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PREFACE

JASP stands for Jeffrey’s Amazing Statistics Program in recognition of the pioneer of Bayesian
inference Sir Harold Jeffreys. This is a free multi-platform open-source statistics package, developed
and continually updated (currently v 0.9.0.1 as of June 2018) by a group of researchers at the
University of Amsterdam. Their aim was to develop a free, open-source programme that includes both
standard and more advanced statistical techniques with a major emphasis on providing a simple
intuitive user interface.

In contrast to many statistical packages, JASP provides a simple drag and drop interface, easy access
menus, intuitive analysis with real-time computation and display of all results. All tables and graphs
are presented in APA format and can be copied directly and/or saved independently. Tables can also
be exported from JASP in LaTeX format

JASP can be downloaded free from the website https://jasp-stats.org/ and is available for Windows,
Mac OS X and Linux. You can also download a pre-installed Windows version that will run directly from
a USB or external hard drive without the need to install it locally. The programme also includes a data
library with an initial collection of over 50 datasets from Andy Fields book, Discovering Statistics using
IBM SPSS statistics® and The Introduction to the Practice of Statistics? by Moore, McCabe and Craig.

Since May 2018 JASP can also be run directly in your browser via rollApp without having to install it
on your computer (https://www.rollapp.com/app/jasp). However, this may not be the latest version
of JASP.

Keep an eye on the JASP site since there are regular updates as well as helpful videos and blog posts!!

This document is a collection of standalone handouts covering the most common standard
(frequentist) statistical analyses used by students studying Biological Sciences. Datasets used in this
document are available for download from http://bit.ly/2wlbMvf.

Dr Mark Goss-Sampson

Centre for Science and Medicine in Sport
University of Greenwich

2018

L A Field. (2017) Discovering Statistics Using IBM SPSS Statistics (5™ Ed.) SAGE Publications.
2D Moore, G McCabe, B Craig. (2011) Introduction to the Practice of Statistics (7th Ed.) W H Freeman.
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USING THE JASP INTERFACE

Open JASP.
. _ N T T T R W— — e —
..JASP_ - s oo el . Pr— — - — o— f— — :Eh
m Cammen + =
Dad~ | 22~ |83~ L2~ S| -
Descriptives T-Tests ANOVA  Regression  Frequencies Factor

Version 0.8.6

Welcome to JASP
A Fresh Way to Do Statistics: Free, Friendly, and Flexible
Data spreadsheet and Output window
® Fr
Analysis options window su
® Fril

WITPTTPE USer T imira-

@ Flexible: JASP offers standard analysis procedures in both
their classical and Bayssian manifestations

So open adata file and take JASP for a spin!

Windows can be resized by
sliding the dividing bar

Please keepin mind that this is a preview release and a number

of features are still missing.

If JASP doesn't do all you want today, then check back tomorrow:
JASP is being developed at break-neck speed!

JASP has its own .jasp format but can open a variety of different dataset formats such as:

e .csv (comma separated values) normally saved in Excel
e .txt (plain text) also can be saved in Excel

e _.sav (IBM SPSS data file)

e .ods (Open Document spreadsheet)

Clicking on the File tab or “So open a data file and take JASP for a spin” in the welcome screen allows
you to open recent files, browse your computer files, and access the Open Science Framework (OSF)
or the wide range of examples that are packaged with JASP.

E—

Open

Recent
Save
Save As Computer =

Data Sets (*,jasp *.csv *.bt *.sav v

Export Results

OSF Open Cancel
Export Data
Sync Data

Examples
Close
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All files must have a header label in the first row. Once loaded, the dataset appears in the left window:

Y | Game | &b Countrycode &% Number of England Injuries
1 1 France 7
2 2 Tonga 4
3 3 MNew Zealand 2
F 4 France 5
5 El Tonga 1
6 6 Wales 2
7 7 Wales 5
8 8 New Zealand 4
g 9 Wales 4
10 10 Tonga 3
11 11 Wales 5
12 12 Wales 3
13 13 France [

For large datasets, there is a hand icon which allows easy scrolling through the data.

On import JASP makes a best guess at assigning data to the different variable types:

Nominal ‘ Ordinal ‘ Continuous \

If JASP has incorrectly identified the data type just click on the appropriate variable data icon in the
column title to change it to the correct format.

If you have coded the data you can click on the variable name to open up the following window in
which you can label each code. These labels now replace the codes in the spreadsheet view. If you
save this as a .jasp file these codes, as well as all analyses and notes, will be saved automatically. This
makes the data analysis fully reproducible.

Filter | Value Label | |l a

v 1 Tonga

v 2 New Zealand bl

v 3 France

v 4 Wales Tl
x

In this window you can also carry out simple filtering of data, for example, if you untick the Wales label
it will not be used in subsequent analyses.

3|Page
JASP 0.9 - Dr Mark Goss-Sampson



Clicking this icon in the spreadsheet window opens up a much more comprehensive set of data
filtering options:

%G.e

t-r A =F< <D>2AV | -

& Cou...ode
& Number of... Injuries

Iyl
Oy
oYy
2y
[1v

min(Y)
max(Y)
— mean(y)

T][m round(Y)
length(y)

Welcome to the drag and drop filter!

median(y)

Using this option will not be covered in this document. For detailed information on using more
complex filters refer to the following link: https://jasp-stats.org/2018/06/27/how-to-filter-your-data-

in-jasp/

By default, JASP plots data in the Value order (i.e. 1-4). The order can be changed by highlighting the
label and moving it up or down using the using the appropriate arrows:

Filter |"u"alue Label | &
‘,/ 1 Tonga
v 2 New Zealand bl
L France 1
‘,/ 4 Wales

x

JASP 0.9 - Dr Mark Goss-Sampson

Move up
Move down
Reverse order

Close
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o
|

3 2
3, 5
= =
g 5
g g
B k=)
2 2
£ £
= =
= =z,
I I 1 1
Tonga New Zealand France Wales France New Zealand T0r|1ga Wales
Country code Country code
Filter | Value Label Filter | Value Label
v 1 Tonga W 3 France
v 2 New Zealand v 2 MNew Zealand
v 3 France W 1 Tonga
v 4 Wales v 4 Wales

If you need to edit the data in the spreadsheet ju

st double click on a cell and the data should open up

in the original spreadsheet i.e. Excel. You can change the option of which spreadsheet editor that you
use by clickingon = icon in the top right corner of the JASP window and select Preferences.

Synchronize automnatically on data
Use default spreadsheet editor

Data Editing ~ Import Data  Analyses

Open C:/Program Files/Microsoft Office/Officel S/EXCEL.EXE

file save

In this window you can change the spreadsheet option to SPSS, ODS etc. We will come back to

preferences later.

Once you have edited your data and saved the original spreadsheet JASP will automatically update to
reflect the changes that were made provided that you have not changed the file name.

JASP ANALYSIS MENU
v v v = v - v v
ad- | 22~ [~ L%~ Sg ’ au
Descriptives T-Tests ANOVA Regression  Frequencies Factor

The common analysis options can be accessed from the main toolbar. Currently (v0.9.0.1) offers the
following frequentist (standard statistics) and alternative Bayesian tests:

JASP 0.9 - Dr Mark Goss-Sampson
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Descriptives
e Descriptive stats
e Reliability analysis*

Regression
Correlation

Linear regression
Logistic regression

e ANCOVA*

Exploratory Factor Analysis (EFA)*

T-Tests Frequencies
e Independent e Binomial test
e Paired e Multinomial test
e Onesample e Contingency tables
e Log-linear regression*
ANOVA Factor
e Independent e Principal Component Analysis (PCA)*
e Repeated measures .

* Not covered in this document

BY clicking on the *+ icon on the top menu you can also access advanced options including; Network

analysis, Meta-Analysis, Structural Equation Modelling and Bayesian Summary stats.

Once you have selected your required analysis all the possible statistical options appear in the left

window and output in the right window.

Bad- | - B L% %= | &
Descriptives T-Tests ANOVA Regression  Frequencies Factor
& supp Varibles o | | Descriptives
‘ > | M len
Descriptive Statistics . . . .
. Click in this window to
len
50 1000 2000 toggle between
Walid 20 20 20 . .
Vissing 0 0 0 analysis options and
Mean 10605 18.735 26.100 .
Std Deviation 4500 4415 3774 spreadsheet in the left
Minimum 4.200 13.600 12.500
Split Maximum 21.500 27.300 33.900 window
[ » | | dose
Plots
Boxplots
[”] Frequency tables (nominal and ordinal variables) E
len
[» [Piots ] .
[ = | statistics ] 20
Percentile Values Central Tendency
25
[] Quartiles Lz .
[7] Median 20
[F] Cut points for : equal groups c
] Mode 154
[C] Percentiles: |: ] Sum
10
5
Dispersion Distribution
Std. deviation Minimum [[] Skewness 0=
1 |
[F] variance Maximum [7] Kurtosis 500 2000
[T Range [] 5. E. mean

If you hover the cursor over the Resultsa 'Y icon appears, clicking on this provides a range of options

including:

JASP 0.9 - Dr Mark Goss-Sampson
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e Remove all analyses from the output window
e Remove selected analysis

e Collapse the output

e Add notes to each output

e Copy

e Copy special (LaTeX code)

e Save image as

The ‘add notes’ option allows the results output to be easily annotated and then exported to an HTML
file by going to File > Export Results.

ANCWA - Number of England Injuries

Cases Sum of Squares df IMean Square F p
Country code g7.09 3 32.364 13.23 < .001
Residual 9782 40 2445

Nate. Type Il Sum of Squares

One way ANOVA of injunies received by England rugby players against Tonga, New Zealand, France and Wales

As previously mentioned, all tables and figures are APA standard and can just be copied into any other
document.

You can change the size of all the tables and graphs using ctrl+ (increase) ctrl- (decrease) ctrl= (back
to default size). Graphs can also be resized by dragging the bottom right corner of the graph.

One final tip: to make your tables less cluttered you can go to preferences §= in the top right of
the window and adjust the number of decimal places shown as well as displaying the exact p values

i.e. from p<.001 to p<.00084.

H Preferences

Data Editing  ImportData  Analyses

Display exact p-values
[¥] Fix the number of decimals 3 |3/

There are many further resources on using JASP on the website https://jasp-stats.org/
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DESCRIPTIVE STATISTICS

Presentation of all the raw data is very difficult for a reader to visualise or to draw any inference on.
Descriptive statistics and related plots are a succinct way of describing and summarising data but do
not test any hypotheses. There are various types of statistics that are used to describe data:

e Measures of central tendency
e Measures of dispersion

e Percentile values

e Measures of distribution

e Descriptive plots

In order to explore these measures, load Descriptive data.csv into JASP. Go to Descriptives >
Descriptive statistics and move the Variable data to the Variables box on the right.

CENTRAL TENDENCY.

This can be defined as the tendency for variable values to cluster around a central value. The three
ways of describing this central value are mean, median or mode. If the whole population is considered
we the term population mean / median/mode is used. If a sample/subset of the population is being
analysed the term sample mean/ median/mode is used. The measures of central tendency move
toward a constant value when the sample size is sufficient to be representative of the population.

In the Statistics options make sure that everything is unticked apart from mean, median and mode.

T Descriptive Statistics
Mean Yariable
Median Yalid 810
Missing 0
Mode Mean 17.74
[7] Sum Median 17.490
Mode 20.00

The mean, M or X (17.71) is equal to the sum of all the values divided by the number of values in the
dataset i.e. the average of the values. It is used for describing continuous data. It provides a simple
statistical model of the centre of distribution of the values and is a theoretical estimate of the ‘typical
value’. However, it can be influenced heavily by ‘extreme’ scores.

The median, Mdn (17.9) is the middle value in a dataset that has been ordered from the smallest to
largest value and is the normal measure used for ordinal or non-parametric continuous data. Less
sensitive to outliers and skewed data

The mode (20.0) is the most frequent value in the dataset and is usually the highest bar in a distribution
histogram
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DISPERSION

In the Statistics options make sure that everything is unticked apart from standard deviation, variance
and standard error of the mean.

Descriptive Statistics
Dispersion Yariable
Std. deviation [ | Minimum Valid 210
Variance [] Maximum Missing 0
Sid. Error of Mean 0.24
["] Range S.E. mean Std. Deviation 6.94
Variance 4210

Standard deviation, S or SD (6.94) is used to quantify the amount of dispersion of data values around
the mean. A low standard deviation indicates that the values are close to the mean, while a high
standard deviation indicates that the values are dispersed over a wider range.

Variance (S* = 48.1) is another estimate of how far the data is spread from the mean. It is also the
square of the standard deviation.

The standard error of the mean, SE (0.24) is a measure of how far the sample mean of the data is
expected to be from the true population mean. As the size of the sample data grows larger the SE
decreases compared to S and the true mean of the population is known with greater specificity.

Confidence intervals (Cl), although not shown in the general Descriptive statistics output, these are
used in many other statistical tests. When sampling from a population to get an estimate of the mean,
confidence intervals are a range of values within which you are n% confident the true mean is
included. A 95% Cl is, therefore, a range of values that one can be 95% certain contains the true mean
of the population. This is not the same as a range that contains 95% of ALL the values.

For example, in a normal distribution, 95% of the data are expected to be within £ 1.96 SD of the mean
and 99% within + 2.576 SD.

95% Cl =M £ 1.96 * the standard error of the mean.

Based on the data so far, M = 17.71, SE = 0.24, this will be 17.71 + (1.96 * 0.24) or 17.71 + 0.47.

Therefore the 95% Cl for this dataset is 17.24 - 18.18 and suggests that the true mean is likely to be
within this range 95% of the time

9|Page
JASP 0.9 - Dr Mark Goss-Sampson



QUARTILES

In the Statistics options make sure that everything is unticked apart from Quartiles.

Percentile Values Descriptive Statistics
Quartiles Variable
. Walid 810
[] Cut points for: ‘:I equal groups Missing 0
[F Percentiles: | | 25th percentile 13.05
' 50th percentile 17.90
T5th percentile 22.30

Quartiles are where datasets are split into 4 equal quarters, normally based on rank ordering of
median values. For example, in this dataset

1]1]2]2]3]3]4]4a]4]4a] 5 [5]|s5][6]7] 8 8]|9]10]10]10
25% 50% 75%

The median value that splits data by 50% = 50th percentile =5
The median value of left side = 25th percentile = 3
The median value of right side = 75th percentile = 8

From this the Interquartile range (IQR) range can be calculated, this is the difference between the 75th
and 25th percentiles i.e. 5. These values are used to construct the descriptive boxplots later.

DISTRIBUTION

Skewness describes the shift of the distribution away from a normal distribution. Negative skewness
shows that the mode moves to the right resulting in a dominant left tail. Positive skewness shows
that the mode moves to the left resulting in a dominant right tail.

A A

Negative skewness Positive skewness
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Kurtosis describes how heavy or light the tails are. Positive kurtosis results in an increase in the
“pointiness” of the distribution with heavy (longer) tails while negative kurtosis exhibit a much more
uniform or flatter distribution with light (shorter) tails.

+ kurtosis

Normal

- kurtosis

In the Statistics options make sure that everything is unticked apart from skewness and kurtosis.

Distribution
Skewness
Kurtosis

Descriptive Statistics

“ariable
Walid 210
Missing 0
Skewness —0.004
Std. Error of Skewness 0.084
Kurtosis —0.410
Sid. Error of Kurtosis 0172

We can use the Descriptives output to calculate skewness and kurtosis. For a normal data distribution
both values should be close to zero (see - Exploring data integrity in JASP for more details).

DESCRIPTIVE PLOTS IN JASP

Currently, JASP produces three main types of descriptive plots:

e Distribution plots

e Correlation plot

e Boxplots — with 3 options
O Boxplot Element
0 Violin Element
0 litter Element

JASP 0.9 - Dr Mark Goss-Sampson
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Again, using Descriptive data.csv with the variable data in the Variables box, go to the statistics
options and under Plots tick Distribution plots and Boxplots — Boxplot Element.

|~ |Plots

Distribution plots
Correlation plot
Boxplots
Label Outliers
Color
Boxplot Element
Vielin Element
Jitter Element

The Distribution plot is based on splitting the data into frequency bins, this is then overlaid with the
distribution curve. As mentioned before, the highest bar is the mode (most frequent value of the
dataset. In this case, the curve looks approximately symmetrical suggesting that the data is
approximately normally distributed. The second distribution plot is from another dataset which shows

that the data is positively skewed.

Density
N
-

0 10 20 30 40
Variable

Density

=
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The boxplots visualise a number of statistics described above in one plot:

e Median value
e 25 and 75% quartiles

e Interquartile range (IQR) i.e. 75% - 25% quartile values
e Maximum and minimum values plotted with outliers excluded

e Qutliers are shown if requested

Maximum value

Outlier

75% quartile

Median value

25% quartile

Minimum value

J \

J\

o— Top 25%

— IQR

— Bottom 25%

Go back to the statistics options, in Descriptive plots tick both Boxplot and Violin Element, look at how
the plot has changed. Next tick Boxplot, Violin and lJitter Elements. The Violin plot has taken the
smoothed distribution curve from the Distribution plot, rotated it 90° and superimposed it on the
boxplot. The jitter plot has further added all the data points.

