Lista de exercícios propostos Análise Exploratória Estatística I

1. Mostre que:

a)
$$\sum_{i=1}^{n} (X_i - \bar{X}) = 0$$

b)
$$\sum_{i=1}^{n} (X_i - \bar{X})^2 = \sum_{i=1}^{n} (X_i)^2 - n\bar{X}^2 = \sum_{i=1}^{n} (X_i)^2 - \frac{(\sum_{i=1}^{n} X_i)^2}{n}$$

- 2. O que acontece com a média, com a variância e com o desvio padrão de um conjunto de dados quando:
 - (a) Cada observação é multiplicada por 2.
 - (b) Soma-se 10 a cada observação.
 - (c) Subtrai-se a média geral \bar{X} de cada observação.
 - (d) De cada observação, subtrai-se a média geral \bar{X} e divide-se pelo desvio padrão Sx
- 3. A tabela abaixo representa a distribuição do grau de instrução dos funcionários de uma empresa.

Grau de Instrução	%
Fundamental	40
$M\'edio Incompleto$	10
Médio Completo	25
Superior	17
$P\acute{o}s-gradua$ ção	8
Total	100

- (a) Construa um gráfico de barras (também conhecido como gráfico de colunas) e o gráfico de setores da distribuição do grau de instrução.
- (b) Sabendo que a empresa tem 200 funcionários, quantos têm pós-graduação?
- (c) No gráfico de setores, quantos graus haveria o setor que representa cada categoria de grau de instrução?
- 4. Uma indústria de componentes eletrônicos está interessada em determinar a vida útil de certo tipo de bateria. Uma amostra, em horas, segue abaixo:

- (a) Encontre a média e a mediana amostrais.
- (b) Qual característica nessa amostra é responsável pela considerável diferença entre as duas?
- 5. (Walpole et al. E.1.1 p.8 adpatado). Foram registradas as seguintes medidas para o tempo de secagem, em horas, de certa marca de tinta látex:

3,4 2,5 4,8 2,9 3,6 2,8 3,3 5,6 3,7 2,8 4,4 4,0 5,2 3,0 4,8

Suponha que as medidas sejam uma amostra aleatória simples.

- (a) Qual é o tamanho da amostra acima?
- (b) Calcule a média, a mediana, a variância, o desvio padrão e o primeiro e o terceiro quartis amostrais para este conjunto de dados.
- (c) Faça um gráfico de ramos-e-folhas destes dados. Interprete os dados.

6. (Walpole et al. E.1.17 p. 17). Um estudo dos efeitos do tabagismo nos padrões de sono é conduzido. A medida observada é o tempo, em minutos, que se leva para dormir. Os dados obtidos são:

Fumantes: 69,3 56,0 22,1 47,6 53,2 48,1 52,7 34,4 60,2 43,8 23,2 13,8

Não-fumantes: 28,6 25,1 26,4 34,9 29,8 28,4 38,5 30,2 30,6 31,8 41,6 21,1 36,0 37,9 13,9

- (a) Encontre a média amostral em cada grupo.
- (b) Encontre o desvio-padrão amostral em cada grupo.
- (c) Faça um gráfico de pontos ou histograma dos dois conjuntos de dados
- (d) Comente o tempo de impacto que o fumo aparenta ter no tempo que se leva para dormir.
- 7. A espessura (mm) de 9 parafusos foi mensurada e os dados obtidos foram: 2.8; 4.2; 5.5; 3.0; 4.1; 3.9; 2.7; 4.2 e 2.9. Calcule as medidas descritivas: mínimo, máximo, quartis, mediana, média, amplitude, desvio médio, variância, desvio padrão e coeficiente de variação.
- 8. (Walpole et al. E.1.19 p. 17). Os dados a seguir representam a duração da vida útil, em anos, medidos do décimo mais próximo, 30 bombas de combustível:
 - 2,0 3,0 0,3 3,3 1,3 0,4 0,2 6,0 5,5 6,5
 - 0,2 2,3 1,0 6,0 5,6 1,5 4,0 5,9 1,8 4,7
 - 0,7 4,5 0,3 1,5 0,5 2,5 5,0 6,0 1,2 0,2
 - (a) Construa um diagrama de ramos-e-folha para a vida, em anos, das bombas de combustíveis, usando o dígito a esquerda da vírgula decimal como ramo para cada observação. Interprete os resultados.
 - (b) Estabeleça a distribuição de frequência relativas.
 - (c) Calcule a média, a amplitude e o desvio padrão amostrais.
- 9. Os dados a seguir correspondem aos recordes de atletas em 10 países nas Olimpíadas de Los Angeles em 1984 em algumas provas de atletismo.
 - (a) Separadamente por gênero e modalidade, faça uma análise descritiva dos recordes.
 - (b) Através de gráficos do tipo boxplot, faça uma comparação entre os sexos nas quatro modalidades. Em qual delas, ha maior diferença entre homens e mulheres?

