG to nz(sv)/n p,
equation (6.80), and taken Mi = 1.

From equation (6.84) one may note:

(1) The term dependent on the Roth–Fussmann length λ‖t tends to dominate
leakage through the exponential, which is the same point as made earlier
regarding nz(sv)/n p.

(2) Leakage increases strongly with temperature variation along the SOL,
(Tu/Tt )

7/2 � 1, all else being equal. It should be noted, however, that
the highly collisional conditions required to achieve large Tu/Tt in the first
place, section 4.11, will tend to make the λ‖t term strongly suppressing of
leakage, i.e. λ‖t small.

We will therefore take it that efficient divertor retention, i.e. �̂leak � 1, will be
given by:

�s/λ‖t � 10. (6.85)

It is readily shown using equations (6.36) and (6.70) that the Roth–Fussmann
length:

λ‖t = 6.8× 1015T 2
t /nt Z2 (6.86)

λ [m], T [eV], n [m−3] where ln & = 15, D+ plasma and mi/mz → 0 have been
used. Combining equations (6.85) and (6.86) we thus obtain the critical divertor
temperature above which the divertor will start to leak, T leak

t :

T leak
t � 3.8× 10−9 Z(nt�s)1/2. (6.87)

Thus, for the case of carbon where we will assume Z = 4 and taking �s = 1 m
for illustration:

T leak
t � 1.5× 10−8n1/2

t . (6.88)

So, for nt = 1020 m−3, T leak
t � 150 eV while for nt = 1019 m−3, T leak

t ≈ 50 eV.
One may note that these are rather high temperatures for a divertor—so

high as to cause unacceptable sputtering in the first place. That is, the source
of impurities would already be unacceptably strong, without even considering
impurity transport. It thus appears that divertors are unlikely to leak for near-
target sources. Of course, such complications as flow reversal have not been
included here so the result merely indicates a strong tendency for divertors to
efficiently retain particles released by near-target sources.
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Problem 6.11. For the example of Tu/Tt = 10, C4+(βi = 32.8), L = 50 m,
�s = 1 m, �s/λ‖t = 10 show that �̂leak = 2.7× 10−3, i.e. the divertor retention
is indeed efficient. Suppose further that nt = 1019 m−3, Tt = 50 eV and that
the sputtering yield Y = 0.03. Show from equation (6.42), that �in‖ = 2.1 ×
1022 [m−2 s−1]. Thus show that �leak = 5.7 × 1019 [m−2 s−1]. If we assume
τ⊥ = 10−2 s then from equation (6.66), show that ntrap = 1.1 × 1016 [m−3],
which would be a quite tolerable carbon density in the main plasma.

Before leaving this section, we consider the neglect of FeG compared with
FiG, and of FE compared with FF. One has FeG/FiG � (0.71/2.6) (T ′e/T ′i ) and
since equipartition tends to hold near the targets, then FeG/FiG � 1

4 . Also FE/FF
� ZeE/(mzcst/τst ) and assuming E � kTe/eL , then FE/FF � Zλ‖t/L , which
is small here.

6.5.5.2 Estimates of Hydrogenic and Impurity Ionization Lengths

As equation (6.87) makes evident, divertor retention of impurities depends pre-
dominantly on �s ≡ sv− sinj, i.e. on achieving a region of significant hydrogenic
flow velocity that extends as far as possible upstream of the point where the
impurities are ionized. (It is generally not sufficient to have high flow velocity
merely at the impurity ionisation point.) Fortunately, even natural hydrogenic
recycling tends to result in sv > sinj for most impurities. For ‘deep injection’
cases, for example, recycling gases such as neon, special efforts may be required
to increase sv , for example, strong hydrogenic pumping at the target region,
combined with gas puffing of hydrogen far upstream.

Table 6.2. Ionization distances for deuterium, sv , calculated using the NIMBUS code.
The ‘perpendicular’ distances, i.e. in the poloidal plane, are shorter by the factor Bθ /B,
i.e. about 10× shorter.

ne (m−3) Te (eV) Ti (eV) sv (m)

1019 10 10 3.0
1019 100 10 0.93
1019 10 100 2.3
1019 100 100 1.1
1020 10 10 0.061
1020 100 10 0.026
1020 10 100 0.22
1020 100 100 0.049

For present purposes we only seek an estimate of sv for natural recycling.
Fortunately, T leak

t depends only on the square root of �s.
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Hydrogenic neutral penetration into a plasma, allowing for the effect of
charge exchange, can be roughly estimated using equation (4.55) for the pene-
tration length. This penetration distance is essentially in the poloidal plane, and
so allowing for a typical magnetic pitch of Bθ /B = 0.1, one obtains the estimate:

sv ≈ 0.3

10−20ne
(6.89)

sv [m], ne [m−3], which is very close to the estimate given by Vlases and Si-
monini [6.44], equation (6.53).

The foregoing neglects ionization of molecular hydrogen and so the NIM-
BUS code was used to generate more realistic estimates for a particular JET
grid [6.40] and assuming a range of plasma conditions—various ne, Te and Ti ,
(spatially constant). The value of sv was taken here to be given by:

sv =
∫ L

0
�i (s)ds/�i (0) (6.90)

where �i (s) is the deuterium ion flux density given by ni (s)vi (s), calculated along
the separatrix flux tube, using the ionization source directly from NIMBUS. The
results are shown in table 6.2. As can be seen the approximation of equation (6.89)
is within a factor of 2 for ne = 1019 m−3 but is somewhat high for ne = 1020 m−3.
We will therefore take equation (6.89) only as a guide for estimating sv . For
example, the situation will be different for T � 10 eV, where detached divertor
operation is approached.

Turning next to the impurities, we will take carbon physically sputtered by
D+ as an example. Suppose the energy of the sputtered carbon is ≈ 10 eV, thus
vC ≈ 104 m s−1. Suppose the plasma background is Te = 50eV, ne = 1019 m−3,
then the (poloidal) ionization distance is ∼1 cm, and so sinj ≈ 0.1 m (distance
along B). The DIVIMP code, section 6.6.4, was used to refine this estimate, for
the same particular JET grid [6.40] and with Te = TD+ = 50 eV and ne =
1019 m−3, constant in space. The average sputtering energy was calculated to be
12.5 eV and the average sinj was found to be 0.11 m, in close agreement with the
simple estimate. A spatially varying plasma background was also used, with T
decreasing from 50 eV, on the separatrix, to 14 eV at 4 cm out into the SOL (at
the target), and ne decreasing from 1019 to 1018 m−3. The average carbon energy
was calculated to be 9.9 eV and the value of sinj = 0.24 m, averaged over all
the SOL flux tubes. It thus appears that simple estimates for sinj will be adequate
for present purposes. Neutrals released by self-sputtering will be somewhat more
penetrating.

From equations (6.81) and (6.85) we have the prediction that �̂leak ∝ exp
[�snt Z2/T 2t ]. This theoretical relation, including the factors that give the abso-
lute magnitude, is shown in figures 6.17 and 6.18, solid lines. The conduction-
controlled expression given in the next section was used to provide T (s) with
fcond = 1. Also assumed: C4+, vi = −0.1cst (figure 6.17) or −cst (figure 6.18)
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Γleak/Γin

(Tt[eV])—2×10—4

Figure 6.17. Points show DIVIMP calculated values of �leak/�in , as a function of
Tt . Highly collisional case, λmfp ≤ 0.1 m. The solid line shows the result from
equation (6.80). ne = 1020 m−3, sinj = 0.15 m, sv = 1.2 m, Mi = 0.1, fcond = 1,
C4+ [6.40].

and sv = 1.2 m. The injection was quite ‘shallow’, i.e. near the target: sinj =
0.15 m. For figure 6.17, ne = 1020 m−3, corresponding to λmfp � 0.1 m, i.e.
strongly collisional conditions. For figure 6.18, ne = 1019 m−3, λmfp ≤ 1 m,
i.e. a marginally collisional case. The points in both figures are from DIVIMP
code results, section 6.6.4, showing that the simple analytic model does best for
strongly collisional conditions, as expected. For weak or marginal collisionality
the quasi-kinetic Monte Carlo approach should be more reliable. Leakage is again
seen to be slight unless Tt is high, � 100 eV.

We can therefore conclude that for physically sputtered impurities, such as
carbon (and even more so for heavier elements), sinj is small compared with sv .
For chemically sputtered carbon, or evaporated atoms, one will have an even more
extreme situation, sinj � sv . Back-scattered helium, on the other hand, can have
sinj � sv; consider the example of a 50 eV He0 atom entering a plasma with Te =
50 eV and ne = 1019 m−3, giving a (poloidal) ionization distance of ∼0.3 m, and
thus an sinj perhaps 10 times larger, which is comparable to sv . The ability of a
divertor to retain He is thus a concern, section 6.7. Studies on CMOD [6.48],
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Γleak/Γin

(Tt[eV])–2×10–4

Figure 6.18. As figure 6.17 but for case with ne = 1019 m−3, Mi = 1. For this marginally
collisional case, where λmfp ≈ 1 m, the agreement with equation (6.80) (solid line) is less
good. The simple fluid model overestimates the leakage [6.40].

comparing the divertor retention of He, Ne, A and Kr, show a strong correlation
with the ionization distance, sinj, He being rather poorly, and Kr rather strongly,
retained. The energy reflection coefficient, RE , of He is much higher than that of
Ne, making the recycling He neutrals particularly penetrating [6.49].

6.5.5.3 The Case of Ionisation of Impurities Far from the Target

For ‘deep injection’ of impurities the ionization of the impurities occurs in the
SOL, but rather far from the target. This would sometimes be the case for re-
cycling impurities such as He and Ne which, by multiple reflections from side
walls, could penetrate deeply into the SOL before ionizing, figure 6.10. This
would also apply to sputtering of non-recycling impurities by charge-exchange
neutral hydrogen atoms striking side wall surfaces, figure 5.2. Such sources
extend around the entire vessel, but are strongest near the targets, and it may
be that these sources, although weaker in strength than the target sources, leak
so much more effectively that they dominate N main

z . In this case less simple
approximations have to be used for the integrals in equations (6.55)–(6.58).

Copyright © 2000 IOP Publishing Ltd.



322 Plasma Impurities

Γleak/Γin

(Tt [eV])–2

Figure 6.19. Calculated �leak/�in , using DIVIMP for a ‘deep injection’ case (points).
The solid curve is for the simple fluid model allowing for the spatial variation of kTDτs

in the friction force integral, equation (6.55); the dashed line neglects that variation.
ne = 1019 m−3, sinj = 5 m, sv = 10 m, Mi = 0.1, fcond = 1, C4+ [6.40].

For entry of impurities into the SOL upstream of sv obviously leakage to
the main plasma will be extremely high (neglecting flow reversal, etc). Even for
entry below sv , Mi may be rather small, which would make convection small
also, hence fcond ≈ 1. While we cannot use the ‘shallow injection’ results of
section 6.5.5.1 directly here, equation (6.80) still indicates the trend: for Mi � 0.1
and fcond ≈ 1, divertor leakage will be catastrophic, even for sv > sinj.

For ‘shallow injection’ we could approximate the integrals in equa-
tions (6.55)–(6.58) by evaluating the integrands at the target values. Now we
must allow for the variation of the integrands, which can be quite substantial:
kTiτs , for example, varies as T 5/2

i . We therefore need to have a more detailed
model of the plasma background and the variations of vi (s), Ti (s), etc. For
example one might assume that T (s) satisfies a modified conduction equation,
chapter 5.4:

T (s)/Tt =
(

1+ 7 fcond|q‖|s
κ0T 7/2

t

)2/7

. (6.91)
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One might then obtain ni (s) from the assumption of pressure balance, based
on a specified value of nt and assuming Mt = −1. For simplicity assume Mi

equal to a specified constant value for purposes of evaluating FFf(s). Inserting
such variations into equations (6.55)–(6.58) is a straightforward algebraic exercise
and the details are left to the reader. For illustration, see figure 6.19 which shows
�leak against Tt for the specific case: T (s) from equation (6.91) with fcond =
1, nt = 1019 m−3, sinj = 5 m, sv = 10 m, vi = −0.1cst (constant). The
solid line in figure 6.19 allows for the s-dependence of the integrands in FFf(sv),
FiGf(sv), while the dashed lines took them to be constant at the target values,
as for ‘shallow injection’. As can be seen, the prediction of the latter modelling

that �̂leak ∝ e−T−2
t is now somewhat modified, and the absolute level changes

substantially: the ‘deep injection model’ predicts much more leakage for a given
set of parameters than does the ‘shallow injection model’. (The solid points in
figure 6.19 are from DIVIMP code modelling, section 6.6.4.)

Since the parameters characterizing deeply injected impurities are, already,
indicative of more efficient leakage, it is clear that any deep sources are likely
to be particularly important at contributing to the impurity content of the main
plasma.

6.6 Edge Impurity Source/Transport Codes

6.6.1 Why Have Codes?

Why are we interested in developing and using edge impurity codes? We should
be realistic about expectations. One could play the devil’s advocate, and make the
argument that there are so many basic uncertainties involved that one might as
well stick with crude analytic models. Without doubt the list of basic uncertainties
is a sobering one:

(1) The scatter in the basic accelerator-generated sputtering yields under the best
circumstances is a factor of 2, section 3.3. Further uncertainty is involved
with regard to dependence on the bombarding flux density, surface rough-
ness, sputtering properties of re-deposited material, the angular and velocity
distributions of emitted particles, etc.

(2) The boundary conditions for impurities at the outer edge of the SOL are
virtually unknown, but may control the dwell time of impurities in the SOL,
upstream of the frictional zone near the targets, section 6.5.5.1, thus control-
ling the relation between the impurity source and nmain

z , i.e. the problem of
estimating τ⊥.

(3) There are very few data and also limited understanding of flow reversal,
chapter 15, which could strongly influence parallel transport of impurities in
the SOL since it involves FF and FiG being reinforcing rather than opposing
forces.

(4) Understanding of E × B and other drifts, chapter 18, is still emerging.
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(5) The temperature-gradient forces are essentially theoretical concepts and little
direct experimental confirmation has been obtained of their existence and
magnitude.

(6) The upstream SOL is only weakly collisional, making all simple theoretical
evaluations of FF, FiG, etc strictly invalid. In addition, the existence
of the background parallel temperature gradient itself is theoretically
questionable—due to the weak collisionality; it is also impractical to
measure it directly since the temperature differences involved are so
small, and the problem of identifying a specific SOL flux tube at different
poloidal/toroidal locations is very difficult. It is therefore not proven that the
upstream SOL impurity trap actually exists.

(7) DSOL⊥ and vSOL
pinch for impurities are essentially unknown. They may vary

substantially throughout the SOL given that n and T vary so greatly.

It would not be difficult to add to this list. Unfortunately a computer code
can do nothing to help with most of these problems. As with all code results,
however, the computer output often has the superficial appearance of authority
and reliability, and there is the risk of being misled and of gaining false confi-
dence. One needs to be constantly reminded of the truth about codes: ‘Rubbish
in. Rubbish out’.

On the other hand, to abandon edge impurity source/transport codes would
involve ignoring the obvious fact that a great deal of straightforward ‘book keep-
ing’ is called for if one does not want to add to the problems we already have.
It is clearly not helpful, for example, to ignore the fact that n and T vary across
plasma-wetted surfaces, and to simply calculate sputtering yields, photon efficien-
cies, penetration depths, etc. for the values of n and T at, say, the LCFS. Yet, to
take such variations into account within analytic formulations would be imprac-
tical. Clearly codes are ideally suited to handle such book-keeping tasks. This,
then is their main function. They cannot reduce the basic—and substantial—
uncertainties implicit in modelling edge impurity behaviour, but they can help us
make the best use of the information that we have.

6.6.2 Interpreting Edge Impurity Measurements Using Codes

We therefore have good reason to employ edge impurity codes even if only to
carry out purely predicative studies, e.g. of ncore

z for a future ITER-like machine
or reactor. The capability of codes to handle detailed book keeping is even
more valuable for interpretative studies, where one may have a large amount
of experimental data concerning the impurities, throughout the SOL and main
plasma. Such experimental measures are themselves typically rich in detail. For
example, one may have measurements of the absolute intensity of some particular
C II line, say, as a function of poloidal angle across the divertor region, made with
fine spatial resolution; an example is shown in figure 6.20 [6.50]. It is clear that no
analytic interpretive procedure can really do justice to such detailed information.
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Figure 6.20. VUV poloidal profiles of (a) C II and (b) C IV obtained with the KT1 vertical
viewing system, looking into the JET divertor [6.50]. DIVIMP code results.

Previously, spectroscopic measurements were largely confined to the main
plasma, but recently it has become common on all tokamaks to have increasingly
detailed measurements made of the edge including:

(1) Spatially resolved, absolutely calibrated measurements of various hydro-
genic lines, almost always Hα but with many other lines often, including
ones in the UV.

(2) Similar measurements for most of the charge states of the low Z impurities,
particularly for C.

(3) Sometimes impurity ion temperatures and drift velocities are measured from
Doppler widths and shifts [6.51].

It may well be that the quantities we are ultimately interested in modelling,
explaining and predicting are such ‘bottom line’ quantities as ncore

z and Pz,rad.
Because of the many uncertainties involved in the chain of processes leading to
these quantities, however, our ability to do so is rather modest. It is therefore most
helpful when we have as many intermediate impurity measurements as possible,
for example, the spatial distributions of line intensities of C I, C II, C III, etc,
throughout the edge region. This allows us, in effect, to isolate sub-components
for the overall impurity behaviour, and to study and try to understand each part
separately. For example, if modelling of the lowest charge state lines, e.g. of C
I and C II, is successful, then we may be confident that we have understood the
source mechanism. In another situation, there may be a problem in sorting out
the source, but perhaps the modelling can succeed in matching the progression
through middle charge states, e.g. the relation between the C III, C IV, C V, etc;
in such a situation we would have some confidence that we understood the SOL
transport part of the chain.
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The most practical way of confronting detailed experimental measurements
of edge impurities in such a way as to extract the underlying physics—i.e. to
perform interpretative studies—is by the use of impurity source/transport codes.

With regard to the source aspect of the impurity chain: codes include the
effect of the spatial variation of n and T across the plasma-wetted surfaces—
which govern the spatial variation of impacting flux density and energy, and
thus the sputtering production rate. If the yield is dependent on the substrate
temperate—e.g. chemical sputtering of C by H—then the code can include that
effect. The angular and velocity distribution of the sputtered neutrals is often in-
corporated. Self-sputtering can be included—although that then brings transport
into the picture.

With regard to modelling the specific line emissions, the spatial variations
of ne and Te are allowed for in the code as they set the photon efficiency, sec-
tion 3.5. The code calculates the local density of each charge state of the impurity
which, together with information on the local ne and Te, gives the calculated local
emissivity which can be compared with experimental measurement. Sometimes
a sufficiently comprehensive set of lines of sight are used to produce the experi-
mental data, that a tomographical reconstruction can be performed on the data to
produce a 2D (in the poloidal plane) set of experimental emission contours, which
can then be compared with the code. This is not actually necessary, however,
since every line of sight used in the experiment can be simulated by the code
to produce a calculated signal which can be directly compared with the raw (i.e.
not deconvolved) light-of-sight measurement. Since deconvolution of data always
degrades the experimental information to some degree, it is usually preferable to
make direct comparisons. In some situations a 3D comparison of experiment and
code may be involved.

The transport aspect of the problem requires that the code allow for 2D
motion of the impurity particles (neutrals and ions)—typically done within the
poloidal plane. Toroidal symmetry is usually assumed, but in some cases 3D
motion is allowed for. The ‘radial’ cross-field transport is usually assumed to be
anomalous, with the values of D⊥, and vpinch if required, taken to have assigned
values. The parallel transport is assumed to be classical, section 6.5.3. The
parallel transport may be followed in the actual parallel-to-B direction, with final
results for impurity density, etc then being projected onto the poloidal plane for
further analysis or for display. Alternatively, the parallel motion of the parti-
cles may be followed as motion projected onto the poloidal plane, with vpol =
(Bθ /B)v‖, where (Bθ /B) is the local value input to the code; see figure 6.21.

There are many unknowns governing the impurity sources and transport. In
some cases these uncertainties translate directly into individual adjustable param-
eters in the code. D⊥ is such an example. By adjusting these parameters until a
fit with the experimental data is achieved, one indirectly deduces the values of
such parameters. In other cases, it is not a simple matter of a single parameter
characterizing an unknown aspect of impurity behaviour—but rather one is trying
to decide between different scenarios. Again, however, the basic idea is that
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Figure 6.21. Two different orthogonal coordinate systems for toroidal geometry.

if/when a good match is obtained with the measurements then one assumes that
the correct scenario has been identified.

The uniqueness of the solution that one finds in this way can be questioned.
While it is not possible to prove the uniqueness of a solution mathematically, it
is intuitively clear that the more data that can be successfully matched simultane-
ously by the code, the greater will be one’s confidence that the correct physics
has been identified. Such edge impurity interpretative studies thus require a
reasonably comprehensive set of measurements with which to confront the code
output.

Since the impurity behaviour depends so greatly on the plasma background
it is important that the code simultaneously confront as much of the background
plasma data as possible also. At a minimum this should include:

(1) Spatially resolved absolute intensity measurements of hydrogenic line
radiation—at the very least Hα . This provides information on the intensity
of the bombarding hydrogenic flux.

(2) Langmuir probe measurements of Te and I+sat should be made at as many lo-
cations as possible. At a minimum these should be made across the plasma-
wetted surfaces, using built-in probes, figure 2.11. It is also very valuable
to have fast reciprocating probes deployed at upstream locations to provide
radial scans of Te(r) and I+sat(r) there (fast so as to avoid over-heating when
used to probe deeply).

(3) Pressure gauges provide hydrogenic pressure measurements at various loca-
tions around the vessel.
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Other hydrogenic data may be available such as Hγ /Hα ratios, which are
sensitive to the presence of very cold, recombining regions, section 3.5. On some
devices Thompson scattering systems provide 2D measurements of ne and Te in
the divertor plasma. Line-of-sight measurements of ne may be available from
interferometry. Ti -measuring probes are sometimes employed, etc.

It is therefore important that the interpretive code not only model the im-
purity behaviour, but the hydrogenic background as well. The latter is needed to
calculate the parallel transport of impurities, their progress through the successive
ionization stages including the effect of recombination, the thermalization of the
impurities, etc. At the same time the code can produce simulated signals of the
hydrogenic diagnostics for comparison with experiment.

6.6.3 Edge Fluid Impurity Codes

The edge plasma can be modelled as a set of fluids, at a minimum including
separate electron and hydrogenic-ion fluids. To study impurity behaviour, multi-
fluid modelling is carried out, where an additional fluid is included for each charge
state of the impurity. Fluid models of the edge are the subject of part II of this
book and will not be discussed further here. See chapter 13.

6.6.4 Monte Carlo Impurity Codes

In the Monte Carlo, MC, approach to edge impurity modelling individual impurity
particles are followed in time as they move in 2D or 3D within a given or specified
‘plasma background’, where the 2D or 3D spatial distribution of ne, Te, Ti , v‖,
nH , TH , etc have been provided as input to the MC code. Each particle is followed
from its creation point as a neutral, for example due to sputtering from some point
on the divertor target. The particle is followed as it ionizes to higher and higher
charge states, perhaps also experiencing recombination, until it strikes a solid
surface—the targets or walls—where, in the simplest case, it will be assumed to
just re-deposit, figure 6.22.

A new neutral will then be launched and followed similarly. When enough
particles have been launched and followed to give acceptably good statistics—
typically a few thousand particles—then the results are averaged to give as output:

(a) The 2D or 3D spatial distribution of each charge state density n j [parti-
cles m−3].

(b) The erosion, re-deposition and net erosion rates for all solid surfaces [parti-
cles m−2 s−1].

(c) The leakage rate, in [particles s−1] or [particles s−1 m−1 toroidally], of
impurities across any specified surface within the plasma, for example the
LCFS. Since in steady state the flux of particles across many internal surfaces
is zero, with equal fluxes existing in each direction, the leakage rate across
the LCFS is taken to be the one-way flux.
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Figure 6.22. Monte Carlo impurity codes, such as DIVIMP, follow individual particles
starting as sputtered neutrals which move freely across B, subject only to ionizing
collisions with electrons and momentum-transfer collisions with background ions and
neutrals. Once ionized, the parallel and cross-field transport of the ion are followed. The
ion eventually returns to a solid surface where it re-deposits, causing self-sputtering.

(d) By drawing on an atomic database such as ADAS to provide photon efficien-
cies, section 3.5, the intensity of various spectroscopic lines can be calculated
in [photons m−3 s−1 sterad−1]. In order to compare with a line-of-sight
(LOS) measurement the viewing coordinates of the diagnostic, its angle of
view and acceptance angle of photon collection are input to the code so that
a computed code value for the LOS signal is generated for comparison with
measurement.

(e) The 2D or 3D distribution of the total impurity radiation Prad [W m−3], also
broken down by charge state, and by line, bremsstrahlung, recombination,
etc contributions.

(f) The 2D or 3D distribution of Zeff and of the fuel dilution, nDT/ne.
(g) The 2D or 3D distribution of the temperature of each impurity ionization

stage. One of the advantages of the MC approach compared with the fluid
approach is that it is not computationally very costly to follow the tempera-
ture of each charge state separately. The LOS, intensity-weighted average Tz

for each charge state can be calculated for comparison with a LOS Doppler-
width measurement.

(h) The 2D or 3D distribution of v‖ for each charge state can be processed,
similarly weighted as for the temperature.

(i) The relative contributions to the impurity content of the main plasma due to
the different sputtering mechanisms, source locations, etc. Also the fraction
of the production of each source type and location that enters the main
plasma.
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(j) The average impurity dwell time in the SOL, the main plasma, etc.
(k) The energy and charge state distribution of the impurity ions for each element

of solid surface they deposit on; such information is needed for calculation
of self-sputtering.

(l) Since it is necessary to run a coupled hydrogenic neutral code such
as EIRENE anyway, e.g. to find nH, it is convenient also to output
the calculated 2D/3D distributions of hydrogenic atomic and molecular
densities, the intensities of the various hydrogenic lines (including LOS
simulations), etc.

With regard to the launching of the sputtered neutral, the spatial distribution
across the targets of the sputtering source is first calculated from the input infor-
mation about the variation of ne, Te and Ti across the targets and the sputtering
yield. The source is then normalized by the total, integrated production rate per
metre toroidally. The location for the launch of an impurity neutral is then selected
in a Monte Carlo way from this normalized distribution: let the fraction of the
total sputtering that occurs on a target element j be f j where

∑n
j=1 f j = 1, and

there are n target elements. Draw a random number ξ , uniform on [0,1]. Suppose
ξ falls in

∑k−1
j=1 f j < ξ <

∑k−1
j=1 f j + fk , then the neutral is launched from target

element k. As to the angle and velocity of the sputtering neutral, this is similarly
selected in a Monte Carlo way from specified angular, e.g. cosine and velocity,
e.g. Thompson, distributions, section 3.3.

Each sputtering mechanism—physical and chemical—is treated this way.
The wall and target sources due to charge exchange sputtering are also calculated
using as input the flux and energy of impacting hydrogenic neutrals calculated by
e.g. EIRENE. Each neutral is then followed in 2D/3D until it is ionized. In the
simplest treatment the neutral is assumed to move in a straight line until ionized.
The neutral is followed in time, using time steps �t which are smaller than all
collisional times, including the ionization time:

τi z ≡ (neσv0
i z)
−1 (6.92)

with ‘0’ indicating the neutral. At each time step a random number ξ , uniform
on [0,1], is drawn and if 0 < ξ < �t/τi z , then ionization is deemed to have
occurred at that time step, otherwise the trajectory is continued. The effect of
scattering collisions, both neutral–neutral and neutral–ion, can be included by, for
example, changing the trajectory direction ±90◦ (randomly chosen) whenever at
a particular time step a random number ξ , uniform on [0,1], falls within 0 < ξ <

�t/τscat, where:
τ−1

scat = niσvscat
in + nnσvscat

nn (6.93)

and σvscat
in , σvscat

nn are the 90◦-scattering rates for striking ions and neutrals re-
spectively.

When a neutral becomes ionized, the singly charged ion is then followed in
its 2D motion parallel and perpendicular to B. The parallel motion was described
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in section 6.5. At each time step �t the cross-field location r is changed by:

�r = ±(2D⊥�t)1/2 − vpinch�t (6.94)

with the ± chosen randomly. Equation (6.94) is appropriate for rectangular ge-
ometry only. For circular, or more complicated ‘grid’ geometries it is necessary
to make appropriate corrections to equation (6.94) to avoid artificial drifts.

The plasma background values of ne, Te, v‖, E‖, etc must all be provided as
functions of (s‖, s⊥), i.e. for each grid cell, as input to the MC code. Two methods
for generating such information:

(a) ‘onion-skin’ method, OSM, modelling can be used, chapter 12.
(b) A 2D fluid edge code can be used, chapter 13.

Since in the Monte Carlo method the particles are followed, not just in space,
but in time, this method lends itself to the analysis of time-evolving situations
where the background plasma and/or impurity source are changing in time. The
most common applications, however, are to steady-state situations. How, then,
to compute the steady-state 2D spatial distributions of the different charge states
from the basic MC output? Consider a slice of the tokamak which is 1 metre
in toroidal extent. The volume of each cell in the grid is thus numerically equal
to the cell area in the poloidal plane. Say N particles in total are launched in a
MC run. Let each cell be divided into ‘bins’, one for each charge state. Define
Ĉ(m, n, Z , t) to be the number of particles of charge Z , in grid cell number (m, n)

at time t s after the particle was sputtered. One obtains Ĉ by launching all N
particles and dividing the count in each cell bin by N , to obtain an average value.
The total number of particles sputtered during the time interval of length dt at the
time t s before t = 0 is φin

z dt where φin
z is the number of particles sputtered

per second per metre toroidally. The total, un-normalized number in the cell
bin is therefore Ĉ(m, n, Z , t)φin

z dt and the grand total, integrating (time running
backwards) from t = 0 to ∞ is the steady-state impurity number of charge Z in
cell (m, n):

n(m, n, Z) = φin
z

∫ ∞

t=0
Ĉ(m, n, Z , t)dt. (6.95)

One therefore does not need actually to calculate the specific time depen-
dence of Ĉ(m, n, Z , t) if only the steady-state density is required since it is suffi-
cient simply to increment the count in each cell bin at each �t step by an amount
1 �t , dividing the final total by N , i.e. ‘integration on the fly’.

To handle ionization and recombination of a particle in charge state j , a
random number ξ , uniform on [0,1], is drawn at each time step �t . If 0 < ξ <

�t/τch then a ‘change of state’ is deemed to have occurred, where:

(τch)−1 = neσv
j
i z + neσv

j
eirec + nH σv

j
cxrec. (6.96)
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If an ‘event’ occurs, a second random number is drawn and if 0 < ξ < τchneσv
j
i z ,

then the change is deemed to be ionization to state j + 1, etc.
In the simplest case it is assumed that any impurity ion reaching a solid

surface re-deposits and that particular particle history is terminated. Other options
are:

(a) In order to allow for self-sputtering, the value of Eimpact is calculated and
the self-sputtering yield Yss < 1 is used to launch a new neutral of assigned
weight Yss < 1 (the particles originally sputtered by background ion impact
are assigned weight unity). This particle is followed as before and when
it returns to a solid surface this self-sputtering cascade continues, but now
with the launch of a particle of weight given by the product Yss1Yss2. This is
continued until the particle weight becomes negligibly small.

(b) A recycling impurity such as He involves the launch of a new particle with
weight Rrecycle ≤ 1, an assigned value. The appropriate fractions that are
energetically back-scattered and thermally released can be allowed for. If
Rrecycle = 1 for all surfaces bounding the system then the code-run will
never terminate, obviously, and it is necessary to allow for some or all of the
bounding surfaces to act as pumps, with Rrecycle < 1.

In reality, the impurity ions do not instantly thermalize with the background
ions, but have a finite thermalization time given by the Spitzer energy transfer
time:

τT ≡ 0.71× 1013mzTi (Ti/mi )
1/2

ni Z2 ln &
(6.97)

τ [s], m [amu], T [eV], n [m−3]. Thus the simplest way to follow the evolution
of Tz is to increment it at each time step �t using the formula:

�T f
z = (Ti − T f

z )�t/τT (6.98)

where the superscript f indicates that the temperature has been calculated from
this formula. Since the velocity diffusion is also calculated, equation (6.33),
one can separately confirm that this formula is valid; the mean value of the
random kinetic energy is, after all, simply related to the temperature—at least
in conditions where the collisionality is strong enough to ensure the existence of
a Maxwellian distribution. These expectations have been confirmed [6.40].

Conditions may well not be sufficiently collisional to ensure the existence of
Maxwellian distributions, particularly for short lived, low charge states. In that
case, it is strictly incorrect to use equation (6.98) to calculate Tz , and the average
random thermal energy, i.e. the effective Tz , should be computed directly from the
dispersion of parallel velocity, see below.
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The most basic mode of employing a Monte Carlo code is the non-feedback
mode, where the plasma background solution is kept fixed, and the MC code is run
once for this background. In feedback mode the MC code is coupled iteratively to
the code calculating the plasma background.

Monte Carlo impurity codes include pioneering work by Sengoku et
al [6.52], followed by a number of other codes including REDEP [6.53],
ZTRANS [6.54], DIVIMP [6.55], IMPMC [6.56], BBQ [6.57] and MCI [6.58].

In some Monte Carlo codes both the gyroscopic and parallel motion of the
ions are followed. A rather complete formulation has been provided by Reiser et
al [6.41] who have also calculated collisional terms which combine FPG, FF and
FiG. Since all of these forces are the result of collisions, it is most natural to treat
them in a combined way.

In its most basic mode of operation, a Monte Carlo impurity code employs
the trace impurity approximation. This is sometimes taken to indicate that FPG,
the impurity pressure gradient force, is therefore neglected. This is incorrect.
As was shown in section 6.5.3, inclusion of parallel diffusion in a MC code
incorporates this important force. The impurity ions diffuse via collisions with
the hydrogenic ions. What is neglected in the trace impurity approximation is
the effect of impurity–impurity collisions—on all the parallel forces. Strictly
therefore the trace approximation is invalid once the Z–Z collision frequency
exceeds the Z–i collision frequency. This turns out to be an overly strict crite-
rion, however, because the corrections for impurity–impurity collisions affect the
opposing forces on the impurity approximately equally.

The two most important forces in the impurity parallel force balance are
usually FF and FiG, section 6.5.3. We have that FF ∝ (τ z−i

s )−1, equation (6.21),
(the stopping time for impurity ions striking background ions), thus FF ∝ ni ,
equation (6.35). Therefore, compared with a pure plasma, FF is reduced by a
factor (ni/ne) for a given ne. The correction for FiG follows the simple deriva-
tion of FeG in chapter 9, equations (9.25)–(9.27), with appropriate substitutions,
including the replacement of λee by the thermalization mean free path λE for
background ions in the presence of both background ions and impurity ions. It is
then readily shown that FiG is reduced by a factor≈ (1+ (mi/mz)(nz/ni )Z2)−1.
Example: C4+ in D+ with n4+

c /ne = 0.1. Then ZSOL
eff = 2.2 and if the core

n6+
c /ne is also 0.1, then Z core

eff = 4.0, and so this is certainly a strongly con-
taminated plasma. One finds ni/ne = 0.6, so FF is reduced by a factor of
0.6. The FiG correction factor is 0.69, i.e. about the same. Thus, the force
balance between FF and FiG is almost unchanged, even for this high level of
impurity content. It can thus be expected that the trace impurity approxima-
tion will hold up fairly well even when impurity levels are higher than trace
ones.

The foregoing considerations concerning the trace assumption only pertain
to the parallel force balance. Impurity radiation can strongly influence the plasma
properties, particularly the temperature. Inclusion of the latter effect should there-
fore be the first correction made to improve a trace analysis.
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It is useful to compare fluid and Monte Carlo edge impurity codes, which
may be done under the following categories.

6.6.4.1 Self-consistency

Multi-fluid 2D edge codes automatically treat the hydrogenic and impurity com-
ponents in a self-consistent way. Thus, for example, the impurity transport is
strongly influenced by the ne, Te, Ti , v‖, etc of the hydrogenic plasma; conversely,
the resulting Prad,z can strongly influence the hydrogenic temperature, etc. In the
most basic mode of operation, Monte Carlo impurity treatments, employing for
example a 2D fluid code to compute the ‘plasma background’, do not include
such coupling. For predictive work the multi-fluid approach is therefore superior.
The strongest linkage between the hydrogenic and impurity species is usually via
Prad,z so this is the most important element to include in an iterative, feedback
coupling of a fluid ‘plasma background’ code and a Monte Carlo impurity code.

6.6.4.2 Trace Versus Non-Trace Impurity Levels

As already discussed, the Monte Carlo approach probably retains validity up to
higher levels of nz/ni than would be indicated by simple comparisons of collision
times, i.e. it extends into the regime of non-trace impurity levels. Nevertheless,
for particularly strongly contaminated plasmas it is necessary to employ either a
multi-fluid code, or a coupled fluid/MC code where all three of the conservation
equations for the fluid analysis are updated iteratively to include the impurity
contributions. The latter have not been developed to date.

6.6.4.3 Input of Experimental Data and ‘Onion-Skin’ Method Modelling

Uncertainties are substantial even regarding the modelling of the hydrogenic edge
plasma. Uncertainties are therefore compounded when one attempts to model
edge impurity behaviour since a kind of ‘uncertainty-squared’ effect arises. For
interpretative work, therefore, it is desirable to take as input in the analysis, as
much experimental data as possible about the hydrogenic plasma, so as to be
obliged to calculate as little as possible, i.e. about the impurities. Ideally, one
would take the 2D distributions of ne, Te, Ti , v‖, E‖ from measurement, in which
case the only quantities remaining to be computed would be the impurity ones.
This would then permit focusing specifically on impurity behaviour, and should
greatly aid in its elucidation. Unfortunately such complete experimental descrip-
tions of the hydrogenic edge plasma are not presently available. What are usually
available are Langmuir probe data across the targets, from which it is possible to
carry out onion-skin method, OSM, analysis of the edge plasma, see chapter 12.
This may be supplemented by other hydrogenic-plasma-related data, e.g. spatial
distributions of Hα intensity, 2D Thompson scattering measurements of ne and
Te, etc. Thus an OSM can be constructed which, although also dependent on
theoretical concepts, is strongly based on experimental data.
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Figure 6.23. Velocity distributions of different charge states for 1 eV C+ ions injected
into a plasma of Te = TD = 50 eV, ne = 1019 m−3 and allowed to thermalize and
ionize. The finite thermalization of the lower charge states is evident. It is also clear that
the lower charge states are less fully Maxwellianized, particularly the high energy tails.
Calculated using the DIVIMP code [6.40]. The horizontal scale is in units of kTD /mC .
Thus if the carbon ions are fully thermalized to the D+, their distribution would vary as
exp(−mC v2/2kTD), which is approximately the case for the C4+.

The combination of experimental data input, an OSM, plus a Monte Carlo
impurity code is therefore a useful one for interpretive studies,

6.6.4.4 Finite Thermalization of the Impurity Ions

In edge multi-fluid modelling it is considered to be computationally too costly to
include a separate energy equation for each ion species and charge state, and it is
assumed that all ions share a common (local) temperature. Further it is implicitly
assumed that the ion velocity/energy distributions are Maxwellian. Near the tar-
gets impurity ion transit times can be shorter than thermalization times, τT , equa-
tion (6.97), and these assumptions become invalid. Monte Carlo codes include,
at negligible computational cost, the separate tracking of the temperature of each
species and charge state, and if the velocity distributions are non-Maxwellian,
this is automatically allowed for as well. An example of the finite thermalization
process is shown in figure 6.23. The DIVIMP code was used to calculate the
velocity distributions of the different charge states of carbon. C+ ions were
injected into an infinite D+ plasma with TD = Te = 50 eV, ne = 1019 m−3.
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The initial temperature of the C+ was 1 eV. The ions were removed at 100 ms
after injection. The finite thermalization of the lower charge states is evident. It is
also clear that the lower charge states are less fully Maxwellianized, particularly
the high energy tails. For C4+ the Maxwellianization time is∼20 ms and thus the
C4+ distribution is expected to be almost perfectly Maxwellian, as is seen to be
the case in the DIVIMP results.

6.6.4.5 Finite Mean-Free-Path Effects

All fluid models implicitly assume strong collisionality, short collisional mean
free paths, see section 9.12. The edge plasma is, in fact, often of marginal colli-
sionality and a variety of ‘kinetic corrections’ can be required to try to extend the
validity of fluid models, chapter 26. By contrast Monte Carlo modelling is quasi-
kinetic and all variations of mean free path are automatically allowed for (at least
for the impurities themselves). As was already noted regarding figure 6.18, Monte
Carlo and fluid results can diverge significantly even for marginally collisional
conditions.

6.6.4.6 Modelling Recycling Neutrals

Recycling neutrals such as He, Ne, etc move as neutrals around the periphery
of the plasma—in the ‘vacuum’ region—as well as doing so as ions within the
plasma. The modelling of these two quite different types of transport is diffi-
cult/impossible to do using a fluid code, and a Monte Carlo code is usually used
to track the neutrals, in combination with a fluid code for the ions. Alternatively,
the Monte Carlo code can directly track impurity particles through both regions.

6.6.4.7 Computational Time

Convergence of 2D multi-fluid codes is typically slow and computationally ex-
pensive. Convergence is not involved in MC modelling and computational times
are usually short.

6.7 Helium and Pumping

He is the one completely unavoidable impurity for DT fusion and the requirement
to remove it efficiently motivates much edge design. Failure to remove the He
from the plasma adequately will cause the DT fusion process to poison itself. One
of the primary purposes of a divertor is to compress the neutral gas—including
He—as much as possible, in some region of the edge, in order that it can be
removed through small ducts to compact pumps.

The He production rate is directly given by the DT fusion power and it can
be shown [6.59, 6.60], that in order to achieve a stationary and ignited burning
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DT plasma it is necessary that:

τ ∗α/τE ≤ 10 (6.99)

where τ ∗α is the global alpha particle confinement time and τE is the energy
confinement time. That is, the particle confinement time must not be too good.

See [6.61] for a further assessment of He removal requirements.
The global confinement time τ ∗α is experimentally determined by turning the

original alpha source off and observing the time decay of the total alpha particle
content of the plasma, Nα:

dNα/dt = −Nα/τ ∗α . (6.100)

We employ a simplified form of the analysis of Reiter et al [6.59] in the following.
The relation of τ ∗α to D⊥ is complex because two populations of alpha particle are
present in the plasma:

(a) The first generation alphas which were born in the central plasma and have
not yet reached the wall. Let their content be Nα1 and their mean dwell time
in the plasma be τα1.

(b) He which has recycled from the wall and re-entered the plasma; total content
Nα2 and mean dwell time τα2.

If vpinch = 0 then τα1 � a2/D⊥ since the first generation alphas must diffuse
across most of the plasma radius. τα2 � τα1 since the recycled He particles are
ionized rather near the edge. For the Engelhardt model, section 6.4, one would
anticipate τα2 ≈ aλ0

i z/D⊥ where λ0
i z is the ionization depth inboard of the LCFS.

For a high density divertor the latter expression is unlikely to be applicable, but
the point remains that τα1 is likely to be much larger than τα2. Clearly τ ∗α is a
weighted average of τα1 and τα2, with the weight set by the strength of the two
sources. While a pump can do nothing to influence τα1, it does reduce τα2, and
thus also reduces τ ∗α , to the degree that the pumping is effective. We wish to relate
τ ∗α to the pumping. dNα1(t) satisfies:

dNα1(t)

dt
= −Nα1

τα1
+ ND NT σvF

V
(6.101)

where ND, NT are the total content of the plasma of volume V and σvF is the
average fusion reaction rate in V . If the fusion reaction ceases at t = 0 then:

Nα1(t) = (τα1 ND NT σvF/V )e−t/τα1 . (6.102)

With regard to the recycling population, we will assume that a fraction Reff,
the effective recycling coefficient, of the fluxes leaving the plasma, φout, re-enters
the plasma. Thus

φout = Nα2(t)

τα2
+ Nα1(t)

τα1
(6.103)

dNα2(t)

dt
= − Nα2(t)

τα2
+ Reff

(
Nα2(t)

τα2
+ Nα1(t)

τα1

)
. (6.104)
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Reff is not a simple surface reflection coefficient since it implicitly contains infor-
mation about the pumping. Thus in steady state (at t ≤ 0):

Nα1 = τα1 ND NT σvF/V . (6.105)

Nα2 = Reff

1− Reff

τα2

τα1
Nα1 (6.106)

Nα ≡ Nα1 + Nα2 = (ND NT σvF/V )

(
τα1 + Reff

1− Reff
τα2

)
. (6.107)

The time-dependent solution [6.59] gives:

τ ∗α = τα1 + Reff

1− Reff
τα2. (6.108)

A number of important consequences of equation (6.108) may be noted:

(a) If the recycling is too strong, Reff → 1, then it will not be possible to achieve
the low value of τ ∗α required, equation (6.99).

(b) In steady-state reactor-like conditions, where the walls are fully saturated
with hydrogen, the only way to make Reff < 1 is with active pumping.

(c) There is no benefit, however, in installing so much pumping as to make
Reffτα2/(1− Reff)� τα1.

We wish to now relate Reff to the properties of the pump, εp, by defining:

φpump ≡ εpφout. (6.109)

We may analyse εp by defining the ‘collection efficiency’ of the pump, εcoll:

φcoll ≡ εcollφout. (6.110)

φcoll is the flux striking the pump opening. εcoll is the fraction of the wall area that
is effectively occupied by the pump opening. Not all neutrals entering the pump
opening will actually be removed by the pump, as some will return to the main
vessel. One thus defines the ‘removal efficiency’ of the pump, εrem, by

φpump ≡ εremφcoll. (6.111)

Thus
εp = εremεcoll. (6.112)

From the above result we have the following:

Reff = 1− εp = 1− εremεcoll. (6.113)

One wants as large a pump opening as possible, as large an εcoll as possible.
If the neutrals struck the entire wall surface uniformly in a reactor over a wall
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area ∼103 m2, then it would probably be impractical to have εcoll as large as
even 10−2. This, therefore, is the motivation for the use of divertors and pumped
limiters, where by concentrating the φout in a small space, it is practical to raise
εcoll, perhaps to the order of 10−1. It is also advantageous to direct the neutrals
into the pump opening, thus decreasing the probability the neutrals will return,
i.e. raising εrem. This, therefore, is the advantage of divertor designs, figure 5.2,
where the plasma flow and resulting neutral flow can be channelled into the pump
opening.

Most of the foregoing analysis applies equally well to the fuel species, where
a central source of particles may exist due to neutral beam injection or pellet
injection. Effective pumping of fuel particles is then necessary in order to achieve
control of the plasma density.

Clearly it would also be helpful if the He were enriched in the divertor. The
helium enrichment factor ηenrich

He is defined [6.62, 6.63]:

ηenrich
He ≡ npump

He /2npump
H2

nmain
He /nmain

H

(6.114)

where npump
He (npump

H2
) are the He (H2) gas densities at the edge of the plasma, near

the pumps, and nmain
He is the He-ion density in the main plasma where the average

plasma density is nmain
H (we neglect plasma dilution due to He here, ne ≈ nH).

Unfortunately, virtually all experiments to date have shown ηenrich somewhat less
than unity, i.e. a modest re-enrichment; see the review in [6.64]. Presumably this
is due to the fact that He0 is hard to ionize (σv0

i z is small) and some of the He
ions recycling at the target does so as energetically back-scattered neutrals—thus
penetrating more deeply into the plasma than does the recycling hydrogen. As
was shown in section 6.5.5, when impurities ionize further from the target than
the hydrogen does, divertor leakage of impurities is increased.

As with all impurities, there are a number of links in the chain that connects
the ‘two ends’—in this case nmain

He and npump
He . It is useful to bring this out by

defining a number of concentrations:

Cmain ≡ nmain
He /nmain

H (6.115)

Cpump ≡ npump
He /2npump

H2
(6.116)

CSOL ≡ nSOL
He /nSOL

H (6.117)

Cdiv ≡ ndiv
He/ndiv

H . (6.118)

Note: SOL indicates the upstream end of the SOL, adjacent to the main plasma;
div indicates the region next to the target. Note: Cmain, CSOL, Cdiv, are ratios of
ion densities; Cpump is a ratio of neutral densities. Thus:

ηenrich ≡ Cpump/Cmain (6.119)
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and by extension we may define:

ηenrich
SOL/main ≡ CSOL/Cmain (6.120)

ηenrich
div/SOL ≡ Cdiv/CSOL (6.121)

ηenrich
pump/div ≡ Cpump/Cdiv (6.122)

so that:
ηenrich = ηenrich

SOL/mainη
enrich
div/SOLηenrich

pump/div. (6.123)

These latter definitions emphasize the fact that there are three links in the transport
chain, figure 6.3:

(1) radial (ionic) transport in the main plasma;
(2) parallel (ionic) transport along the SOL;
(3) neutral transport from the divertor plasma into the pump.

The transport coefficients D⊥ and vpinch in the main plasma have been mea-
sured on a number of tokamaks and do not differ significantly from the hydrogenic
coefficients [6.65]. Thus, ηenrich

SOL/main appears to be reasonably well understood.
Parallel impurity transport in the SOL was discussed in section 6.5.5 and is still
very much an evolving field; ηenrich

div/SOL is thus less well in hand.

The quantity ηenrich
pump/div depends on the coupling of plasma in the divertor

fan and the neutral gas density outside the fan. This coupling is not simple even
for the hydrogenic species itself. On DIII-D it is possible to adjust the location
of the outside strike point so as to be able to ‘stuff’ the divertor plasma leg into
the opening of the cryo-pump—to an adjustable degree, figure 5.4 [6.66]. For
attached discharges, i.e. at relatively low density, this resulted in large variations
in the hydrogen pumping rate, varying up to fivefold between the extremes of
positioning. By contrast, for partially detached conditions, i.e. at higher plasma
density, the variation of pumping rate with positioning was rather slight. The
difference was attributed to the short ionization length of the neutrals at high den-
sity, and the tendency of neutrals to be ‘trapped’ or pumped by the plasma itself.
Changes in the geometry of the divertor structural components can significantly
influence the pumping [6.67, 6.68].

Other more complicated effects also appear to be involved—again, even
for hydrogen—as now briefly described. Fielding reported results from DITE
bundle divertor [6.69] that the H2 outside the divertor plasma fan was impeded
in penetrating the plasma due to the ‘backwash’ of energetic Franck–Condon and
charge-exchange neutrals emanating from the plasma fan, in high pressure/density
operation. In this finding it was concluded that neutral–neutral collisions strongly
influenced the coupling between the particle population within the divertor plasma
fan, and the neutral density just outside the fan. Allen et al reported apparently
related difficulties in explaining Dα measurement on DIII-D [6.70]. Haas and
co-workers [6.71, 6.72] reported a similar effect, but in this case it was attributed
to H2–H+ elastic back-scattering collisions acting to impede the coupling of the
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Figure 6.24. CMOD divertor neutral pressure plotted as a function of the integrated ion
flux striking the vertical target plates (inner and outer) below the divertor nose (entrance).
The outer strike point is on the vertical target and the divertor pressure is measured with a
capacitance gauge [6.73].

two populations. Niemczewski et al [6.73] reported on a similar effect in CMOD
with code-computed neutral densities near the divertor plasma fan being an order
of magnitude below experimental values. Figure 6.24 shows divertor neutral
pressure on CMOD against the integrated ion flux to the targets for the different
regimes: sheath limited, ‘transitional’, ‘recycling’ (i.e. conduction limited) and
detached. For the latter two regimes the divertor pressure is particularly high,
evidently due to H2–H0 and H2–H+ collisions.

It seems likely that the coupling between He ions in the divertor fan, and
the He gas density outside the fan, will be influenced by similar processes; un-
derstanding of ηenrich

pump/div is thus still evolving. Elucidation of the complex pro-
cesses involved—whether just for the hydrogen behaviour alone, or for He in
hydrogen—requires use of sophisticated neutral codes such as EIRENE, incor-
porating all of the complicated atomic and molecular collisional processes im-
plied by the observations described in the previous paragraphs [6.74], including
neutral–neutral collisions.

Since ηenrich is of the order of unity, our interest then focuses on achieving
the highest possible hydrogenic gas densities in the divertor adjacent to the plasma
legs. Since the earliest divertors were operated it has been observed that the
neutral pressure in the divertor was considerably higher than in the region in
the main vessel just outside the plasma, i.e. a strong divertor compression was
achieved [6.75, 6.76]. In the high density CMOD tokamak [6.73], particularly
high divertor pressures—greater than 150 mtorr [6.48]—and high compression
ratios—up to 100—have been achieved, figure 6.25. Such high gas pressures in
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Figure 6.25. CMOD. Compression ratio (divertor to midplane neutral pressure) depen-
dence on core plasma density ne, showing the SOL plasma transport regimes with different
symbols. The outer strike point is on the vertical target, and the divertor pressure is
measured with a capacitance gauge [6.73].

the divertor are valuable for efficient removal of He—and are also of value for
controlling the hydrogen itself: it can be advantageous to fuel the plasma using
neutral beam injection or pellets, in which case equal outflows of particles must
be pumped to achieve steady state. The achievement of high compression, to
the degree this involves low pressures in the main vessel, may be advantageous
as this has been correlated with achievement of H-mode confinement in some
studies [6.77], although not in others [6.78].

6.8 Erosion and Redeposition of Solid Structures at the
Plasma Edge

Plasma-surface interactions are generally mutually harmful to both of the states
of matter involved. The plasma becomes contaminated with particles released
from the solid structures at the edge, degrading plasma performance (for the
most part). At the same time, the solid structures are eroded, a process which
eventually degrades their functionality. In present experimental devices the total
exposure time of the edge structures to plasma is generally too short to result in
very significant erosion and the emphasis to date has therefore primarily been
on the effect of impurities on the plasma. This situation will change as fusion
development proceeds to more reactor-like operation.

The study of plasma erosion in fusion devices is already well established,
with the pioneering work of J. N. Brooks dating back to the early 1980s. It is
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evident that this aspect of ‘impurity’ behaviour is more complex and challenging
that the plasma-contamination processes which constitute but the first step in the
net erosion process. Virtually all of the solid material released into the plasma
will eventually redeposit on some part of the edge structure—and it is the net
deposition which is of principal interest. Therefore in order to unravel the full
erosion/redeposition story it is necessary to unravel all of the impurity produc-
tion and transport processes—including the processes involving the return of the
impurity particles to the edge structures.

We do not attempt here to analyse or review the studies carried out in this
field of increasing importance, but refer the reader to the work of Brooks [6.53,
6.79–6.85], Naujoks [6.86–6.89] and others [6.90–6.97].

Additional Problems

6.12. Variation of collisionality of different charge states. Assume a uniform
plasma of ne = 1019 m−3 and values of Te = TD+ = TC = 10 eV, also
100 eV. Calculate the dwell time in each charge state, also the collision times
τs , and τT . What do you conclude about the collisionality of the different
charge states? Repeat for ne = 1018 m−3, ne = 1020 m−3.

6.13. Consider a point source of 5 eV C3+ ions at a location in the SOL where
Te = 30 eV, TD+ = 100 eV and ne = 1019 m−3. The plasma background is
stationary.

(a) How long is τi z , the time for the C3+ to become ionized to C4+, i.e. its
‘lifetime’ in this charge state?

(b) How far will a 5 eV C3+ ion, with its velocity purely along B, travel
before a momentum-loss collision with the background plasma? How
much time will that take? Will such a collision actually occur within the
lifetime of the C3+ ion?

(c) What is the thermalization time of the C3+? What would the tempera-
ture of the C3+ be at t = τT , 2τT , 3τT ? Will the C3+ actually have time
to reach this temperature? Show that the average temperature of the C3+
over its lifetime is 87 eV.

(d) In part (b) we considered some aspects of the dispersal of the C3+
ions along B during their lifetime. How long would it be before the
C3+ experienced a (parallel) diffusion collision? Estimate this time by
assuming a value for the C3+ temperature equal to the time-average
value of Tz over the C3+ lifetime, T z . Calculate D‖, also assuming
this Tz-value, equation (6.38). Estimate the diffusive spread of the C3+
ions along B. Compare this with the distance that a 5 eV and a 100 eV
C3+ would travel collisionlessly in its lifetime; compare also with the
momentum-loss mean free path calculated in part (b); comment.

(e) What do you think of the suggestion that the dispersal of the ions in
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the parallel direction due to diffusion collisions, �sdiff‖ , can be esti-
mated by calculating the distance that an ion would travel collisionlessly
with a parallel velocity corresponding to T z , i.e. �sth

‖ ? Find the latter

quantity here and compare with �sdiff‖ . Comment. Show that generally

�sth
‖ /�sdiff‖ = (τi z/2τ‖)1/2 and comment on the implications.

(f) Assume that the cross-field diffusion coefficient is D⊥ = 0.5 m2s−1.
Estimate the diffusive spread of the C3+ cross-field. Compare with the
parallel diffusive spread and comment.

6.14. Repeat problem 6.13 for ne = (a) 1018 m−3, (b) 1020 m−3.

6.15. Parallel transport of impurity ions in the presence of friction and an electric
field.

Consider an impurity ion of charge Z and mass mz located at s0 at time
t = 0, with parallel velocity vz0. The plasma background has a flow velocity
vi and and a parallel electric field E is present. Show that the location of this
ion at time t, s(t), and its parallel velocity, vz(t), are given by:

s(t) = s0 +
(

Zeτs

mz

)
E[t − τs(1− e−t/τs )] + vi t + τs(vz0 − vi )(1− e−t/τs )

vz(t) =
(

Zeτs

mz

)
E(1− e−t/τs )+ vi + (vz0 − vi )e

−t/τs .

6.16. Consider the same situation as in Problem 6.13, but now with vi �= 0, E �=
0. For the values of vi and E take those of a simple, isothermal pre-sheath
plasma as described in sections 1.8.2.6–1.8.2.9.

(a) If the plasma background Mach number is 0.5 at the injection point,
show that the location of the injection is s = 0.252L , where s is mea-
sured from the target. What is the value of vi [m s−1]? What is the
sign?

(b) By differentiating equation (1.52) show that:

E = −(π − 2)
kTe

eL

M

1− M2

Assuming L = 100 m, show that the value of E at the injection location
is −0.23 V m−1.

(c) Make a first estimate of the shape of the ‘C3+ cloud’, by calculating the
distance the C3+ travels in the two parallel directions (with and against
the flow) in its lifetime, neglecting parallel diffusion effects. Neglect the
spatial variation of M and E , taking their values at the injection point
for purposes of this estimate. Assume initial velocities corresponding

Copyright © 2000 IOP Publishing Ltd.



Additional Problems 345

to 5 eV, moving upstream or downstream. Which has more effect, the
electric field or friction? Compare these distances with the distances
that the ion would have travelled at the plasma background velocity, and
comment.

(d) On the basis of part (c) you might be tempted to conclude that the C3+
ion ‘cloud’ would span between these two limiting locations. But taking
parallel diffusion into account shows that this is not realistic. Using the
results of problem 6.13(d) together with those of 6.16(c), estimate the
central location of the C3+ ion ‘cloud’, and its spread along B.

6.17. Repeat problem 6.16 for ne = (a) 1018 m−3, (b) 1020 m−3.

6.18. (a) For n̂ref
z defined by equation (6.19) show that for a uniform wall source

that:

f zrdn =
{

1+ λ0
i z/λSOL, λ0

i z ≥ 0

eλ0
i z/λSOL , λ0

i z ≤ 0.

Plot f zrdn(λ
0
i z/λSOL) for −3 ≤ λ0

i z/λSOL ≤ +3.
(b) Consider next a limiter source of impurity neutrals, ionized at rather

small distances, along B, from the limiter. For ionization inside the
LCFS, λ0

i z > 0, assume that the impurities have become distributed
uniformly along B by the time they have diffused out to the LCFS. Will
the above formula for f zrdn apply for such a source?

(c) As in part (b), but now consider the case of impurities ionized in the
SOL, λ0

i z < 0. Assume: (a) that the ionization occurs at distance
Liz , along B, from the limiter, (b) that the impurities are so strongly
coupled by friction to the background plasma that they are convected
at the plasma flow speed back to the limiter and (c) that, over length
Liz , the plasma is moving at the sound speed. Although, in reality, the
impurity ions will not be distributed uniformly along the length of the
SOL, make the crude approximation that they are, but that their dwell
time in the SOL is reduced to Liz/csa . By considering the derivation of
equation (4.68) argue that one can use equation (6.7) to calculate n̂z , but
now using λeff

SOL ≡ (Liz D⊥/csa)1/2 in place of λSOL. Thus show that:

f zrdn = (Liz/L)1/2eλ0
i z/λ

eff
SOL .

For the example of L = 10 m, Liz = 0.1 m, D⊥ = 0.5 m2 s−1, Ta =
25 eV, D+ ions, λ0

i z = −5 × 10−3 m, show that f zrdn = 6.7 × 10−4.
Consider figure 6.5 and comment.

6.19. Time-dependent evolution of a radial density profile. Consider the case of
slab geometry and a ‘hard’ boundary condition at x = 0 and 2a, figure 6.26.

The neutrals are all ionized at x = λi z and 2a−λi z . Consider two increments
of particles, �0δt [particles m−2], launched at time t = 0. We will follow
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t < t1

n

  0 2a
2a-λiz

a

x
λiz

B

Figure 6.26. Two equal particle sources are located at distance λi z from each wall in a
slab geometry configuration. t < t1.

the evolution of the particles starting at x = λi z ; the other increment behaves
in a symmetric way. We will approximate the particle spatial distribution
by a triangular profile of half-base width equal to 2

√
2D⊥t . Justify this

approximation to a diffusion profile by considering the actual Gaussian shape
which is calculated from classical physics [6.98].

Assume that no particles will be lost until time t1, where:

2
√

2D⊥t1 = λi z . (6.124)

For 0 ≤ t ≤ t1 the centre of the triangle remains at x = λi z . For t > t1
the inside edge of the triangle continues to advance toward the far wall as
2
√

2D⊥t , while the outside edge remains fixed thereafter at x = 0. The
triangle is assumed to remain symmetrical, however, so the location of the
peak of the distribution moves inward for t > t1, figure 6.27.

n

2w(t)

δnpeak
x

λiz

t1 < t < t2
B

Figure 6.27. Approximate behaviour of a density profile evolving in time due to diffusion,
t1 ≤ t ≤ t2. Only the density due to the left source of figure 6.26 is shown.

At t = t2 the leading edge of the triangle reaches the opposite wall. Let the
location of the leading edge be 2w(t), thus:

2w(t) = 2
√

2D⊥t + λi z . (6.125)

The total content of the increment is δC(t):

δC(t) = w(t)δnpeak (6.126)
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where δnpeak is the peak density for the increment.

(a) For t < t1 argue that:

δC(t) = �0dt, constant. (6.127)

(b) For t1 < t < t2 argue that:

d

dt
[δC(t)] = −D⊥δnpeak

w
. (6.128)

(c) For t > t2 argue that:

d

dt
[δC(t)] = −−2D⊥δnpeak

w
. (6.129)

(d) Thus show that:

δnpeak(t) =
{

�0δt/2
√

2D⊥t for t ≤ t1

�0δtλi ze0.5−λi z/2w/w2 for t1 ≤ t ≤ t2.
(6.130)

(e) Define a normalized time t̂ ≡ t/t1. Calculate and plot δC(t̂)/(�0δt).
(f) Find the values of δn(t2) and δC(t2). Why is it reasonable to take these

quantities to be approximately zero?
(g) Assume now that a continuous influx of neutrals occurs at a constant

rate �0 [neutrals m−2 s−1], and that this can be approximated as a series
of increments of particle addition, in amounts �0δt [particles m−2] oc-
curring every δt seconds. Argue that the total content of the plasma at
time t after the start of the influx is:

C(t) =
∫ t

0
δC(t) =

∫ t

0
w(t)δnpeak(t) (6.131)

and thus use equation (6.130) to show that for λi z/a � 1:

C(t) ≈ �0λi za

D⊥
(6.132)

i.e., the same result as we would obtain from the steady-state Engelhardt
model, section 6.4.1, allowing for the contribution from the source at
x = 2a−λi z . Hint: Show that the exponential factor in equation (6.130)
differs very little from unity.

6.20. Continue with the analysis of problem 6.19:

(a) Consider the distribution of particle confinement times, d f/dτp, where
(d f/dτp)dτp, is the fraction of the ions which have a dwell time in the
plasma between τp and τp + dτp. Argue that:

d f (τp)

dτp
= 1

�0δt

d(δC(t))

dt
(6.133)
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and thus show that for t1 < t < t2:

d f

dτp
= D⊥λi ze0.5−λi z/2u

u3
(6.134)

where u ≡ (2D⊥τp)
1/2 + λi z/2.

(b) For the specific case of λi z = 0.02 m, a = 1 m, D⊥ = 0.5 m2 s−1 plot
d f (τp)/dτp against τp.

(c) The average particle dwell time, usually just written as τp, is:

τ p =
∫ ∞

τmin
p

τp
d f

dτp
dτp. (6.135)

Find τmin
p . Show for λi z � a that:

τ p ≈ aλi z/2D⊥

which was also obtained from the steady-state Engelhardt model, sec-
tion 6.4.1.
Mark τ p on your plot from part (b). Note that τ p is dominated by the
few ions which stay in the plasma for a long time, while most of the ions
spend only a time much shorter than τ p in the plasma. For the example
of part (b) find the fraction of the particles which have τp > τ p.

6.21. Repeat problems 6.19 and 6.20, now allowing, in an approximate way,
for ‘soft’ boundary conditions at the walls, as follows: now assume that
no particles are lost until t1 where: 2

√
2D⊥t1 = λi z + λSOL. Replace

w(t) by: 2w(t) = 2
√

2D⊥t + λi z + λSOL. Otherwise proceed as before.
Show that the expressions of problems 6.19 and 6.20 are merely altered by
changing λi z → λi z + λSOL. Illustrate for the same specific example as in
problem 6.20, now assuming also λSOL = 0.02 m.

6.22. A localized impurity source. Consider an elaboration on problem 6.20
where the ionization is localized in the direction along B: let the coordinate
be y parallel to B, figure 6.28.

y

Limiter

Wall

B
x

λiz

Figure 6.28. A point source of impurities at (x, y) = (λi z, 0) in a rectangular system.
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The situation approximates that of sputtering from a limiter with the ioniza-
tion occurring at (x, y) = (λi z, 0). Crudely approximate the motion of the
impurity ions along y as involving an expansion of the fronts of the impurity
‘cloud’ in the y-direction, with speed±v‖, where v‖ is a specified parameter
here. Thus the one-sided y-extent of the ‘cloud’ is y(t) = v‖t . Argue that it
would be reasonable to then define

λSOL(t) ≡ y(t)

L
λ∞SOL =

v‖tλ∞SOL

L
.

where λ∞SOL is the usual, specified value and L is the connection length.
Repeat problem 6.21 assuming L = 30 m and v‖ = 104 m s−1. Experiment
with the effect of changing λi z, L , v‖, D⊥; how does τ p depend on these
parameters, roughly?

6.23. The lifetime of a particular charge state of an impurity atom or ion depends
on the local electron density and temperature since this sets the time for
ionization to the next charge state. Thus, if the elapsed time in a charge state
can be observed—for example, by monitoring the line radiation specific to
that charge state—then it may be possible to infer the local values of ne and
Te. In a steady-state situation it might be possible to infer ne and Te from the
spatial extent of particular charge states—say parallel to B—if the velocity
of expansion of the charge state ‘clouds’ is known. The latter can be a non-
trivial task to calculate, see for example, problems 6.13–6.15; however, for
illustration let us assume that the impurities travel along B with velocity
corresponding to 15 eV.

(a) For ne = 1019 m−3 confirm, using figure 1.26 the results for the ioniza-
tion mean free paths for the carbon examples in figure 6.29.

(b) Using the information in this figure, suggest a diagnostic method for
estimating the local value of ne, in the absence of any information about
Te.

(c) Similarly, how might one base a diagnostic method on this information
that would permit a measurement of Te, lacking any information on ne?

6.24. Extract the expression (6.35) for the stopping time from Spitzer’s
results [6.39]. Discuss the effect on τs when v/(2kTi/mi )

1/2 is not very
small.

6.25. Extract the expressions in equations (6.36), (6.37) for parallel diffusion
from Spitzer’s results [6.39].

6.26. Calculate D‖, equation (6.38), for C4+ ions in a D+ plasma background
with ne = 1019 m−3, TD+ = TC4+ = 40 eV. Compare with typical values of
D⊥ and comment on the implications.
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Figure 6.29. Mean free path for ionization λi z  for particles moving with 15 eV kinetic
energy as a function of Te; ne = 1019 m−3. For certain species, such as Li0, λi z  is
essentially constant over a wide range of Te. The vertical bars indicate the Te range over
which λi z  varies by less than ±10% [6.99].

6.27. Consider a C4+ ion in the process of thermalizing with a D+ plasma, ne =
1019 m−3, TD+ = 40 eV.

(a) When Tz = 2 eV find how much the parallel velocity vz will change,
on average, in a time interval of 0.3 µs, as a result of parallel diffusive
conditions. Calculate how much Tz changes in this time interval, using
the temperature formula equation (6.98). Compare this with the change
in kinetic energy associated with the change in vz .

(b) Carry out the same calculations when Tz = 30 eV.
(c) Comment on the connection between parallel velocity diffusive colli-

sions and thermalizing collisions.

6.28. The plateau or prompt-loss region, section 6.5.4.2. Figure 6.30 shows the
C4+ peak density, n p, calculated using the DIVIMP code (points) and the
simple fluid model (line), equation (6.46) for the case: Tz = TD+ = 10 eV,
dT/ds = 1.38 eV m−1, E = 0, ne = 1019 m−3, C4+ injected at sinj =
0.15 m, �in‖ = 1.73 × 1023 [C4+ m−2 s−1], and a range of values of vi

(≡ vB); negative values indicate flow toward the target).

(a) Confirm that this is a highly collisional case by comparing λmfp with
other relevant distances.

(b) Calculate each of the velocities in equation (6.47), compare and com-
ment.

(c) Thus confirm the simple fluid model result in the figure.

6.29. Figure 6.31 shows a similar result to that of problem 6.28, but for: ne =
1020 m−3, various Tz = TD+ , vi = −0.1cs, sinj = 0.15 m, E = 0, �in‖ =
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Figure 6.30. Impurity density peak value near the target n p: comparison of the values from
equation (6.46) (solid line) and the results (squares) from the DIVIMP code, for conditions:
TD(0) = 10 eV, dTD/ds = 1.38 eV m−1, ne = 1019 m−3, sinj = 0.15 m, sv = 1.2 m

and various values of the background deuterium velocity, vB ≡ vD . �in‖ = 1.73 × 1023

[C4+ m−2s−1]. This is a highly collisional case, λmfp ≈ 1 cm [6.40].

1.73×1023 [C4+ m−2 s−1]. In this case the temperature gradient is assumed
to be given by modified conduction, equation (6.91) with fcond = 0.1; the
gradient is evaluated at s = 0. Also assumed: γ = 7, κ0 = 2000. The
points in the figure are from DIVIMP code runs; the dashed line is the simple
analytic result of equation (6.45) for weak collisionality, while the solid line
is the simple fluid result of equation (6.46).

(a) Find the approximate temperature, dividing the weak and strong colli-
sionality regimes.

(b) Calculate (dT/ds)t ; calculate the different velocities involved in esti-
mating n p and confirm the results shown in this figure.

6.30. The Neuhauser criterion for divertor retention. It is clear that for all of
the flow velocities shown in figure 6.30 there is good divertor retention in
the prompt-loss region itself. For vB = −800 m s−1 what is Mi ? λi i ?
λT ? λT ≡ (1/T )(dT/ds)−1. Show that the Neuhauser criterion is satis-
fied, equation (6.50). At what velocity vB would this criterion predict the
onset of leakage? Compare with the detailed calculation as in problem 6.28;
comment.
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t

Figure 6.31. Plateau density, n p . For conditions: ne = 1020 m−3, sinj = 0.15 m,
sv = 1.2 m, M = 0.1, fcond = 0.1, temperature gradient from equation (6.91) with
fcond = 0.1 evaluated at s‖ = 0, and various values of Tit . �in‖ = 1.73 × 1023 [C4+
m−2s−1]. The solid line results from the simple fluid theory, assuming high collisionality
assumption, n p = φin/vth; the points show DIVIMP results. For Tit = 110 eV,
λmfp ≈ sinj, thus one expects the results to approach φin/vpl for low Tit  and φin/vth
for high Tit , approximately as seen [6.40].

6.31. The Krashninnkov criterion for divertor retention. For vB = −800 m s−1 in
figure 6.30, calculate qi,conv

‖ and qi,cond
‖ , confirming that the Krashenninikov

criterion, equation (6.52), is satisfied. At what value of vB do you predict
the onset of leakage using this criterion?

6.32. Derive equations (6.54)–(6.58).

6.33. Roth–Fussmann impurity density decay. Figure 6.32 shows results for a
density decay region where only parallel diffusion and friction are operating,
E = dT/ds = 0, a situation corresponding to Roth–Fussmann density
decay, equation (6.59). Conditions: �in‖ = 1.73 × 1023 [C4+m−2s−1],
sinj = 0.15 m. The points are for different DIVIMP runs:

(i) diamonds: ne = 1019 m−3, TD+ = 10 eV, vD = −112 m s−1;
(ii) squares: ne = 1019 m−3, TD+ = 100 eV, vD = −3.55× 104 m s−1;
(iii) triangles: ne = 1018 m−3, TD+ = 100 eV, vD = −3.55× 105 m s−1.

(a) For each of the three cases evaluate λmfp.
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Figure 6.32. Density decay region. The only forces are friction due to D+ flow at specified
velocity, and parallel diffusion. DIVIMP results for various plasma densities, temperature
and D+ flow velocities. These plasma conditions were chosen so as to give the same value
of λSFT‖ ≡ D‖/vD = 1 m here; such a slope is shown as the line without points. Clearly
the simple fluid model is approximately satisfied for both highly collisional and highly
collisionless regimes for region B, the density decay region. Here sinj = 0.15 m, which
causes the peak at s ≈ 0.15 m [6.40].

(b) For each of the three cases evaluate λ‖ and confirm that the line without
points in the figure gives the Roth–Fussmann result, i.e., confirm λ‖ is
the same for each of the above cases.

6.34. Effect of the degree of collisionality on Roth–Fussmann density decay. It is
clear from figure 6.32 that even when λmpf � λ‖, the density decay follows
the Roth–Fussmann prediction, a surprising result since the derivation of
equation (6.59) is based on a fluid treatment. Explain this absence of a
dependence on collisionality as follows.

(a) Consider an ion launched from s = 0 with initial velocity v0 > 0.
Integrate the momentum equation to show that the distance st that the
ion will travel upstream against the D+ flow before being stopped and
turned around by friction is:

st = τs[|vi | ln(1− v0/|vi |)+ v0]. (6.136)

Argue that this result is valid for all degrees of collisionality.
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(b) Consider that there is a distribution of launch velocities, with v0 being
the average value. Divide the various velocities in the above equation by
v0, define vr ≡ v0/v0, λmfp ≡ v0/τs , v0 ≡ (kT/m)1/2, D‖ ≡ kT τs/m,
and show that:

st = λmfp

[
|vr | − λmfp

λ‖
ln

(
1+ |vr | λ‖

λmfp

)]
.

(c) Consider the collisionless limit, λmfp/λ‖ → ∞ and show that:

st → λ‖
2

v2
r .

(d) Note that the number of ions in a Maxwellian distribution with veloc-
ity v is proportional to exp(−mv2/2kT ) and use this to argue that the
number of ions reaching st is proportional to exp(−x/λ‖), i.e., the Roth–
Fussmann result holds even for weak collisionality.

6.35. Calculation of ntrap. Use equation (6.66) to confirm, approximately, the
DIVIMP results given in figure 6.33. The results given in this figure cor-
respond to the same conditions as figure 6.31, problem 6.29, explicitly for
TD+ = 100 eV and sv = 1.2 m. We therefore read from figure 6.31 that
n p = �in‖ /vprompt loss ≈ 1019m−3, also seen in figure 6.33.

Figure 6.33. Calculated n(s) profiles of C4+ using DIVIMP for plasma conditions,
Tt = 100 eV, sinj = 0.15 m, sv = 1.2 m, and for various values of τ⊥. �in‖ = 1.73× 1023

[C4+ m−2s−1]. The point is calculated from the simple fluid model for τ⊥ = ∞. Clearly
divertor leakage is catastrophic unless τ⊥ ≤ 100 ms [6.40].
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(a) Calculate nz(sv)/n p using equation (6.60). Use equation (6.91)
to demonstrate that FiGf(sv) is negligible; this is not surprising at
such a high temperature, section 4.10.2. Calculate FFf(sv) from
equation (6.55), approximating the integrand as constant, evaluated at
the target values. Thus show that nz(sv)/n p ≈ 0.05, approximately, as
seen in the DIVIMP results of figure 6.33 (corresponding to the initial
density decrease seen in front of the target on this large-scale plot).

(b) Use equation (6.72) to estimate vTi , evaluated at the target. Will the
value be very different at sv? Thus show vTi ≈ 600 m s−1.

(c) Thus confirm that the DIVIMP results in figure 6.33 for ntrap are roughly
given by equation (6.66).

6.36. Confirm that the solid lines shown in figures 6.17 and 6.18 are given by the
simple fluid model.

6.37. Confirm that the solid line shown in figure 6.19 is given by the simple fluid
model. It is necessary here to allow for the variability of the integrand in
equations (6.55)–(6.58).
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Chapter 7

The H-Mode and ELMs

In order to increase core plasma temperatures to the levels needed for fusion to
occur strongly, auxiliary heating—i.e. additional to ohmic heating—is often em-
ployed, for example using energetic particle beams or RF waves. Disappointingly,
the energy confinement time τE of the tokamak plasma is found to decrease with
applied power P , thus partially off-setting the effect of the additional heating.
In the most basic operating mode, called the L-mode (‘L’ for low confinement),
the measured τE for a large number of tokamaks is found to be well fitted by an
expression termed the ITER89-P confinement time [7.1], see equation (4.30).

Fortunately a number of improved confinement modes have subsequently
been discovered, one of the first and most important being the H -mode (‘H’ for
high confinement), first reported on the divertor tokamak ASDEX in 1982 [7.2]
and since observed on most tokamaks. When the P is raised above some threshold
power an L → H transition suddenly occurs and τE approximately doubles in
magnitude, albeit still showing an inverse dependence on P . Data from a large
number of tokamaks are found to be well fitted by an expression termed the ITER
97H-P(Y) energy confinement time [4.3]:

τ ITER97H-P(Y) = 0.029 
I 0.90 R2.03κ0.92(n/1020)0.40 B0.20 A0.20ε0.19

P0.66 
. (7.1)

(This is the value for H mode discharges which have ELMs, see below.) κ ≡ b/a,
ε ≡ a/R, a ≡ horizontal minor radius, b ≡ vertical minor radius. τ [s], I [MA],
P [MW], B is the toroidal magnetic field [T], A = 1, 2, 3 for H, D, T. One also
defines an H factor relating the measured τE to τ LE given, say by equation (4.30):

H ≡ τE/τ LE (7.2)

Typically H ≈ 2 for H-mode plasmas. H modes are more commonly observed in
divertor tokamaks but have also been achieved with limiters.

Figure 7.1 shows the central electron temperature measured on ASDEX dur-
ing an H-mode, compared with the level in a comparable L-mode [7.2]. The
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Figure 7.1. ASDEX. Time dependence of central electron temperature for L- and
H-mode discharges. The neutral injection heating phase is indicated by the hatched time
interval [7.2].

Figure 7.2. Sequence of density profiles measured on ASDEX through and following an
L–H transition. The profiles in (a) are at the times shown in (b), which gives the time
dependence of ne and the Hα signal [7.19].

central density also increases. It was subsequently established by spatially well
resolved measurements of ne(r) and Te(r) that the improved particle and energy
confinement occurs primarily just inside the separatrix where very steep den-
sity and temperature gradients arise. Figure 7.2(a) shows the time evolution of
ne(r) in ASDEX at the L → H transition. Thus temperature and density edge
pedestals are observed, which are ascribed to an edge transport barrier. The
underlying cause of the L → H transition and of this transport barrier is still
being sought [7.3–7.6]. The role of neutral hydrogen particles in the dynamics of
enhanced confinement is examined in [7.7]. See also [7.8–7.10].

Usually the most readily observed feature of the L → H transition is a
more-or-less sudden drop in the Hα signal observed at the targets, see location 2
in figure 7.2(b), indicating an increase in the particle confinement: a reduction
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360 The H-Mode and ELMs

Figure 7.3. Operating space for obtaining H mode and different kinds of ELM in
ASDEX-U. Space between shaded regions is ELM-free and type 3 ELM region. ◦
ohmic, ' L mode, • ohmic H-mode, � ELM free, + dither, × type 3, � ICRH, �
type 1 [7.6,7.12].

in the hydrogen ion out-flow from the main plasma into the SOL, thence to the
targets, results in a reduction in the neutral hydrogen recycling at the target, and
thus also the Hα signal there—within the SOL particle transit time, of the order
of ms.

A universal expression for the L → H threshold power has not yet been
established, although such have been identified for individual tokamaks. Fig-
ure 7.3 shows that on ASDEX-U, the required power scales as ne BT [7.6] and
more specifically:

Psep/Asep = 0.044ne BT . (7.3)

P [MW], A [m2], ne [1020 m−3], B [T], and where Asep is the surface area of
the separatrix surface, 2π R2πaκ1/2. It appears that the controlling parameter is
the power flux density actually crossing the separatrix, Psep/Asep, rather than the
total power into the tokamak.

A dramatic effect usually characterizing the H-mode are temporal features
called ELMs, edge localized modes. These are most readily observed as Hα

spikes, figure 7.2(b), clearly indicating that ELMs involve periodic expulsion of
particles (and it turns out, of energy also) from the confined plasma into the SOL.
It is thus also evident that ELMs act to limit the enhanced confinement associated
with the H-mode. This can be seen, for example, in the behaviour of the ne(t),
the temporal rise of which during the H-mode is stopped at each ELM burst,
figure 7.4. Spatially and temporally resolved measurements of ne(r, t), Te(r, t)
at the edge show that the ELM acts to suddenly eject into the SOL particles
and energy that had built up in the pedestals, figure 7.5. The ejection occurs
in∼10−4 s typically; the power—particularly that conducted by the electrons—is
transferred more rapidly than the particles.

Although many of the consequences of ELMs are deleterious, as will be
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Figure 7.4. Hα emission showing ELM activity during H-modes with neutral injection in
ASDEX, (a) with continuous bursts, and (b) with separated large ELMs. The figure also
shows the response of the electron density [7.11].

Figure 7.5. Radial profiles of electron density and temperature before (2510 ms) and
during type 1 ELMs in DIII-D starting at 2559.9 ms [7.12].
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Figure 7.6. Power scaling of energy loss per ELM and time-averaged power due to type 1
ELMs in ASDEX-U and DIII-D [7.12].

discussed, they are probably necessary in order to control impurity accumulation
in the core which tends to occur in those H-modes which are (un-typically) ELM
free—and are thus stationary [7.11]: with regard to particles, ELMs free H-mode
confinement can be too good. The non-stationary characteristic of ELM H-modes
is important for impurity control of the main plasma.

ELMs have been categorized into three types [7.12]:

(1) Type 1. Giant ELMs. When heating power is well above the L → H thresh-
old, ≥ 20%, relatively isolated, low frequency, 1–100 Hz, large amplitude
ELMs occur, as in figure 7.4(b). These giant ELMs can eject up to 10% of the
stored energy in the main plasma in each ELM, �E/E � 10%. The time-
averaged contribution to the energy confinement is nevertheless modest, 10–
20%. The frequency of type 1 ELMs increases with heating power, which is
part of their defining properties. On ASDEX-U and DIII-D [7.12] the energy
loss per type 1 ELM is approximately constant, independent of beam power,
figure 7.6. Thus the ELM power loss (averaged through the ELMs) increases
linearly with beam power, remaining a constant fraction of the beam power:
15% and 2% at the inner and outer targets respectively on ASDEX-U. It is
a general finding that the ELM power goes preferentially to the inside target
of a single-null divertor, but the reason is not known.

(2) Type 2. Grassy ELMs. These are observed in highly shaped plasmas and are
relatively uncommon. The energy loss per ELM is quite small, �E/E �
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0.01 and does not pose practical problems.
(3) Type 3 ELMs. Type 3 ELMs occur for heating powers just above the L → H

threshold, within ≤ 20% of it. The frequency is higher than for type 1,
0.1–1 kHz with amplitude �E/E ∼ 1%. Frequency falls with increase of
heating power—the opposite trend to type 1 ELMs, and is, in fact, the basis
of defining type 3 ELMs.

The pattern of ELM behaviour on ASDEX-U is indicated in figure 7.3. It is
evident from figure 7.5 that ELMs have a major effect on the SOL. Type 1 ELMs
produce a loss of up to �N = 10–15% of the total particle content of the main
plasma [7.12], and the time-averaged loss rate, f �N , matches the initial density
rise dN/dt , thus indicating that it is the ELMs that bring about time-averaged
steady-state particle balance. The effect of the type 1 ELM can be simulated in
models by a jump in the cross-field transport coefficients by an order of magni-
tude. The SOL plasma density profile thus also broadens considerably and can
cause plasma–wall contact and sputtering; see figure 7.7. Although the ELM
itself (i.e., the underlying MHD event) lasts only � 10−4 s, the particle parallel
transport time and recycling/ionization time can be long enough that the SOL
density profile remains enhanced—both in magnitude and width—even between
ELMs. Figure 7.8 shows such an example. Parallel heat transport along the SOL,
however, is more rapid and in the between-ELM periods the temperatures are
typically low, figure 7.8.