Boxplot + Violin plot

JASP 0.9 - Dr Mark Goss-Sampson

Boxplot + Violin + Jitter plot
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SPLITTING DATA FILES

If there is a grouping variable (categorical or ordinal) descriptive statistics and plots can be produced
for each group. Using Descriptive data.csv with the variable data in the Variables box now add Group

to the Split box. The output will be as follows:

Descriptive Statistics ¥
“ariable

Group 1 Group 2
Walid 315 4085
Missing 0 0
Iean 16.021 13.787
Median 15.800 19.400
Mode 20.000 20.200
Sid. Deviation 6.424 7.040
Yariance 41,264 45 556
Skewness 0.200 —0.176
Sid. Error of Skewness 0.137 0110
Kurtosis -0.101 —0.397
Sitd. Error of Kurtosis 0.274 0214
Minimum 1.100 0.200
Maximum 35300 36.500

= =
2 Iz
o [
o o
I T T T 1 [ T T T 1
0 10 20 30 40 (o 10 20 30 40
Variable Variable
404
30+
o
& 20
[
o
=
104
[}_
| |
Group 1 Group 2
Group
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EXPLORING DATA INTEGRITY

Sample data is used to estimate parameters of the population whereby a parameter is a measurable
characteristic of a population, such as a mean, standard deviation, standard error or confidence
intervals etc.

What is the difference between a statistic and a parameter? If you randomly polled a selection of
students about the quality of their student bar and you find that 75% of them were happy with it. That
is a sample statistic since only a sample of the population were asked. You calculated what the
population was likely to do based on the sample. If you asked all the students in the university and
90% were happy you have a parameter since you asked the whole university population.

Bias can be defined as the tendency of a measurement to over- or under-estimate the value of a
population parameter. There are many types of bias that can appear in research design and data
collection including:

e Participant selection bias — some being more likely to be selected for study than others

e Participant exclusion bias - due to the systematic exclusion of certain individuals from the
study

e Analytical bias - due to the way that the results are evaluated

However statistical bias can affect a) parameter estimates, b) standard errors and confidence intervals
or c) test statistics and p values. So how can we check for bias?

IS YOUR DATA CORRECT?

Outliers are data points that are abnormally outside all other data points. Outliers can be due to a
variety of things such as errors in data input or analytical errors at the point of data collection Boxplots
are an easy way to visualise such data points where outliers are outside the upper (75% + 1.5 * IQR)
or lower (25% - 1.5 * IQR) quartiles

 outlier

Max —— 3
Boxplots show:

— Top 25% e Median value

e 25 & 75% quartiles

e IQR —Inter quartile range

e Max & min values plotted
with outliers excluded

75% quartile

— IQR e Qutliers shown if requested
Median
o i =
| 25% quartile | Bottomn
Min —— o 250,

Load Exploring Data.csv into JASP. Under Descriptives > Descriptive Statistics, add Variable 1 to the
Variables box. In Plots tick the following Boxplots, Label Outliers, and BoxPlot Element.
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% Variable 2
% Variable 3

Variables

2 % Variablel

Split

(> ]|

Frequency tables (nominal and ordinal variables)

| ¥ Plots

Boxplots

Color

Label Qutliers

Distribution plots
Correlation plot

Boxplot Elernent
Violin Element
Jitter Element

The resulting Boxplot on the left looks very compressed and an obvious outlier is labelled as being in
row 38 of the dataset. This can be traced back to a data input error in which 91.7 was input instead of

917. The graph on the right shows the BoxPlot for the ‘clean’ data.

1200+
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600+

Variable 1

4004

200+

[}_

Total

1050+
1000+
950
900+

850

Variable 1

800

750

700

Total

How you deal with an outlier depends on the cause. Most parametric tests are highly sensitive to
outliers while non-parametric tests are generally not.

JASP 0.9 - Dr Mark Goss-Sampson
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Correct it? — Check the original data to make sure that it isn’t an input error, if it is, correct it and rerun
the analysis.

Keep it? - Even in datasets of normally distributed, data outliers may be expected for large sample
sizes and should not automatically be discarded if that is the case.

Delete it? — This is a controversial practice in small datasets where a normal distribution cannot be
assumed. Outliers resulting from an instrument reading error may be excluded but it should be verified
first.

Replace it? — Also known as winsorizing. This technique replaces the outlier values with the relevant
maximum and/or minimum values found after excluding the outlier.

Whatever method you use must be justified in your statistical methodology and subsequent analysis.

WE MAKE MANY ASSUMPTIONS ABOUT OUR DATA.

When using parametric tests we make a series of assumptions about our data and bias will occur if
these assumptions are violated, in particular:

e Normality
e Homogeneity of variance or homoscedasticity

Many statistical tests are actually an omnibus of tests of which some will check these assumptions.

TESTING THE ASSUMPTION OF NORMALITY

Normality does not mean necessarily that the data is normally distributed per se but it is whether or
not the dataset can be well modelled by a normal distribution. Normality can be explored in a variety
of ways:

e Numerically
e Visually / graphically
e Statistically

Numerically we can use the Descriptives output to calculate skewness and kurtosis. For a normal data
distribution, both values should be close to zero. To determine the significance of skewness or kurtosis
we calculate their z-scores by dividing them by their associated standard errors:

skewness kurtosis

Skewness z = Kurtosis z =
z Skewness standard error z kurtosis standard error

Z score significance:  p<0.05 if z >1.96 p<0.01 if z >2.58 p<0.001 if z >3.29

Using Exploring data.csv, go to Descriptives>Descriptive Statistics move Variable 3 to the Variables
box, in the Statistics drop down menu select Mean, Std deviation, Skewness and Kurtosis as shown
below with the corresponding output table.
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’ v | Statistics Variable 3
Percentile Values Central Tendency Valid 50
M Missing 0
: ean
03 Quartiles Mean 0.893
. [] Median L.
[] Cut points for: |4 equal groups Std. Deviation 0.673
: [ Mode Skewness 0.839
[7] Percentiles: Fs
s Std. Error of Skewness 0.337
Kurtosis -0.407
Dispersion Distribution Std. Error of Kurtosis 0.662
Std. deviation [] Minimum Skewness
[ Variance [ Maximum Kurtosis
| Range [7] 5. E. mean

It can be seen that both skewness and kurtosis are not close to 0. The positive skewness suggests that
data is distributed more on the left (see graphs later) while the negative kurtosis suggests a flat
distribution. When calculating their z scores it can be seen that the data is significantly skewed p<0.05.

Skewness Z = 089 _ 2.49 Kurtosis Z = 0407 _ 0.614
0.337 0.662

[As a note of caution skewness and kurtosis many appear significant in large datasets even though the
distribution is normal.]

Now add Variable 2 to the Variables box and in Plots tick Distribution plot. This will show the following
two graphs:

N\
\

/ N \_//-\

= A A

Density
AN
/
/
Density

T T T T T 1 I T T T T 1
0 2 4 6 8 10 0 0.5 1 1.5 2 2.5

Variable 2 Variable 3

It is quite easy to visualise that Variable 2 has a symmetrical distribution. Variable 3 is skewed to the
left as confirmed by the skewness Z score.

Another graphical check for normality is a Q-Q plot. This is produced as part of the Assumption Checks
used in linear regression and ANOVA. Q-Q plots show the quantiles of the actual data against those

expected for a normal distribution.
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If data are normally distributed all the points will be close to the diagonal reference line. If the points
‘sag’ above or below the line there is a problem with kurtosis. If the points snake around the line then
the problem is skewness. Below are Q-Q plots for Variables 2 and 3. Compare these to the previous
distribution plots and the skewness/kurtosis z scores above.

Variable 2 3 - Variable 3
»
s S 2+
= >
4 g 1-
3 3
N
B T 0+
= [}
g 2
5] & -1+
n w a
2
T T T T T T 1 I T T T T T 1
-3 -2 -1 0 1 2 3 -3 -2 -1 0 1 2 3
Theoretical Quantiles Theoretical Quantiles

The Shapiro-Wilk test is a statistical way used by JASP to check the assumption of normality. It is used
in the Independent (distribution of the two groups) and Paired (distribution of differences between
pairs) t-tests. The test results in a W value; where small values indicate your sample is not normally
distributed (the null hypothesis that your population is normally distributed if your values are under a
certain threshold can therefore be rejected). The table below is an example of the Shapiro-Wilk
output table showing no significant deviation in normality in the 2 groups.

Test of Normality (Shapiro-Wilk)

w P
Variable 2 Control 0.971 0.691
Test 0.961 0.408

Note. Significant results suggest a deviation from normality.

The most important limitation is that the test has can be biased by sample size. The larger the sample,
the more likely you’ll get a statistically significant result.

Testing the assumption of normality — A cautionary note!

For most parametric tests to be reliable, one of the assumptions is that the data is approximately
normally distributed. A normal distribution peaks in the middle and is symmetrical about the mean.
However, data does not need to be perfectly normally distributed for the tests to be reliable.

So, having gone on about testing for normality — is it necessary?

The Central Limit Theorem states that as the sample size gets larger i.e. >30 data points the
distribution of the sampling means approaches a normal distribution. So the more data points you
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have the more normal the distribution will look and the closer your sample mean approximates the
population mean.

Large datasets may result in significant tests of normality i.e. Shapiro-Wilk or significant skewness and
kurtosis z-scores when the distribution graphs look fairly normal. Conversely, small datasets will
reduce the statistical power to detect non-normality.

However, data that definitely does not meet the assumption of normality is going to result in poor
results for certain types of test (i.e. ones that state that the assumption must be met!). How closely
does your data need to be normally distributed? This is a judgment call best made by eyeballing the
data.

WHAT DO | DO IF MY DATA IS REALLY NOT NORMALLY DISTRIBUTED?

Transform the data and redo the normality checks on the transformed data. Common transformations
include taking the log or square root of the data.

Use non-parametric tests since these are distribution free tests and can be used instead of their
parametric equivalent.

TESTING HOMOGENEITY OF VARIANCE

Levene’s test is commonly used to test the null hypothesis that variances in different groups are equal.
The result from the test (F) is reported as a p value, if not significant then you can say that the null
hypothesis stands — that the variances are equal; if the p value is significant then the implication is
that the variances are unequal. Levene’s test is included in the Independent t-test and ANOVA in
JASP as part of the Assumption Checks.

Using Exploring data.csv, go to T-Tests>Independent Samples t-test move Variable 1 to the Variables
box and Group to the Grouping variable and tick Assumption Checks > Equality of variances.

%, Variable2 Dependent Variables | oK I
% Variable 3 P || Varisblel

Grouping Variable
> |‘- Group
Assumption Checks Missing Values
[T Normality @ Exclude cases analysis by analysis
Equality of variances ) Bxclude cases listwise
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Test of Equality of Variances (Levene's)

F df p
Variable 1 0.218 1 0.643

In this case, there is no significant difference in variance between the two groups F (1) =0.218, p=.643.

The assumption of homoscedasticity (equal variance) is important in linear regression models as is
linearity. It assumes that the variance of the data around the regression line is the same for all
predictor data points. Heteroscedasticity (the violation of homoscedasticity) is present when the
variance differs across the values of an independent variable. This can be visually assessed in linear
regression by plotting actual residuals against predicted residuals

[ s |Assumptic-n Checks

Residual Plots
Residuals vs. dependent
Residuals ws. covarnates
Residuals vs. predicted
Residuals histogram
[] Standardized residuals
Q-0 plot standardized residuals

If homoscedasticity and linearity are not violated there should be no relationship between what the
model predicts and its errors as shown in the graph on the left. Any sort of funnelling (middle graph)
suggests that homoscedasticity has been violated and any curve (right graph) suggests that linearity
assumptions have not been met.
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ONE SAMPLE T-TEST

Research is normally carried out in sample populations, but how close does the sample reflect the
whole population? The parametric one sample t-test determines whether the sample mean is
statistically different from a known or hypothesized population mean.

The null hypothesis (H,) tested is that the sample mean is equal to the population mean.

ASSUMPTIONS
Three assumptions are required for a one-sample t-test to provide a valid result:

e The test variable should be measured on a continuous scale.

e The test variable data should be independent i.e. no relationship between any of the data
points.

e The data should be approximately normally distributed

o There should be no significant outliers.

RUNNING THE ONE SAMPLE T-TEST

Open one sample t-test.csv, this contains two columns of data representing the height (cm) and body
masses (kg) of a sample population of males used in a study. In 2017 the average adult male in the UK
population was 178 cm tall and has a body mass of 83.6 kg.

Go to T-Tests > One Sample t-test and in the first instance add height to the analysis box on the right.
Then tick the following options and add 178 as the test value:

Tests Additional Statistics
Student Location parameter
[T Wilcexen signed-rank [7] Confidence interval 95 %
[ Z test Effect size
[7] Confidence interval 95 %
Test value: 178

Descriptives

[7] Descriptives plots
Hypothesis

Confidence interval |95 %

@ . .
L [7] Vovk-Sellke maximurm p-ratic
(1 > Test value

() < Test value

Assumption Checks Missing Values

@ Exclude cases analysis by analysis

Meormality

(7 Exclude cases listwise
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UNDERSTANDING THE OUTPUT

The output should contain three tables.

Test of Narmality (Shapiro-Wilk)

W p

height 0.969 0.507

Naote. Significant results suggest a
deviation from normality.

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the heights are
normally distributed, therefore this assumption is not violated. If this showed a significant difference
the analysis should be repeated using the non-parametric equivalent, Wilcoxon’s signed rank test
tested against the population median height.

COne Sample T-Test *

1 df p Mean Difference Cohen's d

height -0.382 22 0.708 —0.391 -0.080

MNote. Student’s t-test.
MNote. Far the Student -test, location parameter is given by mean difference d.
MNote. Far the Student -test, effect size is given by Cohen's d.

Mote. Far all tests, the altermative hypothesis specifies that the population mean is
different from 178,

This table shows that there are no significant differences between the means p =.706

Descriptives

M Iean 5D SE

height 23.000 177.609 4915 1.025

The descriptive data shows that the mean height of the sample population was 177.6 cm compared
to the average 178 cm UK male.

Repeat the procedure by replacing height with mass and change the test value to 83.6.

Test of Narmality (Shapira-Wilk)

W p

mass 0.841 0.185

MNote. Significant results suggest a
deviation from normality.
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The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the masses are
normally distributed.

One Sample T-Test

t df p Wean Difference Cohen's d

mass -7.158 22 = .001 -10.487 —-1.4893

Mote. Students -test.
MNote. For the Student t-test, location parameter is given by mean difference a.
MNote. For the Student t-test, effect size is given by Cohen's o

Mote. For all tests, the alternative hypothesis specifies that the population mean is
different from 33.4.

This table shows that there is a significant difference between the mean sample (72.9 kg) and
population body mass (83.6 kg) p <.001

Descriptives

M Iean sD SE

mass 23.000 72813 7.025 1.465

REPORTING THE RESULTS

A one sample t-test showed no significant difference in height compared to the population mean (t
(22) = -0.382, p= .706), however, the participants were significantly lighter than the UK male
population average (t (22) =-7.159, p<.001).
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BINOMIAL TEST

The binomial test is effectively a non-parametric version of the one-sample t-test for use with
dichotomous (i.e. yes/no) categorical datasets. This tests whether or not the sample frequency is
statistically different from a known or hypothesized population frequency.

The null hypothesis (Ho) tested is that the sample frequency is equal to the expected population
frequency.

ASSUMPTIONS

Three assumptions are required for a one-sample t-test to provide a valid result:
e The test variable should be a dichotomous scale (such as yes/no, male/female etc.).
e The sample responses should be independent
e The sample size is less, but representative of the population

RUNNING THE BINOMIAL TEST

Open binomial.csv, this contains one column of data showing the number of students using either a
Windows laptop or a MacBook at University. In January 2018, when comparing just the two operating
systems, the UK market share of Windows was 86% and Mac 10S 14%.3

Go to Frequencies >Binomial test. Move the Laptop variable to the data window and set the Test value
to 0.86 (86%). Also tick Descriptive plots.

» | & Laptop l OK I

Test value: 0,36

Hypothesis Additional Statistics
@ =Testwvalue [] Confidence interval
() = Test value Interval |as oy,
() < Testvalue [] vovk-Sellke maximum p-ratio
Plots
Descriptive plots
Confidence interval 95 B

3 https://www.statista.com/statistics/268237/global-market-share-held-by-operating-systems-since-
2009/
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The following table and graph show that the frequencies of both laptops are significantly less than
86%. In particular, these students are using significantly fewer Windows laptops than was expected
compared to the UK market share.

Binomial Test
Level Counts Total Proportion p
Lapiop Iac 36 aa 0.404 =001
Windows ha a0 0.595 = .001

MNote. Proportions tested against value: 0.26.

Mac Windows
1.00— 1.00—
086—------------ 086—------------
0.00- 0.00-
| |
Mac Windows

Is this the same for MacBook users? Go back to the options window and change the test value to
0.14 (14%). This time both frequencies are significantly higher than 14%. This shows that students
are using significantly more MacBooks than was expected compared to the UK market share.

Binomial Test

Level Counts Tatal FProportion p
Laptap ac 36 a0 0.404 = 001
Windows 53 a0 0.596 = 001

Note. Proportions tested against value: 0.14.
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Mac Windows

1.00— 1.00—
014—-=-==-==-====== 014—-=-==-==-======
0.00- 0.00-
| |
Mac VYWindows

REPORTING THE RESULTS

The UK proportion of Windows and MacBook users was reported to be 86% and 14% respectively. In
a cohort of University students (N=90), a Binomial test revealed that the proportion of students using
Windows laptops was significantly less (59.6%, p<.001) and those using MacBooks significantly more
(40.4%, p<.001) than expected.
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MULTINOMIAL TEST

The multinomial test is effectively an extended version of the Binomial test for use with categorical
datasets containing three or more factors. This tests whether or not the sample frequency is
statistically different from a hypothesized population frequency (multinomial test) or known a known
frequency (Chi-square ‘goodness-of-fit’ test).

The null hypothesis (Ho) tested is that the sample frequency is equal to the expected population
frequency.

ASSUMPTIONS

Three assumptions are required for a multinomial test to provide a valid result:
e The test variable should be a categorical scale containing 3 or more factors
e The sample responses should be independent
e The sample size is less, but representative of the population

RUNNING THE MULTINOMIAL TEST

Open multinomial.csv. This contains three columns of data showing the number of different coloured
M&Ms counted in five bags. Without any prior knowledge, it could be assumed that the different
coloured M&Ms are equally distributed.