		Mulheres		
País	100 m (seg)	$400 \mathrm{m(seg)}$	3000 m (min)	Maratona(min)
$\overline{Argentina}$	11,61	54,50	9,79	178,52
Brasil	11,31	52,80	9,77	168,75
Chile	12,00	54,90	$9,\!37$	$171,\!38$
$Col\^{o}mbia$	11,6	$53,\!26$	9,46	$165,\!42$
Alemanha	11,01	48,16	8,75	$148,\!53$
França	$11,\!15$	51,73	8,98	$155,\!27$
Portugal	11,81	$54,\!30$	8,84	$151,\!20$
$Canadcute{a}$	11,00	50,06	8,81	149,50
USA	10,79	$50,\!62$	8,50	142,72
Kenya	11,73	52,70	9,20	181,05

		Homens		
País	$100 \mathrm{m} \; (\mathrm{seg})$	400 m(seg)	3000m (min)	Maratona(min)
$\overline{Argentina}$	10,39	46,84	14,04	137,72
Brasil	10,22	$45,\!21$	13,62	133,13
Chile	10,24	$46,\!20$	13,61	134,03
$Col\^{o}mbia$	10,43	$46,\!10$	13,49	$131,\!35$
Alemanha	10,16	44,50	13,21	132,23
França	10,11	$45,\!28$	13,34	132,30
Portugal	10,53	46,70	13,13	128,22
$Canadcute{a}$	$10,\!17$	$45,\!68$	13,55	131,15
USA	9,93	43,86	13,20	128,22
Kenya	10,46	44,92	13,10	129,75

10. Calcule a média, a mediana e a variância amostrais aproximadas para o conjunto de dados com a seguinte distribuição de frequência e construa seu histograma.

Intervalo de classe	Frequência
$-10 \le x < 0$	3
$0 \le x < 10$	8
$10 \le x < 20$	12
$20 \le x < 30$	16
$30 \le x < 40$	9
$40 \le x < 50$	4
$50 \le x < 60$	2

11. Para se estudar o desempenho de 4 corretoras de ações, selecionaram-se de cada uma delas amostras de ações negociadas. Para cada ação negociada, computou-se a porcentagem de lucro durante um período fixado de tempo. Os dados estão a seguir:

Corretora A: 21 48 42 37 38 25 29 32 33 33

Corretora B: 12 42 32 28 26 26 16 18 35

Corretora C: 58 32 46 45 50 52 56 56 37

Corretora D: 42 44 22 32 24 37 37 32 31 28

Existe diferença entre as corretoras com relação à porcentagem de lucro durante o período estudado?

- 12. Mostre que o coeficiente de correlação de Pearson está entre -1 e 1.
- 13. Um experimento foi delineado para determinar o efeito da taxa de fluxo de C_2F_6 sobre a uniformidade na queima de chapas de silicone usadas na integração de um circuito de manufatura. Três taxas de fluxo são utilizadas no experimento e os resultados da uniformidade (em %) de seis chapas avaliadas são:

C_2F_6		U	nifor	midac	le	
125	3.6	3.8	3.8	4.2	4.5	4.6
160	3.6	4.2	4.2	4.6	4.9	5
200	5.1	5.4	5.6	5.7	6.2	6.5

Você acredita que a uniformidade na queima de chapas de silicone é a mesma para as diferentes taxas de fluxo de C_2F_6 ? Justifique.

14. Na companhia A, a média dos salários é de R\$ 10.000,00 e o 3 ° quartil é R\$ 5.000,00.

(a) Se você se apresentasse como candidato a essa firma e se o seu salário fosse escolhido ao acaso entre todos os possíveis salários, o que seria mais provável: ganhar mais ou menos

do que R\$ 5.000,00?

- (b) Suponha que na companhia B a média dos salário é de R\$ 7.000,00 e a variância é praticamente zero e que, lá, o seu salário também fosse escolhido ao acaso. Em qual companhia você se apresentaria para arrumar emprego?
- 15. Para estudar o efeito da condição do solo no crescimento de uma planta, amostras provenientes de 3 tipos de solo e seus crescimentos são classificados em 3 categorias. Calcule as freqüências relativas e compare a qualidade do crescimento para diferentes tipos de solo.

