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PREFACE  
 

JASP stands for Jeffrey’s Amazing Statistics Program in recognition of the pioneer of Bayesian 
inference Sir Harold Jeffreys. This is a free multi-platform open-source statistics package, developed 
and continually updated (currently v 0.9.0.1 as of June 2018) by a group of researchers at the 
University of Amsterdam. Their aim was to develop a free, open-source programme that includes both 
standard and more advanced statistical techniques with a major emphasis on providing a simple 
intuitive user interface. 

In contrast to many statistical packages, JASP provides a simple drag and drop interface, easy access 
menus, intuitive analysis with real-time computation and display of all results. All tables and graphs 
are presented in APA format and can be copied directly and/or saved independently.  Tables can also 
be exported from JASP in LaTeX format 

JASP can be downloaded free from the website https://jasp-stats.org/ and is available for Windows, 
Mac OS X and Linux. You can also download a pre-installed Windows version that will run directly from 
a USB or external hard drive without the need to install it locally.  The programme also includes a data 
library with an initial collection of over 50 datasets from Andy Fields book, Discovering Statistics using 
IBM SPSS statistics1 and The Introduction to the Practice of Statistics2 by Moore, McCabe and Craig. 

Since May 2018 JASP can also be run directly in your browser via rollApp without having to install it 
on your computer (https://www.rollapp.com/app/jasp). However, this may not be the latest version 
of JASP. 

Keep an eye on the JASP site since there are regular updates as well as helpful videos and blog posts!! 

 

This document is a collection of standalone handouts covering the most common standard 
(frequentist) statistical analyses used by students studying Biological Sciences.  Datasets used in this 
document are available for download from http://bit.ly/2wlbMvf. 

 

 

 

 

 

 

Dr Mark Goss-Sampson 
Centre for Science and Medicine in Sport 
University of Greenwich 
2018  
                                                           
1 A Field. (2017) Discovering Statistics Using IBM SPSS Statistics (5th Ed.) SAGE Publications. 
2 D Moore, G McCabe, B Craig. (2011) Introduction to the Practice of Statistics (7th Ed.) W H Freeman. 

https://jasp-stats.org/
https://www.rollapp.com/app/jasp
http://bit.ly/2wlbMvf
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USING THE JASP INTERFACE 
Open JASP. 

 

 

 

 

 

 

 

 

 

 

 

 

 

JASP has its own .jasp format but can open a variety of different dataset formats such as: 

• .csv (comma separated values) normally saved in Excel 
• .txt (plain text) also can be saved in Excel 
• .sav (IBM SPSS data file) 
• .ods (Open Document spreadsheet) 

Clicking on the File tab or “So open a data file and take JASP for a spin” in the welcome screen allows 
you to open recent files, browse your computer files, and access the Open Science Framework (OSF) 
or the wide range of examples that are packaged with JASP. 

 

 

 

 

Data spreadsheet and 
Analysis options window 

Output window 

Windows can be resized by 
sliding the dividing bar 
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All files must have a header label in the first row.  Once loaded, the dataset appears in the left window: 

 

 

 

 

 

 

 

 

 

 

 

For large datasets, there is a hand icon which allows easy scrolling through the data. 

On import JASP makes a best guess at assigning data to the different variable types: 

 

Nominal                                 Ordinal                                       Continuous 

 

If JASP has incorrectly identified the data type just click on the appropriate variable data icon in the 
column title to change it to the correct format.   

 

If you have coded the data you can click on the variable name to open up the following window in 
which you can label each code. These labels now replace the codes in the spreadsheet view. If you 
save this as a .jasp file these codes, as well as all analyses and notes, will be saved automatically. This 
makes the data analysis fully reproducible. 

 

In this window you can also carry out simple filtering of data, for example, if you untick the Wales label 
it will not be used in subsequent analyses. 
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  Clicking this icon in the spreadsheet window opens up a much more comprehensive set of data 
filtering options: 

 

 

 

 

 

 

 

 

 

 

 

Using this option will not be covered in this document. For detailed information on using more 
complex filters refer to the following link: https://jasp-stats.org/2018/06/27/how-to-filter-your-data-
in-jasp/ 

 

 

By default, JASP plots data in the Value order (i.e. 1-4). The order can be changed by highlighting the 
label and moving it up or down using the using the appropriate arrows: 

 

Move up 

Move down 

Reverse order 

Close 

  
 

https://jasp-stats.org/2018/06/27/how-to-filter-your-data-in-jasp/
https://jasp-stats.org/2018/06/27/how-to-filter-your-data-in-jasp/
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If you need to edit the data in the spreadsheet just double click on a cell and the data should open up 
in the original spreadsheet i.e. Excel.  You can change the option of which spreadsheet editor that you 
use by clicking on the            icon in the top right corner of the JASP window and select Preferences.  

  

 

 

 

 

 

 

In this window you can change the spreadsheet option to SPSS, ODS etc.  We will come back to 
preferences later. 

Once you have edited your data and saved the original spreadsheet JASP will automatically update to 
reflect the changes that were made provided that you have not changed the file name. 

 

JASP ANALYSIS MENU 

 

 

 

The common analysis options can be accessed from the main toolbar. Currently (v0.9.0.1) offers the 
following frequentist (standard statistics) and alternative Bayesian tests: 
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Descriptives 
• Descriptive stats 
• Reliability analysis* 

Regression 
• Correlation 
• Linear regression 
• Logistic regression 

T-Tests 
• Independent 
• Paired 
• One sample 

 

Frequencies 
• Binomial test 
• Multinomial test 
• Contingency tables 
• Log-linear regression* 

ANOVA 
• Independent 
• Repeated measures 
• ANCOVA* 

Factor 
• Principal Component Analysis (PCA)* 
• Exploratory Factor Analysis (EFA)* 

* Not covered in this document 

BY clicking on the + icon on the top menu you can also access advanced options including; Network 
analysis, Meta-Analysis, Structural Equation Modelling and Bayesian Summary stats.  

Once you have selected your required analysis all the possible statistical options appear in the left 
window and output in the right window. 

If you hover the cursor over the Results a          icon appears, clicking on this provides a range of options 
including: 

 

Click in this window to 
toggle between 
analysis options and 
spreadsheet in the left 
window 
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• Remove all analyses from the output window 
• Remove selected analysis 
• Collapse the output 
• Add notes to each output 
• Copy 
• Copy special (LaTeX code) 
• Save image as 

 

The ‘add notes’ option allows the results output to be easily annotated and then exported to an HTML 
file by going to File > Export Results. 

 

 

 

 

 

 

 

As previously mentioned, all tables and figures are APA standard and can just be copied into any other 
document. 

You can change the size of all the tables and graphs using ctrl+ (increase) ctrl- (decrease) ctrl= (back 
to default size). Graphs can also be resized by dragging the bottom right corner of the graph. 

 

One final tip: to make your tables less cluttered you can go to preferences              in the top right of 
the window and adjust the number of decimal places shown as well as displaying the exact p values 
i.e. from p<.001 to p<.00084. 

 

 

 

 

 

 

There are many further resources on using JASP on the website https://jasp-stats.org/  

 

  

https://jasp-stats.org/
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DESCRIPTIVE STATISTICS 
Presentation of all the raw data is very difficult for a reader to visualise or to draw any inference on. 
Descriptive statistics and related plots are a succinct way of describing and summarising data but do 
not test any hypotheses. There are various types of statistics that are used to describe data: 

• Measures of central tendency 
• Measures of dispersion 
• Percentile values 
• Measures of distribution 
• Descriptive plots 

In order to explore these measures, load Descriptive data.csv into JASP. Go to Descriptives > 
Descriptive statistics and move the Variable data to the Variables box on the right. 

CENTRAL TENDENCY. 

This can be defined as the tendency for variable values to cluster around a central value. The three 
ways of describing this central value are mean, median or mode. If the whole population is considered 
we the term population mean / median/mode is used. If a sample/subset of the population is being 
analysed the term sample mean/ median/mode is used. The measures of central tendency move 
toward a constant value when the sample size is sufficient to be representative of the population. 

In the Statistics options make sure that everything is unticked apart from mean, median and mode. 

  

 

 

 

 

 

 

The mean, M or x̅ (17.71) is equal to the sum of all the values divided by the number of values in the 
dataset i.e. the average of the values. It is used for describing continuous data. It provides a simple 
statistical model of the centre of distribution of the values and is a theoretical estimate of the ‘typical 
value’. However, it can be influenced heavily by ‘extreme’ scores. 

The median, Mdn (17.9) is the middle value in a dataset that has been ordered from the smallest to 
largest value and is the normal measure used for ordinal or non-parametric continuous data. Less 
sensitive to outliers and skewed data 

The mode (20.0) is the most frequent value in the dataset and is usually the highest bar in a distribution 
histogram 
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DISPERSION 

In the Statistics options make sure that everything is unticked apart from standard deviation, variance 
and standard error of the mean. 

  

 

 

 

 

 

Standard deviation, S or SD (6.94) is used to quantify the amount of dispersion of data values around 
the mean. A low standard deviation indicates that the values are close to the mean, while a high 
standard deviation indicates that the values are dispersed over a wider range. 

 

Variance (S2 = 48.1) is another estimate of how far the data is spread from the mean. It is also the 
square of the standard deviation.  

 

The standard error of the mean, SE  (0.24) is a measure of how far the sample mean of the data is 
expected to be from the true population mean. As the size of the sample data grows larger the SE 
decreases compared to S and the true mean of the population is known with greater specificity. 

 

Confidence intervals (CI), although not shown in the general Descriptive statistics output, these are 
used in many other statistical tests. When sampling from a population to get an estimate of the mean, 
confidence intervals are a range of values within which you are n% confident the true mean is 
included. A 95% CI is, therefore, a range of values that one can be 95% certain contains the true mean 
of the population. This is not the same as a range that contains 95% of ALL the values. 

 

For example, in a normal distribution, 95% of the data are expected to be within ± 1.96 SD of the mean 
and 99% within ± 2.576 SD. 

95% CI = M ± 1.96 * the standard error of the mean. 

 

Based on the data so far, M = 17.71, SE = 0.24, this will be 17.71 ± (1.96 * 0.24) or 17.71 ± 0.47. 

Therefore the 95% CI for this dataset is 17.24 - 18.18 and suggests that the true mean is likely to be 
within this range 95% of the time 

 



 

10 | P a g e  
JASP 0.9 - Dr Mark Goss-Sampson 

 

QUARTILES 

In the Statistics options make sure that everything is unticked apart from Quartiles. 

  

 

 

 

 

 

Quartiles are where datasets are split into 4 equal quarters, normally based on rank ordering of 
median values. For example, in this dataset 

1 1 2 2 3 3 4 4 4 4 5 5 5 6 7 8 8 9 10 10 10 
    25%     50%     75%     

 

The median value that splits data by 50% = 50th percentile = 5 

The median value of left side = 25th percentile = 3 

The median value of right side = 75th percentile = 8 

From this the Interquartile range (IQR) range can be calculated, this is the difference between the 75th 
and 25th percentiles i.e. 5.  These values are used to construct the descriptive boxplots later. 

DISTRIBUTION 

Skewness describes the shift of the distribution away from a normal distribution. Negative skewness 
shows that the mode moves to the right resulting in a dominant left tail. Positive skewness shows 
that the mode moves to the left resulting in a dominant right tail.   

Negative skewness Positive skewness 
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Kurtosis describes how heavy or light the tails are. Positive kurtosis results in an increase in the 
“pointiness” of the distribution with heavy (longer) tails while negative kurtosis exhibit a much more 
uniform or flatter distribution with light (shorter) tails. 

 

 

 

 

 

 

 

In the Statistics options make sure that everything is unticked apart from skewness and kurtosis. 

 

 

 

 

 

 

We can use the Descriptives output to calculate skewness and kurtosis. For a normal data distribution 
both values should be close to zero (see - Exploring data integrity in JASP for more details).  

 

DESCRIPTIVE PLOTS IN JASP 

Currently, JASP produces three main types of descriptive plots: 

• Distribution plots 
• Correlation plot 
• Boxplots – with 3 options 

o Boxplot Element 
o Violin Element 
o Jitter Element 

 

 

 

 

+ kurtosis 

Normal 

- kurtosis 
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Again, using Descriptive data.csv with the variable data in the Variables box, go to the statistics 
options and under Plots tick Distribution plots and Boxplots – Boxplot Element. 

 

 

 

 

 

 

 

 

 

The Distribution plot is based on splitting the data into frequency bins, this is then overlaid with the 
distribution curve. As mentioned before, the highest bar is the mode (most frequent value of the 
dataset. In this case, the curve looks approximately symmetrical suggesting that the data is 
approximately normally distributed. The second distribution plot is from another dataset which shows 
that the data is positively skewed. 
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The boxplots visualise a number of statistics described above in one plot: 

• Median value 
• 25 and 75% quartiles   
• Interquartile range (IQR) i.e. 75% - 25% quartile values 
• Maximum and minimum values plotted with outliers excluded 
• Outliers are shown if requested 

 

 

 

 

 

 

 

 

 

 

Go back to the statistics options, in Descriptive plots tick both Boxplot and Violin Element, look at how 
the plot has changed. Next tick Boxplot, Violin and Jitter Elements. The Violin plot has taken the 
smoothed distribution curve from the Distribution plot, rotated it 90o and superimposed it on the 
boxplot.  The jitter plot has further added all the data points. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

Maximum value 

Median value 

Minimum value 

75% quartile 

25% quartile 

IQR 

Top 25% 

Bottom 25% 

Outlier 

Boxplot + Violin plot Boxplot + Violin + Jitter plot 
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SPLITTING DATA FILES 

If there is a grouping variable (categorical or ordinal) descriptive statistics and plots can be produced 
for each group. Using Descriptive data.csv with the variable data in the Variables box now add Group 
to the Split box. The output will be as follows: 
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EXPLORING DATA INTEGRITY  
Sample data is used to estimate parameters of the population whereby a parameter is a measurable 
characteristic of a population, such as a mean, standard deviation, standard error or confidence 
intervals etc.  

