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Abstract— Accurate trajectory prediction of surrounding vehi-
cles is important for automated vehicles. To solve several existing
problems of maneuver-based trajectory prediction, we propose
four targeted solutions and establish a trajectory prediction
model that integrates semi-supervised And-or Graph (AOG) and
Spatio-temporal LSTM (ST-LSTM). To reduce the dependence
on the well-labeled dataset, we introduce the concept of sub-
maneuvers to improve the classifications of vehicle movements
based on the given rough maneuver labels. AOG is used as the
backbone of the probabilistic motion inference considering sub-
maneuvers. We only define the basic units and inference logics
of AOG and design a semi-supervised approach to directly learn
the sub-maneuvers and the inference model structure from the
training data, without manually specifying the structure (layers
and nodes) of the inference model. This approach helps to avoid
excessive artificial design or biases. The learned hierarchical
motion inference model improves the interpretability of the
overall trajectory prediction process. To utilize vehicle interaction
information and further yield more accurate prediction, we adopt
two different methods to consider vehicle interaction in the two
sub-models (maneuver recognition and trajectory prediction).
The experiment on NGSIM I-80 dataset shows that the maneuver-
based model proposed in this paper (AOG-ST and refined
AOG-ST-TB) performs more accurate trajectory prediction
results. Although the AOG-ST seems clumsy and slow, we show
that it is a flexible and quick model for trajectory prediction for
various driving scenarios through the discussion and experiment.

Index Terms— Trajectory prediction, maneuver recognition,
maneuver-based model, and-or graph, semi-supervised learning,
vehicle interactions.
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I. INTRODUCTION

TRAJECTORY prediction of surrounding vehicles is a
basic function of automated vehicles [1]. It provides

important information to support the subsequent motion plan-
ning and control of automated vehicles [2], [3] and further
improve driving safety. The key problem of trajectory predic-
tion is to identify the target vehicle’s current maneuver and
predict its future trajectory. Here, a maneuver is defined as a
set of movements with similar semantic goals/operation rules.
Such maneuvers can be intuitively understood and classified
by human drivers (e.g., going straight maneuver, lane change
maneuver, etc.). Some researchers also use the term “behavior”
to refer to the same thing [1].

It should be pointed out that the frequently used term,
“motion planning”, covers a noticeably larger area of research
topics; see discussion in [2], [3]. If we focus on a trajectory,
motion planning refers to trajectory planning which generates
a reference trajectory and makes the target vehicle to move
along this trajectory. In short, motion prediction means to
foresee other vehicles’ trajectory in the near future, and motion
planning means to guide itself trajectory in the near future.

As shown in [4], we can summarize most existing trajec-
tory prediction models into two categories: maneuver-based
models [1], [5]–[7] and end-to-end models [8]–[10]. Their
difference lies in whether the prediction process contains an
intermediate step of maneuver recognition. In other words,
maneuver-based models first recognize the current maneuver
and then perform trajectory prediction according to the recog-
nition results. These two sequential steps are usually handled
in different models. In contrast, end-to-end models skip the
maneuver recognition step and directly generate prediction
results.

This difference makes two kinds of models face different
difficulties.

(1) The difficulty of obtaining well-labeled dataset
Maneuver-based models require well-labeled datasets to

supervise their maneuver inference part. However, in prac-
tice, accurate data labeling is time-consuming and expensive.
Resorting to rough labeled data may not help, since it will
cause some similar but actually different movements (e.g.
free lane change and forced lane change) to be classified
into the same category. In addition, manual labeling errors
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are usually hard to detect and may harm the performance of
trained models.

In contrast, end-to-end models do not need explicitly labeled
data to supervise their training. However, we have to manually
filter out the incorrect trajectories when the training data con-
tains lots of noise. Otherwise, incorrect data may noticeably
affect the learning result.

(2) The difficulty of model interpretability
End-to-end models put the whole prediction process into

a “black box” and thus lack of interpretability. Differently,
maneuver-based models usually set the pre-defined maneu-
ver category to be in agreement with human intuitions.
The corresponding statistical inference of vehicle maneu-
ver further enhances the interpretability of the prediction
process.