Figure 7.7. JET. Surface temperature distribution on the divertor target plate before and
during an ELM (shot 35273) [7.13].
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Figure 7.8. Midplane Thomson scattering data in DIII-D showing a broader density SOL
after the onset of rapid ELMs at 3 s. The electron temperature in the SOL is largely
unaffected in the time-average sense. The separatrix is at 80 cm [7.12].

The most serious consequence of giant ELMs is the high peak heat loads
which can cause melt damage of the targets. Peak loads range up to 10 times
the time-averaged level, and values up to 108 W m−2 have been measured [7.12],
see figure 7.9. During the ELM, ne and Te near the targets increase significantly,
figure 7.10. The resulting increase in target sputtering can dominate the time-
averaged impurity production from the targets.

Various methods of controlling ELMs have been tested [7.12]. Injection of
a radiating gas such as neon can reduce the power flow through the separatrix to
a level near the L → H threshold, thus changing the ELMs from the damaging
type 1 to the benign type 3.

The evolution of a tokamak discharge involving the H-mode is usefully dis-
played using the edge operating diagram [7.13]. An example from JET is shown
in figure 7.11 [7.8], where the Te and ne are measured just inside the separatrix, at
the top of the ‘pedestals’. The gas fuelling is increased, and the L → H transition
occurs (circles), followed by a period of small, transition ELMs (squares). An
ELM-free period ensues with the edge pressure rising to a critical value, precip-
itating large ELMs which cause both Te and ne to drop. The discharge is then
reheated and refueled to this pressure, or pressure-gradient, limit and cyclical
behaviour sets in.

Gas addition increases the maximum ne (reached just before the ELM crash),
reducing the maximum Te, but such that the maximum pressure remains about
constant (diamonds). The ELM frequency increases with fuelling rate. At very
high gas rates, the Te is driven so low that the plasma falls below the H-mode
threshold and reverts to the L-mode. See also [7.14–7.17].
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Figure 7.9. Divertor heat flux profiles during ELMs in ASDEX-U as measured by an
infrared line array detector. Top: 3D isometric plot showing temporal evolution. Bottom:
radial profiles at selected times showing fall-off lengths in mm [7.6, 7.12].

Figure 7.10. Vertical profiles of density and temperature along the outer divertor leg in
DIII-D as measured by Thomson scattering. Dashed—quiescent H-mode between ELMs,
solid—during a type 1 ELM [7.12].
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Figure 7.11. JET. Plot of edge electron temperature versus edge electron density for a
series of vertical target ELM H-modes with varying rates of gas fuelling. The temperature
and density values at the pressure gradient limit (diamonds) are representative of values
at the top of the edge pedestal taken just prior to an ELM. The edge electron temperature
and density at the L–H transition (circles) and at the end of the period of transition ELMs
(squares) are shown for comparison. At the highest gas fuelling rates, the edge electron
pressure begins to deviate from the curve of approximately constant pressure (the dashed
arrow). In a few cases, transitions back to L-mode have been observed; here the curve for
the H-mode threshold is schematic [7.8].

Understanding of all aspects of H-modes, including ELMs, is still evolv-
ing. It is clearly important to establish how to scale ELMs to future large de-
vices [7.18].
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Chapter 8

Fluctuations in the Edge Plasma

Cross-field transport of particles and energy generally occurs at rates considerably
faster than can be accounted for by classical collisional effects, and it is widely
believed that such anomalous transport is due to fine-scale fluctuations, that is
cross-field transport is turbulence induced [8.1].

A fluctuating poloidal electric field, Ẽθ , will result in a fluctuating Ẽθ × Bφ

radial drift velocity, ṽr = Ẽθ /Bφ , chapter 18; more precisely, it is the component
of Ẽ perpendicular to the total magnetic field which results in ṽr . If the density
n is non-fluctuating, then no net (time-averaged) radial drift flux occurs. If,
however, there is a fluctuating component of the density, ñ, and if the relative
phase between ñ and Ẽθ fluctuations is such that ñ is positive when ṽr is also,
and negative when ṽr is also, then a net time-average outward radial particle flux
density, �ES

r , results. Thus:

�ES
r = 1

Bφ

〈ñ Ẽθ 〉 (8.1)

where 〈· · ·〉  indicates an average over time. The superscript ‘ES’ designates
electrostatic, to distinguish this type of turbulence-induced transport from the type
involving fluctuating magnetic fields, B̃, see below.

In the edge plasma it is possible to measure ñ, Ẽθ and their time correlations
using Langmuir probes [8.2–8.6]. In the simplest method of interpretation the
measured fluctuating signal Ĩ+sat is taken to give ñ, i.e. Ĩ+sat/I

+
sat = ñ/n is assumed.

That is, the influence of any temperature fluctuations—which would affect the
sound speed cs , and thus break the simple relation between Ĩ+sat and ñ—is ignored.
The probe is also used to measure the fluctuating floating potential Ṽ f . It is then
assumed that the local floating potential and the local plasma potential are related
by the usual sheath relation, chapter 2. Thus for a hydrogenic plasma:

Vp ≈ V f + 3kTe/e (8.2)
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Figure 8.1. Pretext tokamak: examples of integrated fluctuation spectra. Note the power
law trend for the asymptotic portion of the spectra. φ ≡ Vp here [8.7].

Again, in the simplest interpretation, any fluctuations of Te are ignored and so it
is assumed that:

Ṽp ≈ Ṽ f . (8.3)

In order to obtain a value of Ẽθ from values of Ṽp it is necessary to employ
a spatial array of probes, so as to measure the poloidal wavelength λθ of the
fluctuations or the poloidal wave number kθ ≡ 2π/λθ , giving:

Ẽθ = kθ Ṽp. (8.4)

The fluctuations are found to span a range of frequencies, with most of the power
in the 10–100 kHz, kθ = 0.1–10 cm−1 ranges, figure 8.1. The phase angle
between Ĩ+sat and Ṽ f is typically found to be in the range π/4–π/2 for the fre-
quency range containing most of the power [8.5]. When measured, the phase
angle between ñ and T̃e is found to be close to 0. In the direction parallel to the
magnetic field, the fluctuations are correlated over quite long distances, of the
order of 10 m, for both Ĩ+sat and Ṽ f . The plasma edge turbulence is therefore two
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Figure 8.2. Relative fluctuation levels ñ(r)/n(r) versus r/a measured in several
tokamaks [8.2].

dimensional with filaments extending only a few cm across B, but many metres
long along B. These filaments have been observed on high speed cine film [8.5].

Thus the total cross-field particle flux density is [8.7]

�ES
r = 1

B

∫
ñ(ω)Ṽp(ω)kθ (ω)γ (ω) sin(α(ω))dω (8.5)

where α(ω) is the phase angle between ñ and Ṽp and γ (ω) is the degree of
mutual coherence between ñ and Ṽp. The rms values of ñ and Ṽp are used in
equation (8.5).

The relative magnitude of fluctuations, such as ñ/n, generally increases
strongly with radius. Figure 8.2 shows radial variation of ñ/n for a variety of
tokamaks. Fluctuation measurements can also be based on Hα radiation [8.8], mi-
crowave or far-infrared laser collective scattering [8.9–8.11], Li-beam measure-
ments [8.12] and microwave interferometry and reflectometry [8.13]. Diagnostics
for plasma fluctuation measurements have been reviewed by Bretz [8.14].

A net magnetic fluctuation flux can also occur: an effective radial velocity,
ṽr , results when the radial magnetic field fluctuates, B̃r �= 0, of magnitude:

ṽr ≈ v‖ B̃r/B (8.6)

where v‖ is the parallel velocity which is very high, of the order of cs . Thus even
a relatively small B̃r/B could in principle result in rapid cross-field transport.
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Figure 8.3. Time signal of the radial particle flux �r due to radial Ẽ × B drift
at the midplane of ASDEX (normalized to its mean value). Temperature fluctuations
were neglected when calculating �r from floating potential and ion saturation current
fluctuations. The data were taken 1 to 2 cm outside the separatrix. The transport is
directed radially outward during 75% of the time, and the integrated transport in the
outward direction is larger by a factor of 15 to 20 than the integrated transport in the
inward direction. Of the transport directed outward 20% (50%) is accomplished within
2.5% (10%) of the time (intervals for which �r is above the upper (lower) horizontal line)
[8.4].

Magnetic field fluctuations can be measured using magnetic pick-up coils. The
net electromagnetic radial flux density is:

�EM
r =

〈
ñv‖

B̃r

B

〉
(8.7)

where, as with �ES
r , there is only a net, time-averaged outward flux for specific

correlations of ñ and B̃r . Measured levels are typically very small, in the range
B̃r/B ∼ 10−5 to 10−4 [8.2] and this type of fluctuation-driven transport appears
not to be important, usually [8.5, 8.15–8.17].

There are also fluctuation-based cross-field heat flux densities—convective
and conductive, electrostatic and electromagnetic:

qES
conv = 3

2 kT �ES
r (8.8)

qEM
conv = 3

2 kT �EM
r (8.9)

qES
cond =

3

2

ne

B
〈kT̃ Ẽθ 〉 (8.10)

qEM
cond = −neχ(B̃r )

dT

dr
. (8.11)
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The value of χ(B̃r ) is model dependent; Rechester and Rosenbluth [8.18], for
example, give χe(B̃r ) = q Rvte(B̃r/B)2. There is a discussion in [8.19] of
whether a factor of 3/2 or of 5/2 is appropriate for equations (8.8)–(8.10).

These flux expressions can be used to calculate the associated diffusion
coefficients and heat conductivities, e.g.

D⊥ ≡ −�r/(dn/dr) (8.12)

where (dn/dr) is the measured (average) density radial gradient. However, this
does not imply that �r necessarily depends on the density gradient nor that D⊥ is
even positive!

It is, nevertheless, usually observed that the time-averaged fluxes are out-
ward. Figure 8.3 shows a time signal of �ES

r obtained on ASDEX, using Langmuir
probes, located 1–2 cm outside the separatrix at the midplane [8.4].

As can be seen �r (t) is outward (positive) most (∼75%) of the time. The
time-integrated �outward

r is ∼15–20 times larger than the �inward
r . About 20%

(50%) of the �outward
r is accomplished within 2.5% (10%) of the time (intervals

for which �r is above the upper (lower) horizontal line in figure 8.3). Figures 8.4–
8.6 provide information from this ASDEX study, on radial variations of both the
fluctuating and mean-value quantities. Figure 8.4 shows the mean values for

Figure 8.4. Radial profiles of floating and plasma potential, electron temperature and
density (mean values). The data were taken by the fast reciprocating Langmuir probe
in the midplane of ASDEX during inward and outward movement of the probe in one
discharge and during inward movement in another discharge (different symbols). The grey
area indicates the radial position of the separatrix which is uncertain by ∼1 cm [8.4].
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Figure 8.5. As figure 8.4. Radial profiles of density and potential fluctuation levels
(absolute and relative). Discharges and symbols are the same as in figure 8.4, and the
temperature profile of figure 8.4 was used to calculate ñ from Ĩsat, neglecting temperature
fluctuations [8.4].

Figure 8.6. As figure 8.4. Radial profiles of the fluctuation-induced radial particle
transport �r and an equivalent radial plasma velocity vr . Temperature fluctuations were
neglected when calculating these quantities [8.4].

V f , Vp, Te and ne; the grey area indicates the radial position of the separatrix
which is uncertain by ∼1 cm. Figure 8.5 shows the fluctuating Ṽ f , Ṽ f /Te, ñe,

Ĩ+sat/I
+
sat; the latter is taken to also give ñ/n. There is a trend for normalized

fluctuation amplitudes to increase with radius into the SOL, as seen also in fig-
ure 8.2. Figure 8.6 shows the deduced values of �ES

r and vES
r . One can use

�ES
r , figure 8.6(a), or vES

r , figure 8.6(b), and dn/dr , figure 8.4(d), to deduce a
value of D⊥ using equation (8.12): in the region of the separatrix λn ∼ 1 cm,
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Figure 8.7. TEXT tokamak: global particle confinement (+) and particle confinement
time predicted from electrostatic fluctuation measurements (◦) versus chord-averaged
electron density. For this scan, BT = 2.0 T and Ip = 200 kA [8.20].

giving D⊥ ∼ λnvES
r ∼ 1.5 m2 s−1. Radially further out n(r) is virtually flat,

perhaps implying very large D⊥, although it may be that this situation should be
interpreted in terms of a convected radial flux rather than as a diffusive flux.

Since this value of inferred D⊥ is of the same order as that which is typi-
cally measured in the SOL, section 4.3, it appears that electrostatic turbulence is
the likely cause of anomalous transport in the SOL. This important matter was
addressed in more detail in a study on the TEXT tokamak [8.20]. In figure 8.7 the
particle confinement time measured from Hα intensities, section 3.5, is compared
with the fluctuation-inferred confinement time, τES

p ≡ Ne/�ES
r A⊥, where Ne

is the total plasma particle content and A⊥ is the surface area of the plasma
(the LCFS). The results show good agreement, which is particularly remarkable
considering the assumption of toroidal/poloidal symmetry, also the inherent lim-
itations of deducing τp from Hα measurements and the uncertainties associated
with the neglect of temperature fluctuations.

The increasingly held view is that electrostatic fluctuations are the cause of
anomalous cross-field particle transport, with electromagnetic fluctuations gen-
erally playing a lesser role. Similar conclusions apply to cross-field heat trans-
port [8.5]. Evaluation of qES

cond, equation (8.10), requires that the temperature
fluctuations T̃ be measured, which can be done for the electron temperature using
Langmuir probes [8.5, 8.21].

Many microinstability mechanisms have been identified as being possible in
a plasma confined by a magnetic field [8.22], and these are thought to be the
source of the plasma turbulence that results in fluctuation-driven, ‘anomalous’
transport. (Presumably when the matter has been completely resolved the ‘anoma-
lous’ characterization will be dropped.) The most basic microinstability is that
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Figure 8.8. Illustration of the mechanism of the unstable drift wave microinstability which
can result in ‘anomalous’ cross-field transport.

due to unstable drift waves [8.23] since this occurs even for the simplest systems:
the presence of a straight B-field and a density gradient ∇n perpendicular to B is
sufficient, figure 8.8. This is therefore often considered to be the most basic cause
of fluctuation-driven transport [8.5, 8.22].

Consider first the case of a stable drift wave, figure 8.8. Consider a line in the
y-direction along which the mean density n is constant and imagine a perturbation
to the density, ñ, such that at t = 0, ñ � 0 at locations A, I, etc; ñ > 0 at B,
H, etc; ñ = 0 at C, G, etc; ñ < 0 at D, F, etc; ñ � 0 at E, etc. Under the
simplest assumption, this plasma density perturbation will be in equilibrium with
a perturbed electrostatic potential field Ṽ , satisfying the (linearized) Boltzmann
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relation, section 1.8.2.2:
ñ

n
= eṼ /kTe. (8.13)

As seen from figure 8.8, this results in a perturbed Ẽ-field, which then gives
a perturbed, cross-field Ẽ × B drift, which convects plasma into the elemental
volume at locations A, B, . . . . For location B, where ñ > 0 at t = 0, this convects
lower density plasma (note ∇n is the negative x-direction) into the elemental
volume at B, thus reducing ñ at B, and making ñ tend to go to 0, i.e. to become
like it was earlier at location C at t = 0. At location D, where ñ < 0 at t = 0,
again the cross-field convection reduces ñ there, making it tend toward ñ � 0,
i.e. to become what it was earlier like at E at t = 0. At location F, where ñ < 0 at
t = 0, the convection is in the opposite direction, thus convecting higher density
plasma into the region, raising ñ, and tending to make it approach ñ = 0, i.e.
to become what it was earlier like at G at t = 0, etc. Thus the perturbation
is seen to become a moving wave whose phase velocity is in the +y-direction.
This is readily shown to be the electron diamagnetic drift direction, chapter 18,
and indeed the magnitude of the phase velocity actually equals vDe [8.22, 8.23].
These waves are sometimes called electron drift waves.

For the simple assumptions that have been made so far this wave neither
grows nor decays, however, various real effects act to shift the phase between Ṽ
and ñ—so as to make Ṽ lag ñ [8.24]. Consider figure 8.8(b) where the lag has
become so substantial that now high density plasma is convected into the regions
A, B, H, I which already had ñ > or� 0, thus making the positive perturbations
yet larger; at the same time, low density plasma is convected into regions D, E,
F, where ñ was already low, thus making the negative perturbations yet greater.
Thus drift waves are unstable.

Any mechanism that restricts electron motion along B interferes with the
Boltzmann Relation between ñ and Ṽ , equation (8.13), being achieved, thus
introducing a phase lag. Such mechanisms include classical, parallel (Spitzer)
resistivity, collisions with neutrals, etc. Such processes are generally stronger at
the edge region of magnetically confined plasmas. Also in the SOL the electron
currents required to allow the Boltzmann relation to be satisfied are restricted
by the sheath resistance, section 2.7, introducing further destabilization to drift
waves. The role of the sheath in edge turbulence is analysed in [8.25–8.31].
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Introduction to Part II

Why do we want to model the SOL anyway? It is worth thinking carefully about
this question. The answer will effect how we carry out the modelling. The SOL
constitutes the interface between the astronomically hot fusion-producing plasma,
and the ordinary solid-matter world of the tokamak’s solid structure. The SOL is
driven by strong source and sink actions. Power enters the SOL from the main
plasma and exits from it to the limiter or divertor targets. In the simplest situations
the plasma particle source also lies in the main plasma, feeding the SOL, with
exhaust again being to the solid surfaces. Clearly if fusion reactors are to be made
practical it will be essential to understand how this interface functions and how it
responds to its interactions with these two very different states of matter.

Evidently the basic properties of the SOL plasma—its density and
temperature—are established by this interaction. We want to know how to
calculate n and T —and not just the average values in the SOL, but how they
vary spatially along the SOL, since conditions may be significantly different at
the interfaces than on average, and the interface values are likely to be important.
How are particle and power flows reaching the solid surfaces related to n and T
in the SOL? This governs the heating and erosion of edge structural components.
The details of the plasma flow field and electrostatic fields are likely to govern
the transport of impurity ions, released at the targets and walls—governing in
part the probability that such particles will reach the confined plasma, where they
can have deleterious effects. Parallel temperature gradient forces also influence
impurity ion transport.

We want to know how n, Te, Ti , v‖, E‖ vary spatially in the SOL, and their
connection to particle, momentum and power fluxes into and out of the SOL—
including out-fluxes both to solid surfaces and to volumetric loss processes such
as radiation. This is the basic reason we want to model the SOL.

The simplest, most basic analysis tool for modelling the SOL is the two-point
model, 2 PM, which has been considered in detail, chapter 5. As the name implies,
however, the 2 PM only provides information at two points along the SOL—the
‘target’ and the ‘upstream’ ends. The 2PM is therefore sometimes called a ‘0D
model’. For various purposes—such as impurity transport analysis, chapter 6—
we need to have further information, in particular n, Te, Ti , v‖, E‖ as functions of
distance s‖ along the SOL (along B). Since parallel plasma transport is classical,
i.e. is largely understood, it is therefore appropriate to aim at carrying out at least
1D, along-B modelling of the SOL, based on the classical laws of conservation
of particles, momentum and energy.

What should we do about the strong cross-field variations of the SOL
plasma? The most basic approach is to take the cross-field SOL width from
experiment, or from simple analytic estimates, sections 4.3, 4.4, 5.7; the 1D,
along-B model is then taken to provide a description of the average conditions
across the SOL. At the next level of sophistication an ‘onion-skin method’,
OSM, model of the SOL can be constructed, chapter 12: the SOL is taken to
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consist of separate, along-B, flux tubes nested inside each other (‘onion skins’)
and 1D, along-B modelling is carried out for each flux tube separately, with the
cross-field terms treated more or less simply. The boundary conditions for each
flux tube can be taken from measurements made across the target of Te, etc, for
example using Langmuir probes. OSM analysis therefore constitutes a method of
carrying out 2D modelling of the SOL. The 2D solution is achieved by analysing
the parallel and cross-field balances sequentially and iteratively. In OSM analysis
values of DSOL⊥ and χSOL⊥ are outputs rather than inputs.

At the next level of sophistication are the standard 2D edge fluid codes
which employ the 2D conservation equations and which use upstream boundary
conditions, typically the density on the LCFS and the power entering the SOL.
The values of DSOL⊥ and χSOL⊥ are inputs. The parallel and cross-field balances
are treated simultaneously. The two directions can be (a) cross-field ‘radially’, and
(b) along B or, alternatively, the projection in the poloidal plane; see figure 6.21.
In either case toroidal symmetry is assumed. When toroidal symmetry is absent
then a 3D treatment is required based, for example, on the radial, poloidal and
toroidal directions.

In chapters 9–11, 1D models are considered in some detail. Onion- skin
method modelling is dealt with in chapter 12. Chapter 13 provides a brief in-
troduction to standard 2D fluid SOL modelling; 3D modelling is not considered
here.

Once the choice has been made as to what dimensionality to use—whether
0D, 1D, 2D or 3D—the next important question is: does one require a kinetic
treatment, or will a fluid model be adequate?

In kinetic modelling one endeavours to calculate the complete velocity dis-
tribution of the ions and electrons at each point [9.1–9.6]. Even if one assumes
a single spatial dimension, this still involves the formidable task of calculating
f (x, vx , vy, vz) at each location x along the SOL.

The fluid approach, on the other hand, settles for just finding how certain
average quantities, such as n(x) and v(x) (the average or fluid velocity of the
particles), depend on x . This is usually an easier task.

From the foregoing considerations the fluid approach is indicated as possibly
being adequate. Accordingly, most SOL modelling to date has adopted the fluid
approximation and the focus here will be primarily on this approach.

One should not accept this assumption uncritically, however. While it is not
immediately obvious, the fluid approximation is only justified—at least strictly—
when collisionality of the plasma particles is strong, i.e. mean free paths, mfp,
are very short compared with all characteristic lengths of the problem such as
connection length L and the parallel gradient lengths. As pointed out in chapter 5,
this situation is often only marginally satisfied in the SOL, or even is violated.
Section 9.12 discusses the connection between self-collisionality and the trust-
worthiness of the fluid approach.

For moderate to long mfp situations, the strictly correct approach is that
the fluid approximation has to be abandoned, and one is obliged to undertake
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the more demanding kinetic analysis. Fortunately, this appears to often be an
overly strict view: for reasons that are not entirely clear the fluid models can
often reproduce rather closely the principal results of practical interest obtained
by kinetic treatments. Unfortunately, there are not many examples where such
comparisons can be made, owing to the limited availability of kinetic solutions.
We consider a few such comparisons in chapter 10.

Nevertheless, ultimately SOL conditions are encountered where kinetic
treatments—or at least ‘kinetic corrections’ to the fluid treatments—become
necessary. The key question is: do significant parallel temperature gradients
exist along the SOL or not? When they exist, parallel heat conductivity is
important—and the finiteness of its value for the SOL plasma is controlling.
This regime is termed conduction-limited, sections 1.9, 9.11. When parallel
temperature gradients are small, parallel heat conduction is unimportant, and the
heat transmission properties of the sheath control SOL behaviour, thus giving the
sheath-limited regime, sections 1.9, 9.10.

The fluid approach can encounter certain difficulties in the conduction-
limited regime, but is often adequate for the sheath-limited regime. The latter
may be a surprising fact since the sheath-limited regime is characterized by weak
collisionality, section 4.11; the evidence for this claim is presented in table 10.2.

The reason for the difference has to do with the closure problem which is
always encountered in fluid modelling [9.4]. This is discussed in section 9.12,
but to anticipate the conclusion: if one can ignore heat conduction—as for the
sheath-limited regime—then the fluid equations can be closed in a simple way.
This evidently makes the fluid approach rather reliable, as born out by detailed
comparisons with the few 1D kinetic treatments available, Sections 10.6, 10.7.
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Chapter 9

The 1D Fluid Equations

9.1 Introduction

The 1D fluid conservation equations for a plasma can be derived at various levels
of rigour and sophistication. Zawaideh et al [9.1] have provided a rather complete
derivation of two-fluid (electrons and ions) equations that are valid from colli-
sional to weakly collisional limits. In the highly collisional limit their equations
reduce to those of Braginskii [9.2]. Here we undertake a simpler derivation of the
conservation equations, and obtain results that are essentially identical to those of
ZNC and Braginskii for one dimension.

9.2 The Kinetic Equation

The steady-state, spatially one-dimensional velocity distribution, f (x,vx ,vy,vz),
of particles of mass m is given by the x-component of the Fokker–Planck (colli-
sional) kinetic vector equation [9.1–9.7]:

vx
∂ f

∂x
+ eE

m

∂ f

∂vx
= ∂ f

∂t

∣∣∣∣
coll
+S(x, v). (9.1)

Derivatives with respect to y and z are assumed to be zero. f (x, vx , vy, vz)

dvx dvydvz is the number of particles m−3 at location x with velocity in the do-
main vx to vx+dvx , vy to vy+dvy , vz to vz+dvz . E is the electric field, ∂ f/∂t |coll
is the change due to collisions other than events where particles are created or
destroyed and S is the difference between particle creation and destruction rates.
For example, if S is due to ionization of neutrals which have a drifting Maxwellian
distribution characterized by a temperature Tn and average velocity vn , then in the
kinetic equation for the ions that are created one uses:

S(x, v) = Sp(x)

(
βn

π

)3/2

e−βn(vx−vn)2
e−βnv2

y e−βnv2
z (9.2)
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where βn ≡ mn/2kTn and Sp(x) gives the spatial variation of the (particle)
source. The ∂ f/∂t |coll term includes i–e and i–n momentum-transfer collisions.

When both electric and magnetic fields are present, the full kinetic equation
involves f (x, v), i.e. six independent variables, and both B and E. One can
average over the rapid gyro-motion in the y and z directions, however, to obtain
the Gyro-Averaged Kinetic Equation [9.1, 9.3], which is essentially the form given
here in equation (9.2). Strictly, we have also assumed B constant and that E
and B are parallel; these assumptions avoid the appearance in our expressions of
E × B drifts and ∇B and curvature drifts [9.8, 9.9]; see chapter 18 regarding the
latter drifts.

As will be discussed in chapter 10, solutions of the kinetic equation have
been produced for simple cases. Generally kinetic analysis is difficult, however
and we now develop from the kinetic equation, a hierarchy of fluid equations by
successively multiplying the kinetic equation by dv, mvx dv, 1

2 m(v2
x+v2

y+v2
z )dv,

etc. and integrating to obtain various average values of the velocity distribu-
tion [9.1, 9.6, 9.10, 9.11]. It is often found easier to solve the resulting fluid
equations for the average quantities than it is to try to find f (x, v).

9.3 The Conservation of Particles Equation

We multiply equation (9.1) by dv and integrate. The first term gives:∫ +∞

vx=−∞
vx

∂ f

∂x
dvx

∫ +∞

vy=−∞
dvy

∫ +∞

vz=−∞
dvz = ∂

∂x

∫ ∫ ∫
vx f dv = d

dx
nv (9.3)

where

n =
∫ +∞

−∞
f dv

〈α〉 ≡
∫ +∞

−∞
α f dv/n (9.4)

v = 〈vx 〉.
We follow here the standard convention and use no subscript when the fluid
velocity is intended. It is to be emphasized that v represents the fluid or average
velocity of the entire ensemble of particles at x . Note that therefore v is not
(v2

x + v2
y + v2

z )
1/2 here, i.e. |v|, since v, vx , vy , vz here refer to the particular

velocity of a particle.
The second term involves:∫ +∞

−∞
∂ f

∂vx
dvx =

∫
∂ f = f (vx = +∞)− f (vx = −∞). (9.5)

It is assumed that f (vx = ±∞) = 0.
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The third term is zero since whatever is gained by one part of the distribution
due to ∂ f/∂t |coll, another part loses. The fourth term is the net particle source:∫

S(x, v)dv ≡ Sp(x). (9.6)

Thus, the particle conservation equation is obtained:

d

dx
(nv) = Sp(x). (9.7)

We note that we have obtained only one equation but with two unknowns
(dependent variables) n(x), v(x) in terms of the independent variable x . We thus
have not obtained a closed set of equations. We proceed to construct further
averages of the distribution function, i.e. ‘higher moments of the kinetic equation’
in the hope of obtaining a further relation for n and v. This will succeed, but
unfortunately new terms will appear, requiring further equations. The hierarchy
of fluid equations never, in fact, closes and one can only achieve closure by some
postulate introduced from outside this process of generating fluid equations.

9.4 The Momentum Conservation Equation

Multiply equation (9.1) by mvx dv and integrate. The first term is∫
mv2

x
∂ f

∂x
dvx

∫
∂vy

∫
dvz = ∂

∂x

∫
mv2

x f dv. (9.8)

We define the individual random velocity ux :

ux ≡ vx − v (9.9)

and thus this term becomes:

∂

∂x

∫
mu2

x f dv + ∂

∂x
2v

∫
mux f dv + ∂

∂x
v2

∫
m f dv

= d

dx
(mn〈u2

x 〉)+ 0+ d

dx
(mnv2). (9.10)

The second term is zero on the assumption that f is symmetrical in the random
velocity, at least to first order.

While one can now continue using 〈u2
x 〉 as one of the principal (average)

fluid quantities, it is more common to define this to be the ‘temperature’. Strictly
one should not use the term temperature unless f is a Maxwellian, or a drifting
Maxwellian. We do not have to assume either of the latter to establish the fluid
equations, but let us suppose that f in fact is a drifting Mawellian of temperature
T , average velocity v:

f (x, v) = n(x)

(
β

π

)3/2

e−β(vx−v)2
e−βv2

y e−βv2
z (9.11)
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where β ≡ m/2kT . Then one can readily confirm that, indeed 〈vx 〉 = v and also
show that:

〈u2
x 〉 = kT/m. (9.12)

Hereafter, for clarity, we will employ kT/m in place of 〈u2
x 〉 but this should

not be taken as an assumption that f is necessarily a (drifting) Maxwellian.
At this point it is worth distinguishing T‖ from T⊥ and thus also the pressures

p‖ and p⊥ where p‖ ≡ nkT‖, p⊥ ≡ nkT⊥. The parallel direction is the x-
direction here, with the perpendicular direction corresponding to the gyro-motion
of the particles. As a flow accelerates, it is well known that the pressure drops,
i.e. flows are driven locally by the local pressure gradient, usually. But which
pressure? If self-collisionality is weak, then it will be shown shortly that the
increased momentum flux, represented by the flow at velocity v, arises at the
expense of a decrease in the random momentum flux in the parallel direction
only, that is p‖. So, acceleration of a flow tends to be accompanied by a drop
in T‖–but not in T⊥, if self-collisionality is weak. It is therefore important to
distinguish between T⊥ and T‖.

For illustration (only) we might consider f to be a drifting Maxwellian with
different T‖ and T⊥, and drift velocity v:

f = n(x)
β⊥β

1/2
‖

π3/2
e−β‖(vx−v)2

e−β⊥(v2
y+v2

z ) (9.13)

where β‖ ≡ m/2kT‖, β⊥ ≡ m/2kT⊥ thus 〈u2
x 〉 = kT‖/m ≡ 〈u2‖〉 and 〈v2

y〉 =
〈v2

z 〉 = kT⊥/m ≡ 〈v2⊥〉.
Strictly one should use 〈u2

x 〉 and 〈v2⊥〉 in the fluid equations, not T‖ and
T⊥, but for clarity we will use the latter expressions even if f is not a (two-
temperature, drifting) Maxwellian.

Thus, from the first term we have

d

dx
(p‖ + mnv2) (9.14)

which emphasizes the point that the flow momentum, mnv2, grows at the expense
of p‖, typically. This also emphasizes that the dp/dx term which usually appears
on the RHS of the momentum equations as −dp/dx , and is thus often thought
of as part of the force acting on the fluid, is, in reality, part of the ‘ma’ of
Newton’s 2nd law ‘F = ma’, i.e. part of the inertia: it is the part of the rate
of momentum change associated with random, thermal motion, while the mnv2

is the part associated with the average or fluid motion.
We now turn to the second term, which includes a true force, that due to E .

We obtain, integrating by parts and assuming f (vx = ±∞) = 0 that:

eE

m

∫
mvx

∂ f

∂vx
dv = −eEn. (9.15)
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While one could treat E as a quantity which is externally specified, that
would be quite unsatisfactory since this field can arise spontaneously within the
plasma due to the ambipolar constraint that positive and negative charges move
with the same v. In other cases ve �= vi , i.e. a net current exists, but nevertheless
E(x) is as much of an unknown that we must solve for as is n(x) or v(x).
Fortunately E appears in both the electron and ion momentum equation as±eEn.
Thus by adding these equations to obtain the plasma momentum equation, E
drops out. For various purposes, however, we want to know E(x); that can be
obtained from the electron momentum equation expressed as Ohm’s law, see
section 9.5.

We turn next to the ∂ f/∂t |coll term. From rudimentary considerations [9.12]
we obtain for the case of ion–neutral momentum-loss collisions the collision
frequency:

νin = σvinnn

thus:
∂ f

∂t

∣∣∣∣
coll
= −mi (vi − vn)σvinnnn (9.16)

where σvin has to be calculated from experimentally measured cross-sections
σmom, and then averaged over the relative approach velocities of the neutral and
ion distributions. In practice such complex calculations are often avoided and an
approach velocity based on some average thermal velocity of ions and neutrals is
used.

Of great importance are momentum-transfer collisions between electrons
and ions since they occur even in fully ionized plasmas. We will consider first the
situation with no Te-gradient. From basic plasma physics we have the electron
collision time τe [9.13]:

τ−1
e = νmom

ei = 0.917× 10−16 ln &Zi ne/T 3/2
e � 10−15 Zi ne/T 3/2

e (9.17)

ν [s−1], n [m−3], Te [keV]. ln & is the Coulomb factor, see below. Zi is the
ion charge. It may seem surprising that νei decreases as Te increases, since
νei ∝ ve and ve ∝ T 1/2

e . The cross-section σmom
ei ∝ T−2

e , however, and
νmom

ei ≈ niveσ
mom
ei . This dependence of σmom

ei (Te) is a fundamental property of
the Coulomb interaction. One can estimate σmom

ei by considering a 90 ◦ deflection
of an electron by an (essentially stationary) ion in a single collision. The total
electron momentum is lost, hence we may write

meve = Feffective�teffective (9.18)

where the Coulomb force is taken to have a constant, effective value Feffective
during a finite interaction time �teffective. We may roughly estimate

Feffective ≈ Zi e2

4πε0r2
min

(9.19)
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where rmin is the distance of closest approach for a head-on, i.e. 180 ◦, collision.
Thus also

�teffective ≈ rmin/ve. (9.20)

Intuitively, the cross-section which the ion presents to the electron must be
roughly σmom

ei ≈ r2
min. Using also ve = (kTe/me)

1/2 one then obtains:

vmom
ei = ni Z2

i e4

(4πε0)2m1/2
e (kTe)3/2

(9.21)

which, with ne = Zi ni , is quite close to equation (9.17). The principal deficiency
of this simple estimate is the neglect of the cumulative effect of small angle
collisions which can be shown to be more important at transferring momentum
than the relatively rare, single, large angle (90 ◦) scattering collisions [9.14]. The
final result is an enhancement of νei by a factor of ln &, the Coulomb factor [9.14],
ln & ≈ 17, for typical fusion plasma conditions. All the parameter dependences
of equation (9.21) still hold, nevertheless.

Thus in the momentum equation for electrons the friction force term arises:

Ru ≡ −me(ve − vi )ν
mom
ei n (9.22)

and the same term, of opposite sign, occurs in the ion-momentum equation.
Spitzer [9.15], allowing for the distribution of electron velocities and for
e–e collisions, found that a value of almost precisely half of that given by
equation (9.17) should be used for Ru [9.16]:

νmom
ei = 0.51e4 ln &Zi ne

3m1/2
e ε2

0(2πkTe)3/2

= 0.468× 10−16 ln &Zi ne/T 3/2
e for Te[keV]

= 0.795× 10−15 Zi ne/T 3/2
e with ln & = 17. (9.23)

When dTe/dx �= 0 a second collisional force arises for the electrons [9.17]:

RT ≡ −0.71n

(
dkTe

dx

)
(9.24)

due to the fact that the electrons which strike the ion from the colder side have a
larger νmom

ei , equation (9.17), than do those from the hot side. Thus the electrons
tend to push the ions in the direction of increasing Te, and the same force acts
oppositely on the electrons.

It is important to keep in mind that this temperature gradient force RT is
every bit as much due to collisions as is Ru , although due to a coincidental,
complete cancellation of various terms, this is not apparent. This may be seen
from the following simple model for estimating RT . The electrons striking the
ions (essentially stationary) at x0 from the left side, had experienced their last
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collision with another electron at x0 − λee, while those from the right had done
so at x0 + λee. Thus the electrons from the left have temperature T0 − λeedT/dx ,
assuming that e–e temperature equilibration requires only about one collision,
which is approximately the case for like-mass collisions [9.18]. Therefore the net
forward force on the n ions at x0 is approximately:

Fei ≈ mecen[νmom
ei (x0 − λee)− νmom

ei (x0 + λee)] (9.25)

which expression, assuming λee(dT/dx)/T � 1, can be expanded. (This latter
condition is merely the physical one that the temperature gradient length not be
shorter than λee.) Thus:

Fei ≈ mecenνmom
ei 3λee

d(kT )

kT dx
. (9.26)

Noting that λee ≈ ce/ν
mom
ei , i.e. ignoring the same factor of two difference

mentioned above, one sees that the collision frequency cancels out, giving finally

Fei ≈ n
d(kT )

dx
(9.27)

i.e. close to −RT , equation (9.24). Thus, while the final form of RT does not
indicate that it is due to collisions, we see that this is actually the case. It is the
electron temperature, rather than Ti which controls RT , due to the greater thermal
velocity of the electrons (assuming Te not to be extremely small compared with
Ti ). As regards T -gradient forces on impurities, however, there exist both Te- and
Ti -gradient forces; section 6.5.2.

The total ei collisional force is defined to be

R ≡ Ru + RT

Finally the fourth term: ∫
mvx S(x, v)dv (9.28)

which for the example of ions created by ionization of a neutral population with
a drifting Maxwellian distribution, equation (9.2), gives:

mivn S(x, v) (9.29)

i.e. a momentum gain. We shall ignore electron momentum due to sources as
small.

We thus have the momentum equation for ions:

d

dx
(mi nv2 + p‖i )− eEn = − mi (vi − vn)σvinnnn

+ me(ve − vi )v
mom
ei n

+ 0.71n

(
dkTe

dx

)
+ mivn Sp(x). (9.30)
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and for electrons:

dpe

dx
+ eEn = − me(ve − vi )v

mom
ei n

− 0.71n

(
dkTe

dx

)
(9.31)

where we have dropped most of the terms with me as being small.
We have also anticipated the result that due to the (generally) strong self-

collisionality of electrons, see equation (9.21), ν ∝ m−1/2:

T‖e = T⊥e p⊥e = p‖e = pe (9.32)

It is most useful to add these two equations (9.30) and (9.31), to obtain the
plasma momentum equation since many terms cancel:

d

dx
(mi nv2 + p‖i + pe) = − mi (vi − vn)σvinnnn

+ mivn Sp(x). (9.33)

The plasma momentum equation brings out the obvious point that the electric
field cannot exert a force on the plasma fluid which is (quasi-) neutral. Rather, the
main ‘force’ accelerating the flow, i.e. increasing mi nv2, is usually the plasma
pressure-gradient ‘force’, −(d/dx)(p‖i + pe) (negative sign when moved to the
RHS of the equation, as is the custom). The ion momentum equation (9.30) brings
out the fact that the electric force +eEn (positive sign when moved to the RHS)
truly does accelerate the ion flow, adding to the −dp‖i/dx ‘force’. Similarly the
electron momentum equation (9.31) shows that the −eEn force (on RHS) acts to
slow down the electrons, almost precisely off-setting the −dpe/dx ‘force’.

These three equations (9.30), (9.31), (9.33) are written here in the ‘conser-
vative form’. We can now resolve the uncertainty encountered in section 1.8.2.7
where the heuristic arguments used to obtain the momentum equations left us
somewhat uncertain whether a (−mivSp) term should appear on the RHS or not:
when written in the conservative form, above, the answer is ‘no’; when written
in the inertial form with mi nv dv/dx on the left (by combining the particle and
momentum equations), the answer is ‘yes’. In both cases a (+mivn Sp) term
appears on the RHS if the neutrals being ionized were, in fact, flowing.

Returning to the problem of closing the fluid equations, we find that we now
have a second equation involving n and v, but unfortunately a new unknown has
appeared, T‖i (or p‖i ≡ nkT‖i ). The other terms involve quantities that have to
be externally specified, like Sp(x), σvmom, vn, nn . We thus proceed to a further
higher moment of the kinetic equation. We are going to want to bring T⊥i and
p⊥i into the analysis–so we need two energy equations, sections 9.6, 9.7. First,
however, we discuss Ohm’s law.
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9.5 Ohm’s Law

For various purposes we will want to know E(x), for example, to compute forces
acting on impurity ions. The electron-momentum equation (9.31) can be seen to
be a form of Ohm’s law, since we define the parallel current density j‖:

j‖ ≡ en(vi − ve) (9.34)

(assuming Zi = 1) and parallel electric conductivity for a fully ionized plasma
[9.19]:

σ‖ ≡ e2n

mev
mom
ei

(9.35)

giving:

E(x) = j‖
σ‖
− 0.71

e

dkTe

dx
− 1

en

dpe

dx
. (9.36)

σ‖ is derived assuming balance between the E-force and e–i friction force, only:

neE = −me(ve − vi )ν
mom
ei n (9.37)

together with with the definition:

σ‖ ≡ j‖/E . (9.38)

Thus (9.16):
σ‖[ohm−1 m−1] ≈ 3.6× 107 [Te [keV]]3/2. (9.39)

In the simplest cases one assumes local ambipolarity, j‖ = 0, and thus
E(x) is given entirely in terms of quantities already being calculated. When
j‖ �= 0 further information is required, since one has a new unknown, j‖ (or
alternatively one has the two unknowns, ve and vi instead of just one v). This
requires that further information be provided about the current externally provided
to the plasma, i.e. one then requires a current continuity equation, see section 17.4.
One may note that the Boltzmann relation, equation (1.12), is obtained from
equation (9.36) for the case of Te = constant and j‖ = 0.

9.6 The Energy Conservation Equation, T‖

Multiply the kinetic equation by 1
2 miv

2
x and integrate. The first term gives:

1

2
mi

∫
v3

x
∂ f

∂x
dv = 1

2
mi

∂

∂x

∫
(ux + v)3 f dv

= d

dx

[ 1
2 mi nv3 + 3

2 mi nv〈u2
x 〉 + 1

2 mi n〈u3
x 〉

]
. (9.40)
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The second term in equation (9.40) is just 3/2p‖v, while the third term is a
new and most important one. It is the ion-conducted heat flux density:

q‖i,cond ≡ 1
2 mi n〈u3

x 〉. (9.41)

Our attempt to close the equations has once again generated a new dependent
variable or unknown. We can proceed to yet higher moments, but the most direct
approach is to stop the hierarchy here by some method. We need some assumption
or idea from outside this analysis process.

The simplest approach is to just set q‖i,cond, 〈u3
x 〉 = 0. This can be justified

in certain circumstances. For example, strong (self-) collisionality force velocity
distributions toward Maxwellian [9.20] (or drifting Maxwellian) for which it is
easily shown that 〈u3

x 〉 = 0 due to symmetry.
Let us, however, look outside the present analysis procedure to simple gas

kinetic theory [9.21] to try to answer the question: why would a velocity dis-
tribution have a non-zero 〈u3

x 〉, anyway? What would make it asymmetric in
that way? There could be many reasons, of course, but one obvious reason is
a finite λs , the mean free path for self-collisions, together with the presence of
a temperature gradient: at some location x0, the ions moving one way have a
velocity distribution characteristic of the location where they experienced their
last (thermalizing) collision, say at x0−λs where T (x0−λs) ≈ T (x0)−λsdT/dx .
Ions moving the other way, at location x0, have a distribution characteristic of the
location x0 + λs , where T (x0 + λs) ≈ T (x0) + λsdT/dx). Thus a velocity
asymmetry arises for f (x0, v), and so 〈u3

x 〉 �= 0. Let us employ this picture from
simple gas kinetic theory to develop an approximation for q‖cond. It is readily
shown, section 2.2, that for a Maxwellian distribution the one-way random flux
density of particles is:

�Max
p = 1

4 nc

c = (8kT/πm)1/2 (9.42)

while the one-way random flux density of energy (here heat) is:

qMax
E = 2kT �Max

p . (9.43)

Let us use these as approximations for the actual distribution, i.e. we assume
a small perturbation from Maxwellian. The net heat flux due to random particle
motion is

qnet
E = 2k

(
T0 − λs

dT

dx
−

(
T0 + λs

dT

dx

))
1

4
nc

≡ − K
dkT

dx
(9.44)

with K ≡ ncλs , the heat conduction coefficient. Taking λs = c/νs , where νs is
the self-collision frequency we obtain:

K = n
kT

mνs
(9.45)
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This is the classical gas kinetic result [9.21].
For collisions between charged particles we have νs ∝ m−1/2nT−3/2, equa-

tion (9.23), giving:

K = κ0T 5/2 (9.46)

a very strong function of T . Thus, often plasma heat conductivity is so high that
isothermal conditions prevail. In the low temperatures of the SOL, however, this
can break down, giving rise to substantial temperature gradients along flux tubes.

One also may note that K ∝ m−1/2 and thus electron heat conductivity is
much larger than ion conductivity. For ions, convection is often more important
than conduction.

The foregoing provides a good first estimate for Ke,i . More detailed analy-
sis [9.2] gives the results:

q‖e,cond = − Ke
dTe

dx
= −κ0eT 5/2

e
dTe

dx

q‖i,cond = − Ki
dTi

dx
= −κ0i T

5/2
i

dTi

dx
(9.47)

with:

κ0e = 30692

Zi ln &
≈ 2000

κ0i = 1249

Z4
i m1/2

i ln &
≈ 60 (9.48)

where T [eV], dT/dx [eV m−1], q [W m−2], mi [amu] and where the approx-
imate values in equation (9.48) assume Zi = 1, mi = 2, ln & = 15. Equa-
tion (9.48) assumes a single ion species, charge Zi .

Thus, from the multiplication of equation (9.1) by 1
2 miv

2
x , the first term

gives:
d

dx

[
1

2
mnv3 + 3

2
p‖v + q‖cond

]
. (9.49)

The second term from multiplying equation (9.1) by 1
2 miv

2
x is readily shown

to give −eEnv. When ve = vi this is simply the energy transfer from electrons
to ions as a result of the ambipolar electric field.

The third term involves collisions associated with heat transfer. Here one
could include, for example, heating associated with ion–neutral collisions. For
simplicity we do not include any such specific terms here, except those involving
charged particle collisions as follows:

(a) For the transfer of heat due to self-collisions which couple T‖ and T⊥, Q⊥→‖,
we may write:

Q⊥→‖ ≡ nkT⊥ − nkT‖
τ⊥→‖

= p⊥ − p‖
τ⊥→‖

(9.50)
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thus defining τ⊥→‖, the (ion) pressure anisotropy relaxation time. It may be
noted that it is 2.5 times longer than the usual ion collision time [9.1]. Often
τ⊥→‖ is simply written as τi or τT but we wish to emphasize the specific
nature of this collision time.

(b) The joule heating due to the net drift of the electrons: against the dissipative
(collisional) force R. By convention R, ve, and vi are positive, therefore the
heating due to the electron drift is −Rve while that due to the ions is +Rvi ;
thus this heating term is:

Q R ≡ −R(ve − vi ) (9.51)

and goes all to the electrons, essentially, since me � mi .
(c) Thermal equilibration collisions between electrons and ions gives an ion

heating term [9.2]:

Qeq = 3me

mi
nνeq(kTe − kTi ) (9.52)

where νeq ≈ 2.9× 10−12n ln &T−3/2
e , ν [s−1], n [m−3], Te [eV].

The fourth term is ∫
S(x, v) 1

2 mv2
x dv ≡ QE‖ (9.53)

which for an ionization source of Maxwellian neutrals gives:

QE‖ = 1
2 kTn Sp(x). (9.54)

Thus, for ions and for T‖ or p‖ we have:

d

dx

[ 1
2 mi nv3

i + 3
2 p‖ivi

]+ d

dx

(
−κ0i T

5/2
i

dTi

dx

)
= envi E + Q⊥→‖ + Qeq‖ + QE‖i (9.55)

while for electrons:

d

dx

( 3
2 p‖eve

)+ d

dx

(
−κ0eT 5/2

e
dTe

dx

)
= − enve E − Qeq‖ + Q R + QE‖e (9.56)

where, again, we are anticipating isotropic electrons and also dropping the me-
terms.

As anticipated we have introduced another unknown p⊥i since Q⊥→‖ =
(p⊥i − p‖i )/τ⊥→‖. However, we will find an equation for that in the next section.
One can use Ohm’s law, equation (9.36), to substitute for E(x) in equations (9.55)
and (9.56). The electron power terms which are associated with ionization sources
SEe , are very important and are discussed separately in section 5.5; generally
there is an important and substantial power loss by the electrons associated with
ionization.
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9.7 The Energy Conservation Equation, T⊥
Multiply the kinetic equation by 1

2 m(v2
y + v2

z ) and integrate to obtain for ions:

d

dx
(p⊥ivi ) = −Q⊥→‖ + Qeq⊥ + QE⊥i (9.57)

and for electrons:
d

dx
(p⊥eve) = −Qeq⊥ + QE⊥e. (9.58)

For ionization from Maxwellian neutrals:

QE⊥i = kTn Sp(x). (9.59)

One combines the two electron energy equations, anticipating p‖e = p⊥e:

dq‖e
dx

= −enve E − Qeq + Q R + QEe (9.60)

where

Qeq ≡ Qeq⊥ + Qeq‖

q‖e ≡ q‖e,convection + q‖e,conduction

q‖e,convection ≡ 5
2 kTenve (9.61)

q‖e,conduction ≡ − κ0eT 5/2
e

dTe

dx
.

One now has six equations for the six unknowns n, ve, vi , T‖i , T⊥i , Te as
functions of x : the particle conservation equation (9.7), the electron- and ion-
momentum equations (9.30) and (9.31), and the electron-energy equation (9.60).
If local ambipolarity is assumed, ve = vi = v then the plasma-momentum
equation (9.33) is used in place of the separate e and i ones.

When ion self-collisionality is strong then T‖i = T⊥i = Ti , p‖i = p⊥i = pi ,
and one adds the two ion-energy equations to obtain:

d

dx
q‖i = envi E + Qeq + QEi (9.62)

where:

q‖i = q‖i,convection + q‖i,conduction

q‖i,convection ≡
( 1

2 miv
2
i + 5

2 kTi
)
nvi (9.63)

q‖i,conduction ≡ − κ0i T
5/2

i
dTi

dx

q‖i,convection ≡
( 1

2 miv
2
i + 5

2 pi
)
nvi .
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(One notes an ambiguity involved in the expressions for q‖i,conduction, also Qeq :
which Ti is one to use when T‖i �= T⊥i ? This is just one of the limitations of the
simple expressions used above.)

In this case one has four equations for the four unknowns, n, v, Ti , Te,
equations (9.7), (9.33), (9.60), (9.62).

If collisionality is so strong that equipartition occurs, Ti = Te, section 4.11,
then one adds the e and i energy equations:

dq‖
dx
= Q R + QE (9.64)

where:

q‖ = q‖convection + q‖conduction

q‖convection =
( 1

2 miv
2 + 5kT

)
nv (9.65)

q‖conduction ≈ − κ0eT 5/2
e

dTe

dx

where one has used the fact that κ0i � κ0e . One thus has the most basic set
of three conservation equations—equations (9.7), (9.33), (9.64)—for the three
unknowns n, v, T as functions of x .

9.8 The Parallel Viscous Stress

For very weak collisionality τ⊥→‖ → ∞ and only the −dp‖i/dx − dpe/dx
‘forces’ are available to accelerate the flow. p⊥i �= p‖i and one should—strictly
speaking—use the two ion energy equations (9.55) and (9.57). When τ⊥→‖ has
intermediate values some of the parallel flow acceleration comes from−dp⊥i/dx .
One can still employ the two ion energy equations for p⊥i and p‖i but a common
practice is to introduce instead the parallel stress tensor π :

π ≡ 2
3 (p‖ − p⊥) (9.66)

p ≡ (p‖ + 2p⊥)/3 (9.67)

so
p‖ = p + π and p⊥ = p − π

2
(9.68)

and then to work with p and π , rather than p⊥ and p‖.
Clearly π is directly related to the coupling of T‖ and T⊥ and will be impor-

tant in the momentum equation (9.30). We must use the energy equation, however,
in order to estimate π , since the coupling of the two pressure ‘reservoirs’ is really
an energy coupling. Let us note first that πi is indeed the term we need in the ion
momentum equation (9.30), which using (9.68) gives:

d

dx
(mi nv2 + pi + πi ) = RHS of equation (9.30) (9.69)
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(−eEn has been moved to the RHS) and so one sees that, in moving dπi/dx to
the RHS one obtains another ‘force’ on the flow, namely −dπi/dx in addition to
the usual−dpi/dx ‘force’. Just as for the latter,−dπi/dx is really part of the flux
of momentum in the flow direction associated with random, thermal motion, i.e.
part of ‘ma’, inertia.

We turn now to the task of estimating πi . We are seeking an expression
which will relate the power transfer rate Q⊥→‖ to the dominant term in the
energy equation associated with the temperature drop which accompanies flow
acceleration. To obtain a reasonably simple estimate it is necessary to make some
rather strongly simplifying approximations, including the neglect of all the S-
source terms in the ion fluid equations. We also drop the E-terms and q‖i,cond and
ignore the electrons:

d

dx
(nv) = 0 (9.70)

d

dx
(mi nv2 + pi + πi ) = 0 (9.71)

d

dx
(mi nv3 + 3p‖iv) = 2

(p⊥i − p‖i )
τ⊥→‖

= −3πi

τ⊥→‖
(9.72)

d

dx
(p⊥iv) = − (p⊥i − p‖i )

τ⊥→‖
= 3

2

πi

τ⊥→‖
. (9.73)

Subtract (9.73) from (9.72):

d

dx

(
mi nv3 + (

2pi + 7
2πi

)
v
) = −9

2

πi

τ⊥→‖
. (9.74)

Expanding the LHS of equation (9.74), using equations (9.70) and (9.71) and
dropping terms involving πi itself as small, one obtains the final result [9.1, 9.2]:

πi = −4

9
piτ⊥→‖

dv

dx
≡ −η‖

dv

dx
(9.75)

where η‖ is defined as the parallel viscosity coefficient.
We can thus see that the cooling effect on the flow associated with accelera-

tion is primarily through the pi dv/dx term, which is balanced by Q⊥→‖, giving
an expression for πi . The latter appears not only in the energy equation, but
in the momentum equation also. The change to the momentum equation is as
shown, equation (9.71)—and so the two previous unknowns p‖i and p⊥i have
been replaced by two new unknowns pi and πi . For the latter, however, we use
the simple relation, equation (9.75)—and so we still have enough equations to
match the unknowns, although we use only a single ion momentum equation,
constituting a valuable simplification.

The ion energy equations are similarly combined by adding them:

d

dx

[( 3
2 p‖i + p⊥i

)
vi

] = RHS (9.76)
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and substituting equation (9.68) gives:

5

2

d

dx
(pivi )+ 

d

dx
(πivi ) = RHS (9.77)

where (d/dx)(πivi ) is the heat generated by the parallel viscous stress.
We note that τ e⊥→‖/τ i⊥→‖ ≈ (me/mi )

1/2 which is the reason for generally
assuming that electron self-collisionality is strong enough to ensure electron pres-
sure isotropy.

Although kinetic corrections are not discussed until chapter 26, it is worth
noting at this point that for weakly collisional situations the foregoing approxi-
mation for πi becomes quite unphysically large: as τ⊥→‖ → ∞, πi → ∞. It is
readily seen that this is unphysical since the largest (negative) value πi can take is
−pi : as τ⊥→‖ → ∞, p⊥i becomes completely de-coupled from p‖i , which can
therefore drop to very low values as v increases. The lowest values p‖i can attain
is zero, of course, making πi = −pi , which is the largest (negative) value possible
for πi . More detailed considerations, chapter 26, indicate ≈ −0.5pi as the limit.
If, however, the uncorrected ‘Braginskii’ [9.2] viscosity, equation (9.75), is used
in weakly collisional situations, an unphysically strong forward force is exerted
on the flow, sometimes resulting in strange fluid behaviour, such as pressure
increasing as the flow accelerates.

9.9 The Conservation Equations Summarized

To summarize, a widely used form of the conservation equations is the zero-
current one for j‖ = 0, and vn = 0 (a non-drifting neutral ‘background’):

(1) Particle conservation.
d

dx
(nv) = Sp(x) (9.78)

from equation (9.7).
(2) Momentum conservation.

d

dx
(mi nv2 + pi + pe + πi ) = −mivσvinnnn (9.79)

from equations (9.33) and (9.68), with:

πi = −4

9
piτ⊥→‖

dv

dx
. (9.80)

(3) Energy conservation. For ions:

d

dx

[( 5
2 pi + 1

2 mi nv2 + πi
)
v − κ0i T

5/2
i

dTi

dx

]
= envE + Qeq + QEi

(9.81)
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from equations (9.62) and (9.77). For electrons:

d

dx

[
5

2 
pev − κ0eT 5/2

e
dTe

dx

]
= −envE − Qeq + Q R + QEe (9.82)

from equations (9.60) and (9.61).
(4) Ohm’s law

E = −0.71

e

dkTe

dx
− 1

en

dpe

dx
(9.83)

This provides six equations for the six unknowns, n, v, πi , Te, Ti , E as func-
tions of x (and pe,i ≡ nkTe,i ). It is also common to ignore πi (see section 11.3 for
a discussion of the justification for doing so) and to assume Te = Ti , p = pe+ pi ,
resulting in the simpler set of three equations in three unknowns n, v, T :

d

dx
[nv] = Sp (9.84)

d

dx
[(miv

2 + 2kT )n] = − mivσvinnnn (9.85)

d

dx

[( 1
2 miv

2 + 5kT
)
nv − κ0eT 5/2

e
dTe

dx

]
= Q R + QE . (9.86)

The above equations are essentially identical to those of Braginskii [9.2] and
ZNC [9.1] for one dimension.

9.10 The Sheath-Limited Regime

Further to sections 1.9, 4.10 and 5.3 we note that there are two important situations
where the plasma is approximately isothermal in the parallel direction:

(a) Parallel heat conductivity may be very high and weak temperature gradients
can be enough to carry all the power which entered the flux tube. Thus,
regardless of whether significant plasma flow—and thus parallel heat
convection—exists or not, the flux tube can be nearly isothermal.

(b) Even if the heat conductivity is low, if it happens that most of the particles
enter the flux tube far upstream from the target, parallel convection can carry
most of the power. This also reduces parallel temperature variation: as shown
in section 2.8 the heat flux density through the sheath is typically:

qsh ≈ 7kT nv. (9.87)

Since q‖convected =
( 1

2 miv
2 + 5kT

)
nv = 6kT nv (when Mach number = 1) most

of the parallel power can be carried by convection in such cases—and with little
change of T therefore being required along the flux tube. Indeed if the sheath
transmission coefficient were slightly smaller, ∼6, rather than ∼7, and if the
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particle source were entirely at the upstream end, then the flow would be at M ≈ 1
throughout its length, the convected power would equal the sheath power—and all
this would occur with T precisely constant. Even relaxing from this extreme still
implies a tendency for strong flows to flatten parallel temperature profiles.

This is termed the sheath-limited regime, section 1.9, since the SOL is essen-
tially isothermal along a given flux tube and it is the heat transmission properties
of the sheath that are defining of SOL properties.

Ohm’s law thus reduces to

E = − 1

en

dpe

dx
= −kTe

e

dn

dx
(9.88)

which integrates to give the Boltzmann relation, equation (1.12). One can then use
that E in the ion energy equation (9.81) so it is not necessary to assume isothermal
ions in situations where the electrons—due to their very high conductivity—may
well be isothermal.

As pointed out in section 2.6, in the sheath-limited regime SOL collisionality
may be too weak to ensure the electrons—or ions—are Maxwellian and, depend-
ing on the source of particles, the distributions may or may not be Maxwellians.
If the electrons are non-Maxwellian one still anticipates that the distribution will
remain roughly constant along the length of the system because the mean free
paths for self-collisions exceed the system length.

9.11 The Conduction-Limited Regime

Here the opposite situation is assumed, convection is not strong, parallel (elec-
tron) conduction is limiting and temperature drops along the SOL are substantial.
The Boltzmann relation cannot be used in this case and whenever the E-field
is needed, Ohm’s law is employed, equation (9.36). It is common to assume
equipartition, Te = Ti , and to ignore πi , i–n friction, and Q R . Consistent with
convection not being important, it is implicitly assumed that the recycle ionization
occurs very close to the solid surfaces, and so flow effects, including convection,
are relegated to a thin layer immediately adjacent to the solid surfaces. This thin
region is ignored except for the transition of v from 0 to the plasma sound speed,
and the associated density drop.

One now needs only momentum and power equations, and the former takes
an extremely simple form:

d

dx
[n(miv

2 + 2kT )] = 0 (9.89)

with v = 0 over the vast majority of the SOL, i.e. p = nkT = constant =
pupstream. In the thin particle source layer, miv

2 increases from 0 to 2kT at the
target, so ptarget = 1/2pupstream.
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The power equation is also simple:

d

dx

(
−κ0eT 5/2 dT

dx

)
= QE (x) (9.90)

where QE (x) is the net energy source density along the flux tube, including cross-
field power.

9.12 Self-Collisionality and the Problem of Closing the Fluid
Equations

When self-collisionality is very strong q‖conduction → 0 and so the fluid equations
close naturally with an energy equation which involves only convection. (One also
has πi → 0, which is convenient but not necessary for closure.) Self-collisions
drive particle distributions toward (drifting) Maxwellian ones [9.20] for which
〈u3

x 〉 = 0 and q‖conduction ∝ 〈u3
x 〉. For somewhat less collisional situations, one of

two approaches is usually taken:

(a) a rough approximation for q‖conduction is obtained from simple gas kinetic
theory, yielding q‖cond = −κ0T 5/2dT/dx . Presumably if the collisionality
is not too weak, the approximate nature of this expression will not introduce
substantial error into the overall results—particularly for the lower moment
quantities n(x), v(x). When collisionality does become very weak, this
approximation becomes seriously wrong, see chapter 26.

(b) One retains q‖,cond or 〈u3
x 〉 but continues to calculate still higher moments

of the Boltzmann equation, 〈u4
x 〉, etc. Presumably, if collisionality is not too

weak, one can employ approximations for these higher moments to close
the fluid equation hierarchy at that higher level—and, presumably, the errors
then introduced for lower moments, including q‖,cond, will not be too large.
For very weak collisionality however, this approach should also fail—at least
strictly speaking.

Fortunately, it appears that nature is more forgiving than the foregoing con-
sideration would imply. In sections 10.6, 10.7 we compare results obtained for
some simple systems which are completely collisionless, i.e. mean free paths
are much longer than system size—comparing a fully kinetic treatment which
properly allows for the collisionlessness, and simple fluid models which should,
strictly speaking, not be applicable. As will be seen, the principal quantities of
practical interest turn out to be about the same as calculated by the two methods.
The reason for this good agreement has not been fully explained to date.
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Chapter 10

1D Models for the Sheath-Limited SOL

10.1 Introduction

The simplest 1D fluid model is the isothermal fluid model, where T is taken to be
constant along the flow direction. It is very convenient to use this simple model
when considering the sheath-limited SOL, and we are therefore interested in com-
paring it with other 1D models, both fluid ones—e.g., adiabatic fluid models—
and, particularly, kinetic models. We are especially interested in comparisons
with collisionless kinetic models since the sheath-limited regime is characterized
by weak collisionality, section 4.10, raising questions about the validity of fluid
treatments, section 9.12. In this chapter we consider these various models and
compare the principal results from them. It turns out, fortunately, that the main
results vary little amongst the models, and so it is often adequate to use the
isothermal fluid model when analysing the sheath-limited SOL.

10.2 The 1D Isothermal Fluid Model

The two temperatures, Te and Ti , are treated as constant parameters that have to
be established by some constraints on, or information about, the system other than
the fluid equations. The fluid energy conservation equations are thus not used.
Collisions are neglected in the momentum equations. Thus from equations (9.78),
(9.79) we have the two equations:

d

dx
(nv) = Sp (10.1)

d

dx
(mi nv2 + nkTe + nkTi ) = 0 (10.2)

i.e. two equations in the two unknowns, n(x), v(x), as functions of the single
independent variable x . These are the same equations as used in section 1.8.2.1,
although there the momentum equation was not written in the conservative form

404
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as it is above. We have also neglected πi for simplicity, but we will see in
section 10.7 that this is a good approximation.

Assuming Sp ∝ n, as for an ionization source or a cross-field diffusive
source, one has M(x) from equation (1.42) where M ≡ v/cs , cs,iso ≡ [k(Te +
Ti )/mi ]1/2, the isothermal acoustic speed. If Sp = constant then M(x) is not
greatly changed:

x

L
= 2M

1+ M2
(10.3)

see figure 1.35, and therefore it can be expected that for any approximately uni-
formly distributed Sp(x) source, M(x) will have broadly the same form. For cases
where Sp(x) is localized, M(x) will rise from ∼0 upstream of the source to ∼1
on the target side of the source.

Regardless of the form of Sp(x), in general we have for the isothermal
plasma:

n(M)

n0
= 1

1+ M2
(10.4)

where n0 is the density far upstream where M = 0 is assumed. The Boltzmann
relation for the electrons holds, equation (1.12), and combining it with equa-
tion (10.4), one has for all Sp(x) the electrostatic potential:

V (M) = −kT

e
ln(1+ M2). (10.5)

One also has, for all Sp(x), the electric field:

E(M) ≡ −dV

dx
= 2SpkTe

en0cs

M(1+ M2)

(1− M2)
(10.6)

and if Sp = constant then:

E(x) = E(M(x)) = kTe

eL

M(1+ M2)

(1− M2)
(10.7)

since 1
2 n0cs = Sp L in that case. L is the system length over which the constant

source Sp exists.
We thus have generally, for any Sp(x), the principal results related to particle

and momentum balance:

(a) nse = 0.5n0, where ‘se’ indicates the sheath edge, i.e. plasma–sheath inter-
face.

(b) Vse = −0.69kTe/e, the pre-sheath, i.e. potential drop in the plasma.
(c) vse = cs,iso = [k(Te + Ti )/mi ]1/2.
(d) �se = 1

2 n0cs,iso the particle flux density exiting the plasma, striking the solid
surface.
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406 1D Models for the Sheath-Limited SOL

10.3 Isothermal Model. Non-Constant Source Sp

When Sp = constant, or Sp ∝ ne, then the solutions for M(x), etc are particularly
simple. It is also possible to allow for some simple but useful x-dependence of
Sp(x), while still achieving analytic expressions for M(x), etc. It may be, for
example, that the particle source is due to ionization near the surface. Although
such localized particle sources are more commonly a feature of the high recycling
regime, section 4.8, and to a situation where T (x) is not isothermal, nevertheless
combinations are conceivable where T (x) ≈ constant, yet Sp(x) is not constant.

In problem 1.20 it was shown that it is useful to define a new independent
variable y:

y ≡
∫ x

0
Sp(x ′)dx ′. (10.8)

This then leads to the general result, independent of the form of Sp(x):

n/n0 = (1+ M2)−1 (10.9)

and also to the general result:

M(ŷ) = ŷ−1 − (ŷ−2 − 1)1/2 (10.10)

where
ŷ ≡ y/y(L) (10.11)

and
y(L) = 1

2 csn0 (10.12)

Once the form of Sp(x) has been specified, M(x) is then obtained from equa-
tion (10.10), n(x) from equation (10.9), V (x) from equation (10.5) and E(x)

from equation (10.7).

10.4 The Effect of Neutral Friction on Plasma Flow Along the
SOL

Neutral hydrogen present in the SOL not only contributes to the local particle
balance, via ionization, but also causes drag on the parallel plasma flow through
ion–neutral, i–n, collisions—i.e. collisional drag. The momentum equation (10.2)
now becomes

d

dx
(mi nv2 + nkTe + nkTi ) = −mivnνmom

in (10.13)

where νmom
in is the i–n collision frequency for momentum transfer:

νmom
in = nnvσmom (10.14)

where nn is the neutral density (one should allow for both atomic and molecular
neutrals); vσmom is the average over the collision (approach) velocities of the ions
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and neutrals; σmom includes both ordinary i–n collisions and charge-exchange
ones (for the atoms). It has been assumed here that the neutrals have no average
velocity in the plasma flow direction x .

Consider a simple 1D system, figure 10.1, where the neutrals recycled from
the target penetrate through a cool non-ionizing region before reaching a hotter,
ionization region further upstream [10.1]. We define an ionization front to exist
at x = 0, with the target at x = L . The region [0, L] has no ionization but only
momentum collisions. Thus the conservation of ions is simply:

nv = n f v f = nt cs (10.15)

where n f v f is the ion flux density toward the target at the front and nt cs is the ion
flux entering the target sheath, assumed to occur at sonic speed. For simplicity
we again assume isothermal conditions. Defining as before the Mach number as
M = v/cs , we have the plasma density ratio across the collisional region:

nt/n f = M f . (10.16)

We will show that the effect of momentum collisions is to drive M f down from
unity (for no collisions) toward zero (strong collisionality). Combining the parti-
cle and momentum equations (10.13) and (10.15) gives:

Ionization
zone

Elastic collision zone
(no ionization)

Ta
rg

et

x
x=L
n=nt

x=0
n=nf

B
Ionization

front

Figure 10.1. Schematic of a cool recycling region where neutrals recycling from the target
pass first through a region too cold to ionize them, but where they cause frictional drag to
the plasma flow to the target—a ‘neutral cushion’. Further upstream Te is high enough to
ionize the neutrals, creating the plasma flow into the ‘cushion’.

(M2 − 1)
dM

dx
= −M2νmom

in /cs (10.17)

which is solved for boundary conditions M = M f at x = 0 (note: we are trying
to find the value of M f ) and M = 1 at x = L . M(x) is given by the solution of:

M + M−1 = M f + M−1
f − νmom

in x/cs (10.18)
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where M f is given by the solution of:

M f + M−1
f − 2 = νmom

in L/cs . (10.19)

From equation (10.15) one also has n(x) from:

n(x)/n f = M f /M(x). (10.20)

For strong collisionality M−1
f dominates, giving:

nt/n f = M f ≈ cs/Lνmom
in . (10.21)

Estimating the i–n momentum transfer mean free path λmom
in as:

λmom
in ≈ cs/ν

mom
in  (10.22)

gives:

nt/n f = M f ≈ λmom
in /L . (10.23)

Thus, when many i–n momentum collisions occur in the cool region, i.e.
λmom

in /L � 1, the plasma density drop across the collisional region is very large,
nt/n f � 1. Since the plasma flux density to the target is simply proportional
to nt , �t = nt cs , the major effect of i–n momentum collisions is to reduce the
particle flux to the targets—i.e. the intensity of recycle—for given upstream
plasma conditions, i.e n f . That is, the effect of collisional drag is to increase the
particle confinement time—since the plasma content is essentially proportional
to n f . Qualitatively this is an obvious result: anything which impedes outflow
from a system, increases the confinement of the system. The confinement time
of water in a bathtub, for example, is increased by any solid matter clogging the
drain.

This reduction in particle outflow to the targets is evidently involved in the
phenomenon of divertor detachment, chapter 16.

Unless neutral collisions are extremely frequent, the electrons continue to
satisfy the Boltzmann relation throughout and so we have for the potential drop,
across the collisional zone:

e�V/kTe ≈ − ln(L/λmom
in ) (10.24)

which can be much larger in magnitude than the pre-sheath voltage drop for
νmom

in = 0 of ∼ − 1/2, section 1.8.2.9. The extra potential drop is required to
accelerate the ions to the sound speed in the presence of i–n momentum loss.

10.5 Other 1D Models for the Sheath-Limited SOL

As discussed in sections 9.1, 9.10, 9.11, the most important distinction to make
in SOL modelling is between the sheath-limited regime, where electron parallel
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heat conduction is strong enough that T is approximately constant along each flux
tube in the SOL—and the conduction-limited regime where parallel T -gradients
are significant. We will slightly extend the definition of the sheath-limited regime
to include the possibility of significant ion temperature gradients, related to the
flow acceleration, and the fact that parallel ion heat conductivity is weaker than
for electrons by ∼(me/mi )

1/2, section 9.6. For all the models considered in this
chapter, however, the isothermal electron assumption—and thus the Boltzmann
relation, equation (1.12)—are assumed to hold. The latter is the most basic and
common characteristic of sheath-limited models.

In the following we consider a number of 1D plasma models which are
relevant to the sheath-limited regime of the SOL. These models were developed
starting from the 1920s with the application in mind of low temperature, non-
magnetic gas discharges, but they are equally applicable to the 1D analysis of the
SOL. A principal conclusion drawn from comparing the results of the different
models is that none of them result in significant differences, for the quantities of
most practical consequence, from the results obtained using the simplest model—
i.e. the 1D isothermal model, section 10.2. Since the latter model is analytic,
convenient and transparent it is fortunate that it is also so reliable.

10.6 The Kinetic 1D Model of Tonks and Langmuir. Cold Ions

In the history of plasma–surface interactions one of the most important modelling
results is that by Irving Langmuir and Lewi Tonks in 1929 [10.2], who analysed
the classical gas discharge problem. They provide results for both the free-fall
regime where (λen, λin � a); λen, (λin) ≡ mfp; for electron– (ion–) neutral
momentum-loss collisions, and a is the system scale length (the radius of a cylin-
drical tube, or the separation of the two planes for planar geometry, or the radius
of a spherical plasma). They also give results for the neutral-collision-dominated
radial diffusion regime (λen, λin � a). We consider here their planar, free-fall
result where they assumed Te � Ti , as is typically the case for non-magnetic,
low pressure (free-fall) gas discharges [10.3] and presented a complete kinetic
analysis. That is, they calculated the actual velocity distribution of the ions at
each radial location x , 0 ≤ x ≤ a.

Consider the planar, long mean free-path case. The freely falling ions at x
came, in part, from the particle source at x ′. The increment to the ion particle flux
at x due to the source at x ′ is given by:

δ�i (x) = vi (x, x ′)δni (x) = Sp(x ′)dx ′ (10.25)

where vi (x, x ′) is the velocity gained by ions in falling, without collisions, in the
ambipolar E-field:

1
2 mi [vi (x, x ′)]2 = −e(V (x)− V (x ′)). (10.26)
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Thus we have for ni (x):

ni (x) =
∫ x

0

Sp(x ′)dx ′

[−(2e/mi )(V (x)− V (x ′))]1/2
. (10.27)

For the electrons the Boltzmann relation is assumed, equation (1.12):

ne(x) = n0 exp [eV/kTe] = n0e−η (10.28)

with
η ≡ −eV/kTe. (10.29)

Assume Sp ∝ ne, as for impact ionization of electrons, or a cross-field diffusive
source (if ne = ni ):

Sp(x ′) = An0e−η(x ′) (10.30)

where A is a constant. Thus

ni (x) = An0(mi/2kTe)
1/2

∫ x

0
e−η(x ′)(η(x)− η(x ′))−1/2dx ′. (10.31)

One may now insert ne and ni into the Poisson equation:

d2V

dx2
= −e(ni − ne)/ε0 (10.32)

to obtain the plasma-sheath equation, valid for both plasma and sheath:(
ε0kTe

e2n0

)
d2η

dx2
+ e−η − A

(
mi

2kTe

)−1/2 ∫ x

0
e−η′(η − η′)−1/2dx ′ = 0. (10.33)

One notes the appearance of the Debye length:

λDebye = (ε0kTe/e2n0)
1/2 (10.34)

demonstrating again that the natural scale length in the sheath (where the first
term is not negligible since ne �= ni ) is the Debye length. In order to solve the
plasma equation, where ne = ni is assumed, the first term is dropped. Defining:

α ≡ A(mi/2 kTe)
1/2, s ≡ αx (10.35)

then

e−η(s) −
∫ s

0
e−η(s′)(η(s)− η(s′))−1/2ds′ = 0. (10.36)

Tonks and Langmuir found a series solution for η(s); actually, it turned out to
be more convenient to obtain the inverse function s(η), and the first few terms of
their solution are given by:

s = 2

π
η1/2

(
1− η

3
− η2

30
· · ·

)
. (10.37)
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We may readily confirm from equation (10.37) that at x = 0, midway between
the two ion-absorbing surfaces, η = 0, ds/dη = ∞, dη/ds = 0, i.e. the electric
field is zero. We have for the normalized electric field:

dη

ds
=

[
2

π

( 1
2η−1/2 − 1

2η1/2 − 1
12η3/2 · · ·)]−1

(10.38)

and at some value η = η0, one finds that the field goes to infinity—the plasma-
sheath edge is encountered. Retaining just the first two terms in the expansion,
one finds η0 = 1. Retaining more terms one finds η0 = 0.854. That is the
pre-sheath potential drop is −0.854kTe/e, and so nse/n0 = e−0.854 = 0.426.
Inserting η0 = 1 into equation (10.37) and retaining just the first two terms,
one finds that the plasma–sheath interface occurs at s = s0 = 4/3π = 0.424;
retaining more terms gives s0 = 0.405. We note further that this must correspond
(to within the normally thin and negligible width of the sheath) to the actual space
available for the plasma to exist, i.e. x0, the actual (half) separation (in metres,
say) of the two solid plane walls, that is:

s0 = 0.405 = αx0. (10.39)

We thus see again, section 1.8.2.6, that a constraint exists on the source strength
Sp in order that the plasma fit into the space available:

A(mi/2kTe)
1/2x0 = 0.405. (10.40)

For an ionization source we have:

A = nnσvi z(Te) (10.41)

and so this result is seen again, section 1.8.2.6, to constrain Te to have some
specific value, dependent on the product nn x0, if a steady-state, self-sustained
plasma is to exist.

The ion particle flux density at the sheath edge:

�se =
∫ x0

0
Sp(x ′)dx ′ =

∫ x0

0
An0e−η(x ′)dx ′

= An0s0

α

∫ 1

0
e−ηd(s′/s0) (10.42)

and the integral is a pure number defined to be h0 and found from the series
expansion to be h0 = 0.851. Thus:

�se =
√

2n0h0s0(kTe/mi )
1/2. (10.43)

We may define the sheath edge velocity vse by:

�se ≡ nsevse = n0e−η0vse (10.44)
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Table 10.1. Comparison of isothermal fluid model and the Tonks–Langmuir kinetic model
(Ti = 0) [10.2].

Model

Normalization Isothermal Tonks &
Quantity factor fluid Langmuir

1. Plasma density at the sheath edge, nse n0 0.5 0.425
2. Plasma flow velocity at sheath edge, vse (kTe/mi )

1/2 1 1.144
3. Plasma potential at sheath edge, Vse kTe/e −0.69 −0.854
4. (Floating) wall potential, Vwall kTe/e −3.53 −3.56
5. Particle outflux density, �se n0(kTe/mi )

1/2 0.5 0.487
6. Ion energy outflux density, qi,se n0kTe(kTe/mi )

1/2 0.25 0.34
7. Electron energy outflux density, qe,se n0kTe(kTe/mi )

1/2 2.42 2.29
8. Total energy outflux density, qse n0kTe(kTe/mi )

1/2 2.67 2.63
9. Electron cooling rate, qe,cooling n0kTe(kTe/mi )

1/2 2.67 2.63
10. Sheath heat transmission coefficient, — 5.34 5.40

γsh = qse/kTe�se

thus

vse =
√

2eη0 h0s0cs,iso

= 1.144cs,iso (10.45)

which is essentially the Bohm criterion result obtained by David Bohm in the
1940s, from analysis of the sheath equation, section 2.3. cs,iso = isothermal
sound speed = (kTe/mi )

1/2 when Ti = 0. The results for the principal quantities
of interest are given in table 10.1. These results are independent of the specific
form of Sp(x) [10.4]. (There is an error in the original results of [10.2].)

Tonks and Langmuir were the first to establish two critically important fea-
tures of the plasma–sheath interface:

(a) the electric field at the sheath edge Ese →∞;
(b) the velocity of the sheath edge vse ≈ (kTe/mi )

1/2.

Before Langmuir’s work it was thought that the ions must leave the plasma with
a speed of order (kTi/mi )

1/2, and since it was understood that Te � Ti in a low
pressure gas discharge (due to ohmic heat going to the electrons, while it could
be argued that the ions and neutrals would have temperatures about equal to the
wall), it was not understood why the ion velocity was found experimentally to be
so much higher. Langmuir had thus established the essence of the Bohm criterion,
a few decades before Bohm did.

It may be noted from table 10.1 that the differences for these quantities,
which are the ones of greatest practical interest, is slight between the isothermal
fluid model and the kinetic results of Tonks and Langmuir. In the light of the fact
that the kinetic modelling assumed complete collisionlessness it is remarkable
that a fluid model can do so well in matching the kinetic results.
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10.7 Kinetic Models for Ti �= 0

For non-magnetic, low pressure discharges Te � Ti,n , typically, but for toka-
mak SOLs—where both electrons and ions receive heat input from the confined
plasma—one is more interested in the case of Ti ≈ Te. In particular we are
interested to establish the effect of ion acceleration cooling, which can occur
even if the electrons are isothermal. Completely collisionless, kinetic treatments
are particularly valuable since they describe the one extreme. Two such solutions
have been published: (a) Emmert et al. [10.5], hereafter referred to as EWMD,
(b) Bissell and Johnson [10.6, 10.7], hereafter referred to as BJ. The principal
differences of the two treatments is the assumption about the ion sources:

S(x, vx )EWMD = Sp(x)(mi |vx |/2kTs) exp(−miv
2
x/2kTs) (10.46)

S(x, vx )BJ = Sp(x)(mi/2πkTs) exp(−miv
2
x/2kTs) (10.47)

where Ts is a (specified) ‘source temperature’. These two sources are clearly quite
similar, but differing in that the BJ source is that which would result from electron,
or photon, etc (i.e. neutral velocity-independent) ionization of a one-dimensional
Maxwellian distribution of neutrals with Tn = Ts . Perhaps surprisingly, such a
source does not result in a Maxwellian distribution of ions [10.6, 10.7]—even
assuming no E-field or other ion forces—since the source must provide forward-
going particles at a high rate in order to sustain Maxwellian fluxes. The EWMD
source, on the other hand, does result in a Maxwellian ion distribution (if E = 0).

The ion sources are then inserted into an equation equivalent to that for the
analysis of Tonks and Langmuir, equation (10.33), and the Boltzmann relation
is again used for the electrons. It is readily shown that the energy sources are
slightly different for the two source assumptions:

SE,EWMD = 2kTs SE,BJ = 3
2 kTs (10.48)

where in each case 2× 1
2 kTs is due to averaging 1

2 mi (v
2
y + v2

z ) while for EWMD

(BJ) one obtains 1 (1/2) kTs due to averaging 1
2 mv2

x . Thus it is seen that, indeed,
EWMD gives a Maxwellian flux of ion energy, see equation (2.30).

The quantities of practical interest, calculated from EWMD and BJ, were
given in table 1.2 for the assumption of Ti = Te, where they are compared with
the results for the isothermal fluid model, section 10.2. The flow acceleration
causes T‖i,se < T‖i (x = 0); for example for BJ T‖i,se/Te = 0.16 (for the case
of T‖i (0) = T⊥i (0) = Te). Nevertheless, as can be seen from table 1.2, the
agreement with the isothermal fluid model is quite close for these quantities of
practical importance (considering T‖i not to be in the latter category).

The approximation for heat conductivity obtained from simple gas kinetic
theory, section 9.6, would imply qcond → ∞ for very long mean free paths,
since K ∝ λs . Clearly this is unphysical and kinetic corrections are needed
when λs/L → ∞, or λs/�T → ∞, where �T ≡ [dT/dx)/T ]−1 is the parallel
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Figure 10.2. The ion distribution against u ≡ vx/(2kTi /mi )
1/2 at the mid-point of the 1D

system (ψ = 0), at a location part way to the sheath edge (ψ = ψ1/3), at the sheath edge
(ψ = ψ1) and at the wall (ψ = ψw) [10.5]. Note how non-Maxwellian and asymmetric
the ion velocity distribution is, except at the mid-point. Note also the absence of back-going
ions at the sheath edge.

temperature characteristic length, chapter 26. It was also noted in section 9.6
that often ion heat conductivity is, in any case, neglected compared with ion
heat convection. These collisionless (λs/L = ∞) kinetic solutions provide an
opportunity to assess just how important (as it turns out, unimportant) ion heat
conduction is, in a situation where it is the strongest it can possibly be. Here the
ion velocity distribution is extremely unsymmetrical, see figure 10.2, implying,
one would think, a large 〈u3

x 〉, i.e. large qi,conduction. It turns out, however, that
|qi,conduction|/(qi,convection) is neverthless quite small, see figure 10.3 [10.8]. Sur-
prisingly qi,conduction is actually weakly negative, carrying heat in the upstream
direction, but its small magnitude makes this of no practical importance.

This example should not, however, be taken to prove that qi,conduction is never
important. In the high recycling regime of divertor operation, section 4.8, there is
no plasma flow far upstream from the target, and so qi,convection → 0 (assuming
also that there is no flow reversal, chapter 15, or drift effects, chapter 18); in
such situations qi,conduction can become important and then kinetic corrections
may be required, chapter 26. In these present collisionless cases, however, a
spatially uniform source was used, Sp(x) = constant, and so v and qi,convection are
substantial at all locations.