What is the difference between a statistic and a parameter? If you randomly polled a selection of 
students about the quality of their student bar and you find that 75% of them were happy with it. That 
is a sample statistic since only a sample of the population were asked. You calculated what the 
population was likely to do based on the sample. If you asked all the students in the university and 
90% were happy you have a parameter since you asked the whole university population. 

Bias can be defined as the tendency of a measurement to over- or under-estimate the value of a 
population parameter. There are many types of bias that can appear in research design and data 
collection including: 

• Participant selection bias – some being more likely to be selected for study than others 
• Participant exclusion bias - due to the systematic exclusion of certain individuals from the 

study 
• Analytical bias - due to the way that the results are evaluated 

However statistical bias can affect a) parameter estimates, b) standard errors and confidence intervals 
or c) test statistics and p values.  So how can we check for bias? 

IS YOUR DATA CORRECT? 

Outliers are data points that are abnormally outside all other data points. Outliers can be due to a 
variety of things such as errors in data input or analytical errors at the point of data collection Boxplots 
are an easy way to visualise such data points where outliers are outside the upper (75% + 1.5 * IQR) 
or lower (25% - 1.5 * IQR) quartiles 

 

 

 

 

 

 

 

 

 

 

Load Exploring Data.csv into JASP. Under Descriptives > Descriptive Statistics, add Variable 1 to the 
Variables box. In Plots tick the following Boxplots, Label Outliers, and BoxPlot Element. 

Boxplots show: 

• Median value 
• 25 & 75% quartiles   
• IQR – Inter quartile range 
• Max & min values plotted 

with outliers excluded 
• Outliers shown if requested 
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The resulting Boxplot on the left looks very compressed and an obvious outlier is labelled as being in 
row 38 of the dataset. This can be traced back to a data input error in which 91.7 was input instead of 
917.  The graph on the right shows the BoxPlot for the ‘clean’ data. 

 

 

 

 

 

 

 

 

 

How you deal with an outlier depends on the cause. Most parametric tests are highly sensitive to 
outliers while non-parametric tests are generally not.  
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Correct it? – Check the original data to make sure that it isn’t an input error, if it is, correct it and rerun 
the analysis. 

Keep it? - Even in datasets of normally distributed, data outliers may be expected for large sample 
sizes and should not automatically be discarded if that is the case. 

Delete it? – This is a controversial practice in small datasets where a normal distribution cannot be 
assumed. Outliers resulting from an instrument reading error may be excluded but it should be verified 
first. 

Replace it? – Also known as winsorizing. This technique replaces the outlier values with the relevant 
maximum and/or minimum values found after excluding the outlier. 

Whatever method you use must be justified in your statistical methodology and subsequent analysis. 

 

WE MAKE MANY ASSUMPTIONS ABOUT OUR DATA. 

When using parametric tests we make a series of assumptions about our data and bias will occur if 
these assumptions are violated, in particular: 

• Normality  
• Homogeneity of variance or homoscedasticity 

Many statistical tests are actually an omnibus of tests of which some will check these assumptions. 

 

TESTING THE ASSUMPTION OF NORMALITY 

 Normality does not mean necessarily that the data is normally distributed per se but it is whether or 
not the dataset can be well modelled by a normal distribution. Normality can be explored in a variety 
of ways: 

• Numerically 
• Visually / graphically 
• Statistically 

Numerically we can use the Descriptives output to calculate skewness and kurtosis. For a normal data 
distribution, both values should be close to zero. To determine the significance of skewness or kurtosis 
we calculate their z-scores by dividing them by their associated standard errors: 

Skewness Z =
skewness

Skewness standard error
          Kurtosis Z =

kurtosis
kurtosis standard error

 

Z score significance: p<0.05 if z >1.96        p<0.01 if z >2.58      p<0.001 if z >3.29   

 

Using Exploring data.csv, go to Descriptives>Descriptive Statistics move Variable 3 to the Variables 
box, in the Statistics drop down menu select Mean, Std deviation, Skewness and Kurtosis as shown 
below with the corresponding output table. 
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It can be seen that both skewness and kurtosis are not close to 0. The positive skewness suggests that 
data is distributed more on the left (see graphs later) while the negative kurtosis suggests a flat 
distribution. When calculating their z scores it can be seen that the data is significantly skewed p<0.05. 
 
Skewness Z = 0.839

0.337
     =   2.49     Kurtosis Z = -0.407

0.662
  = 0.614 

[As a note of caution skewness and kurtosis many appear significant in large datasets even though the 
distribution is normal.] 
 
Now add Variable 2 to the Variables box and in Plots tick Distribution plot.  This will show the following 
two graphs: 
 

 

 

 
 
 

 
 
It is quite easy to visualise that Variable 2 has a symmetrical distribution. Variable 3 is skewed to the 
left as confirmed by the skewness Z score. 
 
Another graphical check for normality is a Q-Q plot.  This is produced as part of the Assumption Checks 
used in linear regression and ANOVA. Q-Q plots show the quantiles of the actual data against those 
expected for a normal distribution. 
 

 
   Variable 3 
Valid   50  

Missing   0  

Mean   0.893  

Std. Deviation   0.673  

Skewness   0.839  

Std. Error of Skewness   0.337  

Kurtosis   -0.407  

Std. Error of Kurtosis   0.662  
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If data are normally distributed all the points will be close to the diagonal reference line. If the points 
‘sag’ above or below the line there is a problem with kurtosis. If the points snake around the line then 
the problem is skewness.  Below are Q-Q plots for Variables 2 and 3.  Compare these to the previous 
distribution plots and the skewness/kurtosis z scores above. 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
The Shapiro-Wilk test is a statistical way used by JASP to check the assumption of normality.  It is used 
in the Independent (distribution of the two groups) and Paired (distribution of differences between 
pairs) t-tests. The test results in a W value; where small values indicate your sample is not normally 
distributed (the null hypothesis that your population is normally distributed if your values are under a 
certain threshold can therefore be rejected).  The table below is an example of the Shapiro-Wilk 
output table showing no significant deviation in normality in the 2 groups. 
  

Test of Normality (Shapiro-Wilk)  
      W  p  

Variable 2   Control   0.971   0.691   

    Test   0.961   0.408    
Note.  Significant results suggest a deviation from normality.  

 
 
The most important limitation is that the test has can be biased by sample size. The larger the sample, 
the more likely you’ll get a statistically significant result. 
 

Testing the assumption of normality – A cautionary note! 

For most parametric tests to be reliable, one of the assumptions is that the data is approximately 
normally distributed. A normal distribution peaks in the middle and is symmetrical about the mean. 
However, data does not need to be perfectly normally distributed for the tests to be reliable. 

So, having gone on about testing for normality – is it necessary?   

The Central Limit Theorem states that as the sample size gets larger i.e. >30 data points the 
distribution of the sampling means approaches a normal distribution.  So the more data points you 

Variable 2 Variable 3 
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have the more normal the distribution will look and the closer your sample mean approximates the 
population mean. 

 

Large datasets may result in significant tests of normality i.e. Shapiro-Wilk or significant skewness and 
kurtosis z-scores when the distribution graphs look fairly normal.  Conversely, small datasets will 
reduce the statistical power to detect non-normality.  

However, data that definitely does not meet the assumption of normality is going to result in poor 
results for certain types of test (i.e. ones that state that the assumption must be met!). How closely 
does your data need to be normally distributed? This is a judgment call best made by eyeballing the 
data. 

WHAT DO I DO IF MY DATA IS REALLY NOT NORMALLY DISTRIBUTED? 

Transform the data and redo the normality checks on the transformed data.  Common transformations 
include taking the log or square root of the data.  

Use non-parametric tests since these are distribution free tests and can be used instead of their 
parametric equivalent.  

TESTING HOMOGENEITY OF VARIANCE 
 
Levene’s test is commonly used to test the null hypothesis that variances in different groups are equal. 
The result from the test (F) is reported as a p value, if not significant then you can say that the null 
hypothesis stands — that the variances are equal; if the p value is significant then the implication is 
that the variances are unequal.  Levene’s test is included in the Independent t-test and ANOVA in 
JASP as part of the Assumption Checks. 
 
Using Exploring data.csv, go to T-Tests>Independent Samples t-test move Variable 1 to the Variables 
box and Group to the Grouping variable and tick Assumption Checks > Equality of variances.  
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In this case, there is no significant difference in variance between the two groups F (1) = 0.218, p=.643.  
 
The assumption of homoscedasticity (equal variance) is important in linear regression models as is 
linearity.  It assumes that the variance of the data around the regression line is the same for all 
predictor data points.  Heteroscedasticity (the violation of homoscedasticity) is present when the 
variance differs across the values of an independent variable.  This can be visually assessed in linear 
regression by plotting actual residuals against predicted residuals 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
If homoscedasticity and linearity are not violated there should be no relationship between what the 
model predicts and its errors as shown in the graph on the left. Any sort of funnelling (middle graph) 
suggests that homoscedasticity has been violated and any curve (right graph) suggests that linearity 
assumptions have not been met. 

Test of Equality of Variances (Levene's)  

   F  df  p  

Variable 1   0.218   1   0.643   
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ONE SAMPLE T-TEST  
Research is normally carried out in sample populations, but how close does the sample reflect the 
whole population? The parametric one sample t-test determines whether the sample mean is 
statistically different from a known or hypothesized population mean. 

The null hypothesis (Ho) tested is that the sample mean is equal to the population mean. 

 

ASSUMPTIONS  

Three assumptions are required for a one-sample t-test to provide a valid result: 

• The test variable should be measured on a continuous scale. 
• The test variable data should be independent i.e. no relationship between any of the data 

points.  
• The data should be approximately normally distributed 
• There should be no significant outliers. 

 

RUNNING THE ONE SAMPLE T-TEST 

Open one sample t-test.csv, this contains two columns of data representing the height (cm) and body 
masses (kg) of a sample population of males used in a study. In 2017 the average adult male in the UK 
population was 178 cm tall and has a body mass of 83.6 kg. 

Go to T-Tests > One Sample t-test and in the first instance add height to the analysis box on the right. 
Then tick the following options and add 178 as the test value: 
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UNDERSTANDING THE OUTPUT 

The output should contain three tables. 

 

 

 

 

 

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the heights are 
normally distributed, therefore this assumption is not violated. If this showed a significant difference 
the analysis should be repeated using the non-parametric equivalent, Wilcoxon’s signed rank test 
tested against the population median height. 

 

 

 

 

 

 

This table shows that there are no significant differences between the means p =.706 

 

 

 

 

The descriptive data shows that the mean height of the sample population was 177.6 cm compared 
to the average 178 cm UK male. 

 

Repeat the procedure by replacing height with mass and change the test value to 83.6. 
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The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the masses are 
normally distributed. 

  

 

 

 

 

 

 

This table shows that there is a significant difference between the mean sample (72.9 kg) and 
population body mass (83.6 kg) p <.001 

 

  

 

 

 

REPORTING THE RESULTS 

A one sample t-test showed no significant difference in height compared to the population mean (t 
(22) = -0.382, p= .706), however, the participants were significantly lighter than the UK male 
population average (t (22) =-7.159, p<.001). 
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BINOMIAL TEST 
The binomial test is effectively a non-parametric version of the one-sample t-test for use with 
dichotomous (i.e. yes/no) categorical datasets. This tests whether or not the sample frequency is 
statistically different from a known or hypothesized population frequency. 

The null hypothesis (Ho) tested is that the sample frequency is equal to the expected population 
frequency. 

ASSUMPTIONS  
Three assumptions are required for a one-sample t-test to provide a valid result: 

• The test variable should be a dichotomous scale (such as yes/no, male/female etc.). 
• The sample responses should be independent  
• The sample size is less, but representative of the population 

 

RUNNING THE BINOMIAL TEST 

Open binomial.csv, this contains one column of data showing the number of students using either a 
Windows laptop or a MacBook at University. In January 2018, when comparing just the two operating 
systems, the UK market share of Windows was 86% and Mac IOS 14%.3 

Go to Frequencies >Binomial test. Move the Laptop variable to the data window and set the Test value 
to 0.86 (86%). Also tick Descriptive plots. 

 

 

 

 
 

 

 

 

 

 

 

 

 

                                                           
3 https://www.statista.com/statistics/268237/global-market-share-held-by-operating-systems-since-
2009/ 
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The following table and graph show that the frequencies of both laptops are significantly less than 
86%. In particular, these students are using significantly fewer Windows laptops than was expected 
compared to the UK market share. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Is this the same for MacBook users? Go back to the options window and change the test value to 
0.14 (14%).  This time both frequencies are significantly higher than 14%. This shows that students 
are using significantly more MacBooks than was expected compared to the UK market share. 
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REPORTING THE RESULTS 

The UK proportion of Windows and MacBook users was reported to be 86% and 14% respectively. In 
a cohort of University students (N=90), a Binomial test revealed that the proportion of students using 
Windows laptops was significantly less (59.6%, p<.001) and those using MacBooks significantly more 
(40.4%, p<.001) than expected. 
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MULTINOMIAL TEST 
The multinomial test is effectively an extended version of the Binomial test for use with categorical 
datasets containing three or more factors. This tests whether or not the sample frequency is 
statistically different from a hypothesized population frequency (multinomial test) or known a known 
frequency (Chi-square ‘goodness-of-fit’ test). 

