SEL EESC USP

Amplificadores Diferenciais Simétricos

BJT, JFET, MOSFET

Amplificadores Diferenciais Simétricos

1. Introdução

Amplificadores diferenciais são blocos de processamento analógico amplamente usados como amplificadores de sinais em circuitos modernos. Basicamente esses blocos são formados por duas entradas de alta impedância e duas saídas, simétricas em fase e idênticas em ganho. Por sua característica inerente de somador algébrico, esse tipo de amplificador é muito usado como estágio de entrada de blocos analógicos mais complexos chamados amplificadores operacionais e como multiplicadores em blocos de computação analógica.

2. Amplificadores Diferenciais Bipolares Simétricos

2.1 - Generalidades

A Figura *1a* apresenta a topologia genérica de um amplificador diferencial bipolar com cargas passivas e alimentado com fonte dupla, cujo equacionamento estático [1] vem a seguir. O amplificador da Figura *1a* será simétrico se, em repouso, as seguintes condições forem satisfeitas:

$$- \beta_1 = \beta_2 = \beta; V_{BE1} = V_{BE2} = V_{BE}; I_{S1} = I_{S2} = I_S; N_{FI} = N_{F2} = N_F e V_{AF1} = V_{AF2} = V_{AF}.$$

$$- R_{C1} = R_{C2} = R_C; R_{B1} = R_{B2} = R_B e R_{E1} = R_{E2} = R_E.$$

Considerando-se *I*⁰ uma corrente aproximadamente constante, pode-se escrever que:

$$I_{E1} + I_{E2} = I_{a}$$

Para os transistores do amplificador diferencial simétrico em repouso, portanto, vale:

$$I_E = I_C + I_B = \frac{I_o}{2} = \frac{\beta + 1}{\beta} I_C$$

Se os transistores possuírem ganho de corrente elevado ($\beta \ge 100$), pode-se também escrever que $I_{C1} + I_{C2} \approx I_o$. Então:

$$I_c \approx \frac{I_o}{2} \tag{1}$$

Pela somatória de tensões nas malhas de entrada, tem-se:

$$V_{in1} - V_{in2} = V_{BE1} - V_{BE2} + (I_{C1} - I_{C2})R_E$$
(2)

Substituindo-se a Equação 1 na Equação 2, chega-se à Equação 3:

$$V_{in1} - V_{in2} = V_{BE1} - V_{BE2} + R_E I_o - 2R_E I_{C2}$$
(3)

O modelo de Ebers-Moll modificado para grandes sinais e baixas frequências fornece na região ativa direta, baseado no equacionamento de Shockley, as seguintes relações:

Figura 1 – *a.*) Amplificador Diferencial Bipolar Simétrico com Degeneração de Emissor. *b.*) Amplificador Diferencial Bipolar Simétrico sem Degeneração de Emissor.

$$I_{C1} = I_{S1} \times \left[\exp\left(\frac{V_{BE1}}{N_{F1}V_t}\right) - 1 \right] \approx I_{S1} \times \exp\left(\frac{V_{BE1}}{N_{F1}V_t}\right)$$
(4a)

$$I_{C2} = I_{S2} \times \left[\exp\left(\frac{V_{BE2}}{N_{F2}V_t}\right) - 1 \right] \approx I_{S2} \times \exp\left(\frac{V_{BE2}}{N_{F2}V_t}\right)$$
(4b)

Agrupando-se as Equações 4a e 4b, tem-se que:

$$I_{C1} \approx I_{C2} \times \exp\left(\frac{V_{BE1} - V_{BE2}}{N_F V_t}\right)$$
(5)

A Equação 5 é válida para o amplificador diferencial bipolar simétrico com degeneração de emissor. No ponto de repouso tem-se que $V_{BE1} = V_{BE2}$ e, portanto, tem-se que $I_{C1} = I_{C2} \approx I_o / 2$. A substituição da Equação 5 na relação dada pela Equação 1 permite que uma das variáveis seja isolada, resultando:

$$I_{C2} = \frac{I_o}{1 + \exp\left(\frac{V_{BE1} - V_{BE2}}{N_F V_t}\right)}$$
(6a)
ou

$$I_{C1} = \frac{I_o}{1 + \exp\left(\frac{V_{BE2} - V_{BE1}}{N_F V_t}\right)}$$
(6b)

Os agrupamentos da Equação 3 com as Equações 6a e 6b resultam, respectivamente, nas relações dadas pelas Equações 7a e 7b:

P. R. VERONESE

$$I_{C2} = \frac{I_o}{1 + \exp\left(\frac{V_{in1} - V_{in2} - R_E I_o + 2R_E I_{C2}}{N_F V_t}\right)}$$
(7a)

$$I_{c1} = \frac{I_o}{1 + \exp\left(\frac{V_{in2} - V_{in1} - R_E I_o + 2R_E I_{c1}}{N_F V_t}\right)}$$
(7b)

Isolando-se as variáveis de entrada nas equações 7a e 7b, têm-se, respectivamente:

$$\frac{V_{in1} - V_{in2} = R_E I_o - 2R_E I_{C2} + N_F V_t \times \ln\left(\frac{I_o}{I_{C2}} - 1\right)}{e}$$
(8a)

$$V_{in2} - V_{in1} = R_E I_o - 2R_E I_{C1} + N_F V_t \times \ln\left(\frac{I_o}{I_{C1}} - 1\right)$$
(8b)

As Equações $8a \, e \, 8b$ estabelecem uma relação entre as correntes de coletor dos transistores bipolares e as respectivas tensões de entrada, em uma modelagem de grandes sinais. Em repouso tem-se, pela Equação 1, que $I_{C1} = I_{C2} \approx I_o / 2$ no amplificador diferencial simétrico e, nesse caso, $V_{in1} - V_{in2} = 0$ e $V_{in2} - V_{in1} = 0$.