Go to Frequencies > Multinomial test. Move colour of the M&Ms to Factor and the observed number
of M&Ms to counts. Tick Descriptives and Descriptives Plots.

Lo ]

% Expected Factor

> |£| Colour |

Counts
> |% Cbzerved |
Expected Counts
Lo ] |
Hypothesis
@ Multinomial test
i ¥ test
Additional Statistics Display
Descriptives @ Counts
(7 Proportions
[7] confidence interval o
Plots

[7] vovk-sellke maximum p-ratio
Descriptives plot

Confidence interval g5 o
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As can be seen in the Descriptive table, the test assumes an equal expectation for the proportions of
coloured M&Ms (36 of each colour). The Multinomial test results show that the observed distribution
is significantly different (p<.001) to an equal distribution.

Multinomial Test

X df p

Multinomial 35832 5 = 001

Descriptives

Colour Chserved Expected: Multinomial

Blug 31 36
Brown 63 36
Green 43 3G
Qrange 19 36
Red 41 36
Yellow 22 36

Crange —
Red-

Yellow —

1 1
0 20 40 60 80
Observed counts
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CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST.

However, further research shows that the manufacturers produce the coloured M&Ms in different

ratios:
Colour Blue Brown Green Orange Red Yellow
Proportion | 24 13 16 20 13 14

These values can now be used as the expected counts, so move the Expected variable to the Expected
Counts box. This automatically runs the x2 ‘goodness-of-fit’ test leaving the Hypothesis options greyed

out.

As can be seen in the Descriptives table, JASP has calculated the expected numbers of the different
coloured M&Ms based on the manufacturers reported production ratio. The results of the test show
that the observed proportions of the different coloured M&Ms are significantly different (x2 =74.5,
p<.001) to those proportions stated by the manufacturer.

Multinomial Test

L df p
Expected 74535 5 = 001
Descriptives
Colour Chserved Expected: Expected
Blue 31 52
Brown 63 28
Green 43 35
Qrange 19 43
Red 41 28
Yellow 22 30
Blue - T
Brown— t

S Green— T

(=]}

©

© Orange— —t—

Red- e
Yellow— T
| | | | |
0 20 40 a0
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MULTINOMIAL AND X? ‘GOODNESS-OF-FIT’ TEST.

JASP also provides another option whereby both tests can be run at the same time. Go back to the
Options window and only add Colour to the Factor and Observed to the Counts boxes, remove the
expected counts if the variable is still there. In Hypotheses now tick the x2 test. This will open up a
small spreadsheet window showing the colour and H, (a) with each cell have 1 in it. This is assuming
that the proportions of each colour are equal (multinomial test).

In this window, add another column which will automatically be labelled H, (b). The expected
proportions of each colour can now be typed in.

Ha (3) Ha (b) || add column
Delete column|

. 13 Delete column
Green 1 16

Orange 1 20 i

Red 1 13 1

Yelow 1 14

- Reset

Now when the analysis is run, the results of the tests for the two hypotheses are shown. H, (a) is
testing the null hypothesis that the proportions of each colour are equally distributed, while H, (b) is
testing the null hypothesis that the proportions are the same as those expected. As can be seen, both
hypotheses are rejected. In particular, evidence indicates that the colours of plain M&M's do not
match the manufacturers published proportions.

Multimomial Test

W df p
He {a) 35932 5 = 001
He (b) 74535 L = 001
Descriptives
Expected

Colour Observed Ho{a) Haib)

Blue 31 36 52
Brown 63 36 28
Green 43 3G 35
Qrange 19 36 43
Red 41 36 28
Yellow 22 36 30
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COMPARING TWO INDEPENDENT GROUPS

INDEPENDENT T-TEST

The parametric independent t-test, also known as Student’s t-test, is used to determine if there is a
statistical difference between the means of two independent groups. The test requires a continuous
dependent variable (i.e. body mass) and an independent variable comprising 2 groups (i.e. males and
females).

This test produces a t-score which is a ration of the differences between the two groups and the
differences within the two groups:

mean group 1 — mean group 2

standard error of the mean dif ferences

(X1=X2) X = mean
f —
(51)2 (S2)2 S = standard deviation
N1 N2 n = number of data points

A large t-score indicates that there is a greater difference between groups. The smaller the t-score,
the more similarity there is between groups. A t-score of 5 means that the groups are five times as
different from each other as they are within each other.

The null hypothesis (H,) tested is that the population means from the two unrelated groups are equal

ASSUMPTIONS OF THE PARAMETRIC INDEPENDENT T-TEST
Group independence:

Both groups must be independent of each other. Each participant will only provide one data point for
one group only. For example participant 1 can only be in either a male or female group — not both.
Repeated measures are assessed using the Paired t-test.

Normality of the dependent variable:

The dependent variable should also be measured on a continuous scale and be approximately
normally distributed with no significant outliers. This can be checked using the Shapiro-Wilk test. The
t-test is fairly robust and small deviations from normality are normally acceptable. However, this is
not the case if the group sizes are very different. A rule of thumb is that the ratio between the group
sizes should be <1.5 (i.e. group A = 12 participants and group B = >8 participants).

If normality is violated you can try transforming your data (for example log values, square root values)
or, and if the group sizes are very different, use the Mann-Whitney U test which is a non-parametric
equivalent that does not require the assumption of normality (see later).
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Homogeneity of variance:

The variances of the dependent variable should be equal in each group. This can be tested using
Levene's Test of Equality of Variances.

Uneaual variance Eaual variance
™
™
™
* .
™ .
™ 4 .
.
™ . .
] . s
H .
. ™
. .
| .
.
™ ™
.
. .
1 2 1 2

If the Levene's Test is statistically significant, indicating that the group variances are unequal we can
correct for this violation by using an adjusted t-statistic based on the Welch method.

RUNNING THE INDEPENDENT T-TEST

Open Independent t-test.csv, this contains weight loss on a self-controlled 10-week diet between men
and women. Its good practice to check the Distribution and boxplots in Descriptives to visually check
for distribution and outliers.

Go to T-Tests > Independent Samples t-test and put weight loss in the Dependent variable box and
gender (independent variable) in the Grouping Variable box.

Dependent Variables oK
» A Weight loss

Grouping Variable

» |£b Gender
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In the analysis window tick the following options:

Tests
Student
Welch
[C] Mann-Whitney

Hypothesis
@ Groupl z Group 2
() Groupl > Group 2

(") Groupl < Group 2

Assumption Checks

Mormality
Equality of variances

Additional Statistics

Location parameter

[7] Confidence interval 95
Effect size

[] Confidence interval 95
Descriptives
Descriptives plots

Ceonfidence interval 95
[T Vovk-Sellke maximum p-ratio
Missing Values
@ Exclude cases analysis by analysis

() Exclude cases listwise

%

UNDERSTANDING THE OUTPUT

The output should consist of four tables and one graph. Firstly we need to check that the parametric
assumptions required are not violated.

Test of Narmality (Shapira-Wilk)

W p
‘Weight loss Females 0963 0232
hales 0.971 0310

normality.

MNote. Significant results suggest a deviation from

Shapiro-Wilk test shows that both groups have normally distributed data, there for the assumption of
normality is not violated. If one or both were significant you should consider using the non-parametric

equivalent Mann-Whitney test.

Test of Equality of Variances (Levene's)

F df p

Weight loss 2278 1 0.135

Levene’s test shows that there is no difference in variance, therefore, the assumption of homogeneity
of variance is not violated. If Levene’s test was significant Welch’s adjusted t-statistic, degrees of
freedom and p values should be reported.

JASP 0.9 - Dr Mark Goss-Sampson
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Independent Samples T-Test

Test Statistic df p Mean Difference SE Difference Cohen's d
Weight loss Student &.160 85.000 = 001 3.200 0.521 1.322
Welch & 191 84 544 =001 3.208 0.518 1.325

This table shows the two computed t-statistics (Student and Welch). Remember the t-statistic is
derived from the mean difference divided by the standard error of the difference. Both show that
there is a significant statistical difference between the two groups (p<.001) and Cohen’s d suggests
that this is a large effect.

Group Descriptives

Group M Wean sD SE
Weight loss Females 42 3929 2242 0345
hales 45 3720 2538 03385
8 —
w
w
o
=
=
2
2 -
I 1
Females Males
Gender

From the descriptive data, it can be seen that females had a higher weight loss than males.

REPORTING THE RESULTS

An independent t-test showed that females lost significantly more weight over 10 weeks dieting than
males t(85)=6.16, p<.001. Cohen’s d (1.322) suggests that this is a large effect.
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MANN-WITNEY U TEST
If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal
by nature, the equivalent non-parametric independent test is the Mann-Whitney U test.

Open Mann-Whitney pain.csv which contains subjective pain scores (0-10) with and without ice
therapy. NOTE: make sure that Treatment is categorical and pain score is ordinal. Go to T-Tests >
Independent t-tests and put pain score in the Dependent variable box and use Treatment as the
grouping variable.

In the analysis options only tick:

v" Mann-Whitney
v Location parameter
v Effect size

There is no reason to repeat the assumption checks since Mann-Whitney does not require the
assumption of normality or homogeneity of variance required by parametric tests.

UNDERSTANDING THE OUTPUT

This time you will only get one table:

Independent Samples T-Test

W p Hodges-Lehmann Estimate Fank-Biserial Correlation

Pain scare 207.000 = 001 2.000 0.2840
MNote. Mann-Whitney U test.

The Mann-Whitney U-statistic (JASP reports this as W since it is an adaptation of Wilcoxon’s signed
rank test) is highly significant. U=207, p<.001.

The location parameter, the Hodges—Lehmann estimate, is the median difference between the two
groups. The rank-biserial correlation (rs) can be considered as an effect size and is interpreted the
same as Pearson’s r, so 0.84 is a large effect size.

For non-parametric data, you should report median values as your descriptive statistics and use
boxplots instead of line graphs and confidence intervals, SD/SE bars. Go to Descriptive statistics, put
Pain score into the variable box and Split the file by Treatment.
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Descriptive Statistics

Fain score
Contral lce
Valid 15 15
Missing 0 0
Wedian 7.000 3.000
Minimum 4.000 1.000
Maximum 10.000 6.000
Plots
Boxplots
Pain score
10 —_
g
o
o G
o
w
£
@ 4
('l
2 —
D. -
|
Control

REPORTING THE RESULTS

JASP 0.9 - Dr Mark Goss-Sampson

Treatment

lce

A Mann-Whitney test showed that Ice therapy significantly reduces pain scores (Mdn = 3) compared
to the control group (Mdn = 7), U=207, p<.001.
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COMPARING TWO RELATED GROUPS

PAIRED SAMPLES T-TEST

As with the Independent t-test, there are both parametric and non-parametric options available in
JASP. The parametric paired-samples t-test (also known as the dependent sample t-test or repeated
measures t-test) compares the means between two related groups on the same continuous,
dependent variable. For example, looking at weight loss pre and post 10 weeks dieting.

mean of the differences between group pairs

The paired t statistic =
P standard error of the mean differences

With the paired t-test, the null hypothesis (H,) is that the pairwise difference between the two
groups is zero.

ASSUMPTIONS OF THE PARAMETRIC PAIRED SAMPLES T-TEST
Four assumptions are required for a paired t-test to provide a valid result:

o The dependent variable should be measured on a continuous scale.

e The independent variable should consist of 2 categorical related/matched groups, i.e. each
participant is matched in both groups

e The differences between the matched pairs should be approximately normally distributed

e There should be no significant outliers in the differences between the 2 groups.

RUNNING THE PAIRED SAMPLES T-TEST

Open Paired t-test.csv in JASP. This contains two columns of paired data, pre-diet body mass an post
4 weeks of dieting. Go to T-Tests > Paired Samples t-test. Ctrl-click both variables and add them to the
analysis box on the right.

%% Pre diet body mass Pre diet body... Postd weeks .. QK

‘% Post 4 weeks diet
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In the analysis options tick the following:

Tests Additional Statistics
Student Location parameter
["] Wilcoxon signed-rank [] Confidence interval 95 %

Effect size

[7] Confidence interval 95 %
Descriptives
Descriptives plots

Hypothesis
@ Measurel # Measure 2
(") Measurel > Measure 2

Confidence interval 95 %

) Measurel < Measure 2 [ Vovk-Sellke maximum p-ratio

Assumption Checks Missing Values

Meormality @ Exclude cases analysis by analysis

() Exclude cases listwise

UNDERSTANDING THE OUTPUT

The output should consist of three tables and one graph.

Test of Mormality (Shapira-Wilk:)

W p

Pre diet body mass - Fost 4 weeks diet 0575 0124
MNote. Significant resulis sugagest a deviation from normality.

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the pairwise
differences are normally distributed, therefore the assumption is not violated. If this showed a

significant difference the analysis should be repeated using the non-parametric equivalent,
Wilcoxon’s signed rank test.

Paired Samples T-Test

t df p Mean Difference SE Difference Cohen's d

Pre diet body mass - Post 4 weeks diet 13.039 7 =.001 3782 0.200 1.476

Note. Student’s H-est.

This shows that there is a significant difference in body mass between the pre and post dieting

conditions, with a mean difference (location parameter) of 3.783kg. Cohen’s d states that this is a
large effect.
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The descriptive statistics and plot show that there was a reduction in body mass following 4 weeks of

dieting.

Descriptives
M Iean sD SE
Pre diet body mass Ta 72526 8723 0538
Post 4 weeks diet T8 68744 5.009 1.020
734
68—

| |
Pre diet body mass  Post 4 weeks diet

REPORTING THE RESULTS

On average participants lost 3.78 kg (SE: 0.29 kg) body mass following a 4-week diet plan. A paired
samples t-test showed this decrease to be significant (t (77) =13.039, p<.001). Cohen’s d suggests that
this is a large effect

RUNNING THE NON-PARAMETRIC PAIRED SAMPLES TEST
WILCOXON’S SIGNED RANK TEST

If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal
by nature, the equivalent non-parametric independent test is the Wilcoxon’s signed rank test. Open
Wilcoxon’s rank.csv. This has two columns one with pre-anxiety and post hypnotherapy anxiety scores
(from 0 - 50). In the dataset view make sure that both variables are assigned to the ordinal data type.

Go to T-Tests > Paired Samples t-test and follow the same instructions as above but now only tick the
following options:

v Wilcoxon signed rank
v Location parameter
v’ Effect size
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There will be only one table in the output:

Paired Samples T-Test

W p Hodges-Lehmann Estimate

Rank-Biserial Correlation

Pre-anxiety - Post-anxiety 322.000 =001

§.000

0.450

Note. \Wilcoxon signed-rank test.

The Wilcoxon W-statistic is highly significant, p<0.001.

The location parameter, the Hodges—Lehmann estimate, is the median difference between the two
groups. The rank-biserial correlation (rs) can be considered as an effect size and is interpreted the
same as Pearson’s r, so 0.48 is a medium to large effect size.

Effect size

Trivial

Small Medium

Rank -biserial (rg)

<0.1

0.1 0.3

Large
0.5

For non-parametric data, you should report median values as your descriptive statistics and use
boxplots instead of line graphs and confidence intervals, SD/SE bars.

Descriptive Statistics

Pre-anxiety Fost-anxiety
Yalid 28 24
IMissing 0 0
Iedian 2210 15.0
Iinirmumnm 10.0 a0
Maximum 320 21.0
354
A0+
254
20+
154
10 ——
5 -
| 1
Pre-anxiety Post-anxiety

REPORTING THE RESULTS

A Wilcoxon’s signed rank test showed that hypnotherapy significantly reduces anxiety scores (Mdn =
15) compared to pre-therapy (Mdn =22) scores, W=322, p<.001.

JASP 0.9 - Dr Mark Goss-Sampson
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CORRELATION ANALYSIS

Correlation is a statistical technique that can be used to determine if, and how strongly, pairs of
variables are associated. Correlation is only appropriate for quantifiable data in which numbers are
meaningful, such as continuous or ordinal data. It cannot be used for purely categorical data for which
we have to use contingency table analysis (see Chi-square analysis in JASP).

Essentially do different variables co-vary? i.e. are changes in one variable reflected in similar changes
to another variable? If one variable deviates from its mean does the other variable deviate from its
mean in either the same or opposite direction? This can be assessed by measuring covariance,
however, this is not standardised. For example, we can measure the covariance of two variables which
are measured in meters, however, if we convert the same values to centimetres, we get the same
relationship but with a completely different covariance value.

Covariance = 4.7 Covariance =470

0.15 0.25 0.35 0.45 15 25 35 45
Meters Centimeters

In order to overcome this, standardised covariance is used which is known as Pearson’s correlation
coefficient (or "r"). It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely the two
variables are related. If r is close to 0, there is no relationship. If r is (+) then as one variable increases
the other also increases. If r is (-) then as one increases, the other decreases (sometimes referred to
as an "inverse" correlation).

The correlation coefficient (r) should not be confused with R? (coefficient of determination) or R
(multiple correlation coefficient as used in regression).

The main assumption in this analysis is that the data have a normal distribution and are linear. This
analysis will not work well with curvilinear relationships.
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RUNNING CORRELATION

The analysis tests the null hypothesis (Ho) that there is no association between the two variables

From the example data open Jump height correlation.csv which contains 2 columns of data, jump
height (m) and explosive leg power (W). Firstly run the Descriptive statistics and check the boxplots
for any outliers.

To run the correlation analysis go to Regression > Correlation matrix. Move the 2 variables to the
analysis box on the right. Tick

Pearson,

Report significance,

Flag significant correlations and
Correlation matrix under Plots.