Consider also the ion parallel viscous stress, πi , which, in the absence of
any kinetic correction would go to −∞ for these completely collisionless cases,
τ⊥→‖ → ∞, π → −∞, section 9.8. From the computed T‖i it is possible
to calculate πi at each location, since πi = 2

3 (p‖i − p⊥i ) = 2
3 nk(T‖i − T⊥i ),

section 9.8, and T⊥i (x) = T⊥i (0) = T‖i (0), constant. One thus finds πi (0) = 0
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Figure 10.3. Completely collisionless case. Contribution of the normalized conducted heat
flux density to the total heat flux density as a function of distance calculated from a full
kinetic analysis [10.7]: (A) total for the BJ source, (B) conducted for BJ source, (C) total
for EWMD source, (D) conducted for EWMD source. Spatially constant particle sources,
Sp(x). Clearly, parallel heat conduction is not important here even though the plasmas are
completely collisionless.

and at the sheath edge one obtains the following results for the EWMD source:

nse

n0

T‖i,se

T0

T⊥i,se

T0

p‖i,se

p0

p⊥i,se

p0

pi,se

p0

πi,se

p0

πi,se

pi,se

0.677 0.254 1 0.169 1 0.501 −0.33 −0.66

where T⊥i (0) = T‖i (0) = Te ≡ T0, p0 ≡ n0kT0. In chapter 26 kinetic cor-
rections are considered; one analysis [10.9] estimates that πi should be limited
to −(4/7)pi , which is close to the result above at the se for this extreme of
complete collisionlessness. One can also see that—for this extreme case—about
as much of the ‘push’ on the flow comes from the viscous stress as comes from
the pressure drop: �pi ≡ 0.499p0, �πi ≡ 0.33p0. This should not mislead
us from noting, however, that all of the ‘push’ actually comes from the ‘p‖-
reservoir’, �p‖i = 0.83p0, since none of the ‘p⊥-pressure reservoir’ is available
to accelerate the flow when there are no self-collisions.
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10.8 Adiabatic, Collisionless Fluid Models

We now turn to fluid models, and allow T‖i (x) to be non-constant (due to flow-
acceleration cooling). In this section all collisions are neglected, including Q⊥→‖
and Qeq , and only the equation for T‖i , i.e. p‖i , is used, equation (9.72). Also
ion conduction is neglected as the method of closing the set of fluid equations;
although that is strictly not justified for weak/no collisions, we have seen, fig-
ure 10.3, that the error involved can be quite small. Thus the three fluid equations
are, see chapter 9:

d

dx
(nv) = Sp(x) (10.49)

d

dx
(mi nv2 + p‖i + pe) = 0 (10.50)

d

dx

( 1
2 mi nv3 + 3

2 p‖iv
) = −v

dpe

dx
+ SE‖i (10.51)

together with Te = constant, T⊥i = constant; SE‖i is given by:

SBJ
E‖i = 1

2 kTs Sp(x) (10.52)

SEWMD
E‖i = kTs Sp(x) (10.53)

The Boltzmann relation is assumed for the electrons.
One notes that while the flow is termed ‘adiabatic’ there is in fact the energy

addition associated with the particle addition, 1
2 kTs (BJ), kTs (EWMD). The flow

is truly only adiabatic in the sense that no additional heat input occurs, such as
perpendicular heat conduction. Because Q⊥→‖ = 0 there is no ‘help’ from the
p⊥i -pressure reservoir and all the ‘push’ comes from p‖i and pe. Because one
does not need to consider p⊥i or T⊥i , only the T‖–energy equation is needed and
one does not introduce viscous stress πi .

Various assumptions have been made by different authors at this point:

(1) Bissell et al [10.7] solved the equations for SBJ
p (x) = constant and assumed

the ‘source temperature’ Ts = 3T0, also setting Te = T0. The reason for
this odd-looking assumption for Ts is that, as can be noted from examining
equation (10.51), as x → 0, where v → 0 is assumed to hold, the amount
of heat carried per ion is 3

2 kT‖i (0), but the BJ source only provides 1
2 kTs

per ion. Therefore, if one wants to have the convenient, upstream boundary
condition that Te = T‖i (0) then one is obliged to specify Ts = 3T0 for the
‘source temperature’. T⊥i can be freely assigned and so one chooses here
Te = T‖i (0) = T⊥i (0) = T0. The arbitrariness of assuming a particular
value of Ts may seem surprising, but it should be noted that the ‘source
temperature’, Ts , is not generally a physically measurable quantity or even
a physically meaningful quantity. For the specific case of electron-impact
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ionization of Maxwellian neutrals at temperature Tn , it is true that one should
use the BJ source, equation (10.47), and set Ts = Tn , where Tn is indeed a
measurable, physical quantity. However, cross-field diffusive sources are
common in the edge, in which case one asks what meaning Ts has, for either
the BJ or EWMD source, equations (10.46), (10.47)? The answer is that
one should simply consider it to be a purely mathematical parameter which
one is free to adjust, for example to achieve Te = Ti far upstream from
the target—or some other ratio, if one has experimental information about
the upstream temperature ratio. It is precisely this freedom which has been
exploited here.
T‖i (x) drops considerably along the flow, reaching T‖i,se/T‖i (0) = 0.18,
which is quite close to the kinetic result of the last section, namely 0.16.

(2) Scheuer and Emmert [10.8] used SEWMD
p (x) = constant, also SBJ

p (x) = con-

stant, but with Ts = Te ≡ T0 assumed. Thus for BJ they had T‖i (0)/T0 = 1
3

and for EWMD, T‖i (0)/T0 = 2
3 . The principal results are given in table 10.2.

While it would almost never be the case that the upstream temperature ratio
would just happen to have these particular values, since the principal purpose
here is to demonstrate how slight the differences are with the isothermal fluid
mode, we simply make comparison with the latter for the same upstream
temperature assumption, see table 10.2 which contains the comparisons. For
BJ, T‖i,se/T0 = 0.162; for EWMD, T‖i,se/T0 = 0.282. By straightforward
algebraic manipulation, one can rearrange equations (10.49)–(10.51) to pro-
duce three equations of the form:

dn

dx
= f (n, v, T‖i , Sp, Ts, Te)/

(
v2 − 3kT‖i

mi
− kTe/mi

) 

(10.54)

dv

dx
= g(n, v, T‖i , Sp, Ts, Te)/

(
v2 − 3kT‖i

mi
− kTe/mi

) 

(10.55)

dT‖i
dx

= h(n, v, T‖i , Sp, Ts, Te)/

(
v2 − 3kT‖i

mi
− kTe/mi

) 

(10.56)

with f , g, h some (not particularly interesting) functions. One notes the appear-
ance of the common factor in the denominator:

v2 − 3kT‖i
mi

− kTe/mi . (10.57)

When this quantity reaches zero the solutions ‘blow up’, all the derivatives go
to zero, i.e. a singularity is encountered, precisely in the same way that occurred
with the isothermal fluid model, section 1.8.2.5. As before, we interpret this as
indicating the location of the plasma–sheath interface, the sheath-edge. At this
point the flow is sonic, when based on the local collisionless, ‘adiabatic’ sound
speed:

ccollisionless
s,ad = [(3kT‖i + kTe/mi )]1/2. (10.58)
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Table 10.2. Comparison of ‘adiabatic’ fluid models with isothermal model [10.7].

No. 1 ad. No. 2 ad. No. 3 ad. No. 4 ad.
Normalization model/ model/ model/ model/

Quantity factor isothermal isothermal isothermal isothermal

Plasma density at sheath edge, nse n0 0.486/0.5 0.497/0.5 0.496/0.5 0.499/0.5
Plasma flow velocity at sheath edge, vse (kT0/mi )

1/2 1.22/1.16 1.36/1.29 1.30/1.26 1.38/1.34
Plasma potential at sheath edge, Vse kT0/e −0.72/−0.69 −0.70/−0.69 −0.70/−0.69 −0.69/−0.69
Floating wall potential, Vw kT0/e −3.33/−3.39 −3.22/−3.28 −3.27/−3.30 −3.21/−3.24
Particle outflux density, �se n0(kT0/mi )

1/2 0.59/0.58 0.68/0.65 0.65/0.63 0.69/0.67
Ion heat outflux density, qi

se n0kT0(kT0/mi )
1/2 1.18/0.87 1.59/1.62 1.22/1.45 1.60/1.95

Electron heat outflux density, qe
se n0kT0(kT0/mi )

1/2 3.16/3.11 3.53/3.41 3.40/3.35 3.60/3.52
Total heat outflux density, qse n0kT0(kT0/mi )

1/2 4.34/4.36 5.12/5.02 4.61/4.80 5.20/5.46

Model No. 1: adiabatic, collisionless, 1D fluid model with SBJ(v) and T‖,i (0)/Te = 1/3
Model No. 2: adiabatic, collisionless, 1D fluid model with SEWMD(v) and T‖,i (0)/Te = 2/3
Model No. 3: adiabatic, collisional, 1D fluid model with SBJ(v) and Ti (0)/Te = 3/5
Model No. 4: adiabatic, collisional, 1D fluid model with SEWMD(v) and Ti (0)/Te = 4/5.

In each case the isothermal model, shown for comparison, assumed for the collisionless cases the adiabatic model value for T‖i (0);
and for the collisional cases the adiabatic model value for Ti (0).
Example No 1 ad. model:

vse = (3× 0.162+ 1)1/2(kT0/mi )
1/2 = 1.22(kT0/mi )

1/2

qi
se =

(
3
2 × 0.162+ 1

2 + 1
2 + 1

2 (1.22)2
)
× 0.59n0kT0(kT0/mi )

1/2

= 1.18n0kT0(kT0/mi )
1/2

Example No 2 isothermal model:

vse = (1/3+ 1)1/2(kT0/mi )
1/2 = 1.16(kT0/mi )

1/2

qi
se =

(
5
2 × 1

3 + 1
2 × 4

3

)
× 0.58n0kT0(kT0/mi )

1/2 = 0.87n0kT0(kT0/mi )
1/2

Copyright © 2000 IOP Publishing Ltd.



Adiabatic, Strongly Collisional Fluid Models 419

Insertion of the above values of T‖i,se confirms the tabulated values of vse,
table 10.2, at which the singularity was encountered.

10.9 Adiabatic, Strongly Collisional Fluid Models

Scheuer and Emmert [10.8] considered the opposite extreme to that of the last
section, assuming now τ⊥→‖ → 0, i.e. T‖i = T⊥i = Ti . This would correspond
to strong (self-) collisionality and πi → 0 The fluid equations are now:

d

dx
(nv) = Sp(x) (10.59)

d

dx
(mi nv2 + pi + pe) = 0 (10.60)

d

dx

( 1
2 mi nv2 + 5

2 piv
) = −v 

dpe

dx
+ SE (10.61)

plus the Boltzmann relation for the electrons. They used SBJ
p (x) = constant, also

SEWMD
p (x) = constant.

SBJ
Ei = 3

2 kTs Sp(x) (10.62)

SEWMD
Ei = 2kTs Sp(x). (10.63)

Assuming Ts = Te ≡ T0 gives the result that for BJ, Ti (0)/Ts = 3/5; for EWMD,
Ti (0)/Ts = 4/5. As in the last section, singularities are now encountered when v

reaches the local collisional ‘adiabatic’ sound speed:

ccollisional
s,ad = [( 5

3 kTi + kTe
)
/mi

]1/2 (10.64)

i.e. the familiar adiabatic sound speed for a monatomic gas. The principal results
are given in table 10.2. For BJ, Ti,se/T0 = 0.418; for EWMD, Ti,se/T0 = 0.547.
The ion temperature and pressure drops are less, in bringing the flow up to sonic
speed, when the full pressure reservoir is available, i.e. for strongly collisional
conditions.

10.10 Adiabatic, Intermediate Collisional Fluid Models

Examination of table 10.2 shows little difference for the principal results of prac-
tical interest between the two extremes of zero (self-) collisionality, and infinitely
strong (self-) collisionality. For conditions of intermediate collisionality, the fluid
formulation is more complex than the models used in the last two sections, since
πi is now involved, with its complex dependence on n, T and dv/dx . In light of
the small differences found for the two extremes of collisionality, it may not be
considered to be worth introducing such complexity. The inclusion of the parallel
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viscous stress will usually not result in much effect, although some special cases
can disobey this generalization [10.10].

Complexity is also introduced by inclusion of intermediate collisionality as
regards equipartition although the formulations are relatively simple for the two
extremes of Te = Ti and, on the other hand, complete de-coupling of the electron
and ion energy equation. It is evident that, in the sheath-limited regime, i.e. where
heat conductivity is not limiting, that the degree of equipartition will make little
difference. We have just considered the extreme of Te and Ti fully de-coupled and
Te(x) = constant. Consider the opposite case of Te(x) = Ti (x); if collisionality
is strong enough to force Te = Ti it is certainly strong enough to force T⊥i =
T‖i , so consider the results of section 10.9 where we found that Ti only dropped
about 30% as the flow accelerated to sonic. With the electron pressure reservoir
now also available to drive the flow, the T -drop will be still less. The local sound
speed is now:

cs =
( 8

3 kT/mi
)1/2 (10.65)

which, with Tse � T0, gives a value of vse � 1.63(kT0/mi )
1/2, which is not

greatly different than for the other models, table 10.2. The other results of practi-
cal interest will also be little changed.

10.11 Comparing 1D Collisionless Kinetic and Collisionless
Fluid Models

The adiabatic collisionless fluid model of section 10.8, which is essentially the
same as the double adiabatic collisionless fluid model of Chew et al, CGL [10.11,
10.10], cannot, of course, be expected to give precisely the same results as a
collisionless kinetic treatment, such as that of EWMD and BJ, section 10.7. It is
remarkable, however, how close the results from these very different treatments
can be—at least for the simple cases where they have been compared [10.8]. Some
of the results of this comparison were given in table 1.2, compare models 3, 4, 5
there. See Scheuer and Emmert [10.8] for further details of these comparisons.
This confirms that the assumptions used in closing the fluid equation hierarchy for
the adiabatic collisionless fluid model—namely (a) to neglect qconduction‖ and (b) to
treat p⊥ and T⊥ as constants—are evidently good ones to make. Considering how
strongly non-Maxwellian the ion distributions are for collisionless conditions,
figure 10.2, it seems surprising that the agreement can be so good. Figure 10.4
compares the n(s) profiles for the two collisionless kinetic models of EWMD
and BJ with the collisionless fluid model of Scheuer and Emmert (i.e., essentially
CGL); a spatially constant source was assumed [10.8]. The agreement is indeed
quite good all across the plasma. Figure 10.5 is similar, but for the parallel
heat flux density. As might be anticipated, the agreement is not quite as good
for this higher moment, but it is nevertheless quite close. Evidently, so long as
particles, momentum and energy are conserved, one usually will not go too far
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wrong in using an appropriate (collisionless) fluid model, rather than a full kinetic
analysis—even in the extreme case of no collisions at all.
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Figure 10.4. Completely collisionless case. Normalized density profile for a spatially
constant source [10.8]: (A) from kinetic analysis using BJ source, (B) collisionless fluid
model using BJ source, (C) from kinetic analysis using EWMD source, (D) collisionless
fluid model using EWMD source. Here Te = Ts = T0. There are small differences
between curves A and B near s/s1 = 1, which are not obvious here.
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Figure 10.5. As figure 10.4 but for normalized energy flux density.
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Chapter 11

1D Modelling of the Conduction-Limited
SOL

11.1 Introduction

Modelling of the sheath-limited SOL, using say the isothermal fluid model, re-
quires very little attention to the question of boundary conditions: one can specify
either the ‘upstream’ density, nu , or the target density, nt . For |Mt | = 1 these
are simply related, nu = 2nt . One usually makes no explicit assumption about
power input, but rather the spatially constant temperature is specified as a SOL
parameter. Modelling of the conduction-limited SOL, on the other hand, requires
more attention to the boundary conditions, including the location chosen where
they are to be imposed. Assuming that a fluid model is used based on the three
conservation equations of particles, momentum and energy, it might seem that
three boundary conditions would need to be specified. With regard to particles and
energy one choice would be the upstream density nu and the power entering the
system, Pin [W]. Actually, in 1D modelling one needs to work with qin[W/m2] =
Pin/ASOL‖ , section 5.2, the power flux density parallel to B in the SOL; if one
wishes to use Pin as the basic, specified power quantity, then one needs to also
specify λSOL in order to evaluate ASOL‖ : ASOL‖ ≈ 4π RλSOL(Bθ /B)m , for ex-
ample, for a single-null poloidal divertor, where λSOL and (Bθ /B)m are specified
at the midplane, section 5.6. A decision is also required as to how Pin , qin are
spatially distributed over the length of the SOL, L; fortunately, as noted already,
figure 4.17, the solutions are usually rather insensitive to the spatial distribution
of Pin(s‖), qin(s‖).

With regard to the momentum equation, in some approaches |Mt | = 1 is
specified. This, however, automatically rules out the possibility of supersonic
solutions, or requires that, if the flow has become supersonic at some location
upstream of the target, it is forced to return to sonic flow velocity at the target—
which seems non-physical. As will be discussed below, it is unnecessary—and
incorrect—to impose any specific value of |Mt | ≥ 1; rather one requires (a) that

423
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|Mt | have some value ≥ 1, the Bohm criterion, chapter 2, and (b) that there be
no singularities or discontinuities in n, v‖, T , etc, at any point in the flow, see
chapter 14; singularities right at the target are permitted, however, i.e., at the
sheath edge. This matter of requiring smooth solutions does not have an analogue
in two-point model analysis, and in the 2PM there is no choice but to specify the
value of Mt .

If the parallel power were carried entirely by convection, then it would not
be necessary to introduce any further boundary conditions. Consider the case of
no volumetric momentum or power sources or sinks; then from chapter 9

pu = 2nt kTt (1+ M2
t ) (11.1)

where pu is the upstream pressure and we assume Te = Ti for simplicity. Also:

qin = (5kTt + kTt M
2
t )nt cst |Mt |. (11.2)

Thus, if pu and qin are specified, and Mt is either specified or found by requiring
that the solutions be continuous, one has enough information in these two equa-
tions to establish the values of the two unknowns, nt and Tt . There is also enough
information to establish n(s‖), T (s‖), v(s‖), etc.

Parallel heat conduction is usually important or dominant in the SOL, how-
ever, and since this introduces a derivative of T (qcond = −κ0T 5/2dT/ds‖) it is
then necessary to introduce more boundary condition information—specifically
in the form of the sheath heat transmission coefficient γ , section 2.8. Thus, for
the case of pure conduction:

−κ0T 5/2
t

dT

ds‖

∣∣∣∣
s‖=0

= γ nt kTt nt cst |Mt |. (11.3)

If Te �= Ti then one employs two power equations with qe
in and qi

in being
specified, also γe and γi ; equipartition power transfer may be included.

An alternative choice of location to specify the boundary conditions is en-
tirely at the target—rather than the mixed-location approach described in the
foregoing. Typically experimental information is available across the target from
built-in Langmuir probes, giving Tet (r) and I+sat,t (r). In the (usual) absence of
information about Tit (r) one might, for simplicity, assume Tit  = Tet . Since
I+sat,t/e = nt |Mt |cst , one then has enough boundary condition information to
specify the problem completely—taking, as above, γe,i to be given and Mt to be
specified or found as before. Thus, no upstream boundary condition information
is used at all. This method fits naturally with onion-skin method modelling,
chapter 12. The solution of the conservation equations discussed in the next
section is in the context of such target-only boundary conditions. Extension to
treatments based on mixed-location boundary conditions is straightforward and
will not be discussed here.

In 1D analysis the method of calculating the volumetric sources and sinks
requires some thought. For the particle balance equation one needs to know
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Siz(s‖) [particles m−3 s−1], the spatial distribution of the ionization rate of neu-
trals; for the momentum equation one needs to know the volumetric Smom(s‖)
[(kg m s−1) m−3 s−1], the spatial distribution of momentum loss or gain by the
plasma flow to or from the neutrals; for the energy equations one needs to know
QEe(s‖) and QEi (s‖) [W m−3], the volumetric power gain or loss associated with
the hydrogenic recycling processes, including ionization, excitation, dissociation,
charge exchange, etc. We note that, as for qin , it is necessary to divide these
source densities by ASOL‖ for use in 1D models; here we do not employ a dif-

ferent symbol, and the appropriate units, and the implied division by ASOL‖ , are
understood, as appropriate. The energy equation also requires specification of the
volumetric power loss due to impurity radiation, Qz

R [W m−3]. The preferred
way to find Siz(s‖), Smom(s‖), QEi (s‖), QEe(s‖) is to use a Monte Carlo neutral
hydrogen code such as EIRENE, NIMBUS, DEGAS, etc, section 1.8.2.4. Since
neutrals are not constrained by magnetic fields, these codes have to follow the
neutrals in 2D or even 3D. It is also not enough to restrict the computational
zone to the simple geometry of a straightened-out SOL, as used for the plasma
modelling itself. Since the neutrals interact with the solid walls, the entire, actual,
solid structural geometry has to be provided as input to these neutral codes.

Clearly there is a problem of geometrical incompatibility between these
2D/3D neutral codes and 1D plasma modelling of the SOL. What then to do for
the volumetric terms in the plasma equations? One approach is not to use the
neutral codes, at least directly, but to specify arbitrarily the spatial distribution of
the volumetric terms, perhaps using simple analytic expressions. One might, for
example, specify that Siz(s‖) fall off exponentially along s‖ with some specified

characteristic ‘ionization length’, and that
∫ L

0 Sizds‖ = |Mt |nt cst , the flow into
the sheath. One could use a neutral code for guidance in specifying the ionization
length: once the 1D plasma solution is found, a 2D (poloidal plane) plasma grid,
see section 6.6, can be used, to specify a ‘plasma background’ in the SOL part
of the grid, over a specified SOL radial width λSOL; plasma conditions can be
specified in the main plasma part of the grid from experimental measurements;
the solid surfaces, walls and targets, are included in the computational domain
of the neutral code. The neutral code is then run for this specified plasma
background, and from the calculated spatial distribution of Siz(s‖) one can
extract estimates for the ionization lengths to be used in the analytic prescription.

In a more sophisticated variant of this approach, the analytic prescription is
dispensed with and the neutral and 1D plasma codes are directly coupled in an
iterative mode of operation: the plasma solution from the previous iteration is
used as the background for the neutral code, which calculates the neutral-related
source and sink terms (averaged radially across the SOL to give 1D expressions
for Siz(s‖), etc) for the plasma equations used for the next iteration. This method
has been used in the EDGE1D code [11.1] employing the NIMBUS neutral code,
and with mixed-location boundary conditions.

For calculating the impurity radiation sink, Qz
R [W m−3 or W m−2], an
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impurity Monte Carlo code such as DIVIMP [11.2] can be employed in a similar
way. Alternatively a multi-fluid plasma model can be used, where in addition
to the e and D+ (say) fluids, additional impurity fluids, e.g., C+, C2+, etc, are
included. The EDGE1D code, for example, models impurities in this way.

We consider next the cross-field or radial span of the 1D system. In true 1D
analysis of the SOL, such as EDGE1D, the radial span is taken to be the entire
width of the SOL, which can be estimated using simple analytic expressions,
chapters 4, 5. In onion-skin method, OSM, modelling, chapter 12, the radial
span is taken to be that of an individual flux tube within the SOL, which is
taken to be composed of many such nested flux tubes. This modelling method—
which is actually 2D—is described in chapter 12. Briefly, this also uses iterative
coupling of 1D plasma solvers to neutral and impurity Monte Carlo codes, but
now including radial variation across the SOL, rather than a radially averaged so-
lution, as above. The radial variation enters naturally from the imposed boundary
conditions across the SOL, taken from measurements, for example at the targets;
the SOL width, λSOL, is not specified nor are there any input assumptions about
cross-field transport coefficients, D⊥, χ⊥, etc. The latter, in fact, can be extracted
from the analysis, i.e., in effect from the measured radial variations, e.g., across
the targets, chapter 12.

In addition to cross-field sinks and sources associated with the neutral hy-
drogen and with impurities, there are cross-field sources and sinks resulting from
cross-field (plasma) transport. In section 1.8.2.4, for example, the cross-field
particle source, Sp,c-f , was estimated as D⊥n/λ2

sol. Similar terms arise in the
other balances. One can employ such simple approximations in 1D modelling. In
the onion-skin method, opportunities arise to treat such terms in less approximate
ways using iteration of the solution; see chapter 12.

11.2 1D Fluid Modelling for the Conduction-Limited SOL

The boundary conditions are taken here to be at the target, in the form of Te, Ti

and ne at locations across the targets—ideally from experimental measurements.
The application may be to limiters or divertors but here the discussion will be
primarily in a divertor context.

We start where we left off in chapter 10, with the sheath-limited SOL and
Te and Ti constant. We will assume that the particle source is due to ionization
occurring uniformly over some specified length Liz , section 6.5.5.2 starting at the
target and that the total integrated strength of the source is equal to the particle
outflux density to the target, nt cst , where subscript t indicates the target, boundary
values. We assume |Mt | = 1 for now. We appropriate the 1D isothermal model
of section 10.2 making the change:

s‖ = L − x (11.4)

where, as before L is the connection length, i.e. half the distance to the other
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target along B. Thus equation (10.1) becomes:

d(nv)

ds‖
=

{ nt cst

Liz
0 ≤ s‖ < Liz

0 Liz ≤ s‖ < L .
(11.5)

One may note that equation (11.5) ensures that there will be no flow reversal,
chapter 15, in this case since we have arranged that the total, integrated particle
source equals the outflow rate to the targets:∫ L

0
Spds‖ = nt cst . (11.6)

One may note that Sp > 0 and vt = −cst . Thus for Sp constant over 0 ≤ s‖ < Liz

we have:
Sp = −nt cst/Liz (11.7)

which was used in equation (11.5) along with ds‖ = −dx .
The momentum equation (10.2) gives:

n(s‖)/nt = 2

1+ M2
. (11.8)

Combining equations (11.5) and (11.6) with equations (11.7) and (11.8) gives the
flow Mach number M(s‖) as the solution of the equation:

s‖
Liz

= 1+ 2M

1+ M2
(11.9)

for 0 ≤ s‖ ≤ Liz , while for Liz ≤ s‖ ≤ L , M(s‖) = 0. Since the flow is
isothermal we also have v(s‖) from equation (11.7) given implicitly by:

s‖
Liz

= (cs + v)2

c2
s + v2

(11.10)

for 0 ≤ s‖ ≤ Liz , while for Liz ≤ s‖ ≤ L we have v(s‖) = 0. Thus one has n(s‖)
from equation (11.8) and also the electric field from equation (10.7):

E(s‖) =



kTe

eLiz

M(1+ M2)

(1− M2)
0 ≤ s‖ ≤ Liz

0 Liz ≤ s‖ ≤ L .
(11.11)

One may note that E(s‖) ≤ 0, i.e. it points toward the target.
In this simplest approach, if the boundary conditions are different at the two

targets, then there will be discontinuities in n(s‖), etc at the mid-point location in
the SOL since each half of the SOL is solved separately.

We now relax the isothermal assumption, which is unacceptable for
the conduction-limited regime. One can readily replace the prescription of
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constant temperature with, for example, the parallel heat conduction equations,
equations (4.89), (4.90). In the most basic conduction case one assumes Te = Ti

at all points and thus, since κ0e � κ0i , the heat is conducted essentially by
electrons. Thus one obtains:

T (s‖) =
[

T 7/2
t + 7

2κ0e
qe&i

t s‖
]2/7

(11.12)

where:
qe&i

t = γ nt cst kTt (11.13)

and γ is the sheath heat transmission coefficient, section 2.8. Equation (11.12) is
based on the further assumptions that:

(a) all of the heat entered at the ‘top end’, at s‖ = L (small changes are involved
if it is assumed instead that the heat input, required to provide the heat flux
density at the target, qe&i

t , entered uniformly over the length L);
(b) there are no volumetric sources or sinks of power in the flux tube.

One may note from equations (11.12) and (11.13) that the solution for T (s‖) for
each flux tube is given completely once the target conditions are specified. One
may also note that, conveniently, T (s‖) can be fully solved for independently of
the solutions for n(s‖) and v(s‖) in this (pure conduction) case.

One then proceeds to the particle conservation equation which we now write
in a more general way as:

�(s‖) = n(s‖)v(s‖) = nt cst +
∫ s‖

0
Sp(s

′‖)ds′‖. (11.14)

Here Sp(s‖) may be specified, as earlier, to be a constant over some length—or
of some more complex form, see below. One may also include a volume recom-
bination sink in Sp as a negative contribution, see below. Unless one specifies the
absolute magnitude of Sp to be such that equation (11.6) continues to hold then
there will exist either a state of over-ionization on the flux tube, with v(L) > 0,
i.e. flow reversal, chapter 15, or there will be under-ionization with v(s‖) < 0 at
all points including v(L) < 0. Such a situation may exist in actuality, of course,
but is not compatible with the simplest assumption of a stagnation point existing
at s‖ = L . We return to this point later.

Next we consider the momentum equation:

n(s‖) [2kT (s‖)+ mi (v(s‖))2] = 4nt kTt . (11.15)

One may note that in all of the particle and momentum equations so far, sonic tar-
get conditions have been assumed. We note also that in writing equation (11.15),
it has been assumed that there are no volumetric sources or sinks of momentum,
for example ion–neutral friction or viscosity.
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Since T (s‖) has been independently solved for, equation (11.12), we may
note that we have just two coupled equations (11.14) and (11.15) for the two
dependent variables (unknowns) n(s‖) and v(s‖) in terms of the one independent
variable s‖. One can therefore obtain a solution for n(s‖) by eliminating v to give:

n2 − 4nt kTt

mi c2
s

n + �2

c2
s
= 0. (11.16)

One knows �(s‖) at each point from equation (11.14) and cs(T (s‖)) at each point
from equation (11.12). Having obtained n(s‖) from equation (11.16), one then
obtains v(s‖) from v(s‖) = �(s‖)/n(s‖).

Alternatively one may eliminate n to obtain for v(s‖) or M(s‖):

M2 − 4nt kTt

mi cs� 
M + 1 = 0, (11.17)

which is solved to give:

M(s‖) =
(

2nt kTt

mi cs�

)
+

[(
2nt kTt

mi cs�

)2

− 1

]1/2

. (11.18)

Equation (11.18) illustrates the problem of a supersonic transition occurring at
some point upstream of the target, chapter 14. The assumption and thus assign-
ment as boundary condition of Mt = 1 at s‖ = 0 can run into trouble since
|M | > 0 is possible at some upstream point. The term (2nt kTt/mi cs�) < 0,
since � < 0. For s‖ → 0 this term → −1 and so M → −1 which causes
no difficulty. For s‖ > 0, however, it is necessary to ensure that there is no
imaginary root in the equation for M(s‖). This will happen, however, if T (s‖)
(i.e. cs(T (s‖)) rises very rapidly while �(s‖) falls slowly, since this can make the
term |2nt kTt/mi cs�| < 1. As discussed in chapter 14, if this happens then one
must increase the specified |Mt | to that particular value greater than unity that will
give smooth solutions for n(s‖) and all boundary conditions must then be changed
to allow for |Mt | �= 1.

Turning to the electric field E(s‖): since n(s‖) and T (s‖) are now known, all
the information is available to calculate E from Ohm’s law, section 9.5, assuming
no current, j‖ = 0. Thus we have, for each flux tube the values of Te, Ti , n, M
and E at each location s‖, see figure 11.1.

Variation on this conduction model would include allowing for Te(s‖) and
Ti (s‖) to be independent:

Te(s‖) =
[

T 7/2
et + 7

2κ0e
qe

t s‖
]2/7

(11.19)

Ti (s‖) =
[

T 7/2
i t + 7

2κ0i
qi

t s‖
]2/7

(11.20)
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Figure 11.1. An example of 1D solutions for the simple conduction-controlled case.
Te(s‖) = Ti (s‖). Tt = 20 eV, nt = 1019 m−3. Conditions are the same at each target.
Total length of the flux tube, target to target, 101 m. The ionization source is assumed
to decay exponentially from the target with decay length of 5 m. All parallel power
carried by electron heat conduction. Here: T max = 57 eV, nmax = 1.25 × 1019 m−3,
nup

e = 0.70 × 1019 m−3, Mmax = 1. As M → 1, E → ∞, equation (11.11); however,
for purposes of display the E-plot is cut off here at Emax = 49 V m−1, thus providing a
scale.

where

qt
e = γekTet nt cst (11.21)

qt
i = γi kTet nt cst . (11.22)

Equipartition collisions have been neglected. The momentum equation becomes:

n(kTe + kTi + miv
2) = 2nt (kTet + kTit ) (11.23)

and the solution proceeds essentially as before.
Radiative loss is often important in the SOL. This can be included by altering

equation (11.19) to give:

Te(s‖) =
[

T 7/2
et + 7

2κ0e

(
qe

t s‖ −
∫ s‖

0
ds′‖

∫ s′‖

0
ds′′Q R(s′′‖ )

)]2/7

(11.24)
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where the electron cooling power Q R(s‖) [W m−2] has to be prescribed analo-
gously to Sp(s‖). Q R(s‖) may be given by some simple, analytic prescription
or it may be more sophisticated, see below. One may note that a power sink,
Q R < 0, causes Te(s‖) to rise faster than it would if Q R were neglected, see
equation (11.24). This occurs here, of course, because s‖ increases in the upstream
direction.

The flow field, v(s‖) is one of the most important aspects of the SOL. This
controls the friction force on impurities—and if flow reversal occurs, the conse-
quences for impurities may be quite important. The flow also controls parallel
heat convection, which is not always negligible compared with conduction. If
one uses a simple prescription for Sp(s‖), such as it being constant over 0 ≤
s‖ ≤ Liz , thereafter dropping to zero—as above—then one may be seriously
in error regarding the calculation of the flow field and the processes it affects.
An important improvement of the method is therefore to couple it iteratively to
a neutral hydrogen code, such as EIRENE, NIMBUS, DEGAS, etc, as already
discussed.

This then allows for a physically more realistic treatment of parallel heat
convection which is now included. For electron power balance, from section 9.9:

d

ds‖

(
5

2
kTenv − κ0eT 5/2

e
dTe

ds‖

)
= −Qeq + Q Z

R + QEe (11.25)

where we have dropped the–envE term, but this could be included, also adding
Ohm’s law, equation (9.36), to the set of simultaneous equations.

The electron cooling term, Q R , has been divided into a part due to hydrogen
QEe, and a part due to impurities, Q Z

R . The hydrogen neutral code provides
QEe(s‖) for each flux tube. The values of Q Z

R(s‖) can be estimated analytically
or can be taken from an iteratively coupled impurity code such as DIVIMP.

One notes the presence now of parallel electron convection, the 5
2 kTenv term

in equation (11.25). One notes the presence of three dependent variables (un-
knowns) in equation (11.25): Te(s‖), n(s‖), v(s‖). The Qeq term, equation (9.52),
is a function of n(s‖), Te(s‖), Ti (s‖), and so all four independent variables are
implicit in equation (11.25).

Power balance for ions, equation (9.81):

d

ds‖

[( 5
2 nkTi + 1

2 mi nv2)v − κ0i T 5/2
i

dTi

ds‖

]
= Qeq + QEi (11.26)

where viscosity and the envE term have been neglected. The neutral hydrogen
code provides the values for QEi (s‖) for each flux tube, including both ionization-
related and charge-exchange gains/losses. Results shown in figure 11.2 are for the
same conditions as for figure 11.1 except that now the ion and electron powers
are carried separately, and also conduction and convection are now both included.
The weak ion collisionality is not compensated for by the ion heat convection and
as a result T max

i is much larger than in figure 11.1. Since the electrons now only
have to transport their own target power, T max

e drops compared with figure 11.2.
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Figure 11.2. Conditions are the same as in figure 11.1 except that now the ion and electron
powers are transported separately, and both conduction and convection are included. No
other power terms. Here: T max

e = 49 eV, T max
i = 115 eV, nmax

e = 1.25 × 1019 m−3,
nup

e = 0.49× 1019 m−3, Mmax = 1, (Emax = 60 V m−1, for scaling).

Results shown in figure 11.3 are for the same conditions as in figure 11.2
except now the power lost by electrons in the recycle process is included, raising
T max

e slightly.
Results shown in figure 11.4 are the same as in figure 11.3 except that now

the effect of electron cooling due to impurity radiation is included, assuming a
total amount of radiation equal to twice the electron power reaching the target,
distributed uniformly over the first 10 m from each target. This causes T max

e to
rise more substantially.

The particle conservation equation, equation (9.78):

d

ds‖
(nv) = −Ssource

p (s‖)+ Ssink
p (s‖) (11.27)

where the signs of the terms reflect the direction of increasing s‖. The ionization
source calculated by the neutral hydrogen code gives Ssource

p (s‖). The sink term
is due to volume recombination, which can include two-body and three-body
recombination:

Ssink
p = neniσvrec. (11.28)

The momentum equation, equation (9.79):

d

ds‖
(mi nv2 + nkTe + nkTi ) = −mivσvinnnn (11.29)
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Figure 11.3. Conditions are the same as in figure 11.2 except that now the electron
cooling due to hydrogen recycle is included. Here: T max

e = 52 eV, T max
i = 115 eV,

nmax
e = 1.24× 1019 m−3, nup

e = 0.47× 1019 m−3, Mmax = 1 (Emax = 60 V m−1, for
scaling).
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Figure 11.4. Conditions are the same as in figure 11.3 except that now impurity radiative
cooling of the electrons is included, assuming a total amount of radiated power equal to
twice the electron power reaching the target. Here: T max

e = 74 eV, T max
i = 115 eV,

nmax
e = 1.23× 1019 m−3, nup

e = 0.42× 1019 m−3, Mmax = 1 (Emax = 60 V m−1, for
scaling).
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where viscosity has been neglected. The neutral hydrogen code provides the
neutral density, nn(s‖) and the ion–neutral frictional collisional rate, σvin(s‖).

One thus has four equations, equations (11.25), (11.26), (11.27) and (11.29)
for the four dependent variables n, v, Te, Ti to be solved for as functions of the
independent variable s‖. If one includes the ± envE term in the power equations
then one also needs Ohm’s law, equation (9.36). Since the equations are so
strongly coupled now, it is necessary to solve them using appropriate numerical
methods such as:

(a) Runge–Kutta solvers which start from the target boundary conditions, for
each flux tube, and calculate in the upstream direction [11.3];

(b) more sophisticated CFD (computational fluid dynamic) methods which relax
the entire solution simultaneously [11.4, 11.5].

We must allow for the possibility that |Mt | �= 1; the Runge–Kutta solver used
in [11.3] contains an explicit algorithm which searches for the unique value of
Mt which gives smooth solutions everywhere; the CFD solver used in [11.4]
and [11.5] automatically evolves to smooth solutions, at the same time finding
the value of |Mt | ≥ 1. Thus for the particle conservation equation the target
boundary condition is:

�t = ntvt = Mt nt cst . (11.30)

For the electron power one uses:

qe
t = γe Mt kTet nt cst (11.31)

where one might take |Mt | > 1 into account when calculating the floating po-
tential, but since the effect is not large, the standard value of γe ≈ 5, section 2.8,
may be adequate. For ion power we may note from equation (9.63) that as s‖ → 0
then:

q‖i,convection →
( 5

2 kTit + 1
2 M

2
t (kTet + kTit )

)
�t . (11.32)

Thus, in order to avoid a situation where q‖i,convection near the target carries
more power than qi

t —therefore requiring that q‖i,conduction carry heat away from
the target, making Ti (s‖) initially drop for increasing s‖ (which one might prefer
to avoid as possibly being unphysical)—one will then have to re-define the ion
sheath heat transmission coefficient to be:

γi =
( 5

2 kTit + 1
2 M2

t (kTet + kTit )
)

kTet
(11.33)

and
qi

t = γi Mt kTet nt cst . (11.34)

Since we are not sure what the value of γi is precisely, even for |Mt | = 1,
section 25.1, it may not be unreasonable to allow ourselves this freedom. For
Tet = Tit this gives γi = 5

2 + M2
t which together with γe = 5 gives the total

coefficient γ = 7.5+ M2
t , as assumed in chapter 14.
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Figure 11.5. The results here assume parallel conduction (only) for each channel, no
convection, no recycle or impurity radiation losses. In contrast with the results of the earlier
figures, the target density has been raised to nt = 5×1019 m−3, in order to raise the parallel
power sufficiently to induce a midstream sonic transition, which occurs here at about 0.6
m from the targets. Here: T max

e = 104 eV, T max
i = 364 eV, nmax

e = 7.38 × 1019 m−3,
nup

e = 4.1× 1019 m−3, Mmax = 2.95 (Emax = 123 V m−1, for scaling).

For momentum the total (static plus dynamic) pressure at the target is:

ptotal
t = nt (1+ M2

t )(kTet + kTit ). (11.35)

With regard to the input to each flux tube, we start by considering the power. The
simplest assumption is that the total power enters at the ‘top end’, at s‖ = L ,
and of a magnitude equal to the sum of the power removed at the target, qt , plus
the integral sum of the volumetric power loss. Since the latter is only known
once the complete solution has been obtained, one generally has to proceed by
iteration. The electron and ion power ‘channels’ can be treated separately. It
was shown in section 4.10.1, see figure 4.17, that the spatial distribution of the
power input has little effect on the shape of T (s‖). For the (effectively) opposite
assumption of the power entering uniformly over length L , the T (s‖) profile is
slightly flatter, figure 4.17. Any assumption about the spatial input of the power is
readily incorporated. Since we do not know whether the anomalous χ⊥ is spatially
constant in the SOL it is fortunate that the input power spatial distribution has so
little effect on the solutions.

Results shown in figure 11.5 assume parallel conduction (only) for each
channel, no convection, no recycle or impurity radiation losses. However, the
target density has been raised to nt = 5 × 1019 m−3 in order to induce a sonic
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transition, which occurs here at about 0.6 m from the targets.
The integrated, net particle flux along the SOL will generally not match the

particle outflux to the target since some of the neutrals will be ionized in the main
plasma. In the simplest approach one just ignores this and adjusts the strength
of the ionization source so that the target ion outflow equals the total ionization
calculated to occur within the SOL. That is, one takes only the spatial distribution
Siz(s‖) from the neutral code, not the absolute magnitude. At a next level of
approximation, one specifies an additional cross-field source, perhaps spatially
uniform over L , and of total strength equal to the calculated total ionization rate
in the main plasma. In onion-skin method modelling further refinements are
possible, chapter 12.
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Chapter 12

‘Onion-Skin’ Method for Modelling the
SOL

12.1 The Concept of a SOL Flux Tube

Chapters 9–11 describe a number of 1D models, as also does section 1.7 and much
of chapters 4 and 5. But can their application be justified to the plasma contained
within arbitrarily chosen magnetic flux bundles, i.e. individual flux tubes in the
SOL? Can one usefully analyse the SOL in terms of ‘flux tubes’—i.e. as a set
of SOL ‘onion skins’? (Here a flux tube is defined to be an elementary volume
aligned with a magnetic line of force B such that a constant value of magnetic
induction is contained in the flux tube, i.e. B A‖ = constant, where A‖ is the
cross-sectional area of the flux tube normal to B, e.g. ASOL‖ of section 5.6.)
After all, the SOL has the thickness that it does have, λSOL, precisely because
particles, momentum and heat have sufficient time to diffuse a radial distance of
λSOL before being removed at the targets. This raises the question: what sense
does it make to apply the parallel conservation laws to individual flux tubes in the
SOL? Should pressure, for example, not be ‘smudged’ or averaged over the entire
SOL, thus making invalid any concept of pressure balance, etc on an individual
flux tube?

It might be thought that the mere fact that transport is so strongly
anisotropic for plasmas in strong magnetic fields might justify the flux-tube
concept. Anisotropic transport, however, only ensures that the SOL will be long
and thin, leaving unanswered the question of the viability of analysis based on
individual flux tubes within the SOL.

But if pressure balance along a single magnetic flux line in the SOL—which
we may consider to be the thinnest of all possible flux tubes—is not satisfied, then
other basic issues are raised. For example, the often-used method of identifying
the location of the separatrix (for attached conditions, chapter 16) at an upstream
Langmuir probe location by assuming pressure equality along B, and knowing the
separatrix location (‘strike point’) at the divertor target [12.1], would be invalid.

437
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Consider also the widely used expression relating λn and D⊥ for the simple
SOL, λ2

n ≈ D⊥L/cs , section 4.3. In addition to assuming D⊥ is spatially con-
stant, these derivations implicitly assume that the entire SOL can be characterized
by a single value of λn . (Because the poloidal flux surfaces vary in their ‘radial’
separation for different poloidal locations, radial scale lengths automatically vary
simply due to this effect of magnetic geometry, even if there are no other causes
of variation. We remove this type of variation from consideration here, how-
ever, since we will always consider any local radial scale length as having been
mapped to some reference location, e.g. the outside mid-plane.) Thus, consider
for example the derivation of λn(D⊥) in section 4.3, equation (4.3): the LHS of
the equation assumes that the density decay length all along the LCFS and just
at the LCFS, is a constant λn , and also the characteristic decay length across the
SOL at the target is this same λn . (We also assume that the entire simple SOL is
characterized by this same value of λn—say across the SOL upstream—although
we did not need to use that result in this particular derivation.) But are such
assumptions justified? Why, if cross-field transport is capable of moving around
particles and power over radial distances of order λn , is there any connection
between radial profiles at different locations within the SOL?

We must address therefore the question of the utility—for purposes of anal-
ysis—of the concept of individual flux tubes (sub-layers) of the SOL, and of
parallel pressure balance, etc. Unless such a picture of the SOL can be justified
then most approximate SOL analysis is unsound. Also, the successful application
of the ‘onion-skin’ method of modelling SOLs, which has been shown to be
capable of quite well replicating 2D code solutions [12.2], section 12.3, would
not be understandable.

The basic question then is that of the utility of the flux-tube approach, i.e.

(a) of choosing a control volume which is thinner than the SOL and aligned with
B, and then

(b) applying one-dimensional, along-B, analysis of the conservation equations,
treating the other, cross-field directions as giving rise to more or less simple
‘cross-field sources and sinks’ in the 1D conservation equations, then

(c) analysing the cross-field balances, subsequently.

The implicit assumption of such a procedure is that the along-B and cross-field
analysis can be largely de-coupled and carried out sequentially—to a first
approximation. That is, it is not necessary simultaneously to solve the balances
in both directions. We wish to demonstrate that it is possible to do this.

It is important here to distinguish between the simple types of OSM
modelling where the solution is not iterated, and types of OSM modelling
which involve solving the parallel and perpendicular balances iteratively. The
very simplest type of non-iterative OSM modelling involves the application
of the two-point model, section 5.2, to individual flux tubes. The inclusion
of the effects of cross-field sources/sinks is then necessarily approximated in
highly simplified ways, e.g., all the entering power is assumed to enter at the
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upstream end, or uniformly along L , etc, section 4.10. The necessity of justifying
the OS method is therefore essential for such non-iterative approaches. This
matter is not critical for iterative OSM approaches but the computational time
required to reach a converged solution will be less if the OS method of treating
perpendicular and parallel balances separately and sequentially is valid. In
iterative OSM the perpendicular flux densities of particles, momentum and power
can be made proportional to the local values of the second derivatives, in the
perpendicular direction, of density, etc, the standard assumption of diffusive
cross-field transport. In that case the OSM approach is simply an alternative
numerical procedure for carrying out 2D modelling—although retaining a
key advantage that boundary condition information taken from experiment
spans the SOL radially, section 12.2, and therefore one can extract χSOL⊥ from
OSM analysis, chapter 20. All types of OSM modelling are actually two
dimensional, although the simplest versions treat the cross-field transport in a
rough way.

One is certainly free to choose any triad of orthogonal co-ordinate directions,
and any control volume, and then to pick any co-ordinate as the ‘preferred’ one
to be subject to 1D analysis, with the effects of the other directions treated as
‘orthogonal-direction sources and sinks’—but generally it will not be possible to
achieve any useful degree of de-coupling of the analysis in the three directions
and one will be stuck with a complicated, multi-coordinate, coupled analysis. No
simple, approximate treatment will be possible.

We will now demonstrate the general result that the flux-tube approach does
result in a useful degree of de-coupling—or rather one should say, a useful sim-
plification of the coupling—between the along-B and cross-field directions, for
both the sheath-limited and conduction-limited regimes. We will also demonstrate
a specific and important result of flux-tube analysis; total pressure tends to be
approximately constant along a flux tube, or, more to the point, it is not sensitive
to the details of cross-field transport.

We take flux tubes, then, as our control volumes. In that case the 1D form
of the conservation equations can be used with s‖ parallel to B, and all cross-field
terms then appear as sources/sinks in these equations, see chapter 11. We must
now demonstrate that:

(a) This leads to simple boundary conditions.
(b) Pressure will (usually) be constant in a flux tube and, more to the point, it is

not much affected by cross-field terms.
(c) As many other quantities as possible will either be constant, not affected by

the cross-field terms, or will be insensitive to their spatial distribution, etc.
(d) One can then address cross-field balance, i.e. subsequently, i.e., sequentially.

As to point (a), boundary conditions, certainly the flux tube is a good choice of
control volume since we apply the Bohm criterion and sheath heat transmission
coefficients, chapter 2, at the target end. At the upstream end one can assume there
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are no influxes (symmetric geometry assumed), or the analysis can be carried out
from target to target.

We turn next to the key question of pressure constancy and start with the
simple SOL case, T constant along the flux tube. We start with the tentative
hypothesis that the first two, basic 1D conservation equations, section 9.9, will
adequately describe the system:

d

ds‖
(nv) = Sp(s‖) (12.1)

d

ds‖
(mnv2 + pe + pi ) = 0 (12.2)

where

Sp(s‖) = Sp,c-f (s‖) = D⊥
d2n

dr2
. (12.3)

We have assumed cross-field transport is diffusive, see section 1.8.2.4. We could
include the effects of volume recombination and i–n friction but since these are
not cross-field terms they are not of interest with regard to justifying flux tubes as
useful control volumes.

Equation (12.2) is just the statement of the constancy of total pressure in the
flux tube:

ptotal ≡ mnv2 + pe + pi (12.4)

and so we appear to be off to an excellent start: the only cross-field term present,
Sp,c-f (s‖), has no effect on ptotal!

Although we will now look more carefully at the assumption that there really
are no important cross-field terms left out of equation (12.2), the final conclusion
below is that this indeed is usually the case and this critically important conclusion
therefore will stand.

So, we now ask: is equation (12.2) really satisfied—even for the simple
SOL? After all, equation (12.2) assumes that there is no cross-field transport
of momentum into the flux tube. The first way this assumption would be vio-
lated would be if the newly ‘created’ particles (from Sp,c-f ) entered the flux tube,
carrying some s‖-momentum. For Siz , i.e. ionization of neutrals, it may often
be reasonable to assume that the new ions are created ‘dead in the water’ from
random neutrals and so there is no momentum source or sink, Smom, needed on
the RHS of equation (12.2). But for Sp,c-f is this true? The flux tube closest to the
separatrix imports ions from the main plasma—presumably having no birth s‖-
momentum—but it exports ions with s‖-momentum to the next flux tube further
out. Thus, that flux-tube does indeed suffer a net momentum loss due to cross-
field particle diffusion, Smom < 0. All the flux tubes further out are net importers
of both particles and momentum—and so for them Smom > 0. Averaged over the
entire SOL, Smom = 0, for this process; however, equation (12.2) is not strictly
valid for any individual flux tube.
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We must therefore estimate the magnitude of this effect. We assume for a
start that dv‖/dr = 0 (but we will also allow for velocity shear and shear viscous
stress next). Thus the momentum source density due to this process is:

Smom,D⊥ = mv‖Sp,c-f = mv‖ D⊥(d2n/dr2) = mv‖ D⊥n/λ2
n . (12.5)

For the whole length of a tube this gives a total:∫
Smom,D⊥ ds‖ = Lnv‖ D⊥m/λ2

n (12.6)

where nv‖ is the average flux density along the SOL. At this point we use one
of the results that we are trying to prove here, namely that for the simple SOL n
drops by a factor of only two, nu/nt = 2, along the flux tube’s length (we will
thus only be demonstrating consistency, finally). For Sp,c-f (s‖) approximately
constant:

nv‖ ≈ 1
2 nt cs � 1

4 nucs . (12.7)

Thus the total from equation (12.5) compared with the upstream pressure peu +
piu = mnuc2

s is:

Lnv‖ D⊥m/λ2
n

mnuc2
s

� 1

8 
(12.8)

where we have used λ2
n = 2D⊥L/cs (again we will only demonstrate consistency

here). We are justified in ignoring this small correction, equation (12.8), in our
simple analysis in light of the other, cruder approximations already involved in
such analysis.

There is in addition the cross-field diffusion of momentum due to perpendic-
ular shear stress, at rate proportional to η⊥(dv‖/dr), where η⊥ is the (anomalous)
shear viscosity coefficient.The value of ηSOL⊥ is poorly known but a reasonable
guess may be η⊥ ≈ nm D⊥, based on analogy with classical transport [12.3].
This gives:

Smom,η⊥ = v‖η⊥/λ2
v (12.9)

where λv is the (parallel) velocity radial decay length. Assuming λv is of order
λn and η⊥ ∼ nm D⊥, it is readily seen that this contribution is of the same order
as Smom,D⊥ and therefore can also be neglected.

Although parallel viscous stress, section 9.8, is not a cross-field term, for
completeness we mention it here. When η‖ is limited by an appropriate kinetic
factor, chapter 26, this effect also makes only a small contribution to pressure
balance.

We are thus able to substantiate our initial proposition: for the simple SOL,
the choice of flux tubes as control volumes has the most valuable simplification
that cross-field transport does not greatly affect the constancy of pressure within
the tube.
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This then leads to other valuable simplifications, principally that n(s‖) only
changes by a factor of 2 in this sheath-limited regime that we have been con-
sidering, as the isothermal flow accelerates to the sound speed. This in turn
justifies our simple picture that its characteristic decay length λn applies upstream,
downstream and along the LCFS boundary.

From the last point we can also conclude that the boundary condition along
the cross-field boundary, i.e. the LCFS, is also simple and convenient, namely the
cross-field particle flux density is approximately constant along the LCFS. This
retrospectively justifies use of equation (12.7).

(One can extend the simple SOL analysis to cases where D⊥ is not constant
with s‖, or where cross-field gradients vary because the separation of poloidal flux
surfaces varies with s‖ due to Bθ /B varying along a flux tube [12.4]. While the
cross-field influx density across the LCFS is no longer constant with s‖, it varies
in a readily calculable way and the basic, controlling factors continue to hold,
namely:

(a) ptotal ≈ constant in the flux tube;
(b) nt/nu ≈ 1/2.

This is still adequate justification for using flux tubes as control volumes. That
is, the fact that Sp,c-f (s‖) may vary with s‖ because of specified factors such as
magnetic geometry does not compromise the utility of the flux-tube approach.)

Note we have also demonstrated that the analysis of the cross-field particle
balance can be done after having carried out along-B analysis. That is, it is rea-
sonable to take λn as constant along a field line. This was the key in establishing
λn ∼ (D⊥L/cs)

1/2 for the simple SOL.
Continuing with the question of pressure constancy, we turn next to the more

interesting conduction-limited regime, adding to equations (12.1) and (12.2) the
conduction equation (9.90), to give T (s‖). The first and most important fact is that
ptotal is still not very much influenced by cross-field terms. Indeed we show below
that Smom,D⊥ and Smom,η⊥ tend to be even less important than for the simple SOL.

T (s‖) is, of course, influenced by the cross-field heat sources—however, as
shown in section 4.10, the precise spatial distribution of the heat source qin(s‖)
has remarkably little influence on the form of T (s‖), thanks to the very strong
dependence of classical parallel conduction on T , namely K‖ ∝ T 5/2. Thus here
also a major simplification is enjoyed for the choice of flux tube as control volume.
T (s‖) tends to be mainly sensitive to the total integral heat input,

∫
qin(s‖)ds‖,

and not the details of spatial distribution. This makes for valuable simplifications
regarding the cross-field boundary (the LCFS) for heat input to the SOL.

Because the conduction-limited regime tends to correlate with the high re-
cycling regime and with particle (ionization) source, Sp = Siz , being localized
rather near the targets, then �(s‖) ≡ nv‖ only increases very near the target,
making nv‖ much smaller in equation (12.6) than for the simple SOL. One notes
further that there will not generally be any compensating increase in Sc-f , just
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because the region where v‖ �= 0 is smaller: Sp is now largely due to Siz . This
makes Smom,D⊥ and Smom,η⊥ smaller still for the conduction-limited regime.

We thus note that—as for the sheath-limited regime—the cross-field bal-
ances, now including heat balance, can be carried out sequentially to the along-B
analysis. In section 5.7 we obtained approximations for λq‖ and λT based on the
implicit assumption that such characteristic lengths are constant all along B. Thus
we could use equation (5.54), for relating total power into the SOL PSOL [W] and
λT :

PSOL = nuχ⊥kTu Ap/λTu . (12.10)

Parallel heat conduction is so strong, for any reasonably high value of Tu , that
T (s‖) tends to be nearly constant over most of the upstream end of the flux tube,
figure 4.17, i.e. the region above the X-point which is in contact with the main
plasma where PSOL enters the SOL. It is for this reason that λTu can be treated
as being constant, to a first approximation, over the entire surface area of the
plasma Ap. We note also that nukTu , i.e. the plasma pressure, tends to be constant
along a field line—which also simplifies greatly the use of equation (12.10) in
formulating simple approximate expressions for λT , λq‖: everything on the RHS
of equation (12.10) is constant, if χ⊥ is.

It is thus seen that an element of propitiousness is involved in the
almost complete de-coupling of parallel and perpendicular heat balance for
the conduction-limited SOL: were K‖ independent of T , for example, there
would be a more complicated coupling, making any simple analysis difficult or
impossible. For K‖ constant, for example, then T (s‖) would not be insensitive to
the details of the spatial distribution of the cross-field heat flux, nor would Tu be
a robust quantity. This would make flux-tube-by-flux-tube two-point modelling
impossible, as well as all other non-iterative OSM modelling approaches.
Iterative OSM modelling would still be viable, but the computational time
required to relax to a converged solution would be increased.

Note that the foregoing only demonstrates the consistency of an analysis
approach based on flux tubes rather than constituting a strict proof. Further, such
complications as drifts, chapter 18, have not been considered here and so what
has been established is a tendency, rather than something absolute.

Thus for both sheath-limited and conduction-limited regimes, analysis of
the SOL based on individual flux tubes makes possible a simple approximate
treatment because the coupling of the particle and heat balances in the parallel
and perpendicular directions is so simple that these balances can be assessed
separately and sequentially. It is true that the features of the SOL are powerfully
influenced by cross-field transport. But major simplification happens to hold
that is analogous to the flow of water down a mountain side which has been
sculpted into a series of terraces—for example paddy-fields on sloping terrain:
while gravity dominates the pattern of water run-off down such terrain, the flow
pattern is from one terrace-reservoir to the next one lower down, and occurs—or
could be arranged to occur if desired—as a uniform cascade all along the length
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of each terrace. Water run-off down a natural hillside would usually follow far
more complicated three-dimensional patterns. For the SOL, however, the analogy
of a radial series of reservoirs is good first approximation, making it useful to
develop an ‘onion-skin’ method for modelling the SOL, section 12.2.

12.2 The Onion-Skin Method of Modelling the SOL

In the onion-skin method, OSM, the boundary conditions are usually taken to be
at the target, in the form of Te, Ti and ne at locations across the targets—ideally
from experimental measurements. The essential point is that boundary condition
information—i.e., solution-constraining information—should be input (a) from
experiment and (b) across the SOL, radially—thereby constraining each separate
flux tube. Such experimental input need not be across the targets, nor be from
probes, although we start from this for illustration.

OSM modelling can be carried out at a wide variety of levels of sophistica-
tion. In the earliest applications [12.5], very simple, analytic OSM models were
included within the DIVIMP code, in order to generate ‘plasma backgrounds’ into
which (Monte Carlo) particles could be launched. At that time, no actual experi-
mental data were employed as boundary conditions, but illustrative examples only
were used. At the next stage of development [12.6], experimental measurements
of ne and Te across (JET) limiters were used as boundary conditions—while
still using simple, analytic OSM models. Next, full 1D fluid models as de-
scribed in chapter 11 were introduced, together with experimental boundary con-
ditions [12.7, 12.8] and further evolution of the OS method has continued [12.2,
12.9–12.15].

One could start by considering the particularly simple case where each flux
tube in the SOL is assumed to be in the sheath-limited regime with Te and Ti

constant along each flux tube, but varying radially in accord with the radial vari-
ation of the boundary values at the target. Thus one would employ the balance
equations given in section 10.2, equations (11.4)–(11.11). For each flux tube
this gives the values of Te, Ti , n, v and E at each location s‖. Since Te, Ti

and n generally vary across the targets, this OS method thus generates a 2D
solution of the SOL. It may be seen that the information needed to give the
radial variations at each location along the SOL entered the solution directly
from the target boundary conditions. In contrast with the standard 2D fluid
model approach, chapter 13, this information does not enter via imposed cross-
field transport coefficients—D⊥, χ⊥, etc—which, in fact, are not imposed in the
OS method. Indeed, these coefficients can be extracted, in effect from the target
boundary conditions, using the OS method, chapter 20.

In the standard 2D fluid code approach the boundary conditions are imposed
at one point, e.g., the density at the upstream separatrix location, or along a
single flux surface, e.g., the power flow across the separatrix. By contrast, in the
OS method, the boundary conditions, or solution-constraining information, are
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specified radially across the entire SOL—making it unnecessary to assume values
for the cross-field transport coefficients. This spatially distributed constraint
input can be from probes—at targets or upstream—or from spectroscopic
measurements, etc [12.14]. Input of so much experimental information as
to over-constrain the solutions can be handled by employing algorithms to
minimize the variance between the experimental input, in total, and the computed
values [12.15].

The foregoing is the simplest OSM model based on the conservation equa-
tions (here only particle and momentum). We may apply the term ‘OSM model’
to refer to such solutions based on conservation equations. For various applica-
tions one may wish to have more freedom, namely to directly prescribe spatial
variations of n(s‖), Te,i (s‖), v(s‖), etc. For example, when using a Monte Carlo
neutral hydrogen code such as EIRENE, or a Monte Carlo impurity code such as
DIVIMP, which require a ‘plasma background’ into which to launch the Monte
Carlo particles, one may use ‘OSM models’, or alternatively one may use what
one might better call ‘OSM prescriptions’ in which any or all of n(s‖), Te(s‖),
Ti (s‖), v(s‖), E(s‖) are arbitrarily prescribed without considering whether these
quantities satisfy the conservation equations. Such flexibility can be useful when
trying to discover what sort of plasma background is implied to exist by the
measured hydrogenic and impurity spectroscopic signals, see section 6.6.4. A
wide range of prescribed plasma backgrounds can be generated easily, and since
a Monte Carlo run is also very quick on current computers, a wide range of
possibilities can be easily explored. Having discovered what plasma is present one
can then better consider how such a plasma could exist, i.e., consistent with the
conservation equations. That is, one can obtain guidance from such a procedure in
identifying what physical processes are likely to be operating in a given situation.
This can be particularly useful for complex regimes, such as divertor detachment,
chapter 16, where one may not be confident about one’s ability to model fully
(with the conservation equations) all the critical features of the problem.

Returning to the ‘OSM models’, a number of important refinements are
worth including: parallel heat conduction and convection, volumetric sources and
sinks for particles, momentum and energy, etc, i.e., the comprehensive 1D model
given in section 11.2, equations (11.12)–(11.35). The models are applied to each
flux tube separately. The 1D plasma solver is used to generate 2D SOL solutions,
which are iterated with a neutral hydrogen code such as EIRENE. For inclusion
of impurity effects, the 1D plasma equations can be extended to a multifluid
mode; alternatively a Monte Carlo impurity code such as DIVIMP can be operated
iteratively with the 1D plasma solver.

The integrated, net particle source along a flux tube would only by coin-
cidence match the particle outflow to the target for that flux tube. The particle
excess or deficit is attributed to cross-field particle fluxes. Flow reversal, chap-
ter 15, is therefore often present on some flux tubes. If a flux tube has a particle
excess, then this excess is assigned to an additional particle sink, Sadditional

sink (s‖),
distributed spatially in some specified way, and of absolute magnitude such that
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0 Sadditional

sink (s‖)ds‖ is equal to the particle excess on that flux tube. A similar
procedure is used for any flux tube in particle deficit, by using an Sadditional

source (s‖).
The simplest assumption is that these additional sinks or sources are distributed
uniformly along the flux tube, but they may be assigned in a weighted way,
for example weighted by the local value of d2n/dr2, the second derivative of
the radial density gradient (which is established iteratively). Such a weighting
would be appropriate if D⊥ were hypothesized to be spatially constant in the
SOL. Indeed this method would result in the extraction of an essentially exper-
imentally measured value of D⊥. Since cross-field transport is anomalous, we
do not know, however, if D⊥ is spatially constant. Therefore, the assumption
of spatially constant cross-field sources and sinks may be all that can really be
justified.

Some OSM solvers [12.9, 12.15] solve the conservation equations from tar-
get to target on each flux tube. Experimental target boundary conditions are
unlikely to result in equal (total) pressures at each target. It is not uncommon
for the inner target plasma, of a single null poloidal divertor, to be quite cool, and
volumetric pressure loss processes—principally due to ion–neutral friction—can
account for much of the pressure imbalance between the two targets. Whatever
pressure discrepancy remains after all such processes have been explicitly allowed
for is attributed to cross-field momentum transport—both diffusive, i.e., propor-
tional to shear viscosity η⊥—and convective. Appropriate momentum sources
or sinks are then assigned, similar to the assignment of the cross-field particle
sources and sinks, to give pressure balance.

Thus, while in its simplest form, OSM modelling simply ignores particle and
momentum cross-field sources and sinks, and takes all the cross-field power input
to be distributed in some simple way—in more sophisticated versions, spatially
distributed sinks and sources of particles, momentum and energy are included
to give balances. In the most sophisticated treatments these sources and sinks
are spatially distributed along each flux tube, weighted by the second (radial)
derivative of the n, v‖, Te,i profiles, established through iteration. For the most
part inclusion of cross-field contributions, even at the crudest level, is usually
found not to change the solutions very much: as noted in chapter 5, SOL solutions
based on target boundary conditions are rather insensitive to most modelling
assumptions.

Various OSM models and OSM prescriptions have been implemented as
background plasma ‘SOL options’ within the DIVIMP code [12.10]. ‘SOL
Opt. 22’, for example, gives the Runge–Kutta solution of equations (11.25)–
(11.35), allowing for flow reversal, supersonic transitions, etc, and with coupling
to the NIMBUS or EIRENE neutral hydrogen codes. ‘SOL Opt. 23’ has most of
the same physics as ‘SOL Opt. 22’ but uses a CFD solver [12.9, 12.15] which is
better able to model detachment than is ‘SOL Opt. 22’ and is also stable to the
inclusion of the equipartition power term Qeq and parallel viscosity for which
‘SOL Opt. 22’ can be unstable. ‘SOL Opt. 21’ is a hybrid model prescription for
detached divertors.

Copyright © 2000 IOP Publishing Ltd.



Code–Code Comparisons of Onion-Skin Method Solutions 447

12.3 Code–Code Comparisons of Onion-Skin Method
Solutions with 2D Fluid Code Solution of the SOL

The intended mode of operation for the onion-skin method is to take the down-
stream, i.e. target, boundary conditions from experiment. It constitutes an im-
portant test of the validity of the OS assumption and method, however, if instead
one takes these boundary conditions from a 2D fluid code such as B2, EDGE2D,
UEDGE, etc—and then compares the 2D OSM solution that results with the 2D
fluid code solution throughout the entire SOL. Results from such a code–code
comparison involving the EDGE2D code [12.16] and an OS model in DIVIMP
(‘SOL Option 23’, see last section) [12.9, 12.15], are now considered.

The EDGE2D/NIMBUS solution, shown in figure 12.1, was obtained with
the following input: power flux across the separatrix of 1 MW (split equally
between electrons and ions), separatrix density of 5 × 1018 m−3, cross-field co-
efficients D⊥ = 0.15 m2 s−1, χe⊥ = χ i⊥ = 1 m2 s−1, and boundary conditions,
γe = 5, γi = [2.5+ M2

0 (Te,0 + Ti,0)/(2Te,0)].
Results are only displayed for the separatrix ring and the sixth ring out for

the computational mesh used. (The ‘rings’ refer to the flux lines in the poloidal
plane, see figure 13.2, i.e. to the individual flux tubes; ‘knots’ are the individ-
ual grid points lying along each ring.) The plasma is well attached and in the
conduction-limited regime, with some asymmetry between inner and outer targets
(increasing with distance away from the separatrix) and with significant radial
gradients across the SOL.

The OSM/NIMBUS solutions were obtained by using the EDGE2D target
values of I+sat (particle flux density) and Te as the boundary conditions. The OSM
used NIMBUS to calculate the neutral source/sink terms, and thus included the
same atomic physics as EDGE2D. The same sheath heat coefficients, γe, γi were
also used. There were no impurities in either case. The parallel heat conductivity
employed the same kinetic correction, see chapter 26 in the OSM and EDGE2D.

In OSM modelling the total cross-field source of particles, momentum and
energy—integrated over the length of each flux tube—is set equal to the total loss
for that flux tube, i.e. loss to the two targets and to volumetric processes. As
noted already, the spatial distribution of these cross-field sources (or sinks) is,
however, freely specifiable. Since the solutions are iterated it is possible to make
the cross-field particle flux density, for example, proportional to d2n/dr2, as holds
if cross-field transport is assumed to be purely diffusive and with a constant D⊥.
Usually the spatial distribution is not of first order importance. (This is a valuable
result since we do not, in fact, know if cross-field transport is purely diffusive,
nor if diffusive, how D⊥ varies.) For the results shown here the cross-field source
assumptions were as follows:

(a) particle flux densities were made proportional to the local density, n;
(b) momentum flux densities were made proportional to the local value of nv;
(c) the electron energy input was assumed to be uniform from X-point to

Copyright © 2000 IOP Publishing Ltd.



448 ‘Onion-Skin’ Method for Modelling the SOL

Figure 12.1. Along-B plots comparing 2D fluid code (EDGE2D) results and OSM
modelling results. Details of the case are given in the text. The boundary conditions
for the OSM were taken from the EDGE2D target values, and therefore agreement at those
points is exact. Solid line is the OSM on the separatrix ring, dashed line the EDGE2D.
The dotted line is the OSM for the sixth ring out into the SOL, the dot–dashed line the
EDGE2D. Agreement throughout the computational domain is typically to within ∼10%.

mid-point, with the ratio of inputs to each half of the flux tube adjusted,
through iteration, to achieve matching to the required boundary conditions
(Tet , I+sat) at each target;

(d) the total ion energy input was set equal in magnitude to the total electron
energy input for each flux tube and distributed spatially in the same way as
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for the electrons. Since, when working from input from a 2D fluid code,
boundary condition information is available for the ions, i.e. Tit , then the ion
energy input can be handled completely separately from the electrons, and in
the analogous way. Anticipating the experimental situation, however, where
generally Tit  is not measured, this alternative approach was employed here.

As can be seen from figure 12.1 the level of agreement between the 2D fluid
code and the OSM results is quite good, even though the cross-field fluxes were
treated in the above simple way in the OSM analysis. Other such comparisons are
given in [12.2], based on the less sophisticated SOL Opt. 22 in the DIVIMP code.
Similarly good agreement was reported there for a number of different plasma
conditions. Typically agreement is found to be within a few tens of per cent or
better. These code–code comparisons are therefore encouraging for the intended
application of the OS method where the target boundary conditions are taken from
experiment rather than from another code.
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Chapter 13

An Introduction to Standard 2D Fluid
Modelling of the SOL

We start by considering a basic 2D fluid edge model for the pure plasma. We will
assume toroidal symmetry and thus the problem reduces to 2D. One direction is
radial, cross-field, designated by coordinate r . For the second coordinate there is a
choice: (a) s‖, measured along B, or (b) sθ , the projection of the parallel direction
in the poloidal plane, sθ = s‖(Bθ /B), figure 6.21. It is perhaps conceptually
easier to work with s‖, which we will start with here. We could simply ‘straighten’
out the SOL, as in the simple approach of chapter 1, but since the model will have
to be solved using a computer code there is little penalty in taking the actual
SOL geometry into account. As a simple illustration here we will give the model
equations for a perfectly circular SOL, of a cylindrical tokamak of length 2L .

The three parallel, 1D conservation equations which are developed in
chapter 9 only need minor extensions to include what are effectively ‘cross-field
sources’. Indeed, such sources were used even in the simplest formulation of
section 1.8.2.4. We therefore write, following the equations in chapter 9, the
following.

(1) Particle balance

∂

∂s‖
(nv‖) = 1

r

∂

∂r
r

(
D⊥

∂n

∂r
+ nvpinch

)
+ Siz(r, s‖) (13.1)

where D⊥ and vpinch are specified anomalous cross-field transport coeffi-
cients. Siz(r, s‖) is the ionization source whose calculation generally re-
quires the use of a coupled hydrogen neutral code such as DEGAS, EIRENE,
NIMBUS, etc. The latter codes require as input the spatial distribution of ne,
Te and Ti , and the code then outputs the Siz , Smom, QEe, QEi sources and
sinks due to the plasma–neutral interactions. The plasma model and the
neutral model must thus be solved iteratively.
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(2) Momentum balance

∂

∂s‖
(pi + pe + mi nv2‖ + πi ) = Smom(r, s‖)

+ 1

r

∂

∂r
r

[
miv‖

(
D⊥

∂n

∂r
+ nvpinch

)]

+ 1

r

∂

∂r
r

[
η⊥

∂v‖
∂r

]
. (13.2)

Compare with equation (9.79). The second to last term is due to the con-
vection of parallel momentum cross-field, and the last term the diffusion of
such momentum. The divergence of these fluxes constitutes a momentum
source/sink for the parallel equation (13.2). Similarly the divergence of the
cross-field particle flux density

nvr ≡ �r = −D⊥
∂n

∂r
− nvpinch (13.3)

gives an effective particle source in equation (13.1). The cross-field vis-
cosity η⊥ is generally taken to be anomalous and may be of order η⊥ ≈
nmi D⊥ [13.1]. Smom tends to be a sink due to friction with the neutrals, but
includes the momentum gained if the neutrals being ionized have a non-zero
average velocity in the parallel direction. Such neutral motion will, in fact,
be a result of the presence of friction.

(3) Ion energy balance

∂

∂s‖

[( 5
2 pi + 1

2 mi nv2‖ + πi
)
v‖ − κ0i T

5/2
i

∂Ti

∂s‖

]
= +env‖E‖ + Qeq + QEi (r, s‖)

+ 1

r

∂

∂r
r

[
nχ i⊥

∂(kTi )

∂r
− ( 5

2 kTi + 1
2 miv

2‖
)
�r

]
. (13.4)

Compare with equation (9.81). As in section 9.5, E‖ is given by Ohm’s law:

E‖ = −0.71

e

∂(kTe)

∂s‖
− 1

en

∂pe

∂s‖
+ j‖

σ‖
. (13.5)

Often j‖ is neglected; if it is included then appropriate boundary conditions
have to be included at the targets, section 17.4. It is still less common to
include cross-field currents, section 17.5. The last term in equation (13.4) is
due to the conduction and convection of energy cross-field. The cross-field
heat conduction is taken to be anomalous with χ i⊥ ≈ D⊥.
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(4) Electron energy balance

∂

∂s‖

[
5

2 
pev‖ − κ0eT 5/2

e
∂Te

∂s‖

]
= − env‖ E‖ − Qeq + Q R + QEe

+ 1

r

∂

∂r 
r

[
− 5

2
kTe�r + nχe⊥

∂(kTe)

∂r

]
. (13.6)

Compare with equation (9.82).

E × B drift contributions, chapter 18, to all four balance equations can be
included, but often these are neglected.

Solving these four balance equations gives the four unknowns n, v‖, Te, Ti ,
as functions of s‖; also pe,i = nkTe,i .

With regard to boundary conditions: one notes that there are now four bound-
aries of the SOL, see figure 13.1: (a) the two targets, (b) the LCFS, or more
typically a closed flux surface somewhat deeper in the main plasma, (c) the out-
side, wall side. The target boundary conditions are as before. The main plasma
conditions are typically: (a) a specified density ne mid-way between targets on
the LCFS, or inner flux surface used as the boundary, (b) the total heat inflow in
the electron and ion ‘channels’. Various wall-side boundary conditions are used,
for example: (a) nw = Tew = Tiw = 0, or (b) dn/dr |w, dTe/dr |w, dTi/dr |w = 0,
or some specified values. As pointed out in section 6.5.5, unfortunately these
wall-side boundary conditions can have significant effects on the SOL solutions,
and since very little is known about plasma conditions in this region, unanswered
questions arise.

Wall

Targets Target

Target

Wall Main
Plasma

Main plasma

Figure 13.1. Schematic outline of the field line geometry at the plasma edge showing
parallel flow to the divertor plates and perpendicular flow from the main plasma to the
SOL.
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Impurities can be included by adding extra ‘fluids’, one for each charge state
of each impurity species. Thus, there will be a particle conservation equation
for the electrons and for each ‘ion fluid’, with overall neutrality imposed, ne =∑

j z j n j , the sum being over all the ion fluids. Similarly, extra momentum equa-
tions are added for each impurity ion fluid. These equations are coupled through
the parallel impurity forces, section 6.5.3. In order to limit the computational
requirements, individual energy equations are not generally employed. Instead
it is assumed that Ti = Tz for all impurity species and charge states. Boundary
conditions for the impurity fluids involve as yet unsolved problems with regard
to the velocity entering the magnetic pre-sheath and Debye sheath. In reality,
each impurity fluid will have a different v‖BMPSE, which will also differ from
the v‖BMPSE of the hydrogenic ion fluid, depending on the details of where the
impurities entered the SOL, the degree of collisional coupling, etc. This, however,
is very complicated and typically it is assumed that the v‖BMPSE of the impurity
fluids equals the hydrogenic v‖BMPSE or is given by the impurity ion sound speed.
In the absence of information on the matter, the specified values D⊥ and vpinch
are usually taken to be the same as for the hydrogenic ions.

The source and sink terms in the particle balance equation for each impurity
ionization stage j are given by:

Sp = nen j−1σv
j−1
i z − nen jσv

j
i z − nen jσv

j
eirec − nH n jσv

j
cxrec

+ nen j+1σv
j+1
eirec + nH n j+1σv

j+1
cxrec (13.7)

where σveirec(Te, ne) is the e–i recombination rate due to two-body and three-
body recombination and σvcxrec(Te, Ti , TH , ne) is the charge-exchange recombi-
nation rate. The coupled neutral code provides the calculated local value of the
hydrogenic density needed for the latter process.

Examples of 2D fluid codes which are multi-fluid, i.e. contain impurity fluids,
are B2 [13.2], EDGE2D [13.3], UEDGE [13.4], UEDA [13.5].

The entire 2D fluid code calculation—as is also the case for the Monte
Carlo approach, section 6.5—is carried out on a mathematical 2D ‘grid’ which
is generated by a separate code. For predictive work, e.g. for a future machine,
the grid is calculated from the specified spatial distribution of Bφ and Bθ . For
interpreting an experiment, the values of the magnetic field are measured by pick-
up coils. The parallel direction in the grid is that of B. The cross-field direction,
within the poloidal plane, is orthogonal to Bθ at each point. Thus a curvilinear
and (primarily) orthogonal coordinate system is generated; figure 13.2 is such
an example. Because the grid is also necessarily finite (not infinitely fine) the
straight-line cell boundaries of the grid are not perfectly orthogonal and this
requires attention to avoid non-conservation of particles, momentum and energy.
Even in the poloidal plane, the target surface elements are usually not orthogonal
to Bθ , and so the grid is distorted into a non-orthogonal shape near the targets,
figure 13.2. This necessitates further attention to avoid non-conservation effects.
The grid generator code outputs the 2D coordinate of each cell corner in tokamak
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(R, z) coordinates and also the values at the cell centres of the two orthogonal
coordinates sθ and s⊥. Here, sθ indicates distance measured from outside target
to inside target in the poloidal plane. (Increments of these two distances are
given by the local value of Bθ /B, also output by the grid generator code.) The
grid code also outputs the metric coefficients hθ and h⊥ for each grid cell. In a
2D orthogonal coordinate system of coordinates sθ and s⊥, the length of a line
element ds is given by:

ds2 = h2
θ (dsθ )

2 + h2⊥(ds⊥)2. (13.8)

Let the two unit vectors be iθ , i⊥, then:

∇φ = 1

hθ

∂φ

∂sθ

iθ + 1

h⊥
∂φ

∂s⊥
i⊥ (13.9)

∇·A = 1

hθ h⊥

[
∂

∂sθ

h⊥Aθ + ∂

∂s⊥
(hθ A⊥)

]
, (13.10)

etc (φ is any arbitrary scalar quantity and A any arbitrary vector quantity.) Thus,
if the grid is perfectly circular then dsθ = rdθ where r is the radius of the poloidal
surface and:

ds2 = r2dθ2 + dr2 (13.11)

∇φ = 1

r

∂φ

∂θ
iθ + ∂φ

∂r
i⊥ (13.12)

∇·A = 1

r

∂ Aθ

∂θ
+ 1

r

∂

∂r
(r A⊥), (13.13)

etc.
For complete derivations of the 2D fluid equations, including curvature, E×

B and diamagnetic drifts, see the PhD thesis of M Baelmans [13.6]. A reduced
form, as originally used in the B2 code originated by B J Braams [13.7] and
including the time dependence is as follows.

Particles:

∂

∂t
(n)+ 1

hr hθ

∂

∂sθ

(hr nvθ )+ 1

hr hθ

∂

∂r
(hθ nvr ) = Siz . (13.14)

Momentum:

∂

∂t
(ρv‖)+ 1

hr hθ

∂

∂sθ

(
hrρvθv‖ − hr

hθ

ηi
θ

∂v‖
∂sθ

)

+ 1

hr hθ

∂

∂r

(
hθρvrv‖ − hθ

hr
ηi

r
∂v‖
∂r

)

= Smomv‖ − Bθ

B

1

hθ

∂p

∂sθ

. (13.15)
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(a)

(b)

Figure 13.2. Example of a (primarily) orthogonal grid for JET: (a) overview, (b) close-up
view of divertor. Note that the grid becomes non-orthogonal near the targets to accommo-
date the ‘non-orthogonal targets’.

Copyright © 2000 IOP Publishing Ltd.



456 An Introduction to Standard 2D Fluid Modelling of the SOL

Electron energy:

∂

∂t

( 3
2 nkTe

)+ 1

hr hθ

∂

∂sθ

(
hr

5

2
nvθ kTe − 

hr

hθ

χe
θ

∂kTe

∂sθ

)

+ 1

hr hθ

∂

∂r

(
hθ

5

2
nvr kTe − 

hθ

hr
χe

r
∂kTe

∂r

)

= QEe + Q R − Qeq + vθ

hθ

∂pe

∂sθ

+ vr

hr

∂pe

∂r
. (13.16)

Ion energy:

∂

∂t

( 3
2 nkTi + 1

2ρv2‖
)+ 1

hr hθ

∂

∂sθ

[
hr

( 5
2 nvθ kTi + 1

2ρvθv
2‖
)

− hr

hθ

(
χ i

θ

∂kTi

∂sθ

+ 1

2
ηi

θ

∂v2‖
∂sθ

)]
+ 1

hr hθ

∂

∂r

[
hθ

( 5
2 nvr kTi + 1

2ρvrv
2‖
)

− hθ

hr

(
χ i

r
∂kTi

∂r
+ 1

2
ηi

r

∂v2‖
∂r

)]

= QEi + Qeq − vθ

hθ

∂pe

∂sθ

− vr

hr

∂pe

∂r 
(13.17)

where

Smom v‖ = volume sources of parallel momentum

ηi
θ , η

i
r = poloidal and radial ion viscosity coefficients

χ
e,i
θ , χe,i

r = thermal conductivities

vθ = v‖(Bθ /B).

Most of the terms in equations (13.14)–(13.17) can readily be related to those in
equations (13.1)–(13.6). For inclusion of impurity terms and equations see, for
example, [13.8].

Figure 13.3 gives an example of B2-EIRENE modelling of ITER [13.9].
The plots give the radial profiles of ne, Te, and total plasma pressure p at the
upstream end and at the target plate. For both cases the results are ‘mapped’
along B to the outside mid-plane and plotted against the radial location of the B-
line there. For this case 200 MW enters the edge from the main plasma with 120
MW being radiated in the edge by impurities—the core-produced He, sputtered
C and injected (0.2%) Ne. One notes that the e-folding lengths for ne, Te, p (at
the outside mid-plane) are 2 cm, 2 cm, 1 cm, respectively. In the divertor there
is a cold region close to the separatrix with Te otherwise rather constant radially.
There is a drop in plasma pressure near the separatrix, corresponding to‘partial
detachment’, chapter 16. B2/EIRENE has also been used for systematic studies
of operating tokamaks, C-MOD, DIII-D, JET and JT-60U, aimed at reproducing
experimental measurements in order to assess code reliability [13.10].
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t

t

t

u

u

u

Figure 13.3. Example of B2/EIRENE code solutions for ITER [13.9]. Radial profiles of
ne, Te and total plasma pressure p at the upstream end (u) and at the target (t) (mapped to
the outside mid-plane).
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Introduction to Part III

Part III of this book is a collection of essays on more-or-less active research
topics in plasma edge physics. The selection of topics is inevitably arbitrary.
The coverage is uneven and the topics chosen tend to reflect the personal interests
of the author. The material in this part will undoubtedly date more quickly than
that in parts I and II, and in any subsequent edition of the book, it is probable that
some of this material would be revised, removed or replaced.
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Chapter 14

Supersonic Flow along the SOL

In section 1.8.2.5 it was shown that for isothermal flow along the SOL, the Mach
number cannot exceed unity; otherwise singularities would exist somewhere up-
stream of the sheath entrance. Analysis of the sheath itself, chapter 2, shows
that the flow entering the sheath must be sonic or supersonic. It is shown in
section 14.2 that smooth (non-singular) sonic transitions can occur in the flow
upstream of the sheath entrance when the flow is non-isothermal with the flow
entering the sheath at Mt < −1 [14.1]. In the next section we consider first the
effect of supersonic flow on the SOL properties.

