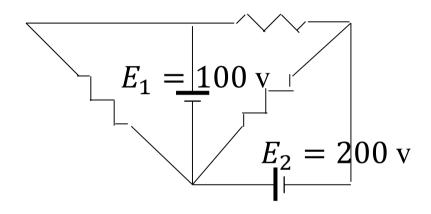

Aplicações em circuitos elétricos. Determinantes

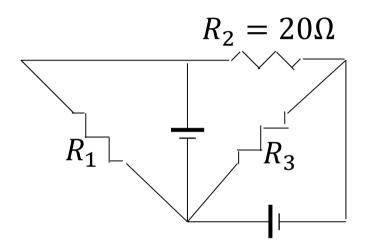
Prof. Dr. Jorge Lizardo Díaz Calle

Dpto. de Ciências Básicas - FZEA - USP


Abril de 2020

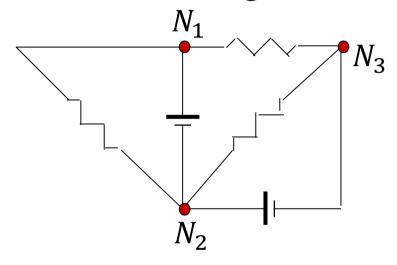
Circuitos elétricos:

Entenderemos como conexões (cabos conectados) pelas quais passa uma carga eléctrica e pode considerar conectados outros elementos do tipo fontes e resistências.


Não estamos interessados na fonte, mas na diferença de potencial que ela tem.

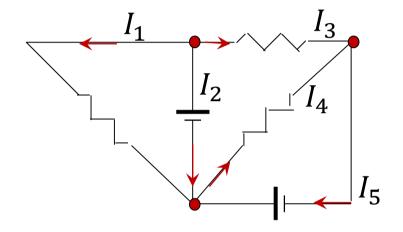
Elementos físicos: Baterias

- Tipo de elemento físico: Fonte.
- Medida elétrica: Diferença de potencial. (*E*)
- Unidade de medida: Volts (v)


Não estamos interessados na resistência, mas na sua capacidade de transformar a energia.

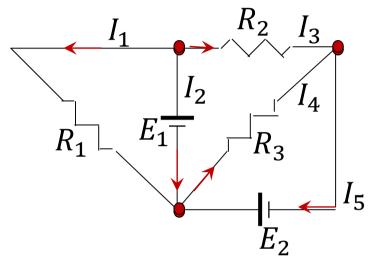
Elementos físicos:

- Tipo de elemento físico: Resistência.
- Medida elétrica: Resistência. (R)
- Unidade de medida: Ohms (Ω)


Não estamos interessados nos cabos, mas na sua capacidade de levar carga elétrica.

Observar que a carga elétrica transportada muda quando pelo menos três cabos se encontram.

Definição: **Nó de corrente**: Ponto onde três ou mais fios se encontram.


Não estamos interessados nos cabos, mas na sua capacidade de levar carga elétrica. (Orientar)

Elementos físicos:

- Tipo de elemento físico: Conector.
- Medida elétrica: Intensidade de corrente. (1)
- Unidade de medida: Ampere (A)

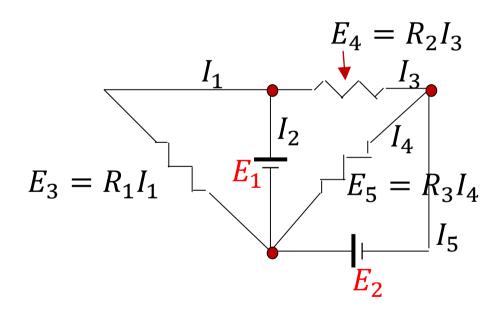
Em resumo:

Elementos físicos: Baterias, resistências e cabos.