The null hypothesis (Ho) tested is that the sample frequency is equal to the expected population 
frequency. 

ASSUMPTIONS  
Three assumptions are required for a multinomial test to provide a valid result: 

• The test variable should be a categorical scale containing 3 or more factors 
• The sample responses should be independent  
• The sample size is less, but representative of the population 

 
RUNNING THE MULTINOMIAL TEST 

Open multinomial.csv. This contains three columns of data showing the number of different coloured 
M&Ms counted in five bags.  Without any prior knowledge, it could be assumed that the different 
coloured M&Ms are equally distributed. 
 

Go to Frequencies > Multinomial test. Move colour of the M&Ms to Factor and the observed number 
of M&Ms to counts. Tick Descriptives and Descriptives Plots. 
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As can be seen in the Descriptive table, the test assumes an equal expectation for the proportions of 
coloured M&Ms (36 of each colour).  The Multinomial test results show that the observed distribution 
is significantly different (p<.001) to an equal distribution. 
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CHI-SQUARE ‘GOODNESS-OF-FIT’ TEST. 

However, further research shows that the manufacturers produce the coloured M&Ms in different 
ratios: 

Colour Blue Brown Green Orange Red Yellow 
Proportion 24 13 16 20 13 14 

 

These values can now be used as the expected counts, so move the Expected variable to the Expected 
Counts box. This automatically runs the χ2 ‘goodness-of-fit’ test leaving the Hypothesis options greyed 
out. 

As can be seen in the Descriptives table, JASP has calculated the expected numbers of the different 
coloured M&Ms based on the manufacturers reported production ratio.   The results of the test show 
that the observed proportions of the different coloured M&Ms are significantly different (χ2 =74.5, 
p<.001) to those proportions stated by the manufacturer. 
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MULTINOMIAL AND Χ2 ‘GOODNESS-OF-FIT’ TEST. 
JASP also provides another option whereby both tests can be run at the same time. Go back to the 
Options window and only add Colour to the Factor and Observed to the Counts boxes, remove the 
expected counts if the variable is still there. In Hypotheses now tick the χ2 test. This will open up a 
small spreadsheet window showing the colour and Ho (a) with each cell have 1 in it. This is assuming 
that the proportions of each colour are equal (multinomial test). 

 

In this window, add another column which will automatically be labelled Ho (b). The expected 
proportions of each colour can now be typed in. 

 

 

 

 

 

 

 

 

Now when the analysis is run, the results of the tests for the two hypotheses are shown. Ho (a) is 
testing the null hypothesis that the proportions of each colour are equally distributed, while Ho (b) is 
testing the null hypothesis that the proportions are the same as those expected. As can be seen, both 
hypotheses are rejected. In particular, evidence indicates that the colours of plain M&M's do not 
match the manufacturers published proportions. 
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COMPARING TWO INDEPENDENT GROUPS 
INDEPENDENT T-TEST 
The parametric independent t-test, also known as Student’s t-test, is used to determine if there is a 
statistical difference between the means of two independent groups. The test requires a continuous 
dependent variable (i.e. body mass) and an independent variable comprising 2 groups (i.e. males and 
females). 

This test produces a t-score which is a ration of the differences between the two groups and the 
differences within the two groups: 

t =    𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝟏𝟏 − 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈𝒈 𝟐𝟐 
𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔𝒔 𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆𝒆 𝒐𝒐𝒐𝒐 𝒕𝒕𝒕𝒕𝒕𝒕 𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎 𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅𝒅

       

  

              
 

 

 

 

A large t-score indicates that there is a greater difference between groups. The smaller the t-score, 
the more similarity there is between groups. A t-score of 5 means that the groups are five times as 
different from each other as they are within each other. 

The null hypothesis (Ho) tested is that the population means from the two unrelated groups are equal 

 

ASSUMPTIONS OF THE PARAMETRIC INDEPENDENT T-TEST 

Group independence: 

Both groups must be independent of each other. Each participant will only provide one data point for 
one group only. For example participant 1 can only be in either a male or female group – not both. 
Repeated measures are assessed using the Paired t-test. 

Normality of the dependent variable: 

The dependent variable should also be measured on a continuous scale and be approximately 
normally distributed with no significant outliers. This can be checked using the Shapiro-Wilk test. The 
t-test is fairly robust and small deviations from normality are normally acceptable. However, this is 
not the case if the group sizes are very different. A rule of thumb is that the ratio between the group 
sizes should be <1.5 (i.e. group A = 12 participants and group B = >8 participants).  

If normality is violated you can try transforming your data (for example log values, square root values) 
or, and if the group sizes are very different, use the Mann-Whitney U test which is a non-parametric 
equivalent that does not require the assumption of normality (see later). 

 

X = mean 

S = standard deviation 

n = number of data points 
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Homogeneity of variance: 

The variances of the dependent variable should be equal in each group. This can be tested using 
Levene's Test of Equality of Variances. 

  

 

 

 

 

 

 

 

 

If the Levene's Test is statistically significant, indicating that the group variances are unequal we can 
correct for this violation by using an adjusted t-statistic based on the Welch method. 

 

RUNNING THE INDEPENDENT T-TEST 

Open Independent t-test.csv, this contains weight loss on a self-controlled 10-week diet between men 
and women. Its good practice to check the Distribution and boxplots in Descriptives to visually check 
for distribution and outliers. 

Go to T-Tests > Independent Samples t-test and put weight loss in the Dependent variable box and 
gender (independent variable) in the Grouping Variable box. 

 

 

 

 

 

 

 

 

 

 

  

Unequal variance Equal variance 
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In the analysis window tick the following options: 

 

 

 

 

 

 

 

 

 

 

 

UNDERSTANDING THE OUTPUT 

The output should consist of four tables and one graph. Firstly we need to check that the parametric 
assumptions required are not violated. 

 

 

 

 

 

 

Shapiro-Wilk test shows that both groups have normally distributed data, there for the assumption of 
normality is not violated.  If one or both were significant you should consider using the non-parametric 
equivalent Mann-Whitney test. 

 

 

 

 

 

Levene’s test shows that there is no difference in variance, therefore, the assumption of homogeneity 
of variance is not violated.  If Levene’s test was significant Welch’s adjusted t-statistic, degrees of 
freedom and p values should be reported.  
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This table shows the two computed t-statistics (Student and Welch). Remember the t-statistic is 
derived from the mean difference divided by the standard error of the difference. Both show that 
there is a significant statistical difference between the two groups (p<.001) and Cohen’s d suggests 
that this is a large effect. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

From the descriptive data, it can be seen that females had a higher weight loss than males.  

REPORTING THE RESULTS 

An independent t-test showed that females lost significantly more weight over 10 weeks dieting than 
males t(85)=6.16, p<.001.  Cohen’s d (1.322) suggests that this is a large effect.  
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MANN-WITNEY U TEST 
If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal 
by nature, the equivalent non-parametric independent test is the Mann-Whitney U test. 

Open Mann-Whitney pain.csv which contains subjective pain scores (0-10) with and without ice 
therapy. NOTE: make sure that Treatment is categorical and pain score is ordinal. Go to T-Tests > 
Independent t-tests and put pain score in the Dependent variable box and use Treatment as the 
grouping variable. 

In the analysis options only tick: 

 Mann-Whitney 
 Location parameter 
 Effect size 

There is no reason to repeat the assumption checks since Mann-Whitney does not require the 
assumption of normality or homogeneity of variance required by parametric tests. 

 

UNDERSTANDING THE OUTPUT 

This time you will only get one table: 

 

The Mann-Whitney U-statistic (JASP reports this as W since it is an adaptation of Wilcoxon’s signed 
rank test) is highly significant.  U=207, p<.001.  

The location parameter, the Hodges–Lehmann estimate, is the median difference between the two 
groups. The rank-biserial correlation (rB) can be considered as an effect size and is interpreted the 
same as Pearson’s r, so 0.84 is a large effect size. 

For non-parametric data, you should report median values as your descriptive statistics and use 
boxplots instead of line graphs and confidence intervals, SD/SE bars. Go to Descriptive statistics, put 
Pain score into the variable box and Split the file by Treatment. 
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REPORTING THE RESULTS 

A Mann-Whitney test showed that Ice therapy significantly reduces pain scores (Mdn = 3) compared 
to the control group (Mdn = 7), U=207, p<.001. 
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COMPARING TWO RELATED GROUPS 
PAIRED SAMPLES T-TEST 
As with the Independent t-test, there are both parametric and non-parametric options available in 
JASP. The parametric paired-samples t-test (also known as the dependent sample t-test or repeated 
measures t-test) compares the means between two related groups on the same continuous, 
dependent variable. For example, looking at weight loss pre and post 10 weeks dieting. 

The paired t statistic =   
mean of the differences between group pairs 

standard error of the mean differences
  

 

With the paired t-test, the null hypothesis (Ho) is that the pairwise difference between the two 
groups is zero. 

 

ASSUMPTIONS OF THE PARAMETRIC PAIRED SAMPLES T-TEST 

Four assumptions are required for a paired t-test to provide a valid result: 

• The dependent variable should be measured on a continuous scale. 
• The independent variable should consist of 2 categorical related/matched groups, i.e. each 

participant is matched in both groups 
• The differences between the matched pairs should be approximately normally distributed 
• There should be no significant outliers in the differences between the 2 groups. 

 

RUNNING THE PAIRED SAMPLES T-TEST 

Open Paired t-test.csv in JASP. This contains two columns of paired data, pre-diet body mass an post 
4 weeks of dieting. Go to T-Tests > Paired Samples t-test. Ctrl-click both variables and add them to the 
analysis box on the right. 
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In the analysis options tick the following: 

 

 

 

 

 

 

 

 

 

 

 

 

UNDERSTANDING THE OUTPUT 

The output should consist of three tables and one graph. 

 

 

 

 

 

The assumption check of normality (Shapiro-Wilk) is not significant suggesting that the pairwise 
differences are normally distributed, therefore the assumption is not violated. If this showed a 
significant difference the analysis should be repeated using the non-parametric equivalent, 
Wilcoxon’s signed rank test. 

 

 

This shows that there is a significant difference in body mass between the pre and post dieting 
conditions, with a mean difference (location parameter) of 3.783kg.  Cohen’s d states that this is a 
large effect. 
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The descriptive statistics and plot show that there was a reduction in body mass following 4 weeks of 
dieting. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REPORTING THE RESULTS 

On average participants lost 3.78 kg (SE: 0.29 kg) body mass following a 4-week diet plan. A paired 
samples t-test showed this decrease to be significant (t (77) =13.039, p<.001).  Cohen’s d suggests that 
this is a large effect 

 

RUNNING THE NON-PARAMETRIC PAIRED SAMPLES TEST  

WILCOXON’S SIGNED RANK TEST 

If you find that your data is not normally distributed (significant Shapiro-Wilk test result) or is ordinal 
by nature, the equivalent non-parametric independent test is the Wilcoxon’s signed rank test.  Open 
Wilcoxon’s rank.csv. This has two columns one with pre-anxiety and post hypnotherapy anxiety scores 
(from 0 - 50).  In the dataset view make sure that both variables are assigned to the ordinal data type.   

Go to T-Tests > Paired Samples t-test and follow the same instructions as above but now only tick the 
following options: 

 Wilcoxon signed rank 
 Location parameter 
 Effect size 
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There will be only one table in the output: 

 

 

The Wilcoxon W-statistic is highly significant, p<0.001.  

The location parameter, the Hodges–Lehmann estimate, is the median difference between the two 
groups. The rank-biserial correlation (rB) can be considered as an effect size and is interpreted the 
same as Pearson’s r, so 0.48 is a medium to large effect size. 

Effect size Trivial Small Medium Large 
Rank -biserial (rB) <0.1 

 
0.1 
 

0.3 
 

0.5 
 

 

For non-parametric data, you should report median values as your descriptive statistics and use 
boxplots instead of line graphs and confidence intervals, SD/SE bars.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

REPORTING THE RESULTS 

A Wilcoxon’s signed rank test showed that hypnotherapy significantly reduces anxiety scores (Mdn = 
15) compared to pre-therapy (Mdn =22) scores, W=322, p<.001. 
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CORRELATION ANALYSIS 
Correlation is a statistical technique that can be used to determine if, and how strongly, pairs of 
variables are associated.  Correlation is only appropriate for quantifiable data in which numbers are 
meaningful, such as continuous or ordinal data. It cannot be used for purely categorical data for which 
we have to use contingency table analysis (see Chi-square analysis in JASP). 

Essentially do different variables co-vary? i.e. are changes in one variable reflected in similar changes 
to another variable?  If one variable deviates from its mean does the other variable deviate from its 
mean in either the same or opposite direction?  This can be assessed by measuring covariance, 
however, this is not standardised. For example, we can measure the covariance of two variables which 
are measured in meters, however, if we convert the same values to centimetres, we get the same 
relationship but with a completely different covariance value. 

