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Hyperbolic Partial Differential Equations

In this section, we consider the numerical solution to the wave equation, an example of
a hyperbolic partial differential equation. The wave equation is given by the differential
equation

a2 ) a2

%{x,r}—aa—;{x,r}:ﬂ, O<x<l 1=0. (12.16)

subject to the conditions _ _
Y extremidades fixas

w(0,t) =u(l.t) =0, for =0,
u(x,0) = fix), and %(I,ﬂ} =g(x), for D=x=I,

where « 1s a constant dependent on the physical conditions of the problem.
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Select an integer m = 0 to define the x-axis grid points using i = [/m. In addition,

select a time-step size k = 0. The mesh points (x;, f;) are defined by
X; = th and fj' :jk,

foreachi =0,1,....mandj =0,1,....
At any interior mesh point (x;. f;), the wave equation becomes

3*u ,0%u
F(Ij’ lj) —a E(Iﬁ 1) = 0.

h = AX, k = At

(12.17)



D'u(@) = oglu(e—h)—2u(@) +uz+h)]  MAP2320

The difference method is obtained using the centergd-difference quotient for the second
partial derivatives given by

BIH H[I@-_.fj-kl] — EHI:I!'._,I}} + uix;, IJ.'_|] k* a*u

where p; € (I‘,-_J, fi+1). and
a%u U(Xip1 1) — 2u(x, 1) +u(xi_. ;) h* 9%u
a2 i ) = h2 12 a,ﬁ{‘-t**'*"ih

where & € (x;_1.X;.1). Substituting these into Eq. (12.17) gives

wxi i) — 2u(x;, ) +ulx;. 1) 2 U(Xip1. 1) — 2u(x;. 1) + u(xi_1. 1)
k2 h?

I [,,8% ﬁEl4u
[ (—In |u_j LE(E“I_{}}

12|t et
Neglecting the error term

L atu *u
E[ﬁc ) — @ (s,,ﬂ] (12.18)

'I,:J'I
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leads to the difference equation

w1 — 2w + w;j_ G2 Wity 2wij + wi_y

K2 2 =0
Define & = ak/h. Then we can write the difference equation as
)2 ~y2 2
Wiyl — ?.LL';J' + Wij—] — A Wiy + 2A Wi — A Wi—1j = 0

and solve for w;j+1. the most advanced time-step approximation, to obtain

This equation holds foreachi = 1.2,....m—landj = 1,2, .... The boundary conditions
give

wo; = w,,; =0, foreachj=123,..., (12.20)
and the initial condition implies that

wig = f(x;), foreachi=1.2.....m—1. (12.21)
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Writing this set of equations in matrix form gives

2(1 — A%) 2.2 0:: .......... 0 ]
[ wij A 2(1=2Y a2 [ wy ][ wijor
W2t | D - ‘ [l wyj | ] w2
| Wmn—1,j+1_| : el ‘u‘;lz | Win—1, | | Wp—1—1 ]
0 S 07 21 i) |
(12.22)

Equations (12.18) and (12.19) imply that the (j + 1)st time step requires values from the
jth and (j — 1)st time steps. (See Figure 12.12.) This produces a minor starting problem
because values for j = 0 are given by Eq. (12.20), but values for j = 1, which are needed
in Eq. (12.18) to compute w; 5, must be obtained from the initial-velocity condition

aa—l:[_r, 0)=¢gx), 0=x=1L
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Figure 12.12
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One approach is to replace du/dt by a forward-difference approximation,

du 0) — u(xi b)) —u(x;,0)  k a’u
ar 0 = k 2 ar?

for some ; in (0, f;). Solving for u(x;, f;) in the equation gives

{-ri:- ﬂf}a “223}

2 32

du
l’t 'I'.'f - H I‘.lﬂ +i‘|:_ _I'J.‘ﬂ + _— _I" _'
(X;. 1) ( ) ﬂf{ ) Eatl[rn"—h}

2 BZH
= u(x;, 0) + kg(x;) + Eﬁ[xhﬂé}-

Deleting the truncation term gives the approximation,
w1 = wip+ kg(x;), foreachi=1,...,m— 1. (12.24)

However, this approximation has truncation error of only O(k) whereas the truncation error
in Eq. (12.19) is O(k?).
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To obtain a better approximation to u(x;,0), expand u(x;, f;) in a second Maclaurin polyno-
mial in f. Then

k2 atu kY atu

,O) + —

H{.If'.-rl.::l —H{I‘ D} +A, {Ih 2 ﬂ 7 5 ﬂ' 3

— (X i),

for some fi; in (0, #). If /7 exists, then

32 Idlf 2
T .0) = 20) =@’ —Z(x) =’ (x)
and
n:j . k* & u
u(x;, ty) = uix;, T — (x5, ji;).

This produces an approximation with error {}'[k:"}:
212

o
wip = win + kglx;) 5 xi).
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If f e C*0,1] but f”(x;) is not readily available, we can use the difference equation in
Eqg. (4.9) to write

f{-ri+|:|' — Ef{-r:} -+ f{-ri—l} . h_z
h? 12

frx) = FAE,

for some & in (x;_;,X;,,). This implies that
kzﬂ,z
2h

Because & = ko /h, we can write this as

[f(xisr) — 2F () + f i)l + O + k7).

u(xi 1) = u(x;, 0) + kg(xi) +

x 2
w(xi, ) = u(x;, 0) + kgix;) + %If(.tem —2f(x) + f(xio)]+ O + h*k*)
= (1 — A7) flxi) + ?f{.r:,-+|}+ Ef[xr'—l} + ke(x;) + O(k™ + k™).



