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Neural Task Planning With AND–OR
Graph Representations

Tianshui Chen, Riquan Chen, Lin Nie, Xiaonan Luo, Xiaobai Liu, and Liang Lin

Abstract—This paper focuses on semantic task planning, that is,
predicting a sequence of actions toward accomplishing a specific
task under a certain scene, which is a new problem in computer
vision research. The primary challenges are how to model the task-
specific knowledge and how to integrate this knowledge into the
learning procedure. In this paper, we propose training a recurrent
long short-term memory (LSTM) network to address this problem,
that is, taking a scene image (including prelocated objects) and the
specified task as input and recurrently predicting action sequences.
However, training such a network generally requires large numbers
of annotated samples to cover the semantic space (e.g., diverse
action decomposition and ordering). To overcome this issue, we
introduce a knowledge AND–OR graph (AOG) for task description,
which hierarchically represents a task as atomic actions. With
this AOG representation, we can produce many valid samples
(i.e., action sequences according to common sense) by training
another auxiliary LSTM network with a small set of annotated
samples. Furthermore, these generated samples (i.e., task-oriented
action sequences) effectively facilitate training of the model for
semantic task planning. In our experiments, we create a new
dataset that contains diverse daily tasks and extensively evaluates
the effectiveness of our approach.

Index Terms—Scene understanding, task planning, action
prediction, recurrent neural network.

I. INTRODUCTION

AUTOMATICALLY predicting and executing a sequence
of actions given a specific task is an ability that is quite

expected for intelligent robots [1], [2]. For example, to complete
the task of “make tea” under the scene shown in Fig. 1, an agent
needs to plan and successively execute a number of steps, e.g.,
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Fig. 1. Two alternative action sequences, inferred according to the joint under-
standing of the scene image and task semantics, for completing the task “make
tea” under a given office scene. An agent can achieve this task by successively
executing either of the sequences.

“move to the tea box” and “grasp the tea box”. In this paper, we
aim to train a neural network model to enable this capability,
which has rarely been addressed in computer vision research.

We regard the aforementioned problem as semantic task
planning, i.e., predicting a sequence of atomic actions toward
accomplishing a specific task. Furthermore, we consider an
atomic action to be a primitive action operating on an object,
denoted by a two-tuple A = (action, object). Therefore, the
prediction of action sequences depends on not only the task
semantics (i.e., how the task is represented and planned) but
also the visual scene image parsing (e.g., recognizing object
categories, states and their spatial relations in the scene). Con-
sidering the task of a robot pouring a cup of water from a
pot, the predicted sequence varies according to the properties
of the objects in the scene such as the relative distances among
the agent, cup and pot and the state of the cup (empty or not). If
the robot is located far from the cup, it should first move close
to the cup and then grasp the cup. If the cup is full of water, the
robot will have to pour the water out before filling the cup with
water from the pot. Since recent advanced deep convolutional
neural networks (CNNs) [3]–[6] have achieved great successes
in object categorization [7]–[9] and localization [10]–[12], we
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assume that objects are correctly located and that the initial
states of the objects are known in the given scene in this work.
However, this problem remains challenging due to the diversity
of action decomposition and ordering, long-term dependencies
among atomic actions, and large variations in object states and
layouts in the scene.

In this work, we develop a recurrent long short-term mem-
ory (LSTM) [13] network to address the problem of semantic
task planning because LSTM networks have been demonstrated
to be effective in capturing long-range sequential dependen-
cies, especially for tasks such as machine translation [14] and
image/video captioning [15], [16]. These approaches generally
adopt an encoder-decoder architecture, in which an encoder first
encodes the input data (e.g., an image) into a semantic-aware
feature representation and a decoder then decodes this repre-
sentation into the target sequence (e.g., a sentence description).
In this work, we transform the input image into a vector that
contains the information about the object categories and loca-
tions and then feed this vector into the LSTM network (named
Action-LSTM) with the specified task. This network is capable
of generating the action sequence through the encoder-decoder
learning.

In general, large numbers of annotated samples are required
to train LSTM networks, especially for complex problems such
as semantic task planning. To overcome this issue, we present
a two-stage training method by employing a knowledge and-
or graph (AOG) representation [17]–[19]. First, we define the
AOG for task description, which hierarchically decomposes a
task into atomic actions according to their temporal dependen-
cies. In this semantic representation, an and-node represents
the chronological decomposition of a task (or sub-task), an or-
node represents the alternative ways to complete the certain task
(or sub-task), and leaf nodes represent the pre-defined atomic ac-
tions. The AOG can thus contain all possible action sequences
for each task by embodying the expressiveness of grammars.
Specifically, given a scene image, a specific action sequence
can be generated by selecting the sub-branches at all of the or-
nodes in a depth-first search (DFS) manner. Second, we train
an auxiliary LSTM network (named AOG-LSTM) to predict
the selection at the or-nodes in the AOG and thus produce a
large number of new valid samples (i.e., task-oriented action
sequences) that can be used for training the Action-LSTM net-
work. Notably, training the AOG-LSTM network requires only
a few manually annotated samples (i.e., scene images and the
corresponding action sequences) because making a selection
in the context of task-specific knowledge (represented by the
AOG) is seldom ambiguous.

Note that a preliminary version of this work has been pre-
sented at a conference [20]. In this paper, we inherit the idea
of integrating task-specific knowledge via a two-stage training
method, and we extend the initial version from several aspects
to strengthen our method. First, we extend the benchmark to
involve more tasks and include more diverse scenarios. More-
over, because the automatically augmented set includes some
difficult samples with uncertain and even incorrect labels, we
further incorporate curriculum learning [21], [22] to address this
issue by starting the training with only easy samples and then
gradually extending to more difficult samples. Finally, more

detailed comparisons and analyses are conducted to demon-
strate the effectiveness of our proposed model and to verify the
contribution of each component.

The main contributions of this paper are two-fold. First, we
present a new problem called semantic task planning and cre-
ate a benchmark (that includes 15 daily tasks and 1,284 scene
images). Second, we propose a general approach for incorporat-
ing complex semantics into the recurrent neural network (RNN)
learning, which can be generalized to various high-level intelli-
gent applications.

The remainder of this paper is organized as follows.
Section II provides a review of the most-related works.
Section III presents a brief overview of the proposed method. We
then introduce the AOG-LSTM and Action-LSTM modules in
detail in Sections IV and V, respectively, with thorough analyses
of the network architectures, training and inference processes of
these two modules. Extensive experimental results, comparisons
and analyses are presented in Section VI. Finally, Section VII
concludes this paper.

II. RELATED WORK

We review the related works following three main research
streams: task planning, action recognition and prediction, and
recurrent sequence prediction.

