MAP 2320 – MÉTODOS NUMÉRICOS EM EQUAÇÕES DIFERENCIAIS II

2º Semestre - 2020

Prof. Dr. Luis Carlos de Castro Santos

Isantos@ime.usp.br

$$\frac{\partial^2 u}{\partial t^2} = c^2 \nabla^2 u$$

Numerical Analysis

NINTH EDITION

Richard L. Burden

Youngstown State University

J. Douglas Faires

Youngstown State University

Numerical Solutions to Partial Differential Equations 713

- 12.1 Elliptic Partial Differential Equations 716
- 12.2 Parabolic Partial Differential Equations 725
- 12.3 Hyperbolic Partial Differential Equations 739
- 12.4 An Introduction to the Finite-Element Method 746
- 12.5 Survey of Methods and Software 760

12.3 Hyperbolic Partial Differential Equations

In this section, we consider the numerical solution to the **wave equation**, an example of a *hyperbolic* partial differential equation. The wave equation is given by the differential equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < l, \quad t > 0, \tag{12.16}$$

subject to the conditions

conditions
$$u(0,t) = u(l,t) = 0, \quad \text{for} \quad t > 0,$$
 extremidades fixas
$$u(x,0) = f(x), \quad \text{and} \quad \frac{\partial u}{\partial t}(x,0) = g(x), \quad \text{for} \quad 0 \le x \le l,$$

where α is a constant dependent on the physical conditions of the problem.

Select an integer m > 0 to define the x-axis grid points using h = l/m. In addition, select a time-step size k > 0. The mesh points (x_i, t_j) are defined by

$$x_i = ih$$
 and $t_j = jk$,

for each i = 0, 1, ..., m and j = 0, 1, ...

At any interior mesh point (x_i, t_j) , the wave equation becomes

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, t_j) = 0.$$
 (12.17)

$$D^{2}u(\bar{x}) = \frac{1}{h^{2}}[u(\bar{x}-h)-2u(\bar{x})+u(\bar{x}+h)]$$

The difference method is obtained using the centered-difference quotient for the second partial derivatives given by

$$\frac{\partial^2 u}{\partial t^2}(x_i, t_j) = \frac{u(x_i, t_{j+1}) - 2u(x_i, t_j) + u(x_i, t_{j-1})}{k^2} - \frac{k^2}{12} \frac{\partial^4 u}{\partial t^4}(x_i, \mu_j),$$

where $\mu_{j} \in (t_{j-1}, t_{j+1})$, and

$$\frac{\partial^2 u}{\partial x^2}(x_i,t_j) = \frac{u(x_{i+1},t_j) - 2u(x_i,t_j) + u(x_{i-1},t_j)}{h^2} - \frac{h^2}{12} \frac{\partial^4 u}{\partial x^4}(\xi_i,t_j),$$

where $\xi_i \in (x_{i-1}, x_{i+1})$. Substituting these into Eq. (12.17) gives

$$\frac{u(x_{i}, t_{j+1}) - 2u(x_{i}, t_{j}) + u(x_{i}, t_{j-1})}{k^{2}} - \alpha^{2} \frac{u(x_{i+1}, t_{j}) - 2u(x_{i}, t_{j}) + u(x_{i-1}, t_{j})}{h^{2}}$$

$$= \frac{1}{12} \left[k^{2} \frac{\partial^{4} u}{\partial t^{4}}(x_{i}, \mu_{j}) - \alpha^{2} h^{2} \frac{\partial^{4} u}{\partial x^{4}}(\xi_{i}, t_{j}) \right].$$

Neglecting the error term

$$\tau_{i,j} = \frac{1}{12} \left[k^2 \frac{\partial^4 u}{\partial t^4} (x_i, \mu_j) - \alpha^2 h^2 \frac{\partial^4 u}{\partial x^4} (\xi_i, t_j) \right], \tag{12.18}$$

leads to the difference equation

$$\frac{w_{i,j+1} - 2w_{i,j} + w_{i,j-1}}{k^2} - \alpha^2 \frac{w_{i+1,j} - 2w_{i,j} + w_{i-1,j}}{h^2} = 0.$$

Define $\lambda = \alpha k/h$. Then we can write the difference equation as

$$w_{i,j+1} - 2w_{i,j} + w_{i,j-1} - \lambda^2 w_{i+1,j} + 2\lambda^2 w_{i,j} - \lambda^2 w_{i-1,j} = 0$$

and solve for $w_{i,j+1}$, the most advanced time-step approximation, to obtain

$$w_{i,j+1} = 2(1 - \lambda^2)w_{i,j} + \lambda^2(w_{i+1,j} + w_{i-1,j}) - w_{i,j-1}.$$
 (12.19)