 

 

In order to overcome this, standardised covariance is used which is known as Pearson’s correlation 
coefficient (or "r"). It ranges from -1.0 to +1.0. The closer r is to +1 or -1, the more closely the two 
variables are related. If r is close to 0, there is no relationship. If r is (+) then as one variable increases 
the other also increases. If r is (-) then as one increases, the other decreases (sometimes referred to 
as an "inverse" correlation). 

The correlation coefficient (r) should not be confused with R2 (coefficient of determination) or R 
(multiple correlation coefficient as used in regression). 

The main assumption in this analysis is that the data have a normal distribution and are linear. This 
analysis will not work well with curvilinear relationships. 

 

 

 

 

Covariance = 4.7 Covariance = 470 
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RUNNING CORRELATION 

The analysis tests the null hypothesis (H0) that there is no association between the two variables 

From the example data open Jump height correlation.csv which contains 2 columns of data, jump 
height (m) and explosive leg power (W). Firstly run the Descriptive statistics and check the boxplots 
for any outliers. 

To run the correlation analysis go to Regression > Correlation matrix.  Move the 2 variables to the 
analysis box on the right. Tick  

 Pearson,  
 Report significance,  
 Flag significant correlations and  
 Correlation matrix under Plots. 
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UNDERSTANDING THE OUTPUT 

The first table shows the correlation matrix with Pearson’s r value and its p value. This shows a highly 
significant correlation (p<.001) with a large r value close to 1 (r= 0.984) and that we can reject the null 
hypothesis. 

 

 

For simple correlations like this it is easier to look at the pairwise table (go back to analysis and tick 
the Display pairwise table option.  This replaces the correlation matrix in the results which may be 
easier to read. 

 

 

 

 

The Pearson’s r value is actually an effect size where <0.1 is trivial, 0.1 -0.3 is a small effect, 0.3 – 0.5 
a moderate effect and >0.5 a large effect. 

The plot provides a simple visualisation of this strong positive correlation (r = 0.984, p<.001) 
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GOING ONE STEP FURTHER. 
 

If you take the correlation coefficient r and square it you get the coefficient of determination (R2). This 
is a statistical measure of the proportion of variance in one variable that is explained by the other 
variable. Or: 

R2= Explained variation / Total variation 

R2 is always between 0 and 100% where: 

• 0% indicates that the model explains none of the variability of the response data around its 
mean and 

• 100% indicates that the model explains all the variability of the response data around its 
mean. 

In the example above r = 0.984, so R2 = 0.968. This suggests that jump height accounts for 96.8% of 
the variance in explosive leg power. 

REPORTING THE RESULTS 

Pearson’s correlation showed a significant correlation between jump height and leg power (r = 0.984, 
p<.001) jump height accounting for 96.8% of the variance in leg power. 

 

RUNNING NON-PARAMETRIC CORRELATION – Spearman’s and Kendall’s tau 

If your data is ordinal or is continuous data that has violated the assumptions required for parametric 
resting (normality and/or variance) you need to use the non-parametric alternatives to Pearson’s 
correlation coefficient.  

The alternatives are Spearman’s (rho) or Kendall’s (tau) correlation coefficients. Both are based on 
ranking data and are affected by outliers or normality/variance violations. 

Spearman's rho is usually used for ordinal scale data and Kendall's tau is used in small samples or when 
many values with the same score (ties). In most cases, Kendall’s tau and Spearman’s rank correlation 
coefficients are very similar and thus invariably lead to the same inferences.  

The effect sizes are the same as Pearson’s r. The main difference is that rho2 can be used as an 
approximate non-parametric coefficient of determination but the same is not true for Kendall’s tau. 

From the example data open Non-parametric correlation.csv which contains 2 columns of data, a 
creativity score and position in the ‘World’s biggest liar’ competition (thanks to Andy Field). 

Run the analysis as before but now using Spearman and Kendall’s tau-b coefficients instead of 
Pearson’s. 
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As can be seen there is a significant correlation between creativity scores and final position in the 
‘World’s biggest liar’ competition, the higher the score the better the final competition position. 
However, the effect size is only moderate. 
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NOTE OF CAUTION. 

Correlation really only give information on the strength of association. It gives no information on the 
direction i.e. which variable causes the other to change. So it cannot be used to state the one thing 
causes the other.  Often a significant correlation means absolutely nothing and is purely by chance 
especially if you correlate thousands of variables. This can be seen in the following strange 
correlations: 

Pedestrians killed in a collision with a railway train correlates with rainfall in Missouri: 

  

 

 

 

 

 

 

 

 

 

 

 

Number of honey-producing bee colonies (1000’s) correlates strongly with the marriage rate in 
South Carolina (per 1000 marriages) 
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REGRESSION  
Whereas correlation tests for associations between variables, regression is the next step commonly 
used for predictive analysis, i.e. to predict a dependent outcome variable from one (simple regression) 
or more (multiple regression) independent predictor variables. 

Regression results in a hypothetical model of the relationship between the outcome and predictor 
variable(s).  The model used is a linear one defined by the formula; 

y = c + b*x + ε 

• y = estimated dependent outcome variable score,  
• c = constant,  
• b = regression coefficient and  
• x = score on the independent predictor variable 
• ε = random error component (based on residuals) 

 

Linear regression provides both the constant and regression coefficient(s). 

Linear regression makes the following assumptions: 

1. Linear relationship: important to check for outliers since linear regression is sensitive to their 
effects. 

2. Independence of variables 
3. Multivariate normality: requires all variables to be normally distributed 
4. Homoscedasticity: homogeneity of variance of the residuals 
5. Minimal multicollinearity /autocorrelation: when the independent variables/residuals are 

too highly correlated with each other. 

With regard to sample sizes, there are many different ‘rules of thumb’ in the literature ranging from 
10-15 data points per predictor in the model i.e. 4 predictor variables will each require between 40 
and 60 data points each to 50 +(8 * number of predictors) for each variable. So for 4 variables that 
would require 82 data point for each variable. Effectively the bigger your sample size the better your 
model. 

 

SUMS OF SQUARES (Boring, but the basis of evaluating the regression model.) 

Most regression analysis will produce the best model available, but how good is it actually and how 
much error is in the model? 

This can be determined by looking at ‘the goodness of fit’ using the sums of squares. This is a measure 
of how close the actual data points are close to the modelled regression line. 
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The vertical difference between the data points and the predicted regression line are known as the 
residuals. These values are squared to remove the negative numbers and then summed to give SSR. 
This is effectively the error of the model or the ‘goodness of fit’, obviously the smaller the value the 
less error in the model.  

 

 

 

 

 

 

 

 

 

 

 

The vertical difference between the data points and the mean of the outcome variable can be 
calculated. These values are squared to remove the negative numbers and then summed to give the 
total sum of the squares SST. This shows how good the mean value is as a model of the outcome 
scores. 

 

 

Values above the 
line are positive 

Values below the 
line are negative 
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The vertical difference between the mean of the outcome variable and the predicted regression line 
are now determined. Again these values are squared to remove the negative numbers and then 
summed to give the model sum of squares (SSM). This indicates how better the model is compared to 
just using the mean of the outcome variable. 

So, the larger the SSM the better the model is at predicting the outcome compared to the mean value 
alone. If this is accompanied by a small SSR the model also has a small error. 

R2 is similar to the coefficient of determination in correlation in that it shows how much of the 
variation in the outcome variable can be predicted by the predictor variable(s). 

R2 =  SSM 
  SSR 
 

In regression, the model is assessed by the F statistic based on the improvement in prediction of the 
model SSM and the residual error SSR.  The larger the F value the better the model. 

  F =  Mean SSM 
  Mean SSR 
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SIMPLE REGRESSION 
Regression tests the null hypothesis (Ho) that there will be no significant prediction of the dependent 
(outcome) variable by the predictor variable(s). 

 
Open Rugby kick regression.csv.  This dataset contains rugby kick data including distance kicked, 
right/left leg strength and flexibility and bilateral leg strength. 
 
Firstly go to Descriptives > Descriptive statistics and check the boxplots for any outliers. In this case, 
there should be none, though it is good practice to check. 
 
For this simple regression go to Regression > Linear regression and put distance into the Dependent 
Variable (outcome) and R_Strength into the Covariates (Predictor) box. Tick the following options in 
the Statistics options: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
UNDERSTANDING THE OUTPUT 
 
You will now get the following outputs: 

 
Here it can be seen that the correlation (R) between the two variables is high (0.784). The R2 value of 
0.614 tells us that right leg strength accounts for 61.4% of the variance in kick distance.  Durbin-
Watson checks for correlations between residuals, which can invalidate the test. This should be above 
1 and below 3 and ideally around 2. 
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The ANOVA table shows all the sums of squares mentioned earlier. With regression being the model 
and Residual being the error.  The F-statistic is significant p=0.002.  This tells us that the model is a 
significantly better predictor of kicking distance that the mean distance. 
Report as F (1, 11) = 17.53, p<.001. 
 
 

 
This table gives the coefficients (unstandardized) that can be put into the linear equation. 

y = c + b*x 

   y = estimated dependent outcome variable score,  

c = constant (intercept) 

b = regression coefficient (R_strength)  

x = score on the independent predictor variable 

For example for a leg strength of 60 kg the distance kicked can be predicted by the following: 
   
  Distance = 57.105 + (6.452 * 60) = 454.6 m 
 
FURTHER ASSUMPTION CHECKS 
In Assumption checks, tick the following two options: 
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This will result in two graphs: 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This graph shows a balanced random distribution of the residuals around the baseline suggesting that 
the assumption of homoscedasticity has not been violated. (See Exploring data integrity in JASP for 
further details. 

 
The Q-Q plot shows that the standardized residuals fit nicely along the diagonal suggesting that both 
assumptions or normality and linearity have also not been violated. 
 
REPORTING THE RESULTS 

Linear regression shows that right leg strength can significantly predict kicking distance F (1, 11) = 
17.53, p<.001 using the following regression equation: 
 

Distance = 57.105 + (6.452 * Right leg strength) 
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MULTIPLE REGRESSION 
The model used is still a linear one defined by the formula; 

y = c + b*x + ε 

 y = estimated dependent outcome variable score,  
 c = constant,  
 b = regression coefficient and  
 x = score on the independent predictor variable 
 ε = random error component (based on residuals) 

However, we now have more than 1 regression coefficient and predictor score i.e. 
 

y = c + b1*x1 + b2*x2 + b3*x3 …….. bn*xn   

 
Data entry methods. 
If predictors are uncorrelated their order of entry has little effect on the model.  In most cases, 
predictor variables are correlated to some extent and thus, the order in which the predictors are 
entered can make a difference.  The different methods are subject to much debate in the area. 

Forced entry (Enter): This is the default method in which all the predictors are forced into the model 
in the order they appear in the Covariates box. This is considered to be the best method. 

Blockwise entry (Hierarchical entry): The researcher, normally based on prior knowledge and previous 
studies, decides the order in which the known predictors are entered first depending on their 
importance in predicting the outcome.. Additional predictors are added in further steps. 

Stepwise (Backward entry): All predictors are initially entered in the model and then the contribution 
of each is calculated.  Predictors with less than a given level of contribution (p<0.1) are removed. This 
process repeats until all the predictors are statistically significant.  

Stepwise (Forward entry): The predictor with the highest simple correlation with the outcome variable 
is entered first. Subsequent predictors selected on the basis of the size of their semi-partial correlation 
with the outcome variable. This is repeated until all predictors that contribute significant unique 
variance to the model have been included in the model. 

Stepwise entry: Same as the Forward method, except that every time a predictor is added to the 
model, a removal test is made of the least useful predictor. The model is constantly reassessed to see 
whether any redundant predictors can be removed. 

There are many reported disadvantages of using stepwise data entry methods, however, Backward 
entry methods can be useful for exploring previously unused predictors or for fine-tuning the model 
to select the best predictors from the available options. 

RUNNING MULTIPLE REGRESSION 

 
Open Rugby kick regression.csv that we used for simple regression. Go to Regression > Linear 
regression and put distance into the Dependent Variable (outcome) and now add all the other 
variables into the Covariates (Predictor) box.  
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In the Variable section leave the Method as Enter. Tick the following options in the Statistics options, 
Estimates, Model fit, Collinearity diagnostics and Durbin-Watson. 
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UNDERSTANDING THE OUTPUT 
 
You will now get the following outputs: 
 
 
 
 
 
 
 
The adjusted R2 (used for multiple predictors) shows that they can predict 68.1% of the outcome 
variance. Durbin-Watson checks for correlations between residuals is between 1 and 3 as required. 
 

 
The ANOVA table shows the F-statistic to be significant p=0.017 suggesting that the model is a 
significantly better predictor of kicking distance that the mean distance. 
 

 
 
This table shows one model and the constant (intercept) and regression coefficients (unstandardized) 
for all the predictors forced into the model. Even though the ANOVA shows the model to be significant 
none of the predictor regression coefficients are significant! 
 
 
The collinearity statistics, Tolerance and VIF (Variance Inflation Factor) check the assumption of 
multicollinearity. As a rule of thumb if VIF >10 and tolerance <0.1 the assumptions have been greatly 
violated. If the average VIF >1 and tolerance <0.2 the model may be biased. In this case, the average 
VIF is quite large (around 5). 
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As a comparison re-run the analyses but now choose Backward as the method of data entry. 
 