(3) The difficulty of model design and training
Maneuver-based models decompose complex movements

into several concise maneuvers that are relatively easy to be
modeled by simple trajectory models [1]. However, we need to
carefully design the probabilistic inference logics for maneuver
inference part to avoid inappropriate artificial design or biases.
Till now, we still do not have a mature design yet.

In contrast, end-to-end models aim to automatically identify
various trajectories by using some complex enough deep
neural network models. This solution simplifies the design
problem but often makes the prediction model hard to train.
As discussed in [4], we must carefully balance the proportion
of different types of trajectories in the training set to elimi-
nate the influence of imbalanced data. Otherwise, the trained
model may neglect some important maneuvers that occur
infrequently. For example, an incorrectly trained model may
view any behaviors as going straight, since most datasets are
dominated by going straight trajectory records.

(4) The difficulty of using vehicle spatial interaction
information

Early trajectory prediction models only considered the ego
historical information of the target vehicle. Some recent works
[5], [11], [12] began to consider vehicle spatial interactions
to yield more accurate trajectory predictions in dense traffic.
These approaches can be further divided into two types:

The first type extracts some handcrafted features from
the original trajectories of the target vehicle and interested
surrounding vehicles to express vehicle interactions [5], [13]–
[16]. The independent feature extraction process does not
change the structure of subsequent models, nor does it increase
the computational complexity, thus it can be directly combined
with both maneuver-based models and end-to-end models as
an extra input module. The corresponding feature extrac-
tion methods (e.g. potential field method [17]–[19], etc.)
are designed based on our prior knowledge on the impact
of vehicle interactions, and are thus interpretable. However,
how to embed a prior knowledge remains to be further
investigated.

The second type uses some complex learning models [4],
[11], [20]–[23] to automatically discover features and directly
learn the impact of surrounding vehicles on the target vehicle’s
trajectory. However, these learning models are usually complex

for model design and training. In the recent studies, this kind of
methods is usually used in end-to-end models and the second
part (trajectory prediction) of maneuver-based models.

In this paper, we adopt the maneuver-based framework to
support motion inference and yield more accurate predictions.
To address the four difficulties of maneuver-based models,
we propose a new trajectory prediction model that contains
four targeted solutions.

First, we introduce the concept of sub-maneuvers to improve
the classification of vehicle movements and further reduce
the negative effect of rough maneuver labeling. The sub-
maneuvers are learned in a semi-supervised approach based
on incremental clustering.

Second, we use And-or Graph model [24], [25] as a
backbone to organize hierarchical probabilistic motion infer-
ence based on learned sub-maneuvers and bind each sub-
maneuver with a specific trajectory model. Compared to some
conventional maneuver recognition models (such as SVM [26],
[27], random forest classifier [28], HMM [29], DBN [7],
RNN (includes LSTM) [5], [23], etc.) And-or Graph (AOG)
is evaluated to be powerful to organize elaborate probability
inference [24], [25]. Moreover, AOG model also improves the
interpretability of trajectory prediction.

Third, we combine a dynamic maintenance algorithm with
the semi-supervised learning approach to automatically adjust
the structure and scale of the motion inference model to
fit the training data. This approach helps to avoid excessive
artificially designs on specific inference logics and make better
use of data.

Fourth, we combine different methods to describe the
impact of vehicle interactions in the two sub-models. The first
method is used in maneuver recognition step to extract inter-
action features and keep the interpretability of probabilistic
motion inference. The second method is ST-LSTM [4] which
builds trajectory model for each learned sub-maneuver and
yield more accurate predictions.

Fig. 1 summarizes the design principles, the corresponding
solving models, and the prediction procedures proposed in
this paper. We train and evaluate our overall model (denoted
as AOG-ST) on the NGSIM I-80 dataset. AOG-ST (and the
refined AOG-ST-TB) is compared with our previous end-
to-end model (denoted as ST-LSTM) [4]. The results show
that AOG-ST yields better prediction accuracy and explain-
ability than ST-LSTM. We will also prove that AOG-ST is
a flexible and quick trajectory prediction model for vari-
ous driving scenarios, although it seems complex and slow.
Finally, we discuss the sensitivity of AOG to motion changes.
Although much recent work has not considered this sensitivity,
we believe that it is a key to on-time forewarning and needs
further study.