Conclui-se, portanto, que se $V_{in1} = V_{in2} = 0$ ou $V_{in1} = V_{in2} \neq 0$, o amplificador diferencial simétrico permanece em repouso, isto é, não transfere sinal para a saída. Por esse motivo, diz-se que o amplificador em questão possui *alta rejeição a modo comum*, pois sinais igualmente aplicados nos dois ramos do amplificador não causam nenhuma transferência para as saídas. No entanto, sinais aplicados em *modo diferencial*, isto é, $V_{in1} - V_{in2} \neq 0$, causam transferência para as saídas através do desbalanceamento das correntes dos coletores, como mostram as Equações $8a \ e \ 8b$. As relações apontadas pelas Equações $8a \ e \ 8b$ possuem termos lineares importantes e, por isso, tendem a linearizar a transferência entrada-saída do amplificador. Se, no entanto, resistores de degeneração de emissores (R_E) não forem adicionados, como mostra a Figura 1b, as Equações $8a \ e \ 8b$ assumem os valores apresentados pelas Equações $8c \ e \ 8d$, que são totalmente não lineares.

$$V_{in1} - V_{in2} = N_F V_t \times \ln\left(\frac{I_o}{I_{C2}} - 1\right)$$
(8c)

e

$$V_{in2} - V_{in1} = N_F V_t \times \ln\left(\frac{I_o}{I_{C1}} - 1\right)$$
(8d)

A Figura 2 ilustra as variações de I_{Cl} e I_{C2} em função de $V_{in1} - V_{in2}$, para dois valores de R_E . Com $R_E \ge 47 \ \Omega$, em amplificadores diferenciais corriqueiros, já se obtém uma linearização aceitável. Com $R_E = 1 \ k\Omega$, a transferência entrada-saída do amplificador torna-se praticamente linear, mas com sacrifício de ganho de transcondutância.

P. R. VERONESE

Figura 2 – Curvas $I_{C1} \times \Delta V_{in}$ e $I_{C2} \times \Delta V_{in}$ dos Amplificadores da Figura 1 com $R_E = 0$ e com $R_E = 1 k \Omega$.

Como, na prática, muitos sinais indesejados (ruídos térmicos internos, induções eletromagnéticas externas, *rippl*e de fontes de alimentação, etc.) são aplicados em modo comum, a rejeição a eles é muito mais efetiva nos amplificadores diferenciais do que em amplificadores convencionais como: emissor-comum, base-comum ou coletor-comum.

Analisando-se as Equações &c e &d percebe-se que, se R_E possuir um valor elevado, os termos $2R_E I_C$ tornam-se bem mais significativos que os termos $N_F V_t \times ln (I_o/I_C - 1)$ e essas equações podem ser reescritas como:

$$V_{in1} - V_{in2} \approx R_E \times (I_o - 2I_{C2}) \tag{9a}$$

$$V_{in2} - V_{in1} \approx R_F \times (I_o - 2I_{C1}) \tag{9b}$$

O amplificador torna-se, portanto, essencialmente linear. Se, no entanto, R_E possuir um valor pequeno ou nulo, os termos $N_FV_t \times ln (I_o/I_C - 1)$ tornam-se altamente relevantes e as Equações &c e &d predominam. Nesse caso o amplificador adquire uma função de transferência entrada-saída essencialmente exponencial, com altas taxas de distorção. O ganho, no entanto, aumenta significativamente em relação ao caso anterior.

2.2 Amplificadores Diferenciais com Cargas Passivas

2.2.1 Cálculo das Grandezas Quiescentes

Com V_{EE} = - V_{CC} , analisando-se o circuito da Figura *1b* pode-se escrever que:

$$V_E = -\left(V_{BE} + \frac{R_B I_C}{\beta}\right) \quad ; \quad I_C = \frac{\beta I_o}{2(\beta+1)} \quad ; \quad I_o = \frac{V_E - V_{EE}}{R_{EE}}$$

Figura 3 - *a.*) Equivalente *AC* do Amplificador Diferencial. *b.*) Circuito Usado no Cálculo das Grandezas *AC*.

Esse sistema de três equações e três incógnitas é resolvido executando-se o *solve equation* na equação de I_o e, posteriormente, calculando-se I_C e V_E através das outras duas equações. O valor da tensão entre coletor e emissor pode ser calculado pela equação:

$$V_{CE} = V_{CC} - R_C I_C - V_E$$

Os parâmetros incrementais valem:

$$g_m = rac{I_C}{N_F V_t}$$
; $r_\pi = rac{\beta}{g_m}$; $r_o = rac{V_{AF} + V_{CE} - V_{BE}}{I_C}$

2.2.2 Cálculo das Grandezas AC, para Pequenos Sinais

Tal como mostra a Figura 3a, em relação a uma entrada e uma saída ($g_{in1} e g_{o1}$), o amplificador diferencial se comporta como um amplificador emissor-comum com resistência de emissor não desacoplada. Com $g_{in2} = 0$, a resistência de emissor, vista pelo sinal *AC*, como ilustra a Figura 3b, vale:

$$R_{E(AC)} = \frac{R_{EE}R_{i(BC)}^*}{R_{EE} + R_{i(BC)}^*}$$

Onde:

$$R_{i(BC)}^{*} = \frac{(r_{o} + R_{C})r_{\pi}}{r_{\pi} + R_{C} + (1 + g_{m}r_{\pi})r_{o}}$$

Com $\vartheta_{in2} = 0$, o ganho de tensão do amplificador em vazio [2] vale, então:

$$A_{\vartheta} = \frac{\vartheta_{o1}}{\vartheta_{in1}} = \frac{(R_{E(AC)} - g_m r_\pi r_o) R_C}{(R_{E(AC)} + r_o + R_C) r_\pi + [R_C + (1 + g_m r_\pi) r_o] R_{E(AC)}}$$
(10)

Se o amplificador não estiver em vazio, isto é, se ele estiver carregado por uma carga R_L , os resistores R_C das equações acima deverão ser substituídos pelo resistor $R_C^* = R_C //R_L$.

P. R. VERONESE

Figura 4 – *a.*) Amplificador Diferencial na Condição de Modo Diferencial. *b.*) Amplificador Diferencial na Condição de Modo Comum.

