Laboratório 3b - Oscilador Colpitts

Prof. Luis Henrique F. C. de Mello

1 Equipamento e componentes

- Fonte de tensão DC
- Protoboard
- Multímetro digital
- Osciloscópio
- Gerador de sinais
- Ponte RLC
- Resistores 1/4 W:
 - > 1 kΩ
 - ≥ 2.2 kΩ
 - $\triangleright 2.7 \,\mathrm{k}\Omega$
 - > 10 kΩ
 - > 100 kΩ
- Capacitores de poliester:
 - > 10 nF
 - $\triangleright 22 \,\mathrm{nF} \times 2$

- \triangleright 33 nF \times 2
- \triangleright 56 nF \times 2
- Capacitores cerâmicos:
 - ⊳ 10 pF
 - ▷ 22 pF
 - \triangleright 500 pF \times 2
- Indutores radiais c/ núcleo de ferrite¹:
 - ⊳ 100 μH
 - > 1 mH
- Diodo semicondutor:
 - ▷ 1N4148
- Transistor bipolar de junção NPN:
 - ⊳ BC548B ou similar
- Transistor de efeito de campo JFET canal-n:
 - ⊳ 2N5484 ou similar

2 Roteiro experimental

2.1 Filtro "tanque" LC

- 1. Implemente na protoboard o circuito da Figura 1.
 - (a) Meça na ponte RLC a capacitância de C_1 e C_2 , a indutância e resistência parasita de L_1 .
 - (b) Ajuste no gerador de sinais² um sinal senoidal próximo à frequência de ressonância f_o teórica e conecte a saída do gerador de sinais em v_i . Observando v_i e v_o no osciloscópio, localize e meça a frequência de ressonância f_o e o desvio de fase ϕ nesta frequência.

¹a.k.a. "bolinha"

 $^{^2}$ utilize o nível máximo de tensão de saída no gerador de sinais em virtude da alta atenuação do circuito.

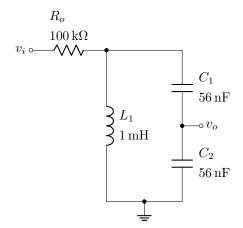


Figura 1: Filtro "tanque" LC

2.2 Oscilador Colpitts

2.2.1 Oscilador Colpitts - BJT

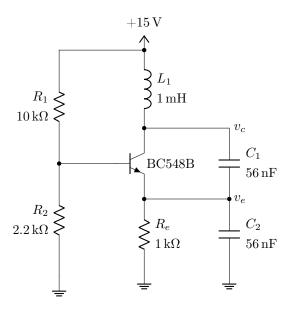


Figura 2: Oscilador Colpitts - BJT

- 1. Implemente na protoboard o circuito da Figura 2.
 - (a) Capture a tensão no coletor v_c (saída da oscilação) e no emissor v_e (entrada não-inversora da realimentação positiva) e meça a frequência de oscilação f_o , o valor pico-a-pico V_{pp} de v_c e v_e , o ganho A_v e o desvio de fase ϕ entre os sinais.
 - (b) Compare os valores de f_o e A_v obtidos³ com os teóricos, $f_o = 1/2\pi \times \sqrt{(C_1 + C_2)/L_1C_1C_2}$ e $A_v = C_1/(C_1 + C_2)$, respectivamente.
- 2. Avalie a distorção do sinal em v_e e v_c utilizando a função FFT do osciloscópio.
- 3. Faça $C_1 = C_2 = 33 \,\mathrm{nF}$ e repita os items 1) e 2).
- 4. Faça $C_1 = C_2 = 22 \,\mathrm{nF}$ e repita os items 1) e 2).

2.2.2 Oscilador Colpitts - JFET

1. Implemente na protoboard o circuito da Figura 3.

 $^{^3}$ use os valores medidos de C_1 , C_2 e L_1 .

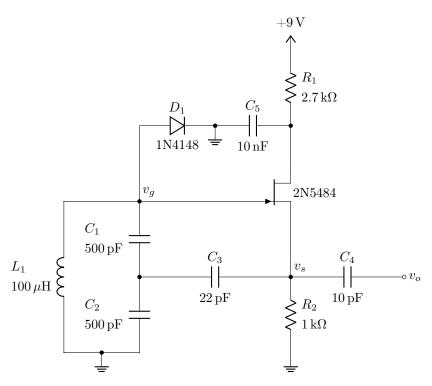


Figura 3: Oscilador Colpitts - JFET

- (a) Capture a tensão na fonte v_s (saída da oscilação) e na porta v_g (entrada não-inversora da realimentação positiva) e meça a frequência de oscilação f_o , o valor pico-a-pico V_{pp} de v_s e v_g , o ganho A_v e o desvio de fase ϕ entre os sinais.
- (b) Compare os valores de f_o e A_v obtidos com os teóricos, $f_o = 1/2\pi \times \sqrt{(C_1 + C_2)/L_1C_1C_2}$ e $A_v = C_1/(C_1 + C_2)$, respectivamente.
- 2. Compare a performance do oscilador Colpitts não-inversor implementado com um BJT base comum com a do oscilador Colpitts não-inversor implementado com um JFET dreno comum e comente eventuais semelhanças e diferenças.

3 Questionário

- 1. Prove que o(s) circuito(s) cumpre(m) os criterios de Barkhausen para oscilação harmônica.
- 2. Compare e comente os resultados (em especial os parâmetros de performance frequência de oscilação f_o e amplitude pico-a-pico V_{pp}) dos circuitos simulados e implementados na protoboard. Discorra sobre as semelhanças e diferenças observadas.