A. Task Planning

In the literature, task planning (also referred to as symbolic
planning [23]) has traditionally been formalized as deduction
[24], [25] or satisfiability [26], [27] problems for long periods.
Sacerdoti et al. [28] introduced hierarchical planning, which first
performed planning in an abstract manner and then generated
fine-level details. Yang et al. [29] utilized the standard Planning
Domain Definition Language (PDDL) representation for ac-
tions and developed an action-related modeling system to learn
an action model from a set of observed successful plans. Some
work also combined symbolic planning with motion planning
[30]. Cambon et al. [31] regarded symbolic planning as a con-
straint and proposed a heuristic function for motion planning.
Plaku et al. [32] extended the work and planned using geometric
and differential constraints. Wolfe et al. [33] proposed a hierar-
chical task and motion planning algorithm based on hierarchical
transition networks. Although those algorithms performed quite
well in controlled environments, they required encoding every
precondition for each operation or domain knowledge, and they
can hardly be generalized to unconstrained environments with
large variances [23]. Recently, Sung et al. [23], [34] represented
an environment with a set of attributes and proposed using a
Markov random field (MRF) [35] to learn the sequences of con-
trollers to complete the given tasks. Xiong et al. [18] developed a
stochastic graph-based framework, which incorporated spatial,
temporal and causal knowledge, for a robot to understand tasks,
and they successfully applied this framework to a cloth-folding
task.

Some other works also manually defined the controller se-
quences for completing certain tasks, including baking cook-
ies [36], making pancakes [37], and folding laundry [38]. In
these works, the controller sequences were selected from several
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predefined sequences or retrieved from a website. For example,
in the work [37], the robot retrieved instructions for making
pancakes from the Internet to generate the controller sequence.
Although they often achieve correct sequences in controlled
environments, these methods cannot scale up to a large num-
ber of tasks in unconstrained household environments because
each task requires defining complicated rules for the controller
sequence to adapt to various environments.

Most recently, a series of works [39], [40] developed learning-
based planners for semantic visual planning tasks. Gupta et al.
[40] proposed a cognitive mapper and planner for visual naviga-
tion, therein constructing a top-down belief map of the world and
applying a differentiable neural network planner to produce the
next action at each time step. Zhu et al. [39] formulated visual
semantic planning as a policy learning problem and proposed
an interaction-centric solution that offered crucial transferability
properties for semantic action sequence prediction. In addition
to visual semantic planning, the deep neural networks were
also adopted to address the tasks of robotic control planning
[41]–[43]. For example, Agrawal et al. [42] developed a joint
forward and inverse models for real-world robotic manipulation
tasks. The inverse model provided supervision to construct infor-
mative visual features, which the forward model then predicted
and in turn regularized the feature space for the inverse model.
Pascanu et al. [41] introduced an imagination-based planner that
could learn to construct, evaluate, and execute plans.

B. Action Recognition and Prediction

The problem studied in this paper is also related to action
recognition and prediction, where the former attempts to rec-
ognize action categories performed by persons from a fully
observed video/image [44]–[47] and the latter targets predicting
an action that humans are likely to perform in the future within
given scenarios [48]–[50]. Note that our work differs from the
aforementioned methods in the goal of the problem, which is to
automatically infer potential action sequences that can be used
to complete the task at hand in the specific environment. Note
that action recognition and prediction can be beneficial to our
work because they provide a better understanding of the inter-
action between humans and the environment for the robots for
task planning.

C. Recurrent Sequence Prediction

RNNs [51], particularly LSTM [13], were developed for
modeling long-term temporal dependencies. Recently, RNNs
have been extensively applied to various sequence prediction
tasks, including natural language generation [52]–[54], neural
machine translation [14], [55]–[57], and image and video cap-
tioning [15], [16], [58]–[60]. These works adopted a similar
encoder-decoder architecture for solving sequence prediction.
Tang et al. [54] encoded the contexts into a continuous seman-
tic representation and then decoded the semantic representation
into context-aware text sequences using RNNs. Cho et al. [14]
mapped a free-form source language sentence into the target
language by utilizing the encoder-decoder recurrent network.
Vinyals et al. [15] applied a similar pipeline for image caption-
ing, therein employing a CNN as the encoder to extract image

features and an LSTM network as the decoder to generate the de-
scriptive sentence. Pan et al. [60] further adapted this pipeline
to video caption generation by developing a hierarchical re-
current neural encoder that is capable of efficiently exploiting
the video temporal structure in a longer range to extract video
representations.

III. OVERVIEW

In this section, we give an overall introduction to the pro-
posed method. First, we represent the possible action sequences
for each task with an AOG. Based on this AOG, a parsing graph,
which corresponds to a specific action sequence, can be gener-
ated by selecting the sub-branches at all the or-nodes searched
in a DFS manner given a scene image. An LSTM (namely,
AOG-LSTM) is learned to make predictions at these or-nodes
given a large number of new scene image and automatically
produce a relatively large number of valid samples. Finally,
these automatically generated samples are used to train another
LSTM (namely, Action-LSTM) that directly predicts the action
sequence to complete a given task under a certain scene. An
overall illustration is presented in Fig. 2.

IV. SEMANTIC TASK REPRESENTATION

A. Atomic Action Definition

An atomic action refers to a primitive action operating on
an associated object, and it is denoted as a two-tuple set
A = (action, object). To ensure that the learned model can gen-
eralize across different tasks, the primitive action and associated
object should satisfy two properties [34]: 1) each primitive ac-
tion should specialize an atomic operation, such as open, grasp
or move to, and 2) the primitive actions and associated objects
should not be specific to one task. With these role-specific and
generalizable settings, large numbers of high-level tasks can be
completed using the atomic actions defined on a small set of
primitive actions and associated objects. In this work, Ba = 12
primitive actions and Bo = 12 objects are involved, as described
in Section VI-A.

B. Knowledge and-or Graph

The AOG is defined as a 4-tuple set G = {S, VN , VT , P},
where S is the root node denoting a task. The non-terminal
node set VN contains both and-nodes and or-nodes. An and-
node represents the decomposition of a task to its sub-tasks in
chronological order. An or-node is a switch, deciding which
alternative sub-task to select. Each or-node has a probability
distribution pt (the t-th element of P ) over its child nodes, and
the decision is made based on this distribution. VT is the set
of terminal nodes. In our definition of AOG, the non-terminal
nodes refer to the sub-tasks and atomic actions, and the terminal
nodes associate a batch of atomic actions. In this work, we
manually define the structure of the AOG for each task.

According to this representation, the task “pour a cup of wa-
ter” can be represented as the AOG shown in Fig. 3(a). The
root node denotes the task, where is first decomposed into two
sub-tasks, i.e., “get the cup” and “pour water”, under the tem-
poral constraint. The “get the cup” node is an and-node and can
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Fig. 2. An overall introduction of the proposed method. The AOG-LSTM network is trained using the samples from the small training set, and it can be used to
generate a relatively large augmented set. The augmented set, together with the training set, is used to train the Action-LSTM network, which can directly predict
the action sequence to complete a given task under a certain scene.