A resistência de entrada do amplificador, vista em *in1*, vale:

$$R_i = \frac{R_B R_i^*}{R_B + R_i^*} \tag{11}$$

Onde:

$$R_{i}^{*} = r_{\pi} + \frac{r_{o} + R_{C} + g_{m}r_{\pi}r_{o}}{r_{o} + R_{C} + R_{E(AC)}} \times R_{E(AC)}$$

2.2.3 Cálculo da Rejeição a Modo Comum (CMRR)

Como se sabe, amplificadores diferenciais tendem a rejeitar, isto é, amplificar de modo desprezível, sinais aplicados em suas entradas em modo comum, enquanto amplificam significativamente sinais aplicados em suas entradas em modo diferencial. Essa propriedade dos amplificadores diferenciais é denominada *CMRR* (*razão de rejeição a modo comum*), medida em *decibéis* e calculada por:

$$CMRR_{(dB)} = 20\log\left(\frac{A_{\vartheta d}}{A_{\vartheta c}}\right)$$
 (12)

Na Equação 12, $A_{\vartheta d}$ é o ganho de tensão em modo diferencial e $A_{\vartheta c}$ é o ganho de tensão em modo comum. A Figura 4 ilustra os circuitos usados para a obtenção dessa grandeza. Em modo diferencial, os sinais, iguais em módulo, são aplicados em contrafase nas duas entradas e com a metade das amplitudes aplicadas em modo comum, como mostra a Figura 4a. Em modo comum, os sinais, iguais em módulo, são aplicados em fase nas duas entradas e com amplitudes iguais ao dobro das aplicadas em modo diferencial, como mostra a Figura 4b. Em modo diferencial os sinais, iguais em módulo, são transferidos multiplicados pelo mesmo ganho de tensão para o ponto V_E .

Figura 5 – Equivalentes AC aos Circuitos da Figura 4. a.) Modo Diferencial. b.) Modo Comum.

Como esses sinais estão em contrafase, eles se cancelam nos emissores dos transistores e, portanto, em AC, $V_E = 0$ no circuito da Figura 4a. Esse ponto funciona, então, como <u>terra</u> <u>virtual</u>. A Figura 5a mostra o equivalente AC do circuito da Figura 4a.

- Modo Diferencial

Se $r_o \rightarrow \infty$, segundo o circuito da Figura 5*a*, pode-se escrever, para o ganho do amplificador emissor-comum, que:

$$A_{\vartheta d} = -\frac{g_m R_C}{2}$$

Como, em modo comum, os sinais de entrada, iguais em módulo e em fase, são transferidos igualmente para os emissores dos transistores, o circuito da Figura 4b pode ser desmembrado em dois circuitos equivalentes independentes, com $R_{E(AC)} = 2R_{EE}$, como mostra a Figura 5b.

- Modo Comum

Se $r_o \rightarrow \infty$, segundo o circuito da Figura 5*b*, pode-se escrever, para o ganho do amplificador emissor-comum, que:

$$A_{\vartheta c} = -\frac{g_m R_c}{1 + 2g_m R_{EE}}$$

Face à complexidade do circuito, para os cálculos de $A_{\vartheta d}$ e de $A_{\vartheta c}$ foram usadas as fórmulas aproximadas dos ganhos de tensão. As aproximações são estabelecidas com a adoção de $V_{AF} \rightarrow \infty$, o que acarreta em $r_o \rightarrow \infty$, para os transistores. Os erros obtidos nesses cálculos são, no entanto, aceitáveis. O parâmetro g_m é a transcondutância de todos os transistores, iguais no ponto de repouso, e vale:

$$g_m = \frac{I_C}{N_F V_t} \cong \frac{I_o}{2V_t}$$

Figura 6 – *a.*) Amplificador Diferencial Bipolar Simétrico com Degeneração de Emissor. *b.*) Amplificador Diferencial Bipolar Simétrico sem Degeneração de Emissor.

- Taxa de Rejeição a Modo Comum:

Como foi definida pela Equação 12, essa taxa vale, portanto:

$$CMRR_{(dB)} \cong 20log\left[\frac{1+2g_mR_{EE}}{2}\right]$$
 (13)

- Diferenciais com Resistências de Degeneração de Emissor

Em muitos casos, com o intuito de se conseguir uma melhor linearização ou uma resistência de entrada maior, são colocados resistores de emissor (R_E) no diferencial, como mostra a Figura 1a. Nesse caso, o ganho de tensão e a resistência de entrada do amplificador continuam sendo calculados pelas Equações 10 e 11, respectivamente, mas com os seguintes valores alterados:

$$R_{E(AC)} = R_E + \frac{R_{EE}R_{i(BC)}^*}{R_{EE} + R_{i(BC)}^*}$$

Onde:

$$R_{i(BC)}^{*} = R_{E} + \frac{(r_{o} + R_{C})r_{\pi}}{r_{\pi} + R_{C} + (1 + g_{m}r_{\pi})r_{o}}$$

A rejeição a modo comum também fica alterada para:

$$CMRR_{(dB)} \cong 20log\left[\frac{1+g_m(R_E+2R_{EE})}{2}\right]$$
(14)

2.3 Diferenciais com Fonte de Corrente de Lastro

2.3.1 Cálculo de CMRR e das Grandezas Quiescentes

Como foi estabelecido pela Equação 13, a rejeição a modo comum é diretamente proporcional a R_{EE} , que determina o valor da corrente de lastro do amplificador diferencial. Então, para aumentar essa rejeição, deve-se aumentar significativamente o valor de R_{EE} .

Figura 7 - *a.*) Amplificador Diferencial Bipolar Simétrico com Degeneração de Emissor e Carga Ativa. *b.*) Amplificador Diferencial Bipolar Simétrico sem Degeneração de Emissor e Carga Ativa.