14.1 The Effect on the SOL of Supersonic Flow Into the Sheath

Pressure balance, section 9.4, gives:

n(2kT + miv
2) = nt (2kTt + miv

2
t ) = 2nukTu ≡ pu (14.1)

where we assume Te = Ti here. For illustration we assume that parallel heat
conduction controls T (x):

[T (x)]7/2 = T 7/2
t + 7

2 q‖x/κ0 (14.2)

section 4.10. Assuming no volumetric power loss, then the power flux density
enters the sheath and from section 2.8:

q‖ = γ nt kTt |Mt |cst . (14.3)

We will allow for the dependence of the sheath heat transmission coefficient γ on
Mt . We do not attempt a complete treatment but estimate:

γ (Mt ) = 7.5+ M2
t (14.4)

based on the assumptions that:
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(a) the ion power flux density into the sheath equals the parallel convective
heat flux density at speed Mt cst , i.e.

( 5
2 kTt + 1

2 mv2
t

)
�t or

( 5
2 + M2

t

)
kTt�t ,

section 9.9;
(b) the electron heat flux density can still be approximated as 5kTt�t ; strictly the

sheath potential drop decreases in magnitude as the flow becomes more su-
personic, reducing the factor 5 somewhat, but we ignore this small correction
here.

The foregoing equations can be combined to give:

Tt = fTt (Mt )

[
mi

2e

4q2‖
γ 2

1 e2n2
u T 2

u

]
(14.5)

and since γ1 = 8.5 is the value for |Mt | = 1, we can write:

fTt (Mt ) ≡
[

8.5(1+ M2
t )

2|Mt |(7.5+ M2
t )

]2

(14.6)

which we call the Mach number target temperature factor. The rest of the terms
on the RHS of equation (14.5) are as before for |Mt | = 1, equation (5.8), and thus
we may write:

Tt = fTt (Mt )Tt1 (14.7)

and also:

nt = fnt (Mt )nu Tu/2Tt1 = fnt (Mt )nt1 (14.8)

where Tt1 and nt1 are the values that would have existed if |Mt | had equalled
unity, and where:

fnt (Mt ) ≡ 2/[ fTt (Mt )(1+ M2
t )] (14.9)

is the Mach number target density factor. The particle flux density to the target
becomes:

�t = f�t (Mt )nt1cst1 (14.10)

where:

f�t (Mt ) ≡ |Mt | fnt (Mt )[ fTt (Mt )]1/2 (14.11)

is the Mach number target flux factor. These factors are plotted in figure 14.1.
Strongly, supersonic flow can cool the plasma significantly, at the same time also
rarifying it significantly. Perhaps surprisingly, however, the particle flux to the
targets is not greatly affected by supersonic flow, and is still largely governed by
the upstream parameters, equation (5.13). As |Mt | → ∞, f�t → 4/γ ≈ 0.47.
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Figure 14.1. Mach number target temperature, equation (14.6), density, equation (14.9),
and flux, equation (14.11), factors show that as |Mt | increases, both Tt and nt drop
substantially, but the particle flux to the target only changes by a factor �0.5.

14.2 The Mid-stream Sonic Transition for an Analytic Case

It might appear from the last section that Mt is a completely free parameter.
Yet we saw from the two-point model, section 5.2, that the system is uniquely
specified by imposing just two parameters, say nu and q‖, while it was always
imposed that Mt have the specific value of unity. If Mt is now to be ‘free’, what in
fact constrains its value? And how, generally, is a unique solution specified? We
address this question in this and the next sections by considering a simple analytic
case. The situation for numerical codes is briefly addressed in section 14.4.

For illustration we assume a constant particle source localized near the target:

�(x) = n(x)v(x) =
{

ntvt (1− x/Li ) for x ≤ Li

0 for x ≥ Li
(14.12)

where x is measured upstream from x = 0 at the target and Li is the specified
length of the source region. We wish to establish the circumstances under which
this source can drive the flow supersonic, |vt | > cst (note: v and vt < 0). The
sound speed at the target:

cst = (2kTt/mi )
1/2. (14.13)

It is convenient to define a dimensionless speed M(x):

M(x) ≡ v(x)/cst . (14.14)
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Figure 14.2. When temperature increases with distance x from the target, a mid-flow sonic
transition occurs at the point x∗ where the parameter A(Mt , x), equation (14.15), equals
the normalized temperature T (x)/Tt . This occurs for a unique value of Mt , namely M∗t ,
such that the curve A(M∗t , x) just touches the T (x)/Tt curve tangentially at x∗.

It is important to note that this is not the (local) Mach number, since the speed has
been normalized to the sound speed at the target, not the local sound speed. (The
true local Mach number depends on x due to the x-dependence of both v(x) and
T (x), while the M(x) here only depends on x through v(x).)

We now combine equations (14.1), (14.12)–(14.14) to obtain:

M(x) = (1+ M2
t )

2Mt (1− x/Li )
−

[(
1+ M2

t )

2Mt (1− x/Li )

)2

︸ ︷︷ ︸
≡A(x)

−T (x)

Tt

]1/2

. (14.15)

No solution for M(x) exists if A(x) < T (x)/Tt at any point in the flow. For
isothermal flow it is thus only necessary that A(x) ≥ 1 at all points; for a given
value of Mt , the smallest A(x) occurs at x = 0, i.e. is A(0), and a value of
|Mt | = 1 is then sufficient to ensure real solutions for M(x) at all points. When
T (x) is a rising function, e.g. due to finite heat conductivity, however, then A(x)

may be less than T (x)/Tt in some region (dependent on the specified value of
Li ). Figure 14.2 indicates the general possibilities, showing that a critical value
of Mt exists, M∗: if |Mt | < |M∗

t | then a region exists near the target where
A(x) < T (x)/Tt and no solution for M(x) exists; if |Mt | > |M∗

t | then there is
no problem with an imaginary M(x). We will show below that for the choice
of Mt = M∗

t precisely a smooth, mid-stream sonic transition occurs. This is
therefore the actual solution and one sees that there is a unique value of Mt —and
a unique solution generally—for a given set of control parameters (Li , pu, q‖).

Copyright © 2000 IOP Publishing Ltd.



466 Supersonic Flow along the SOL

Thus the previous boundary condition that |Mt | = 1 is now replaced by the
constraint that v(x), n(x), etc have no mid-stream discontinuities.

Before proceeding to this demonstration, we may note that one way to view
the cause of supersonic flow is as a competition between the rates of change of
�(x) and T (x) [14.2]. If �(x) drops only slowly (Li long) compared with a rapid
rise of T (x), then A(x) will be less than T (x)/Tt unless |Mt | is large. Thus we
may view supersonic flow as being ‘caused’ by temperature-parallel scale lengths
being shorter than particle-flux-parallel scale lengths. Consider the situation just
at the onset of supersonic flow so that |Mt | = 1 and thus:

A(x) ≈ (1− x/Li )
−2. (14.16)

We are interested in locations very near the target where the flow will first be-
come supersonic, thus A(x) ≈ 1 + 2x/Li . We may introduce a characteristic
temperature scale length LT :

T (x)/Tt ≈ 1+ x/LT . (14.17)

Thus, the flow at the target will remain subsonic (no imaginary root for equa-
tion (14.15) provided:

LT > Li/2 (14.18)

We see that the temperature scale length at the target must remain longer than half
the particle-source scale length if the target conditions are to remain sonic.

We consider next the specific T (x) profile given by conduction,
equation (14.2):

T/Tt =
(

1+ 7q‖x
2κ0T 7/2

t

)2/7

.

Thus:
T/Tt ≈ 1+ q‖x

κ0T 7/2
t

(14.19)

for x small. The criterion for avoiding supersonic flow now becomes a condition
on the absolute value of target temperature Tt :

Tt > T crit
t ≡ (q‖Li/2κ0)

2/7. (14.20)

If Tt is driven lower then supersonic flow will result. We may obtain a criterion
in terms of the control parameters q‖ and pu by relating cst (thus Tt ) to q‖ and
pu using equation (14.3). Thus by combining equations (14.1), (14.3), (14.14),
(14.15):

pu = 2q‖(1+ M2
t )

γ |Mt |cst
. (14.21)

Therefore supersonic flow will occur when:

pu > pcrit
u = 4q‖(2κ0/q‖Li )

1/7

γ (2e/mi )1/2
(14.22)
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where |Mt | = 1 was used in equation (14.21) to obtain the onset of supersonic
flow. Thus, for a given heat flux, the flow will go supersonic if it is ‘pushed hard
enough’, i.e. if pu is large enough. Equation (14.21) can also be re-written to give
a criterion in terms of q‖, showing that for a given upstream pressure pu (thus a
given upstream density nu since Tu is so insensitive to all variations, section 5.2)
supersonic flow will occur when:

q‖ < qcrit‖ = [(γ pu(2e/mi )
1/2/4]7/6(Li/2κ0)

1/6. (14.23)

That is ‘starving the SOL for power’ can drive it supersonic. One may note
that raising nu or lowering q‖ are also ways of causing divertor detachment,
chapter 16, and so a number of processes are likely to set in at the same time when
low values of Tt occur—including also strong radiative power loss, section 5.5.
The present criteria for the onset of supersonic flow should therefore only be taken
as rough indicators.

Example: q‖ = 108 W m−2, Li = 1 m which gives T crit
t = 18 eV from

equation (14.22). This value is somewhat unrealistically high because of the
assumption that T (x) is controlled entirely by heat conduction, equation (14.2). In
fact, for x < Li heat convection carries much of the parallel power flow, and just
at the target—which is the location where the flow just goes supersonic—it carries
most of the power. This effect can be allowed for by including a factor fcond in
equation (14.19)—multiplying q‖, section 5.4. For fcond = (8.5–6)/8.5 = 0.294
(see last part of section 5.2) then T crit

t is reduced by ( fcond)
2/7 ≈ 0.7, making

T crit
t = 12.8 eV. Also pcrit

u , equation (14.22), is multiplied by ( fcond)
−1/7 while

qcrit‖ , equation (14.23), is multiplied by ( fcond)
1/6. For the above example and

assuming also L = 100 m one obtains: pcrit
u = 1.3 × 103 N m−2, ncrit

t =
1.6× 1020 m−3, T crit

u = 117 eV, ncrit
u = 3.6× 1019 m−3.

14.3 Supersonic Solutions for an Analytic Case

In this section we obtain expressions for the characteristics of supersonic solutions
including the target Mach number Mt (which is also the true local Mach number
at that location), the location of the sonic transition x∗, etc, for the simple analytic
case set up in the last section.

We differentiate equation (14.15) to obtain for x < Li :

M ′

M
= T ′/Tt − (M2 + T/Tt )

2(Mt/M)/(Li (1+ M2
t ))

T/Tt − M2
(14.24)

The sonic transition occurs when the denominator of equation (14.24) is zero. In
order for the transition to be smooth, the numerator must simultaneously go to
zero [14.3]. Thus at the sonic point:

T/Tt = M2 (14.25)

T ′/Tt = (M2 + T/Tt )
2(Mt/M)

Li (1+ M2
t )

. (14.26)
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Note that, since M < 0, equation (14.25) gives:

(T/Tt )
1/2 = −M. (14.27)

From equation (14.2) we also have:

T/Tt = (1+ αx)2/7 (14.28)

where

α ≡ 7

2

q‖
κ0T 7/2

t

. (14.29)

The preferred control parameters of this problem are pu , q‖ and Li ; however, it is
convenient to replace pu with Tt as a control parameter. Later we will obtain an
expression relating pu and Tt , so that pu can then be used instead.

From equation (14.28) one obtains a second expression for T ′ and when this
is equated to equation (14.26) and equations (14.25), (14.27), (14.28) are used
one obtains the principal result:

(1+ M2
t )

2Mt
= − 7

αLi
((αLi + 1)/8)8/7 (14.30)

which gives Mt in terms of the control variables (α, Li ), i.e. using equa-
tion (14.29), the control variables (q‖, Tt , Li ). One also obtains the location of
the sonic transition:

x∗ = ((T ∗/Tt )
7/2 − 1)/α (14.31)

where T ∗ is the temperature at the sonic point:

T ∗/Tt = ((αLi + 1)/8)2/7. (14.32)

One can combine equations (14.1), (14.3), (14.13) to obtain the relation between
Tt and pu :

pu = 
2q‖(1+ M2

t )

γ |Mt |cst
= 2q‖(1+ M2

t )

γ |Mt |(2e/mi )1/2T 1/2
t

. (14.33)

For the same example as above (but leaving out the fcond factor) one obtains
Mt (Tt ), figure 14.3(a) and Mt (pu), figure 14.3(b). The sonic point moves out to
the limiting position x∗ = Li/8 as |Mt | → ∞.

14.4 Supersonic Solutions in Numerical Codes

For the onion-skin model, OSM, based on Runge–Kutta, ‘one-way marching’ of
the solution, upstream from the target, section 12.2 (e.g. ‘SOL Opt. 22’ in the
DIVIMP code), the unique value of Mt required to give a smooth sonic transition
is found by a straightforward, explicit search technique. Successively refined es-
timates for the specified Mt are made until the magnitude of the discontinuities at
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Figure 14.3. For the particular case of q‖ = 108 [W m−2], L = 100 m, Li (length of
ionization region) = 1 m: (a) the target Mach number Mt and target temperature Tt are
uniquely related. For Tt ≥ T crit

t the flow at the target is sonic. (b) Mt and upstream
pressure pu are also uniquely related. For pu ≤ pcrit

u the flow at the target is sonic.
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the sonic point fall below some specified value. For more sophisticated numerical
analysis based on computational fluid dynamics, CFD, techniques, e.g. the 1D
OSM ‘SOL Opt. 23’ in DIVIMP [14.4], or in 2D edge fluid codes, the solution
naturally evolves smooth sonic transitions as it iterates, since the entire flow field
is ‘relaxed’ simultaneously. The value of |Mt | ≥ 1 evolves without being forced
to any specified value.
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Chapter 15

Flow Reversal in the SOL

In the absence of E × B drifts, chapter 18, and other such complicating effects,
plasma flow only occurs between particle source and particle sink regions. The
particle source for limiter SOLs is often cross-field diffusion from the confined
plasma and so the particle source—and the resulting parallel plasma flow—tends
to be well distributed along the SOL, with the flow direction being toward the
target at all points. Divertor SOLs, on the other hand, can be in the high recycling
regime, section 5.3, with the recycle ionization occurring quite near the divertor
targets. In the simplest, purely 1D picture this then implies stagnant plasma over
most of the SOL, extending between the ends of the ionization zones at each
target. Such a situation would be undesirable from the viewpoint of impurity
transport: any impurities entering the stagnant part of the SOL, e.g. from wall
sputtering by charge-exchange neutrals, would experience no ‘flushing’ action by
plasma flow to the targets (sinks) and would cause unacceptable contamination of
the main plasma, section 6.5. This picture would also be difficult to understand
regarding the radial profile of ne(r) upstream: one anticipates that ne(r) will
be a decreasing function of r , and indeed experimental measurements of ne(r)

confirm that to be the case (which is fortunate if strong plasma–wall contact is
to be avoided!). But how could such ne(r) profiles exist? If cross-field transport
is due solely to diffusion (no radial ‘pinch’ effect) then a decaying ne(r) profile
implies a source of particles at/near the separatix, or a flux of particles entering
the SOL across the separatrix. That, however, appears to be ruled out here. In
principle one could solve this puzzle by invoking a convective radial ‘pinch’ drift
process directed inward that was just such as to balance the outward radial flux of
particles, but such a solution raises questions of credibility.

A more credible explanation is that of flow reversal [15.1–15.8] under high
recycling conditions. This is inherently a two-dimensional effect.

For illustration, consider a deep ‘slot’ divertor with solid walls along each
side of the divertor ‘plasma leg’ which terminates at the target, figure 15.1. In
this picture the separatrix lies along the axis of the ‘slot’, with the SOL on the
right side, private plasma on the left. Generally Te(x) will vary with distance
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Figure 15.1. Schematic of a deep slot divertor with separatrix along the centre line. The
temperature tends to peak on the separatrix due to power influx from the main plasma,
which makes for more ionizing conditions there. Recycling neutrals—from all parts of the
target—therefore tend to be ionized near the separatrix, resulting in ‘over-ionization’ on
those flux tubes, and flow reversal.

r across the ‘plasma leg’, being highest—and thus usually most ionizing—near
the separatrix. Therefore, neutrals recycling from the target near the separatrix
will tend to be re-ionized within flux tubes near the separatrix—but so will the
neutrals recyling from the outer parts of the target. Thus the flux tubes near the
separatrix tend to have a source excess while the outer flux tubes suffer a source
deficit. That is, in the near-separatrix flux tubes there is a stronger source of
particles than the (target) sink, while for the outer flux tubes, the opposite occurs.
Overall particle balance is satisfied by flow reversal in the source-excess tubes:
a ‘watershed’ forms at some point within the ionization region in those tubes,
figure 15.2. Between the ‘watershed’ and the target, plasma flow is toward the
target. Upstream of the ‘watershed’ flow is away from the target. The latter is the
reversed flow and would exist, in a symmetrical divertor tokamak, all the way to
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Figure 15.2. Flow reversal schematic. In the ‘over-ionized’ (hot) flux tubes, a ‘water-shed’
forms at s‖ = sws with plasma flow in region A being toward the target and away from
it in regions B and C. The ionization occurs over regions A and B. The ‘under-ionized’
(cold) flux tubes are fed by cross-field diffusion from the hot flux tubes. Thus a large scale
convective cell, involving flow reversal, is established.

the midpoint between the two targets. The reversed flow velocity would drop to
zero by the midpoint as a result of ‘drainage’ of particles via cross-field diffusion
into the outer flux tubes. The latter acts as a distributed source for the outer tubes
which are therefore characterized by parallel flow toward the target, all along their
length.

An impurity ‘flushing action’ can thus still exist even in high recycling di-
vertor SOLs. One also has an explanation for the existance of upstream, radially
decaying ne(r) profiles without need to involve an inward pinch.

(Sometimes the term ‘flow reversal’ is used [15.9] to refer to what might
better be called the ‘backflow of impurities’ [15.10] out of a divertor—due, for
example, to a strong temperature-gradient force, chapter 6. Here we will restrict
the term ‘flow reversal’ to refer to the main (hydrogenic) species.)
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Since this phenomenon is dependent on the spatial details of the ionization
pattern, and since the excess/deficit levels are usually small compared with the
target flows [15.8], it is difficult to make any simple quantitative estimates, and
the use of hydrogenic neutral codes is necessary. Experimental evidence for flow
reversal has also been reported, however [15.3, 15.11–15.19].

We now outline a simple model which provides a rough estimate for the ve-
locity in the flow-reversed region, and which serves to illustrate the basic physical
processes involved. Consider the right-hand side part of the ‘plasma leg’ shown
in figure 15.1. We will assume that the n and T profiles in the near-target region
are given. The radial profiles are exponential:

n(r) = n0e−r/λn (15.1)

T (r) = T0e−r/λT (15.2)

where n0, T0, λn, λT are given. We assume that T is constant along B on each
flux tube throughout the ionization zone. We will approximate the ionization rate
coefficient for hydrogen, figure 1.25, σvi z , as being zero for Te < 10 eV and
constant above 10 eV and thus all the ionization of the recycling neutrals occurs
in 0 ≤ r ≤ a, where a is given by T0e−a/λT = 10 eV. We model the SOL
as consisting of two flux tubes, figure 15.2: the hot tube 0 ≤ r ≤ a, near the
separatrix, with the cold tube outboard of it representing the rest of the SOL.
There are three zones along the hot tube:

(A) from s‖ = 0 to s‖ = sws , where sws is the location of the ‘watershed’, the
flow is toward the target;

(B) from s‖ = sws to send, where send is the end of the ionization region; here the
flow is reversed and increases from v‖ = 0 at sws to vend at send;

(C) from s‖ = send to the halfway point to the next target the flow is also reversed
but decreases to v‖ = 0 as the excess particles are ‘drained off’ to the cold
tube by cross-field diffusion.

We wish to estimate the value of vend, the maximum reversed velocity.
The total target flow is φt :

φt =
∫ ∞

0
�0e−r/λ� dr = �0/λ� (15.3)

where
�‖(r) = �0e−r/λ� (15.4)

�0 = n0cs0 (15.5)

λ−1
� = λ−1

n + (2λT )−1 (15.6)

section 4.4. (φt , and also the fluxes below, should be multiplied by B'/B at the
target to obtain the actual deposited fluxes per metre toroidally around the torus.)
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The total flux reaching the hot tube target is φhot
t :

φhot
t =

∫ a

0
�0e−r/λ� dr = �0

λ�

(1− e−a/λ� ) (15.7)

while the total flux to the cold target φcold
t :

φcold
t =

∫ ∞

a
�0e−r/λ� dr = �0

λ�

e−a/λ� . (15.8)

Now φhot
t is equal to the total ionization occurring within region A, while φcold

t is
equal to the total ionization occurring within region B, i.e.:

φexcess ≡ φcold
t . (15.9)

Assuming isothermal conditions along the hot tube throughout regions A and B,
then the plasma density increases from nt at s‖ = 0 to 2nt at s‖ = sws (isothermal
flow, section 1.8.2.7). Density then drops again to nend at s‖ = send, where
M = Mend, v = vend.

From momentum balance in region B:

2nt T = nendT (1+ M2
end). (15.10)

One notes that in this crude model we have now replaced the radial variations of
n and T within the hot tube with radially averaged values there. Thus particle
balance gives for region A:

nt csa = φhot
t (15.11)

and for region B:
nend Mendcsa = φexcess. (15.12)

Combining equations (15.7)–(15.12) gives an equation for Mend:

M2
end − 2(ea/λ� + 1)Mend + 1 = 0. (15.13)

Example: say λn = λT = a/ ln 3, T0 = 30 eV. Thus ea/λT = 3, ea/λ� ≈ 5.2,
φhot

t /φexcess ≈ 6.2 and Mend ≈ 0.085. Taking T ≈ 20 eV as a radially-averaged
temperature in the hot tube gives cs = 4.4× 104 m s−1 (D+ ions) and so vend ≈
3.7× 103 m s−1.

In Region C, v‖ decreases and M‖ decreases even more rapidly since T (s‖)
increases.

This crude estimate merely serves to illustrate the processes involved and
indicates that reversed flow Mach numbers may be significant.

In section 1.8.2.8 we considered the consequences of an ionization source
being close to the targets, thus apparently implying v ≈ 0 over most of the length
of the SOL—and that this in turn appeared to imply that the SOL width would
extend radially until plasma contact occurred at the walls. If this were actually
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to happen then limiters and divertors would not, in fact, limit the radial size of
the plasma, but rather the walls would—possibly an undesirable result. In fact,
flow reversal means that the high recycling SOL is not generally characterized
by v ≈ 0 and there are not SOL particles with SOL dwell times → ∞. Thus
SOL decay lengths remain finite. The quantitative implications of flow reversal
for SOL widths are considered in chapter 21.

Flow reversal velocities have been measured on a number of tokamaks, based
on the Doppler shifts of various impurity lines observed in the SOL [15.11–
15.15], and with Mach probes [15.16–15.19]. It is not necessarily the case,
as noted earlier, that the impurity ion motion is in the same direction as the
(hydrogenic) fuel ions. In some situations it can be argued that the neutral and
ionic hydrogen will be so strongly coupled collisionally that they will have almost
the same velocity along B. In such cases, measurements of the Doppler shift of
the Hβ line have been used to establish the fuel ion velocity [15.9] (although in
this particular case (fuel ion) flow reversal was not observed).

It should be noted that the presence of plasma flow away from the nearest
target may be due to processes other than the ionization-driven flow reversal
considered in this chapter. In chapter 18 it is shown that ‘return’ flows along
B in the SOL can be driven by radial and poloidal drifts (i.e., across B). The
latter flows, however, can be expected to reverse direction with a change in the
direction of B. This might also occur for ionization-induced reversed flow, but
would seem to be less likely.
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Chapter 16

Divertor Detachment

16.1 Introduction

As we have seen, sections 5.6, 5.7, a magnetic confinement arrangement that is
effective enough to contain the main, fusion producing plasma is too good for the
SOL, resulting in quite small plasma-wetted areas, and very intense plasma–solid
interactions.

It appears that we can do little to reduce n and T at the upstream end of
the SOL, i.e. adjacent to the main plasma, since the plasma conditions there are
essentially set by n and T in the main plasma; those quantities have to satisfy
the Lawson criterion [16.1], and density-limit criteria related to stability [16.2].
In the absence of volumetric power- and momentum-loss processes in the SOL,
the plasma power flux at the target and the plasma pressure there are also fixed.
We have seen, section 5.3, that the target particle flux is not fixed, however, and
quite large fluxes occur in the high recycling regime (conduction-limited regime),
sections 1.9, 5.3, 9.10, 9.11. This is a most valuable effect since it directly reduces
the target plasma temperature by ‘dilution’, thus reducing physical sputtering
yields. There is also an effect due to the volumetric radiative power loss associated
with the ionization of each recycling neutral, section 5.5. While the latter effect
is helpful in reducing the power flux density on the target, the help is limited:
every recycled neutral creates an ion–electron pair which returns to the target,
depositing the recombination energy there. As was shown in section 5.5, the
power actually deposited on the target (thermal kinetic and potential energy) is
never less than about 75% of the input power for the simple conditions assumed
there.

Impurity radiation—from either intrinsic or injected impurities—could dis-
sipate most of the power entering the SOL by volumetric loss processes, sec-
tion 5.7.3. However, the contamination of the main plasma may be unaccept-
able. We are therefore interested in finding a way to decrease the particle flux
reaching the target, for given upstream conditions in the SOL. Such a state has
been found and is called divertor detachment, section 16.3. Although it is the
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particle balance that we seek to control, we will see that—as was the case in
achieving high particle fluxes in the high recycling regime—it is the momentum
and power balances that actually have to be manipulated in order to control the
particle balance. As is always the case for a (particle) self-sustained plasma, the
particle fluxes are not directly constrained to exist at any particular level, but are
only constrained indirectly by momentum and power balances. We will return
to this point in section 16.4 on understanding divertor detachment. In the next
section we consider some relevant background material and in section 16.3 the
experimental observations of divertor detachment in tokamaks are reviewed.

16.2 Background Relevant to Divertor Detachment

The desirability of operating an ITER-like device ‘in a regime similar to MARFES
or detachment’ was recognized at an early point [16.3]. Earlier still, Tenney and
Lewin [16.4] in 1974 proposed a way to ‘extinguish’ a SOL plasma by terminating
it in a gas box maintained at high pressure, ∼1 torr. Ion–neutral collisions and
radiative loss from injected argon gas would drop the temperature to ≤ 0.1 eV
where volume recombination would take over, replacing surface recombination
as the particle sink. The solid surface would thus experience little particle and
power load.

This ‘gaseous divertor’ concept was tested by Hsu et al [16.5] in the Prince-
ton QED (quiet energetic dense) device, figure 16.1. QED consisted of a cylin-
drical vacuum vessel in which an axial magnetic field was generated by a series
of external circular coils. The plasma was generated in an arc jet and flowed
down the axis of the device through two limiting apertures for a total distance of
about 1.2 m before striking the end collector. The parallel power density in the
1–2 cm diameter beam was ∼5 MW m−2 in the central section of the machine
giving electron temperatures around 5 eV, densities around 1020 m−3 and plasma
pressures ∼600 mtorr.

Hsu showed that stable detached plasmas could be produced by puffing gas
into the ‘divertor’ chamber. Figure 16.1(b) shows the decrease in the axial heat
flux seen on calorimeter CA and the associated rise in the radial heat flux CR as
the neutral pressure in chamber D was raised. The QED results were modelled by
Hsu assuming that the dominant process for energy and momentum removal was
collisions between ions and neutrals. At sufficiently high neutral pressures the
electron temperature fell to Te ∼ 0.2 eV and the plasma appeared to recombine.

The fact that ion–neutral friction can decrease plasma particle flow to a
surface, for given ‘upstream’ conditions has been known since the 1920s from
the gas discharge work of Schottky [16.6]. (The fact that friction decreases mass
outflow for given upstream conditions was known earlier, e.g. clogged drains
in bath tubs!) We replicate here the essence of Schottky’s analysis (see also the
closley related analysis by Tonks and Langmuir of 1929 [16.7]).

Schottky considered the classical gas discharge (no magnetic field) in a long
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(a)

(b)

Figure 16.1. (a) Schematic of the Princeton QED used for exploring the gaseous divertor
concept. CA and CR are calorimeters for measuring the axial and radial heat fluxes
respectively. (b) Scaling of calorimeter signals with gas pressure in ‘divertor’ chamber
D at various distances, z, from L2 [16.5]. CA → �Z , CR → �r .

cylinder with the ionization rate taken to be, section 1.8.2.4:

Siz = ngnσvi z . (16.1)

The neutral gas density ng is considered to be a given quantity (we may note
that this is not the case in a tokamak, section 16.4). Here we will consider slab
geometry with an axis of symmetry at x = 0 and infinite planar walls at x = ±L .
The ions are impeded in their flow to the wall suffering ion–neutral collisions:
λin < L , where λin is the ion–neutral mean free path for momentum loss. The
outflow rate is taken to be given by ambipolar diffusion [16.8]:

�(x) = −Damb
dn

dx
(16.2)

where for Te � Ti ≈ Tg , as is common for low/medium pressure gas
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discharges [16.9], one has:

Damb ≈ kTe

miνin
(16.3)

[16.8] where νin in is the ion–neutral momentum-transfer frequency:

νin ≈ (kTg/mi )
1/2/λin . (16.4)

Particle balance gives:
d�

dx
= Siz(x). (16.5)

Thus one obtains the differential equation for the plasma density n(x):

d2n

dx2
+ an = 0 (16.6)

where
a ≡ ngσvi z/Damb (16.7)

is taken to be a constant.
The solution to equation (16.6) is:

n(x) = n0 cos(
√

ax) (16.8)

with n0 = n(0), the density on axis. Schottky, also Tonks and Langmuir, took
the wall to occur at the first zero of the cosine function (also the first zero of the
zeroth order bessel function for cylindrical geometry). Thus, the requirement for
the plasma ‘to fit into the space available’, section 1.8.2.6, gives the usual type of
constraint, which here is: √

aL = π/2. (16.9)

This becomes, as usual in gas discharge theory [16.10], a constraint giving the
value of Te required for steady state, in terms of the neutral density and the system
size:

σvi z(Te)/kTe = π2/(4ng L2miνin). (16.10)

A similar result was found in section 1.8.2.6 for collisionless plasma flow to the
walls. Note that while n → 0 at the wall in this model, the wall particle flux is
non-zero:

�wall = −Damb
dn

dx

∣∣∣∣
x=L

=
∫ L

0
Siz(x)dx = π Dambn0/2L (16.11)

Thus:

�wall ≈ n0

(
λin

L

)(
πkTe

2mi (kTg/mi )1/2

)
. (16.12)
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We thus have obtained the key result of gas discharge theory relevant to divertor
detachment: for given upstream plasma conditions, n0 and T0, the particle flux to
the surface �wall decreases with increasing ion–neutral collisionality:

�wall ∝ (λin/L). (16.13)

Another way to put it is that the particle confinement time τp increases as i–n
collisionality increases.

τp = N/�wall (16.14)

N =
∫ L

0
n(x)dx (16.15)

which gives:

τp = 4L2

π2 Damb
≈

(
L

λin

)(
4L(kTg/mg)

1/2

π2kTe

)
(16.16)

that is:
τp ∝ (L/λin). (16.17)

The electrons are assumed to still satisfy the Boltzmann relation, section 1.8.2.2,
giving:

V (x) = kTe

e
ln(cos(

√
ax)). (16.18)

Tonks and Langmuir [16.7] reported experimental confirmation of the equivalent
of this result for cylindrical geometry, figure 16.2. As can be seen, the model is
found to be in good accord with experiment in this regard as indeed it has turned
out to be generally; e.g. light emission from gas discharges can be reliably calcu-
lated using such models, etc. One may note from figure 16.2 that the ambipolar
electric field increases for increasing ion–neutral collisionality. As we would put
it today, this increased field is required to accelerate the ions to the Bohm speed,
section 2.3, in the presence of friction.

In 1966 Self and Ewald [16.11] elaborated further on Schottky’s
collisional model, expressing n(x), and �wall in terms of the parameter
A ≡ (1+ νin/ngσvi z)

−1; see figure 16.3. Their results reduce to that of Schottky
for νin � νi z = ngσvi z , A → 0 and also extend to the case of no νin  collisions,
A → 1. In this more refined analysis the unphysical assumption of n(L) �= 0
was avoided (by including ion inertia, which is neglected in diffusion models) but
the key features remain the same as in Schottky’s analysis of 1924, namely �wall
falls with falling A, i.e. with increasing νin/ngσvi z . It is clear that this effect
requires low temperatures where σvi z  is small.

At low temperatures other processes also set in, however, including volume
recombination which is also an important process in divertor detachment [16.12–
16.18]. Figure 3.23 shows that recombination becomes more important than
ionization at Te ≤ 1.3 eV. It is noteworthy that at Te = 1 eV, however, the absolute
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(a)

(b)

Figure 16.2. Measurements by Tonks and Langmuir [16.7] of the spatial distribution of
the plasma electrostatic potential across the radius (a = 3.1 cm) of a cylindrical gas (Hg
vapour) discharge tube. η ≡ −eV/kTe. No magnetic field. Comparison with theory for
free-fall and collisional motion (solid lines); probe measurements (points). (a) Very low
pressure, p = 2× 10−4 torr; thus long mean free path for ion–neutral frictional collisions,
λin = 31 cm � a. (b) Higher gas pressure, p = 5.4 × 10−3 torr; thus short mean free
path, λin = 1.15 cm < a. The potential drops more rapidly with radius for shorter λin/a;
thus, via the Boltzmann factor, ne(r) drops more rapidly and thus also does the ion flux
reaching the cylinder walls.

Figure 16.3. Self–Ewald theory [16.11]. Density profiles for plane-symmetric discharge,
compared with those of the free-fall (Tonks and Langmuir) and linear ambipolar diffusion
(Schottky) theories. A = (1+σvmom/σvi z). No magnetic field. The stronger the friction,
the more nse decreases, hence also the particle flux to the walls.
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recombination rate is rather low, ∼10−17 m3 s−1, so that for ne = 1020 m−3,
for example, the recombination time, τrec ∼ 10−3 sec. This is somewhat long
compared with typical SOL dwell-times and unless the parallel flow speed is
slowed significantly below sonic levels, volume recombination would not have
time to act as a significant sink [16.19]. A synergistic effect can exist, however,
between i–n friction, slowing the flow, and volume recombination [16.21, 16.20].

16.3 Experimental Observations of Divertor Detachment

One of the earliest sets of measurements of Tet , Tit , net as functions of ne for a
divertor are shown in figure 16.4, from ASDEX [16.22]. For present purposes let
us assume a tight coupling exists between nu and ne, chapter 19, and that we may
consider the horizontal axis of figure 16.4 to be nu , effectively. This figure then
encompasses all three divertor regimes, sections 1.9, 4.8, 5.3, 9.10, 9.11:

(a) The sheath-limited or low recycling regime at the lowest ne, where nt in-
creases approximately linearly with ne and Tt is fairly high, > 10 eV.

Figure 16.4. ASDEX, 1983. Scaling of the electron temperature and density measured by a
Langmuir probe, and the ion temperature deduced from Doppler-broadened CIII radiation
of the ASDEX divertor plasma with the main plasma density [16.22]. The decrease in
ned (≡ net ) at the highest density would, today, be attributed to divertor detachment.
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(b) The conduction-limited or high recycling regime where nt increases rapidly,
at least quadratically, with ne, section 5.2.

(c) The detached regime where nt saturates and starts to fall.

The significance of this startling nt -‘rollover’ was not fully appreciated at the
time, and the concept (and term) ‘divertor detachment’ was not invoked until the
early 1990s.

(It is worth noting that, while the feature nt ≈ nu is indeed a defining
property of the sheath-limited regime, this does not necessarily imply nu ∝ ne : if
significant ionization occurs in the main chamber, inside the LCFS, then nu and ne

can be coupled non-linearly as is the case for limiter operation, equations (4.49),
(4.69). Therefore the relationship between nt and nu , expected on the basis of
SOL theory, does not necessarily imply the same relationship between nt and ne.)

By the early 1990s, the detached divertor state had been observed on most
divertor tokamaks; see the early review by Matthews [16.23]. See also [16.24–
16.29]. Figure 16.5 [16.30], shows a typical result as observed on JET for an
ohmically heated discharge using no impurity injection. Detachment in this case
was achieved simply by puffing D2, figure 16.5(b), so as to raise ne slowly, (c), in a
quasi-steady-state evolution. JET was operated with ‘sweeping’ of the location of
the strike point in order to reduce local heating of the target. The sweep frequency
of 4 Hz, caused the j+sat signals, (d), (f), to show a 4 Hz structure as the strike point
was swept over them (therefore one should focus on the envelope of the j+sat plots).
The characteristic, in fact the defining, observations of detachment are:

• ‘roll-over’ and decrease of the ion saturation current, j+sat, of Langmuir
probes built into the inner and outer divertor targets, (d), (f), i.e. the
‘nt -rollover’ seen on ASDEX, figure 16.4;

• the Dα radiation from the target regions does not roll over/decrease, but
continues to increase with ne, (e), (g).

This anti-correlation of j+sat and Dα is perhaps the most characteristic feature of
detachment. It stands in contrast with the tight, positive correlation that exists
in the attached regimes (sheath and conduction limited) where indeed these two
methods of measuring steady-state in/out fluxes of neutrals/ions usually agree
in absolute magnitude to within a factor of 2, typically [16.30]; see also fig-
ure 4.10. One may note from the j+sat(ne) behaviour that the two divertors legs
pass through the sheath-limited regime ( j+sat ∝ ne) and conduction-limited regime
( j+sat ∝ (ne)

2, approximately) before entering detachment, with the inner divertor
leg preceding the outer one. A further feature of detachment is that it occurs
when the target Langmuir probes indicate low temperatures, Te ≈ a few eV or
less [16.23, 16.30].

A useful concept for quantitatively assessing when detachment starts, and
also the ‘strength’ of the detachment, is given by the degree of detachment
DOD [16.30, 16.31], defined as:

DOD ≡ φcalculated
t /φmeasured

t (16.19)
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Figure 16.5. JET [16.30]. Evolution of the measured main plasma and divertor plasma
parameters in an ohmic density ramp where the following are plotted from top to bottom:
(a) ohmic power and radiated power, (b) D2 gas fuelling, (c) main plasma line-averaged
density, (d) inner divertor ion flux, (e) average inner divertor Dα photon flux (note the
increase of Dα as the ion flux decreases, characteristic of divertor detachment), (f) outer
divertor ion flux, (g) average outer divertor Dα photon flux, (h) radius of the inner strike
point on the divertor target (4 Hz strike point sweeping), (i) neutral hydrogen flux in the
subdivertor module at the cryopump location, (j) main plasma Zeff.

where φmeasured
t is the measured flux of ions to the target, measured by built-in

Langmuir probes, and:
φcalculated

t ≡ C(ne)
2 (16.20)
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Figure 16.6. JET [16.30]. Measured and extrapolated ion fluxes to the inner and outer
divertors for an ohmic density ramp. The same quadratic law is used for the separatrix ion
flux, the peak ion flux to the divertor and the integral ion flux to both the inner and the
outer divertor.

is the calculated, extrapolated ‘attached’ target ion flux. Equation (16.20) is based
on the prediction of the basic two-point model, equation (5.14), that φt ∝ n2

u in
the high recycling regime, plus the further assumption that nu ∝ ne. C is a
normalization constant which is obtained experimentally from the low density
phase of the discharge where ne is ramped up, and where it is assumed that the
discharge is in the high recycling regime. Figure 16.6 shows some examples for
JET ohmic discharges. The DOD may be based on the ion flux to either inner or
outer target; alternatively, it can also be based on the peak in the ion flux density,
or on the total flux to the target. Figure 16.7 shows the variation in DOD, as
variously defined, for the same JET discharges as shown in figure 16.6. One of the
advantages of using the concept of DOD to quantitatively characterize detachment
is that it is based exclusively on measurements made at the targets. A problem,
however, is the necessity of assuming that nu ∝ ne, chapter 19.

A substantial drop of plasma pressure along the SOL is another key char-
acteristic of divertor detachment. This is shown in figure 16.8 for CMOD data,
employing divertor target probes and an upstream reciprocating probe [16.32].
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Figure 16.7. JET [16.30]. Measured degree of detachment, DOD, for the discharge of
figure 16.6 for the separatrix, peak and integrated ion fluxes for both the inner and the outer
divertor, versus line-averaged density. Note the large DOD reached at the inner divertor,
typical of total divertor detachment.

Ideally one would consider total pressure (ions and electrons); however, mea-
surements of T SOL

i are only rarely made and here pe is plotted as an (assumed)
indicator of total pressure behaviour. Again the three regimes are evident for
different values of ne:

(a) In the sheath-limited case, there is not much change in Te along the SOL and
pressure is also conserved.

(b) In the conduction-limited case substantial parallel Te-gradients occur but
pressure is still conserved on a field line.

(c) In detachment—which occurs here only near the separatrix—substantial
pressure loss exists along the flux tubes. One may note that ‘detachment’
should not be taken to mean total loss of plasma contact with the target—and
‘partial detachment’ is a more appropriate term [16.24, 16.32, 16.33]. For
one thing, the loss of pressure often only occurs near the separatrix, with the
outer part of the SOL remaining attached. Even in the pressure-loss region,
however, some plasma contact remains.

Further information on the loss of pressure along the SOL is shown in fig-
ure 16.9 [16.32], also from CMOD. As Te (Langmuir probe) at the target drops
below ∼5 eV, the pt

e/pu
e ratio drops from a value of ∼ unity by an order of
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Figure 16.8. CMOD [16.32]. Comparison of the electron temperature and pressure profiles
‘upstream’ and at the divertor plate for three values of ne. Divertor plate pressures are
multiplied by a factor of 2 to account for the dynamic pressure in the sound speed flow
there.

magnitude or more. At the same time the heat flux reaching the target decreases
(as calculated using sheath theory, section 2.8, together with probe measurements
of Te and j+sat).

Pressure-drop results, such as these in figures 16.8 and 16.9, would suggest
that perhaps the defining observations of detachment should be taken to be the
loss of pressure along a SOL field line. This has the advantage of not requiring
an assumption to be made of a linear variation between nu and ne, as is explicitly
required for application of the DOD concept, and is also implicit in the association
of the onset of detachment with ‘rollover’ and a decrease of j+sat as ne continues
to rise. (In principle, however, a drop in j+sat could be attributed to a hypothetical
drop in nu/ne, since the latter ratio is often unknown.) This approach has the
disadvantage, on the other hand, of requiring the availability of an upstream probe,
in addition to target probes—and assumes that one can identify the flux tube
location of the upstream probe with great precision. The latter, difficult problem
is discussed further in chapter 19.

A further characteristic of divertor detachment often observed is a change
in the ratio of certain hydrogenic emission lines from the divertor, indicative of
the presence of volume recombination, figure 3.22 [16.24, 16.34, 16.35]. In some
studies, as on JET [16.24, 16.36], the rollover of j+sat coincides precisely with the
sudden increase in the Dγ /Dα ratio, implying that volume recombination is an
essential and necessary element in divertor detachment. On ASDEX-U, however,
the recombination rate is found to be too small at the point of rollover to account
for the drop in particle sink/source rate [16.37]. Also in other studies, for example,
on JT-60U [16.38], and for auxiliary-heated discharges in CMOD with nitrogen
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Figure 16.9. CMOD [16.32]. Outer divertor conditions on the ρ = 2 mm flux
surface (at the outside mid-plane) versus electron temperature at the outer divertor target:
(a) upstream/divertor electron pressure ratio, (b) divertor electron pressure, (c) divertor
density, (d) parallel heat flux at divertor surface, inferred from sheath theory with γ = 7.

injection [16.35], recombination appears to play a secondary role in detachment
and is evidently not a critical element in the detachment process [16.35, 16.39,
16.40, 16.41].

Measurement of Tet near detachment has been problematical. It appears
that Langmuir probes are often not trustworthy in tokamaks at the very low
temperatures of detachment, ∼ a few eV, evidently due to the presence of
significant electrical resistances internal to the plasma (additional, that is,
to the probe’s sheath resistance) which form part of the complete electrical
circuit of the probe, and also to kinetic effects, see section 2.7. Fortunately,
the spectroscopic measurements of the Dγ /Dα ratio [16.24], and other
spectroscopic information [16.34, 16.35] provide rather precise measurements
of Te in detached plasmas and confirm values of Te = 0.4–1.5 eV [16.34,
16.35]. On DIII-D [16.21] Thompson scattering measurements provided
separate confirmation of values of Te = 0.8–2 eV in the target region during
detachment, while Langmuir probes in the target register erroneously high
values of Te, two to three times higher [16.42]. On DIII-D the onset of
detachment can coincide with an abrupt drop in the divertor Te, accompanied
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Figure 16.10. DIII-D [16.43]. (a) The ratio of Lα to Lβ as measured by a vertical view
of the divertor from a VUV spectrometer. The lower ratio after gas puffing indicates that
plasma recombination is responsible for a significant fraction of the deuterium radiation.
(b) The electron temperature of the divertor as measured by Thomson scattering. The
higher-temperature points after the transition to detached operation are due to ELMs
occasionally captured by the diagnostic.

by a change in the hydrogenic line ratios indicative of the change from an
ionization-dominated plasma to a recombination-dominated one, figure 16.10
[16.43]. The Thompson scattering diagnostic on DIII-D provides a spatially
resolved picture of ne, Te and pe in a detached divertor plasma, figure 16.11
[16.44]:

(a) near the separatrix: the temperature remains very low, ∼1 eV, over a very
considerable (parallel) distance, extending from the target to near the X-
point; over this region ne and Te rise (going upstream), implying the exis-
tence of an ‘ionization front’ at some distance upstream from the plate where
Te finally starts to rise and ne is also large;

(b) for flux tubes further out: here the pattern of ne(s‖), Te(s‖), pe(s‖) is more
like that of attached plasmas with pressure approximately constant along B,
and ne falling and Te rising, figure 4.17.

The fact that Dα radiation tends to increase during detachment, even though j+sat
is falling, may be due less to the increased efficiency of the Dα-emission process
at very low Te, figure 3.29, than to the contribution of Dα from recombination-
driven processes, figure 3.32. Overall, the most intense radiating region during the
high recycling phase is near the targets, but as detachment proceeds the radiating
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Figure 16.11. DIII-D [16.44]. Along-B profiles of electron density, temperature,
and pressure for two values of ψ (flux surface identifier) during the L-mode phase of
deuterium-induced radiative divertor operation: (a) near the separatrix, ψ = 1.000–1.002;
and (b) further out in the SOL, ψ = 1.010–1.020. Note that near the separatrix substantial
pressure drop (factor of 4–5) is observed between the X-point and the target plate. Pressure
is roughly constant further out in the SOL plasma.

zone tends to move away from the targets and settles near the X-point [16.29,
16.30, 16.33, 16.35, 16.41, 16.44, 16.45] where it can form an intense, localized
radiation zone like a MARFE [16.46], chapter 22. On DIII-D a tangential TV sys-
tem provides 2D images of Dα , Dγ and CIII radiation in the divertor and X-point
regions, from attached to (partially) detached conditions [16.47]. In detachment,
recombination-dominated hydrogenic radiation is strong near the outer target,
with ionization-dominated hydrogenic radiation occurring further upstream, part
way to the X-point and then strong CIII radiation near the X-point. This location
of these different types of radiation are as expected from atomic physics, given
values of Te ≤ 1 eV near the target (strong hydrogenic recombination), Te ∼ 5 eV
further upstream where hydrogenic ionization increases, and Te ∼ 6–8 eV near
the X-point where excitation of CIII lines is strong.

A further feature of detachment is that the neutral (D2) pressure in regions
adjacent to the divertor leg does not decrease as j+sat falls, but continues to in-
crease just as the Dα emission does [16.30, 16.33]. This apparently contradictory
feature is returned to in the next section. On DIII-D, D2 puffing induced detach-
ment and the measured (infrared camera) power received by the targets dropped
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Figure 16.12. DIII-D [16.33]. (a) Heat flux across the divertor floor as a function of the
major radius coordinate (R) at two time slices for shot 79 342: (i) pre-puff (t ≈ 2.45 s)
and (ii) after ≈ 0.5 s of D2 injection (t ≈ 3.0 s). The arrows represent the inboard and the
outboard divertor separatrix strike points determined by the EFITD magnetics code. (b) An
expanded view of the heat flux profile under the outboard divertor leg. A small outward
shift in the outboard divertor separatrix strike point occurred during deuterium injection
(shaded area).

substantially with peak heat flux densities decreasing by a factor of 3–5, fig-
ure 16.12 [16.33]; about half the power loading is radiative [16.49]. The attractive
implications for reactors are evident.

In H modes, if the plasma is detached between ELMs, it tends to re-attach
during the ELM [16.31, 16.48], evidently a ‘burn-through’ effect.

16.4 Understanding Detachment

16.4.1 Introduction

Divertor detachment clearly involves quite low temperature plasma, T ≤ few eV,
where a rich complexity of atomic/molecular processes occurs, not otherwise
encountered in fusion devices. It seems unlikely, therefore, that any simple,
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universal model for detachment will be valid. It appears that ion–neutral friction
may generally play an important role. Volume recombination appears always
to be present, although it apparently does not necessarily play a central role.
Understanding of the importance of supersonic flow, chapter 14, drift effects,
chapter 18, radiation trapping, section 3.5, thermal instability [16.45, 16.50], or
molecular activated recombination, MAR [16.51–16.53], etc is evolving. It seems
likely that different detachment scenarios exist, each with a different combination
of these basic physical effects (and possibly others not yet identified) controlling
the detachment. Here we attempt to identify some of the factors and constraints
which evidently play a role in explaining detachment.

16.4.2 Low Plasma Temperatures Necessary but Not Sufficient for Detach-
ment

Experimentally it is clear that Tt ≤ few eV is necessary for divertor detachment
to occur. The simplest way to induce detachment is to raise ne (thus presumably
nu also, chapter 19) and from the basic two-point model, 2PM, section 5.2, i.e.
simply from conservation of momentum and power along flux tubes, we obtain
the result that Tt ∝ n−2

u , equation (5.10). The same basic 2PM, however, also
shows that low Tt is not sufficient:

• Since �t = q‖/γ ekTt , the particle flux density reaching the target actually
rises, the opposite of the defining property of detachment which is that j+sat,
i.e. �t falls.

• Pressure is still conserved along each flux tube, which is not in accord with
the very large drops observed.

• All of the power into the SOL still reaches the target, which is also not in
accord with the observed substantial reductions.

Clearly volumetric losses of momentum and power are involved in detachment.
We therefore consider this next in terms of the extended 2PM, section 5.4.

16.4.3 The Necessity of Volumetric Momentum and Power Losses

Since the defining characteristic of detachment is often taken to be a drop of
particle flux to the target, the first explanation of detachment that comes to mind
involves a replacement of the surface recombination sink by a volume recombi-
nation sink. Such a thought, however, is based on the implicit assumption that the
particle source is fixed, given. This is an incorrect notion, which may originate
in the uncritical assumption of a close equivalence between SOL particle and
power balances. The power source for the SOL is essentially given, of course. In
steady-state operation, however, the particle balance involves self-sustained recy-
cling which is free to settle down at any level of intensity whatsoever, thereafter
resulting in the situation: source gives sink, gives source, gives sink, etc. In such a
situation the intensity of the recycle rate is therefore set by the constraint that the
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other conservation equations—for momentum and power—have to be satisfied.
Since the conservation equations are coupled, this then indirectly constrains the
particle balance, �t . This constraint does not, in any way, rule out volume recom-
bination as a factor in detachment, obviously. Recombination is not, however,
logically necessary in order to explain a decrease in particle recycling.

We may recall that the two-point model, 2PM, chapter 5, is the most basic
form of the simultaneous conservation of particles, momentum and power. Let
us consider the extended 2PM, section 5.4, and the two generic correction fac-
tors fmom and fpower. (We distinguish here between, on the one hand, generic
processes involving loss of momentum or power, which we have characterized
by fmom and fpower, and on the other hand, specific physical processes, such
as collisions of ions with neutrals, volume recombination, etc. The latter physical
processes may involve one or other or both of the generic processes.) First we will
consider if momentum loss, i.e. a drop in fmom, on its own, would be sufficient to
explain the main observed features of detachment:

(a) The drop in �t : from equation (5.29) we have that �t ∝ f 2
mom and so, indeed,

momentum loss would have a very strong effect on reducing particle flux to
the target.

(b) The drop in pt : since by definition pt ∝ fmom, then obviously the loss
of plasma pressure would also be explained. One would also have an ex-
planation, in principle, of the observation that the neutral pressure near the
divertor continues to increase with ne in detachment: the momentum of the
plasma is transferred to the neutrals, increasing their pressure.

(c) The drop in qt : the power reaching the target, however, would not drop,
equation (5.19).

Thus, momentum loss acting on its own would not be sufficient to explain the
principal features of detachment.

Next we consider whether power loss, i.e. a drop in (1− fpower), on its own
would be sufficient:

(a) The drop in �t : from equation (5.29) we have that �t ∝ (1− fpower)
−1 and

so �t would actually rise with increased power loss (this is essentially the
same effect on �t as reducing Tt ).

(b) The drop in pt : there would be no drop.
(c) The drop in qt : since by definition qt ∝ (1 − fpower) equation (5.19), then

obviously the power drop would be explained.

Thus, volumetric power loss acting on its own would not be sufficient to ex-
plain the principal features of detachment either. (While some authors have con-
tended otherwise [16.41], i.e., for the idea that one can ‘power-starve the SOL
into detachment’, such arguments are not based on satisfying all three balances
simultaneously—particle, momentum and power—as is involved in the 2PM anal-
ysis employed above. If considerations are restricted to power balance alone,
then it is readily seen that if the power reaching the recycling region is reduced,
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then ionization, hence also �t , must drop. The question of how that can occur
consistently with momentum balance, however, is left begging.)

Evidently both volumetric power and momentum loss processes are required
to explain detachment. We may note, however, that these two loss processes com-
pete with regard to their influence on �t : power loss raises �t while momentum
loss reduces �t . The fmom and fpower factors are generic; the actual physical
processes causing the volumetric momentum and power losses, for example ion–
neutral collisions or volume recombination, usually involve both types of loss.
This further complicates any detailed explanation of detachment and simple gen-
eralizations will probably not be valid. The balances may be delicate and are
likely to ultimately hang on the details of the basic processes, and on the specific
geometry involved, etc. This means that any analytic models of detachment will
be of only limited use. Computer codes will only be able to do significantly
better if they incorporate correctly all the details of the basic physical processes
involved; it is not clear if we currently know how to do that.

16.4.4 The Effect of Volume Recombination Acting Alone

In the last section we considered generic volumetric momentum and power loss.
Next we consider actual physical processes which could cause such losses. In this
section we consider volume recombination. In the following section we consider
ion–neutral collisions. Volume recombination is clearly the first candidate to
consider for explaining detachment. Experimentally its presence is directly ob-
servable through the increased Dγ /Dα line ratio, section 16.3, and it is evidently
always present during detachment. Unlike ion–neutral collisions, it can directly
reduce �t by replacing the surface particle sink with a volumetric particle sink.
Also, as just noted, it can also in principle, reduce �t indirectly through volumetric
loss of momentum and power (which losses would, however, have to occur in the
right ratio, see equation (5.29); the latter equation does not include the direct
effect of volume recombination in removing particles). At the same time, the loss
of pt and qt could also be accounted for by volume recombination.

The main cause of the power loss is unlikely to be the volume recombination
process itself. While it is true that sufficiently strong volume recombination would
reduce the power actually reaching the target (as thermal, kinetic and potential
energy), since volume recombination occurs at T ≤ 1 eV, most of the SOL input
power was probably lost before it reached the region of volume recombination
itself. Radiative processes in the SOL, both hydrogenic and impurity—occurring
further upstream where T is higher—probably removed most of the SOL input
power to achieve the low temperature needed for volume recombination to be
possible. One notes from equation (5.25) that Tt ∝ (1 − fpower)

2n2
u , and so

power loss is as effective at reducing Tt as is raising nu(ne). It is true that the
volume recombination process itself involves some radiative electron cooling;
however: (a) much of the radiation may be trapped, section 3.5, and (b) three-body
recombination, which appears to be the dominant process [16.34], retains some
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of the potential energy of recombination in the electron thermal energy content
of the plasma (indeed, when three-body recombination dominates, the electron
temperature can even rise somewhat in the recombining region, as seen in code
results [16.54]).

There is also the direct loss of the thermal energy content of the recombining
ions, which goes into neutral heating; however: (a) much of this energy is re-
captured by the plasma when those neutrals are re-ionized, rather than reaching
the walls as true energy loss, and (b) the temperature is so low in the recombining
region that there may be little thermal or kinetic content left in the plasma anyway.

The effect of volume recombination on reducing �t would appear to be
straightforward. We will, however, next show that the total of the volume plus
surface recombination rate, for fixed upstream conditions, would not be expected
to decrease with the onset of volume recombination unless some other mechanism
also removes momentum from the plasma.

In section 1.8.2.3 it was shown that a volumetric particle source, such as
ionization, drives a plasma toward sonic speed. The analysis for a volumetric
particle sink essentially involves changing the sign of Sp in equation (1.31) (other
less important changes also occur, see section 16.4.6) showing that volume re-
combination drives a flow away from sonic speed. Since detachment does not
involve complete loss of plasma contact with the solid surface, the Bohm criterion
still applies at the sheath edge and so the flow must still achieve |Mt | ≥ 1 there.
The only simple way to meet all these constraints is that in the hotter, ionizing
region upstream of the volume recombination zone, the plasma must accelerate
to |M | = 1 at the interface between the ionizing and recombining zones. In
the recombining zone, the flow would then be expected to accelerate further to
supersonic speeds and subsequently enter the sheath at |Mt | ≥ 1. Thus the basic
flow constraints can be satisfied that |M | is driven toward unity in regions where
there are particle sources, and driven away from |M | = 1 in regions where there
are particle sinks.

Consider now the location of the interface between the volumetric source and
sink regions where |Mint| = 1: so far as the plasma flow upstream of this interface
‘knows’, this could just as well be a sheath edge in front of a solid target. (Strictly,
the power flux density across the interface would be slightly smaller than across
a sonic sheath edge and so the two sonic interfaces would not appear as being
perfectly identical to the flow.)

Thus the two-point model results of section 5.2 would essentially hold, but
now relating the upstream conditions of pu , q‖, etc to the conditions at the inter-
face. Therefore the particle flux crossing the interface would obey the usual 2PM
result, equation (5.13)—and there would be no decrease of �int but rather just a
continuance of the standard high recycling result that �int ∝ n2

u , �int ∝ n2
e . �int,

of course, represents the total source/sink. Thus the total recycling flux would
continue to grow with n2

e , although �t could decrease.
There is not, at present, a great deal of experimental information on total

recycling intensities, and in some tokamak detachments it may well be the case
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that the total recycling source/sink does in fact continue to grow with n2
e ; in most

cases all that is known experimentally is that j+sat, �t decrease. On CMOD,
however, measurements of the total intensity of source/sink have shown cases
where the total drops substantially and a simple swapping of sinks is clearly
not what is involved [16.35, 16.39, 16.41]. It therefore appears that volume
recombination is neither necessary nor sufficient on its own to explain the basic
features of divertor detachment. It is nevertheless apparently usually present
during detachment and thus clearly plays a role in the process. It may be that
it does this in a synergism with some other process, such as ion–neutral friction,
see section 16.4.6. It may also be the case, of course, that for some particular
cases of detachment it is, in fact, a necessary and sufficient explanation. Simple
generalizations appear to be questionable regarding detachment.

To sum up the main conclusion from this ‘gedanken experiment’, where a
scenario has been postulated involving volume recombination alone: the flow
Mach number, Mint, is expected to be unity at the interface between ion source and
ion sink, and thus, no significant departure is anticipated from the basic feature
of the high recycling regime that source–sink rates increase rapidly with increase
in nu , ne. We are therefore motivated to look for a mechanism which can cause
Mint to decrease below unity, so as to give a decreased source–sink rate, even in
the face of increasing nu , ne. One candidate is ion–neutral friction, which can
provide such a mechanism in a divertor, next section.

16.4.5 The Effect of Ion–Neutral Friction Acting Alone

We have seen from the gas discharge theory of Schottky and others, section 10.4,
that ion–neutral friction can reduce the plasma particle flow to a solid bound-
ary surface for fixed upstream plasma conditions, i.e. can increase the particle
confinement time. These studies are clearly relevant to divertor detachment, but
there are also major differences which prevent any direct application of these
non-tokamak findings to the detachment phenomenon in divertors. The principal
difference lies in the origin and properties of the ‘neutral cushion’ involved. In
gas discharge theory, almost always (with rare exceptions [16.55]) the gas density
can be taken as a fixed, given, parameter independent of the plasma density or
temperature. Thus the ‘neutral cushion’ is fixed and the neutral density given; it
is also assumed that the neutrals have no directed velocity themselves. In QED,
section 16.2, the plasma source and the ‘neutral cushion’ were made completely
independent of one another by use of a separate, differentially pumped chamber,
figure 16.1(a). By contrast, in a divertor the ‘neutral cushion’ is self-sustained:
the neutrals doing the cushioning of inflowing ions will all become ionized them-
selves, and will then in turn be cushioned on their way out of the plasma by
other recycling neutrals. Clearly the cushioning effect is constrained in a way that
does not occur in discharges or QED. This raises the question whether the neutral
cushioning effect can be strong enough actually to remove the plasma momentum.
(Aside: note that the term ‘self-sustained’ as here applied to the cushioning effect,
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refers to something different from the previous use of the term as applied to
particle balance. A gas discharge is self-sustained in a particle balance sense,
but not in a cushioning, momentum sense.)

The relation between temperature and neutral density is also different in
these different systems. In QED, Te was set by the arc jet conditions totally
independent of the gas density in the cushion. In a gas discharge Te is largely
set by the value of the neutral density (parameter), section 1.8.2.6, section 16.2.
One of the most basic objectives of gas discharge modelling is to identify this
dependence which, as we have seen, derives largely from particle balance. In
the divertor case, the relation between Te and the neutral density is not primarily
a consequence of particle balance, but rather of momentum and power balances:
Tt is partly controlled by upstream pressure and power input, equation (5.9), and
partly by volumetric momentum and power losses, equation (5.26). Secondly, in
the first two devices Te is either constant spatially or the spatial variations are of
no importance, while in detached divertors the fact that Te varies strongly along
the field lines is important. The latter means that ionization, ion–neutral friction
and volume recombination need not—and almost certainly will not—occur at the
same places, nor at the same temperatures. Since the relation between temperature
and neutral density is central to the processes involved in divertor detachment, it
is clear that the findings from gas discharge studies, and research using plasma
simulators such as QED, are only indirectly applicable to divertors.

We therefore start again and consider the case of a neutral cushion, self-
sustained by the neutrals recycling from a solid surface [16.19, 16.56]. Since a
description for a self-consistent gas target is sought, it is appropriate to consider
the fate of an individual recycling neutral—and specifically the number of elastic
collisions it experiences before being ionized—rather than the neutral density in
the divertor, as the parameter that governs the model. We will also take Te as a
free parameter since it is not rigidly linked to the neutral density, as it is for gas
discharges.

One is seeking an operating condition where there are copious elastic (one
also includes charge-exchange collisions in a broadened definition) collisions be-
fore ionization, since a recycling neutral that is ionized immediately upon entering
the plasma causes no (collisional) momentum loss to the plasma flow. One is
therefore drawn to consider low plasma temperatures—which, of course, is also
suggested by the low Te measured in detachment. The controlling parameter is N ,
the number of elastic/charge-exchange collisions a recycling neutral experiences
before ionization. For entry into an infinite plasma at constant Te and Ti , the value
of N (per recycling atom) is roughly N = σvcx

i–n/σvi z . A more refined estimate
is given by [16.19]:

N = (σvi z + σvdis)
−1

[
1

2
σv

D2
i–n + σvcx

i–n

(
σvdis

σvi z

)]
(16.21)

where σvi z is the ionization rate (taken to be equal for atoms and molecules),
σvdis is the dissociation rate, σv

D2
i–n is the elastic collision rate for D2 on D+
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Figure 16.13. N versus Te (eV). N is the calculated number of elastic and cx
collisions before ionization for hydrogen molecules entering a uniform, infinite plasma
at temperatures Te and Ti [16.19].

and σvcx
i–n is the charge exchange rate [16.57, 16.58]. The latter two quantities

are calculated assuming the velocity of the encounter is dominated by the ion
temperature. Atom production from dissociation of molecular ions has been
neglected. The results are shown in figure 16.13. Clearly, in a uniform plasma
at low Te, for example less than 3 eV, the number of collisions that each recycling
neutral experiences before ionization would be quite large, even more than 100.

We should note, however, that N is an upper limit to the effective number
that would actually occur: as already pointed out, the ionization is not likely to
occur at low temperatures. Rather, most of the neutrals will travel through the
cool cushion, to be ionized further upstream, above an ionization front where Te

is higher, figure 10.1.
In order for a neutral to remove an ion’s momentum totally in a collision, the

neutral must, on average, have no velocity in the same direction as the ion velocity.
Neutrals which have not suffered an ion collision since they last had contact
with a solid surface will have an approximately isotropic velocity distribution
and so such neutrals will, on average, remove most of the ion’s momentum when
they do have their first i–n collision. After that collision, however, the neutral
will be moving with approximately the plasma flow speed and any subsequent
collisions of that particular neutral with ions will not be effective at removing ion
momentum. In order for all i–n collisions to be effective at removing momentum,
the neutral would have to ‘re-visit’ the solid surfaces between each collision,
thus transferring the momentum out of the system. (The latter considerations
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apply when neutral–neutral collisions are infrequent; for high neutral densities
the effectiveness of i–n collisions at removing plasma momentum depends on the
subsequent transfer of momentum to the walls by neutral–neutral collisions, i.e.
on neutral viscosity [16.59, 16.60].)

Thus we should only extract the basic, qualitative point from figure 16.13
that low plasma temperatures, ≤ 5 eV, are needed to cause significant ion–neutral
friction.

Next we consider how plasma flow will be affected by the presence of a
uniform density of neutrals, nn—that is neutrals which have no average velocity.
This is analysed in section 10.4 for the situation of present interest, namely,
conditions so cold as to give no ionization in the friction (cushion) zone. The
ionization source of particles is taken to exist further upstream where conditions
are hotter. The two regions are separated by an ‘ionization front’. The result is that
�t is reduced from the value it would have had in the absence of i–n collisions,
�t,ref, (i.e. for fixed upstream conditions) according to equation (10.21), that is
approximately:

�t/�t,ref = cs/Lcushionν
mom
in ≈ λmom

in /Lcushion (16.22)

0.5

–0.5

1

–1

Mf

nt/nf

nt/ncushion

N/100

Figure 16.14. N , nt/ncushion and nt/n f as a function of M f for a neutral cushion [16.19].
nt , n f are the plasma densities at the target and ionization front, see figure 10.1. ncushion
is the average plasma density in the cushion region and M f is the flow Mach number at
the ionization front.

Copyright © 2000 IOP Publishing Ltd.



Understanding Detachment 501

where Lcushion is the length of the neutral cushion, figure 10.1, i.e. the region
within which there is a constant neutral density, nn causing momentum loss but
no ionization. The ion–neutral momentum collision frequency νmom

in :

νmom
in = nnσvmom

in . (16.23)

Equation (16.22) shows that the reduction in particle flux to the target is approx-
imately equal to the inverse of the number of mean free paths of the neutrals for
ion–neutral momentum collisions within the cushion.

We now relate the collision parameter cs/Lcushionν
mom
in to N . The average

dwell-time of an ion in the cushion is:

τcushion = ncushionLcushion

nt cs
(16.24)

where ncushion is the average plasma density in the cushion, and one can calcu-
late nt/ncushion in terms of M f , the Mach number at the ionization front, from
equation (10.20), figure 16.14. The number of collisions experienced by each ion
in traversing the collisional zone is νmom

in τcushion, which is also the number N of
collisions for each neutral, assuming complete recycling and steady state.

Thus:
N = (ncushion/nt )(Lcushionν

mom
in /cs), (16.25)

see figure 16.14. Finally then we obtain �t/�t,ref as a function of N , figure 16.15.
One thus sees that at low temperature, where N is large, there can be a substantial
reduction in target particle flux due to ion–neutral friction.

As noted, the question of the effectiveness of the i–n collisions is an impor-
tant one, but, unfortunately, is not readily assessed by simple analytic modelling.

Another factor making impossible any strong generalizations about the role
of i–n friction in detachment is the competition between momentum and power
loss, as these influence �t , equation (5.29). As with volume recombination, last
section, most of the power loss probably occurs upstream from the cushion and
will usually be due to hydrogenic and impurity radiation—with the momentum
loss occurring nearer the target and being due to i–n collisions. When such
different mechanisms are in competition, any simple assessment is difficult. Ex-
perimentally it is known that, as the divertor evolves from high recycling into
detachment, the power reaching the target drops, i.e. (1− fpower) does decrease,
figure 16.12. Also it is known from experiment that large pressure losses set in,
i.e. fmom decreases, figure 16.9. It does indeed appear to be the case experimen-
tally that the relative momentum loss is greater than the relative power loss. (It is
to be noted that there is already significant power loss in the high recycling regime
before detachment, but no momentum loss; it is the changes in these factors that
are involved in explaining detachment.) In experiments, however, many effects
than other i–n friction may be occurring in detachment, and it is not warranted
to interpret these observed changes as conclusive evidence that i–n friction is
the principal cause of the observed drop in �t ( j+sat). Computer modelling can
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Figure 16.15. The decrease in particle flux density reaching the target as a function of N ,
the number of elastic collisions per ionization [16.19].

provide guidance, but since balances may be delicate and the number of important
processes may be large, it is not certain that the basic physics processes are being
included with adequate accuracy.

16.4.6 The Combined Effect of Ion–Neutral Friction and Volume Recombi-
nation on Detachment

When friction and volume recombination occur in the same region, we have for
particle conservation:

d

dx
(nv) = Srec = −n2σvrec (16.26)

while momentum conservation gives, section 10.4:

d

dx
[n(2kT + mv2)] = −mvSrec − mv(1− vn/v)Smom (16.27)

where:
Smom = nnnσvmom. (16.28)

It may be noted that the frictional term used here [16.39] is slightly different from
the one employed in section 10.4: here allowance is made for the fact that the
neutrals have some average velocity vn in the flow direction, thus reducing the
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effectiveness of the ion–neutral collisions for momentum transfer by the factor
(1 − vn/v). Assuming isothermal conditions and defining Mach number M ≡
v/(2kT/mi )

1/2 as before, then gives:

dM

dx
= − Srec

(1− M2)ncs
+ M2(1− Mn/M)Smom

(1− M2)ncs
. (16.29)

We may note a number of important facts from equation (16.29):

(a) The process of friction, acting alone, is consistent with a flow situation where
the flow speed is changing toward sonic. Since in the ionization region,
upstream of the friction region, the Mach number increases from zero, and
since the Bohm criterion requires that |Mt | be at least 1, the effect of friction,
by itself, will be to lower the Mach number at the interface between the
ionization region and the friction (‘cushion’) region. In section 10.4 it was
shown, equation (10.16), that the smaller this interface Mach number is, the
smaller the particle density is at the point where |M | = 1, thus the smaller
the particle outflow is. The effect of friction, by itself, therefore is to reduce
the total sink rate, and hence in steady-state recycling conditions, the source
rate. This same point was made earlier.

(b) Volume recombination, acting alone, is consistent with a flow situation
where the flow speed is changing away from sonic. A situation where
|Mt | ≥ 1 is a required boundary condition means that the Mach number
at the interface between the ionization zone and the volume recombination
zone must be supersonic. Since information cannot be transmitted upstream
in supersonic flow the total source and sink will therefore be fixed, for fixed
upstream conditions, irrespective of what occurs downstream of the sonic
point. This same point was also made earlier.

Turning to the case where both friction and volume recombination are
present: at least for the simplest detachment scenarios, one requires a subsonic
interface between source and sink, which then requires that the ‘friction be
stronger than the volume recombination’; specifically:

Srec

Smom M2(1− Mn/M)
< 1 (16.30)

is required. This criterion is approximately:

Srec

Smom(1− Mn/M)
= σvrec

(1− Mn/M)(nn/n)σvmom
< 1. (16.31)

This ratio has been calculated [16.39] for the specific example of Te = Ti = 1 eV,
nn/n = 0.1 and is shown in figure 16.16 against n with Mn/M treated as a
parameter. As can be seen from this figure, so long as the neutrals are not actually
moving at virtually the plasma speed, i.e. so long as Mn/M ≤ 0.99, then this
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Figure 16.16. [16.39]. The ratio R of recombination rate to friction rate, equation (16.31),
for various conditions. vn is the average neutral velocity in the parallel direction. v is
the plasma velocity in that direction. n is the plasma density. For the particular case of
Te = Ti = 1 eV and nn = 0.1 n.

criterion will be satisfied. The plasma flow will then remain subsonic up to the
target sheath edge. The contribution of volume recombination to the pressure loss
will be small compared with that of the i–n friction. As density drops, due to
the cushioning and the volume recombination, the latter process ‘turns itself off’
rather quickly compared with friction, since three-body recombination is such a
strong function of density.

It is also clear from equation (16.29) that the effect of volume recombination
is to generally oppose the effect of i–n friction (we saw earlier that these two
processes exert opposite influences on Tt ). This means that the tendency of i–n
friction—which is to reduce the Mach number entering the cushion, M f , thus
reducing the total source/sink (equation (10.16))—is offset to some degree, or
even completely, by the effect of volume recombination. This evidently occurs
in some code studies of detachment [16.20]—see also the code results of the
next section. That is, compared with i–n friction acting alone, the additional
effect of volume recombination is to raise M f , i.e. to raise the strength of the
total source/sink. Of course, just as with volume recombination acting alone in
a supersonic region, section 16.4.4, there is still some degree of replacement or
swapping of the surface sink for a volume sink and so �t ( j+sat) could very well
decrease by adding volume recombination to i–n friction.
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16.4.7 2D Fluid Code Modelling of Divertor Detachment using the UEDGE
Code

The UEDGE code is a 2D multi-fluid plasma code, chapter 13, which can be run
with a variety of geometries [16.54, 16.61, 16.62]. Parallel transport is assumed
to be classical with flux limits imposed to simulate kinetic effects, chapter 26, and
prevent excessive parallel thermal transport in steep temperature gradient regions.
For the present code runs, perpendicular transport was assumed to be anomalous
with spatially constant transport coefficients: D⊥ = 0.5 m2 s−1, χ⊥i = χ⊥e =
0.7 m2 s−1. Neutrals which arise from recycling of the ion current to the plate
were also treated as a fluid with the neutral diffusivity determined by charge
exchange and elastic scattering rates. An equation for the parallel momentum
of the neutral fluid was included to permit determination of momentum transfer
from the ions to neutrals via charge exchange.

The UEDGE code can be run in either a steady-state or time-dependent
mode. In the steady-state mode, the particle, energy and momentum balance
equations are solved with the time derivative terms set to zero. The solution is
said to be converged when the sum of all residuals is less than a specified constant,
typically 10−8. The solutions described here were obtained in the steady-state
mode.

Although the UEDGE code is capable of properly handling the full geometry
of a divertor tokamak, here a simple slab model was chosen to examine the
effect of charge exchange friction and volume recombination on detachment.
The plasma is 5 cm thick radially (the y-direction), and 1 m poloidally (the x-
direction), as shown in figure 16.17. The toroidal field is assumed constant at
5.0 T, and the poloidal field is constant at 0.3 T, giving a field pitch angle of
3.43 ◦. The field line length is 16.67 m.

Main plasma 

Figure 16.17. UEDGE code calculation [16.54]. Slab geometry used for the analysis.
Dimensions are in metres, the toroidal field is 5.0 T, and the poloidal field 0.3 T. Total
radial (y) extent = 0.05 m; total poloidal (x) length extent = 1 m.

UEDGE was run by fixing the temperature at the main plasma boundary
(y = −0.01 and 0.0 ≤ x ≤ 0.75), and the behaviour of the divertor plasma was
examined as this temperature was varied. Increasing the main plasma temperature
is equivalent to increasing the power flowing into the SOL. Te = Ti was assumed
at the inner boundary (y = −0.01 m) for all runs reported here. The plasma
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density at the boundary was assumed to be 0.7 × 1020 m −3, and was held fixed
for all runs. The radial temperature gradient was assumed to be zero, and the
radial particle flux was likewise assumed zero, at the outer wall and the private
flux wall. The plasma boundary conditions at the entrance to the sheath, i.e. the
end of the calculational domain, were essentially the standard sheath conditions,
section 2.8. If the plasma flow velocity upstream from the divertor plate was
greater than Mach 1, then a zero gradient boundary condition (dv‖/ds = 0) at the
plate was assumed, rather than forcing Mach 1. (See chapter 14 on the matter of
not fixing the exit Mach number, other than requiring that it be sonic/supersonic.)

In order to elucidate the roles of ion–neutral friction and volume recombi-
nation, it was arranged that the code could turn either process off/on. For fixed
upstream T sep

u = 25 eV the results were as follows.

Volume It Iioniz Irec/Iioniz Tet

Friction recombination [A m−1] [A m−1] [eV]

off off 453 453 0 0.58
off on 463 464 0.003 1.09
on off 366 366 0 0.56
on on 243 476 0.49 0.61

It is the total particle flux (multiplied by the elementary charge e = 1.6×10−19 C)
to the target per metre of depth into the page of figure 16.17, i.e. per metre
toroidally. Irec is the total volume recombination rate and Iioniz the total ionization
rate. As can be seen, volume recombination by itself causes no reduction of
particle flux to the target for this case (indeed, a slight increase occurs); (three-
body) recombination is particularly ineffective here because of a slight heating
effect on the electrons.

Friction by itself causes a drop in the target particle flux and the ionization
rate, i.e. the particle confinement time rises due to the ‘partly plugged drain’
effect. Figure 16.18 shows the Mach number as a function of (poloidal) distance
approaching the target. The effect of friction is seen to reduce the flow speed near
the target from supersonic to very low subsonic—which is the plugging effect.
One may also note from this figure that recombination by itself still involves
supersonic flow near the target, as anticipated from the simple analysis of the
last section.

The combination of friction with volume recombination causes a substantial
drop in the target flux. For the conditions here, the total ionization source is not
reduced, but even rises slightly. This is associated with a Mach number which
can be seen to rise slightly, figure 16.18—the effect referred to in the last sec-
tion, namely that recombination opposes the effect of friction on Mach number.
Evidently, the code results presented here are not universally representative of
detachment conditions, since they would not correspond to the cases observed in
CMOD of a drop in the total source–sink rate [16.35] (in the latter experiment
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Figure 16.18. UEDGE code calculation [16.54]. Poloidal profile of Mach number for
the four cases with varying assumptions of charge-exchange and recombination effects.
Squares: friction and recombination off. Diamonds: friction off, recombination on.
Crosses: friction on, recombination off. Circles: friction and recombination on.

the power entering the SOL decreased as detachment proceeded, which would
correspond here to reducing the upstream boundary temperature—which was in
fact fixed in these code runs).

It is illuminating to consider also the spatial distribution of ionization and
recombination, figure 16.19, and also of Te, figure 16.20. For the code run with
both friction and recombination turned off, the ionization region ends with ap-
proximately sonic flow, followed by acceleration to supersonic conditions. Te(s)
remains rather constant from the end of the ionization region to the target, fig-
ure 16.20; here most of the parallel heat flow is carried by the powerful convected
heat flux characteristic of sonic/supersonic flow, and conduction contributes little,
hence ∇‖Te ≈ 0. With both friction and volume recombination turned on, the
source/sink interface occurs at Lpol ≈ 0.97 m, where the flow is quite subsonic,
|M | ≈ 0.1. From this point to the target the parallel heat flux is again carried
virtually entirely by convection [16.42–16.44, 16.63]. One may note the contrast
between these T (s)-profiles which are flattened by convection near the targets,
and the extremely steep T (s)-profiles that are typical of pure conduction, fig-
ure 4.17. Upstream of the particle sources, the T (s)-profiles steepen into those
characteristic of pure conduction.

A synergism may be noted between friction and volume recombination: the
friction, in slowing the flow, gives the volume recombination process sufficient
time to act that it can become a strong particle sink [16.21, 16.20, 16.64]. At
supersonic speed it is readily shown that, in its short transit time through the low
temperature region where the volume recombination rate is significant, the flow
will experience very little recombination. On ASDEX, the plasma flow velocity
has been measured near the targets, showing that when detachment occurs, the
parallel velocity drops by a factor of about 3 [16.65]. Studies of detachment
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Figure 16.19. UEDGE code calculation [16.54]. Spatial distribution of ionization and
recombination for various assumptions of charge-exchange and recombination effects.
Circles: ionization rate with friction and recombination on. Diamonds: ionization rate
with friction and recombination off. Squares: recombination rate with friction and
recombination on.

Figure 16.20. UEDGE code calculation [16.54]. As figure 16.18 but for Te. Symbols have
the same meaning as in figure 16.18.

using the EDGE2D/NIMBUS code found that strong recombination alone was
not sufficient to produce complete divertor detachment, but that it had to be
accompanied by strong charge-exchange momentum removal [16.66].

16.4.8 The ‘Cause’ versus the ‘Explanation’ of Detachment

One can induce divertor detachment simply by raising ne, e.g. by D2 puffing. This
sets in motion a train of effects which will result in the detached state. Equally
one can, for a fixed ne, induce/cause detachment by puffing an impurity gas
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into the tokamak. This also precipitates a number of processes whose combined
consequence is detachment. Indeed, simply reducing the divertor temperature to
a few eV—by any means, apparently—will precipitate detachment.

At a basic level one might take the view that detachment is caused by reduc-
ing the power into the divertor region (‘power starving’)—and certainly, as shown
above, unless such loss occurs, detachment would appear not to be possible.
Volumetric power loss then is a necessary condition for detachment. From an
operational point of view it is also sufficient since it will precipitate a state of
affairs in the divertor where i–n friction will become strong and so both mo-
mentum and power losses will have been induced to occur. Alternatively, one
could take the view that detachment is caused by increasing i–n friction in the
divertor and certainly that also seems to be a necessary condition for detachment.
For momentum, in principle, there exists an operational equivalent to ‘forcing the
divertor into detachment by starving it of power’: if, for example, it were practical
to pump away all the ions reaching the target, and then to re-inject them at high
velocity counter to the plasma flow direction, then presumably one could ‘force
the divertor into detachment by starving it of momentum’. In that case the volume
power loss mechanisms would ‘simply have to sort themselves out’, just as one
might have taken the view in the ‘power-starvation’ scenario that the momentum
loss mechanisms ‘would simply have to sort themselves out’.

In fact both momentum and power reduction evidently must exist for detach-
ment to occur and any adequate explanation of detachment has to explain how
each of the momentum and power balances can actually be satisfied. It is not
sufficient—for an explanation at least—to leave either mechanism ‘to sort itself
out’.

Despite this, there is an inevitable tendency to wish to ascribe a single, simple
explanation to a prominent phenomenon, such as divertor detachment. The first
question that arises when it is learnt that �t actually drops as ne is raised beyond
some critical point is: ‘Where did the particles go?’. The best answer to that
is probably: ‘They didn’t go anywhere. They just stayed longer. The particle
confinement time simply went up because the drain got partly plugged’. The
partial plugging is likely due to i–n friction which, since it is not a feature of
the regimes preceding detachment, is therefore the ‘new player’ and thus, might
be called the ‘explanation of detachment’. While volumetric power loss must
also increase in detachment, such losses were already occurring in the preceding
regimes, and so it perhaps lacks the ‘novelty’ feature sought by some people to
be viewed as an ‘explanation’.

Such disputes are essentially semantic. The basic point is that all three
conservation equations must have a satisfactory explanation, simultaneously.

Experimentally, volume recombination is generally a feature of detachment
but it is not clear as yet whether it is an essential part of the loss of particles,
momentum and power—or is incidental. There may be no single detachment
scenario.
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Chapter 17

Currents in the SOL

17.1 Introduction

The SOL plasma is a good electrical conductor. Spitzer parallel conductivity (due
to e–i collisions only) at Te = 100 eV is about equal to that of stainless steel,
although it does drop rapidly with decreasing Te, namely as σ cond‖ ∝ T 3/2

e [17.1].
At the same time the SOL is characterized by substantial temperature differences
along and across B. One therefore anticipates the existence of thermoelectric
currents. Two types of thermoelectric current are discussed here—driven by
either radial or parallel Te-gradients, sections 17.2, 17.4.

Since the SOL has non-negligible electrical conductivity, it responds to the
tokamak transformer action. Toroidal currents—in the expected direction and of
the calculated magnitude—have been measured [17.2]. These currents will not be
discussed further here.