This equation holds for each i = 1, 2, ..., m-1 and j = 1, 2, ... The boundary conditions give

$$w_{0,j} = w_{m,j} = 0$$
, for each $j = 1, 2, 3, ...$, (12.20)

and the initial condition implies that

$$w_{i,0} = f(x_i), \text{ for each } i = 1, 2, \dots, m-1.$$
 (12.21)

Writing this set of equations in matrix form gives

$$\begin{bmatrix} w_{1,j+1} \\ w_{2,j+1} \\ \vdots \\ w_{m-1,j+1} \end{bmatrix} = \begin{bmatrix} 2(1-\lambda^2) & \lambda^2 & 0 & \cdots & 0 \\ \lambda^2 & 2(1-\lambda^2) & \lambda^2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots & \ddots & \ddots \\ \vdots & \ddots & \ddots & \ddots &$$

Equations (12.18) and (12.19) imply that the (j + 1)st time step requires values from the jth and (j - 1)st time steps. (See Figure 12.12.) This produces a minor starting problem because values for j = 0 are given by Eq. (12.20), but values for j = 1, which are needed in Eq. (12.18) to compute $w_{i,2}$, must be obtained from the initial-velocity condition

$$\frac{\partial u}{\partial t}(x,0) = g(x), \quad 0 \le x \le l.$$

Figure 12.12

One approach is to replace $\partial u/\partial t$ by a forward-difference approximation,

$$\frac{\partial u}{\partial t}(x_i, 0) = \frac{u(x_i, t_1) - u(x_i, 0)}{k} - \frac{k}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i), \tag{12.23}$$

for some $\tilde{\mu}_i$ in $(0, t_1)$. Solving for $u(x_i, t_1)$ in the equation gives

$$u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i)$$
$$= u(x_i, 0) + kg(x_i) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, \tilde{\mu}_i).$$

Deleting the truncation term gives the approximation,

$$w_{i,1} = w_{i,0} + kg(x_i), \text{ for each } i = 1, ..., m-1.$$
 (12.24)

However, this approximation has truncation error of only O(k) whereas the truncation error in Eq. (12.19) is $O(k^2)$.

To obtain a better approximation to $u(x_i, 0)$, expand $u(x_i, t_1)$ in a second Maclaurin polynomial in t. Then

$$u(x_i, t_1) = u(x_i, 0) + k \frac{\partial u}{\partial t}(x_i, 0) + \frac{k^2}{2} \frac{\partial^2 u}{\partial t^2}(x_i, 0) + \frac{k^3}{6} \frac{\partial^3 u}{\partial t^3}(x_i, \hat{\mu}_i),$$

for some $\hat{\mu}_i$ in $(0, t_1)$. If f'' exists, then

$$\frac{\partial^2 u}{\partial t^2}(x_i, 0) = \alpha^2 \frac{\partial^2 u}{\partial x^2}(x_i, 0) = \alpha^2 \frac{d^2 f}{dx^2}(x_i) = \alpha^2 f''(x_i)$$

and

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i) + \frac{k^3}{6} \frac{\partial^3 u}{\partial t^3} (x_i, \hat{\mu}_i).$$

This produces an approximation with error $O(k^3)$:

$$w_{i1} = w_{i0} + kg(x_i) + \frac{\alpha^2 k^2}{2} f''(x_i).$$

If $f \in C^4[0, 1]$ but $f''(x_i)$ is not readily available, we can use the difference equation in Eq. (4.9) to write

$$f''(x_i) = \frac{f(x_{i+1}) - 2f(x_i) + f(x_{i-1})}{h^2} - \frac{h^2}{12}f^{(4)}(\tilde{\xi}_i),$$

for some $\tilde{\xi}_i$ in (x_{i-1}, x_{i+1}) . This implies that

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{k^2\alpha^2}{2h^2} [f(x_{i+1}) - 2f(x_i) + f(x_{i-1})] + O(k^3 + h^2k^2).$$

Because $\lambda = k\alpha/h$, we can write this as

$$u(x_i, t_1) = u(x_i, 0) + kg(x_i) + \frac{\lambda^2}{2} [f(x_{i+1}) - 2f(x_i) + f(x_{i-1})] + O(k^3 + h^2 k^2)$$

= $(1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} f(x_{i+1}) + \frac{\lambda^2}{2} f(x_{i-1}) + kg(x_i) + O(k^3 + h^2 k^2).$

Thus, the difference equation,

$$w_{i,1} = (1 - \lambda^2) f(x_i) + \frac{\lambda^2}{2} f(x_{i+1}) + \frac{\lambda^2}{2} f(x_{i-1}) + kg(x_i),$$
 (12.25)

can be used to find $w_{i,1}$, for each $i=1,2,\ldots,m-1$. To determine subsequent approximates we use the system in (12.22).