Isso, no entanto, não pode ser feito passivamente, pois um aumento de R_{EE} muda completamente o ponto quiescente, causando, inclusive, saturação dos transistores. A solução é substituir o resistor R_{EE} , do circuito da Figura *1*, por uma fonte de corrente ativa, que matem a corrente de lastro constante e inalterável e que possui uma resistência interna, vista apenas pelo sinal *AC*, muito elevada. Assim o ponto quiescente do circuito não é afetado e a rejeição a modo comum cresce significativamente. A Figura *6* mostra os circuitos modificados pela adição da fonte de corrente de lastro. A resistência interna da fonte, vista apenas pelo sinal *AC*, foi chamada de r_{of} . Essa resistência não influencia no ganho e na resistência de entrada do amplificador, mas altera significativamente a *CMRR*. O ponto quiescente é calculado pelas equações:

$$V_E = -\left(V_{BE} + \frac{R_B I_C}{\beta}\right) \quad ; \quad I_C = \frac{\beta I_o}{2(\beta+1)} \cong \frac{I_o}{2}$$

A rejeição a modo comum é calculada pela Equação 15:

$$CMRR_{(dB)} \cong 20log\left[\frac{1+2g_m r_{of}}{2}\right]$$
 (15)

O ganho de tensão e a resistência de entrada do amplificador continuam a ser calculados pelas Equações 10 e 11, respectivamente. Em amplificadores diferenciais de alto desempenho exige-se, pelo menos, que $CMRR \ge 60 \ dB$. Com os circuitos da Figura 6, facilmente se consegue essa marca.

2.3.2 Amplificadores Diferenciais com Cargas Ativas

A colocação de fonte de corrente de lastro melhora muito a *CMRR* do amplificador, mas não altera o ganho de tensão do mesmo, que normalmente é baixo com cargas passivas de coletor (R_c). Para melhorar esse quesito, devem-se usar cargas ativas de coletor, corriqueiramente chamadas de espelhos de corrente. O espelho de corrente é formado por um braço de baixa impedância, constituído por um diodo, cuja impedância interna vale r_{od} . O outro braço, como possui a saída em coletor e a base não está em curto-circuito com o emissor, é de alta impedância e possui uma resistência interna igual a $r_{oe} >> r_{od}$.

Figura 8 – Equivalentes AC aos Circuitos da Figura 7.

A Figura 7 mostra os esquemas dos amplificadores diferenciais com cargas ativas. Como os transistores $Q_3 \,\mathrm{e} \, Q_4$ compartilham os mesmos terminais de base e de emissor, a tensão V_{BE} é igual para os dois, o que força uma igualdade de correntes de coletor para os dois, se os transistores forem casados. As correntes $I_{C1} \,\mathrm{e} \, I_{C2}$ não são, no entanto, perfeitamente iguais porque $I_{C2} = I_{C1} + 2I_B$, sendo I_B a corrente de base de Q_3 e de Q_4 . Se $\beta_3 = \beta_4$ possuírem valores elevados, no entanto, pode-se considerar que $I_{C2} \approx I_{C1}$. As resistências internas do espelho valem:

$$r_{od} \cong \frac{1}{g_{m4}}$$
 e $r_{oe} = r_{o3}$

- Ganhos de tensão:

A Figura 8 apresenta os equivalentes AC aos circuitos da Figura 7. Para o circuito da Figura 8a, usando as equações de cálculo das grandezas AC de amplificadores básicos [2], pode-se calcular, para $\vartheta_{in2} = 0$:

$$A_{\nu 11} = \frac{\vartheta_{o1}}{\vartheta_{in1}} = \frac{2 \times (R_{Eeq1} - g_{m1}r_{\pi 1}r_{o1}) \times r_{o3}}{r_{\pi 1} \times (R_{Eeq1} + r_{o1} + 2r_{o3}) + R_{Eeq1} \times [2r_{o3} + r_{o1} \times (1 + g_{m1}r_{\pi 1})]}$$
(16)

Onde:

$$R_{Eeq1} = R_E + \frac{r_{of} R_{i(BC)}^*}{r_{of} + R_{i(BC)}^*} \qquad e \qquad R_{i(BC)}^* = R_E + \frac{(r_{o1} + r_{od})r_{\pi 1}}{r_{\pi 1} + r_{od} + (1 + g_{m1}r_{\pi 1})r_{o1}}$$

E, como $g_{m2} = g_{m1}$, $r_{\pi 2} = r_{\pi 1}$ e $r_{o2} = r_{o1}$, para $\vartheta_{in1} = 0$:

$$A_{\vartheta bas} = \frac{2(1+g_{m1}r_{o1})r_{o3}}{2r_{o3}+r_{o1}} \quad e \quad A_{\vartheta col} = \frac{[r_{od}+r_{o1}(1+g_{m1}r_{\pi 1})]R_{Eeq2}}{[r_{od}+r_{o1}(1+g_{m1}r_{\pi 1})]R_{Eeq2}+(r_{od}+r_{o1}+R_{Eeq2})r_{\pi 1}}$$

Onde $A_{\vartheta col}$ é o ganho do amplificador coletor-comum constituído por Q_2 e $A_{\vartheta bas}$ é o ganho do amplificador base-comum constituído por Q_1 . A carga de coletor do amplificador coletor-comum é r_{od} e a carga de coletor do amplificador base-comum é $2r_{oe} = 2r_{o3}$. A carga de emissor do amplificador coletor-comum é R_{Eeq2} que, no caso, vale:

$$R_{Eeq2} = R_E + \frac{r_{of} R_{i(BC)}^*}{r_{of} + R_{i(BC)}^*} \quad e \quad R_{i(BC)}^* = R_E + \frac{(r_{o1} + 2r_{o3})r_{\pi 1}}{r_{\pi 1} + 2r_{o3} + (1 + g_{m1}r_{\pi 1})r_{o1}}$$

O ganho do amplificador diferencial, relacionado à entrada g_{in2} , vale, portanto:

$$A_{\nu 12} = \frac{\vartheta_{o1}}{\vartheta_{in2}} = A_{\vartheta col} \times A_{\vartheta bas}$$
(17)

Para o circuito da Figura *8b* também são usadas as Equações *16* e *17*, mas com $R_E = 0$. Em um amplificador diferencial ideal espera-se que $|A_{g11}| = A_{g12}$. Calculando-se pelas Equações *16* e *17*, porém, esses ganhos não são perfeitamente iguais, porque são afetados pelo valor da resistência interna da fonte de corrente de lastro (r_{of}).