Fig. 3. An example of a knowledge and-or graph for describing the task “pour a cup of water” shown in (a) and two parsing graphs and their corresponding
action sequences under two specific scenes shown in (b).

be further decomposed into “move to the cup”, “take the cup”
and “hold the cup” in chronological order. The “pour water”
node is an or-node, and it has two alternative sub-branches, i.e.,
“pour water from the water dispenser” and “pour water from the
pot”. Finally, all the atomic actions are treated as the primitive
actions and associated objects, which are represented by the ter-
minal nodes. In this way, the knowledge AOG contains all pos-
sible action sequences of the corresponding task in a syntactic
manner.

C. Sample Generation with and-or Graph

In addition to capturing the task semantics, the AOG rep-
resentation enables the generation of a large number of valid
samples (i.e., action sequences extracted from the AOG), which
are important for the RNN learning process. According to the
definition of the AOG, a parsing graph, which corresponds to
a specific action sequence (e.g., Fig. 3(b)), will be generated
by selecting the sub-branches for all the or-nodes searched in
a DFS manner given a new scene image. Since explicit tem-
poral dependencies exist among these or-nodes, we can recur-

rently activate these selections using an LSTM network, i.e.,
AOG-LSTM.

AOG encoding: Before discussing the AOG-LSTM, we first
introduce how to encode the AOG into a feature vector be-
cause this is a crucial process for integrating the AOG repre-
sentation into the LSTM. Concretely, the AOG features should
contain both graph structure and node content information, and
the encoding process consists of three steps, as illustrated in
Fig. 4. First, we number all the nodes in the AOG, as shown in
Fig. 4(a). Second, an adjacency matrix [61] is utilized to encode
the graph structure that depicts whether and how two nodes are
connected. Consistent with the situation whereby and- and or-
nodes exist in the AOG and they represent completely different
meanings, we define an and connection to signify a connection
of an and-node to its child and an or connection to signify that
of an or-node to its child. Suppose that the adjacency matrix is
M , with Mij being the value of row i and column j; Mij is
set to 1 for the and connection of the and-node i to its child j,
2 for the or connection and 0 otherwise [see Fig. 4(b)]. Third,
we extract the features for each node to encode its node type
and related atomic action information. There are three types of
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Fig. 4. Illustration of the AOG encoding process. The nodes in the AOG
are first numbered (a). Then, an adjacency matrix is employed to encode the
structure of the graph, with a value of 1 for an and connection, 2 for an or
connection and 0 otherwise (b). The content of each node contains a one-hot
vector denoting the node type, two one-hot vectors representing the primitive
action and the associated object of the associated atomic action for the leaf node,
and two zero vectors for the and- and or-nodes.

Fig. 5. The AOG-LSTM architecture for selecting the sub-branches at all of
the or-nodes in a knowledge and-or graph.

nodes in the AOG, i.e., and, or and leaf nodes, and we utilize
one-hot vectors to represent these nodes. As indicated in the
definition of the AOG, a leaf node is connected to a specific
atomic action, and we employ two one-hot vectors to represent
the primitive action and associated object of the atomic action.
Then, we append the two vectors after the node type vector to
obtain the features of this node. In contrast, the and- and or-
nodes do not connect to the specific atomic action directly; thus,
we simply pad zeros after the node type vector [see Fig. 4(c)].
Finally, the adjacency matrices are re-arranged to a vector, and
the vector is concatenated with all the node features to achieve
the final representation of the AOG.

According to the AOG definition, we search the or-nodes
based on the depth-first and from left-to-right manner. As illus-
trated in Fig. 5, our model first extracts the features of the given
scene image and the task, and it maps them to a feature vector,
which serves as the initial hidden state of the AOG-LSTM. The
model then encodes the initial AOG as a feature vector, which is
fed into the AOG-LSTM to predict the sub-branch selection of
the first or-node. Meanwhile, the AOG is updated by pruning the

unselected sub-branches. Note that the AOG is updated based
on the annotated and predicted selections during the training
and test stages, respectively. Based on the updated AOG, the
same process is conducted to predict the selection of the second
or-node. This process is repeated until all or-nodes have been
visited, and a parsing graph is then constructed. We denote the
image and task features as f I and fT , respectively, and we de-
note the AOG features at time step t as fAOG

t . The prediction at
time step t can be expressed as follows:

fIT =
[
relu

(
Wf I f I

)
, relu

(
Wf T fT

)]

c0 = 0; h0 = Whf fIT

[ht , ct ] = LSTM
(
fAOG
t ,ht−1 , ct−1

)

pt = softmax(Whpht + bp) (1)

where relu is the rectified linear unit (ReLU) function [62]
and pt is the probability distribution over all child branches of
the t-th or-node, where the branch with the maximum value is
selected. Wf I , Wf T , Whf , and Whp are the parameter ma-
trices, and bp is the corresponding bias vector. f I are the image
features containing the information of the class labels, initial
states, and locations of the objects in image I . More concretely,
suppose that there are Bo categories of objects and k attributes.
For each object in an given image, we utilize a Bo -dimension
one-hot vector to denote its class label information, k vectors
to denote the initial states of the k attributes, and a 4-dimension
vector to denote the bounding box of the object region. Thus,
each object can be represented by a fixed dimension feature
vector, and the feature vectors of all objects are concatenated to
obtain an image feature vector. However, the number of objects
varies in different images, leading to image feature vectors with
different dimensions. To address this issue, we first extract the
features for the image with the maximum number of objects,
and we apply zero padding to each feature vector so that each
vector has the same dimensions as the feature vector of the im-
age with the maximum number of objects. fT is a one-hot vector
denoting a specific task. f I and fT are first processed using two
separated fully connected layers followed by the ReLU function
to generate two 256-D feature vectors. The initial memory cell
c0 is set as a zero vector. The two vectors are then concatenated
and mapped to a 256-D feature vector using a fully connected
layer, which serves as the initial hidden state of the LSTM.
fAOG
t are the AOG feature vectors at time step t, which are also

pre-processed to a 256-D feature vector via a fully connected
layer and then fed to the AOG-LSTM. The size of the hidden
layer of the LSTM is 256 neurons.