AN N NN

% Jump height oK
p heig

% Leg power

vV Y

Correlation Coefficients _ o
Display pairwise table
Pearson Report significance

Flag significant correlations
Spearman Confidence intervals

Interval |95 2
Kendall's tau-b :

Vovk-Sellke maximum p-ratio

Hypothesis Plots
@ Correlated Correlation matrix
) Correlated positively Densities for variables
(7 Correlated negatively Statistics
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UNDERSTANDING THE OUTPUT

The first table shows the correlation matrix with Pearson’s r value and its p value. This shows a highly
significant correlation (p<.001) with a large r value close to 1 (r= 0.984) and that we can reject the null
hypothesis.

Pearson Correlations

Jump height Leg power

Jump height Fearson's r —

p-value —
Leg power Fearson'sr 0984 —
p-value = 001 —

“p= .05 *p=.01, = p= 001

For simple correlations like this it is easier to look at the pairwise table (go back to analysis and tick
the Display pairwise table option. This replaces the correlation matrix in the results which may be
easier to read.

Fearson Correlations

Pearson's r o

Jump height - Leg power 0.954=* = 001
*p= 05 **p=01"*p= 001

The Pearson’s r value is actually an effect size where <0.1 is trivial, 0.1 -0.3 is a small effect, 0.3 - 0.5
a moderate effect and >0.5 a large effect.

The plot provides a simple visualisation of this strong positive correlation (r = 0.984, p<.001)

450
400 -
350 o,
300
250
200
150
100

a0 -

Leg power

T T
0.15 0.25 0.35
Jump height

I
0.45
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GOING ONE STEP FURTHER.

If you take the correlation coefficient r and square it you get the coefficient of determination (R?). This
is a statistical measure of the proportion of variance in one variable that is explained by the other
variable. Or:

R2= Explained variation / Total variation
R%is always between 0 and 100% where:

e 0% indicates that the model explains none of the variability of the response data around its
mean and

e 100% indicates that the model explains all the variability of the response data around its
mean.

In the example above r = 0.984, so R? = 0.968. This suggests that jump height accounts for 96.8% of
the variance in explosive leg power.

REPORTING THE RESULTS

Pearson’s correlation showed a significant correlation between jump height and leg power (r = 0.984,
p<.001) jump height accounting for 96.8% of the variance in leg power.

RUNNING NON-PARAMETRIC CORRELATION - Spearman’s and Kendall’s tau

If your data is ordinal or is continuous data that has violated the assumptions required for parametric
resting (normality and/or variance) you need to use the non-parametric alternatives to Pearson’s
correlation coefficient.

The alternatives are Spearman’s (rho) or Kendall’s (tau) correlation coefficients. Both are based on
ranking data and are affected by outliers or normality/variance violations.

Spearman's rho is usually used for ordinal scale data and Kendall's tau is used in small samples or when
many values with the same score (ties). In most cases, Kendall’s tau and Spearman’s rank correlation
coefficients are very similar and thus invariably lead to the same inferences.

The effect sizes are the same as Pearson’s r. The main difference is that rho? can be used as an
approximate non-parametric coefficient of determination but the same is not true for Kendall’s tau.

From the example data open Non-parametric correlation.csv which contains 2 columns of data, a
creativity score and position in the ‘World’s biggest liar’ competition (thanks to Andy Field).

Run the analysis as before but now using Spearman and Kendall’s tau-b coefficients instead of
Pearson’s.

45| Page
JASP 0.9 - Dr Mark Goss-Sampson



Correlation Coefficients . o
Display pairwise table

Pearsan Report significance
Flag significant correlations
Spearman Confidence intervals

Interval |95 %
Kendall's tau-b :

WVovk-5ellke maximum p-ratic

Hypothesis Plots
@ Correlated Correlation matrix
() Correlated positively Densities for variables
() Correlated negatively Statistice

Carrelation Tahle

Spearman Kendall
rho p tau B p
Creativity - Position —0.373* 0.002 —0.200% 0.001

*p=.05*p=.01""p=_00M

As can be seen there is a significant correlation between creativity scores and final position in the
‘World’s biggest liar’ competition, the higher the score the better the final competition position.
However, the effect size is only moderate.

?_
6 - oo
5 @ @ o
_E 4 4 O oam oo
:E
o 3 - O
2 - lesalen] @ o
1 O 000 QUIDOCDITING
De+00 -

Creativity
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NOTE OF CAUTION.

Correlation really only give information on the strength of association. It gives no information on the
direction i.e. which variable causes the other to change. So it cannot be used to state the one thing
causes the other. Often a significant correlation means absolutely nothing and is purely by chance
especially if you correlate thousands of variables. This can be seen in the following strange
correlations:

Pedestrians killed in a collision with a railway train correlates with rainfall in Missouri:

Pearson Correlations

Pearson's r p

Train Deaths - Rainfall 0.928 = 001

5
4.5
4 -

3.5 A

Rainfall

T T 1
40 60 80 100 120 140
Train Deaths

Number of honey-producing bee colonies (1000’s) correlates strongly with the marriage rate in
South Carolina (per 1000 marriages)

Pearson Correlations

Pearson'sr p

Honey bees - Marriage rate 0.9358 = 001

13
12 -

Marriage rate
w
1
Q

I I
2 22 24 26 28 3
Honey bees
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REGRESSION

Whereas correlation tests for associations between variables, regression is the next step commonly
used for predictive analysis, i.e. to predict a dependent outcome variable from one (simple regression)
or more (multiple regression) independent predictor variables.

Regression results in a hypothetical model of the relationship between the outcome and predictor
variable(s). The model used is a linear one defined by the formula;

y=c+b*x+¢

e y=estimated dependent outcome variable score,
e c=constant,

e b =regression coefficient and

e x=score on the independent predictor variable

e & =random error component (based on residuals)

Linear regression provides both the constant and regression coefficient(s).

Linear regression makes the following assumptions:

1.

vk wnN

Linear relationship: important to check for outliers since linear regression is sensitive to their
effects.

Independence of variables

Multivariate normality: requires all variables to be normally distributed

Homoscedasticity: homogeneity of variance of the residuals

Minimal multicollinearity /autocorrelation: when the independent variables/residuals are
too highly correlated with each other.

With regard to sample sizes, there are many different ‘rules of thumb’ in the literature ranging from
10-15 data points per predictor in the model i.e. 4 predictor variables will each require between 40
and 60 data points each to 50 +(8 * number of predictors) for each variable. So for 4 variables that
would require 82 data point for each variable. Effectively the bigger your sample size the better your

model.

SUMS OF SQUARES (Boring, but the basis of evaluating the regression model.)

Most regression analysis will produce the best model available, but how good is it actually and how
much error is in the model?

This can be determined by looking at ‘the goodness of fit’ using the sums of squares. This is a measure
of how close the actual data points are close to the modelled regression line.
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Values above the
line are positive

Values below the
line are negative

The vertical difference between the data points and the predicted regression line are known as the
residuals. These values are squared to remove the negative numbers and then summed to give SSg.
This is effectively the error of the model or the ‘goodness of fit’, obviously the smaller the value the
less error in the model.

§-—-—-9
F--m------0

-——--——-.
1
-1

The vertical difference between the data points and the mean of the outcome variable can be
calculated. These values are squared to remove the negative numbers and then summed to give the
total sum of the squares SSr. This shows how good the mean value is as a model of the outcome
scores.
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The vertical difference between the mean of the outcome variable and the predicted regression line
are now determined. Again these values are squared to remove the negative numbers and then
summed to give the model sum of squares (SSm). This indicates how better the model is compared to
just using the mean of the outcome variable.

So, the larger the SSmthe better the model is at predicting the outcome compared to the mean value
alone. If this is accompanied by a small SSg the model also has a small error.

R? is similar to the coefficient of determination in correlation in that it shows how much of the
variation in the outcome variable can be predicted by the predictor variable(s).

R®=  SSw
SSk

In regression, the model is assessed by the F statistic based on the improvement in prediction of the
model SSm and the residual error SSg. The larger the F value the better the model.

F= Mean SSm
Mean SSg
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SIMPLE REGRESSION
Regression tests the null hypothesis (H,) that there will be no significant prediction of the dependent
(outcome) variable by the predictor variable(s).

Open Rugby kick regression.csv. This dataset contains rugby kick data including distance kicked,
right/left leg strength and flexibility and bilateral leg strength.

Firstly go to Descriptives > Descriptive statistics and check the boxplots for any outliers. In this case,
there should be none, though it is good practice to check.

For this simple regression go to Regression > Linear regression and put distance into the Dependent
Variable (outcome) and R_Strength into the Covariates (Predictor) box. Tick the following options in
the Statistics options:

| v statistics |
Regression Coefficients
Estimates Model fit
[7] Confidence intervals [7] R squared change
[7] Descriptives
Interval (95 %a
[] Part and partial correlations
[7] Covariance matrix [] Collinearity diagnostics
Residuals

Durbin-Watson

[7] Casewise diagnostics

@ Qutliers cutside |3 standard deviations

All cases

UNDERSTANDING THE OUTPUT

You will now get the following outputs:

Model Summary

Model F F= Adjusted R® RMSE Durbin-\Watson

1 0.754 0.614 0.579 £5.285 1.524

Here it can be seen that the correlation (R) between the two variables is high (0.784). The R? value of
0.614 tells us that right leg strength accounts for 61.4% of the variance in kick distance. Durbin-
Watson checks for correlations between residuals, which can invalidate the test. This should be above
1 and below 3 and ideally around 2.
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IWaodel Sum of Squares df WMean Sguare F p
1 Regression 535685 3563 1 53559 363 17.533 0.002
Residual 33621.061 11 3056460
Total 87210923 12

The ANOVA table shows all the sums of squares mentioned earlier. With regression being the model
and Residual being the error. The F-statistic is significant p=0.002. This tells us that the model is a
significantly better predictor of kicking distance that the mean distance.

Report as F (1, 11) = 17.53, p<.001.

Coefiicients
WModel Unstandardized Standard Eror Standardized t p
1 {Intercept) 57.105 103.588 0.551 0.502

R_Strength 6.425 1534 0.734 £187 0.002

This table gives the coefficients (unstandardized) that can be put into the linear equation.
y=c+b*x

y = estimated dependent outcome variable score,
c = constant (intercept)

b = regression coefficient (R_strength)

x = score on the independent predictor variable

For example for a leg strength of 60 kg the distance kicked can be predicted by the following:
Distance = 57.105 + (6.452 * 60) =454.6 m

FURTHER ASSUMPTION CHECKS
In Assumption checks, tick the following two options:

[ > |Assumptiun Checks

Residual Plots
[] Residuals vs. dependent
[7] Residuals vs. covariates
Residuals vs. predicted
[ Residuals histogram
Standardized residuals

Q-0 plot standardized residuals
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This will result in two graphs:
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This graph shows a balanced random distribution of the residuals around the baseline suggesting that
the assumption of homoscedasticity has not been violated. (See Exploring data integrity in JASP for
further details.

Standardized Residuals

| I T
2 -1 0 1 2
Theoretical Quantiles

The Q-Q plot shows that the standardized residuals fit nicely along the diagonal suggesting that both
assumptions or normality and linearity have also not been violated.

REPORTING THE RESULTS

Linear regression shows that right leg strength can significantly predict kicking distance F (1, 11) =
17.53, p<.001 using the following regression equation:

Distance = 57.105 + (6.452 * Right leg strength)
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MULTIPLE REGRESSION
The model used is still a linear one defined by the formula;

y=c+b*x+¢

= y=estimated dependent outcome variable score,
= C=constant,

= b =regression coefficient and

= x=score on the independent predictor variable

= ¢ =random error component (based on residuals)

However, we now have more than 1 regression coefficient and predictor score i.e.

Yy =C+bi*x1 + ba*x2 + b3*x;......... ba*Xn

Data entry methods.

If predictors are uncorrelated their order of entry has little effect on the model. In most cases,
predictor variables are correlated to some extent and thus, the order in which the predictors are
entered can make a difference. The different methods are subject to much debate in the area.

Forced entry (Enter): This is the default method in which all the predictors are forced into the model
in the order they appear in the Covariates box. This is considered to be the best method.

Blockwise entry (Hierarchical entry): The researcher, normally based on prior knowledge and previous
studies, decides the order in which the known predictors are entered first depending on their
importance in predicting the outcome.. Additional predictors are added in further steps.

Stepwise (Backward entry): All predictors are initially entered in the model and then the contribution
of each is calculated. Predictors with less than a given level of contribution (p<0.1) are removed. This
process repeats until all the predictors are statistically significant.

Stepwise (Forward entry): The predictor with the highest simple correlation with the outcome variable
is entered first. Subsequent predictors selected on the basis of the size of their semi-partial correlation
with the outcome variable. This is repeated until all predictors that contribute significant unique
variance to the model have been included in the model.

Stepwise entry: Same as the Forward method, except that every time a predictor is added to the
model, a removal test is made of the least useful predictor. The model is constantly reassessed to see
whether any redundant predictors can be removed.

There are many reported disadvantages of using stepwise data entry methods, however, Backward
entry methods can be useful for exploring previously unused predictors or for fine-tuning the model
to select the best predictors from the available options.

RUNNING MULTIPLE REGRESSION

Open Rugby kick regression.csv that we used for simple regression. Go to Regression > Linear
regression and put distance into the Dependent Variable (outcome) and now add all the other
variables into the Covariates (Predictor) box.
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Dependent Variable | QK |
»> | % Distance

Covariates
P | % R_Strength
% L_Strength
% R_Flexibility
% L Flexibility
% Bilateral Strength

WLS Weights (optional)

[ > ]

In the Variable section leave the Method as Enter. Tick the following options in the Statistics options,
Estimates, Model fit, Collinearity diagnostics and Durbin-Watson.

| v | statistics
Regression Coefficients
Estimates Model fit
Confidence intervals R squared change
Descriptives
Interval -95 %
Part and partial correlations
Cowvariance matrix Collinearity diagnostics
Residual

Durbin-Watson
Casewise diagnostics

i@ Outliers outside standard deviations

All cases
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UNDERSTANDING THE OUTPUT

You will now get the following outputs:

Model Summary

Madel [ = Adjusted R* RMSE Durhin-Watson

1 0.202 0.814 0.6381 43132 1.325

The adjusted R? (used for multiple predictors) shows that they can predict 68.1% of the outcome
variance. Durbin-Watson checks for correlations between residuals is between 1 and 3 as required.

ANCWA
Iadel Sum of Sguares df Mean Square F p
1 Regressian 70004 078 5 14193.816 6.128 0.017
Residual 16216.845 T 2316.692
Total B7210.923 12

The ANOVA table shows the F-statistic to be significant p=0.017 suggesting that the model is a
significantly better predictor of kicking distance that the mean distance.

Coefficients
Callinearity Statistics
Model Unstandardized Standard Error Standardized t o] Tolerance VIF
1 {Intercept) -02.367 218.380 -0.423 0.685

R_Strength 1.747 3321 0.213 0.526 0.615 0.162 6.180
L_Strength 0.703 3.500 0.088 0.196 0.850 0.138 T.231
R_Flexibility 4078 4759 0.373 0.857 0.420 0.140 T7.125
L_Flexibility -1.339 2.447 -0.135 -0.547 0.601 0.438 2.281
Bilateral Strength 1.665 0.948 0.423 1.758 0.122 0.458 2181

This table shows one model and the constant (intercept) and regression coefficients (unstandardized)
for all the predictors forced into the model. Even though the ANOVA shows the model to be significant
none of the predictor regression coefficients are significant!

The collinearity statistics, Tolerance and VIF (Variance Inflation Factor) check the assumption of
multicollinearity. As a rule of thumb if VIF >10 and tolerance <0.1 the assumptions have been greatly
violated. If the average VIF >1 and tolerance <0.2 the model may be biased. In this case, the average
VIF is quite large (around 5).
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As a comparison re-run the analyses but now choose Backward as the method of data entry.

The outputs are as follows:

Model Summary
Madel R F* Adjusted R® RMSE Durbin-Watson
1 0.502 0.814 0.681 43132
2 0.502 0.813 0.720 45 146
3 0.897 0.805 0.740 43,505
4 0.8384 0.7382 0.738 43618 1.676

JASP has now calculated 4 potential regression models. It can be seen that each consecutive model
increases the adjusted R?, with model 4 accounting for 73.5% of the outcome variance.
The Durbin-Watson score is also higher than with the forced entry method.

AMCWA
IModel Sum of Sguares df lMean Square F p

1 Regression 70004075 5] 14198.816 G.120 0.017
Residual 16216.845 T 2316.692
Total 87210923 12

2 Regression 70805329 4 17726.332 8.697 0.005
Residual 16305.594 & 2033199
Total 87210923 12

3 Regression T0176.855 3 23302 285 12.359 0.002
Residual 17034.068 g 18482 674
Total 87210823 12

4 Regression 68185712 2 34082 856 17.920 = 001
Residual 19025211 10 1902 521
Total 87210.923 12

The ANOVA table indicates that each successive model is better as shown by the increasing F-value
and improving p value.
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Coeflicients

Collinearity Statistics

Model Unstandardized  Standard Emmor  Standardized t p Tolerance VIF
1 {Intercept) —82 367 218380 -0.423 0685
R_Strength 1.747 3321 0.213 0.526 0615 0.162 6.120
L_Strength 0.703 3.580 0.086 0196 0850 0135 7.231
R_Flexibility 4.078 4759 0.373 0.857  D.420 0.140 7.125
L_Flexibility -1.339 2.447 -0.135 -0.547 0601 0435 2281
Bilateral Strength 1.665 0.946 0.423 1750 0122 0.458 21581
2 {Intercept) -110.347 185.340 -0.584 0589
R_Strength 2.218 2,148 0.271 1.033 0332 0.340 2.938
R_Flexibility 4.501 34978 0.411 1.131 0.291 0177 5658
L_Flexibility -1.370 2201 -0.138 -0.508  0.566 0.440 2.272
Bilateral Strength 1.605 0.340 0.408 1910 0092 0.512 1.954
3 (Intercept) -116.892 178.772 -0.654  0.530
R_Strength 2710 1.911 0.331 1418 0190 0.399 2.505
R_Flexibility 2.886 2314 D.264 1.026 0332 0.328 3.045
Bilateral Strength 1.642 0.307 0.418 2033 0073 0.515 1.944
4 (Intercept) 45.251 81.820 0.565  0.584
R_Strength 3914 1512 0.478 2588 0027 0.641 1.561
Bilateral Strength 2.009 0.725 0.511 2770 0.020 0.641 1.561

Model 1 is the same as the forced entry method first used. The table shows that as the least
significantly contributing predictors are sequentially removed, we end up with a model with two
significant predictor regression coefficients, right leg strength and bilateral leg strength.