To give a detailed explanation, the rest of this paper is
arranged as follows. Section II presents the problem we study,
declares the basic notations of this paper and presents the
calculation process of the overall model. Section III describes
the structure and inference algorithm of our AOG model.
Section IV introduces the initialization and dynamic mainte-
nance algorithm of our AOG. Section V introduces the feature
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Fig. 1. The flowchart of our model.

Fig. 2. The illustration of the target vehicle and its surrounding vehicles.

extraction method for AOG. Section VI presents the process of
the experiment and discusses the results. Finally, Section VII
concludes the paper.

II. PROBLEM FORMULATION

A. The Input and Output of Prediction

The nomenclatures used in this paper are listed in
Appendix-B.

As shown in [4] and Fig. 2, we need to study the target
vehicle Vs and six closest surrounding vehicles V f l , Vrl ,
V f s , Vrs , V f r and Vrr (namely, the front-left, rear-left, front,
rear, front-right and rear-right) respectively. Each surrounding
vehicle is with a longitudinal distance of less than 80 m
from Vs .

The input I t of our model includes the historical velocity
and position sequences of the seven vehicles at time t . The
outputs are the motion inference result

{
mt , ht

}
and the

predicted trajectory ôt
s of Vs . Here, mt and ht respectively

represent the most-likely maneuver and sub-maneuver of Vs ,
whose categories are learned by AOG.

Specially, the input is:
I t = [

i t−th , . . . , i t−�t , i t]T
(1)

i t =
[

i t
s, i t

f l , i t
rl , i t

f s, i t
rs , i t

f r , i t
rr

]
(2)

where th defines the length of historical time horizon and �t
defines the time resolution level. i t

s (i t
i ) denotes the observation

sequence of Vs (Vi ) at time t . Here, i represents the index of
surrounding vehicles, i.e., i ∈ { f l, rl, f s, rs, f r, rr}. i t

s (i t
i )

is a four-dimensional vector:⎧⎨
⎩

i t
s =

[
v t

X,s , v
t
Y,s , Xt

s , Y t
s

]
i t
i =

[
v t

X,i , v
t
Y,i , Xt

i , Y t
i

] (3)

where v t
X,s (v t

X,i ), v t
Y,s (v t

Y,i ), Xt
s (Xt

i ) and Y t
s (Y t

i ) define
the instantaneous lateral and longitudinal velocities, the lat-
eral and longitudinal coordinates in the natural coordinates,
respectively.

The output ôt
s consists of a series of position coordinates:

ôt
s =

[
X̂ (t+�t)

s , Ŷ (t+�t)
s , . . . , X̂(t+t p)

s , Ŷ (t+t p)
s

]
(4)

where tp defines the prediction time horizon. The length of
the prediction sequence is n p = tp/�t .

During training, the manually labeled maneuver Mt and the
ground truth future trajectory ot

s of Vs are used to supervise
the training of AOG and ST-LSTM respectively.

ot
s =

[
X (t+�t)

s , Y (t+�t)
s , . . . , X(t+t p)

s , Y (t+t p)
s

]
(5)

Mt describes the initial maneuver clusters of the research
scenario and serves as the basis of the semi-supervised AOG
training. The AOG training algorithms and the application
of Mt are detailed in Section IV. The training of ST-LSTM
minimizes the deviation between ôt

s and ot
s . The detailed

selection of the loss function is presented in [4].
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B. The Calculation Process

As shown in Fig. 1, given an input sequence I t , we need
to implement the following steps to complete the motion
inference and trajectory prediction.

First, we extract the feature vector f t from the original
input I t for AOG. Second, we perform motion inference on
AOG based on f t and obtain the most-likely maneuver mt and
sub-maneuver ht of Vs . Third, we select the most appropriate
ST-LSTM trajectory prediction model based on the mt and ht .
Finally, we perform trajectory prediction based on the selected
ST-LSTM and output the predicted trajectory ôt

s . The specific
input, output and notations of each step are as follows.