AOG-LSTM training: Making a selection at the or-nodes is
less ambiguous because the AOG representation effectively reg-
ularizes the semantic space. Thus, we can train the AOG-LSTM
using only a small number of annotated samples. Specifically,
we collect a small set of samples annotated with the selec-
tions of all or-nodes given a scene image for each task, i.e.,
XT = {In , Tn , sn}NT

n=1 , in which In and Tn are the n-th given
image and task, respectively, and sn = {sn1 , sn2 , . . . , snKn

}
is a set whereby snb denotes the selection for the t-th or-
node and Kn is the number of or-nodes. NT is the number
of annotated samples in XT . Given the predicted probability
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pnt = {pnt1 , pnt2 , . . . , pntB } for the t-th or-node, we define
the objective function as the sum of the negative log-likelihood
of correct selections over the entire training set, which is for-
mulated as

Laog = −
NT∑

n=1

Kn∑

t=1

B∑

b=0

1(snb = b) log pntb , (2)

where 1(·) is an indicator function whose value is 1 when the
expression is true and 0 otherwise and B is the number of sub-
branches. In our experiment, because the maximum number of
sub-branches is 3, we simply set B to 3.

Sample generation: Once the AOG-LSTM is trained, we
use it to predict the sub-branch selections for all the or-nodes
in the AOG given different scene images and generate the cor-
responding action sequences. In this way, a relatively large set
of XG = {In , Tn ,An}NG

n=1 is obtained, where In , Tn , and An

represent the image, task and predicted sequence for the n-th
sample, respectively, and NG is the number of generated sam-
ples. More importantly, it can also generate samples of unseen
tasks using an identical process in which the AOG structures
for the new tasks are also manually defined. These newly gen-
erated samples effectively alleviate the problem of manually
annotating large numbers of samples in practice.

V. RECURRENT ACTION PREDICTION

We formulate the problem of semantic task planning in
the form of the probability estimation p(A1 , A2 , . . . , An |I, T ),
where I and T are the given scene image and the task, respec-
tively, and {A1 , A2 , . . . , An} denotes the predicted sequence.
Based on the chain rule, the probability can be recursively
decomposed as follows:

p(A1 , A2 , . . . , An |I, T ) =
n∏

t=1

p (At |I, T,At−1) , (3)

where At−1 denotes {A1 , A2 , . . . , At−1} for convenience of il-
lustration. The atomic action is defined as Ai = (ai, oi). Since
an atomic action is composed of a primitive action and an asso-
ciated object, there are large numbers of atomic actions that have
few samples because action-object co-occurrence is infrequent
in the training samples. Thus, a fundamental problem in atomic
action prediction is learning from very few samples. Fortunately,
although the atomic action might occur rarely in the samples,
its primitive action and associated object independently appear
quite frequently. Thus, in this work, we simplify the model by
assuming independence between the primitive actions and the
associated objects and predict them separately [63]. The proba-
bility can be expressed as follows:

p(At |I, T,At−1) = p(at |I, T,At−1)p(ot |I, T,At−1). (4)

Here, we develop the Action-LSTM network to model the
probability distribution, i.e., equation (3). Specifically, the
Action-LSTM network first applies a process similar to that
of AOG-LSTM to extract the features of the task and image,
which is also used to initialize the hidden state of the LSTM.
At each time step t, two softmax layers are utilized to pre-
dict the probability distributions p(at) over all primitive actions

Fig. 6. The Action-LSTM architecture for predicting the atomic action se-
quence given a specific task.

and p(ot) over all associated objects. The conditions on the
previous t − 1 actions can be expressed by the hidden state
ht−1 and memory cell ct−1 . The action prediction at time step t
can be computed as follows:

fIT =
[
relu

(
Wf I f I

)
, relu

(
Wf T fT

)]

c0 = 0; h0 = Whf fIT

[ht , ct ] = LSTM
(
fA
t ,ht−1 , ct−1

)

p(at) = softmax (Wahht + ba)

p(ot) = softmax (Wohht + bo) (5)

where relu is the ReLU function. Wf I , Wf T , Whf , Wah ,
and Woh are the parameter matrices, and ba and bo are the
corresponding bias vectors. Fig. 6 presents an illustration of
the Action-LSTM network. f I and fT carry exactly the same
information as explained for the AOG-LSTM, and they are pre-
processed using an identical process except that the last fully
connected layer has 512 output neurons and thus generates a
512-D feature vector. Additionally, this feature vector is con-
sidered to be the initial hidden state of the Action-LSTM. fA

t

is a feature vector that encodes the input atomic action at time
step t, which is concatenated by two one-hot vectors denoting
its primitive action and associated object. Note that the atomic
action is the ground truth and predicted atomic action of the pre-
vious time step during the training and test stages, respectively.
Because directly predicting the atomic action is considerably
more complicated, we set the size of the hidden layer of the
LSTM to 512 neurons.

Action-LSTM training: In the training stage, we leverage
the entire training set, including the manually annotated samples
and the automatically generated samples, to optimize the net-
work. However, some difficult samples with uncertain or even
incorrect labels exist, and these samples may severely impact
the model convergence and lead to inferior results. Meanwhile,
skipping too many difficult training samples leads to a risk of
overfitting on the small set of easy samples, resulting in a poor
generalization ability to unseen testing data. To strike a better
balance, we employ a curriculum learning algorithm [21], [22]
that starts the training process using the most reliable samples
and then gradually increases the sample difficulty.

To determine the difficulty of a particular sample, we consider
the uncertainty of making selections at the or-nodes during the
sample generation stage. Concretely, a probability distribution
is predicted when performing selections at an or-node, and the
entropy of this distribution well measures the uncertainty [64],
[65]. Thus, we define the uncertainty of a sample by averaging
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the entropies of the predicted distributions over all the or-nodes.
In this way, a sample having a higher uncertainty means that it
is more difficult. We create a curriculum of XG by sorting the
samples according to their uncertainty values and set a threshold
τ to exclude the samples with uncertainty values that are higher
than τ . The curriculum is updated by decreasing τ to include
more difficult samples during the training stage.

Formally, we are given the manually annotated and au-
tomatically generated sets, i.e., XT = {In , Tn ,An}NT

n=1 and
XG = {In , Tn ,An}NG

n=1 , where In and Tn are the given im-
age and task of the n-th sample, respectively, and An =
{An1 , An2 , . . . , AnWn

} is the atomic action sequence, with
Wn denoting the number of atomic actions. Ant = {ant , ont}
is the t-th atomic action, with ant and ont denoting its prim-
itive action and associated object, respectively. Similarly, we
define the objective function as the sum of the negative log-
likelihood of correct sequences over all the samples in the man-
ually annotated set and the selected samples in the automatically
generated set. Given the predicted distribution of the primitive
action pn (at) = {pn1(at), pn2(at), . . . , pnBa

(at)} and associ-
ated object pn (ot) = {pn1(ot), pn2(ot), . . . , pnBo

(ot)} for the
t-th step, the objective function can be expressed as

Laction = −
NT∑

n=1

Wn∑

t=1

�nt −
NG∑

n ′=1

Wn ′∑

t ′=1

1(Hn ′ < τ)�n ′t ′ , (6)

where

�nt =
Ba∑

j=0

1(ant =j) log pnj (at) +
Bo∑

j=0

1(ont =j) log pnj (ot).