Both tolerance and VIF are acceptable.

We now can report the Backward predictor entry results in a highly significant model F (2, 10) = 17.92,

p<.001 and a regression equation of

Distance = 57.105 + (3.914 * R_Strength) + (2.009 * Bilateral Strength)

TESTING FURTHER ASSUMPTIONS.

As for the simple linear regression example, tick the following options.

l ¥ | Assumption Checks

Residual Plots
|| Residuals vs. dependent
[ Residuals vs. covariates
Residuals vs. predicted
] Residuals histogram
| Standardized residuals

Q-Q plot standardized residuals

JASP 0.9 - Dr Mark Goss-Sampson
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Residuals vs. Predicted
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The balanced distribution of the residuals around the baseline suggests that the assumption of
homoscedasticity has not been violated.

The Q-Q plot shows that the standardized residuals fit along the diagonal suggesting that both
assumptions or normality and linearity have also not been violated.

REPORTING THE RESULTS

Multiple linear regression using backward data entry shows that right leg and bilateral strength can
significantly predict kicking distance F(2,10) = 17.92, p<.001 using a regression equation of

Distance = 57.105 + (3.914 * R_Strength) + (2.009 * Bilateral Strength)
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IN SUMMARY

R? provides information on how much variance is explained by the model using the predictors
provided.

F-statistic provides information as to how good the model is.

The unstandardized (b)-value provides a constant which reflects the strength of the relationship
between the predictor(s) and the outcome variable.

Violation of assumptions can be checked using Durbin-Watson value, tolerance/VIF values, Residual
vs predicted and Q-Q plots.
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LOGISTIC REGRESSION

In simple and multiple linear regression outcome and predictor variable(s) were continuous data.
What if the outcome was a binary/categorical measure? Can, for example, a yes or no outcome be
predicted by other categorical or continuous variables? The answer is yes if binary logistic regression
is used. This method is used to predict the probability of the binary yes or no outcome.

The null hypothesis tested is that there is no relationship between the outcome and predictor
variable(s).

As can be seen in the graph below, a linear regression line between the yes and no responses would
be meaningless as a prediction model. Instead, a sigmoidal logistic regression curve is fitted with a
minimum of 0 and a maximum of 1. It can be seen that some predictor values overlap between yes
and no. For example, a prediction value of 5 would give an equal 50% probability of being a yes or no
outcome. Thresholds are therefore calculated to determine if a predictor data value will be classified
as a yes or no outcome.

1.0 L] —
Outcome = Yes
0.8

0.6

0.4}

Probability of outcome

0.2
Outcome = No

00— w @& @ o) ooOED b O GNGD @ e e L L

0 2 3 6 8 10

ASSUMPTIONS FOR BINARY LOGISTIC REGRESSION

e The dependent variable must be binary i.e. yes or no, male or female, good or bad.

e One or more independent (predictor variables) which can be continuous or categorical
variables.

e A linear relationship between any continuous independent variables and the logit
transformation (natural log of the odds that the outcome equals one of the categories) of the
dependent variable.

LOGISTIC REGRESSION METRICS

AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) are measures of fit for the
model, the best model will have the lowest AIC and BIC values.
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Three pseudo R? values are calculated in JASP, McFadden, Nagelkerke and Tjur. These are analogous
to R% in linear regression and all give different values. What constitutes a good R? value varies,
however, they are useful when comparing different models for the same data. The model with the
largest R? statistic is considered to be the best.

The confusion matrix is a table showing actual vs predicted outcomes and can be used to determine
the accuracy of the model. From this sensitivity and specificity can be derived.

Sensitivity is the percentage of cases that had the observed outcome was correctly predicted by the
model (i.e., true positives).

Specificity is the percentage of observations that were also correctly predicted as not having the
observed outcome (i.e., true negatives).

RUNNING LOGISTIC REGRESSION

Open Heart attack.csv in JASP. This contains 4 columns of data, Patient ID, did they have a second
heart attack (yes/no), whether they were prescribed exercise (yes/no) and their stress levels (high
value = high stress).

Put the outcome variable (2" heart attack) into the Dependent variable, add the stress levels to
Covariates and Exercise prescription to Factors. Leave the data entry method as Enter.

% (v} Dependent Yariable
| > | &5 Znd.Heart Attack

Covariates
| » | M, Stress level
Factors
| b | & Exercise prescription
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In the Statistics options tick Estimates, Odds ratios, Confusion matrix, Sensitivity and Specificity.

| v | statistics
Descriptives Performance Diagnostics
[ Factor descriptives Confusion matrix
P rti
Regression Coefficients s

Estimates Performance metrics
[ AuC
Sensitivity / Recall
Specificity
["] Precision

[] F-measure

[] Standardized coefficients

Odds ratios

[] Confidence intervals
Interval (95 %

Odds ratio scale
[ Brier score

["] Robust standard errors [] H-measure

["] Vovk-Sellke maximum p-ratio

UNDERSTANDING THE OUTPUT

The initial output should comprise of 4 tables.
The model summary shows that H1 (with the lowest AIC and BIC scores) suggests a significant

Model summary

Wodel Deviance AlC BIC df wE p McFadden R® Magelkerke R* Tjur R=
Ho R85 4R2 AT 452 A0 141 30
Ha 34,105 40.185 45261 ar 21.257 = 001 0.383 0.550 0.126

relationship (X?(37) =17.82, p<.001) between the outcome (2" heart attack) and the predictor
variables (exercise prescription and stress levels).

McFadden's R? = 0.383. It is suggested that a range from 0.2 to 0.4 indicates a good model fit.

Coefficients
Estimate Standard Error Cdds Ratio z p
{Intzrcept) -4 368 2.550 0.013 -1.713 0.087
Stress level 0.0849 0.041 1.083 2158 0.031
Exercise prescription (Yes) -2.043 0.290 0.130 -2.285 0.022

MNote. 2nd Heart Attack level ™es’ coded as class 1.

Both stress level and exercise prescription are significant predictor variables (p=.031 and .022
respectively). The most important values in the coefficients table are the odds ratios. For the
continuous predictor, an odds ratio of greater than 1 suggests a positive relationship while < 1 implies
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a negative relationship. This suggests that high stress levels are significantly related to an increased
probability of having a second heart attack. Having an exercise intervention is related to a significantly
reduced probability of a second heart attack. The odds ratio of 0.13 can be interpreted as only having
a 13% probability of a 2" heart attack if undergoing an exercise intervention.

Confusion matrix Performance metrics
Predicted Valus
Observed  No Yes Sensitivity 0.750
No 15000  5.000 EEE oL
es 5.000 15.000

The confusion matrix shows that the 15 true negative and positive cases were predicted by the model
while the error, false negatives and positives, were found in 5 cases. This is confirmed in the
Performance metrics where both sensitivity (% of cases that had the outcome correctly predicted) and
specificity (% of cases correctly predicted as not having the outcome (i.e., true negatives) are both
75%.

PLOTS
These findings can be easily visualised through the inferential plots.

| = |Plots
Inferential plots Residual plots
Display conditional estimates plots [T] Predicted - residuals plot
ConfidenceInterval 95 % ["] Predictor - residuals plots
Show data points ["] Squared Pearson residuals plot
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As stress levels increase the probability of having a second heart attack increases.
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Exercise prescription

No exercise intervention increases the probability of a 2" heart attack while it is reduced when it had
been put in place.

REPORTING THE RESULTS

A logistic regression was performed to ascertain the effects of stress and exercise intervention on the
likelihood that participants have a 2" heart attack. The logistic regression model was statistically
significant, x2 (37) = 21.257, p < .001. The model correctly classified 75.0% of cases. Increasing stress
was associated with an increased likelihood of a 2" heart attack, but decreasing stress was associated
with a reduction in the likelihood. The presence of an exercise intervention programme reduced the
probability of a 2" heart attack to 13%.
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COMPARING MORE THAN TWO INDEPENDENT GROUPS

ANOVA

Whereas t-tests compare the means of two groups/conditions, one-way analysis of variance (ANOVA)
compares the means of 3 or more groups/conditions. There are both independent and repeated
measures ANOVAs available in JASP. ANOVA has been described as an ‘omnibus test” which results in
an F-statistic that compares whether the datasets overall explained variance is significantly greater
than the unexplained variance. The null hypothesis tested is that there is no significant difference
between the means of all the groups. If the null hypothesis is rejected, ANOVA just states that there
is a significant difference between the groups but not where those differences occur. In order to
determine where the group differences are, post hoc (From the Latin post hoc, "after this") tests are
subsequently used.

Why not just multiple pairwise comparisons? If there are 4 groups (A, B, C, D) for example and the
differences were compared using multiple t-tests:

e Avs.B P<0.05 95% no type | error
e Avs.C P<0.05 95% no type | error
e Avs.D P<0.05 95% no type | error
e Bvs.C P<0.05 95% no type | error
e Bvs. D P<0.05 95% no type | error
e C(Cvs.D P<0.05 95% no type | error

Assuming that each test was independent, the overall probability would be:
0.95 * 0.95 * 0.95 * 0.95 * 0.95 * 0.95 = 0.735

This is known as familywise error or, cumulative Type | error, and in this case results in only a 73.5%
probability of no Type | error whereby the null hypothesis could be rejected when it is in fact true. This
is overcome by using post hoc tests that make multiple pairwise comparisons with stricter acceptance
criteria to prevent familywise error.

ASSUMPTIONS
The independent ANOVA makes the same assumptions as most other parametric tests.

e The independent variable must be categorical and the dependent variable must be
continuous.

e The groups should be independent of each other.

e The dependent variable should be approximately normally distributed.

e There should be no significant outliers.

o There should be homogeneity of variance between the groups otherwise the p value for the
F-statistic may not be reliable.

The first 2 assumptions are usually controlled through the use of appropriate research method design.

If the last three assumptions are violated then the non-parametric equivalent, Kruskal-Wallis should
be considered instead.
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POST HOC TESTING

JASP provides 4 alternatives for use with the independent group ANOVA tests:

Bonferroni — can be very conservative but gives guaranteed control over Type | error at the risk of
reducing statistical power.

Holm — the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative
than the original Bonferroni test.

Tukey — one of the most commonly used tests and provides controlled Type | error for groups with
the same sample size and equal group variance.

Scheffe — controls for the overall confidence level when the group sample sizes are different.

EFFECT SIZE
JASP provides 3 alternative effect size calculations for use with the independent group ANOVA tests:

Eta squared (n?) - accurate for the sample variance explained but overestimates the population
variance. This can make it difficult to compare the effect of a single variable in different studies.

Partial Eta squared (n,?) — this solves the problem relating to population variance overestimation
allowing for comparison of the effect of the same variable in different studies.

Omega squared (w?) — Normally, statistical bias gets very small as sample size increases, but for small
samples (n<30) w? provides an unbiased effect size measure.

Test Measure Trivial Small Medium Large

ANOVA Eta <0.1 0.1 0.25 0.37
Partial Eta <0.01 0.01 0.06 0.14
Omega squared <0.01 0.01 0.06 0.14

RUNNING THE INDEPENDENT ANOVA

Load Independent ANOVA diet.csv. This contains A column containing the 3 diets used (A, B and C)
and another column containing the absolute amount of weight loss after 8 weeks on one of 3 different
diets For good practice check the descriptive statistics and the boxplots for any extreme outliers.

Go to ANOVA > ANOVA, put weight loss into the Dependent Variable and the Diet groupings into the
Fixed Factors box. In the first instance tick both Assumption Checks and in Additional Options tick
Descriptive statistics and w? as the effect size;
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Dependent Variable

% Weight loss kg

Fixed Factors

> & Diet

WLS Weights

[ » | Model

’ ¥ | Assumption Checks

Homogeneity tests
Q-0Q plot of residuals

| = | Additienal Options

Display
Descriptive statistics
Estirnates of effect size

n® [ partial n® V] w?
Vovk-Sellke maximum p-ratic

This should result in 3 tables and one Q-Q plot.

UNDERSTANDING THE OUTPUT

AMNOVA - Weight loss kg

Zases Sum of Squares df IWMean Square F p we
Diet 02 350 2.000 46.184 10.8326 = 001 0.214
Residual 294 371 69.000 4266

MNote. Type Il Sum of Squares

The main ANOVA table shows that the F-statistic is significant (p<.001) and that there is a large effect
size. Therefore, there is a significant difference between the means of the 3 diet groups.

JASP 0.9 - Dr Mark Goss-Sampson
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TESTING ASSUMPTIONS

Before accepting this any violations in the assumptions required for an ANOVA should be checked.

Test for Equality of Varances {Levene's)

F df1 df2 p

1.288 2.000 65000 0.2a0

Levene’s test shows that homogeneity of variance is not significant.

%]
1

—
|

Standardized Residuals

-2 -'1 0 1 2
Theoretical Quantiles

The Q-Q plot shows that the data appear to be normally distributed and linear.

Descriplives - Weight loss kg

Diet Wean 50 M
Dist A 3.008 1.668 24.000
Diet B 3413 2.361 24.000
Digt C 5538 2108 24.000

The descriptive statistics suggest that Diet 3 results in the highest weight loss after 8 weeks.

If the ANOVA reports no significant difference you can go no further in the analysis.
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POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Diet to the
analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.

[ * | Post Hoc Tests

P [ict

Effect size

Correction
Tukey
Scheffe
Bonferroni
Holm

Also in Descriptive Plots add the Factor — Diet to the horizontal axis and tick display error bars.

Fost Hoc Comparisons - Diet

Mean Difference SE t Cohen's d Prukey
Diet A Diet B -0.404 0.596 -0.678 —-0.153 0.777
Diet C —-2.579 0.596 —-4.326 —1.357 = 001
Diet B Diet C -2.175 0.596 -3.648 -0.972 0.001

Mote. Cohen's d does not correct for multiple comparisons.

Post hoc testing shows that there is no significant difference between weight loss on diets A and B.
However, It is significantly higher in diet C compared to diet A (p<.001) and diet B (p=.001). Cohen’s d
shows that these differences have a large effect size.
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REPORTING THE RESULTS

Independent one way ANOVA showed a significant effect of the type of diet on weight loss after 10
weeks (F (2, 69) =46.184, p<.001, w2 = 0.214.

Post hoc testing using Tukey’s correction revealed that diet C resulted in significantly greater weight
loss than diet A (p<.001) or diet B (p=.001). There were no significant differences in weight loss
between diets A and B (p=.777).

KRUSKAL-WALLIS — NON-PARAMETRIC ANOVA

If your data fails parametric assumption tests or is nominal in nature, the Kruskal-Wallis H test is a
non-parametric equivalent to the independent samples ANOVA. It can be used for comparing two or
more independent samples of equal or different sample sizes. Like the Mann-Whitney and Wilcoxon’s
tests, it is a rank based test.

As with the ANOVA, Kruskal-Wallis H test (also known as the "one-way ANOVA on ranks") is an
omnibus test which does not specify which specific groups of the independent variable are statistically
significantly different from each other. To do this, JASP provides the option for running Dunn’s post
hoc test. This multiple comparisons test can be very conservative in particular for large numbers of
comparisons.

Load Kruskal-Wallis ANOVA.csv dataset into JASP. This dataset contains subjective pain scores for
participants undergoing no treatment (control), cryotherapy or combined cryotherapy-compression
for delayed onset muscle soreness after exercise.
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RUNNING THE KRUSKAL-WALLIS TEST

Go to ANOVA >ANOVA. In the analysis window add Pain score to the dependent variable and
treatment to the fixed factors. Check that the pain score is set to ordinal. This will automatically run
the normal independent ANOVA. Under Assumption Checks tick both Homogeneity tests and Q-Q
plots.

AMNOVA - Pain Score

Cases Sum of Sguares df WMean Sguare F p
Treatment 03.344 2.000 45422 16.457 = 001
Residual 126133 42.000 3.003

MNote. Type lll Sum of Squares

w 27
©
=

Test for Equality of Variances (Levene’s) E 14
F aft a2 b =
N

3832 2.000 42.000 0.030 =) 0]
3
=

8 14
n

I
-2 -1 0 1 2
Theoretical Quantiles

Although the ANOVA indicates a significant result, the data has not met the assumptions of
homogeneity of variance as seen by the significant Levene’s test and only shows linearity in the middle
of the Q-Q plot and curves off at the extremities indicating more extreme values. Added to the fact
that the dependent variable is based on subjective pain scores suggest the use of a non-parametric
alternative.