Step 1: Feature extraction
The input of this step is the original input I t (a th+�t

�t × 28
matrix) and the output is the extracted feature vector f t at
time t :

f t = [
f1, . . . , fn f

]
(6)

where n f defines the dimension of f t .
The feature extraction process is a heuristic refinement of

the original input I t . The extracted features (especially the
vehicle interaction features) reflect our prior knowledge of
vehicle motion, which simplify the motion inference calcu-
lation and improve the inference reliability. Note that the
extracted features are only used for the motion-level inference,
rather than the calculation of the predicted trajectory ôt

s .
In the subsequent trajectory prediction step, the used vehicle
interaction features are automatically learned in ST-LSTM
models.

In this paper, we construct an eight-dimensional f t that
includes six ego features of the target vehicle and two features
of spatial vehicle interactions. The specific feature extraction
methods are proposed in Section V.

Step 2: Motion inference based on AOG
The input of this step is the extracted feature vector f t and

the output is the estimated maneuver mt and sub-maneuver
ht of Vs . The probabilistic motion inference is organized on
AOG.

Step 3: Trajectory prediction model selection
The input of this step is the estimated mt and ht . In this

paper, we bind each learned sub-maneuver category with
a specific ST-LSTM trajectory prediction model to better
train similar movements. According to mt and ht , we select
the corresponding ST-LSTM model for subsequent trajectory
prediction.

Step 4: Trajectory prediction
The input of this step is the original input I t and the output

is the predicted trajectory (coordinate sequence) ôt
s of Vs . The

specific prediction process relies on the selected ST-LSTM
models obtained in the previous step.

The core idea of ST-LSTM is to explicitly distinguish
the temporal relation of vehicle trajectory segments and
the spatial interaction effects on trajectories, which play
different roles in the prediction process. ST-LSTM constructs
two types of LSTM models: Component-LSTM models
the temporal law of each vehicle without considering its
surrounding vehicles and generates a preliminary prediction

Fig. 3. The illustration of the two kinds of ways to execute trajectory
predictions.

sequence. Interaction-LSTM models the spatial impact of
each specific pair of surrounding vehicle and target vehicle
and generates a correction sequence, which semantically
means the adjustment of the target vehicle to avoid the safety
risk of the corresponding surrounding vehicle. The risk of
each surrounding vehicle to the target vehicle is evaluated to
calculate the dynamic weight for the superimposition of the
corresponding correction sequence. The superimposition of
all the sequences above generates the final prediction result.

The specific definition and implementation of ST-LSTM
refer to [4], here, we only introduce its input and output
interface and consider it as a module. The input of ST-LSTM
trajectory prediction model is the coordinate displacement
sequence xt

s (xt
i ) of Vs (Vi ) and the output is the predicted

coordinate displacement sequence yt
s of Vs :⎧⎨

⎩
xt

s =
[
�X (t−th+�t)

s ,�Y (t−th+�t)
s , . . . ,�Xt

s,�Y t
s

]
xt

i =
[
�X (t−th+�t)

i ,�Y (t−th+�t)
i , . . . ,�Xt

i ,�Y t
i

] (7)

yt
s =

[
�X̂ (t+�t)

s ,�Ŷ (t+�t)
s , . . . ,�X̂(t+t p)

s ,�Ŷ (t+t p)
s

]
(8)

where �Xt
s = Xt

s − X (t−�t)
s and �Y t

s = Y t
s − Y (t−�t)

s
defines the ground truth lateral and longitudinal coordinate
displacements from the time (t − �t) to t . �X̂ (t+�t)

s =
X̂ (t+�t)

s − X̂ t
s and �Ŷ (t+�t)

s = Ŷ (t+�t)
s − Ŷ t

s defines the
predicted lateral and longitudinal coordinate displacements
from the time t to (t + �t) (Here, X̂ t

s = Xt
s and Ŷ t

s = Y t
s ).