Algorithm 12.4 uses Eq. (12.25) to approximate $w_{i,1}$, although Eq. (12.24) could also be used. It is assumed that there is an upper bound for the value of t to be used in the stopping technique, and that k = T/N, where N is also given.

Wave Equation Finite-Difference

To approximate the solution to the wave equation

$$\frac{\partial^2 u}{\partial t^2}(x,t) - \alpha^2 \frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < l, \quad 0 < t < T,$$

subject to the boundary conditions

$$u(0,t) = u(l,t) = 0, \quad 0 < t < T,$$

and the initial conditions

$$u(x,0) = f(x)$$
, and $\frac{\partial u}{\partial t}(x,0) = g(x)$, for $0 \le x \le l$,

```
ALGORITHM
12.4
```

INPUT endpoint l; maximum time T; constant α ; integers $m \ge 2$, $N \ge 2$.

OUTPUT approximations $w_{i,j}$ to $u(x_i, t_j)$ for each i = 0, ..., m and j = 0, ..., N.

```
Step 1 Set h = l/m;
               k = T/N:
               \lambda = k\alpha/h.
Step 2 For j = 1, ..., N set w_{0,j} = 0;
                                  w_{m,i} = 0;
Step 3 Set w_{0,0} = f(0);
               w_{m,0} = f(l).
Step 4 For i = 1, ..., m-1 (Initialize for t = 0 and t = k.)
               set w_{i,0} = f(ih);
                   w_{i,1} = (1 - \lambda^2) f(ih) + \frac{\lambda^2}{2} [f((i+1)h) + f((i-1)h)] + kg(ih).
Step 5 For j = 1, ..., N-1 (Perform matrix multiplication.)
               for i = 1, ..., m-1
                   set w_{i,i+1} = 2(1-\lambda^2)w_{i,i} + \lambda^2(w_{i+1,i} + w_{i-1,i}) - w_{i,i-1}.
Step 6 For j = 0, \dots, N
               set t = jk;
               for i = 0, \ldots, m
                   set x = ih;
                   OUTPUT (x, t, w_{i,i}).
```

Step 7 STOP. (The procedure is complete.)

Example 1

Approximate the solution to the hyperbolic problem

$$\frac{\partial^2 u}{\partial t^2}(x,t) - 4\frac{\partial^2 u}{\partial x^2}(x,t) = 0, \quad 0 < x < 1, \quad 0 < t,$$

with boundary conditions

$$u(0,t) = u(1,t) = 0$$
, for $0 < t$,

and initial conditions

$$u(x,0) = \sin(\pi x), \quad 0 \le x \le 1, \quad \text{and} \quad \frac{\partial u}{\partial t}(x,0) = 0, \quad 0 \le x \le 1,$$

using h = 0.1 and k = 0.05. Compare the results with the exact solution

$$u(x,t) = \sin \pi x \cos 2\pi t$$
.

Example 1

Solution Choosing h = 0.1 and k = 0.05 gives $\lambda = 1$, m = 10, and N = 20. We will choose a maximum time T = 1 and apply the Finite-Difference Algorithm 12.4. This produces the approximations $w_{i,N}$ to u(0.1i, 1) for i = 0, 1, ..., 10. These results are shown in Table 12.6 and are correct to the places given.

Console						Table 12.6		
							x_i	$w_{i,20}$
>u(:,21)							0.0	0.0000000000
ans =							0.1	0.3090169944
							0.2	0.5877852523
0.							0.3	0.8090169944
0.3090170							0.4	0.9510565163
0.5877853							0.5	1.0000000000
0.8090170							0.6	0.9510565163
0.9510565							0.7	0.8090169944
1.	•						0.8	0.5877852523
0.9510565 0.8090170							0.9	0.3090169944
0.5877853							1.0	0.0000000000
0.3090170 0.		Min	ha in	nplen	nentaç	ão en	Scilat)