Return to the statistics options and open up the Nonparametrics option at the bottom. For the Kruskal-
Wallis test Move the Treatment variable to the box on the right and tick Dunn’s post hoc test.

l v | MNonparamefrics ]

Kruskal-Wallis test

ir Treatrment

Dunn's past hoc test
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UNDERSTANDING THE OUTPUT

Two tables are shown in the output. The Kruskal-Wallis test shows that there is a significant difference
between the three treatment modalities.

kruskal-Wallis Test

Factor Siatistic df p

Treatment 19.693 2 = 001

Dunn's Post Hoo Comparisons - Treatment

z Wi W p Prant Phalm
Control Cryo+Compression 4.7 34 600 14200 = 001 = 001 = 001
Cryotherapy 3.048 34 600 20200 0.001 0.003 0.002
Cryo+Compression Cryotherapy -1.270 14 200 20200 0102 0.306 0.102

The Dunn’s post hoc test provides its own p value as well as those for Bonferroni and Holm’s
Bonferroni correction. As can be seen, both treatment conditions are significantly different from the
controls but not from each other.

REPORTING THE RESULTS

Pain scores were significantly affected by treatment modality H (2) = 19.693, p<.001. Pairwise
comparisons showed that both cryotherapy and cryotherapy with compression significantly reduces
pain scores (p=.001and p<.001 respectively) compared to the control group. There were no significant
differences between cryotherapy and cryotherapy with compression (p=.102).

8=

Pain Score

I ] |
Caontrol Cryo+Compression Cryotherapy
Treatment
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COMPARING MORE THAN TWO RELATED GROUPS

RMANOVA

The one-way repeated measures ANOVA (RMANOVA) is used to assess if there is a difference in
means between 3 or more groups (where the participants are the same in each group) that have been
tested multiple times or under different conditions. Such a research design, for example, could be that
the same participants were tested for an outcome measure at 1, 2 and 3 weeks or that the outcome
was tested under conditions 1, 2 and 3.

The null hypothesis tested is that there is no significant difference between the means of the
differences between all the groups.

The independent variable should be categorical and the dependent variable needs to be a continuous
measure. In this analysis the independent categories are termed levels i.e. these are the related
groups. So in the case where an outcome was measured at weeks 1, 2 and 3, the 3 levels would be
week 1, week 2 and week 3.

The F-statistic is calculated by dividing the mean squares for the variable (variance explained by the
model) by its error mean squares (unexplained variance). The larger the F-statistic, the more likely it
is that the independent variable will have had a significant effect on the dependent variable.

ASSUMPTIONS
The RMANOVA makes the same assumptions as most other parametric tests.

e The dependent variable should be approximately normally distributed.

o There should be no significant outliers.

e No significant outliers

e Sphericity, which relates to the equality of the variances of the differences between levels of
the repeated measures factor.

If the assumptions are violated then the non-parametric equivalent, Friedman’s test should be
considered instead and is described later in this section.

SPHERICITY
If a study has 3 levels (A, B and C) sphericity assumes the following:
Variance (A-B) = Variance (A-C) = Variance (B-C)

RMANOVA checks the assumption of sphericity using Mauchly’s (pronounced Mockley’s) test of
sphericity. This tests the null hypothesis that the variances of the differences are equal. In many
cases, repeated measures violate the assumption of sphericity which can lead to Type | error. If this is
the case corrections to the F-statistic can be applied.

JASP offers two methods of correcting the F-statistic, the Greenhouse-Geisser and the Huynh-Feldt
epsilon (g) corrections. A general rule of thumb is that if the € values are <0.75 then use the
Greenhouse-Geisser correction and if they are >0.75 then use the Huynh-Feldt correction.
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POST HOC TESTING

Post hoc testing is limited in RMANOVA, JASP provides two alternatives:

Bonferroni — can be very conservative but gives guaranteed control over Type | error at the risk of
reducing statistical power.

Holm — the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative
than the original Bonferroni test.

If you ask for either Tukey or Scheffe post hoc corrections JASP will return a NaN (not a number) error.

EFFECT SIZE

JASP provides the same alternative effect size calculations that are used with the independent group
ANOVA tests:

Eta squared (n?) - accurate for the sample variance explained but overestimates the population
variance. This can make it difficult to compare the effect of a single variable in different studies.

Partial Eta squared (n,?) — this solves the problem relating to population variance overestimation
allowing for comparison of the effect of the same variable in different studies. This appears to be the
most commonly reported effect size in repeated measures ANOVA

Omega squared (w?) — Normally, statistical bias gets very small as sample size increases, but for small
samples (n<30) w? provides an unbiased effect size measure.

Levels of effect size:

Test Measure Trivial Small Medium Large
ANOVA  Ea <01 01 025 037
Partial Eta <0.01 0.01 0.06 0.14
Omega squared <0.01 0.01 0.06 0.14

RUNNING THE REPEATED MEASURES ANOVA

Load Repeated ANOVA cholesterol.csv. This contains one column with the participant IDs and 3
columns one for each repeated measurement of blood cholesterol following an intervention. For good
practice check the descriptive statistics and the boxplots for any extreme outliers.

Go to ANOVA > Repeated measures ANOVA. As stated above, the independent variable (repeated
measures factor) has levels, in this case, there are 3 levels. Rename RM Factor 1 to Time post
intervention and then rename 3 levels to Week 0, week 3 and week 6 accordingly.
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Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate
data to the appropriate level.

&b Participant
W Week0
M Week 3
% Week6

Repeated Measures Factors
RM Factorl

Level 1

Level 2

Repeated Measures Cells

o Participant

Repeated Measures Factors

Time post interventior
Week 0
Week 3
Week 6 @

Repeated Measures Cells

Level 1 % Week0 Week0
Level 2 % UEEEI(B Week 3
e Week &
Under Assumption Checks tick Sphericity tests and all Sphericity correction options.
[ * | Assumption Checks
Sphericity tests
Sphericity corrections
Mone Greenhouse-Geisser Huynh-Feldt
Homogeneity tests
Under Additional Options tick Descriptive Statistics, Estimates of effect size and w?.
|+ | Additional Options
Descriptive statistics
Estimates of effect size
n* partial n° w’
Vovk-5ellke maximum p-ratio
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The output should consist of 4 tables. The third table, between subject effects, can be ignored for this
analysis.

UNDERSTANDING THE OUTPUT

Within Subjects Effecis

Sphericity Correction Sum of Squares df Mean Square F p w?
Time post intervention None 4320~ 2.000= 2.160= 212.321= = 001= 0.058

Greenhouse-Geisser 4.320= 1.235= 3.497= 212.321= =.001= 0.088

Huynh-Feldt 4.320= 1.284= 3.365= 212.321= =.001= 0.088
Residual None 0.348 34.000 0.010

Greenhousa-Geisser 0.346 21.001 0.016

Huynh-Feldt 0.346 21.822 0.016

MNote. Type Il Sum of Squares
= Mauchly's tast of sphericity indicates that the assumption of sphericity is violated (p < .05).

The within subjects effects table reports a large F-statistic which is highly significant (p<.001) and has
a small to medium effect size (0.058). This table shows the statistics for sphericity assumed (none) and
the two correction methods. The main differences are in the degrees of freedom (df) and the mean
squares value. Under the table, it is noted that the assumption of sphericity has been violated.

The following table gives the results of Mauchly’s test of sphericity. It can be seen that there is a
significant difference (p<.001) in the variances of the differences between the groups. Greenhouse-
Geisser and the Huynh-Feldt epsilon (g) values are below 0.75. Therefore the ANOVA result should be
reported based on the Greenhouse-Geisser correction:

Test of Sphericity

hauchly's W p Greenhouse-Geisser £ Huynh-Feldt £

Time post intervention 0331 = 001 0618 0642

To provide a cleaner table, go back to Assumption Checks and only tick Greenhouse-Geisser for
sphericity correction.

Within Subjects Effecis

Sphericity Correction Sum of Squares df Wean Square F p w*
Time post intervention Greenhouse-Geisser 4320 1.235= 2.497= 212.321= = 001= 0.058
Residual Greenhouse-Geisser 0.346 21.001 0.016

Note. Type Il Sum of Squares
= Mauchly’s test of sphericity indicates that the assumption of sphericity is violated (p <= 05).

There is a significant difference between the means of the differences between all the groups F (1.235,
21.0) =212.3, p<.001, w? = 0.058.
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Descriplives

Time post intervention IWean 5D M

Week O 6. 408 1.191 18.000
Week 3 5.842 1123 18.000
Week 6 5770 1.102 18.000

The descriptive data suggest that blood cholesterol levels were higher at week 0 compared to weeks
3and6.

Howeuver, if the ANOVA reports no significant difference you can go no further in the
analysis.

POST HOC TESTING

If the ANOVA is significant, post hoc testing can now be carried out. In Post Hoc Tests add Time post-
intervention to the analysis box on the right, tick Effect size and, in this case, use Bonferroni for the
post hoc correction.

| = | Post Hoc Tests |

P | Tire post intervention

Effect size Pool error term for RM factors

Correction
Bonferrcni
Halm
Tukey
Scheffe

Also in Descriptive Plots add the Factor — Time post-intervention to the horizontal axis and tick display
error bars.
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Post Hoc Comparisons - Time post intervention

IM=an Diffzrence SE t Cohen's d Prant
Week 0 Week 3 0.566 0.037 15.439 3.630 = 001
Week 6 0.629 0.042 14.946 35623 = 001
Week 3 Week 6 0.063 0.017 3.781 0.891 0.004

MNote. Cohen's d does not cormect for multiple comparisons.

Post hoc testing shows that there are significant differences in blood cholesterol levels between all of
the time point combinations and are associated with large effect sizes.

REPORTING THE RESULTS

6.6

6=

I I |
Week 0 Week 3 Week 6
Time post intervention

Since Mauchly’s test of sphericity was significant, the Greenhouse-Geisser correction was used. This
showed that cholesterol levels differed significantly between F (1.235, 21.0) =212.3, p<.001, w? =
0.058.

Post hoc testing using the Bonferroni correction revealed that cholesterol levels decreased
significantly as time increased, weeks 0 — 3 (mean difference=0.566 units, p<.001) and weeks 3 — 6
(mean difference = 0.063 units, p=.004).
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FRIEDMAN’S REPEATED MEASURES ANOVA

If parametric assumptions are violated or the data is ordinal in nature you should consider using the
non-parametric alternative, Friedman’s test. Similar to the Kruskal-Wallis test, the Friedman’s test is
used for one-way repeated measures analysis of variance by ranks and doesn’t assume the data comes
from a particular distribution. This test is another omnibus test which does not specify which specific
groups of the independent variable are statistically significantly different from each other. To do this,
JASP provides the option for running Conover’s post hoc test if the Friedman’s test is significant.

Load Friedman RMANOVA.csv into JASP. This has 3 columns of subjective pain ratings measured at
18, 36 and 48 hours post-exercise. Check that the pain scores are set to ordinal data.

RUNNING THE FRIEDMAN’S TEST

Go to ANOVA > Repeated measures ANOVA. The independent variable (repeated measures factor)
has 3 levels. Rename RM Factor 1 to Time and then rename 3 levels to 18 hours, 36 hours and w48
hours accordingly.

Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate
dataset to the appropriate level.

& Subject Repeated Measures Factors E

Time
18 hours
36 hours
48 hours Q

Repeated Measures Cells

e ||I Pain ... 18 hours
||I Pain ... 36 hours
||I Pain ... 48 hours

This will automatically produce the standard repeated measures within subjects ANOVA table. To run
the Friedman’s test, expand the Nonparametrics tab, move Time to the RM factor box and tick
Conover’s post hoc tests.
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UNDERSTANDING THE OUTPUT

Two tables should be produced.

Friedman Test
Factor Chi-Squared df p kendall's W
Time 26772 2 < 001 0.764
Connover's Post Hoo Comparisons - Time
T-Stat df Wi Wi p Doant Pholm
18 hours 36 hours 15.171 28 17.000 44 500 = 001 =001 = 001
43 hours 5344 28 17.000 28.500 = 001 =001 = 001
36 hours 43 hours 8827 28 44 500 28.500 = 001 =001 = 001

Friedman’s test shows that time has a significant effect on pain perception. Connor’s post hoc pairwise
comparisons show that all pain perception is significantly different between each time point.

REPORTING THE RESULTS

Time has a significant effect on subjective pain scores ¥? (2) = 26.77, p<.001. Pairwise comparisons
showed that pain perception is significantly different between each time point (all p<0.001).

?'_

|
18 hours
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36 hours 48 hours

Time
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TWO-WAY INDEPENDENT ANOVA
One-way ANOVA tests situations when only one independent variable is manipulated, two-way
ANOVA is used when more than 1 independent variable has been manipulated. In this case,
independent variables are known as factors.

FACTOR 1 FACTOR 2

CONDITION 1 Group 1 Dependent variable
Group 2 Dependent variable

CONDITION 2 Group 1 Dependent variable
Group 2 Dependent variable

CONDITION 3 Group 1 Dependent variable
Group 2 Dependent variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 2 levels.

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring
the effects of any other independent variables. There are 2 main effects tested both of which are
“between-subjects”: in this case comparing differences between factor 1 (i.e. condition) and
differences between factor 2 (i.e. groups). An interaction is where one factor influences the other
factor.

The two-way independent ANOVA is another omnibus test that is used to test 2 null hypotheses:

1. There is no significant between-subject effect i.e. no significant difference between the
means of the groups in either of the factors.

2. There is no significant interaction effect i.e. no significant group differences across
conditions.

ASSUMPTIONS

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which should either
be addressed in the research design or can the tested for.

e The independent variables (factors) should have at least two categorical independent groups
(levels).

e The dependent variable should be continuous and approximately normally distributed for all
combinations of factors.

e There should be homogeneity of variance for each of the combination of factors.

e There should be no significant outliers.

RUNNING TWO-WAY INDEPENDENT ANOVA

Open 2-way independent ANOVA.csv in JASP. This comprises on 3 columns of data, Factor 1 — gender
with 2 levels (male and female), Factor 2 - supplement with 3 levels (control, carbohydrate CHO and
protein) and the dependent variable (explosive jump power. In Descriptive statistics check the data
for significant outliers. Go to ANOVA >ANOVA, add Jump power to the Dependent variable, Gender
and Supplement to the Fixed factors.
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In Descriptive plots add supplement to the horizontal axis and Gender to separate lines. In Additional
Options, tick Descriptive statistics and Estimates of effect size (w?).

| * | Descriptives Plots

Factors
[
| 2
P
Display

Display error bars

@ Confidence interval

Horizontal axis

& Supplement

Separate lines

ir Gender

Separate plots

UNDERSTANDING THE OUTPUT

The output should comprise 2 tables and one plot.

ANCVA - Jump power

Display
[ Descriptive statistics
Estirnates of effect size

O n* [ partial n wt
["] Vovk-Sellke maximum p-ratio

Cases Sum of Squares df Mean Sqguare F p wr
Gender 119108.037 1.000 112102.037 9530 0.003 0.058
Supplement 896116.137 2.000 443058.068 36.071 < 001 0477
Gender s Supplement 275806438 2.000 1370032149 11.102 = 001 0138
Residual h21712.054 42 000 12421 716

MNote. Type Il Sum of Squares

The ANOVA table shows that there are significant main effects for both Gender and Supplement
(p=0.003 and p<.001 respectively) with medium and large effect sizes respectively. This suggests that
there is a significant difference in jump power between genders, irrespective of Supplement, and
significant differences between supplements, irrespective of Gender.

There is also a significant interaction between Gender and Supplement (p<.001) which also has a
medium to large effect size (0.138). This suggests that the differences in jump power between genders

is affected somehow by the type of supplement used.

The Descriptive statistics and plot suggest that the main differences are between genders when using

a protein supplement.

JASP 0.9 - Dr Mark Goss-Sampson

83| Page



Descriptives - Jump power ¥

Gender Supplement Mean sD M
Female Control a77.500 134 5683 3.000
CHO T892 235 102.233 7.000
Protein Q8B BET 01.924 2.000
iale Confrol 788.125 64.417 8.000
CHO 901.875 117.502 8.000
Protein 1263.125 140.863 8.000
1400 —
Gender
_r Female
o ® Male
[ab]
=z
(=]
=R
o
=
=1
=5
G600~
[ T ]
Control CHO Frotein
Supplement

TESTING ASSUMPTIONS

In Assumption Checks, tick Homogeneity tests and Q-Q plot of residuals.

Assumption Checks

Test for Equality of Variances (Levene's)

F

df1

1.100

5.000

42.000

Levene’s test shows no significant difference in variance within the dependent variable groups, thus
homogeneity of variance has not been violated.

JASP 0.9 - Dr Mark Goss-Sampson
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The Q-Q plot shows that the data appear to be normally distributed and linear. We can now accept
the ANOVA result since none of these assumptions have been violated.

However, if the ANOVA reports no significant difference you can go no further with the
analysis.

POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Supplement
to the analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.

Post hoc testing is not done for Gender since there are only 2 levels.

Post Hoc Comparisons - Supplement

Mean Difference SE t Cohen's d Ptukey
Contral CHO -12.768 40102 -0.318 -0.109 0545
Protein -202 033 38.853 7518 -1.8149 = 001
CHO Protein -279.315 35.561 -7.060 -1.732 = 001

Naote. Cohen's d does not correct for multiple comparisons.

Post hoc testing shows no significant difference between the control and CHO, supplement group,
irrespective of Gender, but significant differences between Control and Protein (p<.001) and between
CHO and Protein (p<.001).

Now go to the analysis options and Simple Main Effects. Here add Gender to the Simple effect factor
and Supplement to the Moderator Factor 1. Simple main effects are effectively pairwise comparisons.
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Simple Main Effects - Gender

Level of Supplement Sum of Squares df lMean Square F p

Confral 31851 563 1 31851563 2572 0.116
CHO 47325030 1 47325030 3.810 0.058
Protein 323700184 1 323700184 26055 = 001

This table shows that there are no gender differences in jump power between the control or CHO
groups (p=.116 and p=0.058 respectively). However, there is a significant difference (p<.001) in jJump
power between genders in the protein supplement group.