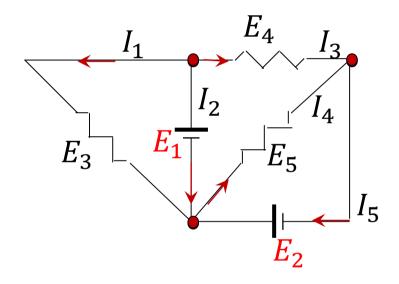
- Fontes (baterias). Diferença de potencial. *E*
- Resistências. Transformam a energia. R
- Corrente (intensidade de corrente). I

Relacionamento entre os elementos físicos:

Elementos físicos: Baterias, resistências e fios.

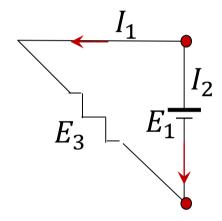

- Fontes (baterias). Diferença de potencial. E
- Resistências. Transformam a energia. R
- Corrente (intensidade de corrente). I

Lei de Ohm: A diferença de potencial que atravessa um **resistor** é dado pelo produto da corrente que passa e a sua resistência.


$$E = IR$$

Unidades: Volts = (Ampere) (Ohms)

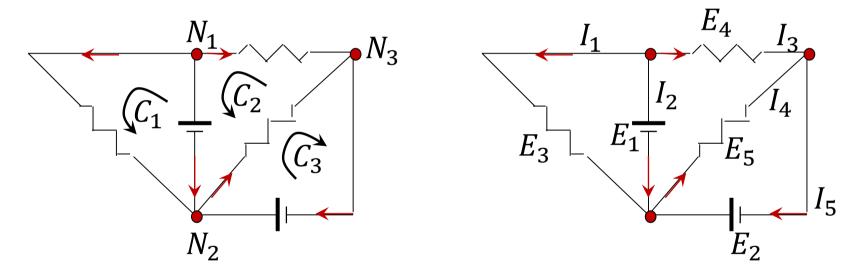
Com a lei de Ohm, podemos escrever os dados da **resistência** como **diferença de potencial** (ou diferencial de potencial)



Com a lei de Ohm, podemos escrever os dados da resistência como diferença de potencial

Podemos escrever as medidas em um circuito elétrico apenas com intensidades de corrente e diferenças de potencial.

Observar: Se ficarmos apenas com os seguintes elementos, continua sendo um circuito:



Definição: Chama-se de **ciclo de tensão** a uma conexão fechada dentro de um circuito.

Por ser conexão, damos um orientação para percorrer o ciclo e escolhemos os menores.

No circuito temos então:

- 3 nós de corrente
- 3 ciclos de tensão menores possível

E neles: 5 intensidades de corrente e 5 diferenças de potencial.

Ciclo de tensão: É uma conexão fechada dentro de um circuito.

Nó de corrente: Ponto onde três (dois) ou mais fios se encontram.

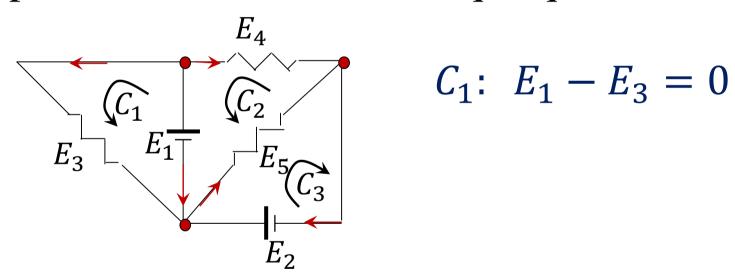
Leis de Kirchhoff:

- Conservação de energia: (ciclo) A diferença de potencial total medida em qualquer ciclo é nula.
- Conservação de carga: (nó) Em qualquer nó a corrente total que chega é igual a corrente total que sai dele.

Ciclo de tensão: É uma conexão fechada dentro de um circuito.

Leis de Kirchhoff:

- Conservação de energia: (ciclo) A diferença de potencial total medida em qualquer ciclo é nula.