(7)

In these equations, Ba and Bo are the numbers of involved
primitive actions and associated objects, Hn ′ is the uncertainty
of sample n′, and1(·) is also an indicator function whose value is
1 if the expression is true and 0 otherwise. Note that we directly
use all the samples in XT because these samples are manually
annotated and can effectively avoid samples with uncertain or
incorrect labels.

Sequence prediction: Once the Action-LSTM is trained, it
is utilized to recurrently predict the atomic action sequence con-
ditioning on the given task and input scene image. Concretely,
the Action-LSTM takes a special atomic action (start, start)
as input to predict the probability distributions of the primitive
action and associated object, and we select the primitive action
and associated object with maximum probabilities to achieve the
first atomic action, which is fed into the LSTM to predict the sec-
ond atomic action. This process is repeated until a (stop, stop)
atomic action is generated.

VI. EXPERIMENTS

In this section, we introduce the newly collected dataset in
detail and present extensive experimental results to demon-
strate the superiority of the proposed model. We also con-
duct experiments to carefully analyze the benefits of the critical
components.

A. Dataset Construction

To well define the problem of semantic task planning, we
create a large dataset that contains 15 daily tasks described by
AOGs and 1,284 scene images, with 500 images captured from
various scenarios of 7 typical environments, i.e., lab, dormitory,
kitchen, office, living room, balcony, and corridor, and the re-
maining 784 scenes are searched from the Internet, e.g., using
Google Image Search. All the objects in these images are an-
notated with their class labels and initial property. As described
above, the atomic action is defined as a two-tuple, i.e., a primi-
tive action and its associated object. In this dataset, we define 12
primitive actions, i.e., “move to”, “grasp”, “place back”, “pour
into”, “open”, “pour away”, “hold”, “heat”, “close”, “turn on”,
“clean”, and “put into”, and 12 associated objects, i.e., “cup”,
“pot”, “water dispenser”, “tea box”, “water”, “bowl”, “easer”,
“board”, “washing machine”, “teapot”, “clothes”, and “closet”.
Some scenarios exist in which a task cannot be completed. For
example, a robot cannot complete the task of “pour a cup of
water from the pot” if the pot in the scenario is empty. Thus,
we further define a specific atomic action (taskfail, taskfail),
and the robot will predict this atomic action when faced with
this situation.

The dataset includes three parts, i.e., the training set, the test-
ing set and an augmented set generated from the AOGs. The
training set contains 215 samples for 12 tasks with the annota-
tions (i.e., the selections of all the or-nodes in the corresponding
AOGs), and this training set is used to train the AOG-LSTM.
The augmented set contains 2,600 samples of (I, T,Ap), in
which Ap is the predicted sequence. For training the Action-
LSTM, we combine the augmented set and training set. The
testing set contains 983 samples of (I, T,A) for the performance
evaluation.

B. Experimental Settings

Implementation details: We implement both LSTMs us-
ing the Caffe framework [66], and we train the AOG-LSTM
and Action-LSTM using stochastic gradient descent (SGD) [67]
with a momentum of 0.9, weight decay of 0.0005, batch size
of 40, and initial learning rates of 0.1. For curriculum learning,
we empirically initialize τ as 0.2 and add 0.2 to it after training
for 100 epochs. The model with the lowest validation error is
selected for evaluation.

Evaluation metrics: We utilize the accuracies of the primi-
tive actions and associated objects, atomic actions, and action
sequences as the metrics to evaluate our proposed method. The
metrics are described in detail below. We regard the predicted
primitive action as correct if it is exactly the same as the anno-
tated primitive action at the corresponding time step. In addition,
the accuracy of the primitive action is defined as the fraction of
correctly predicted primitive actions with respect to all prim-
itive actions. The accuracy of the associated object is defined
similarly. We regard the predicted atomic action as correct if
both the primitive action and its associated object are correct.
The accuracy of the atomic action is defined as the fraction of
correctly predicted atomic actions with respect to all atomic ac-
tions. Finally, we regard the action sequence as correct if the
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TABLE I
ACCURACY OF THE PRIMITIVE ACTIONS AND ASSOCIATED OBJECTS OF OUR METHOD WITH AND WITHOUT AND-OR GRAPH (OURS W/ AND W/O AOG,

RESPECTIVELY) AND THE THREE BASELINE METHODS (I.E., RNN, MLP, AND NN)

atomic action at each time step is correct. The accuracy of the
action sequence is defined as the fraction of correctly predicted
sequences with respect to all sequences.

C. Baseline Methods

To verify the effectiveness of our model, we implement three
baseline methods that can also be used for semantic task plan-
ning for comparison.

1) Nearest Neighbor (NN): NN retrieves the most similar
scene image and obtains the action sequence that can complete
the given task under this image as its output. Concretely, given a
new image and task, we extract the image feature and compare it
with those on the training set. The sample, which shares the most
similar feature with the given image, is taken, and its annotated
action sequence regarding the given task is regarded as the final
output. The image features are extracted in a similar manner for
the AOG-LSTM, as discussed in Section IV-C.

2) Multi-Layer Perception (MLP): We implement an MLP
[68] that predicts the t-th atomic action by taking the task fea-
tures, image features, and previous t − 1 predicted atomic ac-
tions as input. Moreover, it repeats the process until a stop signal
is obtained. The MLP consists of two stacked fully connected
layers, in which the first layer maps the input to a 512-D fea-
ture vector followed by the ReLU function and the second layer
maps two vectors followed by softmax layers, which indicate
the score distribution of the primitive action and the associated
object, respectively.

3) Recurrent Neural Network (RNN): The training and in-
ference processes and the input features of the RNNs are ex-
actly the same as those of our Action-LSTM. Our method uti-
lizes a traditional hidden state unit rather than an LSTM unit.
For a fair comparison, the RNN also has one hidden layer of
512 neurons.

The two baseline methods are also implemented using the
Caffe library [66], and they are trained using SGD with a mo-
mentum of 0.9, weight decay of 0.0005, batch size of 40, and
initial learning rate of 0.1. We also select the models with the
lowest validation error for a fair comparison.

Fig. 7. The confusion matrices of the (a) primitive actions and (b) associ-
ated objects. Our method can accurately predict both the primitive actions and
associated objects.