The length of the historical sequence xt
s (xt

i ) is nh = th/�t .
The length of yt

s is n p .
xt

s (xt
i ) can be directly derived from I t . ôt

s can be calculated
by the cumulative sum given yt

s and the cooridinate
[
Xt

s , Y t
s

]
of Vs at time t .

Note that yt
s is not always obtained in one calculation,

specifically, it depends on the n p and the pre-defined output
length n′

p of ST-LSTM. We agree that there are two kinds of
ways to execute trajectory predictions (short-term and long-
term predictions), as shown in Fig. 3.

The first way is one-by-one calculation. Each step of the
calculation only outputs one sequence point (i.e., n′

p = 1 �
n p). Therefore, yt

s is iteratively calculated through the sliding
window input. Based on this method, short-term predictions
are part of long-term predictions. However, the number of
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iterations between them may be over large, resulting in serious
error accumulations. Moreover, it also faces the problem of
time-consuming due to the iterations.

The second way is directly calculation. That is, we prede-
termine the dimension of output trajectories to be the same
as the given prediction horizon (i.e., n′

p = n p). Based on
this method, short-term predictions and long-term predictions
are simultaneously obtained. However, this will make the
prediction model less flexible.

In this paper, we predefine a moderate n′
p (i.e., 1 �

n′
p < n p) to avoid the above problems. We perform a sliding

window on the overall sequence (with a step width of n′
p)

to generate input sequences and further predict a series of
predicted sequence segments by ST-LSTM. The final yt

s is
generated by concatenating the above predicted sequences.

The above prediction process does not explicitly predict
vehicle speeds and accelerations, because the adopted ST-
LSTM is a data-driven model without modeling vehicle kine-
matics and dynamics. But our AOG framework is flexible
enough to support the estimation of these two variables. The
reason and explanation for these facts are listed as follows:

Due to the flexibility of our framework, we can enable the
prediction part to explicitly predict speeds and accelerations
through some appropriate modifications on the network of ST-
LSTM. Even without the above modifications, we can calcu-
late the speed and acceleration values through the difference of
the obtained position coordinates of vehicles. However, due to
the lack of restraint by vehicle dynamics or kinematics, these
results may have large errors or even be unfeasible.

Moreover, a large number of previous work has proven that
current state-of-the-art data-driven models have significantly
higher prediction accuracy than classical kinematic/dynamic
models [1]. This is partly because many simplifications
of kinematic/dynamic models bring much error. Currently,
researchers still do not find an appropriate way to combine
data-driven methods and kinematic/dynamic models. We are
studying how to reach this goal and hope to find a way in the
future.

The AOG-based probabilistic motion inference (Step 2) is
the core step of the overall trajectory prediction procedure.
The training of the AOG structure and inference logics are
also the core contribution of this paper. In the following
two sections, we will present the details of the structure and
probabilistic inference of AOG (Section III) and the semi-
supervised training algorithm of AOG (Section IV ).

III. THE AOG MOTION INFERENCE MODEL

The recent work [24] constructs a vehicle maneuver infer-
ence model in a single scenario based on AOG. In this paper,
in order to consider multilevel driving behaviors and support
hierarchical motion inference, we modify the structure of
AOG in [24] and design the corresponding inference logics.
Specifically, we add a sub-maneuver layer below the AOG
in [24] to organize a more elaborate inference. To build
a layer-by-layer inference logic and reduce computational
complexity, we decouple the calculation of different layers by
some relaxation operations.

In this section, we will introduce the detailed structure of
our AOG model (Section III-A) and the probabilistic motion
inference based on AOG (Section III-B). In Section III-C,
we will introduce the calculation of state transition probabili-
ties, which is an import part of motion inference calculation.

A. Graphic Structure of Our Model

In this subsection, we will introduce different kinds of nodes
in our AOG model and explain how to build a motion inference
model by combining these nodes layer by layer. The overall
structure of AOG is shown in Fig. 4, which is the unfolding
drawing of the ellipse “The trained AOG” in Fig. 1.