One often speaks of the plasma inboard of the LCFS as being the ‘confined
plasma’, almost implying that the SOL plasma is not confined. The latter is
only true, however, with regard to the parallel-to-B direction where the plasma
essentially ‘explodes’: it is driven by an uncompensated pressure-gradient force,
characterized by �p ≈ p, at speeds up to sonic, section 1.8.2.5. In all other
directions—and although even stronger pressure-gradient forces are involved—
there is a compensating force, namely the j × B force, and so the SOL plasma
does not ‘explode’ in those directions, nor does it necessarily even move very
quickly, i.e. it is confined in those directions. There must therefore also be
such confinement-related currents present in the SOL. These are discussed in
section 17.5.

We anticipate that σ cond‖ � σ cond⊥ , but nevertheless cross-field currents arise
and we wish to know something about cross-field conductivity. These are related
to the confinement currents, section 17.5. It is assumed that the parallel electrical
conductivity is classical and is given by the Spitzer value plus the appropriate
addition for the effect of electron–neutral collisions [17.3].

512
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It is also important to bear in mind that currents can be driven in a medium
by processes other than the force exerted by an electric field, i.e. ohmic currents,
for which conductivities, such as σ cond‖ and σ cond⊥ , are the appropriate parameters
characterizing the medium. Consider, for example, the current constituted by
the charge carried on the mechanically driven belt of a van de Graaf generator.
This current is not driven by an E-field (and indeed it exists in the face of an
opposing E-field). It would therefore be quite inappropriate in this case to define
a conductivity by dividing the current by E (for one thing, this would give a
negative conductivity!). In a plasma subject to a B-field we will see that currents,
for example diamagnetic currents, move across the field lines, yet no E-field need
be present and no σ cond⊥ is to be associated with the process. We will also see that
radial E-fields can exist in tokamaks while there is no radial current at all. The
concept of σ cond⊥ may therefore seem to be rather suspect. On the other hand, an
electrode such as a Langmuir probe, inserted inside the LCFS, is generally found
to draw positive (negative) current when a positive (negative) potential difference
is applied between the vessel walls and the electrode. It is therefore appropriate to
define a dynamic σ cond⊥ based on changes of current and field, see section 17.5.3.

17.2 Thermoelectric Currents Driven by Cross-Field Temper-
ature Gradients

Even for the simple SOL, chapter 4, where no parallel T -gradients exist, perpen-
dicular T -gradients still exist. We therefore start with an analysis of the thermo-
electric currents which might be driven in that case [17.4]. (Even if parallel T -
gradients do exist, the picture of cross-field thermoelectric currents is essentially
the same as given in the following, provided that the perpendicular T -gradients
are evaluated just in front of the sheaths.)

For simplicity we will assume that n(r) and T (r) decay radially with the
same scale length λ:

T (r) = T0e−r/λ n(r) = n0e−r/λ. (17.1)

We assume Te = Ti here. We will not make any assumption about the radial
variation of the electric potential of the plasma, Vplasma(r), but will attempt in the
following to deduce its shape, i.e. the radial electric field. As an aid to under-
standing we will consider a number of limiter (or divertor target) arrangements:
the limiter may be segmented into a radial set of slices, figure 17.1, or it may be a
continuous, electrical conductor. Each of the separate segments may be allowed to
float electrically or they may be connected, perhaps through an external resistive
load. For either the segmented limiter or for the continuous limiter we assume
that the plasma contact with the outside world is exclusively with these solid
surfaces. Thus the net current to the limiter, as a whole, is zero and the limiter
floats electrically relative to the plasma in an average or integral sense. In practice,
electrically continuous limiters/divertor targets are the norm and they are often
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connected to ‘machine earth’. The latter—or any other external—connection is
irrelevant to the potential difference between the plasma and the limiter, provided
that the limiter is, in fact, the only point of electrical contact between the plasma
and the rest of the world. If the ‘machine earth’ is defined to be at reference
potential Vref = 0, then the average potential of a hydrogenic plasma in contact
with the limiters will be about +3kTe/e, i.e. the plasma will float positively
relative to the limiters and to the rest of the world, so as to achieve zero net
outflow of current from the plasma. Sometimes the potential of the plasma at
some representative point of contact with the limiter is taken to have reference
value Vref = 0, in which case the limiters, and the rest of the world, will float at
∼− 3kTe/e relative to that part of the plasma.

We now consider various cases.

17.2.1 Case A. Segmented Limiter with j⊥ = 0

In Case A, the limiter is assumed to be segmented very finely with each segment
electrically floating. We assume that σ cond⊥ = 0, or more specifically, that there
are no cross-field currents. In this case each individual segment will float at
∼ − 3kTe(r)/e relative to the potential of the local plasma at the sheath edge,
Vplasma(r). In this case we can not infer anything about the shape of Vplasma(r); it
is unconstrained.

LCFS

SOL

B

Figure 17.1. Two limiter types: on the right, the standard electrically continuous,
conducting limiter; on the left a segmented limiter, with each electrically conducting
segment electrically insulated from each other and from the vessel walls.

17.2.2 Case B. Continuous Limiter with j⊥ = 0

We continue here to assume σ cond⊥ = 0 and, specifically, no cross-field currents,
but now either connect all the segments directly to each other (i.e. not through
resistive loads) or simply take the limiter to be a continuous conductor. Because
there are no cross-field currents, each segment—or each portion of the continuous
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Figure 17.2. DITE tokamak [17.2]. Short lines: the relative potentials of built-in Langmuir
probes when electrically floating, in a probe limiter which is deeply immersed. �i,e is
the inferred plasma space potential on the ion/electron side, see section 17.3. �sp is the
inferred plasma potential in the absence of the probe limiter. Potentials as a function of
radial distance in the plasma, extending inboard and outboard of the LCFS defined by the
fixed limiter. The probe limiter is movable. � = V here.

limiter—will continue to receive ambipolar fluxes, i.e. equal fluxes of electrons
and ions, i.e. no net current. If we take the limiter potential to be Vref = 0, then
the plasma potential will vary radially as Te(r):

V SOL
plasma(r) ≈ +3kTe(r)/e. (17.2)

One will thus have a radial electric field in the SOL ESOL which points
radially outward. Just such radial electric fields are typically seen experimentally
in SOLs, at least approximately, see figure 17.2. This implies that σ cond⊥ and cross-
field currents are, as expected, not very large, but it is also clear from experiments
that they are not actually zero. If they were, then it would not be possible to
operate a Langmuir probe in the main plasma of a tokamak; section 2.7. Further
evidence is provided by limiters with built-in single Langmuir probes which show
that non-ambipolar fluxes exist to different parts of the limiter, i.e. net currents;
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Figure 17.3. DITE tokamak [17.2]. As figure 17.2. Net current density jnet flowing into
the probe limiter at the positions of the built-in probes as a function of the probe limiter
position in a reference deuterium discharge. Probes at the same potential as the probe
limiter.

an example from the DITE tokamak is shown in figure 17.3. This is seen when
the probes, which are referenced to the limiter potential, are biased to the same
potential as the (continuous, conducting) limiter: the probes radially furthest into
the plasma typically receive net electron current in that situation while probes
radially further out receive net ion currents. In this bias arrangement the probes
are effectively just part of the limiter itself and therefore they indicate that net
electron fluxes reach the part of the limiter which is radially furthest in, with net
ion fluxes reaching the parts of the limiter which are radially furthest out. Below
we consider an explanation for this particular pattern of non-ambipolar fluxes.

17.2.3 Case C. Segmented Limiter with σ cond
⊥ → ∞

Let us now go to the opposite extreme and assume σ cond⊥ → ∞. Thus Vplasma =
constant and it is natural now to take the plasma potential as Vref = 0. (We
may note in passing that this assumption of σ cond⊥ → ∞ is clearly too extreme
since measurements of V SOL

plasma(r) usually show spatial variation, approximately
according to equation (17.2).) Let us assume that the limiter is finely segmented
and that each segment floats. Each segment will float at −3kTe(r)/e since there
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will be ambipolar fluxes to each segment.

17.2.4 Case D. Continuous Limiter with σ cond
⊥ → ∞

As for case C, we assume σ cond⊥ → ∞ but now take the limiter to be electrically
continuous. This approximates to most actual limiter situations, at least so far as
the pattern of non-ambipolar currents is concerned. As in case C, the plasma is an
equipotential which we take to be at Vref = 0. We take the equipotential limiter
to be at Vl . The plasma and limiter potentials will evolve to a steady state where
Vl will attain that value which will make the total, i.e. integral net current to the
limiter zero. We will now evaluate Vl . The total, integral flux of electrons to the
limiter per metre poloidally, see section [2.2], also figure 17.4, is:

�total
e =

∫ ∞

0
dr 14 n(r)ce(r) exp[(eVl/kT0)e

r/λ]

= 1
4 n0ce0λ

∫ ∞

0
dxe−3x/2 exp[ηle

x ] (17.3)

where ηl = eVl/kT0 is the normalized limiter potential; subscript ‘0’ indicates
values at the LCFS. It is convenient to define:

F(ηl) =
∫ ∞

0
dxe−3x/2 exp[ηle

x ] (17.4)

which is plotted in figure 17.5. The total integral ion current is not influenced
by Vl , assuming that all parts of the limiter remain at negative (ion-attracting)
potential, thus:

�total
i =

∫ ∞

0
dr 12 n(r)cs(r)

= 2
3

1
2 n0cs0λ (17.5)

with
cs0 ≡ (2kT0/mi )

1/2.
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Figure 17.4. Schematic of poloidal limiter geometry for a ‘straightened out’ SOL.
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Figure 17.5. Radial current function F , defined in equation (17.4).

The condition of zero net current, �total
e = �total

i , then gives the relation for
ηl :

F(ηl) = 
2

3

(
π 

me

mi

)1/2

. (17.6)

Example: D+ ions, then ηl = −2.45 which is to be compared with an
ambipolar floating potential of: ηl,amb = 1

2 ln(πme/mi ) = −3.53. Thus at the tip
of the limiter, r = 0, Vl = −2.45kTe/e, i.e. the limiter potential is less repelling
of electrons than is the case for ambipolar floating conditions and thus there is
net electron current to the limiter near the tip. Radially further out there is net
ion current to the limiter. For example, at r = λ, T = exp(−1)T0 = 0.37T0
and so Vl,amb = −3.53 × 0.37kT0/e = −1.3kT0/e which is to be compared
with the actual value here of Vl = −2.45kT0/e. Thus the limiter potential at
that radial location is more repelling of electrons than is the case for ambipolar
floating conditions and thus there is net ion current to the limiter there. The cross-
over from net electron to net ion current occurs at r/λ ≈ 0.37, i.e. rather near the
tip. Figure 17.6 shows the two spatial distributions of electron flux to the surfaces.

This result evidently explains the observations described earlier; however, it
has to be noted that the magnitude of the effect is over-estimated here: in reality
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Figure 17.6. The radial distribution of the electron current density to an electrically
continuous limiter, and to a finely segmented limiter, see figure 17.1 [17.4].

σ cond⊥ remains finite, indeed cross-field conductivity and currents are relatively
weak and so V SOL

plasma(r) is not at all constant, but approaches that for case B with

σ cond⊥ = 0. Thus, in reality, V SOL
plasma(r) approaches the relation of equation (17.2)

and therefore conditions are closer to being ambipolar at each radial location.
The tendency remains, however, for net electron collection to occur near the tip,
with net ion collection further out. We may also now quantify what we mean by
‘relatively weak cross-field currents’ as being ones which will not result in current
densities to the solid surface which at any point are large compared with encs .

The existence of these thermoelectric currents has a number of implications:

(1) As shown in figure 25.12, the heat flux density to a solid surface is a function
of the sheath voltage drop, being nearly a minimum for local ambipolar float-
ing conditions. An electrically continuous limiter or divertor plate therefore
extracts more heat from a given SOL plasma (given n and T ) than would a
segmented limiter where each segment was allowed to float individually. In
particular, the tip of the limiter, which already experiences the greatest heat
load, suffers the largest increase.

(2) Direct, thermoelectric power generation would be achieved using a
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segmented limiter and with the segments connected through the external
load [17.4]. Compared with the use of an electrically continuous limiter,
this would also reduce the enhanced heat load just mentioned, since the
non-ambipolar currents would be smaller.

17.3 Inferring V SOL
plasma (r ) from Probe Measurements of

Vfloat (r ) and Te (r )

Consider the case of an electrically continuous limiter or divertor plate at refer-
ence potential Vref = 0. We therefore anticipate V SOL

plasma(r) > 0. We assume
that there is a set of built-in Langmuir probes in the limiter or plate providing
measurements of Vfloat(r) and Te(r), or that a separate movable probe provides the
same radial information. It is assumed that at each radial location the probe floats
at a potential relative to the local value of V SOL

plasma(r) which is the theoretical one,

section [2.6], i.e. the local plasma potential V SOL
plasma(r) ≈ Vfloat(r) + 3kTe(r)/e,

and thus from the measurements of Te(r) and Vfloat(r), the values of V SOL
plasma(r)

are obtained. One notes, therefore, that V SOL
plasma(r) obtained in this way is not a

purely experimentally measured quantity, but is partly inferred from theory—with
the theory giving the floating sheath potential drop. Some uncertainty is therefore
involved: for example, the effective secondary electron emission coefficient may
not be known, which can come into the calculation of the drop. An example of
V SOL

plasma(r) obtained in this way is shown in figure 17.2.

17.4 Thermoelectric Currents Driven By Parallel Tempera-
ture Gradients

In the complex SOL, typically a divertor but also including some operating con-
ditions with limiters, parallel temperature gradients exist. For a divertor hav-
ing in/out symmetry of the two divertor regions, there will be no thermoelectric
currents, but when the two divertor plasmas have different temperatures then, as
for the case of radial temperature differences examined in the previous section,
(positive) current will flow through the plasma from the hot region to the cold
one. Such currents were first reported from JET by Harbour [17.5]. Harbour also
provided a theoretical analysis which is extended here.

Consider figure 17.7 with the hotter plasma at the left end, the colder at the
right end. Without pre-judging that the plasma current will, in fact, flow from hot
to cold, we take the convention that the positive current direction is from left to
right. Note that we are analysing a current parallel to B in this section, j‖. We
will make a number of simplifying assumptions:

(i) Ti = Te;
(ii) σ cond‖ → ∞;
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Figure 17.7. Electrothermal currents flow along the SOL. Here, the direction of positive
current is simply defined to be from left to right; however, it is proven that the current
direction turns out to be from hot to cold, i.e., j‖ is positive, figure 17.8. The voltage
reference is taken to be Vh = 0, at the hot end.

(iii) σ cond⊥ = 0, and specifically, that there are no cross-field currents, therefore
1D current transport;

(iv) no parallel pressure gradients, ∇‖ p = 0;
(v) no applied voltage between the ends and no external load impedance. The

two ends are assumed to be at the same potential, e.g. ‘machine earth’.

Because of σ cond‖ → ∞ there is no voltage drop in the plasma between each
pre-sheath entrance, figure 17.7. We will show that there is net electron current to
the hot-end target and net ion current to the cold-end target. We have for the total
current at the hot end:

jh = e(�i
h − �e

h) (17.7)

where �
i,e
h are the (vector) particle flux densities of ions and electrons:

�i
h = − nhcsh (17.8)

�e
h = − 1

4 nhceh exp[−eV MPSE
h /kTh] (17.9)

where nh is the density at the magnetic pre-sheath entrance, MPSE, at the hot end.
Similarly:

jc = e(�i
c − �e

c) (17.10)

�i
c = nccsc (17.11)

�e
c = 1

4 nccec exp[−eV MPSE
c /kTc] (17.12)

and
nc ≡ nMPSE

c .
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We assume that, at each end, a potential drop of kT ln 2 exists across the
pre-sheath, where the ionization source occurs and the flow is accelerated up
to the sound speed in the parallel direction at the magnetic pre-sheath entrance,
section 1.8.2.8:

eV MPSE + kT ln 2 = eV PSE. (17.13)

PSE indicates pre-sheath entrance. Current continuity gives:

jh = j‖ = jc. (17.14)

Defining the temperature ratio:

rT ≡ Th/Tc (17.15)

also
ηh ≡ eV MPSE

h /kTh (17.16)

and
α ≡ 1

2 (mi/πme)
1/2 (17.17)

we obtain a relation for the floating potential at the hot end Vh in terms of rT and
Th :

−1+ αe−ηh = r1/2
T (1− 2rT−1αe−rT ηh ). (17.18)

We have also used parallel pressure balance here, nh/nc = Tc/Th . One can
also obtain the normalized current density:

ĵ‖ ≡ j‖
enhcsh

= −1+ αe−ηh . (17.19)

In figure 17.8, the normalized floating potential ηh and ĵ‖ are shown as functions
of rT for the case of D+ ions. As one can see, j‖ is in fact always in the positive
direction, i.e. the net electron flow in the plasma is toward the hot end and, as
rT increases from 1, |Vh | falls and j‖ increases. For rT → ∞, Vh → 0 and
ĵ‖ → 1

2 (mi/πme)
1/2 − 1, i.e. the current saturates. One may note that the

saturation value of j‖ is large compared with jh,sat, i.e. enhcsh , but is vanishingly

small compared with jc,sat, i.e. enccsc. For intermediate values of rT , ĵ‖ ∝ r1/2
T ,

as is evident from figure 17.8. As rT → 1, ηh → ln α = 0.5 ln(mi/4πme),
which may be recognized as the normalized floating potential drop when Te = Ti ,
section 2.6.

For the simple geometry assumed here j‖ is constant along B. In a tokamak
the cross-sectional area of flux tubes varies poloidally due to toroidal effects and
it is actually the poloidal current between poloidal flux surfaces that is constant.

It can be useful to relax the simplifying assumptions made above. The
parallel electrical conductivity is finite and the resistance of the flux tube may be
significant. The potential profile would then be expected to look like figure 17.9,
where we have also allowed that one might wish to apply an external bias between
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Figure 17.8. The normalized thermoelectric current density ĵ‖, equation (17.19), and
the normalized potential of the plasma at the hot end, ηh , equation (17.16). Note that
the thermoelectric current in fact flows from hot to cold end, i.e., j‖ is positive, i.e., the
electron flow is from cold end to hot end. Note the ηh > 0 here because the reference
potential has been taken to be at the wall at the hot end, Vh = 0.
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Figure 17.9. Thermoelectric currents allowing for (a) the application of a voltage
difference between the two targets and (b) finite electrical resistance of the plasma.

the targets and so V0, the potential of the cold end, is made adjustable, i.e. �V
applied = Vc − Vh = V0. We have Ohm’s law for σ‖ from section 9.5:

ej‖/σ‖ = −e
dV

ds
+ 0.71

dkTe

ds‖
+ 1

n

dpe

ds
. (17.20)
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and we will now also allow for the existance of a parallel pressure gradient. σ‖ is
a function of Te and so depends on s‖, section 9.5:

σ‖ ≈ 3.6× 107 T 3/2
e (17.21)

σ [ohm−1 m−1], T [keV].
We therefore define an average σ :

σ ‖ ≡
[

1

L

∫ c

h

ds‖
σ‖

]−1

(17.22)

where the integral is from the hot end to the cold end.
We can then integrate equation (17.20) to obtain:

ĵ‖ = −γ

[
eV PSE

c

kTh
− eV PSE

h

kTh
− 0.71

(
Tc

Th
− 1

)
− 1

kTh

∫ c

h

1

n

dpe

ds‖
ds‖

]
(17.23)

where

γ ≡ σ ‖kTh

e2Lnhcsh
. (17.24)

We can eliminate V PSE
c and V PSE

h to obtain a relation for ĵ‖ by noting that:

eV PSE
h = eV MPSE

h + kTh ln 2

eV PSE
c = eV MPSE

c + kTc ln 2 (17.25)

ĵh = −1+ αe−ηh , as before while

ĵc = r−1
n r−1/2

T (1− αe−e(V MPSE
c −V0)kTc) (17.26)

where
rn ≡ nh/nc. (17.27)

As before:
ĵc = ĵ‖ = ĵh . (17.28)

Combining equations (17.23)–(17.28) gives an equation for ĵ‖ as a function
of nh , Th , rn , rT , V0, σ‖ and the pressure integral:

ĵ‖ = − γ

[
eV0

kTh
+

(
1

rT
− 1

)
(ln 2− 0.71+ ln α)

+ ln

[
1+ ĵ‖

(1− rnr1/2
T ĵ‖)1/rT

]
− 1

kTh

∫ c

h

1

n

dpe

ds‖
ds‖

]
. (17.29)

Since the sheath heat transmission coefficient depends on the actual potential
difference between plasma and surface, section 25.5, and thus on the current den-
sity ĵ‖, it is useful to consider power flows in this analysis [17.6, 17.7], including

Copyright © 2000 IOP Publishing Ltd.



Cross-Field Currents 525

Figure 17.10. JT60-U [17.15]. Comparison of calculated J theory and measured SOL
currents J

exp
‖ at the position of peak J‖. (a) In ohmically heated (OH) and neutral

beam (NB) heated L-mode discharges under attached divertor conditions, and (b) under
detached divertor conditions and during the X-point MARFE. The discharge parameters
were Ip = 1.2 and 1.8 MA, Bt = 2.0 and 3.5 T and PNB = 4–22 MW.

the possibility of a thermal instability, leading to in/out divertor asymmetry [17.8–
17.10]; we do not discuss this further here. For further analysis of parallel electric
currents see [17.11–17.14].

Parallel currents passing through the inner and outer targets of single-null di-
vertor discharges in JT60-U have been measured using Langmuir probes built into
the targets [17.15]. Figure 17.10 shows the experimental results for (a) attached,
(b) detached conditions. For attached conditions the measured currents agree
well with the theoretical thermoelectric currents—both as to direction (toward the
cold, inside target) and magnitude. In detachment, the outer target plasma became
the colder end and, as predicted, the current direction reversed; the magnitude
of the currents in detachment, however, were found to be somewhat larger than
theoretical levels.

17.5 Cross-Field Currents

17.5.1 Experimental Results

It is clear that cross-field conductivity is non-zero. Unless σ⊥ is non-zero the
thermoelectric currents discussed in section 17.2 could not exist, nor could Lang-
muir probes draw any current when located inside the LCFS—which, in fact,
they do. That is, when the potential applied to a probe is varied, in general the
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ra

rb

Figure 17.11. Tokamak de Varennes [17.16, 17.17]. Plasma biasing modelling geometry.
The SOL field lines are presented as straight lines bounded at both extremities by three
types of electrode: neutralization plates, insulated limiters and vessel walls. Typical
perpendicular and parallel currents are also shown.

current reaching it varies—and this current must have crossed field lines if the
probe is located inside the LCFS. We may therefore speak in some general sense
of a cross-field conductivity σ⊥, although, as mentioned at the beginning of this
chapter, cross-field currents are not the result of cross-field E-fields only.

A further important body of experimental knowledge about σ⊥ is
generated by edge-biasing experiments, including unipolar, divertor bias
experiments [17.16, 17.17]. In this biasing configuration on the Tokamak de
Varennes, figure 17.11, an external voltage difference �V was applied between:
(a) the two divertor target plates of the single null divertor, shorted together, and
(b) the wall. A radial gap existed between rp = rw, containing SOL plasma,
whose value of σ⊥ or µ⊥ (σ ≡ enµ) was established by measuring I⊥ and
�V . Ideally the region between rp and rw would have magnetic field lines
closing on themselves, i.e. have no solid end-plates—but this is impractical.
Alternatively, if the end-plates in this region were insulators, this would also
make for a simple interpretation of I⊥ against �V in terms of µ⊥. In the TdeV
experiments the end-plates were actually floating conductors (graphite) which
makes interpretation less certain; nevertheless, taking a simple interpretation of
the measurements [17.17] gave an empirical value of µ⊥ ≈ 10−2 m2 V−1 s−1;
see figure 17.12. Interestingly, this value is not greatly different from that given
by the classical Einstein relation:

D/µ = kT/e (17.30)

assuming D⊥ ≈ 1 m2 s−1 and T ∼ 25 eV, typical SOL values.
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Figure 17.12. Tokamak de Varennes [17.17]. I –V characteristics of the divertor plates in
a typical hydrogen TdeV discharge (ne = 2.5× 1019 m−3, Ip = 210 kA). Ts and ns are,
respectively, the electron temperature and the density at the separatrix. The best fit to data
is obtained with a mobility of 0.006 m2 V−1 s−1.

17.5.2 Simple Models for σ⊥

How to explain non-zero σ⊥? In a fully ionized plasma, the e–i collisions result
in a negligible classical σ⊥ [17.18]. A first thought is that cross-field transport
of current may be just as anomalous as the transport of particles, momentum
and heat. Bohm [17.19], followed by others, simply took µ⊥ to be anomalous
and to be related to D⊥ by the Einstein relation. If the transport mechanism is
indeed completely unknown, then this may be a reasonable starting hypothesis.
It may be, however, that cross-field transport is due to electrostatic, quasineutral
fluctuations, chapter 8, which have the property of being locally ambipolar, i.e.
they would give no net current j⊥ [17.16]. If the transport is due to magnetic
fluctuations, however, then a net (non-ambipolar) j⊥ can exist.

The topic of cross-field conductivity remains substantially conjectural, de-
spite many years of study, and the following discussion should be viewed in that
light.

In the SOL the neutral density is not negligible and it may be that i–n
momentum-loss collisions can explain �⊥ values. Consider an infinite cylinder

B, φ
•
B

jr,Er
θ

JG98.491/3c

Figure 17.13. A cylindrical plasma with axis aligned to B. A voltage is applied between
the cylinder wall, as one electrode, and a wire lying along the axis, as the second electrode.
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with B along the axis, figure 17.13. Let the cylinder wall be one electrode with
a wire along the axis being the other, and let a cross-field potential be applied
creating a radial electric field E⊥ and drawing current density j⊥. An E × B
drift, chapter 18, is created and the electrons and ions drift poloidally with speed
v0 = −E⊥/B. Collisions with neutrals cause momentum loss to this drifting
plasma—essentially to the ions due to their larger mass. In steady state, this
frictional forces balance with a poloidal j × B force, here − j⊥ B. Balancing
this force with the frictional force of −mi nνinv0, where νin  is the ion–neutral
momentum-loss frequency, νin = nnσvmom

in , then gives:

j⊥ = 
mi nνin

B2
E⊥ (17.31)

hence
σ⊥ = 

mi nνin

B2 
µ⊥ = 

miνin

eB2 
. (17.32)

Shear viscous forces—anomalous or not—can lead to a similar result. In-
deed all forces in the poloidal momentum equation need to be included.

We may also consider how the plasma would respond if both relations had to
be satisfied simultaneously, i.e., an anomalous σ an⊥ was simply required to hold,
yet at the same time, force balance had to still be satisfied, of course.

Since we will need to employ the complete 3D momentum equation in the
next section, it is convenient to introduce it at this point. It is a generalization of
the 1D result of section [9.9] [17.20]; for the steady state:

mnv · ∇v +∇ p +∇·↔� ∓en(E + v × B)± R = Smom (17.33)

where the upper sign is used when applied to ions, the lower sign when applied to
the electrons. The collisional force between e and i is given by:

R = en

(
j

σ‖
+ j⊥

(σ‖/0.51)

)
− 0.71 ln∇Te (17.34)

(neglecting a small term).
↔
� is the viscous stress tensor and includes both parallel

(classical) viscous stress, as discussed in chapter 9, and cross-field viscous stress,

generally assumed to be anomalous. We will not deal specifically with
↔
� here.

For ions Smom = −mi nνinv, assuming stagnant neutrals. Smom for electrons is
neglected as small. Note that for electrons the inertia term, the first one on the
LHS of equation (17.33), is also negligible.

If we add together equation (17.33) for e and i, ignoring
↔
�, we obtain

the plasma momentum equation and the useful relation for current density j
(including j⊥):

mi nvi ·∇ vi +∇ p − j × B = Smom,i . (17.35)

Here
p ≡ pe + pi (17.36)
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and
j ≡ en(vi − ve). (17.37)

At this point let us re-derive the earlier result for σ⊥ based purely on i–n
collisions: we apply equations (17.33) and (17.35) in cylindrical geometry. The
radial component of the ion equation (17.33) gives:

mi n

(
vri

∂vri

∂r
+ vθ i∂vri

r∂θ
+vzi

∂vri

∂z

)
+ ∂pi

∂r
+en(Er+vθ i Bz)+Rr = −mi nνinvri .

(17.38)
For toroidal geometry further terms appear, e.g. due to centrifugal forces.

We now need an equation for jr which can be obtained from the poloidal
component of the plasma equation (17.35):

mi n

(
vri

∂vθ i

∂r
+ vθ i

r

∂vθ i

∂θ
+ vzi

∂vθ i

∂z

)
+ 1

r

∂p

∂θ
+ jr Bz = −mi nνinvθ i . (17.39)

If we could justify dropping all the terms in equation (17.38) except the one
containing Er and Bz then we obtain the earlier result, vθ i = −Er/Bz , and if we
can justify dropping similar terms in equation (17.39), we also obtain the earlier
relation between jr and vθ i , hence also the result of equation (17.32) for σ⊥. We
now consider how to justify these deletions.

From geometry ∂/∂θ = 0 and ∂/∂z = 0. We assume that vr —even if due
to anomalous transport—is very small and drop such terms. We simply assume
(tentatively) the absence of a radial pressure gradient here. Assuming σ‖ is large
and j⊥ small, then Rr ≈ 0.

Now what if the relation between jr and Er is additionally imposed:

jr = σ an⊥ Er (17.40)

where σ an⊥ is a specified, anomalous value. If we drop all the above terms now
then the problem will be over-constrained. We therefore relax the assumption that
∂pi/∂r = 0.

Thus

∂pi

∂r
+ en(Er + vθ i Bz) = 0 (17.41)

jr Bz = σ an⊥ Er Bz = −mi nνinvθ i (17.42)

which give:

vθ i = − σ an⊥ Er Bz

mi nνin
(17.43)

∂pi

∂r
= − en

(
1− σ an⊥ B2

z

mi nνin

)
Er . (17.44)

Thus assuming that Bz , σ an⊥ , νin and n have been specified, then for an imposed
Er , one finds jr , vθ i , ∂pi/∂r from equations (17.39), (17.43), (17.44). We see
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that in order for force balance to still hold in the presence of anomalous conduc-
tivity, vθ i is no longer simply −Er/Bz and the radial pressure gradient cannot be
ignored. The foregoing assumes a circular cross-section; for extension to toroidal
geometry, rdθ → dspol.

17.5.3 Models for σ⊥ in a Tokamak

Consider the plasma momentum equation, equation (17.35), where we will leave
aside the viscous and inertial terms, but retain the i–n collisional term. The effect
of each of these three terms is broadly the same and for simplicity we will carry
only the collisional terms, as illustrative. We use a right hand co-ordinate system
(r, θ, φ) for the radial, poloidal and toroidal directions. Thus:

(a) Radial momentum balance:

∂p

∂r
− jθ Bφ + jφ Bθ = 0. (17.45)

We take Smom,r ≈ 0 since vr ≈ 0.
(b) Poloidal momentum balance:

− ∂p

r∂θ
− jr Bφ = −Smom,θ . (17.46)

(c) Toroidal momentum balance:

jr Bθ = −Smom,φ (17.47)

∂/∂φ = 0 from symmetry.

Since the SOL plasma is well confined radially, then one must have at least
one diamagnetic current in the SOL, say the poloidal diamagnetic current, equa-
tion (17.45):

jθ = 1

Bφ

∂p

∂r
(17.48)

if jφ = 0.
From equation (17.46) we have the radial diamagnetic current jr :

jr = − 1

r Bφ

∂p

∂θ
+ Smom,θ

Bφ

. (17.49)

These same currents, equations (17.48), (17.49), are found by approaching
the problem from the view point of drifts, section 18.4.

Generally magnetic confinement requires that the powerful—indeed poten-
tially explosive—∇ p force be balanced by a j × B force. This must occur for
all locations in the plasma—not just in the main plasma but in the SOL also—
at least for all directions except any direction in which the plasma is essentially
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‘exploding’. Only in the SOL and only for the parallel direction is the latter
situation the case, with the plasma accelerating to the sound speed or faster. In
the poloidal direction within the SOL the plasma is not exploding, indeed for a
single-null divertor its exit speed at the targets is ≈ (Bθ /B)t cs � cs . Thus,
the very strong (1/r)∂p/∂θ poloidal pressure-gradient force must be virtually
completely balanced by the jr Bφ force at each poloidal location in the SOL.

While the pressure-gradient force is usually dominant—since fluids are usu-
ally controlled by ∇ p forces—it is possible that other forces may be significant
in the poloidal pressure balance, such as neutral friction. In that case the jr Bφ

force will be balanced with all the forces involved, as equation (17.49) indicates,
not just (1/r)/∂p/∂θ , and it would not be appropriate to then call jr a purely
‘diamagnetic current’.

Let us consider this basic case, then, where:

jr = −  
1

r Bφ

∂p

∂θ
. (17.50)

This current was first analysed by Gerhauser and Claassen [17.11], in
toroidal geometry, and by Rozhansky and Tendler [17.21, 17.22], in cylindrical
geometry. While locally such radial currents must exist in the SOL, it is perhaps
surprising that there is no total, i.e. integrated radial current (for cylindrical
geometry). This is shown in chapter 18 on drifts by considering the details of
the spatial distribution of jr . It is also readily seen from equation (17.50). The
integral current through the LCFS, or through any complete flux surface within
the SOL, is:

Iradial =
∫ innerSE

outerSE
− 1

r Bφ

∂p

∂θ
(17.51)

where the integral is from (Debye) sheath edge to sheath edge. For targets em-
ploying glancing angles of B, which is standard, the plasma density, and thus
pressure, at the se is very small, section 2.10. For a cylindrical tokamak (not
toroidal) r Bφ → aBφ , constant, and so Iradial = 0 for all closed flux surfaces in
the SOL. For a torus one also needs a factor of 2π R in equation (17.51), which
gives the current per unit length (of cylinder); note that R can vary substantially
with θ .

It is noteworthy that if it were physically justifiable to stop the integration
at the magnetic pre-sheath entrances, MPSEs, then a very different result would
hold: usually an inside/outside pressure asymmetry exists—for example due to
E×B drifts, chapter 18. Thus pMPSE,inside

i �= pMPSE,outside
i , and generally neither

pressure is negligibly small. In that case, a net Iradial would exist. Further, one
could change Eradial by external biasing, thus changing the poloidal E × B drift,
and thus the in/out pressure asymmetry. One would thus be able to change Iradial
externally by imposing some �Vradial across flux surfaces by an electrode ar-
rangement. The cross-field electrical conductivity could then be calculated. None
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of this, however, appears to be justifiable—within the basic picture as developed
here—since it is not evident why �MPS

r should be ignored, or the integral for
Iradial stopped at the MPSE, rather than at the se. Thus in the basic picture there
is no evident explanation in the foregoing for the experimental observation that
a substantial Iradial can indeed be drawn by applying a �Vradial. A variety of
explanations for this σ⊥ �= 0 may be considered:

(1) As for the simpler analysis of section 17.5.2, it may just be that σ⊥ is anoma-
lous and one should simply insert jr = σ an⊥ Er into equation (17.46) and cal-
culate the poloidal rotational velocity then required for momentum balance.

(2) The foregoing classical analysis of diamagnetic currents is for a cylindrical
tokamak. When toroidicity is allowed for, finite Iradial is found [17.23],
including a finite Iradial for �V applied

radial = 0 and a variation with �V applied
radial ;

thus σ⊥ �= 0. Although the currents found are comparable to experimental
ones [17.23], the variation of these currents with Eradial, which defines σ⊥,
is small compared with experiment.

(3) It has been suggested [17.24] that turbulence within the MPSs may
block �MPS

r , in which case various physical processes affecting
pMPSEinner

i /pMPSEouter
i —such as poloidal E × B drifts (including externally

applied ones), neutral friction, viscosity, etc—might explain the observed
Iradial −�V applied

radial relations.
(4) As mentioned, usually the poloidal pressure gradient force would be ex-

pected to dominate the poloidal pressure balance; however, if friction (or
viscosity) is strong enough, then, even if the ∂p/∂θ term does integrate
to zero, the other terms may give a finite Iradial. Such strong friction and
viscous forces have been considered in [17.25]. To see how this works
out for the case of i–n friction, let us assume very strong friction such that
equation [17.47] for toroidal plasma pressure balance gives:

jr = −Smom,φ/Bθ = mi nνinviφ

Bθ

. (17.52)

We now need an equation relating to Er and viφ . Consider the ion momen-
tum equation (17.33) which does contain Er in the radial component:

viφ = − 1

enBθ

∂pi

∂r
+ Er

Bθ

+ viθ
Bφ

Bθ

. (17.53)

(We may note in passing that if we apply equation (17.53) to the main
plasma, where Emain

r is not constrained by the same considerations as ESOL
r ,

equation (17.2), but adjusts itself freely to satisfy ion radial momentum balance,
and if also viφ and viθ are damped and small, then Emain

r must be in the opposite
direction to ESOL

r , i.e. pointing inward, and the ions in the main plasma are largely
confined electrostatically. In that case one also has the interesting situation of
Er �= 0 while Ir = 0, since there can be no net radial current across closed
magnetic flux surfaces.)
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It is clear that we are not going to obtain a simple relation involving only
jr and Er , as in a usual Ohms law. Let us then define a µ⊥ and σ⊥ based on a
differential relation:

µ⊥ ≡ 1

en

∂ jr
∂ Er

(17.54)

and thus we put the non-Er terms in equation (17.53) aside. This then gives:

σ⊥ = 
mi nνin

B2
θ

. (17.55)

In obtaining this result we have assumed for simplicity that changing Er

will not change viθ or ∂pi/∂r , which may very well not be true. It is notewor-
thy that the value of σ⊥ here—for the SOL of a toroidal magnetic confinement
geometry—is larger by the factor (Bφ/Bθ )

2 than the simple expression found
earlier, equation (17.32). The reason for the difference is that we are now con-
sidering a closed toroidal geometry—rather than an infinitely long cylinder—and
here it is meaningful to consider the frictional damping of the toroidal velocity,
which gives a larger σ⊥ than the damping of poloidal velocity, which is all that
could be involved in the infinite cylindrical case.

A very strong viscous stress could similarly result in a finite Iradial [17.21].
It should be noted that these currents are still only local ones, and in carrying out
the integral to obtain Iradial, the substantial off-setting currents through the MPSs
have to be included.

It is a remarkable and noteworthy fact that even without the application of
any external electrical biasing to the SOL, both an Er and a (local) jr exist—yet
they have essentially nothing to do with each other. As discussed in section 17.1,
Er arises largely due to the fact that Te(r) decays radially. The plasma-wetted
surfaces are electrically conducting, and particle fluxes to these surfaces tend to
be locally ambipolar. Completely independently, the poloidal force balance in the
SOL, equation (17.50), gives rise to a non-zero (local) jr . It would thus make no
sense to take the ratio of these two unrelated quantities to define a no-bias value
of σ⊥. This also means that a definition of a with-bias σ⊥ or µ⊥ has to be based
on changes in Er and Ir , equation (17.54).

In toroidal geometry other drifts are important which have not been con-
sidered here, specifically the ∇B drifts, see section 18.2. In toroidal geometry,
diamagnetic drifts are not completely divergence free, due to the ∇B and centrifu-
gal drifts primarily, see section 18.7. These have associated cross-field currents
which close within the plasma by flowing along the field lines, including within
the SOL and reaching the targets [17.14, 17.26]—the Pfirsch–Schlüter currents;
see section 18.5.

Figures 17.14 and 17.15 show examples of SOL currents in JET, measured at
the inner target, near the inner strike point (ISP) and the outer strike point (OSP)
[17.26]; figure 17.14 is for the ion∇B-drift towards the X-point (downwards), and
figure 17.15 the reverse. The measurements are from Langmuir probes built into
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Figure 17.14. JET [17.26]. ∇B-drift toward X-point (down). Profiles of j‖(≡ J0‖) for ISP
(inner strike point) and OSP regions for discharge 30 589. Also shown are probe-derived
profiles of ion saturation current J+sat projected onto the magnetic field, electron pressure
pe and electron temperature Te. The profiles are mapped to the outer mid-plane and plotted
as a function of rmid, the mid-plane radial distance from the nominal separatrix.

the targets. Most of the j‖ profiles can be attributed to the thermoelectric currents
due to parallel temperature gradients, section 17.4: one sees for figure 17.14,
where T outer

e > T inner
e , that j‖ is for the most part a positive current flowing out of

the divertor target where the plasma is hotter (the outside here) and into the target
where the plasma is colder (the inside here); for figure 17.15, T inner

e > T outer
e

and, as expected, most of the j‖ current reverses. For these attached discharges
pinside

e ≈ poutside
e . One may note small peaks in the j‖ profiles very close to the

strike points which have opposite polarity to most of the j‖. In [17.26] it is shown
that these are due to Pfirsch–Schlüter currents in the SOL. Similar current patterns
have been measured on COMPASS-D [17.27]. Such current patterns have been
reproduced in code modelling [17.28].

We conclude by noting that there are many contributions to cross-field cur-
rents and it is still an open question whether σ⊥ can be fully computed from
classical/neo-classical considerations or whether σ⊥ has a directly anomalous
component (we allow here that anomalous cross-field viscous damping of toroidal
or poloidal velocities still falls within the category of ‘classical’, although that
makes σ⊥ indirectly anomalous).
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Figure 17.15. JET [17.26]. ∇B-drift away from X-point (up). Profiles of j‖ for ISP and
OSP regions for discharge 31 485. Otherwise as figure 17.14.

17.6 A Concluding Comment

The analysis of SOL currents in this chapter only constitutes an introduction to
what is clearly a complex subject. Only the basic aspects of some of the effects
have been illustrated here. Experimental reality is certain to be more complex. For
a start, SOL currents and drifts, next chapter, are closely coupled. Interactions of
other types are also likely and could be such as to offset the trends found on the
basis of the simple analysis used here. In order to elucidate more adequately
these complex effects it is necessary to employ 2D or 3D fluid codes which
incorporate currents and drifts self-consistently with realistic ionization patterns,
etc, and to confront the code output with experimental data. Such studies are now
in progress [17.28–17.30].
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Chapter 18

Drifts in the SOL

18.1 Experimental Observations Implying the Presence of
Drifts in the SOL

In/out divertor asymmetries, observed in single-null divertor tokamaks, were dis-
cussed in section 5.9. These asymmetries are observed to change—although not
necessarily completely reversing—when the direction of the toroidal field, Bφ ,
is changed. Figure 18.1 [18.1] shows the maximum value of Te measured at
the inside and outside targets of JET. For the ‘normal’ Bφ (see next section for
definitions), Te tends to be higher on the outside, being more symmetric, or even
sometimes switching to the inside when Bφ is reversed. The direction of the
toroidal current, Iφ , is less important. Figure 18.2 [18.2] shows that in/out Prad,
Hα and j+sat ratios on JET exceed unity for the normal direction of Bφ , reversing
(or at least diminishing significantly) when Bφ is reversed. Similar behaviour is
observed on other tokamaks [18.3], although inconsistencies exist [18.1, 18.2].
Possible explanations of these observations are ∇B and E × B drifts in the
SOL [18.1–18.6] since the direction of such drifts depends on the direction of
Bφ (but not Iφ). The principal part of the diamagnetic drift, section 18.2, does not
appear to be directly involved [18.2, 18.7].

Taking into consideration the observations, figure 5.28, that the total power
entering the divertor ‘legs’ is often symmetrical, one is inclined to start by seeking
an explanation in terms of particle drifts, rather than power drifts. Any particle
drift which transported particles preferentially toward the inside target, for normal
Bφ , would tend to increase the plasma density there. This increases volumetric
power losses there and so temperature decreases, in accord with observation,
figure 18.1. Also, as pointed out in section 5.9, a positive feedback effect would
then be expected to set in, with ne rising further, Te dropping further, while �t ,
Hα , Prad, j+sat would rise—also in accord with observation, figure 18.2.

We will therefore start by considering the effect of E × B particle drifts.
Before proceeding, it is to be noted that we will only be considering here

the E × B and other drifts which arise naturally in the SOL. A number of

537
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Figure 18.1. JET [18.1]. Maximum temperature at the two strike zones observed in JET
discharges. Circles—normal Bφ and Ip , squares—reversed Bφ , triangles—reversed Ip

plasmas. Open symbols correspond to ohmic discharges, dark symbols to NBI heated
discharges.

Figure 18.2. [18.2]. q-dependence of in–out asymmetries in local radiated power, Hα

intensity and peak ion saturation current density for a set of dedicated L-mode discharges
in JET.
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important benefits can result from (active) electrical biasing of various edge struc-
tures relative to one another—for example increased divertor exhaust into the vac-
uum pumps [18.8]. We will not attempt to analyse or review here this important
application of drift manipulation, but refer the interested reader to the references
in [18.8] and the review by Staebler [18.9].

18.2 Definitions

By convention, the ‘normal’ direction of Bφ is that for which the ∇B-drift of
the ions is toward the bottom, i.e., toward the targets when the divertor is at the
bottom. The ∇B-drift velocity [18.10, 18.11]:

v∇B = ± v2⊥m

2eB3
B ×∇B (18.1)

where v⊥ is the gyroscopic speed and m the mass of the species. The+ sign is for
ions, the − sign for electrons. In a tokamak Bφ ∝ 1/R and so ∇B points inward
along the major axis. Thus, for Bφ as shown in figure 18.3—i.e., the normal

Inside Outside

Bφ
V∇B

for

ions

Figure 18.3. For the toroidal magnetic field in the clockwise direction (when viewed from
above)—which is defined to be the ‘normal’ direction—the ∇B-drift of the ions is toward
the bottom.
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Figure 18.4. For toroidal Bφ in the ‘normal direction’ the ion (ohmic) drift side is always
toward the inner target, with the electron (ohmic) drift side toward the outside target,
regardless of the direction of the toroidal plasma current Iφ (≡ *I# here).
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direction—v∇B for ions is toward the targets, toward the bottom. Since the ∇B-
drift is in opposite directions for opposite charges, this drift results in currents and
charge separation, top/bottom of the plasma. For ‘reversed’ field, v∇B for ions is
away from the targets, toward the top.

Since B × ∇B drifts (and also the curvature drifts [18.11]) are up/down,
they do not directly contribute to in/out asymmetries (although they may do so
indirectly, see section 18.5), and so we will, for a start, only consider them for
purposes of unambiguously defining the Bφ-direction. By contrast the E × B
drifts are capable of directly causing in/out asymmetries, and so we start by
considering them.

The transformer action of a tokamak induces a toroidal electric field Eφ

which causes the toroidal plasma current Iφ (≡ *I#) to flow. Eφ is also present
in the SOL and, although the resulting toroidal currents are smaller than exist in
the main plasma due to the greater resistivity, nevertheless the SOL ions do drift
to some degree in the direction parallel to Eφ and the SOL electrons drift anti-
parallel. These currents have been measured, chapter 17. One can thus speak of
the ‘ion drift side’ and the ‘electron drift side’ of the targets, as the sides receiving
these Eφ-drifts. (All targets, of course, also receive both ions and electrons due to
the usual ‘sink action’, section 1.1.) As shown in figure 18.4, for Bφ normal the
ion drift side is always on the inside, with the electron drift side on the outside,
regardless of the direction of Eφ, Iφ .

It is almost inevitable that radial and poloidal (parallel) gradients of electric
potential—i.e., electric fields—will arise spontaneously in the SOL—even with-
out any attempt to impose external potentials, see section 17.2. These result in
E × B drifts [18.12, 18.13]:

vE×B = E × B
B2

. (18.2)

Note that vE×B is independent of species, charge or mass. It therefore does not
give a net current.

It is also inevitable that radial and poloidal gradients of plasma pressure will
exist in the SOL. These result in diamagnetic drifts [18.14]:

v∇ p = B ×∇ p

enB2
. (18.3)

Equations (18.2) and (18.3) can be derived from the ion radial momentum equa-
tion (17.53), using the sign conventions of figure 18.5. Note that v∇ p does
depend on sign of the charge and so diamagnetic currents arise. A more complete
treatment of these and other drifts is discussed in [18.2], [18.7], [18.15]–[18.18].
Drift effects have now been included in 2D fluid edge codes [18.16], [18.19–
18.22]; see review by Baelmans et al [18.23].
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 φ

Figure 18.5. The different coordinate systems used in the analysis of E × B drifts.

18.3 The Consequences of E × B Drifts

18.3.1 The Radial and Poloidal E × B Drifts

There are two E × B drifts in the SOL:

(a) The poloidal E × B drift due to the radial electric field across the SOL.
(b) The radial E × B drift due to the poloidal electric field along the SOL.

A radial electric field can arise in the SOL for various reasons but the simplest is
the one discussed in chapter 17: limiters and divertor targets are usually electri-
cally conducting and may be used to define Vref = 0; plasma flow to the plasma-
wetted surface is usually found to be approximately locally ambipolar and so, at
each radial location in the SOL, the plasma potential is Vplasma(r) ∼ +3kTe(r)/e;
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Inside Outside

Bφ

ΓθΓθ

Er

Figure 18.6. The radial electric field in the SOL is usually outward. Therefore for Bφ in
the ‘normal’ direction, the E × B poloidal drift direction is clockwise.

since Te(r) decays radially, ∂Te/∂r < 0, therefore ∂V/∂r < 0 and so the radial
electric field, Er ≡ −∂V/∂r is

Er ≈ 3kTe

eλTe

(18.4)

i.e., it points radially outward in the main SOL (but oppositely in the private
plasma). The resulting E × B drift in the main SOL is then in the poloidal
direction, from inside to outside for Bφ normal, see figure 18.6, giving poloidal
flux density �dr

θ [electrons and ions m−2 s−1]:

�dr
θ ≈ 3kTen

eλTe B
. (18.5)

Parallel electric fields exist in the SOL, as given by Ohm’s law, section 9.5:

E‖ = j‖
σ‖
− 0.71

e

∂Te

∂s‖
− 1

en

∂pe

∂s‖
. (18.6)

In the sheath-limited regime, ∂Te/∂s‖ ≈ 0 and taking for simplicity j‖ = 0, one
obtains from the fact that p drops by 1

2 along the SOL that E‖ ≈ −kTe/2eL
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directed toward each target. The projection of E‖ in the poloidal plane gives a
larger value, Eθ ≈ (B/Bθ )kTe/2eL , figure 18.7. The resulting radial E × B
particle flux density �dr

r :

�dr
r ≈ (B/Bθ )nkTe/2eL B (18.7)

is directed from the outer SOL into the main plasma (and into the private plasma
below the X-point), also from the main plasma (or private plasma) into the inner
SOL—for normal Bφ ; see figure 18.7.

Inside Outside

EθEθ

Bφ

Γr

Figure 18.7. Parallel electric fields tend to be toward the targets, thus for Bφ in the
‘normal’ direction the radial E × B drift direction is (a) for locations above the X-point:
from the outside SOL into the main plasma, and out again into the inner SOL, and (b) for
locations below the X-point: from the outer SOL into the private plasma and out again into
the inner SOL.

For the conduction-limited regime this radial E × B drift is stronger since
the thermoelectric term in equation (18.6) can be large. Here E‖ ≈ −kTeu/eL ,
where Teu is the upstream temperature. Thus Eθ ≈ (B/Bθ )kTe/eL and �dr

r :

�dr
r ≈ (B/Bθ )nkTeu/eL B (18.8)

and the directions are as for the sheath-limited regime, figure 18.7.
Next we consider how the SOL responds to these E × B drift flows of

particles. It does so rather differently for the two drift directions. The poloidal
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drift flux in the main SOL �dr
θ is effectively in the same direction as the usual,

no-drift, parallel flows to the target �‖—i.e., the standard flows resulting from the
ionization of hydrogen. It thus combines with this flow. In effect, it ‘pushes the
flow forward’ to the outer target in the main SOL while ‘working against’ the flow
toward the inner target—for normal Bφ . As a result, the plasma density/pressure
is raised at the outer target while being reduced at the inner. This situation is
analysed in more detail below.

�dr
r , unlike �dr

θ , does not directly ‘compete’ with �‖. In the simplest pic-
ture, this radial drift forms its own closed loop of recirculating flow, figure 18.8,
where we have assumed that the recycle patterns at each target are also locally
closed—i.e., the ‘high recycling’ divertor situation (the neutrals recycling from
the outer/inner target all ionize close to the outer/inner target, creating a local
plasma flow back to the outer/inner target; we exclude ionization-pattern-induced
flow reversal in this simplest picture). In this case, the flow pattern caused by �r

would consist of flow from the outer SOL, across the LCFS into the main plasma,
out again across the LCFS into the inner SOL, with the circuit being completed by
parallel-to-B flow along the SOL over the top side of the plasma. Clearly much
more complex flow patterns could arise resulting in direct interaction (i.e., co-
mingling) of the �r -flow fields and those associated with the spatial distribution

φ

Figure 18.8. [18.5]. For the situation where the poloidal E × B drift can be neglected
compared with the radial E × B drift, a return flow is induced along the SOL, from inside
to outside target regions (‘forward’ direction of B assumed). Here, it is also assumed
for simplicity that the local recycling zones at each target are very close to the target in
question, and thus the two types of parallel flow (E × B induced, and ionization induced)
do not directly interact, i.e., do not ‘co-mingle’.
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of ionization. Here, however, we will only consider the simplest possible case as
indicated in figure 18.8. In this simplest case, if �r = 0, then the entire region
in the SOL, between the recycling zones localized near the two targets, would be
stagnant; it is only due to �r �= 0 that there is any parallel-to-B flow in most
of the SOL, for these assumptions. In the presence of dissipative forces, such as
friction or shear viscosity, the parallel flow needed to close this loop, results in
parallel pressure drops along the SOL, giving in/out asymmetries. This case is
considered in section 18.4.

18.3.2 Comparison of Drift Fluxes with the Basic SOL Fluxes

Parallel fluxes projected onto the poloidal direction give �
‖
θ :

�
‖
θ ≈ ncs Bθ /B. (18.9)

We can compare �dr
θ , equation (18.5), with �

‖
θ :

�dr
θ /�

‖
θ ≈ ρsθ /λTe (18.10)

where ρsθ ≡ cs/ωiθ and ωiθ = eBθ /mi , the ion poloidal gyro-frequency.
We can also compare �dr

r , equation (18.8), with the cross-field anomalous
particle flux density:

�an
r ≈ nD⊥/λSOL (18.11)

by estimating λSOL ≈ (D⊥L/cs)
1/2:

�dr
r /�an

r ≈ ρsθ /λSOL (18.12)

i.e., essentially the same result as equation (18.10).
Example: T = 25 eV, Bθ = 0.3 T, D+, giving ρsθ ≈ 3 mm, which is

not negligible compared with typical λSOL values of the order of 1 cm. One thus
anticipates that while drifts would not usually dominate SOL behaviour, they may
be expected to modify it noticeably. Drift effects may be anticipated to be more
important for high temperature parts of the SOL since ρsθ /λSOL ∝ T 3/4 D−1/2

⊥ .

18.3.3 Comparison of Radial and Poloidal Drift Fluxes

Consider first the sheath-limited regime with ∇‖T ≈ 0. We integrate �dr
θ , equa-

tion (18.5), over 1 m toroidally and across the width of the SOL, λSOL (taken to
be λTe here) to obtain the total flow (along the main SOL):

φdr
θ ≈ 3nkTe/eB. (18.13)

We integrate �dr
r , equation (18.7), over 1 m toroidally and along the entire length

of the LCFS from the top of the machine to the outer target, which is a length
(Bθ /B)L in the poloidal plane:

φdr
r ≈ nkTe/2eB. (18.14)

Copyright © 2000 IOP Publishing Ltd.



The Consequences of E × B Drifts 547

Inside Outside

φθ
dr

φr
dr

Bφ

Figure 18.9. The total poloidal, φdr
θ , and radial, φdr

r , E × B fluxes integrated over the
tokamak.

φdr
θ , φdr

r [particles/m toroidally /s] are shown schematically in figure 18.9.
Clearly, in this regime, the poloidal drift dominates and, to first order, one can
neglect the radial drift.

Consider next the conduction-limited regime where ∇‖T is large, Teu � Tet .
From equation (18.8) we then obtain:

φdr
r ≈ nkT sep

eu /eB (18.15)

(the potential drop across the MPS, ∼3kTet , is ignored since Tet � Teu) while
the total poloidal flux at the top of the machine:

φdr
θ ≈ neu EruλSOL/B. (18.16)

Eru no longer has very much to do with the variation of potential or Te across the
target in this situation, and is governed instead by the evolution of plasma poten-
tial V along the SOL. Consider figure 18.10. We assume the plasma temperatures
Tb ≈ Tc ≈ 0 while Ta ≡ T sep

et , Td ≡ T sep
eu are the separatrix values. Taking

Vb ≡ 0, then Va ≈ 3kT sep
et /e;

Vc ≈ Vb + 0.71(kTc − kTb)/e ≈ 0

Vd ≈ Va + 0.71(kTd − kTa)/e ≈ kT sep
eu /e
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Figure 18.10. The ‘straightened-out’ SOL on the outside.

assuming T sep
eu � T sep

et . Thus Eru ≈ kT sep
eu /eλSOL and from equation (18.16):

φdr
θ ≈ neukT sep

eu /eB. (18.17)

At this point, it appears that φdr
r and φdr

θ are of about the same magnitude. We
have not, however, allowed yet for the fact that n also varies substantially along
the SOL in this regime. Thus equation (18.15) for φdr

r may be corrected, to first
order, by replacing n with the average value of n along the LCFS from top to outer
target. Since Tu � Tt , then from pressure conservation we have nu � nt and
so the average n̄LCFS � nu . The correction for φdr

θ is smaller: we might replace
neu in equation (18.17) with the average value across the SOL at the top, perhaps
0.5nu . Thus allowing for the large ∇‖T and the large ∇‖n in this regime, it is
expected that the radial E × B drift fluxes are more important than the poloidal
ones. The foregoing comparison of the two drifts is only to aid understanding
and any serious modelling exercise should include both in order to avoid artificial
sources or sinks.

18.3.4 The Effect of Poloidal E × B Drift on SOL Asymmetries

At this point, it is to be noted that the common practice, which we have followed
here, of referring to �dr

θ as being in the ‘poloidal’ direction (and thus the use of
‘θ ’) is strictly incorrect, see figure 18.5. Strictly, this is in the direction perpendic-
ular to B. Although in practice this distinction is unimportant since Bθ /B � 1,
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it is potentially confusing. Here we will continue with the common practice
of writing vθ for v⊥ and �θ for �⊥, etc, but will nevertheless take the correct
components. Hence, the total flux in the true poloidal direction y of figure 18.5:

�y = cos θ�dr
θ + sin θ�‖. (18.18)

Thus
�y = n(cos θvdr

θ + sin θv‖) (18.19)

where vdr
θ is the ‘poloidal’ drift velocity:

vdr
θ ≡ Er/B (18.20)

i.e., strictly one should write this as vdr⊥ . Thus one has the particle conservation
equation:

d�y

dy
= d

dy
[n(cos θvdr

θ + sin θv‖)] = Sp (18.21)

where Sp is the particle source rate due to ionization or cross-field diffusion,
section 1.8.2.4. Also:

θ = sin−1(Bθ /B) ≈ Bθ /B. (18.22)

Note that one could re-write equation (18.21) as:

d

dy
[n sin θv‖] = Sp + Sdr

p (18.23)

where

Sdr
p ≡ −

d

dy
[n cos θvdr

θ ]. (18.24)

That is, one has an effective particle source due to cross-field drift, specifically
given by the negative of the divergence of the cross-field flux density, in precise
analogy to the effective cross-field diffusion source, section 1.8.2.4.

This then leads naturally to a formulation of the parallel momentum equation
allowing for drifts starting from the form in section 1.8.2.3:

mnv‖
dv‖
ds‖

= −dpi

ds‖
+ neE‖ + Sdr

m − mv‖Sdr
p − mv‖Sp (18.25)

where Sdr
p and Sdr

m are the particle and momentum ‘source’ rates, respectively, for

the parallel direction due to the divergence of the drift flow at speed vdr
θ .

For simplicity we take the isothermal approximation, thus the first two terms
on the RHS of equation (18.25) become:

−c2
s m

dn

ds‖
(18.26)
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where
c2

s = k(Te + Ti )/m. (18.27)

Defining the coordinate pair (s‖, s⊥) in the (x, y)-plane, see figure 18.5, we have:

dy = cos θds⊥, dx = cos θds‖, etc. (18.28)

Then:

Sdr
m = − d

ds⊥
(mv‖nvdr

θ ). (18.29)

Therefore,

Sdr
m − mv‖Sdr

p = − cos θmnvdr
θ

dv‖
dy

. (18.30)

Combining expressions (18.25), (18.26), (18.28) and (18.30) gives:

n
dv‖
dy

(
vdr
θ

tan θ
+ v‖

)
= −c2

s
dn

dy
− v‖

Sp

sin θ
. (18.31)

If one treats vdr
θ as specified, and also Te, Ti , Sp(y), θ(y), then we have two

equations (18.21) and (18.31), to give the two quantities n(y) and v‖(y). Here
we assume that θ is constant along y. We combine the particle balance equa-
tion (18.21) and the momentum equation (18.31) to obtain:

n
dv‖
dy

(
vdr
θ

tan θ
+ v‖

)
+ v‖

d

dy

[
n

(
vdr
θ

tan θ
+ v‖

)]
= −c2

s
dn

dy
. (18.32)

We define

v ≡ v‖ + vdr
θ

tan θ
(18.33)

and we can now integrate equation (18.32) to give:

n

(
v2 + c2

s −
vvdr

θ

tan θ

)
= G, a constant. (18.34)

At this point, the boundary conditions are needed to specify v‖ (or v) at the
entrance to the magnetic pre-sheath in front of the target plates, v‖BMPSE, allowing
for the presence of poloidal drift. This has been evaluated in [18.24], [18.25]. To
a first approximation, the ‘intuitive’ result is obtained:

Mt = 1− 2γ (18.35)

where
Mt ≡ v‖BMPSE/cs (18.36)

and

γ ≡ vdr
θ

2cs tan θ
. (18.37)
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See also [18.4], [18.26], [18.27]. The term ‘intuitive’ is used because one could
derive this result simply by assuming that the total velocity (the vectorial sum of
drift and parallel velocity) at the MPSE is the sound speed. The analysis employed
in [18.25] and [18.26] is, nevertheless, from first principles and broadly follows
the same line of reasoning used to establish the Bohm, sections 2.3, 2.4, and
Chodura, section 2.10, boundary conditions, by considering the entrance speed
required to result in a sheath and magnetic pre-sheath where the potential varies
in a non-oscillatory way.

Thus one has the simple result for the boundary condition on v:

vt = cs (18.38)

to be used with equation (18.34). From equation (18.34) we thus have the density
just in front of the target:

nt = G

2c2
s (1− γ )

. (18.39)

We can thus calculate the in/out density ratio nin
t /nout

t —which, since the isother-
mal assumption is made here, is also the pressure asymmetry. We will assume vdr

θ ,
γ out > 0 at the outer target and γ in = −γ out (= γ ). Thus from equation (18.39):

nin
t /nout

t = 1− γ

1+ γ
(18.40)

Figure 18.11. Thus as the poloidal drift becomes strong, i.e., γ → 1, the density
and pressure ratios go to zero, i.e., an extreme asymmetry exists.

0.5
γ

0.5

1

1

n o 
in

n o o
ut

Figure 18.11. Asymmetry in density at inner and outer divertor targets due to E × B
poloidal drift. The strength of the drift is given by γ ≡ Er /(2Bcs tan θ). Effect shown for
the main SOL.

The total out flux density to the target:

�yt = nt cs sin θ (18.41)
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and thus the target particle fluxes are also in this ratio. Using equation (18.41),
one can relate the constant G to the total integrated source, Sp, per m toroidally:

G = cs(1− γ 2)Stotal
p / sin θ.  (18.42)

It is also useful to relate nt to nmax, the maximum of n in the flux tube—roughly
midway between the targets and thus the value that should be associated with
the ‘upstream’ density in the SOL, i.e., the main plasma density in the simplest
picture. From equation (18.34) we have n(v). Differentiating we find:

nmax = G/c2
s

(1− γ 2)
. (18.43)

Thus:
nt

nmax
= 1+ γ

2
. (18.44)

Thus, at the inside, for very strong drifts, γ in  → −1, one would obtain com-
plete disappearance of the plasma, i.e., complete plasma detachment. Cohen and
Ryutov, however [18.27], argue that some finite density, rather than zero, will
remain. The influence of the poloidal E × B drift on the SOL structure was
first analysed by Tendler and Rozhansky [18.28]. They noted that the pressure
asymmetry between the strike points causes plasma flow along the field lines,
giving rise to a net toroidal velocity of order Er/Bθ . In [18.29] they also argued
that toroidal rotation in the same direction can be driven near the separatrix by
anomalous radial transport in the presence of shear of the poloidal rotation.

It should not be assumed that a poloidal E × B drift toward, say, the outer
target will necessarily involve net transport of plasma from the inner divertor
to the outer. In the simplest situation (with no ionization-driven flow reversal,
chapter 15) each divertor region is locally self-sustained as to particle balance,
with the total ionization that occurs in each divertor equalling the particle outflow
to the local target. In that case there can be no net transfer of plasma between
the two target regions. If a poloidal E × B drift raises the density and pressure
in the outer divertor, then the magnitude of the recycle rate there will increase—
and the target flux will rise—but since that process is entirely locally sustained,
there is no need for plasma to be transported into the outer divertor volume,
once a steady state has become established. The Er × B drift must therefore
be compensated by a ‘return flow’ of some sort. The simplest type of return flow
is a parallel flow, from the outside (higher pressure) to the inside (lower pressure)
(the normal direction of B assumed) at velocity vreturn‖ . There is zero net transfer
of plasma when (Bθ /B)vreturn‖ = (Bφ/B)Er/B, i.e., approximately vreturn‖ =
Er/Bθ . Such flows, all along the SOL, can be substantial: say Er ≈ kTe/eλT ≈
50 [eV]/0.02 [m] = 2500 [V m−1] and Bθ = 0.25 [T], then vreturn‖ = 104 m s−1.
A significant fraction of the E × B flow simply forms a natural re-circulation
pattern in the edge, turning to pass along the magnetic pre-sheaths (as Eθ × B
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flow) in front of the targets, then returning along the private plasma (as Er × B
flow), closing on itself, see section 18.4, point (V), and figure 18.15.

Finally, it is worth commenting on the heuristic treatment used here to es-
tablish the particle balance and momentum balance equations (18.21) and (18.25).
In this non-rigorous approach the effects of the drifts have had to be introduced
explicitly using expressions for vE×B , equation(18.2), whose origin is not nec-
essarily clear. Equations (18.2) for vE×B and (18.3) for v∇ p can, for example,
be obtained by analysing single-particle motion to obtain these guiding centre
drifts [18.30], section 18.7. It might therefore appear that it is necessary to ‘patch’
guiding centre drifts into fluid equations. This is not correct. When the complete
3D form of the momentum equation is used [18.2, 18.31]:

∇(nm vv+ ↔
p) = en(E + v × B) (18.45)

then all drifts are automatically included—including ones involving toroidicity
(finite a/R) [18.2], section 18.7. The only reason that we had to ‘patch up’ the
momentum equation used here, equation (18.25), was that we did not use the
complete 3D momentum equation, but a simplified 1D form. The same applies to
the particle balance equation. For a rigorous derivation, see Baelmans [18.15].

18.3.5 The Effect of Radial E × B Drift on SOL Asymmetries

The postulated flow pattern induced by the radial E × B drift is shown in fig-
ure 18.8. The flow along the SOL required to close this flux loop is simplified
to slab geometry in figure 18.12. We have a vreturn‖ due to this parallel return flux
needed to close the loop. This is in addition to any v‖ associated with ionization or
cross-field diffusion sources. Assuming that Eθ is largest near the X-point, where
the pitch angle is smallest and therefore poloidal T -gradients are often largest,
then most of the influx to the SOL caused by vdr

r is near the inside end of the SOL
flux tube, and most of the outflux (back into the core via vdr

r ) is near the outside
end of the SOL flux tube. In figure 18.12, we have simplified to the extreme of
all influx at the inside end, all outflux at the outside end. Although vreturn‖ will
vary along the flux tube due (a) to the very fact that n varies (i.e., the effect we are
trying to extract here), and (b) to the fact that the cross-sectional area of the flux
tube varies poloidally (by a factor ≈ a/R)—we will simply take here a constant
value of vreturn‖ as being representative of the magnitude of the induced parallel
flow along the SOL.

The total out/in flux is given by:

φ ≈ 1
2 2πa2π Rnvdr

r . (18.46)

Assume this flux is carried by a SOL flux tube of thickness λSOL, we have:

φ = 2π R(Bθ /B)nvreturn‖ λSOL. (18.47)
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Figure 18.12. Case of radial E × B drift. The SOL has been straightened out. The wall is
on the top side; the confined plasma is on the bottom side. The parallel return flow, v‖SOL,
is induced by the radial E × B flux which, here, is taken to enter the SOL near the inner
target and to exit back to the confined plasma at the outer end. This induced parallel flow
generally suffers frictional loss, thus making the plasma pressure at the inner target higher
than at the outer target—which is the opposite pattern of the poloidal drift.

Thus:

vreturn‖ ≈ aπvdr
r

(Bθ /B)λSOL
. (18.48)

Taking:

vdr
r = Eθ

B
= kT

eaπ B
(18.49)

gives:

vreturn‖ = kT

eBθλSOL
. (18.50)

Example: T = 100 eV, cs = 105 m s−1, Bθ = 0.5 T, λSOL = 10−2 m, one
finds vreturn‖ ≈ 2×104 m s−1 which is significant compared with the sound speed.
We therefore can anticipate significant drag on this SOL flow caused by shear
viscosity and perhaps by neutral friction. For simplicity, we assume here that the
plasma just inside the LCFS is stagnant. We also assume a no-slip condition at
the LCFS. The shear stress acting on the SOL flow is then:

τ = µ⊥
dvreturn‖

dr

∣∣∣∣
LCFS

(18.51)

where we make the approximation:

dvreturn‖
dr

∣∣∣∣
LCFS

≈ vreturn‖
δ

(18.52)

where δ is the boundary layer shear viscosity thickness, given by the usual
Reynolds expression:

δ ≈
(

µ⊥L

mnvreturn‖

)1/2

(18.53)
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(which is readily derived by assuming that the shear stress acting on the flow in a
layer of thickness δ, length L , removes all the flow momentum). Thus:

τ ≈ µ⊥vreturn‖
(µ⊥L/mnvreturn‖ )1/2

. (18.54)

In order for the SOL flow to close the loop a pressure drop �p must exist along
the SOL to balance the shear force, thus:

τ L ≈ �pλSOL (18.55)

using
µ⊥ = mnD⊥ (18.56)

(by analogy with classical results); also:

p = 2nkT (18.57)

c2
s = 2kT/m (18.58)

giving:
�p

p
= vreturn‖

c2
s λSOL

(vreturn‖ L D⊥)1/2. (18.59)

Example: T = 100 eV, vreturn‖ = 2×104 m s−1, cs = 105 m s−1, λSOL = 10−2 m,

L = 50 m, D⊥ = 1 m2 s−1 gives �p/p = 0.2 from the inside to the outside.
Clearly, the foregoing is a rough estimate and all that can be concluded from

it is that for reasonable assumptions about the edge parameters one finds �p =
0(p), i.e., there is a substantial pressure difference from inside to outside, due to
flows induced by radial E × B drifts.

Neutral friction would contribute further to the existence of a pressure dif-
ference along the SOL—with the higher pressure existing at the inside end of the
SOL for normal B—in order to drive the parallel return flux to the outside end
against these momentum losses.

At the inner target the increased pressure corresponds to fmom > 1, sec-
tion 5.4, which for fixed upstream conditions then reduces Tt , equation (5.26),
while raising nt , equation (5.28), and raising �t , equation (5.29). This will
increase volumetric power losses which generally increase with decreasing Tt and
increasing nt and �t , thereby causing a positive feedback effect.

18.3.6 Comments on the Effects of Radial and Poloidal E × B Drifts

It is thus seen that:

(a) poloidal drifts tend to be more important than radial drifts in the sheath-
limited regime, with the roles reversing in the conduction-limited regime;

Copyright © 2000 IOP Publishing Ltd.



556 Drifts in the SOL

(b) for normal Bφ , poloidal drifts in the main SOL tend to raise the pressure at
the outside divertor while the radial drifts favour the inside;

(c) For normal Bφ , poloidal drifts in the private plasma are from outside to inside
and tend to raise the pressure at the inside divertor; this can be a larger effect
than the poloidal drift in the main SOL [18.32].

As discussed in section 5.9, there exists a positive feedback effect in the
conduction-limited regime. Thus if the inside density is raised, either by radial
E × B drifts or by poloidal E × B drifts in the private plasma, one anticipates a
further enhancement of density and temperature asymmetries.

On a separate issue, it may be noted that poloidal E × B drifts can be
quite sizeable and can be observed experimentally, for example, by spectroscopic
observation of impurity ‘plumes’ resulting from injection of impurities into the
SOL [18.33]. We may estimate:

vdr
θ ≈ 3kTe

eλTe B
. (18.60)

Example: Te = 25 eV, λTe = 10−2 m, B = 3 T giving vdr
θ ≈ 2500 m s−1. This is

comparable to the poloidal projection of parallel flow sonic speeds and so is quite
detectable.

18.4 Diamagnetic Drifts and Currents in the SOL

There are at least two important differences between E×B drifts and diamagnetic
∇ p-drifts:

(a) ∇ p-drifts are largely divergence free [18.7] which means that the flux pat-
terns form closed circuits within the plasma and do not constitute fluxes onto
external surfaces such as targets and limiter surfaces. See section 18.7.

(b) ∇ p-drifts constitute not only particle flows but currents also, since the sign
of the drift velocity is charge dependent, equation (18.3).

These two properties of ∇ p-drifts have a number of important consequences. We
deal first with the divergence-free property. This can be demonstrated in some
generality [18.2, 18.7], section 18.7. Here we consider a simple demonstration
for the case of a cylindrical (not toroidal) tokamak with a ‘toroidal’ limiter, fig-
ure 18.13. Consider the orthogonal co-ordinates x and y with x measured radially
outward from the LCFS and y measured poloidally. As with E × B drifts, we
will take the ∇ p-drifts to be in the purely radial and poloidal directions, although
strictly the two directions are radial and the second direction perpendicular to B.
Then:

v
∇ p
y = 1

enB

∂pi

∂x
(18.61)
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Figure 18.13. Poloidal cross-section of a cylindrical (i.e., not toroidal) tokamak with a
longitudinal rail limiter (or poloidal divertor) at the bottom.

The sign in equation (18.61) is in accord with convention (for ions); however, in
the SOL ∂pi/∂x is negative and so v

∇ p
y is actually in the clockwise direction in

figure 18.13. Also:

v
∇ p
x = − 1

enB

∂pi

∂y 
(18.62)

where the negative sign in equation (18.62) is necessary for the choice of x
direction here. Since pressure increases away from the target, i.e. ∂pi/∂y > 0
on the outside, ∂pi/∂y < 0 on the inside. Thus v∇ p

x is radially inward on the
outside, carrying particles from the outer SOL into the main plasma; on the inside
it carries particles from the main plasma into the inner SOL.

We now consider the resulting particle fluxes at various locations to show

that the flow is divergence free, see figure 18.14:

(1) φ
top
y =

∫ ∞

LCFS@top
nv
∇ p
y dx =

∫
1

eB

∂pi

∂x
dx = − ptop,LCFS

i

eB
. (18.63)
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Figure 18.14. Detailed accounting of the radial and poloidal E× B fluxes for a cylindrical
tokamak.

φ [ions/m poloidally /s] throughout.

(2) φouter SOL
x =

∫ top,LCFS

outer MPSE,LCFS
nv
∇ p
x dy = −

∫
1

eB

∂pi

∂y
dy

= − −ptop,LCFS
i + pouter MPSE,LCFS

i

eB
. (18.64)

Note that this is just the radial flux crossing the LCFS between the top and
the outside magnetic pre-sheath entrance, MPSE.

(3) φouter MPSE
y =

∫ ∞

LCFS@outer MPSE
nv
∇ p
y dx

=
∫

1

eB

∂pi

∂x
dx = −pouter MPSE,LCFS

i

eB
(18.65)

(4) φouter MPS
x =

∫ outer MPSE,LCFS

outer SE,LCFS
nv
∇ p
x dy

= −pouter MPSE,LCFS
i + pouter SE

i

eB
(18.66)
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where SE is the (Debye) sheath entrance.

(5) φinner SOL
x = 

ptop,LCFS
i − pinner MPSE,LCFS

i

eB 
(18.67)

(6) φinner MPSE
y = −pinner MPSE,LCFS

i

eB 
(18.68)

(7) φinner MPS
x = 

pinner MPSE,LCFS
i − pinner SE,LCFS

i

eB 
(18.69)

We are now in a position to demonstrate a number of important results. First we
may simplify equations (18.66), (18.69) by dropping pSE

i as small since, for the
usual glancing angle targets, the potential drop in the MPS+ Debye sheath occurs
almost all in the MPS and, from the Boltzmann equation for the electrons, then
nSE � nMPSE, thus pSE � pMPSE, section 2.10. Thus we may note the following
results:

(I) φouter MPSE
y = φouter MPS

x , i.e. the poloidal diamagnetic flux entering the
outside MPS is entirely deflected away from the outside target and enters the
main plasma. This flux therefore leaves the plasma and does not reach the
target. A similar deflection occurs on the inside and the poloidal flux entering
the inner SOL from the MPS is entirely provided by the radial inflow into
the inside MPS from the main plasma. Because no fluxes leave the system
by this mechanism, the diamagnetic drifts are not expected to influence the
Bohm–Chodura criterion, which remains as in its basic form (or if E × B
drifts are important, then as given by equation (18.35), see [18.24], [18.25]).

(II) In general, the flux patterns close internally:

|φtop
y | = |φinner SOL

x | + |φinner MPSE
y | = |φouter SOL

x | + |φouter MPSE
y |, etc.

For a single-null divertor configuration, the patterns are slightly more com-
plex, since the private plasma is involved; however, an analysis along the
foregoing lines gives the pattern shown in figure 18.15. Again, the poloidal
diamagnetic flows are deflected in the MPSs and do not reach the solid
surfaces, closing internally.

(III) With regard to the diamagnetic currents involved: all the foregoing applies
to the electrons, but in reverse directions; hence, positive currents flow is
in the same directions as the ion particle flows. Although the foregoing
considerations focused on the LCFS, any flux surface in the SOL gives a
similar result. One may thus consider the implications for diamagnetic radial
currents:

jx = e(�i
x − �e

x ) (18.70)

j [amps m−2]. For Te = Ti :

jx = 2e�i
x . (18.71)

Copyright © 2000 IOP Publishing Ltd.



560 Drifts in the SOL

Figure 18.15. The diamagnetic drift fluxes form closed loops which pass along the
magnetic pre-sheaths at each target, not actually reaching the targets. The E × B drift
fluxes form similar patterns, but with some of the flux reaching the solid surfaces, typically.

While such currents can certainly exist locally, there is no total, i.e. inte-
grated, radial current. This may be seen by adding the various contributions
in figure 18.14, but is also simply the result of integrating �

∇ p
x from the SE

of one target to the sheath edge of the other, as shown in section 17.5.3.
(IV) Poloidal diamagnetic currents are given by the poloidal particle fluxes:

jy = e(�i
y − �e

y) ≈ 2e�i
y . (18.72)

Combining with equation (18.61):

jy B = j × B|x = 2∂pi

∂x
= ∂p

∂x
(18.73)

Which gives the radial magnetic confinement force balance, section 17.5.3.
Since the SOL plasma is certainly not exploding radially, it must be in force
balance—and the foregoing is the main part of this balance. These currents
are not insignificant:

jy ≡ jpoloidal ≈ 2nkT

BλSOL
. (18.74)

Example: n = 1019 m3, T = 25 eV, B = 3 T, λSOL = 10−2 m, which gives
jpol ≈ 3000 A m−2, and is the equivalent of a value of j‖ which is perhaps
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ten times larger. This can be comparable to typical j+sat values; however, the
comparison is not very meaningful since these diamagnetic currents do not
reach the solid surfaces, but close via internal loops within the plasma. One
should also note that jpol is a net current while fluxes to solid surfaces tend to
be ambipolar—i.e. no net current—and one can only draw a net ion current,
j+sat, to an element of surface by biasing it so as to repel the electrons.

(V) Turning to E × B flows in contrast with the diamagnetic flows, which are
divergence free (in cylindrical geometry, at least), the E × B flows are not
divergence-free (even in cylindrical geometry). The E × B flows would be
divergence free if n were either a constant or depended solely on electrostatic
potential V . Thus, if we start by ignoring density variations then we may
anticipate that a flow pattern similar to the closed diamagnetic flow pattern
of figure 18.15 will exist [18.7]. Such flow patterns, involving closure by
poloidal E × B flows along the private plasma, have been deduced from
probe measurements in the private plasma of DIII-D [18.34]. Taking density
variations into account modifies this picture somewhat, such that some of the
poloidal E × B flow reaches the solid surface.

18.5 Pfirsch–Schlüter flows

In toroidal geometry there exist almost vertical ∇B and centrifugal (individual
particle) drifts of electrons toward the top of the torus and ions toward the bottom,
for the normal direction of B, reversing with reversal of field direction. For p‖ =
p⊥ the total vertical drift velocity is readily estimated to be:

vdr ≈ ±2p/enB R (18.75)

where the signs are different for ions and electrons. The resulting charge sepa-
ration drives parallel currents called Pfirsch–Schlüter, P–S, currents and the cor-
responding parallel particle flows are called Pfirsch–Schlüter, P–S, flows. These
drifts can also directly influence the plasma density in the divertor. The density is
mainly determined by the transport of ions as the heavier, less mobile component.
One should then expect a larger density in the divertor (at the bottom) for normal
Bφ than for reversed Bφ .

In [18.2], see also section 18.7, it is shown that the ∇B and centrifugal
(individual particle) drift fluxes are almost exactly equal to the non-divergence-
free part of the diamagnetic (fluid) drift flux, equation (18.3). It is only the latter
part that results in the effective source of ions and electrons that drives the P–
S currents and flows. Although E × B drifts do not generate currents they do
constitute particle flows and a contribution to the P–S ion flow is due to the non-
divergence-free part of the poloidal E × B drift, equation (18.2). We therefore
start our analysis of P–S flows by considering the sum of these two vertical fluid
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drifts, see figure 18.5:

v⊥ =
(

Er − ∇r p

en

)
× B

B2
. (18.76)

The drift flux density n v⊥ is not divergence free because of the R-dependence of
the magnetic field, B ∝ 1/R, which also causes a second effect through geometry.
Let us start with the latter effect. The cross-sectional area of a magnetic flux tube,
say for power, ASOL

q‖ , chapter 5, varies inversely with magnetic field, ASOL‖ ∝
1/B. In chapter 5 we neglected this variation but we will take it into account here.
Since B ∝ 1/R in toroidal geometry, ASOL‖ ∝ R. The 1D particle conservation

equation is readily adapted to allow for variable ASOL‖ , giving for example:

∂(ASOL‖ nv⊥)

∂θ
= ∂(Rnv⊥)

∂θ
= 0 (18.77)

if v⊥ is divergence free; see for example [18.35]. Therefore for a divergence-free
v⊥ one has Rnv⊥ = constant and nv⊥ ∝ 1/R—even before taking into account
the specific dependences of v⊥ on B. From equation (18.76) we see that the latter
introduces a further B-dependence so that overall we may write:

nv
d-f
⊥ = nv⊥(B/B0)

2 (18.78)

where ‘d-f’ indicates the ‘divergence-free poloidal drift velocity’, which is the
form of equation (18.76) that would hold for cylindrical geometry, i.e. evaluated
for B = B0; also:

B = B0 R0/R (18.79)

and
R = R0 + r cos θ.  (18.80)

See figure 18.16. We may thus define a ‘non-divergence-free poloidal drift veloc-
ity’, v

n-d-f
⊥ , by:

v
n-d-f
⊥ ≡ v⊥ − v

d-f
⊥ . (18.81)

It is then readily shown, by taking the approximations (1+ (r/R0) cos θ)2 − 1 ≈
(2r cos θ)/R0 and (1+ (r/R0) cos θ)−1 ≈ 1, that:

v
n-d-f
⊥ = v

d-f
⊥

2r

R0
cos θ. (18.82)

The E × B drift is always non-divergence-free, even in cylindrical geometry,
since it is proportional to ne Er , which cannot be written as a gradient, so strictly
speaking we mean here that we are including in v

n-d-f
⊥ that part of the E × B drift

which is due to B ∝ 1/R.
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Ro

R

r

θ

Figure 18.16. Toroidal tokamak geometry. Poloidal cross-section.

Let us assume, for simplicity, that there is no parallel flow due to ionization
or other causes, and the only parallel flux density nv‖ that exists is that required
to compensate for nv

n-d-f
⊥ ; then:

nv
n-d-f
⊥ (Bφ/B) = nv‖(Bθ /B) (18.83)

where the components in the true poloidal direction y have been taken,
figure 18.5. One thus obtains:

v‖ = v
d-f
⊥ q cos θ (18.84)

where q ≡ r Bφ/R0 Bθ has been used. For simplicity we have also assumed n, p,
etc constant along the SOL.

The same result is obtained by employing more systematic analysis than the
foregoing [18.36, 18.37], to give finally the Pfirsch–Schlüter velocity:

vPS‖ = 2q cos θ

(
Er
−∇r p

en

)
× B0

B2
0

(18.85)

Thus, in the simplest situation, vPS‖ is maximum at the outside of the tokamak,
zero at top and bottom, and a negative minimum at the inside. Its direction
changes when the field direction is changed. Probe measurements in the SOL
of JT-60U [18.38] and on JET [18.39] indicate parallel flows roughly consistent
with the magnitude and direction given by equation (18.85), although the spatial
variation has not been fully established and a return flow due to Er × B poloidal
drift, section 18.4.3 should also be considered.