TABLE II
MEAN ACCURACY OVER ALL ATOMIC ACTIONS OF OUR METHOD WITH AND

WITHOUT THE AND-OR GRAPH (OURS W/ AND W/O AOG) AND THE THREE

BASELINE METHODS (I.E., RNN, MLP, AND NN)

D. Comparisons With the Baseline Models

We first evaluate the performance of our model for recogniz-
ing the primitive actions and associated objects. Fig. 7 presents
the confusion matrices for these two elements, where our model
achieves very high accuracies for most classes. Table I further
depicts the detailed comparison of our model against the base-
line methods. Our model can predict the primitive actions and
associated objects with overall accuracies of 96.1% and 96.6%,
outperforming the baseline methods. We also present the mean
accuracy of the atomic action in Table II. Here, we compute
the accuracy of each atomic action and compute the mean over
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TABLE III
SEQUENCE ACCURACY OF OUR METHOD WITH AND WITHOUT THE AND-OR GRAPH (OURS W/ AND W/O AOG), OURS W/ SELF AUG, AND THE THREE BASELINE

METHODS (I.E., RNN, MLP, AND NN). WE UTILIZE TASK 1 TO TASK 12 TO DENOTE THE “POUR THE WATER IN THE CUP INTO THE BOWL”, “MAKE TEA WITH THE

CUP”, “MAKE TEA WITH THE CUP USING WATER FROM THE WATER DISPENSER”, “CLEAN THE BOARD”, “GET A CUP OF HOT WATER”, “GET A CUP OF HOT WATER

FROM THE POT”, “POUR A CUP OF WATER”, “POUR A CUP OF WATER FROM THE POT”, “POUR A CUP OF TEA FROM THE TEAPOT”, “WASH THE CLOTHES WITH THE

WASHING MACHINE”, “WASH THE CLOTHES IN THE WASHING MACHINE”, AND “PUT THE CLOTHES IN THE CLOSET” TASKS

Fig. 8. Some atomic action sequences regarding given scene images and tasks
generated by our method. Our method is able to correctly predict the action
sequence for various tasks across different scenarios.

the accuracies of all the atomic actions. As shown, our model
also achieves the highest accuracy compared with the baseline
methods.

Then, we evaluate the sequence accuracy of all the methods,
as reported in Table III. Our model can correctly predict com-
plete action sequences with an overall probability of 93.7%,
evidently outperforming the baseline methods on most tasks
(11/12) and improves the overall accuracy by 8.9%.

Some atomic action sequences generated by our method are
presented in Fig. 8. As shown, our method is capable of accu-
rately predicting the action sequences for various tasks across
different scenarios.

E. Generalization to Related Tasks

Here, we define “related tasks” as tasks that have similar
atomic actions or temporal context to the existing tasks in the
training set. For example, “pour a cup of water from the water
dispenser” is a task related to “pour a cup of water”. Thus, it

TABLE IV
SEQUENCE ACCURACY OF OUR MODEL WITH AND WITHOUT AND-OR GRAPH

(OURS W/ AND W/O AOG) AND THE OURS W/ SELF AUG. TASKS 13, 14, AND 15
DENOTE THE “MAKE TEA WITH THE CUP USING WATER FROM THE POT”, “GET

A CUP OF HOT WATER FROM THE WATER DISPENSER”, AND “POUR A CUP OF

WATER FROM THE WATER DISPENSER” TASKS, RESPECTIVELY

would be interesting to see how our trained model can be gen-
eralized to related tasks. In particular, for each related task, we
have its AOG representation but no annotated training samples.
In this experiment, the models of “Ours without AOG” are all
trained on the training set, which only contains samples of task
1 to task 12, as described above. For our model with AOG, we
first train the AOG-LSTM with the same set of annotated sam-
ples as the other competing models. Subsequently, we utilize the
trained AOG-LSTM to produce samples for all tasks, including
tasks 13, 14 and 15, and then, we use these samples to train the
Action-LSTM. The results of the three tasks are presented in
Table IV. We find that the performances of the method without
using AOG are extremely unsatisfying on both tasks. These re-
sults clearly demonstrate the excellent generalization ability of
our model, which improves the sequence accuracy by 63.2%.
We also present the sequence accuracy of the AOG-LSTM, i.e.,
82.8%, which is also worse than the proposed model.

F. Ablation Study

In this subsection, we perform ablative studies to carefully
analyze the contributions of the critical components of our pro-
posed model.

1) Benefit of using and-or Graph: In this experiment, we
empirically evaluate the contribution of introducing AOG to the
neural network learning. Here, we train the Action-LSTM with
and without using the augmented sample set, and we report the
results in the last two rows of Table I and Table III, i.e., Ours w/
and w/o AOG. It can be observed that the results using AOGs
show a notable improvement in both atomic action recogni-
tion and sequence prediction. The performance improvements
clearly demonstrate the effectiveness of adopting the augmented
set. In particular, generating samples from AOG representations
enables us to better capture the complex task variations and is
an effective way of compensating the neural network learning.
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TABLE V
SEQUENCE ACCURACY OF THE AOG-LSTM NETWORK TRAINED WITH AND

WITHOUT AUGMENTED SET AND ACTION-LSTM TRAINED WITH AND

WITHOUT AUGMENTED SET

Moreover, note that the Action-LSTM network performs better
than the traditional RNN model because LSTM is better able to
memorize long-term dependencies among actions.

As discussed above, the trained Action-LSTM can also gen-
erate pseudo-labels for unseen samples, and it does not require
manually defined AOGs. To see whether the AOGs actually im-
prove the performance, we further implement another baseline
(namely, Ours w/ self aug) that uses the Action-LSTM trained
on the annotated set to automatically generate a large number
of training samples, and then, we train another Action-LSTM
using both the annotated and automatically augmented sets. As
shown in Table III, this achieves an overall sequence accuracy of
91.5%, better than the baseline Action-LSTM but much worse
than our network, i.e., 93.7%. In addition, when generalizing to
unseen tasks, our method has an even more notable improve-
ment over this baseline, i.e., 85.3% by ours and 70% by this
baseline as shown in Table IV.

2) Analysis of AOG-LSTM: The AOG-LSTM can also gen-
erate action sequences by collecting the leaf nodes after all
the or-nodes have been selected. Here, we analyze the perfor-
mance of the AOG-LSTM network. As shown in Table V, if
both are trained only with the annotated set, the Action-LSTM
network performs worse than the AOG-LSTM network. This
is because making a selection at the or-nodes is less ambigu-
ous because the AOG representation effectively regularizes the
semantic space. Thus, the AOG-LSTM network can achieve
a reasonable performance despite being trained using a small
number of samples. However, when trained with both the anno-
tated and augmented sets, the Action-LSTM network, in turn,
outperforms the AOG-LSTM network. One possible reason is as
follows. If giving sufficient training samples, the Action-LSTM
network may implicitly learn the semantic structures of the And-
Or Graph. Moreover, the Action-LSTM model directly predicts
the atomic action, and thus, the predicted atomic action in the
previous step may provide strong guidance for the subsequent
atomic action prediction. However, the or-node prediction of
the AOG-LSTM may not have such a property. Moreover, the
Action-LSTM is a more flexible and general framework, and
it can also achieve reasonable results without the AOG repre-
sentation (see Ours w/ AOG). Introducing AOG augmentation
can further boost its performance, especially for unseen tasks
(see Table IV).