1) Or-Nodes: As shown in the left part of Fig. 4, the front
view of the AOG model is a tree-like structure with alternant
And-node layers and Or-nodes layers. Here, each Or-node has
a clear semantics, e.g. S represents a specific scenario, M
represents a maneuver, and H represents a sub-maneuver. The
Or-nodes with the same parent node can convert to each
other. Their state transition relationships can be described
by a probability graph model, which is represented by the
horizontal blue dotted lines in the left part of Fig. 4. We can
formulate a series of state transition graphs (STG) at the
bottom of AOG; see the blue blocks of Fig. 4. Each blue
dotted arrow in STGs indicates one possible state transition,
and the corresponding transition probability is determined by
the And-node above it.

2) And-Nodes: Each And-node represents a configuration
selected by its parent Or-node, which configures the para-
meters to calculate state transition probabilities of the STG
below it. To facilitate the understanding, we can treat the
configuration as the “style” of state transition.

Suppose we set two state transition styles: aggressive (state
transitions are frequent and Logistic functions are steep) and
conservative (state transitions are infrequent and Logistic func-
tions are even). We set two collocated And-nodes in one AOG
layer to express the alternative relationship between the two
styles. When performing motion inference in this layer, we first
evaluate the most-likely style based on historical inference
results. Then, we select the corresponding set of parameters
(of this style) to calculate the state transition probabilities
below this And-node. When we finish the overall inference,
the obtained inference result that uses these state transition
probabilities is more in agreement with the current motion
characteristic (style) of the target vehicle.

Note that there is no direct correlation between the styles
(the number and parameters) under different Or-nodes. Ideally,
we should get the optimal number of styles for each Or-
nodes by clustering the frequency of state transitions. But for
simplicity, we assume that the numbers of styles under all
the Or-nodes are equal.

3) STG Nodes and State Transition Probabilities: We divide
the nodes in STG into two types: trivial nodes and non-
trivial nodes. It is easy to define trivial nodes based on our
prior knowledge, e.g. straight road is the trivial scenario and
going straight is the trivial maneuver in straight road scenarios.
We use self-loops to represent trivial nodes in STGs, as shown
in the first STG in Fig. 4. The state transition probability
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Fig. 4. The illustration of the hierarchical vehicle maneuver inference model based on AOG. The Zr and Zr,k in this figure respectively express the selected
style of state transition (i.e., vehicle motion) in different layers. When changing styles, we switch the arrow group below the corresponding And-node (e.g.,
from the black arrow group to the gray arrow group below Z1) to change the local inference logic of AOG.

from trivial nodes to others should be obtained by statistical
methods.

In contrast, the state will eventually transit from non-trivial
nodes to other nodes within a finite time. In this paper, we use
Logistic regression (LR) of duration to calculate the state
transition probability from non-trivial nodes to others [24].
The calculation process is described in Section III-C.

4) The Layers of AOG: As shown in Fig. 4, the AOG
model contains four layers: scenario layer, maneuver layer,
sub-maneuver layer and feature layer.

The feature layer serves as the input layer of AOG motion
inference and calculates the emission probabilities.1 The input
feature vector contains ego features of the target vehicle and
vehicle interaction features. In this paper, we assume that
the input feature vector follows a multi-dimensional Gaussian
distribution for each sub-maneuver. Therefore, we bind each
considered sub-maneuver with a specific Gaussian emission
distribution and build the connections between the feature
layer and the sub-maneuver layer.

The other three layers serve as the inference layers that
generate probabilistic estimates of semantics at different levels.
Each layer consists of one And-node sublayer and one Or-
node sublayer. We will detail the inference calculation of these
layers in the following subsection. In this paper, we only
consider the inference in a single research scenario. Thus the
scenario layer in Fig. 4 only contains one And-node.

5) Basic Notations of AOG: As shown in Fig. 4, we assume
the maneuvers (learned by AOG) in research scenario S are
{Mk |1 ≤ k ≤ nk} and the sub-maneuvers in maneuver Mk are

1We borrow this term from HMM [42] to describe the conditional probabil-
ity of the observation (e.g. the feature vector f t ) given a specific maneuver
or sub-maneuver. The definition and usage of this term in this paper are the
same as those in classical HMM models.