REPORTING THE RESULTS

A two-way ANOVA was used to examine the effect of gender and supplement type on explosive jump
power. There were significant main effects for both gender (F (1, 42) = 9.59, p=.003, w? = 0.058) and
Supplement (F (2, 42) = 30.07, p<.001, w? = 0.477). There was a statistically significant interaction
between the effects of gender and supplement on explosive jump power (F (2, 42) = 11.1, p<.001, w?
=0.138).

Tukey’s post hoc correction showed that explosive leg power was significantly higher in the protein
group compared to the control or CHO groups (t=-1.919, p<.001 and t=-1.782, p<.001 respectively).

Simple main effects showed that jump power was significantly higher in males on a protein
supplement compared to females (F (1) =28.06, p<.001).

86| Page
JASP 0.9 - Dr Mark Goss-Sampson



MIXED FACTOR ANOVA USING JASP
Mixed factor ANOVA (another two-way ANOVA) is a combination of both independent and
repeated measures ANOVA involving more than 1 independent variable (known as factors).

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 Dependent variable  Dependent variable Dependent variable
Group 2 Dependent variable  Dependent variable  Dependent variable

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has
2 levels. This results in 6 possible combinations.

A “main effect” is the effect of one of the independent variables on the dependent variable,
ignoring the effects of any other independent variables. There are 2 main effects tested: in
this case comparing data across factor 1 (i.e. time) is known as the “within-subjects” factor
while comparing differences between factor 2 (i.e. groups) is known as the “between-
subjects” factor. An interaction is where one factor influences the other factor.

The main effect of time or condition tests the following i.e. irrespective of which group the
dataisin:

Independent variable Independent variable (Factor 1) = time or condiition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 All data All data All data
Group 2
| " ] | * J
| J
%k

The main effect of group tests the following i.e. irrespective of which condition the data is in:

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3
Group 1 All data
Group 2 All data j *

Simple main effects are effectively pairwise comparisons:

Independent variable Independent variable (Factor 1) = time or condition

(Factor 2) Time/condition 1 Time/condition 2 Time/condition 3

Group 1 Data Data Data

Group 2 Data j * Data j * Data j *
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A mixed factor ANOVA is another omnibus test that is used to test 3 null hypotheses:

3. There is no significant within-subject effect i.e. no significant difference between the
means of the differences between all the conditions/times.
4. There is no significant between-subject effect i.e. no significant difference between
the means of the groups.
5. There is no significant interaction effect i.e. no significant group differences across
conditions/time
ASSUMPTIONS

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which
should either be addressed in the research design or can the tested for.

The “within-subjects” factor should contain at least two related (repeated measures)
categorical groups (levels)

The “between-subjects” factor should have at least two categorical independent
groups (levels).

The dependent variable should be continuous and approximately normally distributed
for all combinations of factors.

There should be homogeneity of variance for each of the groups and, if more than 2
levels) sphericity between the related groups.

There should be no significant outliers.

RUNNING THE MIXED FACTOR ANOVA

Open 2-way Mixed ANOVA.csv in JASP. This contains 4 columns of data relating to the type
of weightlifting grip and speed of the lift at 3 different loads (%1RM). Column 1 contains the
grip type, columns 2-4 contain the 3 repeated measures (30, 50 and70%). Check for significant
outliers using boxplots then go to ANOVA > Repeated measures ANOVA.

Define the Repeated Measures Factor, %1RM, and add 3 levels (30, 50 and 70%). Add the
appropriate variable to the Repeated measures Cells and add Grip to the Between-Subjects
Factors:
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Repeated Measures Factors

30%
50%
0%

%el RMax

@

Repeated Measures Cells

> %% RM30

% RM50
W RMT70

30%
50%
0%

Between Subject Factors

> & Grip

In Descriptive plots, move %1RM to the horizontal axis and Grip to separate lines. In
Additional Options, tick Descriptive statistics and Estimates of effect size (w?).

| = | Descriptives Plots
Factors

o

Horizontal axis

%1 RMax

Descriptive statistics

Separate lines

Estimates of effect size

Grip

n® [ partial n® V] w?

Separate plots

Vovk-Sellke maximum p-ratio
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UNDERSTANDING THE OUTPUT

Within Subjects Effects

Sum of Sguares df Mean Sguare F p e
%W1RM 5.605= 2= 2.303= 115.450= = 001= 0.744
%1RM = Grip 0.583= L= 0.291= 12.003= = .001= 0218
Residual 0.374 36 0.024

Note. Type [l Sum of Squares
= pMauchly's test of sphericity indicates that the assumption of sphericity is violatad {p < .05).

The output should initially comprise of 3 tables and 1 graph.

For the main effect with respect to %1RM, the within-subjects effects table reports a large F-
statistic which is highly significant (p<.001) and has a large effect size (0.744). Therefore,
irrespective of grip type, there is a significant difference between the three %1RM loads.

However, JASP has reported under the table that the assumption of sphericity has been
violated. This will be addressed in the next section.

Between Subjects Effects

Sum of Sguares df Mean Sguare F p we
Grip 1.085 1 1.085 20.925 = 001 0.499
Residual 0.942 128 0.052

MNote. Type lll Sum of Squares

Finally, there is a significant interaction between %1RM and grip (p<.001) which also has a
large effect size (0.499). This suggests that the differences between the %1RM loads are
affected somehow by the type of grip used.

For the main effect with respect to grip, the between-subjects table shows a significant
difference between grips (p< .001), irrespective of %1RM.

From the descriptive data and the plot, it appears that there is a larger difference between
the two grips at the high 70% RM load.

Descriptives

S 1RMax Grip ean 5D M

30% Reverse 1278 0178 10.000
Traditional 1.482 0217 10.000

50% Revarse 1.114 0,198 10.000
Traditional 1.123 0.256 10.000

T0% Reverse 0379 0.105 10.000
Traditional 0917 0.035 10.000
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1.6

Grip
2 Reverse
@ Traditional

02—~

30% 50% 70%
% 1RMax

TESTING ASSUMPTIONS

In Assumptions Checks, tick Sphericity tests, Sphericity corrections and Homogeneity tests.

Test of Sphericity

Mauchly's W p Gresnhouse-Geisser £ Huynh-Feldt £

e 1RMax 0.649 0.025 0.740 0.791

Mauchly’s test of sphericity is significant so that assumption has been violated, therefore, the
Greenhouse-Geisser correction should be used since epsilon is <0.75. Go back to Assumption
Checks and in Sphericity corrections leave Greenhouse-Geisser only ticked. This will result in
an updated Within-Subjects Effects table:

Within Subjects Effects

Sphericity Correction Sum of Squares df Mean Square F p w*
Y% 1RM Greenhouse-Geisser 5.605= 1.480= 1787 115.450= < 001= 0.744
%1RM = Grip Greenhouse-Geisser 0583 1.480= 0.384= 12.003= = 001= 0218
Residual Greenhouse-Geisser 0.374 26.6349 0.033

MNote. Type 1l Sum of Squares
= Mauchly's test of sphericity indicates that the assumption of sphericity is viclated {p = .05).

Test for Equality of Variances (Levene's)

F df1 df2 p
RM30 0.523 1.000 12.000 0.479
RM50 0.346 1.000 12.000 0.564
RMTO 01233 1.000 12.000 0.674

Levene’s test shows that there is no difference in variance in the dependent variable between
the two grip types.
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However, if the ANOVA reports no significant difference you can go no
further in the analysis.

POST HOC TESTING

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add
%1RM to the analysis box on the right, tick Effect size and, in this case, use Bonferroni for the
post hoc correction. Only Bonferroni or Holm’s correction are available for repeated
measures.

[ ¥ | Post Hoc Tests
%61 RMax
Effect size Pool errer term for RM factors
Correction
Bonferroni
Helm
Tukey
Scheffe
Post Hoo Comparisons - %1RMax
Mean Diference SE t Cohen's d Phaonf
0% 50% 0232 0.060 3.856 0.862 0.003
T0% 0733 0.050 14.583 3.261 = 001
50% T0% 0.500 0.073 6.830 1.528 = 00

MNote. Cohen's d does not cormect for multiple comparisons.
The post hoc tests show that irrespective of grip type each load is significantly different from each of

the other loads, and as seen from the plot, lift velocity significantly decreases as load increases.
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Finally, In Simple main effects add Grip to the Simple effect factor and %1RM to Moderator

factor 1

| * | Simple Main Effects

Factors Simple effect factor
Moderator factor 1
)
Moderator factor 2
Pool error terms E
Simple Main Effects - Grip
Level of %1RM Sum of Sguares df IWMean Square F p
0% 0.206 1 0.206 52249 0.035
0% 0.024 1 0.024 0.461 0.506
T0% 1.447 1 1.447 157212 = 001

These results show that there is a significant difference in lift speed between the two grips at
30% 1RM and also at the higher 70% 1RM loads (p=0.035 and p<0.001 respectively).

JASP 0.9 - Dr Mark Goss-Sampson
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REPORTING THE RESULTS

Using the Greenhouse-Geisser correction, there was a significant main effect of load (F=(1.48,
26.64) = 115.45, p<.001). Bonferroni corrected post hoc testing showed that there was a
significant sequential decline in lift speed from 30-50% 1RM (p=.035) and 50-70% 1RM
(p<.001).

There was a significant main effect for grip type (F (1, 18) =20.925, p<.001) showing an overall
higher lift speed using the traditional rather than the reverse grip.

Using the Greenhouse-Geisser correction, there was a significant %1RM x Grip interaction (F
(1.48, 26.64) = 12.00, p<.001) showing that the type of grip affected lift velocity over the
%1RM loads.
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CHI-SQUARE TEST FOR ASSOCIATION

The chi-square (x?) test for independence (also known as Pearson's x2 test or the 2 test of association)
can be used to determine if a relationship exists between two or more categorical variables. The test
produces a contingency table, or cross-tabulation, which displays the cross-grouping of the categorical
variables.

The X2 test checks the null hypothesis that there is no association between two categorical variables.
It compares the observed frequencies of the data with frequencies which would be expected if there
was no association between the two variables.

The analysis requires two assumptions to be met:

1. The two variables must be categorical data (nominal or ordinal)
2. Each variable should comprise two or more independent categorical groups

Most statistical tests fit a model to the observed data with a null hypothesis that there is no difference
between the observed and modelled (expected) data. The error or deviation of the model is calculated
as:

Deviation =3 (observed -model)?

Most parametric models are based around population means and standard deviations. The x2 model,
however, is based on expected frequencies.

How are the expected frequencies calculated? For example, we categorised 100 people into male,
female, short and tall. If there was an equal distribution between the 4 categories expected frequency
=100/4 or 25% but the actual observed data does not have an equal frequency distribution.

Equal Male Female | Row Observed Male Female | Row
Distribution Total Distribution Total
Tall 25 25 50 Tall 57 24 81
Short 25 25 50 Short 14 5 19
Column Total | 50 50 ColumnTotal |71 29

The model based on expected values can be calculated by:

Model (expected) = (row total x column total)/100
Model - tall male =(81x71)/100=57.5

Model — tall female =(81x29) /100 =23.5

Model — small male =(19x71) /100 =13.5

Model — small female =(19x29)/100=5.5

These values can then be added to the contingency table:
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Male (M) Female (F) Row Total
Tall (T) 57 24 81
Expected 57.5 23.5
Short (S) 14 5 19
Expected 13.5 5.5
Column Total 71 29

(observed —expected)2

2 statistic is derived f
X< statistic Is aerive rom Z expected

Validity

X2 tests are only valid when you have a reasonable sample size, that is, less than 20% of cells have an
expected count of less than 5 and none have an expected count of less than 1.

RUNNING THE ANALYSIS

The dataset Titanic survival is a classic dataset used for machine learning and contains data on 1309
passengers and crew who were on board the Titanic when it sank in 1912. We can use this to look at
associations between survival and other factors. The dependent variable is ‘Survival’ and possible
independent values are all the other variables.

&;Class £|| survived £|| name &;sm{ % age
Third Mo Abbing, Mr. Anthony male 42
Third Mo Abbott, Master, Eugene Joseph male 13
Third Mo Abbott, Mr. Rossmore Edward male 16
Third Yes Abbott, Mrs, Stanton (Rosa Hunt) female 35
Third ez Abelseth, Mizz, Karen Marie female 16
Third Yes Abelseth, Mr. Olaus Jorgensen male 25
Second Mo Abelson, Mr. Samuel male 30
Second Yes Abelson, Mrs, Samuel (Hannah Wizosky) female 28
Third Yes Abrahamsson, Mr, Abraham August Johannes male 20
Third Yes Abrahim, Mrs, Joseph (Sophie Halaut Easu) female 18
Third Mo Adahl, Mr. Mauritz Mils Martin male 30
Third Mo Adams, Mr. lohn male 26
9% |Page
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By convention, the independent variable is usually placed in the contingency table columns and the
dependent variable is placed in the rows.

Open Titanic survival.csv in JASP, add survived to rows as the dependent variable and sex into columns

as the independent variable.

Class

name

age

spouses on board

parents with childr...

XX YEL

embarked

Rows

| » |£|.5ur1.ri1.red

Columns

|l' |£||5'.=-_:~:

Then tick all the following options:

Likelihood ratio

MNominal
Contingency coefficient
Phi and Cramer's ¥

| = | statistics
¥ Log odds ratio (2:2 only)
y* continuity correction Confidence interval 95

Vovk-Sellke maximum p-ratio

Ordinal

Gamma
Kendall's tau-b

| = | Celis

Counts
Observed
Expected

JASP 0.9 - Dr Mark Goss-Sampson
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UNDERSTANDING THE OUTPUT

First look at the Contingency table output.

Contingency Tables
sy

suryived famala male Total

Mo Count 127.0 G820 a0a.o
Expected count 2880 521.0 209.0
%0 within row 1587 % 84 3% 100.0 %
% within column 27 3% B0.9% 61.8%
%% of Total 8.7 % B2.1% 61.8%

Yes Count 3380 161.0 5000
Expected count 17580 3220 500.0
% within row 67.8% 322 % 100.0 %
% within column T27% 18.1 % 382 %
% of Total 259 % 123 % 382 %

Total Count 46a.0 243.0 1308.0
Expected count 4660 843.0 1308.0
% within row 356% 64.4 % 100.0 %
% within column 100.0 % 100.0 % 100.0 %
% of Total 356 % G4 .4 % 100.0 %

Remember that )’ tests are only valid when you have a reasonable sample size, i.e. less than 20% of
cells have an expected count of less than 5 and none have an expected count of less than 1.

From this table, looking at % within rows, it can be seen that more males died on the Titanic compared
to females and more females survived compared to males. But is there a significant association
between gender and survival?

The statistical results are shown below:

Chi-Sguared Tests

“alue df p
XF 36540 1 < 001
X* continuity correction J63.6 1 < .001
Likelihood ratio ar2a 1 < 001
M 1309

x? statistic (x?(1) = 365.9, p <.001) suggest that there is a significant association between gender and
survival.

x> continuity correction can be used to prevent overestimation of statistical significance for small
datasets. This is mainly used when at least one cell of the table has an expected count smaller than 5.
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As a note of caution, this correction may overcorrect and result in an overly conservative result that
fails to reject the null hypothesis when it should (a type Il error).

The likelihood ratio is an alternative to the Pearson chi-square. It is based on maximum-likelihood
theory. For large samples, it is identical to Pearson x2. It is recommended in particular for small
samples sizes i.e. <30.

Nominal measures, Phi (2 x 2 contingency tables only) and Cramer's V (most popular) are both tests
of the strength of association (i.e. effect sizes). Both values are in the range of 0 (no association) to 1
(complete association). It can be seen that the strength of association between the variables is of a
large effect size.

Maominal
Yalue
Contingency coeflicient 0.5
Phi-coefficient 0.5
Cramer's 0.5

The Contingency coefficient is an adjusted Phi value and is only suggested for large contingency tables
such as 5 x 5 tables or larger.

Effect size * df Small Moderate Large
Phi and Cramer’s V (2x2 only) 1 0.1 0.3 0.5
Cramer’s V 2 0.07 0.21 0.35
Cramer’s V 3 0.06 0.17 0.29
Cramer’s V 4 0.05 0.15 0.25
Cramer’s V 5 0.04 0.13 0.22

JASP also provides the Odds ratio (OR) which is used to compare the relative odds of the occurrence
of the outcome of interest (survival), given exposure to the variable of interest (in this case gender).

Log Odds Ratio ¥

95% Confidence Intervals

Log Cdds Ratio Lower Upper
Odds ratio —2.425 —-2.602 -2.154
Fishers exact test —2.423 —2.701 -2.150

4 Kim HY. Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor. Dent.
Endod. 2017; 42(2):152-155.
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For some reason, JASP calculates OR as a natural log. To convert this from a log value calculate the
natural antilog value (using Microsoft calculator, input number then click on Inv followed by e¥), in this
case, itis 11.3. This suggests that male passengers had 11.3 times more chance of dying than females.

Calculator ==

View Edit Help

powe(2.425)

11.302229419279581084945760496796

(@ Degrees () Radians () Grads || M || MR || MS || M= || M-

B e [ ][0 L= e ] e JL= L

How is this calculated? Use the counts from the contingency table in the following:

Odds[males] = Died/Survived
Odds[females] = Died/Survived

682/162 =4.209
127/339 =0.374

OR = Odds[males] / Odds [females] =11.3

GOING ONE STEP FURTHER.

We can also further decompose the contingency table as a form of post hoc testing by converting the
counts and expected counts in each cell to a standardised residual. This can tell us if the observed
counts and expected counts are significantly different in each cell.