Some samples of or-node selection and the corresponding
atomic sequences are presented in Fig. 9. We find that, for
most cases, the AOG-LSTM network can predict the or-node
selections correctly, but it is possible to make incorrect predic-
tions if the objects in the image are too complex.

Fig. 9. Some samples of or-node selection and the corresponding atomic
sequences. The nodes of the unselected branch are denoted as circles with
dotted line, and the nodes of incorrectly selected branch are denoted as circles
filled with red.

TABLE VI
SEQUENCE ACCURACY OF BY OUR MODEL WITH AND WITHOUT THE

CURRICULUM LEARNING (CL) ALGORITHM. HERE, WE REPORT THE

SEQUENCE ACCURACY AVERAGED OVER TASK 1 TO TASK 12

3) Benefit of Curriculum Learning: In this part, we perform
an experiment to analyze the contribution of employing the cur-
riculum learning algorithm. Here, we train the Action-LSTM
network directly using the entire augmented sample set, and we
compare it with our network trained using curriculum learn-
ing. The results are reported in Table VI. As shown, training
the network using curriculum learning clearly improves the
performance on both atomic action recognition and sequence
prediction. This comparison clearly demonstrates the benefit of
applying curriculum learning. Concretely, starting the training
of the network using the most reliable samples can effectively
avoid disturbances incurred by the difficult samples with un-
certain or even incorrect labels and thus produce a network
with better initialization performance. In this way, we can bet-
ter utilize the augmented sample set to train the Action-LSTM
network.

4) Benefit of Predicting the Primitive Action and Associated
Object Independently: To address the problem whereby few
samples exist for many atomic actions, we simplify the net-
work by assuming the independence of primitive actions and
associated objects, and we predict them separately. Here, we
conduct an experiment to evaluate the benefit of this simplifi-
cation. Because there are 35 atomic actions in total, we first
remove the two softmax layers in the Action-LSTM network
and employ a 35-class softmax layer to directly predict the
atomic action, with the other layers left unchanged. We present
the sequence accuracy results in Table VII. Predicting the prim-
itive action and associated object independently can achieve
higher sequence accuracies. In particular, this simplification is
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TABLE VII
SEQUENCE ACCURACY OF ACTION-LSTM PREDICTING PRIMITIVE ACTION AND

ASSOCIATED OBJECT SEPARATELY (ACTION-LSTM), DIRECTLY PREDICTING

THE ATOMIC ACTION (ACTION-LSTM (JOINT)), ACTION-LSTM WITH OBJECT

CONDITION [ACTION-LSTM (CONDITION)] AND STACKED LSTM WITH

OBJECT CONDITION [STACKED LSTM (CONDITION)]. HERE, WE REPORT THE

SEQUENCE ACCURACY AVERAGED OVER TASK 1 TO TASK 12

TABLE VIII
SEQUENCE ACCURACY OF OUR METHOD USING GLOVE AND ONE-HOT

ENCODING FOR TASK EMBEDDING. HERE, WE REPORT THE SEQUENCE

ACCURACY AVERAGED OVER TASK 1 TO TASK 12

beneficial for avoiding learning from very few samples and thus
enables learning a more robust network.

As discussed in Section V, predicting the primitive action and
associated object separately depends on the independence as-
sumption between these two factors. To verify the reasonability
of this simplification, we also design some variants that predict
the action first and, conditioned on it, predict the object. More
concretely, we implement two variants: 1) Action-LSTM with
object condition shares the same architecture with the proposed
Action-LSTM network except that, at each step, it first predict
the score vector of the action and then concatenates it with the
hidden state of this step to predict the score vector of the ob-
ject. 2) Stacked LSTM with object condition employs two stack
LSTM networks, in which the first network predicts the score
vector of the action, and then, the score vector together with
the hidden state is fed to the second network to predict the score
vector of the object. For a fair comparison, we set the dimension
of the hidden state as 512 and train the two variants in an iden-
tical manner. As shown in Table VII, the two variants perform
slightly worse than the proposed methods. One possible reason
for this may be that the prediction of the object also depends
on the predicted action, and these dependencies are also rare in
the training set. These comparisons show that this simplification
can simplify the network while also improving performance.

5) Evaluation of Task Embedding: In this work, we use the
one-hot vector for task encoding because there are only 15 tasks,
and this simple method can well represent each task. To compare
this method with other embedding methods, we also conduct
an experiment that utilizes semantic embedding for the tasks.
Concretely, we use the trained GloVe model [69] to encode a
semantic vector for each word of a specific task and average
the vectors of all words to achieve the representation of this
task. We use this representation to replace the one-hot encoding
and re-train the AOG-LSTM and Action-LSTM. We find that
the overall sequence accuracy drops from 93.7% to 92.3%, as
shown in Table VIII. One possible reason for this may be as
follows. There are only 15 tasks; simple one-hot encoding can
well represent each task. If using the more complex semantic

TABLE IX
SEQUENCE ACCURACY OF OUR MODEL UNDER THE SETTING OF PERFECT

DETECTION, 10% NOISE AND 20% NOISE (OURS W/O NOISE, OURS W/ 10%
NOISE, AND OURS W/ 20% NOISE), AND AUTOMATIC DETECTION (OURS USING

DETECTOR). HERE, WE REPORT THE SEQUENCE ACCURACY AVERAGED OVER

TASK 1 TO TASK 12, WHERE THE NETWORKS ARE ONLY TRAINED WITH THE

MANUALLY ANNOTATED SET

representation, by learning from merely 15 sentences, it may be
difficult to capture the differences among different tasks.

G. Results for Noisy Environments

The above-mentioned experiments are conducted under the
assumption of perfect object/attribute detection. It is more prac-
tical to evaluate the method in noisy environments. To this end,
we further conduct an experiment on noise settings. Specifically,
we add Gaussian noise to the one-hot vector of the class label
and those of the attributes, and thus, the one-hot vector becomes
the score vector, with each element denoting the confidence of
the corresponding category or state. We regard the score vector
as positive if the bit corresponding to the ground-truth labels has
the largest value; otherwise, it is regarded as negative. We add
different levels of noise to obtain different negative ratios (e.g.,
10% and 20%) in both the training and test set, and we re-train
the Action-LSTM network. As shown in Table IX, our network
with negative ratios of 10% and 20% error labels achieves se-
quence accuracies of 46.2% and 41.2%, respectively.