The diamagnetic portion of equation (18.85) also gives currents—Pfirsch–
Schlüter, P–S, currents. The currents and ion flows are in the anticlockwise direc-
tion on the outside when the ∇B-ion drift is toward the bottom of the tokamak.
P–S currents also exist in the main plasma, but are smaller than in the SOL for
two reasons:
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(a) radial gradients are larger in the SOL,
(b) Er and −∇r p are usually in the same direction in the SOL, reinforcing

each other, whereas in the main plasma they are in opposite directions and
can even cancel (consider the radial ion pressure balance equation (17.53);
if viφ and viθ are small then the ion pressure gradient is almost entirely
balanced by the radial electric field, i.e. the ions in the main plasma tend
to be confined electrostatically; the electron–ion ensemble, the plasma, is
confined by the j × B force, of course, since an electric field exerts no force
on the quasineutral plasma).

From equation (18.85) one may estimate the magnitude of the ion parallel
return flux density at the outside midplane (θ = 0):

�mid
i‖ ≈ 2q

nkT

eλSOL B
. (18.86)

This is ∼q times larger than the poloidal drift density itself, equation (18.60).
It is comparable to the parallel drift flux density driven by radial E × B drifts,
equation (18.50)—although flowing in the opposite direction along the SOL. Flow
velocities at a significant fraction of the sound speed are therefore indicated, and
have been reported [18.38, 18.39].

As remarked at the beginning of this section, these non-divergence-free drifts
(both diamagnetic and E × B), for normal Bφ , tend to raise the density and
pressure at the bottom (thereby driving the parallel return flows back toward
the top, as just discussed). While that does not directly contribute to any in/out
asymmetry, it can do so indirectly: assuming the divertor is located at the bottom,
then an increased divertor density has a cooling effect on the target plasma—
which will generally be a stronger effect on the inside than the outside since the
inside already tends to be cooler and denser. As mentioned earlier, lower target
Te leads to more radiation and interaction with neutrals, which further increases
ne and reduces Te by a positive feedback effect—similar to the effect of the basic
radial E × B effect.

We may consider a further consequence of the P–S flows [18.40]: these
parallel flows will inevitably be associated with parallel variations in plasma pres-
sure. Poloidal variations of plasma pressure therefore also exist and, according
to equation (17.50), will cause radial currents, jr [A m−2], to flow. In cylindrical
geometry, owing to in/out symmetry, there will be no net, integrated radial current,
but in toroidal geometry there is a net current, Ir,net [A], because the outside is of
larger area than the inside and the field is weaker there. At least such a current
is able to flow in the SOL where net radial current can close through the targets;
in the main plasma Ir,net = 0 even for toroidal geometry because all the field
lines are closed. It can be shown [18.40] that this gives a force on the SOL ions
of magnitude 〈 jr 〉Bθ which causes an additional parallel mass flow (additional to
the basic P–S flows) from the outside to the inside, for the normal field direction.
This flow can result in a net parallel ion flow from the outside target region to the
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inside. This force can also raise the pressure on the inside, thus offering another
potential explanation of divertor in/out asymmetries, in addition to the effect of
radial E × B flows discussed in 18.3.5.

18.6 Heat Flux Drifts in the SOL

Similar to the diamagnetic B × ∇ p particle fluxes, there exist heat fluxes associ-
ated with ∇T [18.7]:

(a) conducted: q∇T = 
5

2

p

eB2 
B ×∇T (18.87)

(b) convected: q∇ p = 
5

2

kT

eB2 
B ×∇ p (18.88)

(c) total: qdiam = 
5

2

1

eB2 
B ×∇(pT ). (18.89)

These fluxes are, however, largely divergence free, closing on themselves within
the plasma and not depositing heat on solid structures—in analogy with the dia-
magnetic particle fluxes.

The E × B drifts, on the other hand, can carry plasma heat flux out to solid
surfaces [18.3, 18.4, 18.41]:

qE×B = 
5

2

p

B2 
E × B. (18.90)

Since E × B drifts usually generate return flows along the SOL, it is necessary
to allow for the heat convected by such parallel-to-B heat flows. It was noted
in section 5.9 that the power reaching the outer and inner divertor fans is often
relatively symmetrical (irrespective of the ion ∇B-drift direction) and thus it may
be that the net effect of heat flux drifts—when the return heat flows along the SOL
are also allowed for—may not be large. It is clear that this situation is complex,
and varying behaviour is likely, perhaps explaining why power symmetry, in/out,
is observed in some tokamaks, but not others, section 5.9.

18.7 Two Alternative Descriptions of Drifts

So far in this chapter we have, without explicitly noting doing so, switched back
and forth between what are in fact two alternative ways of describing drifts—fluid
drifts and guiding centre drifts. It would lead to error if one were to add drifts
from one approach—say the guiding centre ∇B-drift, equation (18.1)—to one
from the other approach—say the fluid diamagnetic drift, v∇ p, equation (18.3).

For a systematic treatment of these two alternative and equivalent approaches
to describing drifts it is recommended that the reader refer to the text by Goldston
and Rutherford, G&R [18.42]. In chapters 2 and 3 of G&R the single particle
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analysis for uniform and non-uniform B-fields is given—generating the guiding
centre drift expressions. Here terms such as the ∇B-drift, equation (18.1), are
obtained. As can be noted from equation (18.1), the specific, total velocity of the
individual particle appears—in this case, the component of the individual ion’s
velocity perpendicular to B, v⊥. Of course one is free to average over the entire
distribution of ions, which will then generate a term involving the perpendicular
pressure, p⊥, where:

p⊥ = nkT⊥ (also p‖ = nkT‖) (18.91)

and
〈 1

2 miv
2⊥〉 ≡ kT⊥ (also 〈 1

2 miv
2‖〉 ≡ 1

2 kT‖) (18.92)

where ‘〈 〉’ indicates the average over the distribution of particles. This gives an
expression for a guiding centre drift flux density:

n〈vgc〉 = p⊥
eB3

B ×∇B. (18.93)

In chapter 7 of G&R the alternative fluid drift analysis is presented, which
starts from the standard form of the momentum equation, equation (17.33) (note,
however, that this then gives rise to fluid particle drift fluxes!). From this analysis,
terms such as the fluid diamagnetic drift follow, equation (18.3).

As G&R note: ‘The crucial point is that, while the two approaches are very
different, if they are each carried through consistently to the same order, they give
the same answer for any observable quantity at that order.’ They then go on to
demonstrate for some simple but important examples that this is indeed the case.

Chankin [18.2] provides relatively complete expressions for the particle flux
densities for these two approaches. For the fluid approach:

nv f (≡ nv) = nv‖
B
B
+ n

B2
E × B + 1

eB2
R × B + 1

eB2
B ×∇ p⊥

+ (p‖ − p⊥ + nmv2‖)
eB3

B × B ·∇
(

B
B

)
. (18.94)

Here we may use the subscript f to emphasize ‘fluid’ treatment, but since the
absence of any subscript is usually taken to mean the fluid velocity, this is unnec-
essary and will be dropped here. The E × B drift term, equation (18.3), may be
recognized in equation (18.94). The term involving the electron–ion friction force
R we will not consider further here. The first term on the RHS is just the non-drift
part of v, while the last term is a higher order one.

For the average over the ion distribution Chankin gives the average guiding
centre flux density:

n〈vgc〉 = n〈vgc‖〉 B
B
+ n

B2
E × B + p⊥

eB3
B ×∇B + (p‖ + nmv2‖)

eB3
B

× B ·∇
(

B
B

)
+ p⊥

eB3
B

(
B curl

(
B
B

))
. (18.95)
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The ∇B drift, equation (18.1), is recognized as the third term, while the fourth
term is the curvature drift; both are important for non-uniform B-fields, as in
tokamaks, and are of comparable magnitude and in the same direction, although
oppositely directed for electrons and ions. Thus they create currents. One could
add to equation (18.95) a term involving R. The last term is a higher order one.

The diamagnetic drift is an extremely important one for magnetic confine-
ment systems. Consider the case of a straight cylindrical plasma with a uniform
axial field Bz ; see figure 9.1 of G&R. The powerful pressure gradient force, -
dp/dr , is balanced by a jθ Bz force, but where does the jθ come from? There
are no ohmic currents involved in this simple system. The jθ arises entirely
spontaneously within the plasma, simply from the presence of Bz and the p-
gradient. Indeed jθ is just the familiar diamagnetic current: as can be seen from
equation (18.3) this drift is charge dependent. The ions and electrons drift in
opposite θ -directions, thus making a net current. (The E × B drift, which is not
charge dependent, generates no currents.) So, for purposes of calculating plasma
currents it is essential to retain the complete form of the fluid diamagnetic drift
flux. If, on the other hand, one is only interested in modelling the particle flows,
then it is useful to take advantage of an important fact: the diamagnetic flux is
almost entirely divergence free.

The diamagnetic term can be rewritten [18.2]:

B ×∇ p⊥
eB2

= −curl [(p⊥/eB2)B] + 2p⊥
eB3

B ×∇B + p⊥
eB2

curlB. (18.96)

For the case of a uniform B, the last two terms are zero and one sees that
since the diamagnetic flux can be written as the curl of a quantity, it is divergence
free. If in some particular problem we are not interested in calculating currents,
but just the flows themselves, their effects on pressure, their contributions to fluxes
reaching solid surfaces bounding the system, etc, then we would do well to drop
the divergence-free part of the diamagnetic flux term completely. Its retention can
lead to nothing useful and, on the other hand, can create problems of accumulating
errors in the numerical computational scheme. Such terms have therefore been
dropped in some numerical codes [18.2, 18.20, 18.21, 18.32].

Consider next the case of the non-uniform B of a tokamak where |∇B| ≈
|curlB| ≈ B/R, where here R is the major radius (not the ei-friction force). One
thus sees that the last two terms in equation (18.96) are small compared with the
diamagnetic flux (LHS) (and also to the first term on the LHS): they are∼λSOL/R
smaller. It is therefore also advisable to retain only these non-divergence-free
components of the diamagnetic drift in numerical code work [18.20].

Equation (18.96) also provides a further important insight: with the aid of
the identity:

B ×∇B + BcurlB − B
(

B · curl

(
B
B

))
= B × B ·∇

(
B
B

)
(18.97)

one can show that the fluid drift flux, equation (18.94), and the average guiding
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centre flux density, equation (18.95), become identical—and the divergence-free
part of the diamagnetic drift is dropped. We are therefore able to see that the well
known effect of the (guiding centre) ∇B and curvature drifts, which is to cause
top/bottom charge separation in tokamaks, resulting in force-free Pfirsch–Schlüter
return currents along B—is also implicit in the fluid drift treatment, although
this was not at first apparent. Conversely, one also sees that the guiding centre
approach does indeed encompass the effect of a pressure gradient, ∇ p⊥, although
that also was not immediately obvious.

18.8 A Concluding Comment

We must conclude on the same cautionary note as the previous chapter on SOL
currents: the analysis of SOL drifts in this chapter only constitutes an introduction
to what is clearly a complex subject. Just the basic aspects of some of the effects
have been illustrated here. Experimental reality is certain to be more complex. For
a start, SOL currents and drifts are closely coupled. Interactions of other types are
also likely and could be such as to offset the trends found on the basis of the simple
analysis used here. In order to elucidate these complex effects more adequately it
is necessary to employ 2D or 3D fluid codes which incorporate currents and drifts
self-consistently with realistic ionization patterns, etc, and to confront the code
output with experimental data. Such studies are now appearing [18.15, 18.16,
18.20–18.22, 18.32].
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Chapter 19

The Relation Between SOL and Main
Plasma Density for Divertors

The divertor two-point model, sections 5.2, 5.7, shows that the ‘upstream’ density,
nu—and specifically the value of nu on the separatrix, nsep

u —is the most influen-
tial of all the SOL ‘control parameters’. Unfortunately nsep

u is not measured on a
regular basis on most tokamaks—and its measurement, directly or by inference
from other measurements, is problematical. The value of ne, on the other hand, is
invariably measured on tokamaks. We are therefore interested in establishing—at
least experimentally—the ratio of nsep

u /ne, using such data as are available for
nsep

u . One might then assume that this ratio holds generally and could use it to
establish nsep

u —as needed for modelling the SOL using two-point models, onion-
skin models, or 2D edge fluid codes.

The ‘upstream’ location is most commonly taken to be at the outside mid-
plane, rather than at the mid-point between targets along the SOL. (For concrete-
ness the present discussion assumes a single-null poloidal divertor at the bottom of
the vessel.) Since—at least theoretically—plasma conditions vary little between
these two locations, this should be inconsequential. In any case, when SOL
radial profiles of ne(r), Te(r) are measured somewhere in the region above the X-
points—i.e. the ‘main SOL’, as distinct from the ‘divertor SOL’ between X-points
and targets—then the usual practice is to map the profiles to the outside mid-
plane by taking into account the flux expansion between the actual measurement
location and the outside mid-plane. Thus, the characteristic radial decay lengths,
�, at the two locations are related by:

�meas

�mid
= (Bθ /B)mid

(Bθ /B)meas
(19.1)

see section 5.6.
Radial profiles of upstream ne(r) and Te(r) are made using movable Lang-

muir probes on some tokamaks. In order to avoid over-heating the probe, it
must be rapidly moved—usually involving reciprocation—if it is used to reach
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the separatrix or further in. On some tokamaks these profiles are obtained by
non-probe techniques such as Li beams or laser Thompson scattering.

A major difficulty arises in attempting to extract the separatrix values from
such data, nsep

eu , T sep
eu . At the divertor targets, the location of the separatrix is often

apparent from the radial measurements of Tet (r) and I+sat,t (r) themselves: often
these quantities have peaks which can often—although not always—be taken to
indicate the location of the separatrix. By contrast the upstream radial profiles
usually vary smoothly through the location where the separatrix is thought to be,
providing no direct indication of its location.

The locations of all magnetic surfaces within the plasma—including the
separatrix—are mathematically constructed from measurements by magnetic
pick-up coils located outside the plasma. The accuracy of this construction is
therefore only moderate, and the uncertainty in the location of the separatrix
at the outside midplane can be a centimetre or more. Since upstream radial
characteristic lengths are also of this order, large uncertainty in identifying T sep

eu
and nsep

eu from the profiles can arise. Various methods of dealing with this problem
have been used [19.1–19.5]. One approach is to identify the location of the
separatrix at the target by taking the peaks in the Tet (r) or I+sat,t (r)-profiles to give
the location there. Then, for discharges far from detachment, where it is believed
that total pressure (electron plus ion, static plus dynamic) is constant along B,
the upstream location of the separatrix is identified as the location where the
total pressure is the same as at the target, separatrix. In some cases, the required
shift in the location of the upstream separatrix obtained this way—relative to
that deduced from the magnetic pick-up coils—is quite small, only ∼1 mm for
CMOD [19.3], but it is usually larger, of order ∼1 cm. For detached conditions it
then has to be assumed that the location of the separatrix remains fixed.

An alternative approach to establishing values of nsep
eu and T sep

eu is to employ
target measurements as the exclusive experimental input, together with onion-
skin modelling, OSM, chapter 12. Briefly, in OSM the target data are used as
boundary conditions for 1D, along-B modelling of the SOL, based on the con-
servation equations for particles, momentum and energy—thus giving a complete
2D plasma solution for the SOL, including calculated values of nsep

eu , T sep
eu , etc.

On JET the onion-skin method approach has been used to analyse ohmic,
L-mode and H-mode discharges. Figure 19.1 shows a sample of results for ohmic
and L-mode shots, obtained with JET operating with the so-called gasbox di-
vertor [19.5]. These OSM-calculated values of nsep

eu are in good agreement with
values measured using a fast reciprocating probe at the top of the torus—provided
the probe’s profiles are shifted to give a pressure match with the OSM-calculated
pressure at the probe—i.e. momentum conservation is assumed to hold between
the target and upstream probe.

OSM analysis was also applied to H-mode discharges (between
ELMs) [19.4]. The principal correlation was found to be with ELM frequency,
but also with dependence on the shape of the main plasma (its triangularity)
and target configuration (horizontal versus vertical divertor targets). Figure 19.2
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Figure 19.1. Ratio of separatrix to volume average density against separatrix density. For
a set of JET ohmic and L-mode discharges. JET operated with the gasbox divertor [19.5].
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Figure 19.3. The dependence of the separatrix density on the line-averaged core density
for a number of tokamaks [19.1].

shows nsep
eu /ne against ELM frequency for horizontal targets, for high and low

triangularity. Also shown in figure 19.2 is the ‘pedestal density’ ratio, nped
e /ne,

where nped
e is the density measured a short distance inside the separatrix at the top

of the sharp density rise—i.e. pedestal—that characterizes H-modes, chapter 7.
It is very valuable when measurements of nped

e are available as this makes it
possible to remove from consideration the various transport processes that occur
in most of the main plasma—i.e. inboard of the ‘transport barrier’ (pedestal
region) that exists just at the edge of the main plasma in H-modes.

One may note from figure 19.2 that nsep
eu → nped

e as ELM frequency in-
creases. It is not presently clear what this indicates about the nature of the H-mode
transport barrier.

Figure 19.3 gives an extensive collection from a number of tokamaks of nsep
eu

against ne [19.1], largely obtained from direct measurements upstream. As can
be seen, at low ne, nsep

eu � ne, but with rising ne, nsep
eu →∼ ne, i.e. the same trend

as seen in the JET data, figure 19.1. This tendency is the one expected from the
Engelhardt model, section 4.6: as density increases, the fraction of the neutrals
ionized inside the separatrix increases. This leads to nsep

eu → ne and a flat ne(r)

profile in the main plasma—assuming that radial transport is purely diffusive and
there is a steady state with no pinch, etc. This has not actually been proven by
detailed analysis and it may be that this faster-than-linear rise of nsep

eu with ne

could be an indication of a B-dependence, the basic nature of which has also not
been identified: the high ne data in figure 19.1 are largely from CMOD, which
has high B. If one assumes that nsep

eu depends on ne, only then does a best fit to
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the data of figure 19.3 give:
nsep

eu ∝ n1.6
e . (19.2)

A best fit that also allows for dependences on elongation κ , and toroidal
field strength Bφ , gives a more linear dependence on ne (for ohmic and L-mode
shots) [19.1]:

nsep
eu = 0.002 36n1.08

e κ1.11 B0.78
φ . (19.3)

The physical basis for either (19.1) or (19.3) is not clear as yet. In any case,
an earlier assumption/prescription that nsep

eu /ne = 0.3 turns out, according to
this extensive compilation, to be pessimistic for an ITER-like tokamak where
for ne = 1020 m−3 one obtains nsep

eu ≈ 0.6 × 1020 m−3. Such an increase of a
factor of 2 in nsep

eu has large—and very positive—implications for divertor oper-
ation, since, from two-point modelling one predicts that Tt ∼ n−3

u and nt ∼ n4
u ,

section 5.7—and thus physical sputtering will be greatly reduced, while radiative
power exhaust (which increases with increasing nt and decreasing Tt ) will be
raised.

In conclusion, while much work remains to be done in order to explain the
relation between the principal SOL ‘control parameter’ nsep

eu , and the main plasma
density, ne, a substantial, empirical database has now been established which
allows one to carry out SOL analysis based on the actual control parameter, ne—a
quantity which is regularly measured for tokamak discharges.
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Chapter 20

Extracting χSOL
⊥ (r ) From Target Plasma

Data Using the Onion-Skin Method

20.1 The General Method

The power to the divertor targets of tokamaks must not exceed the critical values
where melting or sublimation will occur. A key parameter in this respect is the
power decay width of the scrape-off layer, SOL, which is controlled by the cross-
field heat thermal diffusivity, χSOL⊥ . In common with other cross-field transport
coefficients this cannot yet be derived theoretically from first principles, but is
anomalous and must be extracted from experimental data.

One approach to inferring χSOL⊥ is to employ 2D fluid code calculation of
the SOL, section 6.6.3, where χSOL⊥ is one of the input assumptions—along with
the power into the SOL, Pin , and the ‘upstream’ plasma density, i.e. the density
at the edge of the core, nu . If one has experimental data on n and T at some
locations in the SOL, then one can vary the input assumptions in the 2D code—
including χSOL⊥ —to try to match the measurements of density, n, and temperature,
T . When a match is achieved one could conclude that the value of χSOL⊥ has been
established.

A different approach is based on onion-skin method, OSM, analysis, chap-
ter 12. In this approach one does not need to input χSOL⊥ , but rather χSOL⊥ can be
extracted from the 2D plasma solution generated by the OSM. In other words, the
experimental data input for the target—and specifically the radial variations of n
and T across the target—implicitly contain the information about χSOL⊥ .

Movable Langmuir probes—or fast reciprocating probes, FRPs—are used on
some tokamaks to measure SOL plasma radial profiles in the upstream regions.
This can, in principle, give a measurement of Tu, nu , but only provided the loca-
tion of the separatrix at the FRP is known very reliably. The separatrix location
calculated from magnetic pick-up signals is sometimes not reliably known to
within a centimetre or more—which is comparable to the characteristic radial
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decay lengths of the SOL upstream. Thus FRP measurements of Tu, nu can be
somewhat uncertain.

By contrast, Langmuir probes built into the divertor targets sometimes show
clear maxima in measured Te and/or the ion saturation current, I+sat, which one
can identify with the separatrix at the target. That is, it may be easier to identify
the location of the separatrix at the target than upstream.

This then allows the approach where one works entirely from the target data
using the OSM and calculates the upstream conditions, Tu, nu . For Langmuir
probe measurements, it is actually the particle flux density to the target, as given
by I+sat, and the target electron temperature, Tet , that are measured; in the (usual)
absence of direct measurements of the target ion temperature Tit , it is necessary
to assume or infer some value for Tit  as well as a value for the plasma flow Mach
number, Mt , at the target in order to infer the value of plasma density net , and
to complete the set of needed boundary conditions. Since one has generated a
complete 2D edge solution using the OSM, the calculated values for the radial
gradients of n and T are available at every point, and one can perform particle
and power balances to extract DSOL⊥ and χSOL⊥ . One has expressions for the local
value of particle flux density, �⊥, and heat flux density, q⊥ (for ions and electrons
separately, if required; we treat the combined situation here):

�⊥ = D⊥n/λn (20.1)

q⊥ = χ⊥nkT/λT + 5
2 D⊥nkT/λn (20.2)

where λn , λ⊥ are the local radial scale lengths as calculated by the OSM,
which also provides calculated values for the local n and T , leaving just DSOL⊥
and χSOL⊥ as unknowns. It is to be noted that λn = −((1/n)dn/dr)−1 and
λT = −((1/T )dT/dr)−1 are the local radial scale lengths at radial location r
and one should not assume λn(r) and λT (r) constant with radius. Factor 5/2 or
3/2 in equation (20.2), chapter 8. Consider a closed volume of the edge, say that
bounded by the separatrix ring, the outermost ring in the grid and the two divertor
targets, figure 20.1. Then global particle and power balances give:

�⊥ = (�⊥δA⊥ = −(Siz +(Srecomb +(�‖tδAt (20.3)

Q⊥ ≡ (q⊥δA⊥ = (Pvol +(q‖tδAt (20.4)

where:

• δA⊥ are the elemental areas along the separatrix flux surface and along the
outermost flux surface, and flows can be locally either into or out of the
closed volume.

• (Siz is the total hydrogenic ionization occurring within the closed volume,
as calculated by the neutral hydrogen code, e.g. EIRENE.

• (Srecomb is the total hydrogenic two- and three-body recombination in the
closed volume, calculated in the OSM.
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Figure 20.1. The SOL ‘straightened out’. A power balance analysis can be used to extract
χSOL⊥ from the 2D plasma solutions produced by OSM. A similar particle balance analysis
can be used to extract DSOL⊥ .

• �‖t and q‖t are the target flux density of particles and heat, which are known
from the boundary conditions. Note that this is the experimental input which
contains the principal information giving DSOL⊥ , χSOL⊥ .

• (�‖tδAt and (q‖tδAt are the sums over the two targets, with δAt being
the elements of divertor target area, multiplied by the cosine of the angle
between B and the target normal vector.

• (Pvol ≡ Qvol is the total volumetric power loss/gain by the ions and elec-
trons due to (a) hydrogenic processes such as charge exchange (ions), ex-
citation, ionization, etc (electrons)—as calculated by the neutral hydrogen
code; (b) radiated power (electron cooling) which could be taken, e.g., from
DIVIMP or could be estimated from measurements of Prad and (c) electron–
ion equipartition power, if one treats the electron and ion power balances
separately.

One thus has two equations for the two unknowns DSOL⊥ and χSOL⊥ , and so finds
their average value along the separatrix (strictly the outermost ring is also involved
but its contribution may be small). One can then define a new closed volume by
using the next flux surface out into the SOL and repeat the exercise, etc. Thus one
can, in principle, establish the radial profiles of DSOL⊥ (r) and χSOL⊥ (r).
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It is evident from equations (20.3) and (20.4) that for reliable extractions of
DSOL⊥ and χSOL⊥ one requires that the terms which contain these quantities not
be too small compared with the other terms—otherwise errors and uncertainties
will make the extracted values unreliable. For χSOL⊥ and the power balance this is
not a problem since the source of energy for the SOL is always the main plasma,
and the cross-field power terms must always be at least comparable to the other
terms.

For DSOL⊥ and the particle balance, however, it may well be the case that most
of the ionization occurs in the SOL, making the term involving DSOL⊥ small. Then
DSOL⊥ cannot be reliably extracted. In the light of this one can proceed by just
using the power balance and dropping cross-field convection, thus DSOL⊥ , thereby
obtaining an effective χSOL⊥ . Alternatively, there is the option of specifying some
assumed ratio of DSOL⊥ /χSOL⊥ , for example 0.4 [20.1], and including perpendicu-
lar convection in the power balance, without needing to solve the particle balance.

In section 4.10.1, figure 4.17, it was shown that upstream temperatures de-
pend very little on the assumed spatial distribution of the cross-field power source.
Indeed Tu is seen to be rather insensitive to variations in all input assumptions—
thus nu is also. In short, upstream plasma conditions are quite robust to variations
in all inputs and assumptions and so, if the plasma conditions have been matched
downstream—as input boundary conditions—then a good match overall is more
or less assured. This is the principal reason why OSM solutions can match
2D fluid code solutions rather well—at least when working from downstream
boundary conditions. When calculating in the downstream direction from up-
stream boundary conditions, nu and Pin , the opposite situation is encountered
with calculated downstream conditions then being very sensitive to most inputs.

With regard to the χSOL⊥ extraction: the calculated cross-field temperature
gradient will only differ by a factor of 22/7 ≈ 1.2 for the two rather opposite
assumptions about the spatial distribution of the cross-field power source (i.e. of
Pin all at s‖ = L versus uniformly over L). Furthermore, even that small variation
is cancelled out when extracting χSOL⊥ , since the cross-field conduction coefficient
is given by K⊥ = nχSOL⊥ , and due to pressure balance the upstream density
changes just inversely to T . It is assumed, however, that the divertor plasma has
not detached, which results in loss of parallel pressure balance, chapter 16.

All this can be brought out in another way: one extracts χSOL⊥ from analysis
of the expression, simplified from equation (20.4).

(q‖δA‖t = (δA⊥(nkT )χ⊥/λT . (20.5)

Assuming pressure conservation, the factor nkT is not dependent on the assump-
tion made in the OSM of how the cross-field power source was distributed—the
same point as already made above. For high recycling assumptions, as made
here, λT = 7

2λq , i.e. λT is given by the input plasma conditions at the targets,
and so that factor is also independent of the assumption about power input distri-
bution. This indicates again why the OSM-extraction procedure is not dependent
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Figure 20.2. Extracted D⊥, χ⊥ for a ‘moderate recycling’ JET case. Transport coefficients
from the 2D onion-skin model solutions as a function of ring location at the outside
mid-plane. EDGE2-D input values, dashed [20.2].

on the assumption used in the OSM as to how the cross-field source was spatially
distributed—at least for the ‘classical’ high recycling case considered here.

When volumetric momentum and power sinks/sources are present, the analy-
sis obviously becomes more complex, and no simple consideration along the lines
of the foregoing demonstration of robustness appears to be possible. The OSM-
extraction procedure contained in the DIVIMP code allows for these effects, at
least those due to the hydrogen recycling, by employing the NIMBUS code to
calculate the volumetric terms, iterating with the OSM plasma solver. Impurity-
related terms, calculated by DIVIMP, could be used or an analytic expression
for Prad(s‖), with the magnitude taken from experimental measurement. For such
cases one can only show that, in fact, the extraction can still be reliable—as shown
in [20.2] for a moderately high recycling case based on an EDGE2-D solution
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where the input χSOL⊥ was known and the OSM-extracted value of χSOL⊥ was
found to be in good agreement with it.

Results are shown in figure 20.2 for this ‘moderately conduction-limited’
case. The extraction procedure gives values of D⊥(r), χe,i

⊥ (r) as functions of
radius. Here the input coefficients used in the EDGE2-D code were, in fact,
spatially constant with: D⊥ = 0.1 m2 s−1, χe,i

⊥ = 1 m2 s−1. The extraction
procedure has worked satisfactorily over most of the radial span of the SOL, with
the extracted values matching the input values, usually to within a few tens of
per cent. By extracting DSOL⊥ first, cross-field convection could be included in the
power balance to then extract χSOL⊥ . The DSOL⊥ values extracted in this case would
be expected to be roughly reliable since the NIMBUS calculations showed that
about 10% of the neutrals were ionized inside the separatrix, thereby providing a
reasonably strong cross-field particle flow.

These tests of the onion-skin method, i.e. of successfully extracting the in-
put χ⊥-values, are demanding since the extraction procedure uses the entire 2D
density and temperature fields. A particularly demanding aspect is that the OSM
solution must successfully generate the radial variation of n, Te, Ti —in fact, the
second derivatives of these quantities in the radial direction. Most applications
of OSM solutions do not demand such fidelity—for example, calculating the
upstream separatrix density from target data, chapter 19.

Inclusion of the NIMBUS-calculated hydrogenic ionization pattern makes it
possible to calculate the 2D plasma parallel flow field and hence the parallel heat
convection. As noted earlier, ion parallel heat convection can be important and the
difference between the upstream conditions calculated by the DIVIMP/NIMBUS
OSM and the simple two-point model, next section—which necessarily neglects
parallel convection—are largely due to this.

20.2 A Simple Two-Point Model for Estimating χSOL⊥ and nu

A problem with the use of complex codes is that conceptual transparency is lost
and the analysis tool appears to be just a ‘black box’. In the present case the
use of the complicated OSM to generate the 2D plasma solution and then the
use of a similarly complicated ‘χSOL⊥ -extractor’ code can leave one with little
feeling for what is essentially responsible for the extracted χSOL⊥ (r) pattern—
which tends to be due to the fact that χSOL⊥ increases with radius, often [20.1,
20.3, 20.4]. To address this problem, in this section we develop a much simpler
and cruder analysis procedure based on the standard divertor two-point model,
2PM, section 5.2. This approach is more transparent and makes it clear that the
radial dependence of χSOL⊥ (r) is almost directly implied by the observed tendency
for λT (r) to be an increasing function of radius. One would hope that this cruder
extraction procedure would replicate the trends of χSOL⊥ (r) and be reasonably
close in absolute magnitude—compared with the more complete treatment. This
will be seen to be the case.
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Figure 20.3. A crude χSOL⊥ -extractor using the simple 2PM, two-point model.

Although the simple two-point model neglects many processes included in
the full approach—principally heat convection and volumetric sources/sinks—it
turns out that these factors are not controlling for this particular problem. The
two analysis procedures complement each other: one is reluctant to trust a crude
estimate on its own because of what is neglected, while a complicated approach
raises ‘black box’ concerns.

The principal deficiency of the simple 2PM is its neglect of parallel ion
heat convection, and so upstream Tiu can differ sometimes by a factor � 2. By
contrast, nu and Teu do not usually differ greatly between 2PM and the OSM.

One can use the simple 2PM to construct a simple χSOL⊥ -extractor procedure
along the following lines: consider the SOL in the poloidal plane representation,
figure 20.3. The volume considered extends 1 m toroidally (into the page of the
figure). One has total cross-field power Q⊥:

Q⊥ = LpolneukTeuχSOL⊥ /λTeu (20.6)

where Lpol is the target-to-target length in the poloidal plane. The total power
(per m toroidally) along the SOL and entering the target (we ignore volumetric
losses), Q‖:

Q‖ = 2γ nt kTt cstλqt (Bθ /Bφ)t (20.7)

where (Bθ /Bφ)t = cosine of angle between B and normal-to-target surface;
λqt = power width of SOL at the target.

The factor of 2 in equation (20.7) assumes the same plasma at inner and outer
targets. Assuming Q‖ = Q⊥ and pressure balance, gives the estimate for χSOL⊥ :

χSOL⊥ ≈
(

γ (Bθ /Bφ)t

L pol

)
cstλTeu λqt . (20.8)

When one has both target and upstream probe data, then experimental values
for all the quantities on the RHS of equation (20.8) are available, and one has a
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quick, convenient estimate for χSOL⊥ , and a quick check on the value extracted
by the more involved DIVIMP/NIMBUS OSM χSOL⊥ -extractor. Also, often
(γ (Bθ /Bφ)t/Lpol) ≈ constant and one can readily check to see whether the
radial variation of χSOL⊥ (r) is directly apparent from the experimental data, since
then:

χSOL⊥ ∝ T 1/2
et λTeu λqt . (20.9)

If one has only target probe data then one can use the fact that, for the conduction-
limited regime:

λTeu ≈ 7
2λq‖ (20.10)

together with the magnetic flux-expansion relation, section 5.6:

�u(Bθ /Bφ)u = �t (Bθ /Bφ)t (20.11)

where � is the radial separation of two flux surfaces.
Hence:

λqu (Bθ /Bφ)u = λqt (Bθ /Bφ)t (20.12)

and

χSOL⊥ ≈
(

7

2

(Bθ /Bφ)2
t

Lpol(Bθ /Bφ)u

)
cstλ

2
qt 

(20.13)

∝ T 1/2
et λ2

qt
. (20.14)

It is often observed that cross-field decay lengths λ increase moving away from
the separatrix into the SOL and, since T 1/2

et has relatively weaker radial variation,
this implies χSOL⊥ (r) increasing radially in the SOL.

20.3 Examples from JET

The DIVIMP/NIMBUS OS method was applied to divertor target probe measure-
ments of Te(r) and I+sat(r) for a number of discharges [20.4]. The discharges
spanned a wide range of parameters—Ip, B, Pin and confinement type (ohmic,
L-mode, H-mode). Convection was allowed for in the χ⊥-extraction by assuming
DSOL⊥ = 0.4χSOL⊥ ; it was not attempted to extract DSOL⊥ separately. Tit = Tet was
assumed. The range of conditions covered by this data set is best summarized by
figure 20.4 where the ratio of density and electron temperature at the mid-plane to
that at the target nu/nt , Teu/Tet , are plotted as a function of ν∗SOL, section 4.10.2,
for separatrix values of Teu and nu from the complete dataset. Densities and
temperatures at the target and upstream are seen to be similar for discharges with
low collisionality, but Teu/Tet can increase by a factor of up to 5 for discharges
with high collisionality.

Clearly the larger the value of nu , i.e. high ν∗SOL, the further the SOL is into
the high recycling, conduction-limited regime where Teu/Tet is large. The data
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Figure 20.4. Results from OSM analysis of a large number of JET shots [20.4].
Upstream-to-target ratios of ne and Te against upstream collisionality parameter ν∗SOL.
Solid lines from simple 2PM theory, section 4.10.2.

set extends down to low levels of collisionality where the sheath-limited regime
is approached.

One can compare the fn ≡ nu/Tu and fT e ≡ Teu/Tet ratios in figure 20.4
with what is predicted in section 4.10.2 using the basic 2PM. Since only the elec-
trons are involved we use γe = 5 in evaluating C2, equation (4.101). The results
shown in figure 20.4 used a factor 6/7 in equation (4.101), i.e. mid-way between
assuming all the power input at the ‘top’ (the 4/7 factor in equation (4.101)), or
uniformly over the flux-tube length (the 8/7 factor in equation (4.101)). Clearly
the basic 2PM matches the OSM results for fn and fTe not badly, even though
neglecting the convection and volumetric losses included in the OSM.

Density and temperature scale lengths λneu , λTeu are often assumed constant
across the SOL, and are often used in models together with separatrix densities
and temperatures for estimation of the total power to divertor targets, for example.
The common expectation that λ(r) = constant may stem from probe measure-
ments in the shadow of limiters, where neu(r) and Teu(r) radial profiles were
often found to be exponential over two or three decades in the limiter SOL [20.5].
In divertor plasmas, SOL scale lengths on JET are not constant with radius and
λTeu can vary by as much as a factor of 5 over a mid-plane distance of 15 mm.
Density SOL scale lengths do not change as much with increasing radius, but still
show an increase. Examples of this behaviour are shown in figure 21.3 for λTeu (r)

and in figure 21.4 for λneu (r), derived from gradients between each ‘skin’ in the
OSM.

Copyright © 2000 IOP Publishing Ltd.



584 Extracting χSOL⊥ (r)

0 20 40 60 10080 120
Teu (eV)

λ T
eu

 (m
m

)

1

10

100
Ohmic
L-mode
H-mode

λTeu = 35.8e–0.024Teu

R2
 = 0.58

Figure 20.5. Radial decay length of upstream Te, from OSM analysis of a number of JET
discharges [20.4], shows a significant correlation with upstream Te.

There did not appear to be a strong correlation of λ-value with any main
plasma parameter, but λTeu did show a correlation with local parameters, in par-
ticular Teu . This is shown in figure 20.5. The clear fall in SOL thickness with
increasing separatrix temperature mirrors the increasing SOL scale length with
radius as the temperature falls across the SOL for each discharge. The best fit
to this data is an exponential fall in λTeu with Teu , shown as the solid line in
figure 20.5. A selection of χSOL⊥ (r) profiles is shown in figure 20.6 for JET ohmic,
L-mode and H-mode discharges. Most radial profiles show χSOL⊥ increasing with
radius, also reported on JT60 [20.3] and CMOD [20.1].

The increase χSOL⊥ with radius is not what would be expected from a Bohm
type of behaviour, equation (4.8), and is chiefly a consequence of the experi-
mentally observed increasing λTeu with radius, equation (20.9). A comparison of
χSOL⊥ close to the separatrix deduced from the OSM and that calculated from the
simple model formulated in section 20.2, equation (20.8), is shown in figure 20.7.
There is generally reasonable agreement between the simple model extractor and
the OSM extractor. While the OSM extractor is required in order to obtain the
more trustworthy value—since more terms are included in the power balance—
the advantage of the simple extractor is its transparency and direct connection
with the input data. The good agreement between the two methods as to trend, and
approximately as to magnitude, shown in figure 20.7 constitutes a useful check
on the more complete procedure of the OSM and χ⊥-extractor.

No clear scaling of χSOL⊥ with main plasma parameters (Ip, Bφ, 〈ne〉) was
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Figure 20.6. JET. Radial variation of χSOL⊥ (r) extracted using OSM analysis for a number
of JET discharges [20.4]. The general trend is for χSOL⊥ (r) to rise with r or be constant.
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Figure 20.7. JET. As for figures 20.5, 20.6, comparison of χSOL⊥ extracted from OSM
analysis and a simple 2PM analysis showing reasonable agreement [20.4].

found and indeed there seems to be no clear scaling with local plasma parameters
with the exception of upstream temperature, Teu , derived using the OSM. The
scaling of χSOL⊥ with Teu is shown in figure 20.8 for χSOL⊥ (i.e. the value close
to the separatrix) taken from the complete database. Also shown in figure 20.8
is the best fit to the data, which is approximately χSOL⊥ ∝ T−2

eu . Clearly both
χSOL⊥ (r) and χ

sep
⊥ fall with increasing Teu , although there is considerable scatter

in the data.
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Figure 20.8. JET. As for figures 20.5–20.7. Extracted χSOL⊥ (near separatrix) values show
a significant correlation with upstream Te [20.4].

The OS method of extracting χSOL⊥ , as applied in the foregoing, is subject to
at least two errors and uncertainties:

(a) The target heat flux qt is not actually measured, but is inferred from the
Langmuir probe measurements of Tet (r), I+sat,t (r)—plus theoretical values
for the sheath heat transmission coefficient γ , chapter 2. The latter assumed
Tet = Tit and other simplifications such as no (effective) secondary electron
emission from the target, etc. Thus γ was taken to be constant across the
target. As seen from equation (20.8), the extracted χSOL⊥ will be directly
and linearly affected by any changes in γ —including any radial variations
of γ (r).

(b) Often overall power accounting in a tokamak is imperfect and ‘missing
power’ is unaccounted for. Such was the case for many of the JET shots.
Since the extraction procedure is based on a power balance analysis,
uncertainty is implied.

Uncertainties will be reduced for this method when the experimental input data is
supplemented by measurements of Tit (also Tiu) and by infra-red thermographical
measurements of the target heat deposition [20.6].
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Chapter 21

Measurements of DSOL
⊥ , χSOL

⊥ and the Decay
Lengths for Divertor SOLs

The power scrape-off length, λq‖, is one of the most important practical quantities
of the SOL since it controls the amount of solid surface involved in plasma power
exhaust—and thus it governs the problems of target heat removal, melting, etc.
The principal unknown involved in λq‖ is χSOL⊥ , the anomalous cross-field heat
diffusivity in the SOL. For the conduction-limited regime the two-point model
predicts λq‖ ∝ (χSOL⊥ )7/9, section 5.7. We are therefore interested in measure-
ments of λq‖ and/or χSOL⊥ .

One may consider the temperature decay lengths, λTe , λTi , and the density
decay length, λn , to be the fundamental lengths, with the others—for power
particle and momentum fluxes, etc—then being expressed in terms of these basic
ones. For example, for the conduction-limited regime one has the particularly
simple relation: λq‖ = 2

7λT , section 5.7.

One’s first thought is that λn should be related to DSOL⊥ , and one might be
inclined to use the relation for the simple SOL, λn = (2DSOL⊥ L/cs)

1/2, equa-
tion (4.7). For divertors, typically operating in the high recycling, conduction-
limited regime, with most of the ionization occurring outside the separatrix, the
SOL is therefore not simple and there is no obvious reason for this expression to
be valid.

The λn and λT are also important because they control the penetration into
the plasma of recycling hydrogen neutrals—and also of edge-produced impurity
neutrals—i.e. they control ‘edge screening’.

An edge database of tokamak divertor scrape-off lengths has been estab-
lished [21.1]. An example is shown in figure 21.1, where λTe and λn have been
plotted against T sep

eu . The common practice of quoting characteristic radial lengths
at the outside mid-plane is used throughout this section. For the conduction-
limited regime we may calculate from equations (5.77) and (5.80) the expected

588
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Figure 21.1. Value of upstream radial decay lengths of Te for a number of tokamaks
plotted against upstream Te [21.1].

relation between λq‖ or λTu and Tu :

λTu ∝ T−5/4
u (nuχSOL⊥ )1/2q R. (21.1)

The tendency for λTe to decrease with increasing T sep
eu seen in figure 21.1

may thus be explained. One may also note the tendency for λTu to be longer for
larger machines—apparently a reflection of the R-dependence of equation (21.1).
Note however, that nu is not a constant and probably χSOL⊥ is not either. It is
necessary to know the dependence of χSOL⊥ on Tu , nu , q, R, B, etc if one is to
fully test theoretical predictions of λq‖, λT , etc.

Complicating the situation is the common observation that the radial profiles
of n and T are often not representable by single exponentials, i.e. by a single
decay length λn or λT . Often the characteristic radial decay lengths �n and �T :

�n(r) = −
[

1

n

dn

dr

]−1

�T (r) = −
[

1

T

dT

dr

]−1

(21.2)

are functions of radial distance into the SOL, typically increasing with r . The
database for the CMOD tokamak is particularly extensive [21.2] since a fast
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Figure 21.2. CMOD. [21.2]. Cross-field density, electron temperature and electron
pressure profiles at an upstream fast-scanning probe location. The cross-field coordinate,
ρ, labels the local flux surface according to its distance outside the LCFS at the plasma
mid-plane.
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Figure 21.3. Radial variations of the radial decay length of upstream Te, �Teu , for a number
of JET shots, from OSM analysis [21.3]. The general trend is for the �Teu (r) to increase
with r .

scanning (Langmuir) probe, FSP, scans through the upstream SOL on almost
all discharges. Figure 21.2 shows exponential plots of ne(r), Te(r) and electron
pressure, ne(r)Te(r) for a range of CMOD conditions, indicating this common
pattern of �n and �T increasing with r . A similar pattern is seen in the collection of
JET ohmic, L-mode and H-mode shots shown in figure 21.3, �Teu , and figure 21.4,
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Figure 21.4. As for figure 21.3 but for upstream ne.

�neu [21.3]. These JET data were calculated from measured plasma conditions
across the outer target, Tet (r) and I+sat,t (r), and using the onion-skin method,
chapter 12, to calculate the upstream profiles of neu(r) and Teu(r). The tendency
for the lengths to increase radially is more pronounced in these JET data for
�Teu (r) than for �neu (r). One may note a rather complicated variation amongst
the three different confinement regimes, and with variation of ne, Ip, q, B. The
basic properties of these dependences has not been established.

A larger collection of CMOD data are given in figure 21.5 for �neu , �Teu

and �peu (electron pressure), plotted against Teu—for a variety of operating
conditions—high recycling, low recycling, detached and ‘death ray’ (a state
sometimes seen in association with detachment)—with individual points
representing specific radial locations across the SOL [21.2]. Substantial scatter
may be noted, presumably indicating other dependences of these lengths than on
Teu . Neverthless, a clear trend with Teu is apparent: all three lengths show an
inverse dependence on Teu . A curve for T−5/4

eu is overlain on the �peu plot; the
rough match may be a reflection of the dependence of �Tu on Tu predicted for the
conduction-limited regime, equation (21.1). As can be seen from figures 21.3–
21.5, �Teu and �neu are of comparable magnitude, within large scatter. One notes
that �n and �T can be rather small, less than 1 cm, indicating λq‖ of only a
few mm. While these are the outside mid-plane values, the power width at the
divertor is still likely to be only ∼1 cm for any likely flux expansion.

The deposited power width on the divertor targets can be directly measured
using infra-red thermography or indirectly using target Langmuir probes, and a
database has been assembled [21.4]. Since the deposited power profile may not be
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Figure 21.5. CMOD [21.2]. Local cross-field gradient scale length density (�neu ), electron
temperature (�Teu ) and electron pressure (�peu ), versus local electron temperature (Te) at
the scanning probe location.

characterized by a single decay length, it is convenient to define an effective width
as being that which when multiplied by the measured peak flux density equals
the measured integrated flux deposited on the target. As noted above, the basic
unknown in calculating λq‖—and thus for a given flux expansion and given target

geometry, λ
deposited
q —is χSOL⊥ . If cross-field convection is also important, then

the unknown DSOL⊥ is also involved. Assuming for simplicity that cross-field heat
flux is dominated by conduction and, generally, that all of the other assumptions
of the basic two-point model of section 5.7 hold—including the dominance of
conduction in the parallel heat transport, Tu/Tt � 1, etc—then we may again
appropriate the analytic results of section 5.7, equation (5.77), to relate λq to

χSOL⊥ (hereafter we will not distinguish between λq‖ and λ
deposited
q , assuming that

they have a constant ratio for all machines and operating conditions, which is not
true in reality, of course). None of this will get us anywhere so long as χSOL⊥ is
completely unknown. One may therefore hypothesize that perhaps χSOL⊥ depends
on various quantities as a product of powers, say [21.4]:

χSOL⊥ ∝ T α
eunβ

euqγ Bδ
φ Rε Zη

eff (21.3)

where α, β, γ , δ, ε, η are constant coefficients which have to be found. There is no
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Figure 21.6. Measured outer divertor power width for ohmic and L-modes versus scaling
law, equation (21.5), for the ITER power deposition database [21.4].

physical basis for this hypothesis, but it is convenient and may be as good as any
other hypothesis about this anomalous, i.e. unknown, quantity. Such hypotheses
are often made concerning such quantities as the energy confinement time, τE ,
characterizing the main plasma [21.5]. Obvious problems with such hypotheses
are: (a) other parameters may also be important, (b) the dependence may not be as
a product of powers of the parameters, but rather sums or differences may be in-
volved, as well as off-sets. One can readily show that combining equations (5.77),
(5.80) and (21.3) gives:

λq ∝ P(2α−5)/(9+2α)

SOL n(7β+7)/(9+2α)
u q(4α+7γ+4)/(9+2α)

× B7δ/(9+2α)
φ R(7ε+14)/(9+2α)Z (7η+2α+2)/(9+2α)

eff . (21.4)

Zeff has also entered from the dependence of the parallel electron heat conductiv-
ity coefficient κ0 ∝ (Zeff)

−1, equation (9.48).
Since the SOL upstream separatrix density, nu , is often not known, it was

replaced by the main plasma density ne, on the assumption that nu ∝ ne. We have
seen, chapter 19, that the ratio nu/ne is not in fact constant and this will therefore
introduce some error. The measured power deposited on the outer target, Pdep,out,
was used in place of PSOL, since this was more readily available in the study,
although that meant that volumetric power losses in the SOL were not allowed
for.

Measurements of λ
dep,out
q for a number of tokamaks, for ohmic and L-mode

discharges, were then fitted by equation (21.4), with the choice of the power
coefficients being adjusted for best fit, figure 21.6, [21.4]. This gave the fitting:

λ
dep,out
q = (6.6)× 10−4 R1.21 P−0.19

dep,outq
0.59n0.54

e Z0.61
eff . (21.5)
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λ, R[m], P [MW], n[1019m−3]. The corresponding best fit for χSOL⊥ was:

χSOL⊥ ∝ n−0.02
e T 1.17

eu q−0.29 R−0.01 Z0.41
eff . (21.6)

One may note the absence of any correlation with the magnetic field, and so
Bohm diffusion is not indicated (χBohm⊥ ∝ T/B), although the T -dependence is
Bohm-like. One may also note the substantial discrepancy with the dependence
χ⊥ ∝ T−2

eu extracted using the onion-skin method analysis on JET data, chap-
ter 20. As discussed, the errors and assumptions involved in these methods of
extracting χSOL⊥ remain substantial, and such discrepancies are likely to persist
until these techniques are better refined.

Another database for χSOL⊥ has been produced based on the total power
entering the SOL, PSOL, and equation (20.3), see [21.6, 21.7]:

PSOL

A⊥
= 2χSOL⊥ nukTu/λTu + 5

2 D
SOL⊥ nukTu/λnu (21.7)

where A⊥ is the area of the separatrix surrounding the confined plasma, A⊥ ≈
2π R2πa; the factor of 2 assumes Te = Ti and χe = χi . It was assumed
that DSOL⊥ /χSOL⊥ = 0.24, and so just the one unknown was involved in equa-
tion (21.7). PSOL was taken to be the difference between the tokamak input power
and the power radiated in the main plasma, both measured quantities. The plasma
quantities nu , Tu , λTu and λnu were taken from upstream measurements from, for
example, a reciprocating Langmuir probe. As already discussed in chapter 19,
a major difficulty in using upstream measurements is identifying the location
of the separatrix—particularly in H-modes where the radial decay lengths may
be only millimetres, while the uncertainty in the location of the separatrix—as
calculated from the magnetic pick-up coils—is of order ∼1 cm. Various methods
were employed to try to correct for this uncertainty [21.6], including the technique
described in chapter 19 of re-adjusting the upstream separatrix location in order to
obtain electron pressure equality with measurements made at the target, where the
separatrix may be more reliably located. Results for χSOL⊥ are given in figure 21.7
for ohmic, L-mode and H-mode discharges, plotted against PSOL/A⊥. The very
large scatter is attributed to uncertainties in the location of the separatrix. The
H-mode diffusivities are smaller than the ohmic and L-mode values.

Three χSOL⊥ -extraction methods are summarized and compared in table 21.1:

(a) the onion-skin method, chapter 20;
(b) the λ

deposited
q method described in this section;

(c) the upstream data method described in this section.

In addition, 2D fluid codes are used to model individual shots and the input
values of DSOL⊥ , χSOL⊥e,i are adjusted until a best fit is achieved to all the available
measurements for that shot—both upstream and target profiles of plasma parame-
ters, also spatial distributions of hydrogenic line intensities such as Dα , etc. In this
way databases can be produced for χSOL⊥ and its functional dependence on Tu , nu ,
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Figure 21.7. Variation of the radial thermal diffusivity at the separatrix with the surface
radial power density. Data from a number of tokamaks. χ⊥ extracted using the ‘upstream
data method’, see text [21.6, 21.7].

Table 21.1. χSOL⊥ -extraction methods.

The onion-skin

method The λ
deposited
q The upstream

chapter 20 method data method

1. Principal Tet (r) q
deposited
t (r) Pin − Pmain

rad
experimental input I+sat,t (r) nu

Tu
λnu

λTu

2. Model used OSM Basic 2PM —

3. Constraints on χSOL⊥ none χSOL⊥ ∝ T α
u nβ

u . . . none
with α, β . . .

adjustable

4. Other critical • any missing • nu/n̄e constant • location of

assumptions power does not • P
dep
t /PSOL separatrix is

reach target constant reliably known
• γ known • DSOL⊥ /χSOL⊥

known
• χSOL⊥e = χSOL⊥i

5. Radial information? yes no no
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Bφ , etc can be established in the form of equation (21.3), or otherwise. A simple
approximation to this method has also been developed [21.8] using a model which
assumes that perpendicular and parallel heat fluxes are purely conductive, neglects
volumetric power losses and uses both target and upstream probe data as input.

A number of theories have been developed to predict from basic principles
how χSOL⊥ should depend on T , n, B, etc. These have been incorporated into the
general relations between λq and χSOL⊥ , equations (5.77)–(5.79), and comparisons
made with experimental databases [21.9–21.11].

We turn next to the upstream density profile and λnu . While λq‖, λdep
q and

λTu may be more or less simply related to χSOL⊥ as given by the two-point model,
section 5.7, it is not immediately clear what λn depends on for the high recycling,
conduction-limited regime where it is assumed that all of the ionization occurs
within the SOL plasma immediately in front of the divertor targets. The general
tendency that is expected when ionization of the recycling hydrogen occurs in
the SOL, rather than the main plasma, is for λn to broaden, section 4.9. Let us
imagine a SOL where the neutrals are also confined by B, and so the recycling
neutrals that are created by the ionic outflux to the target for one particular flux
tube are all re-ionized within the same flux tube. Since each flux tube is self-
sustained in a particle-balance sense, it would seem that there is no reason for
n(r) to vary radially at all, i.e. λn → ∞. This picture runs into two difficulties
(over and above the idea of neutrals being confined by B!):

(a) λT (r) will still decay radially since the power input occurs in the main
plasma. Thus at some radial depth into the SOL, Te will become too cold
to cause ionization. The flux tubes further out could not be sustained in this
hypothetical scenario, and so ne(r) would be approximately a step function,
dropping to zero where Te became small compared with ionization potential
Ii z , figure 4.6.

(b) Unless D⊥ = 0, there could not be any radial variation of ne(r) at all, in
fact—not even near the radius where Te ∼ Ii z—since that would result in
cross-field particle fluxes, according to �⊥ = −D⊥dn/dr . That would be
inconsistent with the flux-tube-by-flux-tube particle balance hypothesized.

Next we consider the realistic situation where recycling neutrals are not con-
strained by B. Since the conditions are highly ionizing, i.e. with short mean free
paths of the neutrals to be ionized, the situation is not very much different from
the first scenario: each flux tube is nearly in individual local particle balance with
most of the neutrals being ionized within a specific flux tube having originated
from ions exiting that flux tube onto the target. Therefore we appear to still be
obliged to contemplate a scenario where the ionization on each flux tube occurs
just in front of the target, and the total ionization source on each flux tube equals
the target out-flux for that flux tube. That then implies a stagnant region extending
over most of the SOL, i.e. the entire region upstream of the ionization region.

This picture, however, is incompatible with non-zero D⊥ and observed up-
stream radially decaying ne(r) profiles, where λnu ≈ λTu , figures 21.3, 21.4: no
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upstream source of particles exists in this picture to support the cross-field fluxes
implied by D⊥ �= 0 and λnu �= ∞.

One resolution of this problem lies in flow reversal, chapter 15: the flux-tube-
by-flux-tube particle balance is not, in fact, perfect, and a large scale convection
cell arises within the SOL. This picture is obviously a complex one and we cannot
expect to find simple analytic models for λnu as was the case for λTu , section 5.7.
We can, however, extract some rough idea of what to expect theoretically for λnu

from this flow reversal picture.
With regard to the flow-reversed region, the dwell time of particles within

the SOL is still roughly τSOL ≈ L/csu since the parallel plasma velocity is still of
order csu , albeit somewhat smaller, chapter 15, perhaps 0.1csu , and the distance
involved between source and sink is still ≈ L . Thus, particles will diffuse cross-
field a distance of order (DSOL⊥ τSOL)1/2, just as for the simple SOL, chapter 4,
i.e. one still anticipates that λnu will be of order (DSOL⊥ L/cs)

1/2, a little larger
perhaps. Drift effects, chapter 18, involving large scale flows along the SOL,
would lead to broadly similar conclusions.

This estimate for λnu may be compared with the rough estimate of λTu

obtained from equations (5.55), (5.72):

λTu ≈
(

49

4

enuχSOL⊥ L2

κ0T 5/2
u

)1/2

(21.8)

giving an estimate for the ratio:

λnu /λTu ≈
(

4

49

10−16 DSOL⊥ κ0

eχSOL⊥ v∗SOLcs0

)1/2

(21.9)

where the collisionality parameter v∗SOL = 10−16nu L/T 2u , equation (4.105),
cs0 = 9788 m s−1 (the speed for D+ plasma at T = 1 eV). Using κ0 = 2000,
e = 1.6× 10−19 and assuming DSOL⊥ = χSOL⊥ and v∗SOL = 50, as a representative
value for the conduction-limited regime, section 5.8, we find:

λnu /λTu ≈ 1. (21.10)

Thus, one anticipates that the upstream decay lengths for density and
temperature—based on a picture of the high recycling regime which involves flow
reversal—to be roughly comparable. This is sometimes observed experimentally,
figures 21.3, 21.4.

Figures 21.8, 21.9, [21.12], show larger collections of measurements
λnu /λTeu for JET shots in the conduction-limited regime, figure 21.8, and
similarly for CMOD, figure 21.9. The λnu /λTeu ratios have been plotted against
Tet as a rough indicator of operating regime: for very low Tet the transition to
detachment is occurring while for high Tet the transition to the sheath-limited
regime sets in. The JET data span from the C-L regime up toward the S-L
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Figure 21.8. Ratio of upstream radial decay lengths of ne and Te, from OSM analysis,
of a number of JET discharges, and for various locations across the SOL [21.12]. Plotted
versus target electron temperature. Attached discharges.
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Figure 21.9. Ratio of upstream radial decay lengths of ne and Te measured using an
upstream reciprocating probe on CMOD [21.2] versus target electron temperature. At the
lowest values of Tet , detachment is starting to occur.

regime. While the data scatter is substantial, there does appear to be a tendency
for this ratio to be ∼ 1

2 in the C-L regime, increasing somewhat perhaps as the
transition to the S-L regime is approached. The CMOD data spans from the
C-L regime down toward/into detachment. The ratio again appears to be ∼ 1

2
in the C-L regime, increasing as detachment is approached. The SOL widens,
in a particle sense, as detachment sets in. Similar results have been reported
from JT-60U [21.13, 21.14]. This picture is not, however, a universal one. On
AUG, λnu tends to be significantly larger than λTeu [21.15]. The reason for these
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inconsistencies remains unresolved at this time.
We may arrive at roughly the same theoretical expectation for λnu /λTu from a

different consideration of the conduction-limited SOL: in section 5.8 it was shown
that in the C-L regime one expects that the upstream density and temperature are
related, roughly, according to:

Tu ∝ (nu L)1/2. (5.116)

If the SOL stays at approximately the same collisionality across its radial extent,
v∗SOL ∝ nu L/T 2u , i.e. equation (5.116) holds across the SOL, then this means that:

λnu ∼ 1
2λTu . (21.11)

That is, we again anticipate that the two scale lengths will be roughly equal.
The foregoing, however, begs the question: but why should collisionality re-

main constant across the SOL? It may very well be the case that on the separatrix,
equation (5.116) holds for cases in the conduction-limited regime—and so, if in
the first place one chooses the cases to be in this regime on the separatrix—as was
done for the JET data shown in Figure 5.27, for example—then it is perhaps not
too surprising that nsep

u , T sep
u and Lsep should be related. The data in figure 5.27,

however, are for flux tubes at various locations across the SOL, and not just the
separatrix. It appears that there exists a tendency for the SOL to remain, roughly
at constant collisionality across the SOL width.

We may turn to the basic two-point model of section 5.2, and its extensions,
section 5.4, for insight on this matter. Equations (5.4), (5.6), (5.7) may be com-
bined to give:

Tu =
(

49

32

e3γ 2

miκ
2
0

)1/5

T 1/5
t (nu L)2/5. (21.12)

Now, if it can be argued that Tt (r) is not expected to vary greatly across the
target—or at least that T 1/5

t is not expected to vary greatly—then the theoretical
relation of equation (21.12) matches rather closely to the experimental observa-
tions of figure 5.27. Even the absolute magnitude matches reasonably well: taking
Tt = 10 eV, constant, as representative, and γ = 7, m+D , κ0 = 2000 gives:

Tu = 1.7× 10−7(nu L)0.4 (21.13)

T [eV], n [m−3], L [m]. Equation (21.13) is shown as the dashed line in fig-
ure 5.27. We thus have an explanation of the tendency for the collisionality to
remain constant across the SOL—with all the implications already shown of that
state of affairs—provided we can explain the tendency for [Tr (r)]1/5 to not vary
greatly across the target. It might be thought that, since such a small exponent
(1/5) is involved, this is essentially guaranteed. This, however, is not the case
since the target conditions—nt , Tt , �t —are strong functions of upstream condi-
tions, i.e., they are ‘volatile’, not robust, quantities; see discussion in section 5.2.
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Indeed, it is readily shown that the foregoing argument is actually circular: pre-
cisely to the degree that the collisionality is constant across the SOL—to that
degree, and only to that degree, is [Tt (r)]1/5 constant. (This should not be surpris-
ing: after all equation (21.12) was obtained directly from the basic relations of the
two-point model, just as the expressions of section 5.8 were. The only additional
assumption needed in section 5.8 in order to obtain equations (5.112) and (5.114)
were that the values of collisionality be approximately constant. In this section, on
the other hand, the only additional assumption is that [Tt (r)]1/5 ∼ constant. Thus
the two assumptions are equivalent, even if that is not immediately obvious.) In
order to close this argument, therefore, we require a completely separate reason
why Tt (r) should tend not to vary too greatly.

An explanation is that parallel heat convection tends to be important in the
outer part of the SOL—even when parallel conduction dominates the regions
closer to the separatrix—and this prevents Tt (r) from dropping as rapidly from
its separatrix value as it would if conduction dominated everywhere.

It is evident that if the parallel plasma flow is significant over much of the
length of a flux tube, then parallel heat convection will be important, the conduc-
tion will carry less of the power and so the parallel temperature drop will decrease.
One can bring this out in an approximate and quantitative way by including the
factor fcond—the fraction of the parallel power carried by conduction—in the
extended two-point model, sections 5.4, 5.7. In the table in section 5.7 we see
that Tt ∝ f −4/7

cond (without λq‖-variation) or ∝ f −8/9
cond (with λq‖-variation). Also

Tu/Tt ∝ f 6/7
cond or ∝ f 10/9

cond .
The tendency for the conduction-limited regime to result in flow reversal,

with target-directed flow occurring in the outer part of the SOL, would make
parallel heat convection more important in the outer part of the SOL, where
conduction is also weaker due to lower Te—and may explain the tendency for
Tt (r) not to drop as rapidly with r as would be the case were conduction alone
involved.

This and other speculations as to the cause of Tt (r) tending not to vary
strongly, or for λnu to tend to be of order λTu , or for collisionality to tend to
be constant across the SOL—all of which have been seen to be equivalent—are
discussed in [21.12].

It is clear from figures 21.8 and 21.9 that, at most, the relation λnu /λTu ∼ 1
is merely a tendency of the conduction-limited regime. Much scatter and many
exceptions are thus to be expected. It seems likely that the modelling for λnu will
always be more difficult than the modelling for λTu and λq ; particle balance in the
C-L regime is inherently more complicated than power balance.

Turning finally to a target variable, the particle flux density �t , or equiva-
lently the ion saturation current density I+sat,t ≡ e�t : the basic equations of the
two-point model, equations (5.4), (5.6) and (5.7), can also be combined to give:

�t = I+sat,t/e =
(

e

2mi

)7/10(7γ eL

4κ0

)4/10

T−3/10
t n14/10

u . (21.14)
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Figure 21.10. Measured values of the Langmuir probe ion saturation currents for a
number of JET discharges plotted against n1.4

eu L0.4. The straight line is from theory,
equation (21.14) [21.12]. L is the connection length. neu is the upstream density for
each flux tube.
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Figure 21.11. As figure 21.10 but for CMOD [21.12].

Thus, again, if one can argue that Tt —or at least T−0.3
t —should not vary greatly

across the SOL, then one expects the simple correlation I+sat,t ∝∼ n1.4
u to hold.

Equation (21.14), evaluated for m+D , γ = 7, Tt = 10 eV constant, κ0 = 2000
gives the solid lines in figure 21.10, compared with JET data, and figure 21.11,
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compared with CMOD data; the variation of L has also been allowed for. Within
substantial scatter the theoretical relation matches experiment reasonably well.
It is often stated that I+sat,t ∝∼ n2

u is characteristic of the C-L regime, equa-
tion (5.14), but that is the theoretical prediction when q‖ is fixed—which is not
assumed in equation (21.14).

One thus also anticipates the tendency for the relation to hold:

λ�t ≡ λI+sat,t
≈ 1.4λnu (21.15)

a relation also reported from comparisons of the two-point model with 2D code
results [21.16, 21.17]. Thus in the C-L regime the relations between the radial
scale lengths are anticipated to have a rough tendency toward:

λq‖ ≈ 2
7λTu (21.16)

λq‖t ≈ λq‖u (21.17)

λTt ≈ ∞ (21.18)

λ�t ≈ λq‖ (21.19)

λnu ≈ 2
5λTu (21.20)

λnu ≈ 5
7λq‖ (21.21)

λ�t ≈ 7
5λnu . (21.22)

The caveats mentioned in connection with the ratio λnu /λTu apply to all of these
relations: only a rough tendency is likely to exist and numerous exceptions can
be anticipated.
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Chapter 22

MARFEs

22.1 Experimental Observations

A tokamak density limit associated with a disruption of the plasma current (or, if
an H-mode is involved, transition back to L-mode), occurs when ne is raised above
a critical level, nDL [22.1]. Measurements of nDL from a number of tokamaks
have been found to be well described by the empirical Hugill diagram and the
Greenwald Limit [22.2]:

ρGW
DL ≈ 1 (22.1)

where

ρ ≡ ne

Ip/πa2 
(22.2)

with ne [1020 m−3], Ip [MA], a [m]. The physical basis for the density limit is
not entirely understood, and quite different density-limiting processes appear to
be controlling, depending on operating conditions—auxiliary heating, pumping,
safety factor, pellet fuelling, etc [22.3, 22.4]. Some of these processes are essen-
tially edge phenomena [22.5], while others primarily involve the main plasma,
e.g., the effect of impurity radiation on power balance, leading to a contraction of
the current channel due to thermal collapse radially [22.1]. We do not consider
further here this very important, but complex, matter.

At somewhat lower values of ρ, MARFEs often form. The density threshold
for MARFE formation is found to be in the range [22.6]:

ρMARFE ≈ 0.4–0.9. (22.3)

A MARFE is a toroidally symmetric belt of intense radiation typically appearing
near the inside wall of a tokamak, figure 22.1. ‘MARFE’ is an acronym for
multifaceted asymmetric radiation from the edge. It is asymmetric poloidally and
is usually quite localized. It is thus distinct from the poloidally uniform radiating
mantle, chapter 23. It is also localized radially, existing in the SOL and just
inside the LCFS. The MARFE is cold, Te ≈ a few eV, and dense, ne ≥ ne, and

603
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604 MARFEs

Figure 22.1. Illustration of the toroidal nature of the MARFE. The poloidal ring limiter
radial extent is indicated by the cross-hatched area [22.6].

Table 22.1. Conditions for occurrence of MARFEs and disruptions on various toka-
maks [22.6].

ρ = πa2ne
Ip

(1020 MA−1 m−1)

Machine R (m) A (m) Bφ (T) κ MARFE Disruption Commenta

ALC-C 0.64 0.165 6–10 1 0.5± 0.05 1 1
0.577 0.1 8 1 0.5± 0.05 1
0.705 0.1 8 1 0.5± 0.05 1
0.64 0.165 8 1 0.5± 0.05 1
0.64 0.165 8 1 0.75± 0.05 1 1,2

ASDEX 1.65 0.4 2.2 1 0.7± 0.05 1 1,3
1.65 0.4 2.2 1 0.85± 0.05 1.5 1,3,4

D-III 1.4 0.4 2 1 0.45 0.75 1
1.4 0.4 2 1.4 0.32 1

DITE 1.17 0.26 2.7 1 0.55 0.6 1
1.17 0.26 2.7 1 0.55 1 1

FT 0.83 0.2 6–8 1 0.75± 0.05 1 5
JET 2.96 1.25 2.5–3.4 1.2–1.6 0.55–0.3 0.7–0.5 1,5
TFTR 2.5 0.82 4 1 0.4± 0.05 0.7 1

2.5 0.82 4 1 0.8± 0.05 1.0 1

a Comments: 1—constant plasma current; 2—pellets; 3—diverted;
4—neutral beam injection; 5—falling plasma current.

can radiate a significant fraction of the power reaching the edge. The MARFE
appears often to be a precursor to the density limit disruption. When the cold,
radiating region penetrates sufficiently far into the main plasma to reach the q = 2
surface it may precipitate MHD instability and disruption.

The radiation for the MARFE is typically hydrogenic and from low—but
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not the lowest—impurity charge states, e.g. CIII, thus confirming that Te is low in
the MARFE. The radiation is generally from low Z elements, C typically, which
radiate most strongly at low Te, figure 3.21.

MARFE thresholds for several tokamaks are given in table 22.1 [22.6].
While the scaling of nMARFE

e goes primarily as Ip/πa2, the threshold is raised
somewhat with pellet injection and with neutral beam heating. The threshold
density is also lowered somewhat by injection of impurities [22.7].

22.2 Modelling MARFEs

The basic cause of MARFEs is thought to be radiation thermal instability. The
radiative power loss rate coefficient Lz(Te) is a strong function of Te, see fig-
ure 3.21; Lz ≡ Prad/nenz . One may also note that for low Z elements, radiation
power increases with decreasing Te, at the low values of Te at the edge, i.e.
dLz/dTe < 0. For carbon, for example, the ‘coronal’ values of Lz increase by
several orders of magnitude when Te decreases from ∼30 eV to ∼10 eV; ‘non-
coronal’ effects reduce this temperature sensitivity, figure 3.20. If for any reason
the temperature decreases in some region, then Prad will increase, thus tending
to cause a further decline in Te. At the same time the heat transport into the
radiating zone will increase and, if the transport is strong enough, the drop in Te

will stabilize at a slightly lower value. At low temperatures, as is characteristic of
the edge plasma, the electron parallel heat conduction is weak, K‖ ∝ T 5/2, and
assuming conduction is the primary heat transport mechanism, a thermal collapse
to quite low temperatures will occur.

The collapse is contributed to further because of parallel pressure conserva-
tion: as T drops in the radiation zone, the plasma density ne rises, thus further
increasing Prad. If we assume a constant impurity fraction αz ≡ nz/ne, then
Prad will increase still faster with decreasing T . This effect—a MARFE—is more
generally termed a radiative condensation.

If Lz(Te) does not increase indefinitely as Te decreases, the temperature in
the MARFE will finally stabilize at a quite low value, a few eV, possibly low
enough for volume recombination also to occur. Since recombination rates are a
strongly increasing function of density, the high density in a MARFE increases the
likelihood of this process. The enhanced recycling that results adds to radiative
power loss.

We may gain some further insight into MARFE behaviour by considering
a quite idealized situation where only parallel electron heat conduction occurs
and the impurity fraction αz is a constant. We will ignore hydrogenic radiation.
Consider a flux tube of length L which may be inside or outside the LCFS. We
assume the heat enters the flux tube uniformly over its length L and is entirely
radiated in a MARFE extending over a length Lm , at one end of the flux tube,
figure 22.2. We assume for simplicity that Lm scales with L , i.e. Lm/L ≡ fm ,
a constant. We will characterize the plasma conditions in the flux tube by the
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n0,T0

L

nm,Tm

Figure 22.2. A simple model of a MARFE. A flux tube of length L is hot at one end,
temperature T0, and cold at the other end, Tm � T0, with nm � n0 due to pressure
balance. The conditions at the cold end are such as to result in strong hydrogenic and
impurity radiation which, together with the finite parallel heat conductivity, sustains the
strong T -variation.

density, n0, and temperature, T0, at the opposite end from the MARFE. We take
Te = Ti = T . If the flux tube is inside the LCFS then L is half the total
circumference of the tube; in the SOL, L is approximately the connection length.
Tm is the temperature in the MARFE. Thus, from section 4.10.1 power balance
gives:

4
7κ0(T 7/2

0 − T 7/2
m )/L = αzn2

m Lz(Tm)Lm . (22.4)

We will also assume here that there is no particle flow along the flux tube,
no recombination, no friction, etc, and that pressure balance gives:

nm Tm = n0T0. (22.5)

One can combine equations (22.4) and (22.5) to find Tm(n0) and nm(n0), with L ,
T0, αz , fm and the radiating species being specified as control parameters. There
are three solutions in general. As can be seen from figure 3.20, for Te ≥ 30 eV,
Lz is very small (for coronal equilibrium radiation). Therefore, providing T0 ≥
30 eV, and provided αz fm L2n2

m is not extremely large, then one solution is the
weak radiation i.e. non-MARFE, solution with Tm ≈ T0 and nm ≈ n0.

We turn then to the more interesting cases where Tm � T0, which per-
mits neglect of the T 7/2

m term in equation (22.4), and in combination with equa-
tion (22.5) gives:

Lz(Tm)

T 2
m

= 4κ0

7αz fm

T 3/2
0

L2n2
0

. (22.6)

Lz(Tm)/T 2m is plotted in figure 22.3, using Lz for carbon for coronal equilibrium,
figure 3.20. As can be seen, Lz/T 2

m has a maximum which occurs at T ≈ 4 eV.
Therefore, the RHS of equation (22.6) must not exceed a certain threshold if a
strongly radiating solution, i.e. a MARFE, is to be possible. For a specified L
and T0 this means that a MARFE can only exist for values of n0 greater than
a critical value given by equation (22.6) and by the maximum value of Lz/T 2

m ,
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Figure 22.3. Plot of Lz(T )/T 2 against T , where Lz is the electron radiative cooling
function for carbon, section 3.5. Lz ≡ Prad/nenz .

which for coronal C is ≈3× 10−33 [W m3 (eV)−2]. This finding would therefore
broadly accord with the experimental observation of the existence of a MARFE
density threshold. For n0 exceeding the threshold, there are two solutions: one
with Tm ≥ 4 eV, and one with Tm ≤ 4 eV. We will show below that the higher
temperature solution is usually unstable to temperature collapse.

For illustration, figures 22.4 and 22.5 give Tm(n0) and nm(n0) for the specific
example of T0 = 50 eV, L = 50 m, αz = 0.03 and fm = 0.01. For completeness
the weakly radiating solutions are also shown. The calculated values of Prad are
of order 107 W m−3, which are approximately as observed in experiment [22.7].
For these parameters the critical value of n0, ncrit

0 , is ≈1.3 × 1019 m−3. For
n0 < ncrit

0 , only the weakly radiating solution is possible. For n0 > ncrit
0 there

are two equilibrium solutions which are strongly radiating. We next consider the
stability of these two solutions.

Consider a negative perturbation to Tm . For the colder solution, this causes
Prad to decrease and at the same time the heat conducted into the MARFE in-
creases. Therefore Tm rises and this solution is seen to be stable. For the hotter,
strongly radiating, solution a decrease in Tm causes both Prad and the conducted
heat flux to increase. This solution will be stable if the heat conduction increases
faster than Prad, otherwise it is unstable. Introduce a small perturbation δTm to
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Figure 22.4. Results of the simple MARFE model of section 22.2 giving the temperature
in the MARFE, Tm , against the density in the flux tube far from the MARFE, n0. For the
particular parameters shown. There are two stable solutions and one unstable one. The
coldest, strongly radiating solution is stable—the MARFE solution.

equation (22.4). Instability occurs when:

αz fmn2
m L2[Lz(Tm − δTm)− Lz(Tm)]

> 4
7κ0[T 7/2

0 − (Tm − δTm)7/2] − 4
7κ0[T 7/2

0 − T 7/2
m ]. (22.7)

This gives:
dLz(Tm)

dTm
< − 2κ0T 5/2

m

eαz fmn2
m L2

(22.8)

Lz [W m3], T [eV], n [m−3], L [m]. Again we see that the colder solution, where
dLz/dT > 0, is stable. The hotter, strongly radiating, solution is also stable if αz
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Figure 22.5. Results of a simple MARFE model of section 22.2 giving the plasma density
in the MARFE, nm , against the density in the flux tube far from the MARFE, n0. There are
two stable solutions and one unstable solution. The highest density, most strongly radiating
solution is stable—the MARFE solution.

is very small or L extremely short, etc—but typically this solution is not stable.
It is readily shown for the foregoing example that the inequality (22.8) is satisfied
by a large margin for all Tm values of interest, Tm ≤ 20 eV, i.e. for cases that are
actually strongly radiating.

We may calculate ncrit
0 from equation (22.6) using [Lz(Tm)/T 2

m]max ≈ 3 ×
10−33 [W m3 (eV)−2] ≈ 1.2× 105 [m3 J−1]:

ncrit
0 =

[
4κ0T 3/2

0

7e2αz fm L2[Lz(Tm)/T 2
m]max

]1/2

(22.9)

for n [m−3], T [eV], L [m], Lz/T 2 [m3 J−1]. We may replace L with plasma
current Ip by using L = π Rq, q = aBφ/RBθ and Bθ = µ0 Ip/2πa, section 1.3,
to obtain:

ncrit
0 = Ip

πa2

1

Bφ

[
µ0κ0T 3/2

0

7π2e2αz fm[Lz/T 2]max

]1/2

(22.10)
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I [A], B [T], all else as before. We may note that some of the experimental
observations concerning the MARFE threshold are in accord with this very simple
model, namely:

(a) ncrit
0 ∝ Ip/πa2;

(b) ncrit
0 is somewhat reduced by the addition of extra impurities; equa-

tion (22.10) gives ncrit
0 ∝ α

−1/2
z .

It is also evident, however, that this model must be too simple since it predicts
the dependence ncrit

0 ∝ B−1
φ which is not observed. We do not have to look far to

identify neglected effects and unjustified assumptions:

(a) perpendicular heat conduction has been neglected;
(b) perpendicular and parallel heat convection have been neglected. At the low

temperature of the MARFE, neglect of convection is particularly serious;
(c) equation (22.10) has no predictive capability so long as T0 is a free parameter.

All we can extract from the present analysis is that T0 cannot be much greater
than ∼100 eV, for values of n0 and L of interest, if MARFE formation is to
be possible. Thus one only expects to find MARFEs near the edge;

(d) the assumption that αz and fm are constants is unjustified;
(e) the value of ncrit

0 relates to a density near the edge, which is not generally
identical to ne, chapter 19;

(f) hydrogenic radiation has been neglected, although it can be a major con-
tributer to measured Prad from MARFEs [22.8]; power consumption due to
strong, localized hydrogenic recycling at the MARFE may play an important
role [22.5];

(g) pressure balance along the MARFE’s flux tube could be substantially af-
fected by volume recombination and ion–neutral friction, etc.

The foregoing model is therefore presented merely for illustration of the princi-
ples that are involved in MARFE analysis. Nevertheless, if we use the foregoing
example values of αz , etc, equation (22.10) gives:

ncrit
0 ≈ 1.3

Ip

πa2

1

Bφ

(22.11)

n [1020 m−3], I [MA], a [m], B [T]. For Bφ of a few T, equation (22.11) is seen
to be in reasonable agreement with the measured values of ρMARFE, section 22.1.

A satisfactory model to explain ρMARFE—and ρDL also—remains outstand-
ing. Strong temperature-gradient forces (parallel to the magnetic field) exist at
the MARFE, resulting in strong forces on the impurity ions acting in the direction
away from the MARFE, section 6.4. It is therefore not immediately obvious how
the MARFE remains intact. A convincing picture of the particle, momentum and
energy balances of a MARFE emerges from a B2 multifluid (D ions plus C ions)
code analysis carried out for ASDEX-U single-null divertor geometry [22.9],
figure 22.6. The high plasma density at the MARFE, associated with the low
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(a) (b) (c)

Figure 22.6. [22.9]. Flow patterns in the boundary of AUG as predicted by the B2 code for:
(a) a normal high recycling discharge; (b) a high density MARFE discharge. A close-up in
the vicinity of the MARFE is provided in (c).

temperature there, causes strong cross-field particle loss to the adjacent flux tubes.
This cross-field flow of D+ ions induces parallel inflows of plasma, into the
MARFE. This parallel flow provides the frictional force on the impurity ions
required to balance the parallel temperature-gradient force which, by itself, would
act to expel the impurity ions from the MARFE.

The code analysis (22.9) allowed for volume recombination, but in fact the
computed temperatures never fell low enough, ≤1 eV, for this to be an important
effect. Experimental measurements on CMOD [22.8], however, found Te = 0.7–
1.0 eV and ne = (2–3) × 1021 m−3 in MARFEs, together with direct spectro-
scopic evidence for strong hydrogenic recombination radiation. Recombination in
MARFEs has also been observed in TEXTOR [22.10]. When volume recombina-
tion in a MARFE is strong then the flow recirculation pattern shown in figure 22.6
would be enhanced by neutral cross-field flows out of the MARFE. While the
simple model developed above gives a MARFE with, for example Tm = 1 eV
and nm = 5 × 1021 m−3, this must be somewhat fortuitous since recombination
radiation and all hydrogenic radiation were neglected.

Note that the MARFE shown in figure 22.6 is the ‘classical’ type, appearing
near the inside wall and inside the LCFS.

The tendency for MARFE formation to favour the inner—rather than outer—
edge region is presumably due to the fact that heat outflow from the central plasma
is strongest on the outside of a tokamak, section 5.9. The latter fact is most evident
from studies of double-null divertor configurations, e.g. ASDEX, where the inner
and outer SOLs were completely separated. In single-null divertors, the total
power transported along the SOL into the inner and outer divertor ‘legs’ is ap-
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proximately equal, due to the strong parallel heat conductivity—but nevertheless,
any region near the inside edge—whether inside or outside the LCFS—is more
susceptible to radiative condensation and MARFE formation, since the (parallel)
connection length to the effective source location at the outside is greater. Since
an instability is involved in a MARFE, it may not require very much asymmetry
between inside and outside to trigger a MARFE at the inside.

In summary, the defining characteristics of MARFEs are:

(a) a toroidally symmetric, poloidally localized, strongly radiating region;
(b) ne is high,Te low in the MARFE;
(c) a thermal instability, a radiation condensation, is involved.

22.3 Divertor MARFEs

Much of the analysis in the last section carries over to the modelling of a strongly
radiating divertor, i.e. where the targets provide additional power sinks. The same
tendency to radiative condensation occurs, although the general practice is not
to call the strongly radiating regions immediately in front of (‘anchored to’) the
targets ‘MARFEs’, but to reserve that term for situations where the radiation zone
is ‘floating away’ from solid surfaces. The tendency for divertor radiation to be
stronger at the inside than the outside, section 5.9, appears to be due to the same
reason as MARFE formation favouring the inside. As ne is raised, the divertor
configuration would seem to be a natural one for ‘spawning’ MARFEs: once the
radiating region constitutes a stronger energy sink than the target, the ‘anchor’ to
the target is weakened or lost, and the radiative condensation region might now
be expected to ‘float off’ as a MARFE. Such conjectures are broadly in accord
with observation. The general evolution is that, as density is raised, the divertor
first detaches—usually at the inside—and then with further increase of density a
MARFE forms [22.11–22.13].

Figure 22.7 gives the line-integrated radiated power in the JT-60 tokamak
looking at the divertor from above for various values of ne and∼11 MW of neutral
beam injection, NBI, heating [22.11]. At low ne (earliest times in these shots),
two identifiable radiation peaks appear corresponding approximately to the two
strike points (separatrices) on the graphite targets. For high ne (later time in the
shots) the two radiation peaks coalesce to form a single peak in the vicinity of the
X-point. Measurements from other views confirm that the radiation region slips
vertically away from the plates as ne is raised and moves towards the X-point,
or above it, where the radiation stabilizes. Similar results have been reported
from DIII-D [22.12, 22.13], and other divertor tokamaks [22.14]. It is found
that essentially 100% of the power that flows into the SOL can be radiated at or
near the divertor at the highest ne; figure 22.8 [22.15] shows this for the CMOD
tokamak. These regions are referred to as ‘X-point MARFEs’, or as ‘divertor
MARFEs’ (appearing between the X-point and the outer strike point). Whether
such regions are truly ‘MARFEs’ might be questioned; it is not clear that thermal
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Figure 22.7. [22.11]. The horizontal chord-averaged radiation distribution in JT-60U at
four densities as viewed from above. Density increases with time. An X-point MARFE
has clearly formed at 10 s.