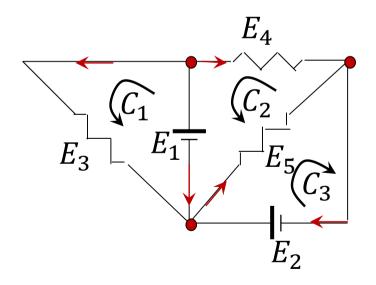


Notas:

- Quando atravessamos uma bateria de (-) para (+) a diferença de potencial é considerada positiva.
- Quando atravessamos uma resistência no sentido da corrente a diferença de potencial é considerada negativa.

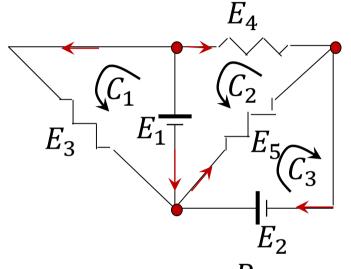
Leis de Kirchhoff:

- Conservação de energia: (ciclo) A diferença de potencial total medida em qualquer ciclo é nula.



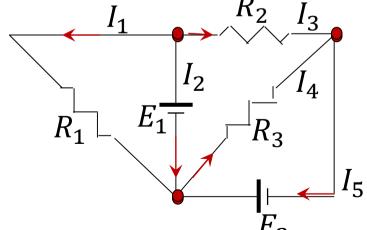
Observe que E_3 está sendo considerada no ciclo com o mesmo sentido da intensidade de corrente (-).

Leis de Kirchhoff:


- Conservação de energia: (ciclo) A diferença de potencial total medida em qualquer ciclo é nula.

De três ciclos (menores) obtemos uma equação:

$$C_1$$
: $E_1 - E_3 = 0$
 C_2 : $E_4 - E_1 - E_5 = 0$
 C_3 : $E_2 - E_5 = 0$

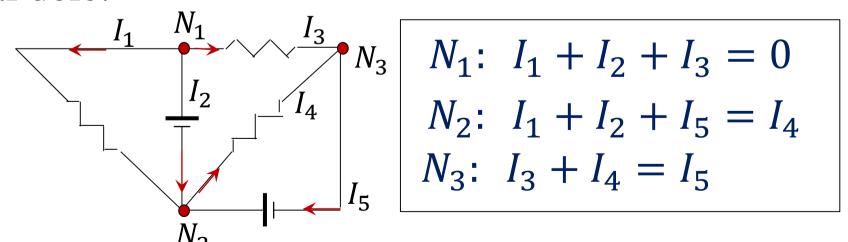

Leis de Kirchhoff: Conservação de energia: (ciclo)

$$C_1$$
: $E_1 - E_3 = 0$

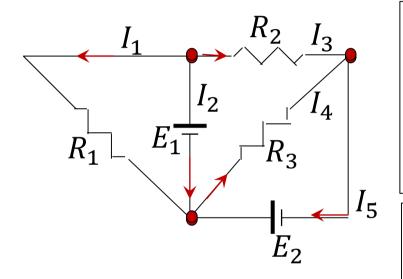
$$C_2$$
: $E_4 - E_1 - E_5 = 0$
 C_3 : $E_2 - E_5 = 0$

$$C_3$$
: $E_2 - E_5 = 0$

$$C_1$$
: $E_1 - R_1 I_1 = 0$


$$C_2$$
: $R_2I_3 - E_1 - R_3I_4 = 0$
 C_3 : $E_2 - R_3I_4 = 0$

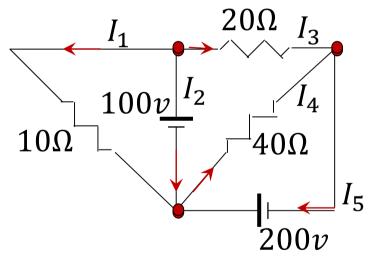
$$C_3$$
: $E_2 - R_3 I_4 = 0$


Nó de corrente: Ponto onde três (dois) ou mais fios se encontram.