The results of the example were very accurate, more so than the truncation error $O(k^2 + h^2)$ would lead us to believe. This is because the true solution to the equation is infinitely differentiable. When this is the case, Taylor series gives

$$\frac{u(x_{i+1}, t_j) - 2u(x_i, t_j) + u(x_{i-1}, t_j)}{h^2}$$

$$= \frac{\partial^2 u}{\partial x^2}(x_i, t_j) + 2\left[\frac{h^2}{4!} \frac{\partial^4 u}{\partial x^4}(x_i, t_j) + \frac{h^4}{6!} \frac{\partial^6 u}{\partial x^6}(x_i, t_j) + \cdots\right]$$

and

$$\frac{u(x_{i}, t_{j+1}) - 2u(x_{i}, t_{j}) + u(x_{i}, t_{j-1})}{k^{2}}$$

$$= \frac{\partial^{2} u}{\partial t^{2}}(x_{i}, t_{j}) + 2\left[\frac{k^{2}}{4!}\frac{\partial^{4} u}{\partial t^{4}}(x_{i}, t_{j}) + \frac{h^{4}}{6!}\frac{\partial^{6} u}{\partial t^{6}}(x_{i}, t_{j}) + \cdots\right].$$

Since u(x, t) satisfies the partial differential equation,

$$\frac{u(x_{i}, t_{j+1}) - 2u(x_{i}, t_{j}) + u(x_{i}, t_{j-1})}{k^{2}} - \alpha^{2} \frac{u(x_{i+1}, t_{j}) - 2u(x_{i}, t_{j}) + u(x_{i-1}, t_{j})}{h^{2}}$$

$$= 2 \left[\frac{1}{4!} \left(k^{2} \frac{\partial^{4} u}{\partial t^{4}}(x_{i}, t_{j}) - \alpha^{2} h^{2} \frac{\partial^{4} u}{\partial x^{4}}(x_{i}, t_{j}) \right) + \frac{1}{6!} \left(k^{4} \frac{\partial^{6} u}{\partial t^{6}}(x_{i}, t_{j}) - \alpha^{2} h^{4} \frac{\partial^{6} u}{\partial x^{6}}(x_{i}, t_{j}) \right) + \cdots \right]. \tag{12.26}$$

However, differentiating the wave equation gives

$$k^{2} \frac{\partial^{4} u}{\partial t^{4}}(x_{i}, t_{j}) = k^{2} \frac{\partial^{2}}{\partial t^{2}} \left[\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x_{i}, t_{j}) \right] = \alpha^{2} k^{2} \frac{\partial^{2}}{\partial x^{2}} \left[\frac{\partial^{2} u}{\partial t^{2}}(x_{i}, t_{j}) \right]$$
$$= \alpha^{2} k^{2} \frac{\partial^{2}}{\partial x^{2}} \left[\alpha^{2} \frac{\partial^{2} u}{\partial x^{2}}(x_{i}, t_{j}) \right] = \alpha^{4} k^{2} \frac{\partial^{4} u}{\partial x^{4}}(x_{i}, t_{j}),$$

and we see that since $\lambda^2 = (\alpha^2 k^2/h^2) = 1$, we have

$$\frac{1}{4!}\left[k^2\frac{\partial^4 u}{\partial t^4}(x_i,t_j) - \alpha^2 h^2\frac{\partial^4 u}{\partial x^4}(x_i,t_j)\right] = \frac{\alpha^2}{4!}[\alpha^2 k^2 - h^2]\frac{\partial^4 u}{\partial x^4}(x_i,t_j) = 0.$$

Continuing in this manner, all the terms on the right-hand side of (12.26) are 0, implying that the local truncation error is 0. The only errors in Example 1 are those due to the approximation of $w_{i,1}$ and to round-off.

As in the case of the Forward-Difference method for the heat equation, the Explicit Finite-Difference method for the wave equation has stability problems. In fact, it is necessary that $\lambda = \alpha k/h \le 1$ for the method to be stable. (See [IK], p. 489.) The explicit method given in Algorithm 12.4, with $\lambda \le 1$, is $O(h^2 + k^2)$ convergent if f and g are sufficiently differentiable. For verification of this, see [IK], p. 491.

Although we will not discuss them, there are implicit methods that are unconditionally stable. A discussion of these methods can be found in [Am], p. 199, [Mi], or [Sm,G].

MAP 2320 – MÉTODOS NUMÉRICOS EM EQUAÇÕES DIFERENCIAIS II

2º Semestre - 2020

Roteiro do curso

- Introdução
- Séries de Fourier
- Método de Diferenças Finitas
- Equação do calor transiente (parabólica)
- Equação de Poisson (elíptica)
- Equação da onda (hiperbólica)