The outputs are as follows: 
 
 
 
 
 
 
 
 
 
 
JASP has now calculated 4 potential regression models.  It can be seen that each consecutive model 
increases the adjusted R2, with model 4 accounting for 73.5% of the outcome variance. 
The Durbin-Watson score is also higher than with the forced entry method. 
 
 

 
The ANOVA table indicates that each successive model is better as shown by the increasing F-value 
and improving p value. 
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Model 1 is the same as the forced entry method first used.  The table shows that as the least 
significantly contributing predictors are sequentially removed, we end up with a model with two 
significant predictor regression coefficients, right leg strength and bilateral leg strength.  
Both tolerance and VIF are acceptable. 
 
We now can report the Backward predictor entry results in a highly significant model F (2, 10) = 17.92, 
p<.001 and a regression equation of  
 
Distance = 57.105 + (3.914 * R_Strength) + (2.009 * Bilateral Strength) 
 
 
TESTING FURTHER ASSUMPTIONS. 
 
As for the simple linear regression example, tick the following options. 
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The balanced distribution of the residuals around the baseline suggests that the assumption of 
homoscedasticity has not been violated.  

The Q-Q plot shows that the standardized residuals fit along the diagonal suggesting that both 
assumptions or normality and linearity have also not been violated. 

REPORTING THE RESULTS 

Multiple linear regression using backward data entry shows that right leg and bilateral strength can 
significantly predict kicking distance F(2,10) = 17.92, p<.001 using a regression equation of  
 

Distance = 57.105 + (3.914 * R_Strength) + (2.009 * Bilateral Strength) 
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IN SUMMARY 
 
R2 provides information on how much variance is explained by the model using the predictors 
provided. 
 
F-statistic provides information as to how good the model is.  
 
The unstandardized (b)-value provides a constant which reflects the strength of the relationship 
between the predictor(s) and the outcome variable. 
 
Violation of assumptions can be checked using Durbin-Watson value, tolerance/VIF values, Residual 
vs predicted and Q-Q plots. 
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LOGISTIC REGRESSION  
In simple and multiple linear regression outcome and predictor variable(s) were continuous data. 
What if the outcome was a binary/categorical measure?  Can, for example, a yes or no outcome be 
predicted by other categorical or continuous variables?  The answer is yes if binary logistic regression 
is used. This method is used to predict the probability of the binary yes or no outcome. 

The null hypothesis tested is that there is no relationship between the outcome and predictor 
variable(s). 

As can be seen in the graph below, a linear regression line between the yes and no responses would 
be meaningless as a prediction model. Instead, a sigmoidal logistic regression curve is fitted with a 
minimum of 0 and a maximum of 1. It can be seen that some predictor values overlap between yes 
and no. For example, a prediction value of 5 would give an equal 50% probability of being a yes or no 
outcome. Thresholds are therefore calculated to determine if a predictor data value will be classified 
as a yes or no outcome. 

 

 

 

 

 

 

 

 

 

 

ASSUMPTIONS FOR BINARY LOGISTIC REGRESSION 

• The dependent variable must be binary i.e. yes or no, male or female, good or bad. 
• One or more independent (predictor variables) which can be continuous or categorical 

variables. 
• A linear relationship between any continuous independent variables and the logit 

transformation (natural log of the odds that the outcome equals one of the categories) of the 
dependent variable. 

 

LOGISTIC REGRESSION METRICS 

AIC (Akaike Information Criteria) and BIC (Bayesian Information Criteria) are measures of fit for the 
model, the best model will have the lowest AIC and BIC values.  

 

Outcome = No 

Outcome = Yes 
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Three pseudo R2 values are calculated in JASP, McFadden, Nagelkerke and Tjur. These are analogous 
to R2 in linear regression and all give different values.  What constitutes a good R2 value varies, 
however, they are useful when comparing different models for the same data. The model with the 
largest R2 statistic is considered to be the best. 

The confusion matrix is a table showing actual vs predicted outcomes and can be used to determine 
the accuracy of the model. From this sensitivity and specificity can be derived. 

Sensitivity is the percentage of cases that had the observed outcome was correctly predicted by the 
model (i.e., true positives). 

Specificity is the percentage of observations that were also correctly predicted as not having the 
observed outcome (i.e., true negatives). 

 

RUNNING LOGISTIC REGRESSION 

Open Heart attack.csv in JASP. This contains 4 columns of data, Patient ID, did they have a second 
heart attack (yes/no), whether they were prescribed exercise (yes/no) and their stress levels (high 
value = high stress).  
Put the outcome variable (2nd heart attack) into the Dependent variable, add the stress levels to 
Covariates and Exercise prescription to Factors. Leave the data entry method as Enter.  
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In the Statistics options tick Estimates, Odds ratios, Confusion matrix, Sensitivity and Specificity. 
 
 

 
UNDERSTANDING THE OUTPUT 
 
The initial output should comprise of 4 tables. 
The model summary shows that H1 (with the lowest AIC and BIC scores) suggests a significant 

relationship (X2(37) =17.82, p<.001) between the outcome (2nd heart attack) and the predictor 
variables (exercise prescription and stress levels). 
 
McFadden's R2 = 0.383. It is suggested that a range from 0.2 to 0.4 indicates a good model fit. 
 

 
 
Both stress level and exercise prescription are significant predictor variables (p=.031 and .022 
respectively). The most important values in the coefficients table are the odds ratios. For the 
continuous predictor, an odds ratio of greater than 1 suggests a positive relationship while < 1 implies 



 

64 | P a g e  
JASP 0.9 - Dr Mark Goss-Sampson 

a negative relationship. This suggests that high stress levels are significantly related to an increased 
probability of having a second heart attack.  Having an exercise intervention is related to a significantly 
reduced probability of a second heart attack. The odds ratio of 0.13 can be interpreted as only having 
a 13% probability of a 2nd heart attack if undergoing an exercise intervention. 
 
  
 
 
 
 
 
 
 
The confusion matrix shows that the 15 true negative and positive cases were predicted by the model 
while the error, false negatives and positives, were found in 5 cases.  This is confirmed in the 
Performance metrics where both sensitivity (% of cases that had the outcome correctly predicted) and 
specificity (% of cases correctly predicted as not having the outcome (i.e., true negatives) are both 
75%. 
 
PLOTS 
These findings can be easily visualised through the inferential plots. 
 

 

 

 

 

 

 

 

 

 

 

As stress levels increase the probability of having a second heart attack increases. 
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No exercise intervention increases the probability of a 2nd heart attack while it is reduced when it had 
been put in place. 

 

REPORTING THE RESULTS 

A logistic regression was performed to ascertain the effects of stress and exercise intervention on the 
likelihood that participants have a 2nd heart attack. The logistic regression model was statistically 
significant, χ2 (37) = 21.257, p < .001. The model correctly classified 75.0% of cases. Increasing stress 
was associated with an increased likelihood of a 2nd heart attack, but decreasing stress was associated 
with a reduction in the likelihood. The presence of an exercise intervention programme reduced the 
probability of a 2nd heart attack to 13%. 
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COMPARING MORE THAN TWO INDEPENDENT GROUPS 
ANOVA 
Whereas t-tests compare the means of two groups/conditions, one-way analysis of variance (ANOVA) 
compares the means of 3 or more groups/conditions. There are both independent and repeated 
measures ANOVAs available in JASP. ANOVA has been described as an ‘omnibus test’ which results in 
an F-statistic that compares whether the datasets overall explained variance is significantly greater 
than the unexplained variance. The null hypothesis tested is that there is no significant difference 
between the means of all the groups. If the null hypothesis is rejected, ANOVA just states that there 
is a significant difference between the groups but not where those differences occur.  In order to 
determine where the group differences are, post hoc (From the Latin post hoc, "after this") tests are 
subsequently used. 

Why not just multiple pairwise comparisons? If there are 4 groups (A, B, C, D) for example and the 
differences were compared using multiple t-tests: 

• A vs. B  P<0.05   95% no type I error 
• A vs. C  P<0.05   95% no type I error 
• A vs. D  P<0.05   95% no type I error 
• B vs. C  P<0.05   95% no type I error 
• B vs. D  P<0.05   95% no type I error 
• C vs. D  P<0.05   95% no type I error 

Assuming that each test was independent, the overall probability would be: 

0.95 * 0.95 * 0.95 * 0.95 * 0.95 * 0.95 = 0.735 

This is known as familywise error or, cumulative Type I error, and in this case results in only a 73.5% 
probability of no Type I error whereby the null hypothesis could be rejected when it is in fact true. This 
is overcome by using post hoc tests that make multiple pairwise comparisons with stricter acceptance 
criteria to prevent familywise error. 

ASSUMPTIONS  

The independent ANOVA makes the same assumptions as most other parametric tests. 

• The independent variable must be categorical and the dependent variable must be 
continuous. 

• The groups should be independent of each other. 
• The dependent variable should be approximately normally distributed. 
• There should be no significant outliers. 
• There should be homogeneity of variance between the groups otherwise the p value for the 

F-statistic may not be reliable.  

The first 2 assumptions are usually controlled through the use of appropriate research method design. 

If the last three assumptions are violated then the non-parametric equivalent, Kruskal-Wallis should 
be considered instead.   

 

https://en.wikipedia.org/wiki/Latin_language
https://en.wikipedia.org/wiki/Post_hoc_(disambiguation)
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POST HOC TESTING 

JASP provides 4 alternatives for use with the independent group ANOVA tests: 

Bonferroni – can be very conservative but gives guaranteed control over Type I error at the risk of 
reducing statistical power. 

Holm – the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative 
than the original Bonferroni test. 

Tukey – one of the most commonly used tests and provides controlled Type I error for groups with 
the same sample size and equal group variance. 

Scheffe – controls for the overall confidence level when the group sample sizes are different. 

 

EFFECT SIZE 

JASP provides 3 alternative effect size calculations for use with the independent group ANOVA tests: 

Eta squared (η2) - accurate for the sample variance explained but overestimates the population 
variance. This can make it difficult to compare the effect of a single variable in different studies. 

Partial Eta squared (ηp
2) – this solves the problem relating to population variance overestimation 

allowing for comparison of the effect of the same variable in different studies. 

Omega squared (ω2) – Normally, statistical bias gets very small as sample size increases, but for small 
samples (n<30) ω2 provides an unbiased effect size measure. 

 

Test Measure Trivial Small Medium Large 

ANOVA Eta 

Partial Eta 

Omega squared 

<0.1 

<0.01 

<0.01 

0.1 

0.01 

0.01 

0.25 

0.06 

0.06 

0.37 

0.14 

0.14 

 

 

RUNNING THE INDEPENDENT ANOVA 

Load Independent ANOVA diet.csv. This contains A column containing the 3 diets used (A, B and C) 
and another column containing the absolute amount of weight loss after 8 weeks on one of 3 different 
diets For good practice check the descriptive statistics and the boxplots for any extreme outliers. 

Go to ANOVA > ANOVA, put weight loss into the Dependent Variable and the Diet groupings into the 
Fixed Factors box.  In the first instance tick both Assumption Checks and in Additional Options tick 
Descriptive statistics and ω2 as the effect size; 
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This should result in 3 tables and one Q-Q plot. 

 

UNDERSTANDING THE OUTPUT 

 

The main ANOVA table shows that the F-statistic is significant (p<.001) and that there is a large effect 
size. Therefore, there is a significant difference between the means of the 3 diet groups. 
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TESTING ASSUMPTIONS 

Before accepting this any violations in the assumptions required for an ANOVA should be checked. 

 

 

 

 

 

 

Levene’s test shows that homogeneity of variance is not significant. 

 

 

 

 

 

 

 

 

 

 

The Q-Q plot shows that the data appear to be normally distributed and linear. 

 

 

 

 

 

 

The descriptive statistics suggest that Diet 3 results in the highest weight loss after 8 weeks. 

 

If the ANOVA reports no significant difference you can go no further in the analysis. 
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POST HOC TESTING 

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Diet to the 
analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Also in Descriptive Plots add the Factor – Diet to the horizontal axis and tick display error bars. 

 

 

Post hoc testing shows that there is no significant difference between weight loss on diets A and B. 
However, It is significantly higher in diet C compared to diet A (p<.001) and diet B (p=.001). Cohen’s d 
shows that these differences have a large effect size. 
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REPORTING THE RESULTS 

Independent one way ANOVA showed a significant effect of the type of diet on weight loss after 10 
weeks (F (2, 69) =46.184, p<.001, ω2 = 0.214. 

Post hoc testing using Tukey’s correction revealed that diet C resulted in significantly greater weight 
loss than diet A (p<.001) or diet B (p=.001).  There were no significant differences in weight loss 
between diets A and B (p=.777). 

 

 

KRUSKAL-WALLIS – NON-PARAMETRIC ANOVA 

If your data fails parametric assumption tests or is nominal in nature, the Kruskal-Wallis H test is a 
non-parametric equivalent to the independent samples ANOVA. It can be used for comparing two or 
more independent samples of equal or different sample sizes.  Like the Mann-Whitney and Wilcoxon’s 
tests, it is a rank based test. 

As with the ANOVA, Kruskal-Wallis H test (also known as the "one-way ANOVA on ranks") is an 
omnibus test which does not specify which specific groups of the independent variable are statistically 
significantly different from each other. To do this, JASP provides the option for running Dunn’s post 
hoc test. This multiple comparisons test can be very conservative in particular for large numbers of 
comparisons. 