Tipo de solo			
Crescimento	Com pedregulho	Com areia	Argila
\overline{Fraco}	16	8	14
$M\'edio$	31	16	21
Bom	18	36	25
\overline{Total}	65	60	60

16. Uma indústria utiliza um determinado reagente químico (X) para obter uma dada substância (Y). Foram realizados 5 experimentos e as quantidades do reagente e da substância em cada um deles são as seguintes:

	1	2	3	4	5
Reagente(mg)	6,0	5,5	5,0	7,5	12,5
Substancia(mg)	2,0	3,0	3,5	4,0	5,0

- a) Construa o gráfico de dispersão entre as variáveis X e Y.
- b) Determine o coeficiente de correlação de Pearson entre X e Y.
- c) A quantidade de reagente utilizada está relacionada com a quantidade de substância produzida? De que forma? Justifique.
- d) Se um outro reagente Z for utilizado para a obtenção da mesma substância (Y), e se o seu coeficiente de correlação de Pearson com a substância for $r_{yz} = 1$, como seria o gráfico de dispersão entre Y e Z?
- 17. Muitas vezes, a determinação da capacidade de produção instalada para certo tipo de indústria é um processo difícil e custoso. Como alternativa, pode-se estimar a capacidade de produção através da escolha de uma outra variável de medida mais fácil e que esteja linearmente relacionada com ela.

Suponha que foram observados os valores para as variáveis: capacidade de produção instalada (X), potência instalada (Y) e área construída (Z). Com base num critério estatístico, qual das variáveis você escolheria para estimar a capacidade de produção instalada?

X(ton.):	4	5	3	5	8	9	10	11	12	12
Y(1000kW):	1	2	1	3	3	5	5	7	6	7
Z(100m):	6	7	10	11	11	9	12	12	11	14

RESPOSTAS:

- 2 a) A média dobra. A variância quadruplica. O desvio padrão duplica.
 - b) A média aumenta de 10 unidades. Avariância e o desvio padrão não se alteram.
 - c) A variância e o desvio padrão não se alteram.
 - d) A variância e o desvio padrão são iguais a 1.
- 4 a) $\bar{x} = 124, 3 m = 120$ b) Devido a presença de valores discrepantes, no caso 175.

5 a) 15; b)
$$m = 3, 6 \bar{x} = 3,787 s^2 = 0,94 s = 0,97 Q_1 = 2,95 Q_2 = 4,60$$

- 6 a) $\bar{X}_{Fumantes} = 43,7 \ \bar{X}_{Nao-fumantes} = 30,32$
 - b) $S_{Fumantes} = 16,92 \ S_{Nao-fumantes} = 7,1278$
 - d) Em média, os fumantes levam mais tempo para dormir. Além disso, a variação do tempo para dormir é maior.
- 7 $X_1=2,7$ é o minimo, $X_5=3,9$ a mediana, X_9 o maximo. Alem disso, temos que $Q_1=2,85,\ Q_3=4,2,\ \bar{X}=3,7$, $S_x^2=0,86,\ S_x=0,93,$ Amplitude = 5,5-2,7 = 2,8, $DM_x=0,76,\ CV=\frac{0.93}{3.7}=0,2514$

	Intervalo	Frequencia	Frequencia Relativa
	0.0 - 0.9	8	0,267
	1.0 - 1.9	6	0,200
L)	2.0 - 2.9	3	0,100
D)	3.0 - 3.9	2	0,067
	4.0 - 4.9	3	0,100
	5.0 - 5.9	4	0,133
	6.0 - 6.9	4	0,133

c)
$$\bar{X} = 2,797; \bar{S} = 2,227; Amplitude = 6,5-0,2=6,3$$

9 a)

Mulheres	$100\mathrm{m}$	$400 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
Média	11,401	52,303	9,147	161,234
Mediana	$11,\!455$	52,75	9,09	160,345
Variância	0,163988	4,69289	$0,\!196001$	182,9479

Homens	100m	$400 \mathrm{m}$	$3000 \mathrm{m}$	Maratona
Média	10,264	45,529	13,429	131,81
Mediana	10,23	$45,\!48$	$13,\!415$	131,79
Variância	0,034449	0,918677	0,08521	8,075822

10
$$\bar{x} = 22,40741; m = 25; s^2 = 208,246$$

11 Sim.
$$\bar{x_A} = 33.8$$
; $\bar{x_B} = 26.11$; $\bar{x_C} = 48$; $\bar{x_D} = 32.90$

13 Não. Analisando a média o CF200 é o que mais difere e analisando a variância o CF125 é o que mais difere.

	Mediana	Média	Variância
125	4	4,083	$0,\!17$
160	$4,\!4$	4,417	$0,\!27$
200	5,65	5,75	$0,\!27$

- 14 a) Ganhar menos que R\$5.000,00. b) Na empresa B, pois como a variância é praticamente zero os valores de salários estão mais próximos a média.
- 15 Frequências relativas são dadas acima.

Crescimento	Com pedregulho	Com areia	Argila
Fraco	24,6 %	13,3%	23,3 %
Médio	47,7%	26,7 %	35~%
Bom	27,7~%	60~%	41,7 %

16 b) $\rho = 0,7871709$; c) Sim.; d) Linear.

17 $\rho_{x,y}=0,9582979;\,\rho_{x,z}=0,6939222$ Logo escolheria a potência instalada (Y)