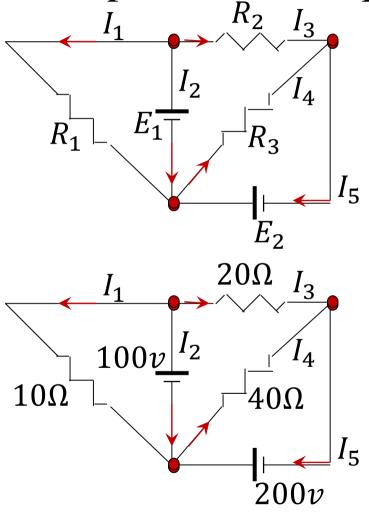
Leis de Kirchhoff:

- Conservação de carga: (nó) Em qualquer nó a corrente total que chega é igual a corrente total que sai dele.

Em resumo: Do circuito dado obtemos equações


$$C_1$$
: $E_1 - R_1 I_1 = 0$
 C_2 : $R_2 I_3 - E_1 - R_3 I_4 = 0$
 C_3 : $E_2 - R_3 I_4 = 0$

$$N_1$$
: $I_1 + I_2 + I_3 = 0$
 N_2 : $I_1 + I_2 + I_5 = I_4$
 N_3 : $I_3 + I_4 = I_5$


Geralmente das equações dos nós, sempre temos uma dependente. Pode desconsiderar um nó,

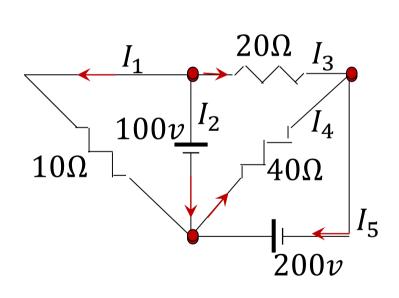
Exemplo:

Considere o circuito elétrico na figura. Determine os valores das intensidades de corrente em todo o circuito.

Exemplo: Observar que são cinco incôgnitas

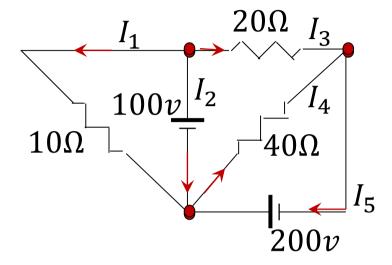
$$C_1$$
: $100 - 10I_1 = 0$

$$C_2$$
: $20I_3 - 100 - 40I_4 = 0$

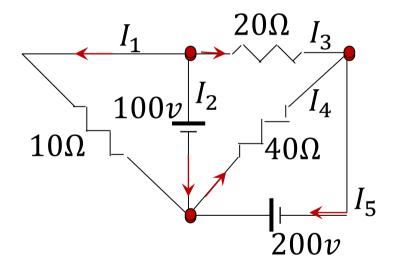

$$C_3$$
: 200 – 40 I_4 = 0

$$N_1$$
: $I_1 + I_2 + I_3 = 0$

$$N_2$$
: $I_1 + I_2 + I_5 = I_4$


Um sistema de equações cujas incôgnitas são intensidades.

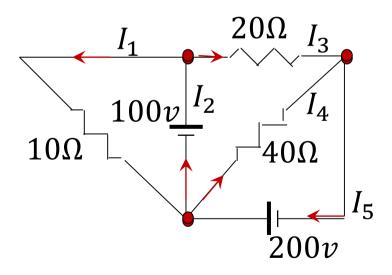
Exemplo: Aqui as cinco equações para as cinco incôgnitas:


$$C_1$$
: $10I_1 = 100$
 C_2 : $20I_3 - 40I_4 = 100$
 C_3 : $40I_4 = 200$
 N_1 : $I_1 + I_2 + I_3 = 0$
 N_2 : $I_1 + I_2 + I_5 - I_4 = 0$

Exemplo: A solução é:

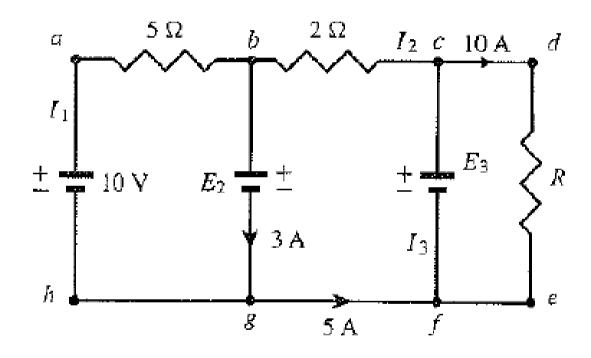
$$\begin{bmatrix} 10 & 0 & 0 & 0 & 0 \\ 0 & 0 & 20 & -40 & 0 \\ 0 & 0 & 0 & 40 & 0 \\ 1 & 1 & 1 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \\ 200 \\ 0 \end{bmatrix} \implies \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 10 \\ -25 \\ 15 \\ 5 \\ 20 \end{bmatrix}$$

Exemplo: Observe que uma intensidade é negativa, isto é, deve ser orientada ao contrário, isso basta!!

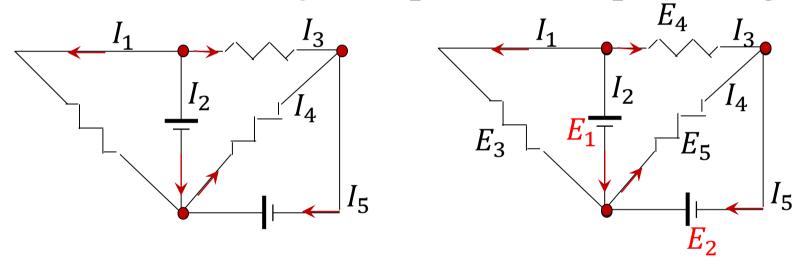


$$\begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 10 \\ -25 \\ 15 \\ 5 \\ 20 \end{bmatrix}$$

Exemplo: Observe que uma intensidade é negativa, isto é, deve ser orientada ao contrário, isso basta!!

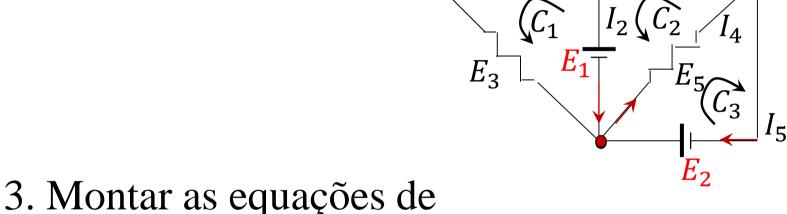

Portanto, $I_2 = 25$ Amperes.

A orientação é como segue:


Exercício

Determine as incognitas no circuito:

Processo de análise de circuitos elétricos


1. Fazer o esquema considerando, primeiro todas as intensidades de corrente (nós identificados), logo, todas as diferenças de potencial. (qual incógnita).

2. Determinar os ciclos "básicos" existentes com orientação (fechados).

Processo de análise de circuitos elétricos

2. Determinar os ciclos "básicos" existentes com orientação (fechados). E_4 E_4 E_4

conservação de energia, considerando as orientações definidas.

$$C_1$$
: $E_1 - R_1 I_1 = 0$
 C_2 : $R_2 I_3 - E_1 - R_3 I_4 = 0$
 C_3 : $E_2 - R_3 I_4 = 0$

Processo de análise de circuitos elétricos

4. Montar as equações de conservação de carga, até atingir o número de incógnitas.

$$N_1$$
: $I_1 + I_2 + I_3 = 0$
 N_2 : $I_1 + I_2 + I_5 = I_4$
 N_3 : $I_3 + I_4 = I_5$

5. Montar a matriz estendida do sistema. Resolver.

$$\begin{bmatrix} 10 & 0 & 0 & 0 & 0 \\ 0 & 0 & 20 & -40 & 0 \\ 0 & 0 & 0 & 40 & 0 \\ 1 & 1 & 1 & 0 & 0 \\ 1 & 1 & 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 100 \\ 100 \\ 200 \\ 0 \\ 0 \end{bmatrix} \implies$$