Figure 22.8. CMOD [22.15]. Radiated power in the divertor region (�) is plotted versus
ne: PRAD,div/PSOL, the fraction of the power flowing in the SOL which is radiated, is
plotted as well (◦).

instability is involved in the same way as for ‘classical’ MARFEs. Modelling
indicates that chemical sputtering of carbon is central to the formation of this
type of MARFE [22.16–22.18].
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It has thus been demonstrated that a radiating divertor solution can be
achieved—although the fact that much of the radiation power does not occur
within the divertor ‘legs’ themselves raises an important issue about the divertor
design: does one need long divertor legs, which have large volumes, in order
to radiate away the power reaching the edge? Such divertor designs are very
expensive since they use up valuable space inside the magnetic field coils which
could otherwise be used to contain more hot, fusion-producing plasma. Some
divertor designs call for such configurations, but, if it turns out that the radiation
zone will always coalesce into a compact MARFE at or near the X-point, a large
divertor volume may not be needed or justified.

It is also a concern that the MARFE often ends up inside the confined plasma,
where its cooling effect may MHD-destabilize the confined plasma and be a
contributing factor in the density limit process.
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Chapter 23

The Radiating Plasma Mantle

High Z impurities retain some of the orbital electrons even at the highest tem-
peratures in the centre of fusion plasmas, and therefore strongly radiate in such
conditions, cooling the plasma and reducing fusion reactivity. Low Z impurities
only radiate significantly at the lower temperatures near the edge. They may there-
fore be compatible with an attractive power removal option—the radiating cold
plasma mantle—[23.1]. In this regime, the energy confinement across most of the
radius of the main plasma would still be achieved by the effect of a magnetic field
in reducing convection and conduction. Therefore the overall energy confinement
time would be the same, regardless of how the power reaching the edge was
finally dissipated. By dispersing this exhaust power via a poloidally and toroidally
thin radiation layer near the LCFS, however, considerable advantages could be
realized compared with exhaust through plasma-wetted surfaces: (a) the plasma
contacting the solid surfaces could be made quite cold, reducing or eliminating
sputtering, (b) the power could be deposited approximately uniformly over the
entire wall area of the containment vessel—perhaps of the order of 103 m2 for
a reactor—rather than in small plasma-wetted areas, thereby greatly easing the
practical problems of power transfer to coolants without melting damage.

These same benefits can, in principle, attend power removal by a strong
MARFE, chapter 22; however: (a) the radiation power is then less uniformly
distributed over the walls, (b) the MARFE may be more destabilizing than a
uniform radiative edge—although the latter can also be de-stabilizing, and has
been associated with the density limit disruption [23.2].

An early demonstration of the cold radiating mantle was reported for the
ISX-B tokamak with neon puffing and neutral beam heating [23.3]. An unan-
ticipated improvement in energy confinement time τE was found in these so-
called Z-mode discharges. In the absence of auxiliary heating, experiments on
the JET [23.4], TFTR [23.5], DITE [23.6] and TEXTOR [23.7] tokamaks showed
that by increasing ne, a cold radiating mantle could be produced even without
injection of extrinsic impurities. This was accompanied by a state termed limiter
detachment where the plasma density and temperature at the LCFS—and also
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Figure 23.1. DITE tokamak [23.6]. Plasma edge profiles for normal and detached
discharges (discharge (a), 100 kA and discharge (b), 130 kA). Measurements made at
450 ms at the top of the torus.

extending some distance inside the LCFS—remained at quite low levels. That
is, plasma contact with the solid surfaces of the limiter was greatly reduced—
analogously to the state of divertor detachment, chapter 16 [23.8]. Figure 23.1
shows radial profiles of ne(r) and Te(r) for such a detachment limiter state on
DITE. While the reduction in limiter sputtering is a benefit of limiter detachment,
it is not clear that this is a reactor-relevant mode of operation, since the weak
limiter contact could make helium pumping inefficient.

The most extensive experimental investigation of the radiating plasma man-
tle was carried out on TEXTOR during the 1990s [23.9–23.12]—and using aux-
iliary heating and gas injection, typically of neon. The plasma temperature at
the (limiter) LCFS remains fairly high, figure 23.2, even as the radiated fraction
γ ≡ Prad/Pheat reaches as high as 95%. These limiter discharges are therefore
not considered to be detached. Again, as with the ISX-B Z-mode, the energy
confinement actually improves with γ , figure 23.3. Remarkably, the density
limit is raised at the same time, with densities in the main plasma exceeding the
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Figure 23.2. TEXTOR [23.9–23.12]. (a) Electron density ne, electron temperature Te

and ion temperature Ti at the last closed flux surface plotted against radiation level γ

(Ip = 400 kA, ne = 0.9–1.0 nGW, Ptot = 2.2–2.7 MW); (b) decay length λ of electron
density and temperature in the scrape-off layer and diffusion coefficient D⊥ at the LCFS
plotted against radiation level γ ; (c) penetration depth λi0 of deuterium, helium and neon
atoms into the confined plasma and fraction of ionization inside the LCFS f0, D against
radiation level γ ; (d) particle confinement time of deuterium τp,D and energy confinement
τE time against radiation level γ .

Figure 23.3. TEXTOR [23.9–23.12]. Values for the energy enhancement factor fH93
as a function of the radiated power fraction γ at a plasma current Ip = 400 kA. The
corresponding values for the normalized density ne0/ne0,GR are indicated, where ne0,GR
is the Greenwald density, equation (22.1).
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Figure 23.4. TEXTOR [23.9–23.12]. Enhancement factor fH93 with respect to the
ITER93H-P scaling plotted against Greenwald number ne0/nGW at a plasma current of
Ip = 350 kA for discharges with neon (open triangles)/argon (crosses) seeding and without
additional impurity seeding (open circles).

plasma centre (CXRS)

Figure 23.5. TEXTOR [23.9–23.12]. Deuterium concentration nD/ne in the plasma
centre and at the plasma edge plotted against radiation level γ .

Greenwald limit, chapter 22, figure 23.4. It is also remarkable that the dilution
caused by the injected impurities, while substantial at the edge—at the radiating
mantle—is not substantial in the centre of the main plasma, figure 23.5. That is,
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Figure 23.6. Distribution of the radiation emissivity obtained from bolometry (left)
over the poloidal cross-section of ASDEX-Upgrade (right). Most of the radiation is
concentrated near the separatrix and there is an absolute maximum close to the X-point
(shot 6136, t = 2.5 s) [23.16].

the impurity level is high where it is wanted, in the mantle, but not where it would
do harm, in the hot core of the main plasma. This promising mode of operation
has been tested on other tokamaks such as DIII-D [23.13] and ASDEX-U [23.14–
23.16], in both limiter and divertor configurations. See the review of multi-
machine results in [23.17].

On ASDEX-U, operating with a divertor, this mode is called CDH-mode—
for ‘completely detached high confinement mode’. Neon and deuterium are
puffed with careful feedback control into auxiliary heated discharges so as to
achieve a rather precise radiation profile, see figure 23.6: about half the input
power is radiated in an approximately uniform mantle inside the separatrix, while
about the same fraction is radiated in the SOL and divertor. Very little power
reaches the targets. It is necessary to keep the main plasma radiation level just
below that where the H-mode will be lost (H → L transition), chapter 7. This not
only achieves the standard H-mode good energy confinement, but the ELMs are
the relatively harmless type-III ELMs, characteristic of operation just above the
L–H transition rather than the damaging, high-power type-I ELMs, chapter 7. At
the same time, since P total

rad ≈ Pin , the target power load is reduced to technically
feasible values—the usual benefit of detachment, chapter 16. Figure 23.7 shows
a schematic of the operating window for the CDH mode.

The benefits of these attractive regimes, based on substantial mantle radia-
tion, have yet to be reproduced on large tokamaks, perhaps because the atomic
physics scale lengths that are involved do not scale with machine size. Reactor
relevance is therefore an issue.
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Figure 23.7. ASDEX-U. Schematic representation of the CDH regime in terms of radiated
power inside the separatrix and power loss in the scrape-off layer plus divertor. The
CDH mode requires a high total radiated power fraction to minimize the target load
(divertor detachment), and radiation inside the separatrix adjusted such that the remaining
power outflow is slightly above the H–L threshold (in order to obtain the type-III ELM
regime) [23.16].
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Chapter 24

Zeff, Prad and the Relation Between Them

With regard to the role of impurities in magnetically confined devices, the two
‘bottom line’ quantities of the greatest importance are the Zeff in the core plasma
and the radiated power, Prad, which is usually dominated by impurities. These two
quantities are therefore the best documented impurity quantities for confinement
devices. We do not attempt a comprehensive survey of these data here, but instead
review the results for a specific machine, JET, the most reactor-relevant device
operated to date. The focus will also be on the intrinsic impurities, as being
more fundamental than injected ones. As yet there are no significant data on
the intrinsic He ash impurity (but only for injected He) and so it is the role of
impurities produced from the edge structures that is considered here.

The fundamental questions are:

(a) Are there discernible correlations between Zeff and Prad, on the one hand,
and the machine control parameters ne and Pin , on the other?

(b) If so, can we understand and explain such correlations?
(c) Is there at least a correlation between Zeff and Prad?
(d) If so, can we understand and explain it?

Unfortunately, the answer to most of these questions may be ‘no’.
Often it is found that the data scatter for Zeff and Prad is so large that it can

be hard to discern correlations. In order to help to identify any patterns it can be
useful to select data for very restricted sets of operating conditions. Figure 24.1(a)
shows an example of Zeff measurements made on JET for ELMy H-modes, Chap-
ter 7, with Pin restricted to the range 10–14 MW, and with no wave-heating, Ip

restricted to 2.4–2.7 MA and a restricted set of plasma shapes (‘triangularity’ <

0.25) [24.1]. Two different divertor configurations were involved, Mk I and Mk II,
and with either C or Be targets for the Mk I. Despite the tight restriction of control
parameters the Zeff values still show such a wide scatter as a function of ne that
it is difficult to discern trends. One trend which is just discernible is for Zeff to
decrease for the highest ne, a trend that has been widely seen in tokamaks [24.2],
and is sometimes much clearer than here, see e.g. results for CMOD [24.3]. The
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Figure 24.1. JET [24.1]. (a) Zeff for different divertors, Mk IC, Mk IBe and Mk II, during
ELMy H-mode campaigns, against core plasma density. Total input power PT in the range
10–14 MW, with 2.4 < Ip < 2.7 MA, triangularity δ < 0.25 and no ICRH or LH heating.
The target temperature in the Mk I divertor was ∼400 K and in the Mk II divertor it was
600 K. (b) Prad dependence on core plasma density, ne. The solid curve represents the ne

result of equation (24.2). (c) Carbon density versus ne.

plot of Prad against ne for the same JET shots shows the same substantial scatter,
figure 24.1(b). It was found on JET that even for Be divertor targets, C constitutes
the main contributor to Zeff and Prad, perhaps indicating that the divertor targets
are not the most important impurity source for the main plasma—although the Be
targets had become contaminated with C. It is also not uncommon to find that C
dominates Zeff and Prad, even in tokamaks which contain no graphite components;
in CMOD, employing Mo plasma-facing components, before boronization, C was
the largest contributor to Zeff [24.3], presumably arising from C impurities in the
Mo. Measurements of the central C density in JET for the same shots also show
great scatter, figure 24.1(c).
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Figure 24.2. JET [24.1]. Parametric dependence of Zeff and Prad on total input
power and core plasma density in JET Mk II diverted discharges, ELMy H-modes, with
2.4 < I p < 2.7 MA, ohmic and neutral beam heating only and triangularity δ < 0.25:
(a) dependence of Zeff on input power for various densities, (b) dependence of Prad on
input power for various densities, (c) dependence of Zeff on density ne for various input
powers, (d) dependence of Prad on density ne for various input powers. The solid curve is
a fit from equation (24.2).

Figure 24.2 focuses on the JET Mk II shots and looks to possible correlations
of Zeff and Prad with Pin as well as ne. For the most part trends are again hard
to discern. It might be hoped that L-mode operation (thus no ELMs) might show
more discernible trends, and this can be the case. Figure 24.3, [24.4] shows a com-
parison of Zeff against ne for JET L-mode discharges for three different variants of
the JET Mk II divertor: (a) with plasma contact on the horizontal targets, (b) on
the vertical targets, (c) for the ‘gas box’ variant. See [24.4] for further details;
here we merely note that the divertor is progressively more ‘closed’ to recycling
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Figure 24.3. JET [24.4]. Zeff in L-mode plasmas appears to decrease with divertor closure
to recycling neutrals going from Mk II horizontal target→ vertical→ Mk IIGB. This may
not be obvious in H-modes due to strong impurity sources produced by ELMs depositing
power outside the divertor.

hydrogenic neutrals, going from (a) to (b) to (c), i.e. there is less leakage of
hydrogen neutrals out of the divertor. Figure 24.3 shows a clear trend to decreased
Zeff as the divertor closure is increased—perhaps indicating the importance of
sputtering of the main chamber walls by energetic neutrals.

Even if the correlations between these ‘bottom line’ impurity quantities and
the machine control parameters, ne and Pin , can often be hard to discern, we
might hope that correlations would be more evident for quantities that are directly
related to the impurity production rate. Unfortunately, it can be equally hard
to discern trends in these data. Figure 24.4 gives plots of central C density as
functions of the intensity of C2+ (CIII) light released when C is sputtered into
the plasma at (a) the inner wall, (b) the inner target, (c) the outer target. The
large scatter in these plots may indicate that the variability has largely to do with
transport, rather than production of impurities. The reasonable success achieved
at modelling the low charge state spectroscopic lines, which are released very near
the production site, e.g. figure 6.20, using local probe measurements of ne and
Te, also encourages the hope that we may have not too deficient an understanding
of production—at least when it is due to physical sputtering.

We may attempt to identify some of the reasons why our understanding of
the factors controlling Zeff and Prad remains weak:
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Figure 24.4. JET [24.1]. Comparison of the photon fluxes from CIII (465.0 nm) in
the three campaigns for different divertors, Mk IC, Mk IBe and Mk II, with the core
carbon density measured by charge exchange at r/a = 0.2. ELMy H-modes. Operating
conditions: total input power PT in the range 10–14 MW with 2.4 < Ip < 2.7 MA,
triangularity δ < 0.25. No ICRH or LH heating. (a) Horizontal midplane CIII photon flux,
(b) inner target CIII photon flux, (c) outer target CIII photon flux.

(1) There is uncertainty about the location of the most important sources. The
entire plasma-facing structure can release impurities. It is not enough to
identify the strongest source since the efficiency of contaminating the main
plasma probably varies greatly with location. A relatively weak source may
be controlling. Wall sources are particularly a concern and may be due, not
only to neutral hydrogenic bombardment, but also to (unplanned for) plasma
contact [24.5].

(2) The ‘bottom line’ quantities, Zeff, Prad, nz(0) are the result of a long chain of
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processes, with substantial uncertainties characterizing each individual link
in the chain.

(3) It appears that changes in ne may influence production and transport oppo-
sitely, similarly for Pin—which would tend to obscure trends.

(4) Carbon appears to usually be the most important contaminant in plasma
devices. This is unfortunate since this is one of the most difficult elements to
understand with regard to plasma–surface interactions:

(i) Both chemical and physical sputtering occur, section 3.3. RES,
radiation-enhanced sublimation, section 3.3.4, may also occur. Not
just methane, but also higher hydrocarbons are produced in quantity
by chemical sputtering. Carbon has unity sputtering yield for atomic
and ionic oxygen impact. Carbon forms a variety of hydrogenated
re-deposition solids, with varying sputtering properties. Carbon, of
course, is the basis of life and reacts in highly diverse, complex ways
with the rest of the elements in the periodic table. It is unfortunate, but
perhaps inevitable, that we are obliged to struggle with this versatile
actor.

(ii) The dependence of chemical sputtering on bombarding flux density and
metal contaminants is uncertain.

(iii) The break-up kinetics of CH4 and the higher hydrocarbons is not well
known and lack of knowledge about the probability of sticking to solid
surfaces of the molecular fragments, arising by electron impact in the
plasma, adds further uncertainty.

(iv) Carbon tends to be ubiquitous in vacuum systems and is not readily
removed through the vacuum pumps. It migrates from graphite compo-
nents to the surfaces of non-C components. It is present as a significant
impurity in many metals. It is left on surfaces by human contact.

(v) Carbon is transported inside the containment vessel in both volatile and
non-volatile forms.

What is required in order to move forward on this clearly difficult problem?
Since there has been some success in modelling production, it would seem that
the best procedure is to try to extend modelling and understanding to the next
stages—the intermediate charge states, which are still located in the edge, but at
some distance from the source. By moving up the chain of charge states it may
eventually be possible to piece the entire transport picture together and to succeed
in relating the ‘bottom line’ quantities to machine control variables.

Against this rather sobering back-drop, a surprising and encouraging dis-
covery has been made: surveying results from a large number of tokamaks, for
both divertor and limiter operation, Matthews has shown that a simple correlation
exists between Zeff and Prad [24.6, 24.7]. Behringer found a similar result earlier
for JET limiter operation [24.8]. Although this correlation is also not understood,
it is most valuable information. The level of Prad required to achieve adequate
radiative cooling for reactor operation can be estimated and at the same time the
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Figure 24.5. (24.6), (24.7). Matthews’ law. Zeff versus a scaling law close to that
of equation (24.2) for experimental data from CMOD, ASDEX, AUG, DIII-D, JT60-U,
TEXTOR and JET. The desired ITER operating points are also indicated.

permitted level of Zeff (for tolerable fuel dilution) is known. Therefore informa-
tion on the connection between these two quantities is invaluable.

Provided that radiation occurs near the edge of the main plasma, or outside
the LCFS, the ratio Zeff/Prad constitutes a figure of merit: the lower this ratio, the
better. It is understood here that Zeff is the value in the centre of the main plasma,
and therefore Zeff is closely related to the central dilution factor, nD/ne:

nD/ne = Z − Zeff

Z − 1
(24.1)

for a single impurity species of charge Z . Assuming a density limit restricts ne,
then fusion power is proportional to (nD/ne)

2, and thus it is important to have Zeff
be as low as possible. Example: for C6+ and Zeff = 2.5 one finds nD/ne = 0.7
and the fusion power is reduced by half.

A high value of (edge) Prad is desirable as a means of dispersing the exhaust
power over the large wall area.

A survey of a large group of tokamaks has revealed a remarkably robust
relationship to exist between measured values of Zeff and Prad [24.6, 24.7], fig-
ure 24.5. The data are fitted reasonably well by:

Zeff = 1+ 7Prad

(S⊥n2
e)

(24.2)
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Prad [MW], ne [1020 m−3], and S⊥, the surface area of the main plasma, ≈
2πaκ1/22π R [m2]. The robustness of this empirical ‘Matthews law’ is impor-
tant as it implies that extrapolation to reactors may be reasonably reliable. In
figure 24.5 are shown points for the desired operation of an ITER-like device,
which is seen to fall near this scaling relation. The solid lines in figures 24.1(b)
and 24.2(d) are essentially equation (24.2).

Although this scaling is also found in computer code analysis, the robustness
of the relationship is still not fully understood. Let us assume that the radiated
power comes from a uniform shell of thickness �rad, then the radiating volume
is Vrad = S⊥�rad. Let us define ‘compression’ factors Cn ≡ ne,rad/ne and Cz ≡
nz,rad/nz , where ne,rad and nz,rad are the average values of electron and impurity
density within the radiating volume, and nz is the average impurity density in the
main plasma. We have, section 3.5:

Prad[W ] = Vradne,radnz,radLz (24.3)

and hence, defining the average impurity ion concentration fz ≡ nz/ne, we obtain

fz = Prad/(S⊥�radCnCzn2
e Lz) (24.4)

thus also:

Zeff ≈ 1+ Z(Z − 1) fz = 1+ Z(Z − 1)Prad

S⊥�radCnCzn2
e Lz

. (24.5)

Comparing equations (24.2) and (24.5) we see that if Z(Z − 1)/�radCnCz Lz ≈
constant, then the simple, observed relation of equation (24.2) would be ex-
plained. It is not evident, however, why this parameter grouping should be con-
stant, although it is found to be so for a wide range of computer code cases
analysed using the DIVIMP code, section 6.6; while each of the individual factors
�rad, Cn , Cz , Lz , averaged over the radiating zone was found to vary by an order
of magnitude or more, the parameter group remained constant within a factor of
2. Only if extreme and unphysical plasma conditions were imposed, e.g. a cold,
< 50 eV plasma everywhere including the main plasma, was the robust relation
broken in the code analysis. This finding remains unexplained.
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Chapter 25

Further Aspects of the Sheath

25.1 The Ion Velocity Distribution at the Sheath Edge

It is important to know the velocity distribution of the ions at the sheath edge, se,
for at least two reasons:

(a) to establish the ion heat outflux and the ion sheath heat transmission coeffi-
cient;

(b) to be able to calculate ion sputtering rates. Note that the task is to calculate
the vx -velocity distribution, where x is the parallel direction, i.e. into the
sheath edge; generally it is taken that the two perpendicular directions are
characterized by Maxwellian distributions.

The crudest approximation is to assume a drifting Maxwellian at the se, equa-
tion (2.15), with drift velocity equal to the sound speed. This is, however, unphysi-
cal since at the se there are no backward-going ions, which a drifting Maxwellian
contains. The ion heat flux convected into the se by a drifting Maxwellian is
unphysically high.

When the sputtering yield is not a strong function of impact energy, then it
is acceptable to calculate the sputtering rate for an ion impact energy Eimpact ≈
2kTi + 3kTe, where the 2kTi is roughly the thermal energy of the ions at the se,
and the 3kTe represents the energy gained in the sheath potential drop (hydro-
genic plasma assumed). For low temperature plasmas, the average ion energy
estimated in this way can be near, or below, the threshold for physical sputtering,
section 3.3.1. Near threshold, yields vary extremely rapidly with impact energy
and so in such cases it is necessary to take the actual velocity or energy distribution
of the ions into account. The task is to calculate this distribution at the se, allowing
for the further acceleration through the sheath is straightforward.

The electron velocity distribution at the se can be known precisely, see fig-
ure 2.5; it is a truncated Maxwellian, cut off at the energy corresponding to the
potential drop in the sheath. Unfortunately, there is no unique ion velocity distri-
bution at the sheath edge. This distribution depends on the details of the physical
processes occurring in the pre-sheath, including the degree of collisionality and on

629
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the velocity distribution of the ions when they were created. Strictly, a full kinetic
analysis (wherein the complete velocity distributions are calculated at each point
in space) is required for each case of interest. Such analysis are, however, rarely
available. We will consider examples of a complete kinetic analysis for the case
where the ions are accelerated collisionlessly from their source points to the se
which, it may be hoped, are indicative of the more general case where ion–ion
(self) and ion–neutral collisions occur.

The only constraint that exists on the ion velocity distribution at the se is the
generalized Bohm criterion [25.1–25.5]; section 2.4:

∫ ∞

0

f se
i (vx )dvx

v2
x

≤ mi

kTe
. (25.1)

This constraint, in fact, permits a rather wide latitude for the ion velocity dis-
tribution f se

i (vx ). We note first that expression (25.1) is not even an equality.
Supersonic flow into se, the chapter 14, corresponds to the ‘<’ in (25.1). No
kinetic analysis for a pre-sheath giving rise to supersonic flow into the se has been
produced as yet, and we will not deal with this case further here. In chapter 14 we
made the rough estimate that the sheath heat transmission coefficient is γ (Mt ) =
7.5 + M2

t . Hereafter we will consider cases where the equality holds in (25.1)
corresponding to the more common case of sonic flow into the se [25.6].

Relation (25.1) is still not very constraining as will now be seen. Tonks and
Langmuir solved the fully collisionless, Ti = 0 case, section 10.6. Subsequently
it was shown [25.1] that the f se

i (vx ) calculated by Tonks and Langumir does
satisfy the equality form of (25.1). This distribution is shown in figure 25.1. One
may note the sharp cut-off at the high velocity end, corresponding to ions which
have fallen all the way from the symmetry plane between the two absorbing walls
(planar geometry). Note also the low energy cut-off at vx = 0, since there are no
backward-going ions at the se.

Riemann has produced one of the few kinetic solutions which include colli-
sions in the pre-sheath [25.3]. It is, however, only for Ti = 0 and the collisions
are ion–neutral charge-exchange ones, which are rather different in their effect on
fi (vx ) from ion–ion (self-) collisions, which are often more important for fusion
applications. Riemann’s solution for f se

i (vx ) is also given in figure 25.1; it also
satisfies the equality form of (25.1). One notes that again there are no backward-
going ions; there is now no upper velocity cut-off.

For fusion applications we are likely to be more interested in the case Te ≈
Ti . Two kinetic analysis are available for Ti �= 0, both of them collisionless: the
Bissell and Johnson, BJ, and the Emmert et al, EWMD, solutions, introduced in
section 10.7. The f se

i (vx ) for these two analyses are shown in figure 25.2 for
the case of Ti = Te. Both satisfy the equality form of (25.1). For comparison,
a drifting Maxwellian, drift velocity equal to (2kT/mi )

1/2, is also shown in
figure 25.1. It is evident that the ion heat flux associated with the latter distribution
will be significantly higher than for the kinetic analysis results, owing to the more
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that of Emmert et al. See section 10.7.
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extended high energy tail. The backward-going ions are also unphysical. The
drifting Maxwellian contains more high energy ions than the kinetic distributions,
which could result in substantial over-estimates of physical sputtering when the
average impact energy is near or below the threshold for sputtering.

Figure 10.2 shows f EWMD
i (vx ) at various locations: (a) the symmetry point;

(b) the se; (c) the wall. It may be noted that f EWMD
i (vx ) is a Maxwellian at the

symmetry point, which could be viewed as a satisfactory ‘upstream’ boundary
condition. This, however, can be disputed. As pointed out in section 10.7 the
BJ source—which does not give a Maxwellian fi (vx ) at the symmetry point—is
the one that would be appropriate if the ions were produced by electron-impact
ionization of a Maxwellian distribution of neutrals, with temperature Ts ,
where Ts is the ‘source temperature’ characterizing the BJ or EWMD sources,
equations (10.46), (10.47). This apparent paradox may be resolved by noting
that in order to produce a Maxwellian distribution of ions, one must produce
the higher velocity ions at a faster rate than the lower velocity ions—i.e. one
must achieve Maxwellian fluxes—but that does not occur for electron-impact (or
photon-) ionization of a Maxwellian distribution of neutrals, since the ionization
rate is independent of the neutral velocity (assuming the neutral velocity is not
extremely high).

It has to be noted that a ‘source temperature’ is not a physically measur-
able quantity. Rather, it is a purely mathematical parameter characterizing these
sources. One is free to choose values of Ts to achieve whatever ‘upstream’
velocity distribution one wants—or strictly, whatever average ion thermal energy
(‘temperature’) one wants. There is no general answer to the question: ‘Which
of these sources is more physical?’ Possibly neither is entirely representative of
any particular situation. Nevertheless, we will assume that either of the sources
is roughly representative of the case where ‘upstream Te = Ti ’ when we set Ts

equal to Te. Fortunately, as can be seen from figure 25.2, the f se
i (vx ) are not too

different for these two sources. Of course other sources could also be employed
which might cause greater variation.

We now proceed to calculate the ion sheath heat transmission coefficients for
these sources. We first define two different ion heat flux densities at the se:

(1) qi
se,total is the ion heat flux density resulting from both the energy input from

the ion source, as well as the energy gained from the electrons in the pre-
sheath qei

ps , roughly 0.5kTe per ion, section 1.8.2.9.

(2) qi
se,cooling ≡ qi

se,total− qei
ps . For purposes of modelling the heat-sink effect of

the sheath on the ion population of the SOL one uses qi
se,cooling. For purposes

of calculating the heat load on the solid surface one would use qi
se,total adding

to it the energy gained in the sheath potential drop, plus the potential energy
of recombination.

Likewise one defines for the electrons qe
se,total and qe

se,cooling = qe
se,total+qei

ps .

Copyright © 2000 IOP Publishing Ltd.



The Ion Velocity Distribution at the Sheath Edge 633

Table 25.1. Predictions of the principal quantities of interest by four models for the case of
Te = T i⊥(0) = T i‖ (0) = T0, temperature at the symmetry point; n0 = density at symmetry

point; H+ ions [25.7].

Iso. Ad. EWMD B&J Ave

(1) Plasma density n0 0.50 0.49 0.66 0.52 0.54
at sheath edge nse

(2) Plasma flow speed (kT0/mi )
1/2 1.41 1.60 1.35 1.27 1.41

at sheath edge vse

(3) Plasma potential kT0/e −0.69−0.72−0.41 −0.65−0.62
at sheath edge Vse

(4) Potential of kT0/e −3.19−3.08−2.91 −3.26−3.13
electrically floating
solid Vw

(5) Particle outflux n0(kT0/mi )
1/2 0.71 0.78 0.89 0.66 0.76

density �se

(6) Ion heat outflux n0kT0(kT0/mi )
1/2 2.49 2.40 2.08 1.33 2.08

density qi
se

(7) Electron heat n0kT0(kT0/mi )
1/2 3.20 3.40 4.00 3.04 3.41

outflux density qe
se

(8) Total heat outflux n0kT0(kT0/mi )
1/2 5.69 5.80 6.08 4.37 5.49

density qse

(9) Ion cooling n0kT0(kT0/mi )
1/2 2.08 1.95 1.78 0.99 1.70

rate qi
c

(10) Electron cooling n0kT0(kT0/mi )
1/2 3.60 3.85 4.30 3.38 3.78

rate qe
c

(11) Ion heat transmission 2.93 2.50 2.00 1.50 2.23
coefficient γi

(12) Electron heat 5.07 4.96 4.83 5.12 5.00
transmission
coefficient γe

(13) Total heat 8.0 7.46 6.83 6.62 7.23
transmission
coefficient γ

The sheath heat transmission coefficients are defined based on qse,cooling. Re-
sults are shown in table 25.1 [25.7] where comparison is made with the isothermal
(Iso.) and adiabatic (Ad.) model result. For the isothermal model one has that
qi

se,total = 7
2 kT �se for Te = Ti , equation (2.92). In chapter 2 we therefore took

our first estimate for γi as 3.5, based on this. We now see, however, that for a
start this is an over-estimate because we should use qi

se,cooling which would drop
γi down by ∼0.5 (actually down to γi = 2.93, table 25.1). It is still further on the
high side due to the fact that a drifting Maxwellian is implied in a fluid model. We
therefore should not use the γi from any fluid model of the pre-sheath, isothermal
or other.
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As can be seen from table 25.1, γi for the two kinetic analyses are signifi-
cantly smaller, as anticipated, just 1.75 when averaging the two results.

It is to be noted that these two kinetic analysis of the pre-sheath are com-
pletely collisionless. For some situations this may be a good approximation to
reality. Consider the case of a high recycling divertor with the ionization source of
neutrals located near the targets in the SOL. Equation (6.89) provides an estimate
of the scale length of the particle source (measured along B). For net = 1019m−3,
a length of 1 m is representative. The self-collisional length is λi i ≈ 1016T 2i /ne

which can exceed this source length for Tit ≥ 40 eV. Ion–neutral collision lengths
may also be longer. For other cases, however, ion–ion collisions will occur over
the length of the SOL where the ions are ‘created’ by cross-field transport or
ionization—i.e. in the pre-sheath—and these collisionless kinetic analyses will
not be strictly valid. The ions are also probably not Maxwellian upstream, usually,
making these analyses still less valid.

The effect of ion–ion collisions will be to broaden f ise(vx ), i.e. increasing the
high energy population, thus raising γi . This effect was seen for the Ti = 0 case,
figure 25.1, where the effect of collisions is rather strong. The effect of collisions
for Ti �= 0 will be less dramatic since f ise(vx ) extends to vx → ∞ even without
collisions.

Although no generally valid value for γi can be specified, it may be rea-
sonable to increase the value obtained from these collisionless kinetic solutions
somewhat, to allow for the (likely) presence of collisions, to give:

γi ≈ 2.5 (25.2)

as a recommended value.
For purposes of calculating sputtering yields at a detailed level, in the ab-

sence of a kinetic solution for the specific case being treated it may be reasonable
to use the f iwall(vx ) of Emmert et al, figure 10.2. This is only part of the refinement
that can be introduced when detailed sputtering calculations are attempted: the
foregoing only gives the distribution of the velocity in the forward direction, vx .
One can calculate the distribution of impact angles and total impact energies by
assuming Maxwellian velocity distributions for vy and vz . Laboratory measure-
ments of sputtering yields, section 3.3, have been made as a function of impact
energy and impact angle. It is questionable, however, that much refinement of this
sort is sensible since, in practice, solid surfaces are quite roughened by plasma
exposure. It is also to be noted that, to this point, we are still only considering the
case of B perpendicular to the solid surface.

25.2 The Case of B Parallel to the Solid Surface

The Chodura analysis of the oblique sheath, section 2.10, cannot be applied
to ψ = 0, i.e. B perfectly parallel to the solid surface. It is not clear how
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Figure 25.3. Vertical section through the TFTR vacuum vessel showing the plasma core
and the first wall limiter. The minor radius of the limiter is L and the minor radius of the
plasma core is ρ0. (25.9).

charged particles reach a solid surface in this situation. It is known experimen-
tally, however, that fluxes of particles and heat to solid surfaces parallel to B can
be surprisingly high. Matthews et al [25.8] carried out a Langmuir probe study on
the DITE tokamak using a 6 cm diameter probe head whose angle to B could be
changed with the probe in situ. Langmuir collecting elements were flush mounted
in the end of this tilt probe which could be positioned from ψ = 45◦ to 100◦. It
was found that the ion saturation current to the collector elements followed the
expected cos ψ dependence for ψ not too close to 90◦; for ψ within a few degrees
of 90◦ the flux did not decrease further, but instead remained constant at a level
equal to about 5–10% of the normal incidence (ψ = 0) level.

Several tokamaks such as JET, TFTR and TORE SUPRA have been operated
using the inner wall as a large area limiter—the ‘wall-limiter’, figure 5.5. The
poloidal plane geometry of the plasma surface contact is approximately that of
two circles in contact at the inner mid-plane with the wall curvature somewhat
larger than the plasma radius of curvature; figure 25.3 illustrates for TFTR [25.9].
According to the standard cosine ψ model of deposition there should be a null in
deposited flux densities to the inner wall at the midplane since ψ = 90◦ there,
figure 25.4 [25.9]. At locations above or below the mid-plane, the deposited flux
densities would be expected to increase. With increasing distance from the mid-
plane, the gap between LCFS and wall increases introducing a partially off-setting
effect, assuming parallel flux densities decrease with radial distance outside the
LCFS—which here is the magnetic surface that touches the inner wall at the
mid-plane. The predicted result is readily shown to be a double-peaked poloidal
distribution of deposited particle and heat flux densities, figure 25.4, with a null
at the mid-plane [25.9].

The inner wall on TFTR was viewed with CCD cameras employing filters
which provided poloidal and toroidal profiles of Dα , CII, etc. light [25.10].
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Figure 25.4. The poloidal distribution of the flux scraped off at distance Lθ from the
midplane plotted for two values of scrape-off length λ [25.9].

Figure 25.5. Experimentally measured poloidal profiles at the TFTR inner wall for
Dα , HeI and CII radiation. Supershot discharges with Ip = 0.8 MA, BT = 3.5 T,
PNBI ≈ MW , ne ≈ 1.9 × 1019 m−3 [25.10, 25.11]. One may note the absence of any
mid-plane null; compare figure 25.4.

Typically, the mid-plane null is not observed; a relative minimum at the
mid-plane was sometimes found, but at a level not much different from the
upper and lower poloidal peaks; in some cases there was no minimum at all;
figure 25.5 [25.10,25.11]; see also [25.12]. On TORE-SUPRA [25.13,25.14]
similar mid-plane deposition has been observed. On TEXTOR, operated with a
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pumped limiter whose front face is parallel to B over an extended region, about
0.15 m poloidally, substantial recycling fluxes were observed (Dα light) along
the front face [25.15].

Clearly then, substantial fluxes can reach solid surfaces even at ψ = 90◦.
On the other hand, experimental evidence superficially at variance with the above
results was reported by Matthews et al for the DIII-D divertor plate tiles [25.16].
Because of alignment variations, each divertor tile had a slightly different ψ ,
although all within 88◦ < ψ < 90◦. The deposited heat flux measured for individ-
ual tiles was found, however, to follow approximately the standard cos ψ values
up to = 89.5◦. It is thus evident that some subtlety characterizes this situation.

Theoretical understanding of the ψ = 90◦ case is still evolving. Since the
ion Larmor radius, ρi , is larger than the electron Larmor radius, ρe, it would
seem plausible that the solid surface would charge up positively, i.e. opposite to
the standard ψ �= 90◦ situation. An analysis based on such a picture, and for
the specific case of ρi ≈ λDebye, showed that plasma instabilities gave rise to
turbulent, cross-field transport to the solid surface [25.17]. In practice it is likely
that, while some of the plasma-wetted surfaces may have ψ = 90◦, that there
will be other plasma-wetted surfaces in the same device with ψ �= 90◦, and that
all of the solid surfaces will be connected together, i.e. be at the same potential.
Thus, even the solid surface at ψ = 90◦ may be charged negatively relative to the
local plasma, as usual. An analysis has been reported for this situation, assuming
ρi � λDebye, and taking the cross-field diffusion to be due to charge-exchange
collisions with cold neutrals [25.18].

There does not yet appear to be any general and complete analysis of the
ψ = 90◦ situation. We therefore do not know the equivalent of the Bohm criterion
for perpendicular plasma velocity to a solid surface, v⊥S . The lack of this criti-
cal boundary condition prevents definitive conclusions, although as will now be
shown, provided v⊥S is not too small, we may still arrive at some useful findings.

Consider again the Engelhardt model, sections 4.6, 6.4, but now with the
LCFS coinciding at all points with the solid surface. Let us suppose that we
did, in fact, have the prescription for v⊥S . We would then write as before, equa-
tion (4.61):

�neutral⊥ = �ion⊥ = D⊥(ne − nLCFS)/λi z (4.61)

but now instead of equation (4.62):

�ion⊥ = D⊥nLCFS/λSOL
n (4.62)

where λSOL
n characterizes the sink action, we would use:

�ion⊥ = nLCFSv⊥S (25.3)

where v⊥S now characterizes the sink action. Combining equations (4.61) and
(25.3) then provides the complete solution giving:

ne = �neutral⊥
D⊥

(
1+ D⊥

λi zv⊥S

)
. (25.4)
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We do not, however, know the value of v⊥S and so this solution is not immediately
useful.

We may recall from equation (4.66) for the SOL-sink case, however, that,
provided λSOL

n can be neglected relative to λi z , the solution becomes independent
of the value of λSOL

n , i.e. of the strength of the SOL sink. That is, if the limiting
part of the transport occurs inside the LCFS, then the precise value of the SOL-
sink strength parameter drops out of the solution. An analogous situation exists
here with regard to equation (25.4): provided v⊥S is large compared with the
effective diffusion speed:

vdiff ≡ D⊥/λi z  (25.5)

then v⊥S drops out of the solution. That is, one goes over to the ‘hard’ boundary
condition where nLCFS � ne, i.e. we may take nLCFS ≈ 0.

Since, at the present time, we are only in a position to be able to work
usefully with the hard boundary condition case, let us explore the implications
of this case. We should not, however, forget that this boundary condition may not
be valid for a specific case of interest. Any findings here are therefore tentative.

Let us see if this boundary condition can be used to explain the experimen-
tally observed fluxes to ψ = 90◦ surfaces [25.19]. Consider the 2D probelike
case of a limiter shown in figure 25.6. Cross-field motion of particles directly
onto the front face of the limiter constitutes a local sink, causing a depression of
the plasma density in front of the limiter. Assuming the hard BC we postulate that
for flux surfaces close enough to the LCFS, this density depression is strong, i.e.
n drops by a factor of more than 1

2 from the distant value, and is thus sufficiently
strong to induce sonic plasma flow along B in the flux tubes just inside the limiter
face, extending inward over some radial distance λ f . We now evaluate λ f . The
particle flux density onto the front face is:

�⊥ ≈ D⊥n/λ f (25.6)

and particle balance gives:

�⊥2L f = (2)
( 1

2 ncs
)
λ f (25.7)

where 2L f is the length of the front face. The factor of 2 on the RHS is due to the
collection from both sides, while the factor 1

2 is due to the density drop at sonic
conditions, section 1.8.2.7; n is the distant, unperturbed density. Equating (12.6)
and (25.7) gives:

λ f = (2L f D⊥/cs)
1/2 (25.8)

as the characteristic length of radial decay of density just in front of the front face
of the limiter. For the ‘soft’ BC, v⊥S would also appear in the expression for λ f ,
thus complicating matters.

The flux density to the limiter sides is:

�‖ = 1
2 ncs . (25.9)
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Figure 25.6. Schematic of a blunt-nosed limiter or probe with the front face, of length
2L f , parallel to B. Because of cross-field loss directly onto the front face, the density
is depressed there, causing transport along B inside the LCFS. Owing to this ‘funnelling’
effect, more loss occurs at the front face than would happen if parallel motion inside the
LCFS could not occur [25.19].

The total flux to the front surface is:

φ⊥ = 2L f D⊥n/λ f (25.10)

and the flux to the two side surfaces is:

φ‖ = (2)
( 1

2 ncs
)
λs (25.11)

where
λs = (2L D⊥/cs)

1/2 (4.7)

equation (4.7), is the SOL density decay length, with 2L being the distance
between limiters. One thus obtains:

�⊥/�‖ = (2D⊥/L f cs)
1/2 (25.12)

φ⊥/φ‖ = (L f /L)1/2. (25.13)

Applying this to the experiment with the ψ = 90◦ tilt-probe case [25.8]: L f ≈
0.03 m, D⊥ ≈ 0.5 m2 s−1, T ≈ 15 eV, cs ≈ 4×104 m s−1, giving �⊥/� ≈ 0.03,
which is of the same order of magnitude as the experimental result, ∼0.05–0.1.
Such a simple model should not be expected to provide better agreement; we may
also note:

(a) The above picture describes a 2D funnelling effect since the front face cap-
tures more than ‘its fair share’ of outgoing particle flow thanks to parallel
motion inboard of the LCFS. The tilt probe actually involves a 3D funnelling
effect, which would be stronger than the 2D one analysed above.
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(b) The value of λ f for this particular case is so short, ∼1 mm, that in reality
complications related to finite ρi would be involved.

It can be noted from equation (25.13), for the total fluxes, that this substantial
diversion—or ‘funnelling’—of outflux directly onto the limiter by 2D motion can
only be expected when L f is a substantial fraction of L . This can occur in the case
of inner wall limiters as on TFTR. Such limiters do not involve surfaces perfectly
parallel to B. One can estimate the equivalent value of L f as being that of the
plasma-wetted extent, i.e. that within distance λs of the LCFS. For TFTR that
was of the order of L f ≈ 0.5 m (in the poloidal plane) while L = πa (also in the
poloidal plane) ≈ 2.5 m. Thus, from equation (25.13), φ⊥/φ‖ ≈ (0.2)1/2 ≈ 1

2 ,
and it can be expected that a substantial fraction of the total outflux would go
directly onto the TFTR wall limiter by cross-field motion and the ‘funnel effect’.
This is hypothesized to explain the substantial infilling of the conventionally
expected mid-plane dip in deposited fluxes, figure 25.5 [25.19].

It can be noted from equation (25.13) that there exists an actual diversion
of outflux onto the front surface, raising the φ⊥/φ‖ ratio beyond that which
would be expected on the basis of geometry alone, which would be φ⊥/φ‖ ≈
L f /L—thus the description ‘funnel effect’. It should be noted that the funnelling
action occurs in the confined plasma, inboard of the LCFS, in a situation where
a solid surface is adjacent to the confined plasma—over a portion of the LCFS;
this geometry has no direct equivalent in the divertor configuration, presumably
explaining Matthews’ observation that the standard cosine law was found to hold
at the DIII-D divertor targets [25.16].

Nevertheless, cross-field transport within the divertor plasma itself will cause
deposition on surfaces tangential to B, ψ = 90◦. Consider figure 25.7, which
shows several divertor tiles, each of length Lt toroidally; two are properly aligned
so that ψ < 90◦, while one tile is out of alignment such that ψ = 90◦ happens to
hold for that tile. Within the distributed region of height λt in figure 25.7 (shaded),
ions are lost to both the ψ = 90◦ surface and to the exposed end of the aligned tile,
while this region is supplied by a nearly sonic flow of flux density ncs along B.
Adopting the ‘hard’ BC again, and thus the picture that the density in the shaded
region drops from the undistributed value n at a distance λt above the ψ = 90◦
tile surface to a small value at the tile surface then a total flux ∼ 1

2 ncsλt L p goes
to the ψ = 90◦ tile where L p is the poloidal width of the plasma ‘footprint’ on
the tile. Flux balance to the ψ = 90◦ surface gives:

1
2λt ncs = D⊥nLt/λt (25.14)

so that:
λt = (2D⊥Lt/cs)

1/2. (25.15)

The cross-field flux density onto the ψ = 90◦ surface is therefore:

�⊥ = 0.5λt ncs/Lt = (D⊥/2Lt cs)
1/2ncs (25.16)
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Figure 25.7. Schematic of two divertor tiles showing one misaligned tile such that its
surface is precisely tangential to B. Within the shaded region, direct cross-field transport
onto the misaligned tile removes about half the particles travelling along B, with about
half continuing on to the exposed end of the adjacent, aligned tile. Thus the tile surface
tangential to B does receive some deposition, whereas in the standard model it would
not [25.19].

which is independent of ψ (although the foregoing implicitly assumed that λt <

Lt cos ψ). The flux density onto the ψ = 90◦ surface is therefore reduced from
the parallel flux density, ncs , by the factor (D⊥/2Lt cs)

1/2, rather than the factor
cos ψ .

For the DIII-D divertor tiles [25.16], Lt = 0.13 m. The plasma temperature
and the D⊥ value in the divertor were not given, but for T = 10 eV and D⊥ =
0.25 m2 s−1, the reduction factor is 6×10−3. The DIII-D study reported that heat
flux densities onto the tiles with ψ = 90◦ were ≤ 5× 10−3 of the parallel value.
These observations may thus be explained, although further tests using different
tile lengths, Lt , are needed. It is also to be noted that the DIII-D measurements
were of heat, rather than particle, flux density.

Returning to limiter geometry, the B2 code was modified to study the fun-
nelling effect for a large area limiter, approximating the ALT-II limiter in the
TEXTOR tokamak [25.21]. A toroidal limiter extended poloidally from θ1 =
−26.5◦ to θ2 = −63.5◦, with the front face lying on the circle of minor radius
a = 0.45 m, giving L f = πa((θ1 − θ2)/360) = 0.15 m. It is readily shown
that for this geometry the simple model is modified to include the effect of the
magnetic pitch angle, θpitch, equation (1.3):

λ f = (2D⊥L f /θpitchcs)
1/2 (25.17)

�⊥ = n∞vref⊥S where vref⊥S ≡ (θpitchcs D⊥/2L f )
1/2 (25.18)

φ⊥/φ‖ = (L f /aπ)1/2. (25.19)

The subscript ∞ is used to emphasize that this is for the density far from the
limiter on the same flux surface as the front face, rather than the local density
along the front face. The code runs used θpitch = 0.086, constant. In the grid cells
lying along the front face, the B2 code was modified to include perpendicular
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fluxes onto the front face at flux density �⊥ = nv⊥S , where n is the local density
in the cell calculated by the code and v⊥S is assigned specific, constant values that
were varied from code run to code run.

The first test was to see if �⊥ saturated as v⊥S was assigned values large
compared with vref⊥S . For the specific plasma conditions employed in the runs,
T ≈ 40 eV, thus cs ≈ 6.3 × 104 m s−1. A value of D⊥ = 1 m2 s−1 was used
for all runs. Thus, vref⊥S ≈ 130 m s−1. Figure 25.8 shows �⊥ for the cells across
the front face, numbered 9 to 18. As can be seen, �⊥ does, in fact, saturate for
v⊥S >∼ 1300 m s−1, i.e.� vref⊥S , over most of the front face. The flux densities
are higher at the edges, which may be an artifact associated with inadequate grid
resolution near the sharp corners of the limiter used for the code calculations.
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Figure 25.8. B2 code modelling of flues onto a surface parallel to B [25.21]. See text.

The absolute magnitude of the average saturated value of �⊥ calculated
by the code, ∼5 × 1020 [D+ m−2 s−1], was also roughly in agreement with
equation (25.18), evaluated for the value of n∞ ≈ 7 × 1018 m−3 on the same
flux surface as the front face, at the poloidally opposite side of the tokamak:
n∞vref⊥S ≈ 9 × 1020 [D+ m−2 s−1]. The fluxes onto the front surface, φ⊥, are
approximately in accord with equation (25.19), and are thus substantial compared
with the total parallel fluxes to the sides of the limiter—broadly in accord with
what has been observed on TEXTOR [25.15].
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The code gave the Mach number and ne profiles along the front face flux
tube, figure 25.9, shows the anticipated decrease of ne to values small compared
with n∞, and |M | → 1 at the edges of the flux tube that passes the front face.
The value of λ f extracted from the code results, ∼6 mm, was close to that given
by equation (25.17), 7.4 mm.

10 20 30 40 50

ne [1018 m-3]

M

Limiter

Limiter

Grid cell number

+1

5

0

-1

Figure 25.9. B2 code modelling of flues onto a surface parallel to B [25.21]. See text.

So long as a general theory of the ψ = 90◦ case is lacking, and thus the
equivalent to the Bohm criterion for v⊥S is missing, the above findings must
be tentative. It is nevertheless an encouraging—and experimental—fact that the
plasma-wetted area of wall limiters is even larger than is already indicated by
simple geometry. Whether or not this is actually due to the ‘funnelling effect’
described above, remains to be seen.

25.3 The Bohm–Chodura Boundary Conditions and the Den-
sity Gradient at the Entrance to the Sheaths

At the entrance to the Debye sheath, the ion flow velocity into the sheath must
be at least equal to the acoustic speed, i.e. the Bohm criterion, chapter 2. Within
the sheath we may consider the densities ne and ni to be functions of the spatial
variable s‖ in the flow direction, with s‖ = 0 at the sheath entrance where ne =
ni ≡ n0—or of the potential V , where V = 0 at s‖ = 0 and V necessarily
decreases going into the Debye sheath, if that is to be a region of net positive
space charge density, section 2.3. Unless the Bohm criterion is satisfied, the rate
of decrease of ni —with respect to either s‖ or V —will be greater than the rate of
change of ne, section 2.3. That will result in the contradiction of the Debye sheath
having a net positive charge density. This is readily demonstrated by assuming for
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the electron density the Boltzmann relation (and Te = constant), equation (1.12):

ne = n0 exp(eV/kTe) (1.12)

while for the ions one has the conservation of particles and momentum, chapter 9:

d

ds‖
(niv) = 0 (25.20)

mi niv
dv

ds‖
= − dpi

ds‖
+ eni E (25.21)

where we assume no volume sources, or sinks, or friction, and no change of cross-
sectional area of the flux tube, etc. From (1.12) we find, using E ≡ −dV/ds, and
assuming the Bohm criterion in the marginal form—where ne and ni decrease
exactly together to give quasi-neutrality as the flow enters the Debye sheath—
that:

(v2
0 − c2

s )
dn

ds‖

∣∣∣∣
s‖=0

= 0 (25.22)

where v0 ≡ v(0) at the sheath edge, cs ≡ [k(Te + Ti )/mi ]1/2 and we have
assumed isothermal ions. Clearly the only value of v0 that will permit the plasma
density to decrease entering the sheath edge, dn/ds‖|s‖=0 �= 0 is v0 = cs , i.e. the
Bohm criterion. We may note that if we could assume E = 0 in equation (25.21)
then we would appear to obtain the false result that at all points v = cs ; this is
incorrect because if E = 0 then n = constant, equation (1.12), i.e. dn/ds‖ = 0,
and so one does not conclude that v(s‖) = cs is necessary in that case; it is only
when the presence of an electric field is required, as in the sheath, and thus n
cannot be constant, equation (1.12), that equation (25.22) results and v0 = cs is
required to hold.

The case of dni/ds‖|s‖=0 may be termed the ‘gentle entry’ into the sheath,
giving the Bohm criterion in its marginal form. For |dne/ds‖| > |dni/ds‖| at the
se one has supersonic flow at the sheath edge, |v0| > cs .

When B is at an angle ψ > 0◦ to the solid surface, Chodura has shown that,
in addition to the Debye sheath with its strong electric field, there arises a mag-
netic pre-sheath, MPS, where a significant electric field also exists, section 2.10;
see also Riemann’s separate proof [25.20]. This field is needed to accelerate the
ions in the MPS to reach the acoustic speed perpendicular to the solid surface at
the Debye sheath edge.

The Chodura–Riemann criterion gives that the flow velocity of the ions along
B as the flow enters the MPS is also cs . The demonstration of this is the same as
the above—although now, since the MPS is quasi-neutral, with ne ≈ ni through-
out, the requirement is that ne and ni decrease together; it might appear that
this would require that v‖BMPSE = cs precisely, precluding the possibility of
supersonic flow at the MPSE; however, it can be shown that when the effect of
ion inertia in the E × B direction within the MPS is taken into account, then
|v‖BMPSE| > cs is also possible [25.22].
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25.4 The Sheath Boundary Conditions in the Presence of
E × B and Diamagnetic Drifts

In chapter 18 the sheath boundary condition, in the presence of E× B drifts, was
found to be the ‘intuitive BC’:

v‖BMPSE/cs = 1− vdr
θ

cs tan θ
. (25.23)

One says ‘intuitive’ since one’s first thought, perhaps, is that at the MPSE:

vy = sin θv‖0 + cos θ
Ex

|B| −
cos θ

en|B|
∂pi

∂x
= sin θcs . (25.24)

See chapter 18 for definitions. Equation (25.24) is based on the assumption that
the total parallel-to-B velocity at the MPSE is the vector sum of the parallel
velocity, the E × B drift and the diamagnetic drift, and equals the sound speed.
We should neglect the diamagnetic term in equation (25.24) since it is almost
entirely divergence free, section 18.4, that is, while the component of particle
flux density �∇ pi in the y-direction does decrease with s‖ or V , this decrease
is just compensated by the increase in the x-component of �∇ pi , i.e. along the
surface. Thus for the ∇B ion drift toward the bottom targets, thus Bz and Btor
in the negative z- direction, then vdr

θ = −Ex/|B|, and equation (25.24) gives
equation (25.23).

This thinking is not really justifiable, however, since it is not derived from
the fundamental physical requirement that the ne and ni decrease together at the
MPSE. Consider equations (18.21) and (18.31) from section 18.3.4 on poloidal
E × B drifts—the drifts involved here. Neglecting particle source Sp and assum-
ing vdr

θ constant along s‖ or y, then these equations can be combined to give:[(
v‖0 + vdr

θ

tan θ

)2

− c2
s

]
dn

dy

∣∣∣∣
MPSE

= 0. (25.25)

Thus, by the same arguments used in section 25.3, we now have proven that the
‘intuitive BC’, equation (25.23) is, in fact, valid [25.23]. A separate, elegant
proof has been given by Hutchinson [25.24]. This BC is also used by Cohen and
Ryutov [25.25].

The ‘intuitive BC’ is, however, only a first approximation. For example, vdr
θ

is not constant with s‖ or y since Ex varies at the MPSE. This and other factors
have been taken into account in a more general formulation of the sheath boundary
condition in the presence of E × B drifts [25.23].

Cohen and Ryutov [25.26] have derived the sheath boundary conditions
as applied to currents entering the sheath, allowing for E × B drifts—
and also diamagnetic drifts which, unlike mass flow, influence currents,
section 18.7. They also assess the effects of structural irregularities on the solid
surface [25.27,25.28].
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25.5 Expressions for the Floating Potential, Particle and Heat
Flux Densities Through the Sheath

In this section we seek to establish expressions for nine key sheath quantities,
namely: the potential drop across the sheath and the electron (and ion) particle
(and energy) flux densities to floating (and biased) surfaces. The derivations here
are an extension of those given in sections 2.6, 2.7.

We seek to relate these nine quantities to the plasma density and temperatures
(ion, electron), and in the case of the biased surface, to the bias voltage.

The Bohm criterion, section 2.3, is the starting point in this undertaking since
it provides a value for the ion particle flux density from a plasma to a surface (thus
also the electron particle flux density if the surface is floating). The ion current
density entering the sheath and reaching the solid surface is:

j+ = ensecs = ense(k(Te + Ti )/mi )
1/2. (25.26)

If in flowing through the plasma the ions do not suffer momentum loss due to
collisions with other particles, and if Te and Ti are spatially constant, then we can
also relate j+ to conditions far from the surface, namely:

j+ � 1/2en0cs(Te, Ti ). (25.27)

In more complex plasmas the relation between n0 and nse can be quite
different and temperature variations in the flow direction can also occur. In such
cases detailed modelling of the plasma (pre-sheath) is required in order to relate
n, Te and Ti at the sheath edge to values far away. Such modelling is the subject
of chapters 9–11 and will not be dealt with further here. Equation (25.26) is
generally true, however; that is one can express the particle flux to the surface in
terms of the local plasma density and temperature.

We are now in a position to deduce a value for the floating voltage V f , the
potential at which a solid surface floats to receive zero net current. We wish
to allow for secondary electron emission from the surface, arising from electron
impact, since this is significant even at rather modest energies, Te ≥ 30 eV (by
contrast, ion-induced secondary electron emission is usually only important for
ion impact energies of ≥1 keV), section 3.1. We thus have that the secondary
electron current density is:

j−SEC = δe j−TOT = δe( j−NET + j−SEC) (25.28)

where: δe = secondary electron emission coefficient (includes both true s.e.e. and
electron back-scatter, section 3.1), j−TOT = total electron current density striking
the surface, j−NET ≡ j−TOT − j−SEC = (1− δe) j−TOT.

We thus have that:

j−NET = 1/4ensece(1− δe) exp(eV f kTe). (25.29)
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For floating conditions we have that:

j−NET = j+ (25.30)

hence equating equations (25.26) and (25.29) one has

eV f

kTe
= 0.5 ln

[(
2π 

me

mi

)(
1+ Ti

Te

)
(1− δe)

−2
]
. (25.31)

Equation (25.31) does not include the pre-sheath voltage drop and one may
add ∼ 1

2 kTe/e to find the potential difference between the surface and the plasma
far from the surface, section 1.8.2.8. The value of V f equation (25.31), is shown
in figure 2.8. As can be seen, V f is reduced by increasing Ti/Te or by increasing
secondary electron emission. The often-quoted statement that ‘the floating volt-
age is about −3kTe/e can thus be in error. It is also quite different for heavy ion
plasmas, being about −6kTe/e for Hg vapour plasma, for example. The Bohm
criterion, which is implicit in equation (25.26), is dependent on δe [25.4,25.29],
but unless δe → 1, the effect is small and is generally ignored.

We consider next the energy transmission of the sheath. As indicated in
section 2.6, the electron distribution at the sheath solid interface can still be
Maxwellian, at least in the forward direction. We may therefore use the fact that
for a Maxwellian distribution the energy flux in the x-direction is just 2kT times
the particle flux in the x-direction, equation (2.30).

If we wish to calculate the power removal rate from the plasma electron
population, then we must note that these escaping electrons actually possessed a
higher kinetic energy as they were removed from the plasma, namely, one higher
by the amount |eV f |. Thus the electron power flux density removed from the
plasma is:

qe = (2kTe − eV f )
j−TOT

e
+ eV f

j−SEC

e
. (25.32)

(Note that V f is negative.)
The last term in equation (25.32) represents the energy re-injected into the

plasma by secondary electrons accelerated to energy −eV f . We neglect the
thermal energy of the secondary electrons since it is only a few electron volts.
Thus we can write for the electron energy crossing the se:

qe,se =
(

2kTe

1− δe
− eV f

)
j+

e
. (25.33)

For purposes of modelling the energy balance of the SOL electron population, it
is useful to define qe,cooling, the energy flux density of cooling the plasma electron
population, i.e.

qe,cooling ≡ qe,se + qei
ps (25.34)

where qei
ps is the power transferred form the electrons to the ions in the pre-

sheath to accelerate the ions up to sound speed. Now qei
ps/( j+/e) is less than
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the total pre-sheath potential drop since not all of the ions fall through the entire
pre-sheath. Approximately, qei

ps ≈ 0.5kTe j+/e but the specific value will vary
somewhat depending on precisely what model assumptions are made about the
pre-sheath. This aspect of the result is therefore not just a property of the sheath
itself. Fortunately this is a relatively small contribution. We thus take:

qe,cooling � qe,se + (∼)0.5kTe( j
+/e). (25.35)

We consider next the ion energy flux crossing the se. To calculate this we
need to know the actual ion velocity distribution at the se, which is a rather
unusual one, having no back-going ions in the distribution since the sheath is
100% absorbing of ions, see section 25.1. Here, for a first estimate we will use
the expression for q‖i,convection, equation (9.65) and assume isotropic ions:

q‖i,convection =
( 5

2 kTi + 1
2 miv

2)nv. (25.36)

Thus, taking v = cs and n = nse:

qi,se = 3.5kTi nsecs = 3.5kTi
j+

e
. (25.37)

Assuming that this corresponds to a drifting Maxwellian (which does, in fact,
have back-going ions), then this result is in some error—on the high side, see
section 25.1, and the factor 3.5 should be replaced by 2.5, equation (25.2).

We also have the ion cooling rate due to sheath loss:

qi,cooling � qi,se − 0.5kTe( j+/e). (25.38)

The electric field in the sheath serves to transfer energy from the electrons to
the ions. Thus the electron heat flux density actually received by the solid surface
is:

qe,surface = 2kTe

1− δe

j+

e
(25.39)

while the ion thermal plus (directed) kinetic energy flux density actually received
by the solid surface is:

qi,surface = (2.5kTi − eV f )
j+

e
. (25.40)

To this total flux, qsurface ≡ qe,surface + qi,surface, should be added the potential
energy associated with e–i and molecular recombination, if the actual heating
effect on the solid surface is required, equation (25.55), below.

It is useful to define the electron ion and total energy sheath transmission
coefficients, γe, γi , γ :

γe ≡ qe,cooling/(kTe j+/e) (25.41)

γi ≡ qi,cooling/(kTe j+/e) (25.42)

γ ≡ (qe,cooling + qi,cooling)/(kTe j+/e) (25.43)
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and so:

γe ≈ 2

1− δe
− 0.5 ln

[(
2π

me

mi

)(
1+ Ti

Te

)
(1− δe)

−2
]
+ ∼ 0.5 (25.44)

while for the ions:

γi ≈ 2.5
Ti

Te
− ∼ 0.5. (25.45)

The total energy transmission factor:

γ ≈ 2.5Ti

Te
+ 2

1− δe
− 0.5 ln

[(
2π

me

mi

)(
1+ Ti

Te

)
(1− δe)

−2
]
. (25.46)

Relation (25.46) is shown in figure 25.10 for D+ ions.

0 5 10 15

Ti/Te

γ

10

20

30

40

δe=0.6
0

Figure 25.10. The sheath heat transmission coefficient γ , equation (25.46), as a function
of Ti /Te and secondary emission coefficient, δe [25.34]. D+ ions.

Note: when δe = 1−[(2πme/mi )(1+Ti/Te)]1/2 then V f = 0; for example
for Ti = 10Te and H+ ions this occurs for δe ≈ 0.8. Then the electrons reach
the surface unimpeded by any sheath, so qe,surface = 1/4nce2kTe and the surface
heating rate can be extremely high.

The inclusion of the effect of secondary electron emission in the calculation
of eV f (thus also of γ ) warrants further discussion. In their pioneering work
on this problem, Hobbs and Wesson [25.29] fully accounted for the existence of
secondary electrons by allowing for the presence of injected secondary electron
in the plasma far from the sheath (thus reducing the density of primary electrons
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there below the ion density). It turns out that this has a negligible influence on V f ,
provided δe �= 1, and the Hobbs–Wesson value for V f is the same as that given in
equation (25.31) (taking Ti = 0, their assumed value). These authors also found
the (electron) heat flux density through the sheath to be:

qe,se = 1/4n0ce2kTe F(δe) (25.47)

where they define

F(δe) ≡
(

πme

8mi

)1/2[
ln

(
(1− δ2

e )

2πme/mi

)
+ 5− δe

1− δe

]
. (25.48)

For Ti = 0 equation (25.33) gives the same value for qe,se as obtained by
Hobbs and Wesson except that:

(a) These authors (incorrectly) take j+ = en0cs , neglecting the pre-sheath den-
sity drop; thus the n0 in equation (25.47) should read nse.

(b) Hobbs and Wesson include a pre-sheath energy contribution, 1
2 kTe in equa-

tion (25.47).

Clearly neither equations (25.46) nor (25.47) can be applied for strong sec-
ondary electron emission, δe ≥ 1 since a singularity occurs at δe = 1. Hobbs
and Wesson, in fact, showed that for δe � 0.8, an electron space charge layer
will occur at the surface inhibiting any further secondary emission. Thus these
equations do not apply for strong secondary electron emission, which can set in
at Te � 100 eV, section 3.1.

We should, in principle, also include secondary electron emission due to
ion, photon, metastable atom impact, etc. Usually ions will not create significant
amounts of secondary electrons for fusion edge conditions since the required
energy, �1 keV, normally implies intolerable levels of sputtering and surface
heating. Photon fluxes are only ∼1 W cm−2 on average in the edge region
(contrasted with the tens to thousands of W cm−2 of charged particle power flux
along the magnetic field lines to surfaces) and so usually one can neglect this
process compared with electron impact s.e.e.; however, near probes, limiters, etc
high gas levels are often present (due to the release of hydrogen initially deposited
in the solid as ions), and so strong local sources of radiation can exist arising
from electron impact with this gas. These photons may increase s.e.e. locally to
substantial levels.

Equations (25.28) to (25.31) can be generalized to allow for these additional
s.e.e. processes by simply replacing δe with δ where

δ ≡ (δe + δi + j)/(1+ δi + j) (25.49)

and δi ≡ ion s.e.e. coefficient, j ≡ jphoton/nsecs , jphoton ≡ s.e.e. flux density due
to photons, metastable atoms, etc.

Now that we have dealt with the particle and energy flow to an electrically
floating surface, let us examine the case of an electrically biased surface. We
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Figure 25.11. The normalized current as a function of the applied potential to a surface,
i.e., the Langmuir I –V characteristic, equation (25.51) [25.34]. V ≡ Vsurface − Vplasma.
D+ ions.

will restrict out attention to the case of surfaces which are biased negatively with
respect to the plasma. As we shall see, as the surface potential approaches the
plasma potential, the heat flux can reach extremely high values.

So long as the surface is negative with respect to the plasma, a sheath still
exists, although its thickness varies. We thus have that the ion current is still given
by j+ = ensecs . The net electron current is:

j−NET = (1/4)nsecee(1− δ) exp(eV/kTe) (25.50)

where V is the negative potential applied to the surface relative to plasma poten-
tial. The net total current density can therefore be written

jTOT(V )

(1/4)ensece
=

[(
1+ Ti

Te

)(
2πme

mi

)]1/2

− (1− δ) exp

(
eV

kTe

)
. (25.51)

Relation (25.51) is shown in figure 25.11. The net total current reaches the
‘saturation ion current’ j+sat, which is just the j+ of equation (25.26), at sufficiently
negative potentials. Increasing the potential above the floating potential causes an
exponential increase in the electron current. In the simplest model, the electron
current attains the saturation value j+sat = (1/4)nsecee at V = 0 and this then
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remains constant for all V > 0. Often a true saturation electron current is not
observed but the current continues to rise with V ; however, the increase is slower
than exponential. The solid–plasma interaction is difficult to model for V > 0
since no sheath is present and the applied electric field penetrates far into the
plasma causing a significant perturbation.

Next consider the power flux density to an electrically biased surface. The
ion power is

qi,surface(V ) ≈ j+(2.5kTi − eV ) (25.52)

while for the electrons

qe,surface(V ) = 2kTe j
−
TOT. (25.53)

(We neglect qei
ps as small here.) Note that we use j−TOT in the last expression

rather than j−NET since every electron striking the surface deposits, on average,
2kTe there. Again, we neglect the thermal energy of the emitted secondaries.
Thus we may write the total power flux density reaching the surface in the form
of a transmission coefficient

qsurface(V )

kTe( j+/e)
≡ γ (V ) = − eV

kTe
+ 2.5Ti

Te
+ 2

[(
1+ Ti

Te

)(
2πme

mi

)]−1/2

exp

(
eV

kTe

)
.

(25.54)

Note that δ does not appear in this last expression. Relation (25.54) is shown in
figure 25.12. The power removed from the plasma as a function of V is qse(V ) =
qsurface(V ) − jTOT(V )|V |. It is important to distinguish between the power to
biased and floating surfaces, i.e. equation (25.54) versus equation (25.46), [25.30,
25.31].

Note that the heat flux is nearly a minimum at the floating potential [25.32].
At potentials below floating, the power flux increases slightly due to the increasing
impact energy of the ions. For potentials above floating, the electron particle, and
thus energy, flux increases exponentially fast. Operation at potentials near or
above the plasma potential is often hazardous due to this strong heating.

The foregoing analysis applies to the case of no magnetic field. Provided ion
motion is along B-field lines, this theory should also apply when B �= 0. For ion
motion oblique to magnetic field lines, as occurs when the plane of the collecting
surface is not parallel to the B-field, further analysis is required, section 2.10.

Further requirements that can be added to the qsurface—values already calcu-
lated include:

(a) Ion back-scatter. The impacting ions tend to be reflected from the surface
(usually as neutrals), depositing only a fraction Ri E of their impact energy
there, section 3.2.

(b) The e–i recombination energy χi should be added.
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Figure 25.12. The (normalized) heat flux to a surface as a function of its potential relative
to the plasma (electrically bias surface), and of τ ≡ Ti /Te [25.34]. �V ≡ V here. D+
ions.

(c) Atom–atom recombination energy χr should be added (if molecular forma-
tion ensues). Here also an ion particle reflection coefficient Ri N , should be
allowed for.

(d) Electron back-scatter, section 3.1. For purposes of computing particle fluxes
(hence floating potential) it is not necessary to distinguish between electron-
induced secondary electron emission and electron back-scatter. For purposes
of calculating heat flux and γe, however, the distinction can be worth making
since a secondary electron only removes a few eV from the solid, while the
back-scattered electron can return a sizeable fraction of 2kTe to the plasma,
section 3.1.

(e) Pre-sheath contributions. As indicated above, pre-sheath contributions can
also be added. In the simplest case this introduces (∼) 1

2 kTe to γe, but for
more complex pre-sheaths, other values may be appropriate, see section 25.1.

Including these latter refinements one may rewrite

qsurface

j+/e
≈

[
2.5Ti − eV f

(
me

mi
,

Ti

Te

)]
(1− Ri E )+ 2kTe

1− δ
(1− ReE )

+ εpre.sh. + χi + χr (1− Ri N ). (25.55)
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Example:

H+ on W, Ti = 20 eV, Te = 10 eV. Then χi = 13.6 eV, χr = 2.2 eV,

δ ≈ 0.3, Ri N ≈ 0.5, Ri E ≈ 0.3, ReE ≈ 0.15, eV f = −2.1kTe

and thus

qsurface

j+/e
= 49.7+ 24.3+ (∼ 5)+ 13.5+ 1.1 ≈ 94 eV

hence
qsurface

kTe j+/e
≈ 9.4 = γ.

Ideally one should employ values of Ri E , ReE , Ri N  and δ which are appro-
priate for the actual incident angle of the particles. In practice, surface roughness
implies that one should probably use average values. The effect on heat flux and
γ of terms, which are independent of Te and Ti , such as χi , is only significant
when Te and Ti are rather small, i.e., generally smaller than χi . For many edge
plasma conditions, e.g., the foregoing example, the T -independent contributions
to γ are not great and can be ignored, to first order. In some divertor devices,
however, very low temperature (and high density) plasmas have been achieved
near the surface, with T ≤ 1 eV (detachment, chapter 16). In such cases one
should include further T -independent contributions to γ , for example, the energy
removed from the solid for each secondary electron emitted, a few eV. For a non-
floating surface the solid will also gain (lose) the electron work function energy
corresponding to the net gain (loss) of an electron from the plasma. For the case
of a high density edge, plasma neutrals emitted from the solid into the plasma will
be dissociated (into Franck–Condon atoms of a few eV energy), electronically and
vibrationally excited and ionized all quite close to the surface. One should then
include in the calculation of heat flux to the actual surface, contributions due to
Franck–Condon atoms, photons, excited neutrals, etc impacting on the surface.
Clearly the calculation of heat flux to a surface for high density, low temperature
edge plasmas requires special treatment, and this will not be dealt with further
here.

As noted in section 2.4, when electron self-collisionality is extremely weak
throughout the entire plasma, then even the forward-going, high energy tail of
the electron velocity distribution may be missing since there is no collisional
‘replenishment’ of the Maxwellian distribution. This situation is a complex one
since the actual distribution will then depend on assumptions about the electron
source, however, the general tendency will be for |V f | to decrease, since the
electrons reaching the solid surface are, of necessity, average ones, rather than
high energy ones [25.33]. The sheath heat transmission coefficient therefore also
decreases.
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Chapter 26

Kinetic Effects and Corrections to
Collisional Expressions

26.1 Introduction

Parallel transport coefficients are explicitly or implicitly functions of the collision
mean free path. The conducted parallel electron heat flux density, section 9.6:

q‖cond = −K‖e
dT

ds‖
(26.1)

q [W m−2], T [eV], s [m], with

K‖e ≈ enevteλte ≈ 2000T 5/2
e (26.2)

e = 1.6 × 10−19, n [m−3], v [m s−1], λ [m], where vte is the typical thermal
velocity of the electrons:

vte ≡ (kTe/me)
1/2 (26.3)

and λte is the electron collisional mean free path for the typical electrons for
(collisions with charge particles only):

λte ≡ vte/νte (26.4)

where νte [s−1] is the electron collision frequency.
We may recall that the introduction of such transport coefficients as K‖ and

the parallel viscosity coefficient η‖, section 9.8, are approximations introduced
to close the set of fluid equations in a reasonably simple way. It is appropriate
therefore to consider when these approximations will involve significant errors
and what corrections can then be included to try to extend the utility of the conve-
nient fluid modelling approach. These corrections are termed kinetic corrections
since a fully kinetic analysis—in contrast with a fluid analysis—does not require
such corrections. Kinetic analysis is often prohibitively difficult, however, and
therefore the incentive is strong to retain a fluid approach as far as is possible.

656
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The development of the estimate for K‖ given in section 9.6 makes it clear
that an implicit assumption was involved in equation (9.44) that the temperature
scale length LT is much longer than λte. It is also implicit that λte is shorter than
the length of the system L . Generally, the approximations underlying all paral-
lel transport coefficients implicitly assume short collisional lengths, i.e. strong
collisionality:

λ� Lscale, Lsystem (26.5)

where Lscale is the appropriate parallel gradient scale length, e.g. LT , in the SOL;
Lsystem is the length to the nearest solid surface, thus Lsystem ≤ L .

Various prescriptions for kinetic correctors for fluid transport coefficients
have been reported, and in some cases, comparisons have been made with kinetic
analysis to test the prescriptions and to provide guidance for the specification
of what would otherwise be arbitrary adjustment factors in the kinetic correc-
tors. It is unlikely that any single kinetic corrector prescription will be useful
in all circumstances. There is inevitably an ad hoc spirit to this approach. One
cannot expect complete consistency. Indeed, the approach has been subject to
criticism [26.1, 26.2] in this regard. Since complete kinetic treatments are not
generally possible, however, there seems to be little alternative to ‘patching up’
the fluid transport coefficients as best as possible [26.3].

26.2 Kinetic Correction for Parallel Heat Conductivity

As λte → ∞, the classical (Braginskii [26.4], Spitzer–Härms [26.5]) parallel
electron heat conduction coefficient K‖e → ∞, equation (26.2). This can lead
to unphysical results since even a slight temperature gradient would result in
unlimited heat fluxes. The one-way Maxwellian heat flux density, equation (9.43):

φMax
E = 2kT 14 nc (26.6)

presumably provides some indication of a limit on the actual heat flux density for
λte →∞. Thus we might assume the existence of a limited heat-flux density:

qe,limit = αenvtekTe (26.7)

where αe is some numerical factor of order unity.
From the detailed Braginskii–Spitzer–Härms analysis for K‖e, it can be

shown [26.6] that most of the heat is carried by electrons in the high velocity tail
of the distribution:

qSpitzer = −ene vte λte
dTe

ds‖

∫ ∞

0
g(v/vte)d(v/vte) ≈ −2.9× 10−19nevteλte

dTe

ds‖
.

(26.8)

The distribution g, figure 26.1, shows that most of the contribution to the heat flux
comes from hot electrons with velocities:

vhe ≈ 3–5vte. (26.9)
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Figure 26.1. Contribution of electrons with different velocities v to the heat flux qe [26.6].

In section 9.4 we saw that collision frequency νe ∝ v−3
e , hence the mean free

path, λe ≈ νe/ve ∝ v4
e . That is, hotter electrons are much less collisional that

the typical electrons. For the situation to be collisional, so far as heat transport
is considered, is therefore much more demanding than simply satisfying λte <

Lscale, Lsystem. It is necessary that λhe � Lscale, Lsystem, thus [26.6]:

λte � 0.01Lscale, Lsystem (26.10)

has to be satisfied.
If we take Lscale = LT as being the relevant length for comparison then,

combining equations (26.2) and (26.9) gives [26.6]:

q‖e ≤ q∗‖e ≡ 0.03enevteTe (26.11)

for T [eV]. For the case of no volumetric power sinks in the SOL we may take
the target electron power flux density to be indicative of SOL fluxes:

qte = γekTetnt cst (26.12)

with γe ≈ 5, chapter 2. Thus at the target:

qte

q∗‖e
= 5

0.03

(
2me

mi

)1/2

∼ 4 (26.13)

for D+ and Te ≈ Ti . Thus, the classical conductivity is marginally invalid near
the sheath edge. This should only be taken as an indication that the situation
is marginal since heat convection—which is generally strong near the sheath,
reducing the flux that has to be carried by conduction—has been neglected, as
have volumetric power sinks/sources, etc.

When λhe > LT , where LT is characteristic of the typical electrons, then
the fast, heat-carrying electrons penetrate into the cold region. Thus the actual
temperature scale length which governs the heat flux is not as short as LT , but is
longer and is of order λhe. Therefore, the effective coefficient K‖e is reduced when
calculating q‖e based on equation (26.1) with Te the average electron energy. That
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Figure 26.2. Heat flux normalized to Spitzer value as a function of the ratio of the field-line
length to the mean free path. The model used αe = 0.15, equation (26.16) [26.3].

is, the actual q‖e will be less than −K‖e(dTe/ds‖) based on the classical value of
K‖e, equation (26.2). The magnitude of this reduction can be gauged from a
selection of cases which have been analysed using a full kinetic treatment [26.3,
26.6]. Figure 26.2 shows qkinetic‖e /[−K‖e(dTe/ds‖)] as a function of LT /λte [26.3].

One thus anticipates that in a situation such as the SOL where q‖e is essen-
tially given, imposed by PSOL, the power flow into the SOL—then as collision-
ality is weakened the temperature gradient will have to increase in order to carry
the same power. That is, LT will become still shorter. This situation could be
induced to occur by reducing the plasma density. Figure 26.3 shows an example
of such steepening of the parallel temperature profile Te(s‖) for a kinetic analysis,
compared with the profile that would be calculated for the kinetically calculated
q‖e and using the classical K‖e [26.6].

It may seem surprising that the allowance for kinetic, i.e. long λ, effects
results in a steepening of the Te(s‖) profile. After all, when λte is extremely
long compared with Lsystem, we know that isothermal conditions will set in,
i.e. Te(s‖) ≈ constant. It has to be noted, however, that this steepening ef-
fect is characteristic of intermediate collisionality. For very strong collisionality,
λhe � Lscale, Lsystem, no kinetic corrections are needed, of course, while for
very weak collisionality, λhe � Lsystem, one obtains approximately the same
answer whether one uses a kinetic or a fluid treatment, namely T (s‖) ≈ constant:
as was shown in section 4.10.2—where all derivations were based on classical
K‖e—when collisionality is weak, i.e. when ν∗SOL ≡ L/λte < 10, then T (s‖)
approaches constancy. In a kinetic treatment, as the mean free path becomes
longer, the weakly collisional tail of the distribution becomes more depleted as
these electrons can become lost in one transit through the system. For this case,
the particle and energy loss rates are determined by velocity-space scattering into
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Figure 26.3. Electron temperature and heat flux for a case where the collisional mean free
path is somewhat shorter than the system length (left) and a case where it is comparable
(right) [26.6].

the tail region [26.3] and ‘temperature’ is spatially constant.

A simple kinetic correction prescription is often used to reproduce approx-
imately this effect that at intermediate levels of collisionality the T (s‖) profile
steepens: equation (26.1) is replaced by:

1

q‖
= 1

qe,limit
+ 1

qSpitzer
(26.14)

where q‖ is the (given) total heat flux density, qe,limit is the limited heat flux
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density given by equation (26.7) and q‖ is given by equation (26.8). Thus:

dT

ds‖
= −(κ0T 5/2(q−1

‖ − q−1
e,limit))

−1. (26.15)

Since necessarily q‖ < qe,limit then it is seen that the inclusion of the heat limiter
qe,limit is always to increase the steepness of the T (s‖) profile, similar to the effect
seen in figure 26.3 of [26.6].

An estimate for the value of αe can be obtained by fitting the relation of
equation (26.14) to the sample kinetic results of figure 26.2, using equation (26.8):

q‖
qSpitzer

≈ 1

1+ (1/αe)λte/LT
. (26.16)

This is compared with the sample kinetic results in figure 26.2 for the choice of
αe = 0.15, which is seen to give a reasonably good fit.

The effect of including qe,limit may be illustrated by considering the simple
example of q‖ =constant, i.e. all the power enters at the upstream end, at x = 0,
and exits through the sheath at x = L . Thus the analysis is the correction to
that of section 4.10.2. The upstream conditions, nu , Tu , are again taken to be
the control parameters of the problem—along with L , and now αe. Also, as
before, the lumped collisionality parameter ν∗SOL(= L/λte ≈ 10−16nu L/T 2u ) is
largely controlling. The target temperature Tt , given in equation (4.109) in terms
of fT ≡ Tu/Tt , is now given by the implicit equation:

ν∗SOL

10.4
= C4

αe
( f −3

T − 1)+ ( f 1/2
T )(1− f −7/2

T ) (26.17)

where

C4 ≡ 
7γ cs0

12vte0
(26.18)

and cs0 ≡ (2kT/mi )
1/2, vte0 ≡ (8kT/πme)

1/2 for T = 1 eV. For D+ and γ = 7,
cs0 = 9.79× 103 m s−1, vte0 = 6.7× 105 m s−1 and C4 = 0.060.

The complete T (x) profile is then obtained:

x

L

ν∗SOL

10.4
= C4

αe

[(
T

Tu

)3

− 1

]
+ f 1/2

T

[
1−

(
T

Tu

)7/2]
. (26.19)

The relation Tt (ν
∗
SOL) is shown in figure 26.4 for the value of αe = 0.15. As can

be seen, the effect of the heat limiter is not very large, for this simple case, for any
value of collisionality ν∗SOL, but the effect is largest at intermediate collisionality,
and is in the direction of increasing the T -gradient, as anticipated. This is seen
in further detail from example T (x) profiles, figure 26.5. Even for this simple
case, the effect of the heat limiter is not insignificant with respect to the value of
LT near the target: for intermediate collisionality, ν∗SOL ≈ 10, the value of LT
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Figure 26.4. The target temperature, normalized to the upstream temperature, Tt/Tu , as
a function of the (upstream) collisionality parameter ν∗SOL for a value of the heat-limiter
parameter αe = 0.15, and for no heat limiter, αe = ∞; equation (26.19). The effect
of including this heat limiter is not great, and manifests itself primarily for intermediate
collisionality, making the T -gradient somewhat steeper.

is reduced by a factor of ∼5. This would significantly increase the T -gradient
force on impurities, section 6.5, significantly; however, the coefficient for the
T -gradient force also requires kinetic correction, section 26.4. It could well
be that for less simple cases—with localized power loss due to radiation—that
heat-limiter corrections could be yet more important. On the other hand, parallel
heat convection has been neglected in the foregoing, an effect which reduces the
fraction of the power carried by conduction, and thus also the importance of any
conductive heat limiter.

A full kinetic analysis carried out numerically via a Fokker–Planck
approach [26.7] shows in detail the modest increases in temperature drop for
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Figure 26.5. Temperature profiles for different levels of collisionality, with and without a
heat limiter. As with figure 26.4 it is clear that the effect of this heat limiter is greatest for
intermediate collisionality.

intermediate levels of collisionality, ν∗SOL ≈ 5–20, compared with the classical
result.

As already noted, the simple heat limiter used above does not encompass the
transition to very weak collisionality where one knows that T -gradients must di-
minish, and isothermal conditions must be approached. In order to allow for such
a transition, more complex heat-limiter prescriptions have been developed [26.3].

The simple heat limiter used above has also been criticized [26.2] for leading
to unphysical results for some parameter ranges. It is readily shown, for example,
that equation (26.19) gives non-monotonic T (x), for all values of ν∗SOL, whenever:

αe <
γ cs0

2vte0
(26.20)

for example, for αe ≤ 0.05 if γ = 7, cs0 = 9.79 × 103 m s−1 and vte0 =
6.7 × 105 m s−1. This is a concern since (a) the appropriate value to use for αe
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is uncertain and may be less than 0.15 for some circumstances, and (b) the value
of γ can be larger than 7, section 25.5. When relation (26.20) is satisfied, the
simple heat-limiter prescription gives unphysical results for all collisionality—
for this simple case of constant parallel power flux density q‖. There is thus some
concern for the use of such a prescription, generally.