 

Load Kruskal-Wallis ANOVA.csv dataset into JASP. This dataset contains subjective pain scores for 
participants undergoing no treatment (control), cryotherapy or combined cryotherapy-compression 
for delayed onset muscle soreness after exercise. 
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RUNNING THE KRUSKAL-WALLIS TEST 

Go to ANOVA >ANOVA. In the analysis window add Pain score to the dependent variable and 
treatment to the fixed factors.  Check that the pain score is set to ordinal. This will automatically run 
the normal independent ANOVA.  Under Assumption Checks tick both Homogeneity tests and Q-Q 
plots. 

 

 

 

 

 

 

 

 

 

Although the ANOVA indicates a significant result, the data has not met the assumptions of 
homogeneity of variance as seen by the significant Levene’s test and only shows linearity in the middle 
of the Q-Q plot and curves off at the extremities indicating more extreme values.  Added to the fact 
that the dependent variable is based on subjective pain scores suggest the use of a non-parametric 
alternative. 

Return to the statistics options and open up the Nonparametrics option at the bottom. For the Kruskal-
Wallis test Move the Treatment variable to the box on the right and tick Dunn’s post hoc test. 
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UNDERSTANDING THE OUTPUT 

Two tables are shown in the output. The Kruskal-Wallis test shows that there is a significant difference 
between the three treatment modalities. 

 

 

 

 

 

The Dunn’s post hoc test provides its own p value as well as those for Bonferroni and Holm’s 
Bonferroni correction. As can be seen, both treatment conditions are significantly different from the 
controls but not from each other. 

 

REPORTING THE RESULTS 

Pain scores were significantly affected by treatment modality H (2) = 19.693, p<.001. Pairwise 
comparisons showed that both cryotherapy and cryotherapy with compression significantly reduces 
pain scores (p=.001and p<.001 respectively) compared to the control group. There were no significant 
differences between cryotherapy and cryotherapy with compression (p=.102). 
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COMPARING MORE THAN TWO RELATED GROUPS 
RMANOVA 
The one-way repeated measures ANOVA (RMANOVA) is used to assess if there is a difference in 
means between 3 or more groups (where the participants are the same in each group) that have been 
tested multiple times or under different conditions. Such a research design, for example, could be that 
the same participants were tested for an outcome measure at 1, 2 and 3 weeks or that the outcome 
was tested under conditions 1, 2 and 3.  

The null hypothesis tested is that there is no significant difference between the means of the 
differences between all the groups. 

The independent variable should be categorical and the dependent variable needs to be a continuous 
measure. In this analysis the independent categories are termed levels i.e. these are the related 
groups. So in the case where an outcome was measured at weeks 1, 2 and 3, the 3 levels would be 
week 1, week 2 and week 3. 

The F-statistic is calculated by dividing the mean squares for the variable (variance explained by the 
model) by its error mean squares (unexplained variance). The larger the F-statistic, the more likely it 
is that the independent variable will have had a significant effect on the dependent variable. 

 

ASSUMPTIONS  

The RMANOVA makes the same assumptions as most other parametric tests. 

• The dependent variable should be approximately normally distributed. 
• There should be no significant outliers. 
• No significant outliers 
• Sphericity, which relates to the equality of the variances of the differences between levels of 

the repeated measures factor. 

If the assumptions are violated then the non-parametric equivalent, Friedman’s test should be 
considered instead and is described later in this section. 

 

SPHERICITY 

If a study has 3 levels (A, B and C) sphericity assumes the following: 

Variance (A-B) ≈ Variance (A-C) ≈ Variance (B-C) 

RMANOVA checks the assumption of sphericity using Mauchly’s (pronounced Mockley’s) test of 
sphericity. This tests the null hypothesis that the variances of the differences are equal.  In many 
cases, repeated measures violate the assumption of sphericity which can lead to Type I error. If this is 
the case corrections to the F-statistic can be applied.  

JASP offers two methods of correcting the F-statistic, the Greenhouse-Geisser and the Huynh-Feldt 
epsilon (ε) corrections. A general rule of thumb is that if the ε values are <0.75 then use the 
Greenhouse-Geisser correction and if they are >0.75 then use the Huynh-Feldt correction. 
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POST HOC TESTING 

Post hoc testing is limited in RMANOVA, JASP provides two alternatives:  

Bonferroni – can be very conservative but gives guaranteed control over Type I error at the risk of 
reducing statistical power. 

Holm – the Holm-Bonferroni test which is a sequential Bonferroni method that is less conservative 
than the original Bonferroni test. 

If you ask for either Tukey or Scheffe post hoc corrections JASP will return a NaN (not a number) error. 

 

EFFECT SIZE 

JASP provides the same alternative effect size calculations that are used with the independent group 
ANOVA tests: 

Eta squared (η2) - accurate for the sample variance explained but overestimates the population 
variance. This can make it difficult to compare the effect of a single variable in different studies. 

Partial Eta squared (ηp
2) – this solves the problem relating to population variance overestimation 

allowing for comparison of the effect of the same variable in different studies. This appears to be the 
most commonly reported effect size in repeated measures ANOVA 

Omega squared (ω2) – Normally, statistical bias gets very small as sample size increases, but for small 
samples (n<30) ω2 provides an unbiased effect size measure. 

Levels of effect size: 

Test Measure Trivial Small Medium Large 

ANOVA Eta 

Partial Eta 

Omega squared 

<0.1 

<0.01 

<0.01 

0.1 

0.01 

0.01 

0.25 

0.06 

0.06 

0.37 

0.14 

0.14 

 

 

RUNNING THE REPEATED MEASURES ANOVA 

Load Repeated ANOVA cholesterol.csv. This contains one column with the participant IDs and 3 
columns one for each repeated measurement of blood cholesterol following an intervention.  For good 
practice check the descriptive statistics and the boxplots for any extreme outliers. 

Go to ANOVA > Repeated measures ANOVA. As stated above, the independent variable (repeated 
measures factor) has levels, in this case, there are 3 levels.  Rename RM Factor 1 to Time post 
intervention and then rename 3 levels to Week 0, week 3 and week 6 accordingly. 
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Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate 
data to the appropriate level. 

 

 

 

 

 

 

 

 

 

 

 

In the first instance, under Assumption Checks, tick Sphericity tests and all the Sphericity corrections: 

 

Under Assumption Checks tick Sphericity tests and all Sphericity correction options. 

 

 

 

 

 

 

 

Under Additional Options tick Descriptive Statistics, Estimates of effect size and ω2. 
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The output should consist of 4 tables. The third table, between subject effects, can be ignored for this 
analysis. 

 

UNDERSTANDING THE OUTPUT 

  

 

The within subjects effects table reports a large F-statistic which is highly significant (p<.001) and has 
a small to medium effect size (0.058). This table shows the statistics for sphericity assumed (none) and 
the two correction methods. The main differences are in the degrees of freedom (df) and the mean 
squares value.  Under the table, it is noted that the assumption of sphericity has been violated. 

 

The following table gives the results of Mauchly’s test of sphericity. It can be seen that there is a 
significant difference (p<.001) in the variances of the differences between the groups. Greenhouse-
Geisser and the Huynh-Feldt epsilon (ε) values are below 0.75. Therefore the ANOVA result should be 
reported based on the Greenhouse-Geisser correction: 

To provide a cleaner table, go back to Assumption Checks and only tick Greenhouse-Geisser for 
sphericity correction. 

 
There is a significant difference between the means of the differences between all the groups F (1.235, 
21.0) =212.3, p<.001, ω2 = 0.058. 
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The descriptive data suggest that blood cholesterol levels were higher at week 0 compared to weeks 
3 and 6. 

However, if the ANOVA reports no significant difference you can go no further in the 
analysis. 

 

POST HOC TESTING 

If the ANOVA is significant, post hoc testing can now be carried out. In Post Hoc Tests add Time post-
intervention to the analysis box on the right, tick Effect size and, in this case, use Bonferroni for the 
post hoc correction.  

 

 

 

 

 

 

 

 

 

 

 

Also in Descriptive Plots add the Factor – Time post-intervention to the horizontal axis and tick display 
error bars. 
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Post hoc testing shows that there are significant differences in blood cholesterol levels between all of 
the time point combinations and are associated with large effect sizes.  

 

 

 

REPORTING THE RESULTS 

 

 

 

 

 

 

 

 

 

 

 

 

Since Mauchly’s test of sphericity was significant, the Greenhouse-Geisser correction was used. This 
showed that cholesterol levels differed significantly between F (1.235, 21.0) =212.3, p<.001, ω2 = 
0.058. 

Post hoc testing using the Bonferroni correction revealed that cholesterol levels decreased 
significantly as time increased, weeks 0 – 3 (mean difference=0.566 units, p<.001) and weeks 3 – 6 
(mean difference = 0.063 units, p=.004). 
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FRIEDMAN’S REPEATED MEASURES ANOVA 
If parametric assumptions are violated or the data is ordinal in nature you should consider using the 
non-parametric alternative, Friedman’s test. Similar to the Kruskal-Wallis test, the Friedman’s test is 
used for one-way repeated measures analysis of variance by ranks and doesn’t assume the data comes 
from a particular distribution. This test is another omnibus test which does not specify which specific 
groups of the independent variable are statistically significantly different from each other. To do this, 
JASP provides the option for running Conover’s post hoc test if the Friedman’s test is significant. 

 

Load Friedman RMANOVA.csv into JASP.  This has 3 columns of subjective pain ratings measured at 
18, 36 and 48 hours post-exercise. Check that the pain scores are set to ordinal data. 

 

RUNNING THE FRIEDMAN’S TEST 

Go to ANOVA > Repeated measures ANOVA. The independent variable (repeated measures factor) 
has 3 levels.  Rename RM Factor 1 to Time and then rename 3 levels to 18 hours, 36 hours and w48 
hours accordingly. 

Once these have been done they will appear in the Repeated Measures Cells. Now add the appropriate 
dataset to the appropriate level. 

 

 

 

 

 

 

 

 

 

 

This will automatically produce the standard repeated measures within subjects ANOVA table.  To run 
the Friedman’s test, expand the Nonparametrics tab, move Time to the RM factor box and tick 
Conover’s post hoc tests. 
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UNDERSTANDING THE OUTPUT 

Two tables should be produced. 

 

 

 

 

Friedman’s test shows that time has a significant effect on pain perception. Connor’s post hoc pairwise 
comparisons show that all pain perception is significantly different between each time point. 

 

REPORTING THE RESULTS 

Time has a significant effect on subjective pain scores χ2 (2) = 26.77, p<.001. Pairwise comparisons 
showed that pain perception is significantly different between each time point (all p<0.001). 
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TWO-WAY INDEPENDENT ANOVA  
One-way ANOVA tests situations when only one independent variable is manipulated, two-way 
ANOVA is used when more than 1 independent variable has been manipulated.  In this case, 
independent variables are known as factors. 

FACTOR 1 FACTOR 2  
CONDITION 1 Group 1 Dependent variable 

Group 2 Dependent variable 
CONDITION 2 Group 1 Dependent variable 

Group 2 Dependent variable 
CONDITION 3 Group 1 Dependent variable 

Group 2 Dependent variable 
 

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 2 levels. 

A “main effect” is the effect of one of the independent variables on the dependent variable, ignoring 
the effects of any other independent variables. There are 2 main effects tested both of which are 
“between-subjects”: in this case comparing differences between factor 1 (i.e. condition) and 
differences between factor 2 (i.e. groups). An interaction is where one factor influences the other 
factor.  

The two-way independent ANOVA is another omnibus test that is used to test 2 null hypotheses: 

1. There is no significant between-subject effect i.e. no significant difference between the 
means of the groups in either of the factors. 

2. There is no significant interaction effect i.e. no significant group differences across 
conditions. 

 

ASSUMPTIONS  

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which should either 
be addressed in the research design or can the tested for. 

• The independent variables (factors) should have at least two categorical independent groups 
(levels). 

• The dependent variable should be continuous and approximately normally distributed for all 
combinations of factors. 

• There should be homogeneity of variance for each of the combination of factors. 
• There should be no significant outliers. 

 

RUNNING TWO-WAY INDEPENDENT ANOVA 

Open 2-way independent ANOVA.csv in JASP. This comprises on 3 columns of data, Factor 1 – gender 
with 2 levels (male and female), Factor 2 - supplement with 3 levels (control, carbohydrate CHO and 
protein) and the dependent variable (explosive jump power. In Descriptive statistics check the data 
for significant outliers.  Go to ANOVA >ANOVA, add Jump power to the Dependent variable, Gender 
and Supplement to the Fixed factors. 
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In Descriptive plots add supplement to the horizontal axis and Gender to separate lines. In Additional 
Options, tick Descriptive statistics and Estimates of effect size (ω2). 

 

  

 

 

 

 

UNDERSTANDING THE OUTPUT 

The output should comprise 2 tables and one plot. 

 

The ANOVA table shows that there are significant main effects for both Gender and Supplement 
(p=0.003 and p<.001 respectively) with medium and large effect sizes respectively.  This suggests that 
there is a significant difference in jump power between genders, irrespective of Supplement, and 
significant differences between supplements, irrespective of Gender. 

There is also a significant interaction between Gender and Supplement (p<.001) which also has a 
medium to large effect size (0.138). This suggests that the differences in jump power between genders 
is affected somehow by the type of supplement used. 

The Descriptive statistics and plot suggest that the main differences are between genders when using 
a protein supplement. 
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TESTING ASSUMPTIONS 

In Assumption Checks, tick Homogeneity tests and Q-Q plot of residuals. 