To better evaluate the performance in a real vision system, we
further train a Faster R-CNN detector [11] on the training set to
automatically detect objects in the given image. We still train the
AOG-LSTM and Action-LSTM networks using the annotated
objects and evaluate on the test set using the objects detected
by the detector. As shown in Table IX, our network can also
achieve reasonable results, e.g., an overall sequence accuracy of
55.0%.

VII. CONCLUSION

In this paper, we address a challenging problem, i.e., predict-
ing a sequence of actions to accomplish a specific task under
a certain scene, by developing a recurrent LSTM network. To
alleviate the issue of requiring large amounts of annotated data,
we present a two-stage model training approach by employing
a knowledge AOG representation. From this representation, we
can produce a large number of valid samples (i.e., task-oriented
action sequences) that facilitate learning of the LSTM network.
Extensive experiments on a newly created dataset demonstrate
the effectiveness and flexibility of our approach.

This is an early attempt to address the task of semantic task
planning, but there are certain limitations that prevent the pro-
posed method from extending to more realistic setups. First,
the images are pre-processed into a handcrafted feature vec-
tor that contains information about the object categories and
locations. This pre-processing prevents the model from using
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end-to-end training and being robust to inference, and these
low-dimensional features can only capture limited characteris-
tics of the visual scene. Second, the model was only evaluated
on still images; it is unclear if it can easily be extended to a
real robot to perform tasks. Third, the structure of the AOG
is manually defined; this can be expensive to collect and is a
less flexible option. In future work, we will resort to simulation
platforms such as AI2-THOR [70], [71] to collect large num-
bers of annotated samples to train the detectors and classifiers.
In this way, we can extricate the model from dependencies on
handcrafted image pre-processing, automatically detect objects
in a scene and predict their initial states of the attributes. More-
over, we can also enable an agent to interact with objects and
perform tasks on these platforms to evaluate our model. On
the other hand, we will also explore automatically learning the
AOG structure from annotated samples, thereby improving the
flexibility and extendibility of the proposed method.

REFERENCES

[1] S. Thrun, W. Burgard, and D. Fox, Probabilistic Robotics. Cambridge,
MA, USA: MIT Press, 2005.

[2] L. E. Parker, “L-alliance: Task-oriented multi-robot learning in behavior-
based systems,” Adv. Robot., vol. 11, no. 4, pp. 305–322, 1996.

[3] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in Proc. Adv. Neural Inf. Pro-
cess. Syst., 2012, pp. 1097–1105.

[4] M. D. Zeiler and R. Fergus, “Visualizing and understanding convolutional
networks,” in Proc. Eur. Conf. Comput. Vision. 2014, pp. 818–833.

[5] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. Int. Conf. Learn. Rep. 2015.

[6] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2016,
pp. 770–778.

[7] A. Wang, J. Lu, J. Cai, T.-J. Cham, and G. Wang, “Large-margin multi-
modal deep learning for RGB-D object recognition,” IEEE Trans. Multi-
media, vol. 17, no. 11, pp. 1887–1898, Nov. 2015.

[8] A. H. Abdulnabi, G. Wang, J. Lu, and K. Jia, “Multi-task CNN model for
attribute prediction,” IEEE Trans. Multimedia, vol. 17, no. 11, pp. 1949–
1959, Nov. 2015.

[9] B. Zhao, X. Wu, J. Feng, Q. Peng, and S. Yan, “Diversified visual attention
networks for fine-grained object classification,” IEEE Trans. Multimedia,
vol. 19, no. 6, pp. 1245–1256, Jun. 2017.

[10] R. Girshick, J. Donahue, T. Darrell, and J. Malik, “Rich feature hierarchies
for accurate object detection and semantic segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2014, pp. 580–587.

[11] S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” in Proc. Adv. Neural Inf.
Process. Syst., 2015, pp. 91–99.

[12] J. Li et al., “Attentive contexts for object detection,” IEEE Trans. Multi-
media, vol. 19, no. 5, pp. 944–954, May 2017.

[13] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[14] K. Cho et al., “Learning phrase representations using RNN encoder-
decoder for statistical machine translation,” in Proc. Empirical Methods
Natural Lang. Process., 2014.

[15] O. Vinyals, A. Toshev, S. Bengio, and D. Erhan, “Show and tell: A neu-
ral image caption generator,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2015, pp. 3156–3164.

[16] L. Gao, Z. Guo, H. Zhang, X. Xu, and H. T. Shen, “Video captioning with
attention-based LSTM and semantic consistency,” IEEE Trans. Multime-
dia, vol. 19, no. 9, pp. 2045–2055, 2017.

[17] L. Lin, H. Gong, L. Li, and L. Wang, “Semantic event representation and
recognition using syntactic attribute graph grammar,” Pattern Recognit.
Lett., vol. 30, no. 2, pp. 180–186, 2009.

[18] C. Xiong, N. Shukla, W. Xiong, and S.-C. Zhu, “Robot learning with a
spatial, temporal, and causal and-or graph,” Proc. IEEE Int. Conf. Robot.
Automat., 2016, pp. 2144–2151.

[19] W. Li, J. Joo, H. Qi, and S.-C. Zhu, “Joint image-text news topic detection
and tracking by multimodal topic and-or graph,” IEEE Trans. Multimedia,
vol. 19, no. 2, pp. 367–381, Feb. 2017.

[20] L. Lin, L. Huang, T. Chen, Y. Gan, and H. Chen, “Knowledge-guided
recurrent neural network learning for task-oriented action prediction,” in
Proc. IEEE Int. Conf. Multimedia Expo., 2017, pp. 625–630.

[21] Y. Bengio, J. Louradour, R. Collobert, and J. Weston, “Curriculum learn-
ing,” in Proc. 26th Annu. Int. Conf. Mach. Learn., 2009, pp. 41–48.

[22] F. Khan, B. Mutlu, and X. Zhu, “How do humans teach: On curriculum
learning and teaching dimension,” in Adv. Neural Inform. Process. Syst.,
2011, pp. 1449–1457.

[23] J. Sung, B. Selman, and A. Saxena, “Learning sequences of controllers
for complex manipulation tasks,” in Proc. Int. Conf. Mach. Learn., 2013.

[24] J. F. Allen, “Planning as temporal reasoning,” in Principles of Knowledge
Representation and Reasoning, vol. 91. San Mateo, CA, USA: Morgan
Kaufmann. 1991, pp. 3–14.

[25] D. E. Smith and D. S. Weld, “Temporal planning with mutual exclu-
sion reasoning,” in Proc. Int. Joint Conf. Artif. Intell., vol. 99, 1999,
pp. 326–337.

[26] H. A. Kautz, B. Selman et al., “Planning as satisfiability,” in Proc. Eur.
Conf. Artif. Intell., vol. 92, 1992, pp. 359–363.

[27] J. Rintanen, K. Heljanko, and I. Niemelä, “Planning as satisfiability: Paral-
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