The standardized residual for a cell in a table is a version of the standard z-score, calculated as

zZ= observed — expected
Vexpected

In the special case where df = 1, the calculation of the standardized residual incorporates a correction
factor:
z= |observed — expected| — 0.5
Vexpected

The resulting value of z is then given a positive sign if observed>expected and a negative sign if
observed<expected. Z-score significances are shown below.

z-score P value
<-1.96 or >1.96 <0.05
<-2.58 or >2.58 <0.01
<-3.29 0r>3.29 <0.001

100 | Page
JASP 0.9 - Dr Mark Goss-Sampson



Contingency Tables

sex
survived female male Total
No Count 127.0 652.0 809.0
Expected count 2880 521.0 809.0
% within row 15.7% 84.3% 100.0%
% within column 27.3% 80.9% 61.8%
% of Total 97% 521% 61.8%
Yes Count 339.0 161.0 500.0
Expected count 178.0 3220 500.0
% within row 67.8% 322% 100.0%
% within column 72.7 % 19.1% 382%
% of Total 259% 123% 38.2%
Total Count 466.0 843.0 1309.0
Expected count 466.0 8430 1309.0
% within row 356% 64.4% 100.0%
% within column 100.0% 100.0% 100.0%
% of Total 356% 64.4% 100.0%

Female No Male No
z=-95 z=7.0
Female Yes Male Yes
z=12.0 z=-89

When the z-scores are calculated for each cell in the contingency table we can see that significantly
fewer women died than expected and significantly more males died than expected p<.001.

JASP 0.9 - Dr Mark Goss-Sampson
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EXPERIMENTAL DESIGN AND DATA LAYOUT IN EXCEL FOR JASP IMPORT.

Independent t-test
Design example:

Independent variable

Group 1

Group 2

Dependent variable

Data

Data

Independent variable

Categorical

Dependent variable

Continuous

Pod  Psd  Psd Pd Pl
2B N FES keSS e xEDLRERSR® N OEWN

25

Group

[

R R R R e =l = = R R R R e R = R = R = R R =

Data
0
0

3.8
6
0.7
2.9
2.8
2
2
8.5
1.9
3.1
1.5
3
3.6
0.9

-2.1

2
1.7
4.3

7
0.6
2.7
3.6

More dependent variables can be added if required

JASP 0.9 - Dr Mark Goss-Sampson
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Paired samples t-test
Design example:

Independent variable Pre-test | Post-test
Participant Dependent variable
1 Data Data
2 Data Data
3 Data Data
..h Data Data
Pre-test Post-test

y | A B

1 Pre-test Post-test

2 | 60 60

3_ 103 103

4 | 58 54

5 | 60 54

6 | 64 63

7 | 64 61

8 | 65 62

9 | 66 64

10 | 67 65

11 69 61

12 70 68

13 | 70 67

14 72 71

15 72 69

16 72 68

17 | 82 81

18 | 58 60

19 58 56

20 59 57

21 61 57

22 62 55

23 63 62

24 63 60

25 63 59
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Correlation
Design example:

Simple correlation

A

JASP 0.9 - Dr Mark Goss-Sampson

[ \
Participant Variable 1 Variable 2 ' | Variable3 | Variable4 | Variable ..n
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
.. Data Data Data Data Data
\
|
Multiple correlation

Y | A | B | C | [} | E | F

1 | Participant Variablel Variable2 Variable3 Variabled4 Variable5

2 1 333 7 ¥7 106 106

3 | 2 472 63 59 92 93

4 ] 3 484 82 ¥7 93 78

3 4 536 72 72 103 93

& | 5 630 7 63 104 93

7] 6 563 68 68 101 87

8 | 7 5331 7 82 108 106

g ) 344 S0 S0 86 92

10 9 346 34 S0 90 86

11 10 386 59 54 85 80

12 11 460 34 63 89 83

13 | 12 452 63 59 92 94
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Regression

Design example:

Simple Regression

A
| ]
Participant Outcome Predictor 1 | Predictor 2 | Predictor 3 | Predictor ..n
1 Data Data Data Data Data
2 Data Data Data Data Data
3 Data Data Data Data Data
..n Data Data Data Data Data
\ J
|
Multiple regression
Y | A B | C | }] | E | F |
1 | Participant = Qutcome Predictorl Predictor2 Predictor3 Predictor4
2 | 1 333 77 77 106 106
3 | 2 a72 63 59 92 93
4 | 3 434 82 77 93 78
3 4 536 72 72 103 93
b | 5 630 77 68 104 93
7] 6 S63 6a 63 101 87
B | 7 331 77 82 108 106
g ) 344 S0 S0 86 92
10 | 9 346 54 S0 90 86
11 10 386 59 54 85 80
12 | 11 460 54 63 89 83
13| 12 4592 63 59 92 94
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Logistic Regression
Design example:

Dependent Variable Factor Covariate
(categorical) (categorical) (continuous)

Participant Outcome Predictor 1 Predictor 2
1 Data Data Data
2 Data Data Data
3 Data Data Data
..n Data Data Data

Y | A B C | ) |

1_ I Cutcome Factor Cowvariate

2_ 1 Yes Yes 70

3_ 2 Yes Mo 20

-1_ 3 Yes Yes S0

5_ 4 Yes Mo ol

E_ 5 Yes Mo a0

}'_ o Yes Mo ]

B_ 7 Yes Mo 75

9_ 8 Yes Mo 20

1[}_ 9 Yes Mo 70

ll 10 Yes Mo ol

12_ 11 Mo Yes 65

13_ 12 Mo Yes a0

14_ 13 Mo Yes 45

15_ 14 Mo Yes 35

16_ 15 Mo Yes a0

1}'_ 16 Mo Yes a0

18_ 17 Mo Mo a5

]il 17 Yes Mo ]

2[}_ 18 Mo Yes 45

More factors and covariates can be added if required
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One-way Independent ANOVA
Design example:

Independent variable Group 1 Group 2 Group 3 Group...n
Dependent variable Data Data Data Data
Independent variable Dependent variable
(Categorical) (Continuous)

| A | E

1 | Group Dependent variable

2 Group 1 3.8

3 | Group 1 B

4 | Group 1 0.7

3 Group 1 2.9

b | Group 1 2.8

7] Group 1 2

8 | Group 1 2

g Group 1 3.5

10 | Group 2 1.9

11 Group 2 3.1

12 Group 2 1.5

13 | Group 2 3

14 Group 2 3.6

15| Group 2 0.9

16 Group 2 -0.6

17 Group 3 1.1

18 Group 3 4.5

19 Group 3 6.1

20 Group 3 =1

21 Group 3 2.4

22 Group 3 3.9

23 | Group 3 3.5

24 Group 3 3.1

25 Group 3 3.5

More dependent variables can be added if required

JASP 0.9 - Dr Mark Goss-Sampson
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One-way repeated measures ANOVA
Design example:

Independent variable (Factor)

More levels can be added if required

JASP 0.9 - Dr Mark Goss-Sampson

Participant Level 1 Level 2 Level 3 Level..n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
4 Data Data Data Data
..h Data Data Data Data
Factor (time)
A
|
A A B | C | D
- Levels

1 | Participant Week 0 Week 3 Week § &=

2 | 1 6.42 5.83 5.75 (Related groups)

3_ 2 6.76 6.2 6.13

4 | 3 0.50 2.83 271

5_ 4 4.8 a4.27 4.15

& | 3 8.43 7.71 7.67

?_ ] 7.49 7.12 7.05

g | 7 8.05 7.25 7.1

9_ b 5.05 4.63 4.67

10 9 2.77 2321 2.33

11_ 10 3.91 3.7 3.66

12 | 11 6.77 6.15 2.96

lli 12 6.44 5.59 5.64

14 | 13 6.17 2.36 2.5l

1._1 14 7.67 711 6.96

16 15 7.34 0.84 0.82

1}'_ 16 6.85 6.4 6.29

18 17 213 4,52 4.45

]EL 18 5.73 5.13 5.17
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Two-way Independent ANOVA
Design example:

Factor 1 Supplement 1 Supplement 2
Factor 2 Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3
Dep.vendent Data Data Data Data Data Data
variable
Factorl Factor2 Dependent variable

4 A | B C |

1 supp dose len

2 ol 1000 15.7

3 ol 1000 23.3

4 | ol 1000 23.6

3 ol 1000 26.4

6 | ol 1000 20

7] ol 1000 25.2

8 | ol 1000 25.8

g ol 1000 21.2

10 ol 1000 14.5

11 ol 1000 27.3

12 | ol 2000 25.5

13 | ol 2000 26.4

14 | ol 2000 22.4

15 | ol 2000 24.5

16 ol 2000 24.8

17 | ol 2000 30.9

18 ol 2000 26.4

19 ol 2000 27.3

20 ol 2000 29.4

21 ol 2000 23

22 | VC 1000 16.5

23 | VC 1000 16.5

24 | VC 1000 15.2

23 | VC 1000 17.3

More factors and dependent variables can be added if required
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Two-way Mixed Factor ANOVA
Design example:

Factor 1 Group 1 Group 2
(Between subjects)
Factor 2 levels Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3
(Repeated measures)
1 Data Data Data Data Data Data
2 Data Data Data Data Data Data
3 Data Data Data Data Data Data
..h Data Data Data Data Data Data
Factor 1 Factor 2 levels
(Categorical) (Continuous)
A
|

V| A | B C | D

1 Group Level 1 Level 2 Level 3

2 Group 1 1.21 0.9 0.9

3_ Group 1 1.29 0.89 0.72

4 | Group 1 1.8 0.9 0.96

5_ Group 1 14 1.26 0.97

E_ Group 1 1.45 1.18 0.88

}'_ Group 1 1.35 1.15 0.92

8 | Group 1 1.45 1.19 1

g Group 1 1.21 1.2 0.85

10 Group 1 1.79 1.48 0.99

11_ Group 1 1.73 1.68 0.98

12_ Group 2 1.55 0.9 0.55

13_ Group 2 1.27 0.95 0.41

14_ Group 2 1.53 0.87 0.42

15 | Group 2 1.26 1.15 0.44

16_ Group 2 1.14 1.12 0.38

1}'_ Group 2 1.11 1.08 0.34

13; Group 2 1.1 1.0758 0.18

]EL Group 2 1.08 1.18 0.24

2[}_ Group 2 1.3 1.26 0.39

21_ Group 2 1.45 1.55 0.44
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Chi-squared - Contingency tables
Design example:

JASP 0.9 - Dr Mark Goss-Sampson

Participant Response 1 Response 2 Response 3 Response...n
1 Data Data Data Data
2 Data Data Data Data
3 Data Data Data Data
..n Data Data Data Data
All data should be categorical

A A | B C D E |

1 | Respondant Responsel Response2  Response 3 Response 4

2 1 Female clay Morning yes

3 2 Male astro Morning Mo

4 | 3 Female grass Evening No

5 | 4 Male clay Afternocon Mo

6 3 Male clay Morning Mo

7 ] B Male grass Evening Mo

8 | 7 Female grass Evening yes

9 | 8 Male clay Morning yes

10 9 Female grass Morning No

11 | 10 Male clay Afternocon Mo

12 | 11 Female clay Afternoon Mo

13 | 12 Male astro Afternocon Mo

14 13 Male astro Afterncon Mo

15 | 14 Male astro Afternocon yes

16 | 15 Female clay Morning Mo

17 | 16 Male astro Afternocon yes

18 17 Female astro Afternoon yes

19 18 Male grass Maorning Mo

20 19 Male clay Afternoon Mo
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SOME CONCEPTS IN FREQUENTIST STATISTICS

The frequentist approach is the most commonly taught and used statistical methodology. It
describes sample data based on the frequency or proportion of the data from repeated
studies through which the probability of events is defined.

Frequentist statistics uses rigid frameworks including hypothesis testing, p values and
confidence intervals etc.

Hypothesis testing

A hypothesis can be defined as “a supposition or proposed explanation made on the basis of
limited evidence as a starting point for further investigation”.

There are two simple types of hypotheses, a null hypothesis (Ho) and an alternative or
experimental hypothesis (H1). The null hypothesis is the default position for most statistical
analyses in which it is stated that there is no relationship or difference between groups. The
alternative hypothesis states that there is a relationship or difference between groups for
can a direction of difference/relationship. For example, if a study was carried out to look at
the effects of a supplement on sprint time in one group of participants compared to the
placebo group:

Ho = there is no difference in sprint times between the two groups
Hi = there is a difference in sprint times between the two groups
H, = group 1 is greater than group 2

Hs = group 1 is less than group 2

Hypothesis testing refers to the strictly predefined procedures used to accept or reject the
hypotheses and the probability that this could be purely by chance. The confidence at which
a null hypothesis is accepted or rejected is called the level of significance. The level of
significance is denoted by a, usually 0.05 (5%). This is the level of probability of accepting an
effect as true (95%) and that there is only 5% of the result being purely by chance.

Different types of hypothesis can easily be selected in JASP, however, the null hypothesis is
always the default.

Hypothesis
@ Groupl £ Group 2
) Groupl > Group 2

(") Groupl < Group 2
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Type | and Il errors

The probability of rejecting the null hypothesis, when it is, in fact, true, is called Type | error
whereas the probability of accepting the null hypothesis when it is not true is called Type Il
error.

The truth
Not guilty (Ho) Guilty (H1)
Type | error
Guilty (Hi) An innocent person | Correct decision
The verdict goes to prison
Not guilty (Ho) Type Il error
Correct decision A guilty person goes free

Type | error is deemed the worst error to make in statistical analyses.

Statistical power is defined as the probability that the test will reject the null hypothesis when
the alternative hypothesis is true. For a set level of significance, if the sample size increases,
the probability of Type Il error decreases, which therefore increases the statistical power.

Testing the hypothesis

The essence of hypothesis testing is to first define the null (or alternative) hypothesis, set
the criterion level a, usually 0.05 (5%), collect and analyse sample data. Use a test statistic to
determine how far (or the number of standard deviations) the sample mean is from the
population mean stated in the null hypothesis. The test statistic is then compared to a critical
value. This is a cut-off value defining the boundary where less than 5% of the sample means
can be obtained if the null hypothesis is true.

If the probability of obtaining a difference between the means by chance is less than 5% when
the null hypothesis has been proposed, the null hypothesis is rejected and the alternative
hypothesis can be accepted.

The p value is the probability of obtaining a sample outcome, given that the value stated in
the null hypothesis is true. If the p value is less than 5% (p < .05) the null hypothesis is rejected.
When the p value is greater than 5% (p > .05), we accept the null hypothesis.

Effect size

An effect size is a standard measure that can be calculated from any number of statistical
analyses. If the null hypothesis is rejected the result is significant. This significance only
evaluates the probability of obtaining the sample outcome by chance but does not indicate
how big a difference (practical significance), nor can it be used to compare across different
studies.

The effect size indicates the magnitude of the difference between the groups. So for example,

if there was a significant decrease in 100m sprint times in a supplement compared to a
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placebo group, the effect size would indicate how much more effective the intervention was.
Some common effect sizes are shown below.

Between means Cohen’sd <0.2 0.2 0.5 0.8

Correlation Correlation coefficient (r) <0.1 0.1 0.3 0.5
Rank -biserial (rg) <0.1 0.1 0.3 0.5
Spearman’s rho <0.1 0.1 0.3 0.5

Multiple Regression | Multiple correlation | <0.10 | 0.1 0.3 0.5
coefficient (R)

ANOVA Eta <0.1 0.1 0.25 0.37
Partial Eta <0.01 | 0.01 0.06 0.14
Omega squared <0.01 | 0.01 0.06 0.14

Chi-squared Phi (2x2 tables only) <0.1 0.1 0.3 0.5
Cramer’s V <0.1 0.1 0.3 0.5
Odds ratio (2x2 tables only) <1.5 1.5 3.5 9.0

In small datasets, there may be a moderate to large effect size but no significant differences.
This could suggest that the analysis lacked statistical power and that increasing the number
of data points may show a significant outcome. Conversely, when using large datasets,
significant testing can be misleading since small or trivial effects may produce statistically
significant results.

PARAMETRIC vs NON-PARAMETRIC TESTING

Most research collects information from a sample of the population of interest, it is normally
impossible to collect data from the whole population. We do, however, want to see how well
the collected data reflects the population in terms of the population mean, standard
deviations, proportions etc. based on parametric distribution functions. These measures are
the population parameters. Parameter estimates of these in the sample population are
statistics. Parametric statistics require assumptions to be made of the data including the
normality of distribution and homogeneity of variance.

In some cases these assumptions may be violated in that the data may be noticeably skewed:

P
= X‘ =
» ‘B
= [
Qo Q@
O O
I I T ] [ | | | | | | |
0 1 2 3 4 0 1 2 3
Normal Skewed
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Sometimes transforming the data can rectify this but not always. It is also common to collect
ordinal data (i.e. Likert scale ratings) for which terms such as mean and standard deviation
are meaningless. As such there are no parameters associated with ordinal (non-parametric)
data. The non-parametric counterparts include median values and quartiles.

In both of the cases described non-parametric statistical tests are available. There are
equivalents of most common classical parametric tests. These tests that don’t assume
normally distributed data or population parameters and are based on sorting the data into
ranks from lowest to highest values. All subsequent calculations are done with these ranks
rather than with the actual data values.
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WHICH TEST SHOULD | USE?
Comparing one sample to a known or hypothesized population mean.

_1 oot :

2 categories >2 categories

--ﬁi

Testing relationships between two or more variables

: o _1

Are parametric

assumptions met? |

Yes No
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Predicting outcomes

LI

More than one
predlctor variable?

&

palEe e 1

.
T
=

Testing for differences between two independent groups

+ T 4

Are parametric

assumptions met? |
Li-; e
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Testing for differences between two related groups

_i- L

assumptions met? |

Yes No
—

Testing for differences between three or more independent groups

+ T 4

Are parametric

assumptions met? |
Yes No
v

JASP 0.9 - Dr Mark Goss-Sampson
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Testing for differences between three or more related groups

Are parametric
assumptions met? |
% e

Test for interactions between 2 or more independent variables

Are parametric
assumptions met? |
%; e
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