 

 

 

 

 

 

Levene’s test shows no significant difference in variance within the dependent variable groups, thus 
homogeneity of variance has not been violated. 
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The Q-Q plot shows that the data appear to be normally distributed and linear. We can now accept 
the ANOVA result since none of these assumptions have been violated. 

 

However, if the ANOVA reports no significant difference you can go no further with the 
analysis. 

 

POST HOC TESTING 

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add Supplement 
to the analysis box on the right, tick Effect size and, in this case, use Tukey for the post hoc correction.  

Post hoc testing is not done for Gender since there are only 2 levels. 

 

Post hoc testing shows no significant difference between the control and CHO,  supplement group, 
irrespective of Gender, but significant differences between Control and Protein (p<.001) and between 
CHO and Protein (p<.001).  

Now go to the analysis options and Simple Main Effects. Here add Gender to the Simple effect factor 
and Supplement to the Moderator Factor 1. Simple main effects are effectively pairwise comparisons. 
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This table shows that there are no gender differences in jump power between the control or CHO 
groups (p=.116 and p=0.058 respectively). However, there is a significant difference (p<.001) in jump 
power between genders in the protein supplement group. 

 

REPORTING THE RESULTS 

A two-way ANOVA was used to examine the effect of gender and supplement type on explosive jump 
power. There were significant main effects for both gender (F (1, 42) = 9.59, p=.003, ω2 = 0.058) and 
Supplement (F (2, 42) = 30.07, p<.001, ω2 = 0.477).  There was a statistically significant interaction 
between the effects of gender and supplement on explosive jump power (F (2, 42) = 11.1, p<.001, ω2 
= 0.138).   

Tukey’s post hoc correction showed that explosive leg power was significantly higher in the protein 
group compared to the control or CHO groups (t=-1.919, p<.001 and t=-1.782, p<.001 respectively). 

Simple main effects showed that jump power was significantly higher in males on a protein 
supplement compared to females (F (1) =28.06, p<.001). 

  



 

87 | P a g e  
JASP 0.9 - Dr Mark Goss-Sampson 

 

MIXED FACTOR ANOVA USING JASP 
Mixed factor ANOVA (another two-way ANOVA) is a combination of both independent and 
repeated measures ANOVA involving more than 1 independent variable (known as factors). 

 

The factors are split into levels, therefore, in this case, Factor 1 has 3 levels and Factor 2 has 
2 levels. This results in 6 possible combinations. 

A “main effect” is the effect of one of the independent variables on the dependent variable, 
ignoring the effects of any other independent variables. There are 2 main effects tested: in 
this case comparing data across factor 1 (i.e. time) is known as the “within-subjects” factor 
while comparing differences between factor 2 (i.e. groups) is known as the “between-
subjects” factor. An interaction is where one factor influences the other factor.  

The main effect of time or condition tests the following i.e. irrespective of which group the 
data is in: 

 

 

The main effect of group tests the following i.e. irrespective of which condition the data is in: 

 

Simple main effects are effectively pairwise comparisons: 

 

 

Independent variable 
(Factor 2) 

Independent variable (Factor 1) = time or condition 
Time/condition 1 Time/condition 2 Time/condition 3 

Group 1 Dependent variable Dependent variable Dependent variable 
Group 2 Dependent variable Dependent variable Dependent variable 

Independent variable 
(Factor 2) 

Independent variable (Factor 1) = time or condition 
Time/condition 1 Time/condition 2 Time/condition 3 

Group 1 All data All data All data Group 2 

Independent variable 
(Factor 2) 

Independent variable (Factor 1) = time or condition 
Time/condition 1 Time/condition 2 Time/condition 3 

Group 1 All data 
Group 2 All data 

Independent variable 
(Factor 2) 

Independent variable (Factor 1) = time or condition 
Time/condition 1 Time/condition 2 Time/condition 3 

Group 1 Data Data Data 
Group 2 Data Data Data 

* * 
* 

* 

* * * 
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A mixed factor ANOVA is another omnibus test that is used to test 3 null hypotheses: 

3. There is no significant within-subject effect i.e. no significant difference between the 
means of the differences between all the conditions/times. 

4. There is no significant between-subject effect i.e. no significant difference between 
the means of the groups. 

5. There is no significant interaction effect i.e. no significant group differences across 
conditions/time 

 

ASSUMPTIONS  

Like all other parametric tests, mixed factor ANOVA makes a series of assumptions which 
should either be addressed in the research design or can the tested for. 

• The “within-subjects” factor should contain at least two related (repeated measures) 
categorical groups (levels) 

• The “between-subjects” factor should have at least two categorical independent 
groups (levels). 

• The dependent variable should be continuous and approximately normally distributed 
for all combinations of factors. 

• There should be homogeneity of variance for each of the groups and, if more than 2 
levels) sphericity between the related groups. 

• There should be no significant outliers. 

 

RUNNING THE MIXED FACTOR ANOVA 

Open 2-way Mixed ANOVA.csv in JASP. This contains 4 columns of data relating to the type 
of weightlifting grip and speed of the lift at 3 different loads (%1RM). Column 1 contains the 
grip type, columns 2-4 contain the 3 repeated measures (30, 50 and70%). Check for significant 
outliers using boxplots then go to ANOVA > Repeated measures ANOVA. 

Define the Repeated Measures Factor, %1RM, and add 3 levels (30, 50 and 70%). Add the 
appropriate variable to the Repeated measures Cells and add Grip to the Between-Subjects 
Factors: 
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In Descriptive plots, move %1RM to the horizontal axis and Grip to separate lines. In 
Additional Options, tick Descriptive statistics and Estimates of effect size (ω2). 
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 UNDERSTANDING THE OUTPUT 

 
The output should initially comprise of 3 tables and 1 graph. 

For the main effect with respect to %1RM, the within-subjects effects table reports a large F-
statistic which is highly significant (p<.001) and has a large effect size (0.744). Therefore, 
irrespective of grip type, there is a significant difference between the three %1RM loads. 

However, JASP has reported under the table that the assumption of sphericity has been 
violated. This will be addressed in the next section. 

 
Finally, there is a significant interaction between %1RM and grip (p<.001) which also has a 
large effect size (0.499). This suggests that the differences between the %1RM loads are 
affected somehow by the type of grip used. 

For the main effect with respect to grip, the between-subjects table shows a significant 
difference between grips (p< .001), irrespective of %1RM.  

From the descriptive data and the plot, it appears that there is a larger difference between 
the two grips at the high 70% RM load. 
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TESTING ASSUMPTIONS 

In Assumptions Checks, tick Sphericity tests, Sphericity corrections and Homogeneity tests.  

 

 

 

Mauchly’s test of sphericity is significant so that assumption has been violated, therefore, the 
Greenhouse-Geisser correction should be used since epsilon is <0.75. Go back to Assumption 
Checks and in Sphericity corrections leave Greenhouse-Geisser only ticked.  This will result in 
an updated Within-Subjects Effects table: 

 

 

 

 

 

 

Levene’s test shows that there is no difference in variance in the dependent variable between 
the two grip types. 
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However, if the ANOVA reports no significant difference you can go no 
further in the analysis. 

 

POST HOC TESTING 

If the ANOVA is significant post hoc testing can now be carried out. In Post Hoc Tests add 
%1RM to the analysis box on the right, tick Effect size and, in this case, use Bonferroni for the 
post hoc correction. Only Bonferroni or Holm’s correction are available for repeated 
measures. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The post hoc tests show that irrespective of grip type each load is significantly different from each of 
the other loads, and as seen from the plot, lift velocity significantly decreases as load increases. 

 



 

93 | P a g e  
JASP 0.9 - Dr Mark Goss-Sampson 

 

 

 

 

 

 

 

 

 

 

Finally, In Simple main effects add Grip to the Simple effect factor and %1RM to Moderator 
factor 1 

 

 

 

 

 

 

 

 

 

These results show that there is a significant difference in lift speed between the two grips at 
30% 1RM and also at the higher 70% 1RM loads (p=0.035 and p<0.001 respectively). 
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REPORTING THE RESULTS 

Using the Greenhouse-Geisser correction, there was a significant main effect of load (F= (1.48, 
26.64) = 115.45, p<.001). Bonferroni corrected post hoc testing showed that there was a 
significant sequential decline in lift speed from 30-50% 1RM (p=.035) and 50-70% 1RM 
(p<.001). 

There was a significant main effect for grip type (F (1, 18) = 20.925, p<.001) showing an overall 
higher lift speed using the traditional rather than the reverse grip. 

Using the Greenhouse-Geisser correction, there was a significant %1RM x Grip interaction (F 
(1.48, 26.64) = 12.00, p<.001) showing that the type of grip affected lift velocity over the 
%1RM loads.  
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CHI-SQUARE TEST FOR ASSOCIATION 
The chi-square (χ2) test for independence (also known as Pearson's χ2 test or the χ2 test of association) 
can be used to determine if a relationship exists between two or more categorical variables. The test 
produces a contingency table, or cross-tabulation, which displays the cross-grouping of the categorical 
variables. 

The χ2 test checks the null hypothesis that there is no association between two categorical variables. 
It compares the observed frequencies of the data with frequencies which would be expected if there 
was no association between the two variables. 

The analysis requires two assumptions to be met: 

1. The two variables must be categorical data (nominal or ordinal) 
2. Each variable should comprise two or more independent categorical groups 

Most statistical tests fit a model to the observed data with a null hypothesis that there is no difference 
between the observed and modelled (expected) data.  The error or deviation of the model is calculated 
as: 

Deviation = ∑ (𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐𝒐 −𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎𝒎) 𝟐𝟐 

Most parametric models are based around population means and standard deviations. The χ2 model, 
however, is based on expected frequencies. 

How are the expected frequencies calculated?  For example, we categorised 100 people into male, 
female, short and tall. If there was an equal distribution between the 4 categories expected frequency 
= 100/4 or 25% but the actual observed data does not have an equal frequency distribution. 

Equal 
Distribution 

Male Female Row 
Total 

 Tall 25 25 50 

Short 25 25 50 

Column Total 50 50 
 

 

The model based on expected values can be calculated by: 

Model (expected)  = (𝑟𝑟𝑟𝑟𝑟𝑟 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 𝑥𝑥 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡)/100 

Model – tall male   = (81 x 71) /100 = 57.5 
Model – tall female   = (81 x 29) /100 = 23.5 
Model – small male   = (19 x 71) /100 = 13.5 
Model – small female   = (19 x 29) /100 = 5.5 
 

These values can then be added to the contingency table: 

Observed 
Distribution 

Male Female Row 
Total 

Tall 57 24 81 

Short 14 5 19 

Column Total 71 29 
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Male (M) Female (F) Row Total 

Tall (T) 57 24 81 

Expected 57.5 23.5 
 

Short (S) 14 5 19 

Expected 13.5 5.5 
 

Column Total 71 29 
 

 

χ2 statistic is derived from ∑ (𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨𝐨 −𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞)
𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞𝐞

𝟐𝟐
 

Validity 

χ2 tests are only valid when you have a reasonable sample size, that is,  less than 20% of cells have an 
expected count of less than 5 and none have an expected count of less than 1.  

RUNNING THE ANALYSIS 

The dataset Titanic survival is a classic dataset used for machine learning and contains data on 1309 
passengers and crew who were on board the Titanic when it sank in 1912. We can use this to look at 
associations between survival and other factors.  The dependent variable is ‘Survival’ and possible 
independent values are all the other variables.  
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By convention, the independent variable is usually placed in the contingency table columns and the 
dependent variable is placed in the rows. 

Open Titanic survival.csv in JASP, add survived to rows as the dependent variable and sex into columns 
as the independent variable.   

 

 

 

 

 

 

 

 

 

 

 

Then tick all the following options: 
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UNDERSTANDING THE OUTPUT 

First look at the Contingency table output. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remember that χ2 tests are only valid when you have a reasonable sample size, i.e. less than 20% of 
cells have an expected count of less than 5 and none have an expected count of less than 1.  

From this table, looking at % within rows, it can be seen that more males died on the Titanic compared 
to females and more females survived compared to males. But is there a significant association 
between gender and survival? 

The statistical results are shown below: 

 

 

 

 

 

 

χ2 statistic (χ2 (1) = 365.9, p <.001) suggest that there is a significant association between gender and 
survival. 

χ2 continuity correction can be used to prevent overestimation of statistical significance for small 
datasets. This is mainly used when at least one cell of the table has an expected count smaller than 5.  
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As a note of caution, this correction may overcorrect and result in an overly conservative result that 
fails to reject the null hypothesis when it should (a type II error). 

The likelihood ratio is an alternative to the Pearson chi-square. It is based on maximum-likelihood 
theory. For large samples, it is identical to Pearson χ2. It is recommended in particular for small 
samples sizes i.e. <30. 

Nominal measures, Phi (2 x 2 contingency tables only) and Cramer's V (most popular) are both tests 
of the strength of association (i.e. effect sizes). Both values are in the range of 0 (no association) to 1 
(complete association). It can be seen that the strength of association between the variables is of a 
large effect size. 

 

 

 

 

 

 

The Contingency coefficient is an adjusted Phi value and is only suggested for large contingency tables 
such as 5 x 5 tables or larger. 