- Resistências de entrada:

As resistências de entrada, vistas em cada base dos transistores Q_2 e Q_2 da Figura 8, valem:

$$R_{in1}^{*} = r_{\pi 1} + \frac{r_{o3} + r_{o1} \times (1 + g_{m1} r_{\pi 1})}{r_{o1} + r_{o3} + R_{Eeq1}} \times R_{Eeq1}$$
(18a)

$$R_{in2}^{*} = r_{\pi 1} + \frac{r_{od} + r_{o1} \times (1 + g_{m1} r_{\pi 1})}{r_{o1} + r_{od} + R_{Eeq2}} \times R_{Eeq2}$$
(18b)

As resistências vistas externamente nas entradas do amplificador valem, portanto:

$$R_{in1} = \frac{R_B R_{in1}^*}{R_B + R_{in1}^*} \approx R_B \qquad e \qquad R_{in2} = \frac{R_B R_{in2}^*}{R_B + R_{in2}^*} \approx R_B$$
(19)

As correntes de polarização das bases de Q_1 e de Q_2 , muito importantes porque afetam os circuitos externos agregados aos amplificadores operacionais bipolares, são calculadas como:

$$I_{B1} = \frac{I_{C1}}{\beta_1}$$
 e $I_{B2} = \frac{I_{C2}}{\beta_2}$

Nas folhas de dados de amplificadores operacionais comerciais, esse dado aparece como I_{BIAS} (*Input Bias Current*). Essa corrente possui, também, desbalanceamento relativo, isto é, $I_{BIAS1} \neq I_{BIAS2}$, que nas folhas de dados são chamadas de I_{IO} (*Input Offset Current*). No AmpOp *LM741*, esses valores podem atingir: $I_{BIAS} = 500nA_{(max)}$ e $I_{IO} = 200nA_{(max)}$.

- Razão de rejeição a modo comum:

Graças à ação do espelho de corrente, embora seja fácil calcular o ganho $A_{\vartheta d}$, fica mais difícil calcular o ganho $A_{\vartheta c}$ no circuito da Figura 7. Por isso, a taxa de rejeição a modo comum de um amplificador diferencial com carga ativa tipo espelho de corrente só pode ser obtida com precisão através de simulação. Sabe-se, no entanto, que ela é superior a do amplificador com cargas passivas e que a Equação 20 calcula essa grandeza com razoável precisão, para o circuito da Figura 7*b*, apenas se $I_{Cl} \cong I_{C2}$.

$$CMRR_{(dB)} \cong 20log \left[\frac{r_{o1}r_{oe}(1+4g_{m1}r_{of})}{2r_{od}(r_{o1}+r_{oe})} \right]$$
 (20)

P. R. VERONESE

Página 11

2019

3. Amplificadores Diferenciais Unipolares Simétricos

3.1 Amplificadores Diferenciais MOS

A Figura 9 apresenta topologias genéricas de amplificadores diferenciais unipolares, construído com *MOSFET*'s, carregados com cargas ativas e passivas e alimentados com fonte dupla, cujo equacionamento estático [1] vem a seguir. Os amplificadores da Figura 9 serão simétricos se, em repouso, as seguintes condições forem satisfeitas:

- $W_1 = W_2 = W_n$; $L_1 = L_2 = L_n$; $K_{P_1} = K_{P_2} = K_{P_n}$; $V_{To1} = V_{To2} = V_{Tn}$ e $\lambda_1 = \lambda_2 = \lambda_n$.
- $W_3 = W_4 = W_p$; $L_3 = L_4 = L_p$; $K_{P3} = K_{P4} = K_{Pp}$; $V_{To3} = V_{To4} = V_{Tp}$ e $\lambda_3 = \lambda_4 = \lambda_p$.

-
$$R_{D1} = R_{D2} = R_D e R_{G1} = R_{G2} = R_G$$
.

Considerando-se I_{SS} uma corrente aproximadamente constante, pode-se escrever que:

$$I_{D1} + I_{D2} = I_o$$

Para os transistores do amplificador diferencial simétrico em repouso, portanto, vale:

$$I_D = \frac{I_o}{2}$$

Pela somatória de tensões nas malhas de entrada, tem-se:

$$V_{in1} - V_{in2} = V_{GS1} - V_{GS2}$$

O modelo quadrático de Schichman-Hodges para grandes sinais e baixas frequências do *MOSFET* fornece, na região de saturação, as seguintes relações:

$$I_{D1} = \frac{1}{2} \frac{W_n}{L_n} K_{Pn} (V_{GS1} - V_{Tn})^2 (1 + \lambda_n V_{DS1}) \quad \text{e} \quad I_{D2} = \frac{1}{2} \frac{W_n}{L_n} K_{Pn} (V_{GS2} - V_{Tn})^2 (1 + \lambda_n V_{DS2})$$

3.2 Amplificadores Diferenciais com Cargas Passivas

3.2.1 Cálculo das Grandezas Quiescentes

Com $V_{SS} = -V_{DD}$, analisando-se o circuito da Figura 9a pode-se escrever que:

$$V_S = -V_{GS1}$$
; $I_D = \frac{I_{SS}}{2}$; $V_S = I_{SS}R_{SS} + V_{SS}$; $V_{DS1} = V_{DD} - R_D I_D - V_S$

$$-I_{SS} + \frac{W_n}{L_n} K_{Pn} (-V_S - V_{Tn})^2 (1 + \lambda_n V_{DS1}) = 0$$
(21)

Esse sistema de cinco equações e cinco incógnitas é resolvido executando-se o *solve* equation em I_{SS} na Equação 21 e, posteriormente, calculando-se I_D , V_S , V_{DSI} e V_{GSI} através das outras quatro equações. Os parâmetros incrementais dos *MOSFET*'s, no ponto quiescente, valem:

$$g_{m1} = g_{m2} = \frac{2I_D}{V_{GS1} - V_{Tn}}$$
; $r_{dS1} = r_{dS2} = \frac{1 + \lambda_n V_{DS1}}{\lambda_n I_D}$

3.2.2 Cálculo das Grandezas AC, para Pequenos Sinais

P. R. VERONESE

e

Figura 9 - Amplificador Diferencial Unipolar Simétrico. *a.*) Com Cargas Passivas. *b.*) Com Cargas Passivas e com Fonte de Corrente de Lastro. *c.*) Com Cargas Ativas Tipo Espelho de Corrente.