Such kinetic correctors to fluid models as heat-flux limiters are invariably ad
hoc. They are not likely to be completely consistent, or capable of addressing all
aspects of any particular problem. Unphysical results may also occur for some
cases. Nevertheless, for the foreseeable future there appears to be no practical
alternative to their use for most problems.

26.3 Kinetic Correction for Parallel Viscosity

As pointed out in section 9.8, as collisionality is reduced, the classical, Bragniskii
parallel viscous stress πi →−∞ and the viscosity coefficient η‖ → ∞, typically
resulting in a very strong, unphysical forward force on the plasma flow. From
equation (9.68), however, it is seen that under no circumstances can πi be smaller
than −pi .

By extending the fluid approximation to include more moments (21), Rad-
ford [26.8] showed that, in fact, πi could never become more negative than− 4

7 pi .
This corresponds closely to the results given in section 10.7 for a completely
collisionless case where it was possible to calculate πi precisely using kinetic
modelling. This case corresponds to the strongest possible viscous stress. As
reported in section 10.7, πi at the sheath edge reached −0.33pi , for pi taken to
be the upstream ion pressure, and −0.66pi , for pi taken to be the pressure at the
sheath edge.

It is thus appropriate to employ a viscous-stress limiter analogous to the heat-
flux limiter, which prevents |πi | from exceeding ∼0.5pi , regardless of how steep
the parallel velocity gradient becomes. When this is done, it is usually found
that the parallel viscous stress plays a relatively small role in the parallel pressure
balance.

26.4 Kinetic Correction for the Parallel Temperature Gradient
Force Coefficients

The expression for the frictional force exerted by the ‘background’ plasma fluid
on the impurity fluid, equation (6.34), contains the collision time τs explicitly,
thus emphasizing that the friction force is directly dependent on the degree of col-
lisionality. Since the expressions for the temperature-gradient force coefficients,
equations (6.27) and (6.28), do not explicitly contain τs , it may seem that these
forces are not the result of collisions. This is incorrect, as the simple estimate of
section 9.4, equation (9.26), makes clear: the collision time τs enters in two ways,
which in the high collisionality limit happen to cancel exactly. For less collisional
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conditions, complete cancellation does not occur and so a kinetic correction is
needed.

A prescription used in the UEDGE code [26.9] is to multiply the classical
T -gradient coefficients by a factor:

f∇T ≡ (1+ αF (λ/Lgrad)
2)−1 (26.21)

where αF is an adjustable numerical factor of order unity,

λ ≡ λti + λte (26.22)

where

λti ≈ 1016T 2
i /ni

λte ≈ 1016T 2
e /ni (26.23)

and Lgrad is taken to be the smallest of the Te, Ti , ne, or pressure parallel scale
lengths. Thus when collisionality is weak, λ � Lgrad and f∇T → 0, i.e. the
T -gradient forces disappear, just as the frictional forces do.

In the Garching applications of the B2 code [26.10], a different type of
kinetic corrector is sometimes used. The value of the T -gradient that is actually
used to compute the forces on impurities, (dT/ds‖)used, is taken to be the smaller
of the code-calculated (classical) value, (dT/ds‖)code, and 0.3T/(αFλ), where αF

is an adjustable numerical factor of the order of unity.
In the DIVIMP code, a further corrector is sometimes included: the T -

gradient forces on impurities are set to zero within distance λ of the target. As
noted in section 6.6.4, when using Monte Carlo modelling of impurities, it is
not necessary to employ ad hoc kinetic correctors for the Ti -gradient force if the
complete expressions are used for the collision terms [26.11].

Although the electric field force on impurities does not directly involve col-
lisions at all, the parallel electric field itself is calculated from Ohm’s law, sec-
tion 9.5, which requires kinetic correction for weak collisionality. A simple
prescription sometimes used in DIVIMP is to replace the fluid-model-calculated
value of E‖ with ∼kT/2eL (the collisionless pre-sheath value, section 1.8.1.9),
whenever λ > L , where L is the connection length.
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Chapter 27

Impurity Injection Experiments

For some time studies have been carried out of transport in the main plasma by
the injection of non-recycling impurities, e.g. by laser blow-off. Although the
impurity neutrals may become ionized in the edge plasma, in these main plasma
studies no attempt is made to follow the low ionization stages which can, in prin-
ciple, provide information on edge transport (in the SOL, divertor, pumps, etc).

Here we discuss the situation where the behaviour in the edge of the injected
impurities is the principal objective.

The recycling and non-recycling cases are sufficiently different that they
are discussed separately here: section 27.1, recycling case; section 27.2, non-
recycling case.

For a non-recycler the specific injection location can strongly influence the
level of impurity in the main plasma, i.e. the impurity confinement time. Thus
one may have an opportunity to study the local forces acting on the impurities
near the injection point. Non-recyclers constitute local edge probes, potentially.

For a recycler the initial injection location tends not to matter. One, however,
has an opportunity to investigate the compression or retention of impurities in the
divertor and any pumping which may exist.

One therefore tends to investigate somewhat different aspects of impurity
behaviour in the edge with recyclers versus non-recyclers.

27.1 Injection of Recycling Impurities

Impurity injection experiments involving recycling gases such as neon have been
carried out on various tokamaks. The interpretation methods used, however,
are phenomenological and are not adequate for extraction of well defined val-
ues of divertor retention and pumping. The importance of impurity injection
to achieve radiative divertor operation justifies increased effort to interpret these
experiments. In section 27.1.3 a possible method is described for a more ambi-
tious interpretative approach, based on the measurement of at least two calibrated
spectroscopic signals—one in the divertor, one in the main plasma—together with
use of an interpretive impurity code such as DIVIMP, section 6.6.

667
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It is important to be clear as to what it is we want to understand and mea-
sure when injecting recyclers. There are at least three different basic types of
information potentially of interest here:

(a) Divertor retention or compression of the impurity, i.e. the ratio of the total
impurity content of the divertor region (neutral plus ion) to the total impurity
content inside the separatrix. This is one of the main things one is interested
in when puffing radiators like Ne, Ar, etc.

(b) Pumping. For He one is not directly interested in divertor retention and
compression, but in removing (pumping) the impurity and in the divertor
exhaust gas impurity enrichment. Conversely, for Ne, Ar, etc one is less
interested in pumping away these gases; one would just as soon they did
not pump (except perhaps to permit feed-back control); the presence of
pumping just complicates the analysis and understanding of what is going
on; nevertheless it is a complication one has to deal with since one of the
ways to achieve good divertor compression may be to puff and pump the
fuel gas, e.g. D2, [27.1–27.10], in which case the impurity will probably also
get pumped whether one wants that or not.

(c) ‘Fuelling efficiency’, i.e. for a recycler like Ne, the total Ne particle content
of the plasma divided by the number of Ne atoms injected into the torus.
Although this is a readily measured quantity, it is generally not of primary
interest: it may be largely indicative of the recycling coefficient of partially
saturated surfaces far from the principal plasma-wetted surfaces; such coef-
ficients probably vary greatly from machine to machine, or even for a given
machine, with conditioning, etc. It is not obvious what one would do with
such information.

The simplest model is the single-reservoir model, section 27.1.1. This is adequate
to provide basic understanding of such things as:

(i) pumping;
(ii) how it is possible that decay time can be infinite, τ ∗ ≈ ∞, yet ‘fuelling

efficiency’ may be� 1.

The single-reservoir model is not, however, adequate for modelling divertor
retention and compression. For that one needs at least a two-reservoir model,
section 27.1.2, ideally with at least two unknown (fitting) time constants τpump
and τD , the latter being the characteristic time for transfer of particles from the
divertor reservoir to the main plasma reservoir. With these two characteristic
times one can obtain rough estimates of (a) pumping, (b) retention.

Even the two-reservoir model with an extension to include full (radial) mod-
elling of the main plasma, as used by Roth, Krieger and Fussmann [27.11] and
Dux et al [27.12], is not adequate for getting at the true divertor retention. An
approach which might achieve this, based on (i) calibrated spectroscopic signals
from the divertor, and (ii) an impurity code such as DIVIMP, is discussed in
section 27.1.3.
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27.1.1 Single-Reservoir Model

We follow the picture of McCracken et al [27.13]. The single population N here is
just that of the impurities inside the plasma (the main plasma, SOL and divertor);
the gas content inside the vacuum vessel is ignored. Let there be a single value of
the global recycling coefficient R, which can include the effect of an active pump.
Then:

Ṅ = φin − N

τp
+ RN

τp
≡ φin − N

τ ∗p
(27.1)

where φin [particles s−1] is the actual gas puffing rate in this simplest case, τp is
the particle confinement time, i.e., the replacement time, and τ ∗p ≡ τp/(1− R) is
the decay time.

Thus, for start-up, and assuming φin = constant and N (0) = 0 one obtains

N (t) = τ ∗pφin(1− et/τ∗p ). (27.2)

Note that from a measurement of the initial slope of N (t) one can deduce or
confirm the value of φin since Ṅ (0) = φin .

Note: N∞ = τ ∗pφin , thus one can extract τ ∗p either from a measurement
of N∞ or from the measured rise time of N (t). Thus one obtains, for example,
a measure of pumping: one obtains a single and simple indicator—albeit phe-
nomenological—of how the pumping changes, e.g. with puff and pump of D2,
or with ne, or with Pin , etc. Such an indicator is of great value even if one also
carries out detailed code modelling of N (t) to identify the physical details of the
pumping. Clearly it will always be useful to have such a simple, global indicator
of pumping.

Note: in practice one cannot very easily use the start-up phase to find τ ∗p since
φin is not constant in time, as the valve often gives a ‘dribbling’ inflow. A more
fundamental problem is that the radial equilibration ‘settling down’ time of the
main plasma, τmain ≈ a2/D⊥ can be comparable to τ ∗p , preventing interpretation
based on such a simple equation as equation (27.2).

For decay, with the gas inflow turned off, φin = 0, one has:

N = N (0)e−t/τ∗p (27.3)

and so, in principle, one can also extract τ ∗p , including the effect of pumping. One
still has the problem, however, that τ ∗p and τmain may be comparable, in which
case equation (27.3) does not apply.

It seems likely that the ‘fuelling efficiency’ effect often has to do with (pos-
sibly) low values of ‘Rfar’, i.e. the value of wall/target reflection (perhaps also
including the effect of any active pump) at remote locations where the fuel par-
ticles initially enter and where surfaces may not be saturated. Suppose that each
particle recycles n times characterized by a value Rfar before entering the region
where the ‘principal’ value of R applies, e.g. the intensely bombarded strike point
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regions where surfaces may be saturated (and so the ‘principal’ R may be ≈
unity). The effective gas fuelling rate is then:

φeff
in  = φin(Rfar)

n (27.4)

which may be much smaller than φin . It would be difficult/impossible to model
Rfar or n reliably, and it is not obvious that anything very useful would result even
if one could. It may be worth noting, however, that this effect only changes the
results for this single-reservoir model slightly:

(i) the initial slope is now N (0) = φeff
in  , which, aside from the problems with

valve ‘dribble’ and τmain, would provide a measure of φeff
in and thus a check

on the measured ‘fuelling efficiency’, since N∞ = φeff
in τ ∗p ;

(ii) the characteristic growth and decay times are still τ ∗p , unchanged (although
there remain the problems re ‘dribble’ and τmain).

Note: the τp used here is the true particle confinement or replacement time,
i.e. in steady state

τp = N/φtotal (27.5)

where φtotal is the total number of impurity particles being ionized per second
(both from any puff, φin , plus the recycling source(s)), at any location in the
plasma, and N is the total impurity content of the plasma (main plasma, SOL,
divertor). Unfortunately τmain is sometimes, incorrectly, called the ‘confinement
time’ and written as τp [27.11]. It is important to distinguish between these two
times. In this single-reservoir model, τmain does not appear and so one cannot
allow for the fact that the observed decay time, τ ∗p , might have largely to do
with transport in the main plasma, i.e. the time required for the main plasma
to equilibrate radially. In order to allow for that effect one must employ a two-
reservoir model at least, with one of the reservoirs taken to be the main plasma,
i.e. the region inside the separatrix, next section.

27.1.2 The Garching Two-Chamber Model

Starting in the mid-1980s Garching researchers have pioneered these studies be-
ginning with the paper of Fussmann et al at the Symposium on Energy Removal
and Particle Control in Fusion Devices (Princeton, NJ, 1984) [27.14] and the
1986 Nuclear Fusion paper of Janeschitz, Fussmann et al [27.15]; see [27.11]–
[27.31]. The analysis procedure commends it and has evolved over this period and
the most complete description is given by Roth, Krieger and Fussmann [27.11].

The total impurity ion content in the main plasma (the first reservoir) is
Nmain. The total impurity neutral content of the divertor (the second reservoir)
is Ndiv (there is, presumably, also an impurity ion content of the divertor, but this
is not explicitly referred to; this will be seen to be one of the deficiencies of this
analysis procedure, below).

The most physically satisfactory way to describe particle transfers is in terms
of fluxes φ [particles s−1]. This, however, does not lead to a convenient, simple
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formulation of the problem where one would like to be able to characterize the
various processes by a single phenomenological parameter. The latter is best
achieved by defining characteristic times for the various transfer processes in
terms of a ‘reservoir content’ and an associated flux φ. There is a price paid for
this convenience: usually the ‘reservoir content’ is not well defined physically—
but only phenomenologically. Thus, one tends to extract only trends from such
an analysis procedure. Nevertheless, the relative simplicity of this approach com-
mends it and has resulted in its widespread use. It is also a good place to start in
the understanding and analysis of the problem.

One has for Ndiv:

Ṅdiv = φ+ − γφD − φpump + φdiv
ext (27.6)

where

(a) φ+ is the ionic outflow across the separatrix into the SOL/divertor. In order
to introduce the finite equilibration time of the main plasma, this model as-
sumes that φ+ = Nmain/τmain (Roth et al call τmain the ‘plasma confinement
time’ and write it as τp; this will be avoided here, but the relation to Roth’s
symbols should be kept in mind). Again it is to be emphasized that the first
chamber/reservoir in this model is the main plasma itself.

(b) φD is the fuelling rate of the main plasma from the divertor. Conceptually,
the simplest case is when the main plasma is neutral fuelled, i.e. neutrals
escape from the divertor at rate φD then ‘attack’ the main plasma radially,
becoming ionized in a symmetrical shell either inside or outside the separa-
trix, see figure 27.1. It is assumed that φD ∝ Ndiv, the total neutral content
of the divertor, and then φD is replaced by Ndiv/τD , where τD is a ‘divertor
retention time’ of some sort. The precise physical meaning of τD is not clear
and it is best to consider it to be a phenomenological quantity. In any case it
is unknown and is found by fitting the model to measured Nmain(t) (or some
related main plasma quantity) as discussed below. The main plasma may,
however, be ion fuelled, i.e. the neutrals are ionized within the divertor and
cross into the main plasma as ions. Ndiv/τD is still used to represent φD ,
but then the physical meaning of Ndiv and τD is even less clear and, again,
they should be thought of as phenomenological quantities. Presumably, for
ion fuelling, φD ∝ N div+ , the ion content of the divertor, but perhaps we may
assume that N div+ ∝ Ndiv; thus, for ion fuelling, the value of τD is assumed
to ‘soak up’ this relation. We know that the neutral density must vary greatly
throughout the divertor volume, and these variations themselves will vary
with plasma conditions; thus the value of τD must indeed be particularly
phenomenological, and it should be established experimentally for each dif-
ferent plasma condition. The γ -factor is explained below.

(c) φpump is also taken to be proportional to Ndiv (although one might ask if this
‘Ndiv’ is really the same ‘Ndiv’ as used in φD = Ndiv/τD; presumably these
‘Ndivs’ are at least proportional to each other so, again, the τ s have to ‘soak
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Divertor

(a)

Ndiv / τD

Ndiv / τpump

Ndiv

Separatrix

Main
plasma

N+

N+ / τmain

(b)

Figure 27.1. (a) In the simplest picture of the two-reservoir model one imagines a divertor
gas box (the first reservoir) of neutral content N 0

div (divertor ion content is ignored) which
leaks neutrals at a rate φD ≡ Ndiv/τD into the vacuum region surrounding the confined
plasma. Neutrals may also be removed by a pump at rate Ndiv/τpump. (b) The second
reservoir is the confined plasma inside the separatrix of content N+ (neutrals ignored)
which loses ions at rate N+/τmain (where τmain = a2/Dmain⊥ , say) into the SOL, which
immediately transfers these ions into the divertor, i.e., the SOL is not itself a reservoir
here but merely a conduit of particles. (c) Although a flux Ndiv/τD exits the divertor
as neutrals, the effective ionic fuelling across the separatrix is only γ Ndiv/τD(γ < 1),
where γ depends on the radial location of ionization and thus on the assumed values of
E0, ne(r), Te(r). Thus the effective transfer rate from divertor reservoir to core reservoir
is only γ Ndiv/τD . One finds γ by setting N ss+ /τmain = γφD (‘ss’ for steady state) and
knowing τmain (e.g., a2/Dmain⊥ ) and the ratio N ss+ /φD (e.g., from the Engelhardt model).
(d) The resulting particle flow balance for the analytic version of the two-reservoir model.
(e) When using the ZEDIFF radial code one does not use the γ factor. Instead the full
influx φD = Ndiv/τD from the divertor is considered to enter radially and uniformly with
given energy E0 into a given ne(r), Te(r) plasma (SOL and main plasma), thus ionizing
in some specific radial pattern. ZEDIFF uses this source, together with assumed values of
D⊥, vpinch, τSOL‖ , to calculate nz(r, t) for all charge states. ZEDIFF also then calculates
the loss rate φ+ from the main plasma back to the divertor, as shown. The main plasma
should no longer be spoken of as a ‘reservoir’ since its contents are now analysed in radial
detail; one might speak instead of a ‘population’, which would now be the entire content
of SOL and main plasma—usually dominated by the main plasma (except at start-up). The
divertor reservoir remains as before, bottom of (d), except now φ+ replaces N+/τmain and
Ndiv/τD replaces γ Ndiv/τD .
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Figure 27.1. Continued.
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up’ unknown—and probably varying—relations). Thus one writes φpump =
Ndiv/τpump with τpump a second, unknown phenomenological quantity which
is also to be extracted by fitting model results for Nmain(t) to the measured
Nmain(t) for each plasma condition. That is a two-parameter fitting exercise
is required.

(d) φdiv
ext is a prescribed, external injection rate into the divertor which can be

time dependent. One might choose to replace it with an effective value, as
per equation (27.4).

Thus the two reservoirs are fully described by:

Ṅmain = − Nmain

τmain
+ γ Ndiv

τD
+ φmain

ext (27.7)

Ṅdiv = Nmain

τmain
− γ Ndiv

τD
− Ndiv

τpump
+ φdiv

ext (27.8)

where φmain
ext and/or φdiv

ext may be zero, and are, in any case, given.
Note: one has two equations for the two unknowns, Nmain(t), Ndiv(t) in

terms of (the assumed known) τmain and the two unknown parameters τD , τpump.
The latter two quantities have to be extracted from the measured Nmain(t) decay
in a two-parameter fitting.

One also notes the presence of a shielding factor γ , discussed next.
The simplest case to consider is neutral fuelling of the main SOL by neutrals

which leak out of the divertor at a rate Ndiv/τD . These neutrals are imagined to
distribute themselves uniformly around the edge of the main plasma, and then to
penetrate radially in some distance where they are ionized. See figure 27.1(c). For
simplicity assume all the neutrals are ionized at some distance from the separatrix,
λi z (λi z > / < 0 for ionization inside/outside LCFS). Note: one needs to specify
a radial neutral energy E0 in this model in order to be able to calculate λi z .

Now in steady state, and for φmain
ext = 0, and no pumping, we must have:

N SS
main

τmain
= γφD = γ

N SS
div

τD
(27.9)

(SS for steady state) which now indicates why a shielding factor is required when
one assumes φ+ = Nmain/τmain, which we do here: the ratio Nmain/φD will
depend on the value of E0, i.e. λi z . Equation (27.9) also indicates how γ is to
be calculated. We can illustrate using the Engelhardt model, section 4.6, for slab
geometry, wall plates separated by distance 2a; the impurity ion density in the
main plasma, assuming only diffusion and no pinch, is given by:

nmain =
{

�D(λi z + λSOL)/Dmain⊥ for λi z ≥ 0
�DλSOLeλi z/λSOL/DSOL⊥ for λi z ≤ 0

(27.10)

with
λSOL = (DSOL⊥ τSOL‖ )

1
2 (27.11)
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where �D is in units [particles m−2 s−1]. One relates �to φ using φ/� = As ,
surface area of the plasma.

One has:
N SS

main ≈ anmain[ions m−2]. (27.12)

Suppose
τmain = a2/D⊥. (27.13)

It is then readily shown, starting with equations (4.72), (4.73) that:

γ =




Dmain⊥
DSOL⊥

(λi z + λSOL

a

)
λi z > 0

λSOL
eλi z/λSOL

a
λi z < 0.

(27.14)

Typically γ � 1; Roth et al give sample values of γ ≈ 0.25 and 0.08 for
He and Ar for a specific plasma example. One finds λi z using E0 and given radial
profiles of ne(r), Te(r).

Note: at this point a problem must be pointed out. One recognizes, of course,
that τD reflects all the unknown, complex physics of impurity transport in the
edge; the whole point of this analysis procedure is to ‘push’ all those unknown
phenomena into τD , and to then extract τD from the experimental Nmain(t) decay
profile. So that is alright. Unfortunately, precisely the same unknown physics
governs τSOL‖ , thus λSOL, and thus γ . In the procedure here this is ignored and

values of τSOL‖ are simply assumed, typically a ms, or so. This is a logical flaw
in this analysis method. We will have to keep track of its consequences in the
following. To sum up: γ is treated in this method as if it can be known a priori, a
given—although, in reality, it is not and probably varies as much as does τD , i.e.
with variations in ne, Pin , etc.

Now, as noted already, the main plasma may not actually be refuelled by
neutrals leaking out of the divertor region, which enter the main SOL but rather
may be ion fuelled by particles which were ionized in the divertor plasma and
then were transported as ions to the main plasma. In this case the calculation of
γ needs separate consideration, as discussed below.

Note: the shielding factor γ is not a shielding factor as one thinks of nor-
mally, i.e. one that depends only on the conditions in the plasma edge, i.e. on λi z

and λSOL: one notes that τmain, Dmain⊥ (and any vmain
pinch ) are also involved, owing

to the specific way that γ is introduced here, equation (27.9).
In steady state one obtains from equations (27.7) and (27.8) the steady state

content ratio, i.e. the divertor retention that we are looking for:

N SS
main

N SS
div

= τmain

(
1

τpump
+ 1

τD/γ

)
(27.15)

where one has used the fact that, in steady state:

φext = N SS
div/τpump. (27.16)
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Suppose τpump � τD/γ then

N SS
main

N SS
div

= τmain

τD/γ
(27.17)

which clearly illustrates two important points:

(a) One improves divertor retention either by reducing divertor leakage (a long
τD) or by better shielding by the boundary plasma surrounding the main
plasma SOL (a small γ ).

(b) Only the ratio τD/γ matters for divertor retention, N SS
main/N SS

div, not τD or γ

separately. It will turn out, as discussed below, that it is τD/γ that is extracted
from the measured Nmain(t) decay—and thus the uncertainties concerning γ

do not affect the calculation of the divertor retention ratio.

In the case of an ion-fuelled main plasma what do we mean exactly by ‘leakage
from the divertor’; after all, no neutrals leak at all, they are all ionized in the di-
vertor. Thus one would perhaps start by assuming that one should use φD = φrec,
the total recycling source at the targets (also adding in any external φext). Then,
provided one knew all the, possibly complicated, physics governing impurity
transport in the edge, one could use a code like DIVIMP to find the ratio between
N SS

main and φD , for the particular 2D ionization distribution calculated for the
recycling source and taking the neutral energy to be known, etc. One would then
insert that computed N SS

main/φD into equation (27.9) and find γ . Clearly, however,
this is assuming the very thing that we are acknowledging from the outset that
we do not know, i.e. the edge impurity transport physics—i.e. precisely the same
problem as was encountered with neutral fuelling. This has to be avoided, clearly.
Proceeding anyway, let us imagine that, effectively, the ion-fuelling case amounts
to neutrals being ionized along the separatrix of the main plasma. Then one knows
the effective γ eff from equation (27.14):

γ eff = Dmain⊥
DSOL⊥

λSOL

a
(27.18)

which should then be used together with an effective τ eff
D . So one would have, for

example:

γ eff N SS
div

τ eff
D

= N SS
main

τmain
(27.19)

whereas, in fact, it should be:

γ actual N SS
div

τ actual
D

= N SS
main

τmain
. (27.20)

We may note, however, that:

γ actual/τ actual
D = γ eff/τ eff

D (27.21)
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and since it is only the τD/γ ratio that comes into the expression for the divertor
retention, i.e. N SS

main/N SS
div, it makes no difference to use γ eff/τ eff

D —which, we will
then simply call γ /τD .

Note: however, there is still a fly in the ointment. While it is perfectly
obvious that we do not want to attempt to calculate γ actual a priori—it is not
actually any easier to calculate γ eff since λSOL, thus τSOL‖ , is involved. While the
latter expression may look innocent, all the complicated edge impurity transport
physics that govern τD or γ actual also govern γ eff. Happily, it is only the ratio
τD/γ that comes into the divertor retention ratio, equation (27.15), so that aspect
is no problem. As with the case of neutral fuelling, however, one cannot reliably
extract the value of τD itself from this analysis procedure (although publications
using this method usually do, unfortunately).

To re-capitulate: equation (27.15) provides us the answer to our principal
question, namely, what is the divertor retention? It does so in terms of two
unknowns, τpump, τD . How are we to evaluate these quantities? In this analy-
sis procedure it is done by measuring a single quantity—the temporal decay of
Nmain(t) or some related main plasma quantity such as the ArXVI intensity; see
figure 27.2 as an example from the paper of Roth et al. It should be emphasized
that in this analysis procedure these are the only impurity input data. Neither
Ndiv(t) nor any related divertor impurity signal is used. (One does however, also
need information about Dmain⊥ , vmain

pinch, e.g. from laser blow-off injection studies;
in any case, the transport in the main plasma is assumed to be known, i.e. τmain.)

Figure 27.2. ASDEX [27.11]. Temporal decay of the ArXVI line measured in the main
plasma after Ar injection in ohmic discharges.

Roth et al [27.11] give the analytic solution to equations (27.7) and (27.8)
for decay, i.e. after φmain

ext , φdiv
ext , are set to zero:

Nmain(t) = A exp(−t/τshort)+ B exp(−t/τlong) (27.22)

where the two observable decay times involved, τlong and τshort, are related to the
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unknown system time constants by:

τpump = τshortτlong

τmain
(27.23)

τD/γ = τshortτlongτpump

(τmain − τshort)(τlong − τpump)

. (27.24)

Thus, provided that one can actually discern a τshort and a τlong in the decaying
Nmain(t) signal—as is the case for the examples of Roth et al in figure 27.2—
then one can find the two basic unknowns, τpump and τD/γ . Note that it is the
combination τD/γ that is extracted, which is fortunate, since this combination
appears in the expression for divertor retention, equation (27.15).

Inverting equations (27.23), (27.24) one obtains:

1/τshort(long) = (2τ)−1(1+ (−)[1− 4τ 2/τmainτpump]1/2) (27.25)

where
τ−1 ≡ τ−1

main + (τD/γ )−1 + (τpump)
−1. (27.26)

For the case of not too strong pumping, i.e. τpump � τD/γ , τmain, one has a
conveniently simple regime: one can show from equations (27.25), (27.26) that:

τdecay ≈ τlong ≈ τpump

(
1+ τmain

τD/γ

)
(27.27)

also
N SS

main

N SS
div

≈ τmain/(τD/γ ). (27.28)

So:

τdecay ≈ τpump

(
1+ N SS

main

N SS
div

)
(27.29)

i.e.
N SS

main + N SS
div

τdecay
= N SS

div

τpump
(27.30)

which just corresponds to the two reservoirs decaying, while staying in steady-
state equilibrium with each other. This is the situation referred to in [27.30],
[27.31]. Thus, from a knowledge of τpump—perhaps using some estimate based
on known pumping speeds and volumes in the system (although proceeding that
way confuses the important distinction between phenomenological and physical
pumping time constants)—and a measured τdecay—one directly obtains the diver-
tor retention N SS

main/N SS
div from equation (27.29). This is the simplest version of

the two-chamber model.
In ASDEX, the divertor retention was investigated extensively for inert gases

[27.11]. Short gas puffs were applied in the main chamber and the decay of the
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impurity line radiation in the main plasma was monitored. Figure 27.2 shows
the temporal decay of the ArXVI line after Ar injection into the ohmic phase
of discharges with various values of the safety factor q. Two exponential decay
times can be discerned, as expected for a two-chamber model. The fast decay
largely results from the outflux from the main plasma into the divertor, eventually
reaching equilibrium. The slow decay is largely the result of Ar pumping of the
divertor chamber by the external pumps.

In fact, Roth et al [27.11] did not use the analytic analysis procedure
above. This procedure is simply for insight and illustration. τlong − τpump,
equation (27.24), can be small, causing uncertainties. The value of τmain is
subject to uncertainties. Also, one may be able to measure a number of charge
states in the main plasma, and by fitting all of these to the model, the extractions
of τD and τpump should be more reliable. Furthermore, the use of τmain only
very approximately deals with the effects of transport in the main plasma: for
times short compared with τmain, different charge states will have different time
behaviour in the main plasma. Also, a time-dependent φext is usually involved,
making analytical modelling difficult. Accordingly Roth et al used a fully
time-dependent 1D (radial) impurity transport code, ZEDIFF [27.11], to model
the main plasma. Dux et al [27.12] used the similar STRAHL code.

ZEDIFF and STRAHL give as output nz(r, t), the impurity density in the
main plasma of each charge state at each radius, at each time—thus a computed
Nmain(t) and all other main plasma quantities. (Thus, it is not really a ‘two-
reservoir model’: there is one ‘reservoir’, that of the neutral content of the di-
vertor, Ndiv—while the second population, the ion content of the main plasma,
is modelled in 1D spatial detail, and so should not be referred to merely as a
‘reservoir’.) ZEDIFF and STRAHL require as input:

(i) specified radial ne(r), Te(r) in the main plasma and the SOL;
(ii) assigned values of cross-field transport, Dmain⊥ , vmain

pinch;

(iii) an assigned sink action strength in the SOL, nz/τ
SOL‖ , where τSOL‖ has an

assigned value, e.g. ∼1 ms;
(iv) assumptions about where the neutrals are ionized; the total strength of the

ionization source is again simply set to equal Ndiv/τD , which is the fuelling
rate of the confined plasma by the divertor; the spatial distribution of the ion-
ization source, however, is also of importance; if one thinks that the confined
plasma is actually fuelled by neutrals entering around the edge of the main
plasma, then, taking some assigned value of the neutral energy E0, and given
ne(r), Te(r), one calculates the radial distribution of ionization (assuming
the neutrals enter radially from a wall, rather than from divertor targets,
however); if estimates of neutral penetration indicate that most neutrals are
ionized in the divertor, and thus that the confined plasma is ion fuelled, i.e.
by ionic diffusion across the separatrix from the SOL, then the ionization
source is simply taken to be at the separatrix, as in the analytic approach.

This then gives a closed set of equations for Nmain and Ndiv. Input parameters
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and data, to repeat, are: ne(r), Te(r), Dmain⊥ , vmain
pinch, τ

SOL‖ , E0. One also has,
as before, the two unknown, phenomenological quantities τD and τpump which
one finds by adjusting them in the modelling of Nmain(t) until the latter fits the
measurements, e.g. of ArXVI intensity in the main plasma or any other measured
quantity in the main plasma.

One final aspect is needed to close the equations: the value of φ+ needed in
equation (27.6) is calculated from the ZEDIFF output:

φ+ =
∫ wall

separatrix
nz/τ

SOL‖ dV (27.31)

i.e. an integral over the volume of the SOL.
At the end of this analysis procedure one also has, from the model, calculated

Ndiv(t) and Nmain(t). The ‘divertor retention’ can then be taken to be N SS
div/(N SS

div+
N SS

main), say—although, since Ndiv does not include N div+ , and since, in fact, its
exact physical meaning is not entirely clear, this measure of ‘divertor retention’
only gives trends—for example as tokamak heating is increased—rather than
absolute quantities.

It is thus seen that the ZEDIFF-based approach is not fundamentally different
from the analytically based one:

(a) In both cases one has to assume that ne(r), Te(r) Dmain⊥ , vmain
pinch, τSOL‖ , E0

are given, thus τmain also. One has to assume the same simple geometrical
patterns of fuelling the main plasma.

(b) In both cases τpump and τD are unknowns which have to be extracted by
matching a model result to an observed decay signal of an impurity quantity
in the main plasma. In the analytic approach τD/γ always appears as this
combination, although one can calculate γ separately—albeit with major and
questionable assumptions. In the ZEDIFF-based approach the parameter τD

appears by itself, although the same questionable assumptions that were in-
volved in explicitly calculating γ in the analytic approach are still implicitly
present in the analysis.

For both methods it can be said that
The great strength of this approach is that one does not need to measure

any quantity in the divertor. One just measures Nmain(t), or some main plasma
quantity such as ArXVI.

In fact, even if one had a measurement of some divertor quantity, e.g. the
impurity recycle influx at the targets, one would not know how to incorporate
that information into this analysis procedure. The reason is that Ndiv is really a
phenomenological quantity, rather than an actual neutral particle count. If one
measured the total impurity recycle flux at the target, or the total ArII intensity or
the Ar+ density in the divertor, etc, one would not know how to relate that to Ndiv.

The information that is obtained, then, from this procedure, is the trend of
τD with, for example, changes in auxiliary heating of the tokamak, or changes in
ne, etc. Clearly, higher τD simply means better divertor retention.
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The actual impurity ion content of the divertor—which may represent a sig-
nificant part of the impurity content of the divertor—is assumed to be proportional
to Ndiv, and so the effectiveness of divertor retention will be indicated, as to trend,
by the ratio of Ndiv/Nmain, which this procedure calculates. One cannot go further
with this method, and calculate the actual ratio of impurity particle content of the
divertor to that of the main plasma.

Dux et al [27.12] have employed a variant of the Garching method. It can
be the case that Nmain(t) does not clearly show two distinct decay times, which
makes a two-parameter extraction problematical. For this situation Dux et al
calculated τpump from first principles, i.e. the known speed of the ASDEX-U turbo
pump and the volume of the divertor (3 m3). As previously discussed, however,
τpump in this analysis method is strictly a phenomenological quantity which really
should be extracted from the experimental data for each plasma condition—by
fitting to Nmain(t).

Dux et al also make the point that, while τSOL‖ may well not be known, the

divertor Ndiv(t)/Nmain(t) retention is found to depend on the ratio of τSOL‖ /τD—
and the (extracted) value of τD is found to increase together with the (assumed)
value of τSOL‖ . This relates to the same point made earlier, namely that (a) it is
the ratio τD/γ that governs divertor retention and (b) that it is this ratio which
is actually extracted from the analysis of the Nmain(t) decay; further, (c) one can
see from equation (27.14) that indeed γ does increase with τSOL‖ (although not
linearly).

To summarize: the two-chamber model is an advance over the one-reservoir
model since (a) it allows for radial transport in the main plasma, and (b) it permits
extraction of a characteristic divertor retention time τD (both models can yield
extracted values of τpump ). Thus divertor retention, N SS

div/N SS
main, can be estimated.

The only impurity data input is for the main plasma, specifically temporal
decay of the main plasma content or a specified spectroscopic line in the main
plasma. No divertor signals are used.

The divertor content is defined in a phenomenological way, thus rendering
τD and τpump phenomenological also. Thus only the approximate trends of diver-
tor retention can be estimated.

Major and questionable assumptions have to be made regarding (a) the loss
time from the SOL to the divertor, τSOL‖ , (b) the spatial distribution of the refu-
elling of the main plasma due to ‘leakage’ from the divertor.

The great strength of the approach is that a single main plasma signal is
sufficient input. However, it is probably too much to expect that quantities which
primarily have to do with processes at the edge—τpump and τD—could be ex-
tracted with great reliability from such restricted input data.

Nevertheless, the Garching two-reservoir model is the most sophisticated
tool employed to date to extract information on impurity pumping and divertor
retention. It is the place to start in order to understand and analyse recycling
impurity experiments. We will see in the next section why it will not be easy to
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improve on this analysis procedure. It is also reassuring that calculations using the
full edge code B2/EIRENE replicate the trends found using the Garching reservoir
model [27.32].

27.1.3 Modelling which Uses an Edge Impurity Code and Both Divertor
and Main Plasma Spectroscopic Signals

Putting aside the uncertainties in the definitions and measurements of τD , τpump

and divertor retention, N SS
div/N SS

main—suppose that we had, in fact, extracted valid
numbers for these quantities, and knew how they varied with ne, Pin , the mag-
nitude of puff and pump of D2, q , machine size, etc. Then, even without any
modelling or understanding of the processes underlying the impurity transport
in the edge (and this phenomenological analysis procedure does not, of course,
involve any consideration of such matters), we would still know something ex-
tremely valuable, namely something that is the equivalent of knowing how energy
confinement τE scales with ne, Pin , etc. With a sufficiently extensive database
we would be able to scale to a reactor, for example, and would know what the
divertor retention and pumping would be—and all without considering the details
of parallel force balances on impurities in the SOL, etc.

That, then, would be a first—and highly useful—level of analysis of the data.
We could go further, nevertheless—to a second level of analysis, as one

might propose along the lines described in this section. There are two reasons
for attempting this. First, as discussed above, the phenomenological analysis
procedures do not even give fully satisfactory extractions of τD , τpump and divertor
retention. Secondly, we want to be able to relate these global, phenomenological
quantities to the underlying edge physics processes. We would like, for example,
to understand how and why changes in the plasma flow along the SOL (say due to
puffing D2) or changes in the parallel temperature gradients (say due to changes
in Pin), and the associated impurity forces, affect divertor retention and pumping.

This second level of analysis requires the use of a model/code of the edge
and main plasma. A way of proceeding to do this is described in the following.

Impurity codes like DIVIMP calculate all the quantities needed to evaluate
the actual divertor retention: the ionic and neutral impurity particle content at
all points through the main plasma, SOL and divertor regions. The problem, of
course, is to be sure that the calculations are credible. The best way to do that is to
compare as many other code-calculated quantities as possible with experiment—
particularly impurity line intensities of as many charge states, at as many loca-
tions, as possible. If the code matches those signals then the credibility of the
other code calculations, such as divertor retention, is increased. At a minimum
one should measure a low charge state in the divertor and a high one in the main
plasma. Credibility is increased, however, the more data are matched.

The simplest experimental situation to interpret in order to extract diver-
tor retention is the steady-state one (in contrast with the one- and two-reservoir
model approaches where one is obliged to work with time-varying signals) where
impurity and plasma are constant in time everywhere. For a non-recycler this
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requires a constant φext (‘bleed’). For a recycler with pump off, a brief puff
is adequate—while with pump on, a steady ‘bleed’ is needed. Since the codes
operate most naturally in calculating steady-state conditions, this is the easiest
situation to interpret.

All the usual code input information is needed, e.g. for DIVIMP, the plasma
conditions across the target. One also needs to make input assumptions about
DSOL⊥ , vSOL

pinch, Dmain⊥ , vmain
pinch, and ne(r), Te(r) in the main plasma. The ‘plasma

background’ throughout the SOL has to be calculated—using an onion-skin
model, chapter 12, or an edge fluid code, chapter 13. One does not of course,
introduce parameters τSOL‖ and τD; these are, in effect, calculated by the code.

In order to match the spectroscopic signals it is necessary to know the photon
efficiencies for the lines used. Unfortunately, the database is often weak for the
low charge states—which are important in the divertor.

The pumping/removal would be handled as follows when using DIVIMP:

(a) For a non-recycler, every neutral and ion which strikes any solid surface is
removed. The primary source location has to be specified.

(b) For a recycler with pump off: neutrals and ions are recycled from every solid
surface with unit probability (actually a value slightly less than 1 is used so
that the calculation will terminate). The primary source location has to be
specified in the code, but has no effect on the final result, since the recycle
source dominates.

(c) For a recycler with pump on: DIVIMP can achieve pumping by specifying
the reflection coefficients < 1 for specified segments of wall and/or target
for neutrals and/or ions.

It may well be the case that the calculated steady-state divertor and spectro-
scopic signals in the main plasma will not be particularly sensitive to the details of
the pumping—nor perhaps even to whether the pump is on/off in the code. While
analysis of the steady state may be the best way for deducing divertor retention,
it may not be adequate for reliably deducing the pumping. For the latter one will
probably have to use temporal decay experiments.

27.2 Injecting of Non-Recycling Impurities

Consideration of the injection of non-recyclers turns out to be an appropriate
occasion for reviewing some basic facts about our understanding of edge plasmas.

Generally: we still know very little about edge impurity transport. Little is
known about cross-field transport coefficients for impurities in the edge. Theories
about impurity parallel transport are still largely unconfirmed experimentally.

Specifically: we do not know if the theoretically anticipated accumulation
of impurities upstream from the target, due to the parallel temperature-gradient
force, is really a problem or not. Do long range plasma flows exist in the SOL—
perhaps due to flow reversal, or E × B drifts, etc—which overcome this ‘SOL
impurity trap’ effect, section 6.5? Will extra, externally induced SOL plasma
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flows have to be induced by ‘puff and pump’ of D2, in order to flush out the SOL,
compressing the impurities into the divertor and/or enhancing their removal into
the pumps? If so, how much puffing is needed? We know little about the far pe-
riphery of the SOL, which may be collisionless, and thus may provide an impurity
sink action back to the divertor targets—even when the friction and T -gradient
force balance in the main part of the SOL is such as to cause a ‘SOL impurity trap’
to exist there; or is transport out to the walls a rapid process in the far periphery?
Does the far periphery, in fact, constitute an important sink action of the SOL?

Despite much effort on studying the problem of edge impurity transport,
our level of understanding remains partial. The reason is largely due to the fact
that there is a problem within a problem: even if we knew the SOL/divertor
plasma background perfectly—i.e. ne, Te, Ti , E‖, v‖ in complete 2D detail—
we would then still have to sort out how the perpendicular and parallel transport
of impurities behaved in that given plasma background. Establishing the plasma
background is thus the first step.

Unfortunately we have incomplete information on the plasma background.
Nor can we have a high level of confidence in our edge models/codes—
particularly regarding, v‖. On CMOD, substantial v‖ has been measured at both
inside and outside SOLs near the midplane (by a Mach probe and by modelling
the ‘plume’ from impurity puffing [27.33]), where codes and models often show
rather stagnant conditions. Such flows presumably arise from more complicated
recycling patterns than we currently understand—or are due to E × B drifts, that
we also understand imperfectly. Since friction and the ion-temperature-gradient
force are the most important forces on impurities in the edge, this is a major
concern. Adding to this concern is our very limited knowledge about Ti which
enters even more strongly than v‖ into the expression for the friction force—and
also governs the Ti -gradient force.

In order to sort out edge impurity transport we will require more information
on the edge plasma background—-particularly on Ti and v‖.

The injection of non-recyclers provides valuable opportunities to address
these problems.

It is surprising that impurity injection has not been used more for edge
probing than it has, considering its potential to tackle the problem at both levels,
i.e. measurements of the edge plasma background plus direct monitoring of the
impurity transport itself. Injection of recyclers can provide a valuable diagnostic,
e.g. He injection [27.34]; however, non-recyclers provide the greatest scope for
edge probing since there is no ‘competition’ between the primary injection and
any recycling source.

Injection of CH4 and N2 into the edge of CMOD has provided measurements
of the local plasma conditions at the injection location, including both parallel and
poloidal drift velocities [27.33]. This requires spatially resolved measurements of
the lower charge state distribution, e.g. by CCD cameras, near the injection point.
Recyclers could also be used for such measurements, provided there is no local
recycling surface—and provided the injection is not so prolonged as to cause a
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large build-up of background.
The use of a non-recycler makes it possible to get almost directly at the

question of whether a ‘SOL impurity trap’ exists and whether (and how much)
puff and pump of D2 is needed to overcome such a trap: the amount of the im-
purity reaching the main plasma can be measured, e.g. by CX spectroscopy; one
knows the (quite localized) impurity source and its strength since recycle sources
are absent; thus one can infer the ‘SOL screening’ or ‘penetration efficiency’ or
‘local SOL sink strength’, etc—for that injection location. One can then vary
the injection location, thus carrying out a localised probing of the ‘SOL sink
strength’, etc. This cannot be done using a recycler.

Such studies have been carried out on CMOD using N2 and CH4 [27.35],
with the main plasma impurity content Nmain being measured by emission spec-
troscopy together with the MIST 1D (radial) code. A steady-state ‘bleed’ φext
(rather than a brief ‘puff’) of impurity was used and the ‘penetration factor’ was
defined:

P F ≡ Nmain/φext [s] (27.32)

which is simply the particle confinement time, τp, of course. It is preferable to use
the term ‘confinement time’ rather than ‘penetration factor’ since the latter can be
misleading: suppose D⊥ is increased, all else held fixed; then τp is reduced and
the content is reduced—yet, because of the higher D⊥, it is clear that an individual
particle can ‘penetrate’ the plasma more deeply (also leaving more quickly).

Note that one does not have the problem here that one has for a recycler,
equation (27.4), where uncertainties about the partial nature of the recycling at the
less exposed surfaces renders a measurement of PF, τp unusable for a ‘recycler’.
Here the impurities only have ‘one go’ at contaminating the main plasma—i.e.
from the initial ionization source—and recycling uncertainties do not arise.

The measurement of PF, τp, then, is the experimental input to the model or
code which one seeks in order to establish the ‘SOL sink strength’ (which requires
definition, see below), as a function of injection location, ne, Pin , amount of puff
and pump of D2, etc. This sought-for ‘SOL sink-action’ parameter is the principal
output of the analysis, just as divertor retention and τpump were for the analysis
of recycler injection.

In the next section we consider some simple analytic models to illustrate the
procedure. In section 27.2.2 a procedure based on the use of an interpretive code
like DIVIMP is outlined.

27.2.1 Simple Analytic Models for the Penetration Factor (Confinement
Time) Based on a ‘SOL Sink Strength’ Parameter

In reality, the injection of a non-recycler results in a highly localized ionization
source. We will start by considering the simpler case of a toroidally/poloidially
uniform source. Later we will show that, so far as the modelling of PF, τp is
concerned, the localized nature of the source does not matter (this important fact
also applies to the code-based analysis).
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For illustration we will consider three analytic cases here:

(a) A ‘standard’ Engelhardt model case where the sink action is parallel, along
the SOL to the divertors.

(b) A modified Engelhardt case with both parallel sink action and perpendicular
sink action, as to a wall surrounding the edge of the SOL

(c) A case without parallel sink action in the main part of the SOL, but with a
parametrized sink action in a ‘far peripheral’ region, i.e. an outer SOL (where
the loss is parallel and/or perpendicular).

The general result for the Engelhardt model for the case of ionization occur-
ring within the SOL is given by [27.36, 27.37]:

nmain = �0

DSOL⊥
λSOL sinh

[
aw − ai

λSOL

] /
cosh

[
aw − as

λSOL

]
(27.33)

for slab geometry with �0 particle influx density [neutrals m−2 s−1]; λSOL ≡
(τSOL DSOL⊥ )1/2, where τSOL is the parallel loss-time to the divertor; radial loca-
tions are measured outward from the main plasma with r = as being the location
of the separatrix, ai the location within the SOL where all neutrals are assumed to
ionize, and aw the wall location. A ‘hard’ boundary condition is assumed at the
wall, n(aw) = 0, and so there can also exist significant (perpendicular) loss to the
walls.

One can show that the Engelhardt result already quoted for this case, equa-
tion (27.10), also equation (4.67), can be derived from the more general equa-
tion (27.33) assuming (aw − ai ) � (ai − as), i.e. a distant wall, i.e. neglecting
perpendicular sink action. We define λi z  ≡ (as − ai ), i.e. negative here. For
λi z  > 0 there is a general form equivalent to equation (27.33), see (27.36), but we
will simply use the approximation of equation (27.10a) here.

Note: the parameter τSOL is the simple, single parameter we need to describe
the ‘SOL sink-action strength’ or ‘SOL screening effectiveness’, etc. We would
like to be able to infer this quantity from experiments and establish its dependence
on ne, Pin , puff rate, etc.

(a) ‘Standard’ Engelhardt model (purely parallel sink action). For this case we
use equation (27.10). For slab geometry Ntotal = asnmain[ions m−2] with �0
in [neutrals m−2 s−1] giving:

τp = P F = asnmain

�0
=

{
(λi z + λSOL)as/Dmain⊥ λi z ≥ 0
λSOLeλi z/λSOLas/DSOL⊥ λi z ≤ 0.

(27.34)

One can easily show that PF, τp increases with τSOL, i.e. with weakening of
the SOL sink action strength, as intuitively expected.
Note: from a measured value of PF, τp one can thus extract τSOL from
equation (27.34)—provided one knows D⊥ and can reliably calculate λi z .
We will return to this critical point.
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(b) Ionization within the SOL and with both parallel and perpendicular sink
action. For this case we use equation (27.33) and, for simplicity also assume
|λi z |/λSOL � 1, i.e. ionization rather near the wall, i.e. shallow penetration
of neutrals, giving:

nmain = �0

DSOL⊥

λi z

2
e−�/λSOL (27.35)

where � ≡ (aw − as), the total width of the SOL. As with case (a), PF,
τp = asnmain/�0 and so again, from a measurement of PF, τp one can extract
τSOL—provided D⊥, � and λi z are known.

(c) No parallel loss. Only ‘far peripheral’ loss. Assume no parallel loss in the
SOL itself. This might be due to the existence of a temperature-gradient
‘SOL impurity trap’, in the absence of plasma flow (or only weak flow). We
also assume that impurity ions are somehow lost in a ‘far peripheral’ region
outside the main part of the SOL. Such loss might be due to collisionless
parallel loss to the targets (assuming no T -gradient trap existing there due
to the collisionlessness), or due to perpendicular loss to walls—or perhaps
due to a combination of parallel and perpendicular losses to various solid
structures existing in the far edge. We characterize any/all such loss by a
‘far peripheral loss time’, τFP, which is thus now the single-sink-parameter
equivalent of τSOL. It is probably best to consider τFP to be phenomeno-
logical since it may not be feasible to calculate it and it may be due to a
number of unidentified processes. For this case we have, as a variation of
equation (27.10):

nmain = (λi z + λFP)�0/DFP⊥ (27.36)

with
λFP ≡ (DFP⊥ τFP)1/2 (27.37)

and λi z(> 0) is here measured inward from the outer edge of the SOL itself,
i.e. the interface between the SOL and the ‘far peripheral’ region. As before
PF, τp = asnmain/�0 and so, again, from a measurement of PF, τp one can
extract the sink strength parameter, here τFP. One needs to know λi z , �,
DFP⊥ to do this.

The foregoing shows how, in principle, one can extract the sink action
strength parameter, τSOL or τFP, from a measurement of PF, τp. It is clear,
however, that unless one has some further experimental input this will be
problematical since one has to also know λi z and D⊥. How can one obtain
information on the latter? Probably the best prospects are to supplement
the PF, τp measurements with spatially resolved spectroscopic/CCD camera
measurements of the low and medium charge states in the vicinity of the injection
point. This, however, really requires the use of an edge interpretive code like
DIVIMP, and is thus beyond the scope of the simple analytical interpretations
described in this section. Such procedures are discussed in the next section.
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In conclusion, then, given only a measurement of PF, τp for a non-
recycling, injected impurity—it is possible to extract the value of an (essentially)
phenomenological ‘SOL sink-action strength parameter’, τSOL or τFP—although
only approximately since one will only have estimates for λi z and D⊥. (One
must also assume the applicability of simple, symmetrical models for PF,
τp(τ

SOL, λi z, D⊥), equations (27.34)–(27.37).) It is all too likely that changes
in ne, Pin , puff rate, etc will alter λi z and/or D⊥, just as much as τSOL—and the
concern is that without more measured information than just PF, τp values one
may not be correctly relating changes in ne, etc—to changes in ‘SOL sink-action
strength’. One presumably has Langmuir probe measurements for different ne,
etc—and so it should be possible to roughly estimate λi z (and perhaps DSOL⊥ )
and their changes. Nevertheless, it is clear that such procedures—based solely
on PF, τp values, essentially—should be viewed as just an initial approach to
analysing such experiments.

Before leaving this section, we turn to the unfinished matter that, in real-
ity, the impurity injection is not toroidally/poloidially symmetrical, but is highly
localized.

Let the complete peripheral area of the confined plasma be A⊥
(≈ 2π R2πas), and the effective area over which the injected particles
enter the confined plasma be some fraction f of this. Let the injection rate be φ0
[neutrals s−1]. Then, had this influx actually been symmetrical, one would have
uniform influx density �uni

0 = φ0/A⊥, e.g. to be inserted in equations (27.33)–
(27.36). In reality, the localized influx density is �loc

0 = φ0/ f A⊥—which, if this
had actually occurred over the entire surface area of the plasma, would result
in a value of nmain larger by a factor f −1 than �uni

0 would give. However, the
localized injection is diluted by this very same factor f −1 before the particles
have traversed very much radial distance inside the separatrix, owing to the
rapidity of parallel transport. Thus, the main plasma content, hence PF, τp, is
virtually the same whether the injection is local or symmetrical.

Note that this only holds for ionization in the main plasma. The distribution
of impurities in the SOL is, of course, quite non-symmetrical and any modelling
of that aspect should take the full three dimensionality of the problem into ac-
count [27.33], see next section.

27.2.2 Interpretation Using a Code Such as DIVIMP

When using an interpretive code like DIVIMP to model PF, τp one does not use
an adjustable input parameter such as τSOL. Rather the parallel forces on the
impurity are specified, related to the background plasma properties—ne, Te, Ti ,
v‖, E‖, also the perpendicular transport is followed based on assumed values of
D⊥ and/or vpinch. τSOL is calculated as an incidental output of the code. The
code calculates PF, τp and many other aspects of the impurity behaviour. By
adjusting various ‘knobs’ in the code—corresponding to the various unknowns
such as DSOL⊥ —one can, in principle, match the experimental PF, τp values.
Since there are numerous knobs/unknowns one should have as many experimental
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constraints, i.e. additional measurements, as possible. Ideally one would have
measurements of: (a) the 2D or 3D spatial distributions of line intensities for each
charge state from the neutral state up; and (b) Doppler-measured ion temperatures
and drift velocities for each charge state. One would, ideally, also have non-
impurity data with as much spatial detail as possible, including Dα , Langmuir
probe measurements, etc.

If one can match all of the experimental data simultaneously then one can be
reasonably confident that DSOL⊥ , λi z , etc have been correctly found. The code does
not assume single values of λi z , of course, but computes the actual 2D or 3D spa-
tial distribution of ionization; the point remains as before, however, that one needs
to account for changes in D⊥ and ionization spatial distribution—associated with
changes in operating parameters such as ne, Pin , puff rate, etc—to be sure that any
changes in PF are actually due to changes in the parallel/perpendicular impurity
ion transport in the SOL—i.e. the ‘SOL sink-action strength’.

What then, finally, is extracted from such a procedure? The following,
ideally:

(a) One would know if a ‘SOL impurity trap’ exists and what the nature and
magnitudes of the forces causing it were.

(b) The effect of puff and pump of D2—as to magnitude and location—would be
understood in terms of the changes this causes to the parallel force balance
for impurities, D⊥, the spatial ionization pattern, etc.

(c) One would find DSOL⊥ , also spatially resolved v‖, Ti .
(d) It is useful to have a single, simple parameter indicative of the ‘SOL sink-

action strength’; that would be available as the code-calculated value of
τSOL.

(e) A modelling of Prad/Zeff would have been achieved—which would be useful
for understanding, but perhaps more useful as part of the effort to develop
radiative divertor solutions for reactors. One would have established the level
of divertor retention, just as for the recycling case.

(f) Various detailed outputs would be available which should, in principle, guide
efforts in maximizing Prad/Zmain

eff . For example, the impurity particle con-
finement time would be established for each grid location where neutrals
are ionized; it may, sometimes, be the case that a small fraction of the total
ionization source is responsible for most of Zmain

eff ; in that case, identifying
the ‘culprit’ could assist in finding ways to maximize Prad/Zmain

eff , e.g. by
manipulation of edge baffles, etc.
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Appendix A

Solutions to Problems

This appendix was co-written with Peter Schwanke.

Chapter 1

1.1. q(a) = 3.75, θpitch(a) = 0.13 radians.
1.3. (a) For Ip(a) = Ip(−a) the X-point is at (x, y) = (0, 0). For Ip(a) =

2Ip(−a) the X-point is at (−a/3, 0), i.e. closer to the weaker current.

(b) Bθ = (Bθx , Bθy)

= µ0 Ip

2π

( −y

(a − x)2 + y2
− y

(a + x)2 + y2
,

(a + x)

(a + x)2 + y2
− (a − x)

(a − x)2 + y2

)
.

(c) The expression for s‖ is only valid to the halfway point, then the sign of
dx has to be changed.

(f) Simple estimate from Bθ (a) ≈ µ0 Ip/2πa = 0.5 T and L ≈ π Rq
with q(a) ≈ aBϕ/RBθ , thus L ≈ 38 m. Or, using the fact that the
separatrix is roughly a circle of diameter 21/2a in the poloidal plane
gives L ≈ 27 m. Numerical integration gives L ≈ 21 m for K = 1.1.
As K → 1, smax‖ → ∞ because Bθ → 0 at the origin (X-point).

1.4. (a) (i) L = 0.70 m, (ii) 10.7 m.
(b) (i) τSOL = 16 µs, (ii) 240 µs. For both τmain ≈ 97 ms.
(c) (i) τSOL

i i = 1 µs. Collisional.
(d) (i) λSOL = 2.83 mm, VSOL = 0.016 m3.

(ii) λSOL = 11 mm, VSOL = 0.062 m3. Vmain = 0.64 m3.
(e) (i) Awet = 0.023 m2, (ii) 0.094 m2. Awall = 7.14 m2. With bevelling

Awet increases by a factor 1/sin 10◦ = 5.76, so for (i) Awet = 0.13 m2.
(f) Awet = 0.47 m2.

1.5. (a) λDebye = 3.7 µm.

691
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(b) (i) E‖ ≈ 20 V m−1, (ii) E‖ ≈ 1.3 V m−1.
(c) n = 0.47n0.
(d) ∼− 14 volts.
(e) (i) 2.3 aN, (ii) 0.15 aN. For ions, force is toward sheath, for electrons

away.
(f) 128 N m−2.

1.6.
∂n

∂t
+ ∂(nv)

∂x
= Sp.

1.7. A term nmg appears on the RHS.
1.8. Retain the term on the LHS of equation (1.24), use E ≈ kT/eL , to obtain

n ≈ n0 exp[(eV/kTe)(1 + 2me/mi )]. Thus for D+, factor is exp[1 +
1/1836] ≈ 1.0005.

1.10. The approximation is good for Te = 100, 1000 eV but is useless for 10 eV
where ionization is due to the high energy electrons in the tail of the distri-
bution, not the average ones.

1.11. (a) For T = 8 eV:

νi z
coll = 3× 104 s−1, τ i z

coll = 33 µs, λi z
coll = 1 m

νcx
coll = 13× 104 s−1, τ cx

coll = 7.7 µs, λcx
coll = 0.24 m

for T = 80 eV:

νi z
coll = 30× 104 s−1, τ i z

coll = 3.3 µs, λi z
coll = 0.1 m

νcx
coll = 50× 104 s−1, τ cx

coll = 2 µs, λcx
coll = 0.062 m.

(b)

Process νcoll[s−1] λcoll [m]

e+ H2 → H+2 + 2e 3× 104/40× 104 0.10/0.008
e+ H2 → 2H0 + e 7× 104/3× 104 0.043/0.10
e+ H2 → H0 + H+ + 2e ∼0/2× 104 long/0.16

Values are shown in the table above for T = 8/80 eV.
1.12. Ionization times:

T = 10 eV 100 eV

C0 5 µs 1 µs
C+ 50 µs 3 µs
C2+ 1.4 ms 20 µs
C3+ long 100 µs
C4+ long long
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Thus if the dwell time is 1 ms then C2+ is the typical state at 10 eV, C4+ at
100 eV.

1.13. At r = 0, Sp,c− f = 3n0a2 D⊥ = 9 × 1022 m−3 s−1 and Sp,i z = 2 ×
1023 m−3 s−1.
At r = 1/a = 0.01 m, Sp,c− f = 2e−1n0a2 D⊥ = 2.2 × 1022 m−3 s−1 and
Sp,i z = 0.

1.14. (a) 2 tan−1(1)−1−2 tan−1
( 1

2

)+ 1
2 = C L/cs , i.e. 0.144 = C L/cs , instead

of 0.571 = C L/cs .
(b) λSOL = (D⊥L/(0.144cs))

1/2 = 2.64(D⊥L/cs)
1/2 compared with

(D⊥L/(0.571cs))
1/2 = 1.32(D⊥L/cs)

1/2. Thus λSOL approximately
doubles.

(c) The numerical value of the LHS of equation (1.44) drops from 0.571
to 0.144 to 0 as M(0) increases to 1. Thus λSOL → ∞. Then all of
the particles are provided by ionization and there is no need for any
cross-field source.

1.17. For M(0) = 1
2 , n1 = 5

8 n0, �se = 5
8 n0cs ; for M(0) → 1, n1 → n0 since

there is no longer the need for a p-gradient force to drive the flow up to
sound speed at the sheath edge.

1.18. �Vplasma ≈ 0.69kTe ≈ 14 volts, thus sheath drop is ∼86 volts. Lsheath ∼
λDebye ∼ 10−5 m. Thus Esheath ∼ 107 V m−1 while Eplasma ∼ 10 V m−1.
It is as if E has a singularity at the sheath edge.

1.20. (b) Constant is n0c2
s .

(e) y(1) = 1
2 n0cs .

(f) For a = 1/3 the source is near the ‘upstream’ end and most of the
increase of M occurs there, while for a = 3 the source is near the
sheath end and M only rises from low values to reach unity near the
sheath.

Chapter 2

2.1. The right surface receives [1]ensecs of positive ions plus [0.538]ensecs of
electrons, and thus receives a positive current of [0.462]ensecs . The left sur-
face receives [1]ensecs of positive ions, but also [1.462]ensecs of electrons
for a net received current of [−0.462]ensecs (i.e. a net injected current of
[0.462]ensecs .

2.2. Not a bad approximation when Ti ≥ Te. For Ti = 0 no ions reach the
floating surface, and to prevent any electrons reaching the surface requires
Vs f →−∞.

2.6. Require n1/3/Te < ε0/e for n [m−3], T [eV], thus n1/3/Te < 5 × 107.
Satisfied by fusion and interstellar plasmas.

2.8. (a) ∼10−8.
(d) λD ∼ 2× 10−5 m, �Vsh ∼ 2800 volts from the Child–Langmuir law.

2.9. Unless ne decreases with x at least as fast as ni there will not be net positive
space charge in the (monotonic) sheath, to balance the net negative charge
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on the solid surface to give shielding.
2.11. (c) g(v′) = n(me/2πkTe)

1/2 exp[−m(v′)2/2kTe] exp[eV/kTe].
2.12. Require α > 1. The number of slow electrons must not be too great or the

ion density will be too susceptible to the ‘acceleration–rarefaction’ effect
and ni will drop too rapidly upon entering the sheath.

2.14. (a) I+sat = 21 A.

(b) kTe = −e
(

2
d(I/I+sat)

dVapplied

∣∣∣
Vapplied=0

)−1
.

2.16. I+sat = 21 A, as for problem 2.14(a), but here

kTe = −e
(d(I/I+sat)

dVapplied

∣∣∣
Vapplied=0

)−1
,

i.e. no factor of 2.
2.17. (a) �se = 3.79× 1023 m−2 s−1.

(b) Vs f = −26.4 volts.
(c) qe

ss = 1.21 MW m−2.
(d) qe

sa = 2.81 MW m−2.
(e) qi

ss ≈ 4.03 MW m−2.
(f) qi

se ≈ 2.43 MW m−2.
(g) γ = 8.6.
(h) At the point where V = 1

3 Vs f , qe = (2kTe + 2
3 |eVs f |)�se and qi =

(2kTe + 1
3 |eVs f |)�se.

2.18. There is no pre-sheath density drop. qe
ss = 34 MW m−2, qi

ss =
1.6 MW m−2. Thus total power to the surface is reduced by the presence of
the sheath (for given plasma conditions).

2.19. (a) �‖B MPSE = 1.9× 1023 m2 s−1.
(e) Vsurface = −26.4 volts.
(i) The heat fluxes are just double those in problem 2.17 since in the latter

ne at the sheath edge is 1019 m−3, while here that is the upstream
density.

(b) (c), (d), (f), (g), (h), (i):

ψ �DSE �received
eVMPS

kTe
LMPS EMPS EDS q total

received

[◦] [1023 m−2 s−1] [10−4 m] [V m−1] [V m−1] [MW m−2]

10 1.9 1.9 −0.15 1.1 ∼1300 ∼4.0× 106 5.2
50 1.2 1.2 −0.44 5.0 ∼8900 ∼3.4× 106 3.4
85 0.17 0.17 −2.44 6.4 ∼38 000 ∼7.5× 105 0.46

Chapter 3

3.1. Agreement is sometimes no better than a factor of ∼2.
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3.2. Electrons escape if v‖/v⊥ > (2/3π) tan ψ .
3.4. The first M2 particle tends to transfer all its energy to the second one and so

has no energy with which to escape.
3.5. Eth = EB/γ (1− γ ) gives Eth = 30 eV (C), 37 eV (Fe), 216 eV (W).
3.6. Sometimes the agreement is no better than a factor of ∼2.
3.7. �se = 2.57 × 1023 m−2 s−1, Vs f  = −87 volts, E0 ≈ 140 eV. Take Y ≈

0.01. Thus �C ≈ 2.6 × 1021 C m−2 s−1, and for a solid carbon density of
∼2× 103 kg m−3, �C ≈ 5× 10−5 kg m−2 s−1. Thus the gross erosion rate
≈ 2.6 × 10−8 m s−1 ≈ 0.8 m/year. Such a loss would be unacceptable as

a net loss; however, re-deposition has to be allowed for.
3.8. For E0 ≈ 140 eV, Y ∼ 0. For E0 ≈ 1400 eV, � ≈ 8.1× 1023 m−2 s−1, and

at T = 300 K, Y ≈ 0.007. Thus �W ≈ 6×1021 W m−2 s−1 and for W solid
density of ≈ 2× 104 kg m−3, the erosion rate is ≈ 1.7× 10−3 kg m−2 s−1.
Thus the gross erosion rate is ≈ 9 × 10−8 m s−1 ≈ 2.5 m/year. For given
plasma conditions (and not too hot) W has an apparently enormous advan-
tage over C, since there is no W sputtering at all. (In reality this picture
is modified since: (i) the impacting D+ have an energy distribution and
some of the high energy D+ will sputter, (ii) low Z impurities such as C
are probably unavoidable and they may have sufficient energy to sputter,
(iii) therefore self-sputtering will also occur.) Even at extremely high edge
temperatures—and quite beyond anything seriously contemplated—the W
erosion rate is not much more than the C rate at much lower temperatures.
Such W rates, however, would cause completely unacceptable contamina-
tion of the core plasma, see figure 6.2.

3.9. Using the total chemical sputtering yields of figure 3.8, at 300 K, physical
+ chemical sputtering rate ≈ (5×10−5+4×10−5) kg m−2 s−1; at 700 K:
≈ (5× 10−5 + 3× 10−4) kg m−2 s−1.

3.10. E0 ≈ 10 eV, giving a chemical sputtering rate≈7×10−5 kg m−2 s−1. While
the physical sputtering may be negligible here, the chemical sputtering is
about the same as in problem 3.9.

3.11. (a) Normalization factor A = 2Y0 EB .
(c) ∞, i.e. the integral used to calculate E diverges. Therefore the
cut-off is important if one wants to find the average penetration of the
sputtered neutrals into the plasma before ionizing, or the power carried
away by the sputtered particles, etc.

3.12. (a) Normalization factor A = Y0[E−1
B − (EB + Emax)

−1 + EB/(2(EB +
Emax)

2)− EB/(2E2
B)]−1.

(b) EB/2 is still the most probable energy of the sputtered neutrals provided
Emax ≥ EB/2, which is the case here.

(c) E = A[ln(1+Emax/EB)+2EB/(EB+Emax)−E2
B/(2(EB+Emax)

2−
3/2].

3.13. For 100 eV D+ on W, Emax is calculated to be negative, i.e. there is no
sputtering since E0 = 100 eV is below the sputtering threshold. For 300 eV
D+ on W:
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(a) Emax = 3.5 eV, normalization factor A = 220 eV.
(b) Now Emax < EB/2, and since Y (E) is an increasing function for E <

EB/2, therefore the most probable energy is Emax.
(c) E = 2.2 eV.

The sputtered C neutrals, problem 3.12, will penetrate the plasma much
more deeply than the W neutrals, since (i) their average energy is higher,
(ii) their velocity is higher still, because of the lighter mass, (iii) ionization
rates are not greatly different.

3.14. (a) Emax = E0 = 100 eV. Normalization factor A = 17 eV.
(b) Most probable energy is EB/2 = 3.7 eV.
(c) E = 22 eV.
Thus neutral particles from self-sputtering are more energetic than ones
from D+-sputtering, and will penetrate the plasma more deeply before be-
coming ionized.

3.15. (a) nen jσv
j
i z+nen jσv

j
rec = nen j−1σv

j−1
i z +nen j+1σv

j+1
rec .The σv depend

(primarily) on Te.
(b) 7.
(d) Ionization becomes strong even for values of Te well below Ii z  due to

the high energy electrons in the tail of the distribution.
3.16. Prad ≈ 105, 103, 2× 102 W m−3 at T = 5, 50, 5000 eV. Low Z impurities

are useful for radiatively dissipating the power that reaches the plasma edge,
where T is low, but do not cool the hot plasma core significantly.

3.17. Consider as an example T = 104 eV where Prad,loss/nenu ≈ 10−32 W m3,
figure 3.19(a), and Pcool/nenu ≈ 4×10−32 W m3, figure 3.19(b). Pcool con-
tains the ionization power, σvi z  

4+ Ii z  which Prad does not. From figure 1.26,
σvi z  

4+ ≈ 4 × 10−16 m−3 s−1 and from problem 3.15(d), Ii z  = 392 eV,
which then gives σvi z  

4+ Ii z  ≈ 3 × 10−32 W m3, i.e. approximately the
difference.

3.18. The shorter τ is, the less time there is to ionize to higher states; similarly
the smaller ne is. The larger n0 is, the more charge exchange recombination
occurs, which reduces 〈Z〉.

3.19. For neτ = 1019 × 10−2 = 10−17 s m−3, Prad ≈ 105, 500, 300 W m−3 for
T = 5, 50, 500 eV, figure 3.20. For neτ = 1019 × 10−4 = 10−15 s m−3,
Prad ≈ 6 × 104, 105, 6 × 104 W m−3 for T = 5, 50, 500 eV. Thus for
T = 50, 500 eV, for shorter dwell times the radiated power is much larger
(although the radiated energy is not so different). For 5 eV the radiated
power is not affected very much since the temperature is nearly the most
efficient for coronal radiation already, figure 3.17.

3.20. (a) E0 ≈ 105 eV, Y ≈ 0.008.
(b) �D+‖ = 2.5×1023 D+ m−2 s−1, �D+

dep = 2.1×1022 D+ m−2 s−1, �C0 ≈
2× 1020 C m−2 s−1.

(e) nc ≈ 3.4× 1016 C m−3, Prad ≈ 7× 104 W, Erad,pot,z ≈ 2500 eV.
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3.21.

Element Pmain
rad [MW] PSOL

rad [MW]

Be 1 0.04
B 1.5 20
C 3  20
Ne 10 0.4
Ar 25 5

The low Z elements tend to be powerful radiators at the low temperatures
characteristic of the edge plasma (although Be requires particularly low Te

to radiate strongly), while the high Z elements radiate strongly at the high
temperatures characteristic of the main plasma.

3.22. (a) ≈6× 1021 Hα s−1.
(b) ≈2× 1019 recombinations s−1.
(c) τi z ≈ 8 µs−1, τloss ≈ 4 µs−1, and only half the Hα radiation is released.
Therefore, in order to interpret easily a measured Hα intensity as an H0-
influx rate, one must be sure that the H0 stayed in the plasma long enough
to be ionized.

3.23. Hα radiation will be almost constant for 20 eV < Te < 300 eV. At 300 eV
recombination is negligible. At 2 eV the Hα-rate increases to ≈ 3 ×
1022 Hα s−1; recombination increases to ≈ 5 × 1021 recombinations s−1,
which is still negligible (consider however what happens at 1 eV). In all
cases if the loss time of H0 is cut in half then the Hα rate is also. In
reality, at low T , however, the H0 will have a greater chance of escaping the
plasma before being ionized and the Hα rate could fall below that for higher
temperatures. In order to interpret Hα measurements as particle influxes
therefore requires detailed modelling of the neutral transport.

3.24. (a) ≈5 × 1021 photons s−1 of 514 nm radiation, ≈1021 photons s−1 of
464 nm radiation.

3.25. For ne = 1019 m−3, Prad ≈ 102 W, with/wo re-absorption of Lyman lines.
For 1020 m−3, Prad ≈ 106 W without re-absorption, and ≈105 W with. For
1021 m−3, Prad ≈ 108 W without re-absorption, and ≈5× 106 W with. For
ne = 1021 m−3: total ionization rate ≈5 × 1027 s−1 and the total Hα rate
is thus ≈ 1025Hα s−1, figure 3.29, which for 1.9 eV per Hα photon, gives
a power of ≈ 3 MW. Thus the Hα radiated power is a small fraction of the
total if Lyman radiation is not re-absorbed, but is a major part of the total if
the Lyman is re-absorbed.

3.26. The ionization mean free path for 2 eV H0 in this plasma is a few cm. Thus
a slab geometry with a gap of a few cm, and a large area, would approximate
the situation.

(a) τi z ≈ 2 µs.
(b) φ0 ≈ 6× 1025 s−1.
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(c) (i) and (ii) ≈1024Hα s−1.
(d) It must be the same as τi z  . One can check to see if such a loss time

is likely for this geometry: say the gap is 4 cm, area 25 m2: 1
2 necs ≈

2×1024H+ m−2 s−1; thus for a total area of 50 m2 for ion loss, the loss
rate is ≈1026H+ s−1, i.e. roughly φ0, thus OK.

3.27. A state with Riz  = Rrec is achieved at Te ≈ 1.2 eV, figure 3.23. From
figure 3.31 one finds that the Hα rate is ≈ 2 × 1021Hα s−1 from each of
the excitation and recombination processes. Power input is still required to
provide the radiation losses.

Chapter 4

4.18. No.
4.19. (a) λp/λq‖ = (1+ 3λn/2λT )/(1+ λn/λT ).

(b) The same.
4.20. (b) λn/λT = 0.6.

(c) λn here is 1.14 times larger than the value from equation (4.7).
(d) D⊥ = 0.06 m2 s−1, λT = 1.67 cm.
(e) D⊥ = 0.066 m2 s−1, χ⊥ = 0.32 m2 s−1.

4.21. (b) Vloop = 0.25 volts, which is smaller than the assumed loop voltage in
part (a). Note, however, that the effective radius of the current channel,
aeff, is smaller than a, the radius of the LCFS, since the conductivity
peaks on axis. This smaller aeff raises the resistivity and the loop volt-
age.

(e) L = 47 m.
(f) qdep ≈ 5 MW m−2. Bevel the limiter.
(g) V f s ≈ 600 volts, E0 ≈ 103 eV, thus sputtering yield is of order Y ≈

10−2, �‖ ≈ 1023 m−2 s−1, �dep ≈ 2 × 1022 m−2 s−1, �C ≈ 2 ×
1020 C m−2s−1 ≈ 4× 10−6 kg m−2 s−1 ≈ 2×10−9 m s−1. Thus 1 cm
is eroded in ≈5× 106 s ≈ 50 days. This may be acceptable for a start-
up limiter since its total exposure time to plasma may be brief (before
the plasma is transferred to, say, divertor targets for the majority of the
exposure time in each discharge).

4.22. If Tu > 1.9Tt then the error in either expression is < 3% compared with the
complete expressions.

4.23.

T (s‖) =




[
T 7/2

u − 7PSOLs2‖
4Aq‖κ0Lx

]2/7
0 ≤ s‖ ≤ Lx

[
T 7/2

u − 7PSOL(s‖ − (Lx/2))

2Aq‖κ0

]2/7
Lx ≤ s‖ ≤ L .
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4.24.

T (s‖)=




[
T 7/2

u − 7PSOLs2‖
4Aq‖κ0Lx

]2/7
0 ≤ s‖ ≤ Lx

[
T 7/2

u + (0.15)7PSOL(s2‖ − L2
x )

4Aq‖κ0(L − Lx )
− 7PSOL(s‖ + Lx )

2Aq‖κ0

]2/7
Lx ≤ s‖ ≤ L .

4.35. ne = 1.45×1020 m−3, τmain i z
p = 0.05 s, τSOL i z

p = 0.0045 s. Contributions

from main ionization is N main = 5 × 1019 m−2, and from SOL ionization,
N SOL = 2.25 × 1019 m−2, so ionization within the main plasma is more
important in this case.

Chapter 5

5.20.

nt �t Eimp φrec τp

Case [1019 m−3] [1024 m−2 s−1] [eV] [1024 s−1] [ms]

1 92 9.0 ∼5 2.7 11
2 6.5 3.3 ∼140 0.49 30
3 1.6 2.8 ∼1600 0.84 36
4 3.7 2.3 ∼200 0.69 43

φsput τz

Case Yphys Ychem [1022 s−1] [ms]

1 ∼0 ∼0.006 ∼1.6 ∼19
2 ∼0.007 ∼0.015 ∼2.2 ∼14
3 ∼0.006 ∼0.02 ∼2.2 ∼14
4 ∼0.008 ∼0.02 ∼1.9 ∼16

5.21. For Tt = 20 eV, Eimpact ≈ 100 eV, and so W sputtering would be slight.
This gives nu = 8.2× 1019 m−3.

5.22.

nu Tt nt φrec J–H Hα τp

[1019 m−3] [eV] [1019 m−3] [1022 s−1] factor [1020 s−1] [s]

1 150 0.13 0.59 ∼13 ∼4.5 0.17
2 94 1.1 0.94 ∼20 ∼4.7 0.21
4 22 8.6 4 ∼60 ∼6.7 0.20
8 5.6 69 16 ∼160 ∼10 0.10
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For nu < 2 × 1019 m−3 the sheath-limited expressions apply here, and for
nu > 2 × 1019 m−3 the conduction-limited ones. For the latter regime,
τp = 8 × 1018/nu , which is in approximately in agreement with the JET
results of figure 4.11.

5.27.

nu

[1019 m−3] fpower fmom Relative φrec

4 0.35 1 25
5 0.45 1 46
6 0.65 0.2 4

Relative φrec ≡ (nu/1019)2 f 2mom/(1− fpower).
5.28.

nu Tt Fu nt �t qt

[1019 m−3] [eV] [eV] [1020 m−3] [1024 m−2 s−1] [MW m−2]
1.5 42 51 0.19 1.7 92
2 20 29 0.54 3.3 83
2.5 8.3 18 1.6 6.3 67
2.67 4.0 16 35 9.8 50

Fmin
u = 16, T min

t = 4 eV, nmax
u = 2.7× 1019 m−3, qmax

rad = q‖/4.
5.29. Awet = 15 m2, cos ψ = (Bθ /B)t cos β, ψ = 89.1◦.
5.31. (a) λq‖ = 5.6 mm.

(b) Aq‖ = 0.063 m2, q‖ = 31 MW m−2.
(c) Tu = 69 eV.
(d) qdep = 0.7 MW m−2.
(f) Tt = 7.5 eV, nt = 1.4× 1020 m−3, �t = 3.7× 1024 m−2 s−1.
(g) fpower = 0.27, PSOL

rad = 1.46 MW.

Chapter 6

6.12. For ne = 1019 m−3, and using figure 1.26, and ln & = 15: for Te = 10 eV:

τi z τs τT

State [µs] [µs] [µs]

C+ 50 22 12
C2+ 2 000 5.7 3.1
C3+ 50 000 2.5 1.4
C4+ long 1.4 0.77
C5+ long 0.81 0.49
C6+ long 0.56 0.34
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for Te = 100 eV:

τi z τs τT

State [µs] [µs] [µs]

C+ 5 696 390
C2+ 14 174 97
C3+ 70 77 43
C4+ 33 000 43 24
C5+ long 28 16
C6+ long 19 11

At Te = 10 eV all charge states are collisional with the D+ and one an-
ticipates that all C ions will tend to have the same temperature and (fluid)
velocity as the D+. At 100 eV the C+ and C2+ are only weakly collisional
and so will tend not to move with the D+ fluid velocity and will tend to be
colder (assuming the C started as cold neutral atoms). The C3+ is marginally
collisional while the higher states are collisional.

6.13. (a) τi z = 330 µs.
(b) λmom = 0.7 m, 80 µs, yes.
(c) 45 µs. Tz(t) = Ti − (Ti − Tz0)e−t/τT . Tz(τT ) = 65 eV,

Tz(2τT ) = 87 eV, Tz(3τT ) = 95 eV.
T z = τ−1

i z

∫ τi z
0 Tz(t)dt = Ti + (Ti − Tz0)(τT /τi z)(e−τi z/τT − 1), so here

T z = 87 eV.
(d) τ‖ = 69 µs, D‖ = 9.6 × 104 m2 s−1, �sdiff‖ ≈ (2D‖τi z)

1/2 ≈ 8 m.

vth at 100 eV is 4 × 104 m s−1, vthτi z = 13 m, vth at 5 eV is 0.89 ×
104 m s−1, vthτi z = 3 m. The ion is collisional and so one is not
surprised that λmom is shorter than vthτi z . On the other hand it may
perhaps be surprising that, as a result of the chaotic, thermal motion of
diffusive collisions, the C3+ ‘cloud’ can spread out (in both directions)
by an amount much greater than λmom.

(e) vth at 87 eV is 3.7× 104 m s−1, �sth
‖ ≡ vthτi z = 12 m > �sdiff‖ . One

notes that �sth
‖ /�sdiff‖ = (τi z/2τ‖)1/2 so in general this is not a good

estimate.
(f) �s⊥ ≈ (2D⊥τi z)

1/2 ≈ 0.02 m. Cross-field diffusive transport is
enormously slower than parallel diffusive transport, thus from an initial
point source the ion ‘cloud’ will become very long and thin.

6.16. (a) 2 tan−1 M − M = (π/2 − 1)(x/L). For M = 1
2 , x/L = 0.748, thus

s/L = 0.252. cs = 7.9× 104 m s−1, vi = −4× 104 m s−1 (toward the
target).

(c) s0 = 25.2 m. For v0 > 0, s(τi z) = 15.8 m. For v0 < 0, s(τi z) =
14.4 m. The effect of friction is much greater than the effect of E . For
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vi = −4 × 104 m s−1, the ions would be at s = 13.2 m if they moved
with the D+, i.e. they would have moved further from the starting point
s0 .

(d) Estimate of ‘cloud’ centre: s = (15.8+ 14.4)/2 = 15.1 m, with spread
≈ ±�sdiff = ±8 m, thus spanning ∼7 m < s <∼ 23 m.

6.20. (a) See figure A1.
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Figure A.1.

(c) τmin
p is given by 2(2D⊥τmin

p )1/2 = λi z . τ p = 0.02 s. There is no maxi-
mum τp but d f/dτp, which is already a rapidly decreasing function of
τp for τp < τpa , where τpa is given by 2(2D⊥τpa)1/2 + λi z = 2a,
decreases even faster for τp > τpa . Thus we may take τpa as an
estimate for τmax

p . Here τpa = 1 s. We may cut the distribution
off abruptly at τp = 1 s, ignoring the small error this introduces to
the normalization,

∫∞
τmin

p

d f
dτp

dτp ≈
∫ τpa

τmin
p

d f
dτp

dτp ≈ 1. The fraction of

particles with τp > τ p is ∼20%.
6.26. D‖ = 4200 m2 s−1.
6.27. (a) vC changes by �vC ≈ ±4100 m s−1, 1/2mC (�vC )2 = 1.1 eV.

�T f
C = 1.8 eV, a comparable change.

(b) �vC is the same as in (a). �T f
C = 0.47 eV.

(c) These are essentially the same processes and when Tz is significantly
less than Ti then 1/2mz(�vz)

2 ≈ �T f
z .
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6.28. (a) vth = 8900 m s−1, vthτs ≈ 0.01 m � sinj.
(b) vdiff = 872 m s−1, vE = −45 m s−1, vTi = 495 m s−1,

vTe = 176 m s−1, vprompt-loss = 246 m s−1 − vB .
(c) n p = 1.73 × 1023/(246 − vB), which for vB = −1000 m s−1 gives

n p = 1.4× 1020 m−3.
6.30. Mi = −0.026, λi i = 0.1 m, λT = 7.25 m, λi i/λT = 0.014, hence the

Neuhauser criterion is satisfied. Leakage is expected for Mi = −0.014,
vB = −430 m s−1. From problem 6.28 vTi = 495 m s−1 and so one expects
leakage to occur for |vB | < 495 m s−1, allowing only for FF and FiG, i.e.
approximately the same result.

6.31. qcond‖i ≈ 2.6 × 104 W m−2, qconv‖i ≈ 3.2 × 104 W m−2 and so the
Krashininnikov criterion is satisfied. Leakage onset is expected when
|vB | = 650 m s−1, roughly as before.
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