 

Effect size 4 df Small Moderate Large 
Phi and Cramer’s V (2x2 only) 1 0.1 0.3 0.5 

Cramer’s V 2 0.07 0.21 0.35 
Cramer’s V 3 0.06 0.17 0.29 
Cramer’s V 4 0.05 0.15 0.25 
Cramer’s V 5 0.04 0.13 0.22 

 
JASP also provides the Odds ratio (OR) which is used to compare the relative odds of the occurrence 
of the outcome of interest (survival), given exposure to the variable of interest (in this case gender).  
 
 
 
 
 
 
 
 
 

                                                           
4 Kim HY.  Statistical notes for clinical researchers: Chi-squared test and Fisher's exact test. Restor. Dent. 
Endod. 2017; 42(2):152-155. 
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For some reason, JASP calculates OR as a natural log. To convert this from a log value calculate the 
natural antilog value (using Microsoft calculator, input number then click on Inv followed by ex), in this 
case, it is 11.3.  This suggests that male passengers had 11.3 times more chance of dying than females.  
 
 
 
 
 
 
 
 
 
 
 
 
 
How is this calculated?  Use the counts from the contingency table in the following: 
 
Odds[males]  = Died/Survived  =  682/162 = 4.209 
Odds[females]   = Died/Survived  = 127/339 = 0.374 
 
OR = Odds[males] / Odds [females]  = 11.3 
 
GOING ONE STEP FURTHER. 
 
We can also further decompose the contingency table as a form of post hoc testing by converting the 
counts and expected counts in each cell to a standardised residual. This can tell us if the observed 
counts and expected counts are significantly different in each cell. 
 
The standardized residual for a cell in a table is a version of the standard z-score, calculated as 
  

z = observed — expected 
        √expected 

 
In the special case where df = 1, the calculation of the standardized residual incorporates a correction 
factor:  
 z = |observed — expected| — 0.5 

               √expected 
 
The resulting value of z is then given a positive sign if observed>expected and a negative sign if 
observed<expected. Z-score significances are shown below. 
 

z-score P value 
<-1.96 or > 1.96 <0.05 
<-2.58 or > 2.58 <0.01 
<-3.29 or > 3.29 <0.001 
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When the z-scores are calculated for each cell in the contingency table we can see that significantly 
fewer women died than expected and significantly more males died than expected p<.001. 

  

Female No 
z= - 9.5 

Male No 
z = 7.0 

Female Yes 
z = 12.0 

Male Yes 
z = -8.9 
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EXPERIMENTAL DESIGN AND DATA LAYOUT IN EXCEL FOR JASP IMPORT. 
 
Independent t-test 
Design example: 

Independent variable Group  1 Group 2 
Dependent variable Data Data 

 

Independent variable                                       Dependent variable 

 Categorical    Continuous 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More dependent variables can be added if required  
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Paired samples t-test 
Design example: 

Independent variable Pre-test Post-test 
Participant Dependent variable 
1 Data Data 
2 Data Data 
3 Data Data 
..n Data Data 

 

   Pre-test    Post-test 
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Correlation 
Design example: 

Simple correlation 

  

Participant Variable 1 Variable 2 Variable 3 Variable 4 Variable ..n 
1 Data Data Data Data Data 
2 Data Data Data Data Data 
3 Data Data Data Data Data 
…n Data Data Data Data Data 

 

       

Multiple correlation  
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Regression 

Design example: 

Simple Regression 

  

Participant Outcome Predictor 1 Predictor 2 Predictor 3 Predictor ..n 
1 Data Data Data Data Data 
2 Data Data Data Data Data 
3 Data Data Data Data Data 
…n Data Data Data Data Data 

 

       

Multiple regression  
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Logistic Regression 
Design example: 

  

 Dependent Variable 
(categorical) 

Factor 
(categorical) 

Covariate 
(continuous) 

Participant Outcome Predictor 1 Predictor 2 
1 Data Data Data 
2 Data Data Data 
3 Data Data Data 
…n Data Data Data 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More factors and covariates can be added if required 
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One-way Independent ANOVA 
Design example: 

Independent variable Group  1 Group 2 Group 3 Group…n 

Dependent variable Data Data Data Data 

 

Independent variable             Dependent variable 

   (Categorical)    (Continuous) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More dependent variables can be added if required  
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One-way repeated measures ANOVA 
Design example: 

 Independent variable (Factor) 
Participant Level 1 Level 2 Level 3 Level..n 
1 Data Data Data Data 
2 Data Data Data Data 
3 Data Data Data Data 
4 Data Data Data Data 
..n Data Data Data Data 

 

             Factor (time)  

 

 

                Levels 

      (Related groups) 

 

 

 

 

 

 

 

 

 

 

 

More levels can be added if required  
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Two-way Independent ANOVA 
Design example: 

Factor 1 Supplement 1 Supplement 2 
Factor 2 Dose 1 Dose 2 Dose 3 Dose 1 Dose 2 Dose 3 
Dependent 
variable Data Data Data Data Data Data 

 

       Factor 1     Factor 2      Dependent variable 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More factors and dependent variables can be added if required 
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Two-way Mixed Factor ANOVA 
Design example: 

Factor 1 
(Between subjects) 

Group 1 Group 2 

Factor 2 levels 
(Repeated measures) 

Trial 1 Trial 2 Trial 3 Trial 1 Trial 2 Trial 3 

1 Data Data Data Data Data Data 
2 Data Data Data Data Data Data 
3 Data Data Data Data Data Data 
..n Data Data Data Data Data Data 

 

Factor 1    Factor 2 levels 

(Categorical)                (Continuous) 
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Chi-squared - Contingency tables 
Design example: 

Participant Response 1 Response  2 Response 3 Response…n 
1 Data Data Data Data 
2 Data Data Data Data 
3 Data Data Data Data 
..n Data Data Data Data 

 

All data should be categorical 
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SOME CONCEPTS IN FREQUENTIST STATISTICS  
The frequentist approach is the most commonly taught and used statistical methodology. It 
describes sample data based on the frequency or proportion of the data from repeated 
studies through which the probability of events is defined.  

Frequentist statistics uses rigid frameworks including hypothesis testing, p values and 
confidence intervals etc. 

Hypothesis testing 

A hypothesis can be defined as “a supposition or proposed explanation made on the basis of 
limited evidence as a starting point for further investigation”.  

There are two simple types of hypotheses, a null hypothesis (H0) and an alternative or 
experimental hypothesis (H1). The null hypothesis is the default position for most statistical 
analyses in which it is stated that there is no relationship or difference between groups.  The 
alternative hypothesis states that there is a relationship or difference between groups for 
can a direction of difference/relationship. For example, if a study was carried out to look at 
the effects of a supplement on sprint time in one group of participants compared to the 
placebo group: 

H0 = there is no difference in sprint times between the two groups 

H1 = there is a difference in sprint times between the two groups 

H2 = group 1 is greater than group 2 

H3 = group 1 is less than group 2 

Hypothesis testing refers to the strictly predefined procedures used to accept or reject the 
hypotheses and the probability that this could be purely by chance. The confidence at which 
a null hypothesis is accepted or rejected is called the level of significance. The level of 
significance is denoted by α, usually 0.05 (5%). This is the level of probability of accepting an 
effect as true (95%) and that there is only 5% of the result being purely by chance. 

Different types of hypothesis can easily be selected in JASP, however, the null hypothesis is 
always the default. 
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Type I and II errors 

The probability of rejecting the null hypothesis, when it is, in fact, true, is called Type I error 
whereas the probability of accepting the null hypothesis when it is not true is called Type II 
error. 

  The truth 
  Not guilty (H0) Guilty (H1) 
 
 
The verdict 

 
Guilty (H1) 

Type I error 
An innocent person 
goes to prison 

 
Correct decision 

Not guilty (H0)  
Correct decision 

Type II error 
A guilty person goes free 
 

Type I error is deemed the worst error to make in statistical analyses. 

Statistical power is defined as the probability that the test will reject the null hypothesis when 
the alternative hypothesis is true. For a set level of significance, if the sample size increases, 
the probability of Type II error decreases, which therefore increases the statistical power.  

Testing the hypothesis 

The essence of hypothesis testing is to first define the null (or alternative) hypothesis, set 
the criterion level α, usually 0.05 (5%), collect and analyse sample data. Use a test statistic to 
determine how far (or the number of standard deviations) the sample mean is from the 
population mean stated in the null hypothesis. The test statistic is then compared to a critical 
value. This is a cut-off value defining the boundary where less than 5% of the sample means 
can be obtained if the null hypothesis is true. 

If the probability of obtaining a difference between the means by chance is less than 5% when 
the null hypothesis has been proposed, the null hypothesis is rejected and the alternative 
hypothesis can be accepted. 

The p value is the probability of obtaining a sample outcome, given that the value stated in 
the null hypothesis is true. If the p value is less than 5% (p < .05) the null hypothesis is rejected.  
When the p value is greater than 5% (p > .05), we accept the null hypothesis.  

Effect size 

An effect size is a standard measure that can be calculated from any number of statistical 
analyses. If the null hypothesis is rejected the result is significant.  This significance only 
evaluates the probability of obtaining the sample outcome by chance but does not indicate 
how big a difference (practical significance), nor can it be used to compare across different 
studies.  

The effect size indicates the magnitude of the difference between the groups. So for example, 
if there was a significant decrease in 100m sprint times in a supplement compared to a  
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placebo group, the effect size would indicate how much more effective the intervention was. 
Some common effect sizes are shown below. 

Test Measure Trivial Small Medium Large 
Between means Cohen’s d <0.2 0.2 0.5 0.8 
Correlation Correlation coefficient (r) 

Rank -biserial (rB) 
Spearman’s rho 

<0.1 
<0.1 
<0.1 

0.1 
0.1 
0.1 

0.3 
0.3 
0.3 

0.5 
0.5 
0.5 

Multiple Regression Multiple correlation 
coefficient (R) 

<0.10 0.1 0.3 0.5 

ANOVA Eta 
Partial Eta 
Omega squared 

<0.1 
<0.01 
<0.01 

0.1 
0.01 
0.01 

0.25 
0.06 
0.06 

0.37 
0.14 
0.14 

Chi-squared Phi (2x2 tables only) 
Cramer’s V 
Odds ratio (2x2 tables only) 

<0.1 
<0.1 
<1.5 

0.1 
0.1 
1.5 

0.3 
0.3 
3.5 

0.5 
0.5 
9.0 

 

In small datasets, there may be a moderate to large effect size but no significant differences. 
This could suggest that the analysis lacked statistical power and that increasing the number 
of data points may show a significant outcome. Conversely, when using large datasets, 
significant testing can be misleading since small or trivial effects may produce statistically 
significant results.  

PARAMETRIC vs NON-PARAMETRIC TESTING 

Most research collects information from a sample of the population of interest, it is normally 
impossible to collect data from the whole population. We do, however, want to see how well 
the collected data reflects the population in terms of the population mean, standard 
deviations, proportions etc. based on parametric distribution functions.  These measures are 
the population parameters. Parameter estimates of these in the sample population are 
statistics. Parametric statistics require assumptions to be made of the data including the 
normality of distribution and homogeneity of variance. 

In some cases these assumptions may be violated in that the data may be noticeably skewed: 
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Sometimes transforming the data can rectify this but not always. It is also common to collect 
ordinal data (i.e. Likert scale ratings) for which terms such as mean and standard deviation 
are meaningless. As such there are no parameters associated with ordinal (non-parametric) 
data. The non-parametric counterparts include median values and quartiles. 

In both of the cases described non-parametric statistical tests are available. There are 
equivalents of most common classical parametric tests. These tests that don’t assume 
normally distributed data or population parameters and are based on sorting the data into 
ranks from lowest to highest values. All subsequent calculations are done with these ranks 
rather than with the actual data values. 
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WHICH TEST SHOULD I USE? 
Comparing one sample to a known or hypothesized population mean. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Testing relationships between two or more variables 
 

 

 

 

 

 

 

 

 

 

 

 

 

  

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

Pearson’s 
correlation  

Spearman’s or 
Kendall’s tau 

Chi-square 
contingency 

tables 

Continuous Ordinal Nominal 

2 categories >2 categories 

One-sample 
t-test  

One-sample 
median test 

Binomial test Multinomial test 
or Chi-square 

‘goodness of fit’ 

Data type 

Currently not available in 
JASP 



 

117 | P a g e  
JASP 0.9 - Dr Mark Goss-Sampson 

Predicting outcomes 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

       

 
Testing for differences between two independent groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data type 

Continuous Ordinal Nominal 

More than one 
predictor variable? 

No Yes 

Simple 
regression  

Ordinal 
regression 

Logistic 
regression 

 

Multiple 
regression  

Currently not available in 
JASP 

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

Independent 
t-test  

Mann-Whitney U 
test 

Chi-square or 
Fischer’s Exact 

test  
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Testing for differences between two related groups 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Testing for differences between three or more independent groups 
 

 

 

 

 

 

 

 

 

 

 

 

 

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

Paired samples t-test Wilcoxon’s test McNemar’s test  

Currently not available in 
JASP  

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

ANOVA  Kruskall-Wallis Chi-square  

Contingency tables 
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Testing for differences between three or more related groups 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Test for interactions between 2 or more independent variables 
 

 

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

RMANOVA  Friedman test Repeated measures 
logistic regression 

Data type 

Continuous Ordinal Nominal 

Are parametric 
assumptions met? 

Yes No 

Two-way 
ANOVA 

Ordered logistic 
regression 

Factorial logistic 
regression 
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