Tal como mostra a Figura 9*a* e tal como já foi visto para *BJT* na Secção 2.2.2, em relação a uma entrada e uma saída ($\vartheta_{in1} e \vartheta_{o1}$), o amplificador diferencial se comporta como um amplificador fonte-comum com resistência de fonte não desacoplada. Com $\vartheta_{in2} = 0$, a resistência de fonte, vista pelo sinal *AC*, vale:

$$R_{S(AC)} = \frac{R_{SS}R_{i(GC)}^*}{R_{SS} + R_{i(GC)}^*}$$

Onde:

$$R_{i(GC)}^* = \frac{r_{ds} + R_D}{(1 + g_m r_{ds})}$$

Com $\vartheta_{in2} = 0$, o ganho de tensão do amplificador em vazio [3] vale, então:

$$A_{\vartheta} = \frac{\vartheta_{o1}}{\vartheta_{in1}} = \frac{-g_m r_{ds} R_D}{r_{ds} + R_D + (1 + g_m r_{ds}) R_{S(AC)}}$$
(22)

Se o amplificador não estiver em vazio, isto é, se ele estiver carregado por uma carga R_L , os resistores R_D das equações acima deverão ser substituídos pelo resistor $R_D^* = R_D // R_L$. As resistências de entrada do amplificador, vistas em *in1* e em *in2*, graças à altíssima resistência de *gate*, vale:

$$R_i = R_G$$

(23)

3.2.3 Cálculo da Rejeição a Modo Comum (CMRR)

Assim como explanado para o *BJT*, sinais aplicados em contrafase nas entradas do amplificador diferencial se cancelam nas fontes dos transistores e, portanto, em *AC*, $V_S = 0$ no circuito da Figura *10a*. Esse ponto funciona, então, como <u>terra virtual</u>. A Figura *10a* mostra o equivalente *AC* do circuito da Figura *9a*.

- Modo Diferencial

Se $r_{ds} \rightarrow \infty$, segundo o circuito da Figura *10a*, pode-se escrever, para o ganho do amplificador fonte-comum, que:

Figura 10 - Equivalentes AC aos Circuitos da Figura 9. a.) Modo Diferencial. b.) Modo Comum.

$$A_{\vartheta d} = -\frac{g_{m1}R_D}{2}$$

Como, em modo comum, os sinais de entrada, iguais em módulo e em fase, são transferidos igualmente para as fontes dos transistores, o circuito da Figura 9b pode ser desmembrado em dois circuitos equivalentes independentes, com $R_{E(AC)} = 2R_{SS}$, como mostra a Figura 10b.

- Modo Comum

Se $r_{ds} \rightarrow \infty$, segundo o circuito da Figura *10b*, pode-se escrever, para o ganho do amplificador fonte-comum, que:

$$A_{\vartheta c} = -\frac{g_{m1}R_D}{1+2g_{m1}R_{SS}}$$

Face à complexidade do circuito, para os cálculos de $A_{\vartheta d}$ e de $A_{\vartheta c}$ foram usadas fórmulas aproximadas dos ganhos de tensão. As aproximações são estabelecidas adotando-se $\lambda = 0$, o que acarreta em $r_{ds} \rightarrow \infty$, para os transistores. Os erros obtidos nesses cálculos são, no entanto, aceitáveis. O parâmetro $g_{ml} = g_{m2} = g_m$ é a transcondutância de todos os transistores da Figura 10, iguais no ponto de repouso, e vale:

$$g_m = \frac{2I_D}{V_{GS} - V_{Tn}} = \frac{I_{SS}}{V_{GS} - V_{Tn}}$$

- Taxa de Rejeição a Modo Comum:

Como foi definida pela Equação 12, essa taxa vale, portanto:

$$CMRR_{(dB)} \cong 20log\left[\frac{1+2g_m R_{SS}}{2}\right] \pm 0.5 \text{ dB}$$
(24)

3.3 Diferenciais com Fonte de Corrente de Lastro

3.3.1 Cálculo de CMRR e das Grandezas Quiescentes

Como foi estabelecido pela Equação 24, a rejeição a modo comum é diretamente proporcional a R_{SS} , que determina o valor da corrente de lastro do amplificador diferencial (I_{SS}). Então, para aumentar a rejeição, deve-se aumentar significativamente o valor de R_{SS} . Faz-se necessário, portanto, substituir o resistor R_{SS} por uma fonte de corrente ativa, que possui alta resistência interna, vista apenas pelo sinal AC. As Figuras 9b e 9c mostram os circuitos modificados pela adição da fonte de corrente de lastro. A resistência interna da fonte, vista apenas pelo sinal AC, foi chamada de r_{of} . Essa resistência não influencia no ganho e na resistência de entrada do amplificador, mas altera significativamente a CMRR. O ponto quiescente é calculado pelas equações:

$$V_S = -V_{GS}$$
; $I_D = \frac{I_{SS}}{2}$ e $V_{DS} = V_{DD} - R_D I_D - V_S$

A rejeição a modo comum é calculada pela Equação 25:

$$CMRR_{(dB)} \cong 20log\left[\frac{1+2g_m r_{of}}{2}\right]$$
 (25)

O ganho de tensão e a resistência de entrada do amplificador continuam a ser calculados pelas Equações 22 e 23, respectivamente. Em amplificadores diferenciais de alto desempenho exige-se, pelo menos, que $CMRR \ge 60 \ dB$. Com os circuitos das Figuras 9b e 9c, facilmente se consegue essa marca.