MAP2320

Thus, the difference equation,

2 . . AT
wiyp = (1 =A%) f(x) + Ef (Xig1) + ?f(—x.i—l] + kg(x;), (12.25)
can be used to find w; |, foreachi = 1,2, ..., m— 1. To determine subsequent approximates

we use the system in (12.22).

Algorithm 12.4 uses Eq. (12.25) to approximate w; |, although Eq. (12.24) could also
be used. It is assumed that there is an upper bound for the value of t to be used in the
stopping technique, and that k = T /N, where N is also given.
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Wave Equation Finite-Difference

To approximate the solution to the wave equation

Bzu{ H— o d2u
1) — o
a1 ax?

(x,) =0, O=<x=<l, O0<t=<T,
subject to the boundary conditions
w0, ) =u(l,t)y =0, 0=t=T,

and the 1nitial conditions

w(x,0) = f(x), and %[J:,D] =g(x), for O0=x=|,



- INPUT endpoint /: maximum time T constant ¢; integers m = 2, N = 2.
OUTPUT approximations w;; to u(x;. f;) foreachi=0,....mandj=0,....N.

Step 1 Seth =1/m:

k=T/N,
A = kot /h.
Step2 Forj=1,..., N set wo; = 0:

Wy = 02

SFE.U 3 Set wyo = J(0);
Wmp = f{”‘
Stepd Fori=1,....m—1 (Initialize fort =0andt =k.)
set wip = f(ih);
L Mo . .
wi = (1 =A%) f(ih) + E”{“ + Dh) + f((i — 1)h)] + kg(ih).
Step5 Forj=1,....N —1 (Perform matrix multiplication.)

fori=1.....m—1
set wijr = 2(1 — ;'q.z}lﬂfj + -""-E(Wr'—l,j + wi_j) — wij_g.

Step6 Forj=0,....N

set I = jk:
fori=0,....m
setx = ih;

OUTPUT (x, 1, w;;).
Step 7 STOP. (The procedure is complete.)
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Example 1

Approximate the solution to the hyperbolic problem

a2u HET
—x, ) —4d—(x,t) =0, O=<x=<=1, 0<1I,
aﬁ[ ) a.::?( )

with boundary conditions
w(0,t) =u(l,6) =0, for 0 <1,
and initial conditions

u(x,0) =sin(mrx), 0=x=<1, and —H{_I.Djz. D=x=<=1,

using i = 0.1 and k = 0.05. Compare the results with the exact solution

W(x,f) = sinmxcos2ml.
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Example 1

Solution Choosing h = 0.1 and k = 0.05 gives & = 1, m = 10, and N = 20. We will
choose a maximum time T = 1 and apply the Finite-Difference Algorithm 12.4. This
produces the approximations w;y to w(0.1i, 1) fori = 0, 1,. ... 10. These results are shown

in Table 12.6 and are correct to the places given. |
Console Table 12.6
Xi Wi 20
—>u(:,21) 0.0 0.0000000000
ans = 0.1 0.3090169944
0.2 0.5877852523
0. 0.3 0.8090169944
0.3090170 0.4 0.9510565163
0.5877853 0.5 1.0000000000
0.8090170 0.6 0.9510565163
0.9510565

0.7 0.8090169944

! 0.8 0.5877852523

0.9510565

0.9 0.3090169944
0.8090170
0.5877853 1.0 0.0000000000
0.3090170
0.

Minha implementacao em Scilab
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The results of the example were very accurate, more so than the truncation error O(k* +
h?) would lead us to believe. This is because the true solution to the equation is infinitely
differentiable. When this is the case, Taylor series gives

WX, 07) — 2u(x;, 1) + wixi—y, £)

k2
9w h* @*u h* 3%u
a E{Ifaf‘r.}+2 4' EI 4{ is _,':]'+ 5' B_I‘&{I“FJ}_F

and

WX, fiy1) — 20(x, ) + wl(x;, 1)
&2

-
-

k2 a%u h* a%u

j{rr {’}—'_2[4134{1‘ j}—l— rﬁt;xf,{;}+...:|.

Since w(x, f) satisfies the partial differential equation,

uix, fie) — 20(x;, t7) + ulx;, 1) B uzu{.xm,fﬂ — 2u(x;. I;) + u(xi_1.1;)
k2 h?

1 34 5. 8%
_2 3f4 — X, Ij) — h {lhf_,l}

1 L 8° 2 8°
( ”(1,,:; ?;(xr-,rj;) +] (12.26)

6!
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However, differentiating the wave equation gives

atu HE N T 4t [d2u
3 ) = (@50 | = e [ )

44

3 LA
— (x5, 1j) =o'k (Ir-.. li),

o2 |: i?rn_r

a _.l
and we see that since A* = (a’k*/h*) = 1. we have

41

Continuing in this manner, all the terms on the right-hand side of (12.26) are 0, implying
that the local truncation error is 0. The only errors in Example 1 are those due to the

approximation of w;; and to round-off.
As in the case of the Forward-Difference method for the heat equation, the Explicit

Finite-Difference method for the wave equation has stability problems. In fact, it is necessary
that » = ak/h = 1 for the method to be stable. (See [IK]. p. 489.) The explicit method
given in Algorithm 12.4, with A < 1, is O(h* + k?) convergent if f and g are sufficiently
differentiable. For verification of this, see [IK], p. 491.

Although we will not discuss them, there are implicit methods that are unconditionally
stable. A discussion of these methods can be found in [Am], p. 199, [Mi], or [Sm.G].

1 [,,3% 2,20%H a5 2, 0%
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