3.3.2 Amplificadores Diferenciais com Cargas Ativas

A colocação de fonte de corrente de lastro melhora muito a *CMRR* do amplificador, mas não altera o ganho de tensão do mesmo, que normalmente é baixo com cargas passivas de coletor (R_D). Para melhorar esse quesito, devem-se usar cargas ativas de coletor, corriqueiramente chamadas de espelhos de corrente. O espelho de corrente é formado por um braço de baixa impedância, constituído por um diodo *MOS* (M_4), cuja impedância interna é baixa e vale $r_{od} \approx 1/g_{m4}$. O outro braço, como possui saída em dreno e o *gate* não está ligado à fonte, é de alta impedância e possui uma resistência interna igual à $r_{oe} >> r_{od}$. No caso do circuito da Figura 9c, $r_{oe} = r_{ds3}$, mas pode adquirir outros valores, dependendo da arquitetura escolhida para o espelho. A Figura 9c mostra o esquema do amplificador diferencial com cargas ativas. Como os transistores M_3 e M_4 compartilham os mesmos terminais de *gate* e de fonte, a tensão V_{GS} é igual para os dois, o que força uma igualdade de correntes de dreno, se os transistores forem casados. Ao contrário do que acontece com BJT's, que possuem correntes de base diferentes de zero, neste caso, $I_{D1} = I_{D2} = 0,5I_{SS}$ e as tensões nos drenos de M_3 e de M_4 também são iguais entre si. Assim:

$$r_{od} \cong \frac{1}{g_{m4}}$$
 e $r_{oe} = 2r_{ds3}$

- Ganhos de tensão:

A Figura 11 apresenta os equivalentes AC aos circuitos da Figura 9. Para o circuito da Figura 9a, usando as equações de cálculo das grandezas AC de amplificadores básicos [3], pode-se calcular, para $\vartheta_{in2} = 0$:

Figura 11 – Circuitos Equivalentes AC aos Amplificadores da Figura 9.

$$A_{v11} = \frac{\vartheta_{o1}}{\vartheta_{in1}} = \frac{-g_{m1}r_{ds1}r_{oe}}{r_{ds1} + r_{oe} + R_{Seq1}(1 + g_{m1}r_{ds1})}$$
(26)

Onde:

$$R_{Seq1} = \frac{r_{of} R_{i(GC)}^{*}}{r_{of} + R_{i(GC)}^{*}} \qquad e \qquad R_{i(GC)}^{*} = \frac{r_{ds} + r_{od}}{1 + g_{m} r_{ds}}$$

E, como $g_{m2} = g_{m1} = g_m e r_{ds2} = r_{ds1} = r_{ds}$, para $\vartheta_{in1} = 0$:

$$A_{\vartheta gat} = \frac{(1+g_m r_{ds})r_{oe}}{r_{oe}+r_{ds}} \quad e \quad A_{\vartheta dre} = \frac{g_m r_{ds} R_{Seq2}}{r_{ds}+r_{od}+(1+g_m r_{ds}) \times R_{Seq2}}$$

Onde $A_{\vartheta dre}$ é o ganho do amplificador dreno-comum constituído por M_2 e $A_{\vartheta gat}$ é o ganho do amplificador porta-comum constituído por M_1 . A carga de dreno do amplificador dreno-comum é r_{od} e a carga de dreno do amplificador porta-comum é $r_{oe} = 2r_{ds3}$. A carga de fonte do amplificador dreno-comum é R_{Seq2} que, no caso, vale:

$$R_{Seq2} = \frac{(r_{ds1} + r_{oe})r_{of}}{r_{ds1} + r_{oe} + (1 + g_{m1}r_{ds1})r_{of}}$$

O ganho do amplificador diferencial, relacionado à entrada g_{in2} , vale, portanto:

$$A_{\nu12} = \frac{\vartheta_{o1}}{\vartheta_{in2}} = A_{\vartheta dre} \times A_{\vartheta gat}$$
(27)

Para o circuito da Figura *11b* também são usadas as Equações 26 e 27, mas com $r_{oe} = r_{od} = R_D$. Em um amplificador diferencial ideal espera-se que $|A_{911}| = A_{912}$. Calculando-se pelas Equações 26 e 27, porém, esses ganhos não são perfeitamente iguais, porque são afetados pelo valor da resistência interna da fonte de corrente de lastro (r_{of}).

- Resistências de entrada:

As resistências de entrada são iguais a R_G em todos os casos.

Figura 12 - Amplificador Diferencial Unipolar Simétrico. *a.*) Com Cargas Passivas. *b.*) Com Cargas Passivas e com Fonte de Corrente de Lastro. *c.*) Com Cargas Ativas Tipo Espelho de Corrente.

- Razão de rejeição a modo comum:

Graças à ação do espelho de corrente, embora seja fácil calcular o ganho $A_{\vartheta d}$, fica mais difícil calcular o ganho $A_{\vartheta c}$ no circuito da Figura 9c. Por isso, a taxa de rejeição a modo comum de um amplificador diferencial com carga ativa tipo espelho de corrente só pode ser obtida com precisão através de simulação. Sabe-se, no entanto, que ela é superior a do amplificador com cargas passivas e que, sendo r_{oe} a resistência interna do espelho e r_{od} a resistência interna do diodo *MOS*, a Equação 28 calcula essa grandeza com razoável precisão. Se for usado um espelho *cascode* [1], a *CMRR* e precisão desse cálculo aumentam.

$$CMRR_{(dB)} \cong 20log \left[\frac{r_{ds1}r_{oe}(1+2g_{m1}r_{of})}{2r_{od}(r_{ds1}+r_{ds3})} \right]$$
 (28)

3.4 Amplificadores Diferenciais com *JFET*

A Figura 12 apresenta topologias genéricas de amplificadores diferenciais unipolares, construído com *JFET* 's, carregados com cargas ativas e passivas e alimentados com fonte dupla, cujo equacionamento estático [4] vem a seguir. Os amplificadores da Figura 12 serão simétricos se, em repouso, as seguintes condições forem satisfeitas:

-
$$\beta_3 = \beta_4 = \beta$$
; $V_{BE3} = V_{BE4} = V_{BE}$; $I_{S3} = I_{S4} = I_S$; $N_{F3} = N_{F4} = N_F e V_{AF3} = V_{AF4} = V_{AF4}$.

-
$$\beta_{i1} = \beta_{i2} = \beta_n$$
; $V_{To1} = V_{To2} = V_{To}$ e $\lambda_1 = \lambda_2 = \lambda$.

-
$$R_{D1} = R_{D2} = R_D e R_{G1} = R_{G2} = R_G$$
.

Em amplificadores com cargas ativas, como o da Figura *12c*, sempre o espelho de corrente e geralmente a fonte de corrente de lastro são construídos com *BJT*'s em uma tecnologia chamada *BiFET*. Eventualmente, a fonte de corrente de lastro também pode ser construída com *JFET*.

3.4.1 Cálculo das Grandezas Quiescentes

Com $V_{SS} = -V_{DD}$, analisando-se o circuito da Figura 9*a* pode-se escrever que:

$$V_{GS} = -V_S$$
; $I_D \cong \frac{I_{SS}}{2}$; $V_S = I_{SS}R_{SS} + V_{SS}$; $V_{DS} = V_{DD} - R_D I_D - V_S$

e

$$-I_{SS} + 2\beta_n (-V_S - V_{To})^2 (1 + \lambda V_{DS}) = 0$$
⁽²⁹⁾

Esse sistema de cinco equações e cinco incógnitas é resolvido executando-se o *solve* equation em I_{SS} na Equação 29 e, posteriormente, calculando-se I_D , V_S , V_{DSI} e V_{GSI} através das outras quatro equações. Os parâmetros incrementais dos *JFET*'s, no ponto quiescente, valem:

$$g_m = \frac{2I_D}{V_{GS} - V_{To}}$$
; $r_{ds} = \frac{1 + \lambda V_{DS}}{\lambda I_D}$

3.4.2 Cálculo do Ganho de Tensão e da CMRR

Os cálculos do ganho de tensão, da resistência de entrada e da taxa de rejeição a modo comum, para o circuito da Figura 12a, continuam sendo feitos pelas Equações 22, 23 e 24, respectivamente. Para o circuito da Figura 12b, o ganho de tensão e a resistência de entrada também são calculados pelas Equações 22 e 23, respectivamente. A taxa de rejeição a modo comum, no entanto, deve ser calculada pela Equação 25.

3.4.3 Amplificadores Diferenciais com Cargas Ativas

O amplificador diferencial da Figura *12c*, além de fonte de corrente de lastro, possui cargas ativas tipo espelho de corrente bipolar. Se o diferencial estiver bem balanceado, isto é, se $I_{D1} \approx I_{D2} \approx 0.5I_{SS}$, então os ganhos de tensão $A_{\vartheta 11}$ e $A_{\vartheta 12}$ continuam sendo calculados pelas Equações 26 e 27 e com as equações a elas agregadas, como são mostradas na Secção 3.3.2. As únicas alterações em relação à Secção 3.3.2 são:

$$r_{od} = \frac{1}{g_{m4}} \qquad \text{e} \qquad r_{oe} = 2r_{o3}$$

O cálculo da taxa de rejeição a modo comum, graças ao espelho de corrente bipolar com a arquitetura da Figura 12c, no entanto, fica muito difícil de ser feito com precisão e deve ser obtido por simulação. Se o diferencial estiver bem balanceado, isto é, se $I_{D1} \approx I_{D2} \approx 0.5I_{SS}$, o que dificilmente acontece na prática, essa taxa pode ser avaliada, com um erro de ±3 dB, pela Equação 30:

$$CMRR = 20log \left[\frac{r_{ds1}r_{o3}(1+2g_{m1}r_{of})}{2r_{od}(r_{ds1}+r_{oe})} \right]$$
(30)

Espelhos mais elaborados, como, por exemplo, o espelho de Wilson [7] ou o espelho com resistores de degeneração de emissores e com o terceiro transistor de cancelamento de correntes de base, podem ser usados para melhorar esse desempenho. A Figura 13 exemplifica este último caso. O transistor Q_5 , normalmente com β mais elevado, absorve as correntes de base de Q_3 e de Q_4 e injeta no ramo do coletor de Q_4 uma corrente minúscula igual a $2I_B / \beta_5$. Assim o espelho fica virtualmente equilibrado e a equação do cálculo de *CMRR* torna-se:

$$CMRR = 20log \left[\frac{r_{ds1}r_{oe}(1+2g_{m1}r_{of})}{2r_{od}(r_{ds1}+r_{oe})} \right]$$
(31)

Figura 13 – Amplificador Diferencial *BiFET* com Espelho de Corrente Mais Elaborado.

4. Bibliografia

[1] P. R. Gray, R. G. Meyer. *Analysis and Design of Analog Integrated Circuits*, 4^a Edição, Wiley & Sons, New York, 2001.

[2] P. R. Veronese. BJT-Resumo da Teoria, SEL313 – Notas de Aula, EESC-USP, 2012.

[3] P. R. Veronese. *MOSFET-Resumo da Teoria*, SEL314 – Notas de Aula, EESC-USP, 2013.

[4] P. R. Veronese. JFET-Resumo da Teoria, SEL314 – Notas de Aula, EESC-USP, 2013.

[5] R. J. Widlar. "Some Circuit Design Techniques for Linear Integrated Circuits", IEEE *Transactions on Circuit Theory*, Vol **CT-12**, pp. 596-590, 1965.

[6] A. S. Sedra, K. C. Smith. *Microeletrônica*, 4^a Edição, Makron Books do Brasil Ed. Ltda., S. Paulo, 2000, Cap. 6.

[7] G. R. Wilson, "A Monolithic Junction FET-NPN Operational Amplifier", IEEE J. Solid-State Circuits, Vol. SC-3, pp. 380-387, Dec. 1968.