{
H j,k|1 ≤ j ≤ n j,k

}
. For simplicity, we assume that each Or-

node in the trained AOG has Nstyle And-nodes (driving styles)
below it. Therefore, the configurations belonging to S and Mk

are denoted as
{

Zr |1 ≤ r ≤ Nstyle
}

and
{

Zr,k |1 ≤ r ≤ Nstyle
}

respectively

B. Probabilistic Motion Inference Based on AOG

As shown in the right part of Fig. 4, the motion inference
of AOG is a bottom-up process and contains three steps.

Step 1: The calculation in the feature layer
The input of the feature layer is the feature vector f t

extracted from the original input I t . Then, we can calculate the
emission probability P

(
f t |ht

k = H j,k
)

of each sub-maneuver
H j,k by the corresponding Gaussian emission distribution.

Step 2: The inference in the sub-maneuver layer
The input of the sub-maneuver layer is the emission prob-

ability P
(

f t |ht
k = H j,k

)
obtained from the feature layer. The

output is the posterior probability Pt
j,k = P

(
ht

k = H j,k| f t)
of each H j,k subordinate to Mk . Moreover, the sub-maneuver
layer providers the emission probability for the maneuver
layer.

The sub-maneuver inference also need some internal inputs,
including the posterior probability Pt−�t

j,k at the time (t −
�t), the duration d j,k of each H j,k and the probability

P
(

zt−�t
k = Zr,k

)
that Vs adopts the style Zr,k up to time

(t − �t).
Let us take the inference below a specific Mk as an example.

If the And-nodes (style configurations) are not considered, it is
straightforward that Pt

i,k is calculated by:
Pt

i,k ∝ P
(

f t |ht
k = Hi,k

) ∑
j

P
(
H j,k → Hi,k

)
Pt−�t

j,k (9)
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where the state transition probability P
(
H j,k → Hi,k

)
can be

calculated from d j,k if H j,k is a non-trivial STG node; see
explanations in Section III-C. Otherwise, P

(
H j,k → Hi,k

)
is

a constant value that learned by AOG.
Consider the state transition style zt−�t

k ∈{
Zr,k |1 ≤ r ≤ nr

}
, the Eq.(9) becomes:

Pr
(
ht

k = Hi,k | f t−�t)
=

∑
j

Pr
(
H j,k → Hi,k

)
Pr

(
ht−�t

k = H j,k| f t−�t
)

(10)

Pr
(
ht

k = Hi,k | f t )
∝ P

(
f t |ht

k = Hi,k
)

Pr
(
ht

k = Hi,k | f t−�t) (11)

Pt
i,k ∝

∑
r

P
(

zt−�t
k = Zr,k

)
Pr

(
ht

k = Hi,k | f t ) (12)

where Pr represents the probability under the state transition
style Zr,k . P

(
zt−�t

k = Zr,k

)
is the probability that the target

vehicle adopts Zr,k up to the time (t − �t).
Finally, we determine the most-likely sub-maneuver below

Mk by selecting ĥt
k = arg max

Hi,k

Pt
i,k . We concatenate ĥt

k

and the historical most-likely sub-maneuver sequence ht−�t
k

and obtain ht
k =

[
ht−�t

k , ĥt
k

]
. Here, ht

k is used to update

P
(
zt

k = Zr,k
)
:

P
(
zt

k = Zr,k
) = P

(
zt

k = Zr,k |ht
k

) ∝ P
(
ht

k|zt
k = Zr,k

)
=

∏
τ

P
(

ĥτ
k |zt

k = Zr,k, ĥτ−�t
k , ĥτ−2�t

k , . . .
)

(13)

Suppose ĥτ
k is just related to ĥτ−�t

k , Eq. (13) then becomes:
P

(
zt

k = Zr,k
) ∝

∏
τ

P
(

ĥτ−�t
k → ĥτ

k

)
(14)

We can traverse all the Mk and obtain a candidate sub-

maneuver vector ht =
[
ĥt

1, . . . , ĥt
k

]T
that stores the most

likely sub-maneuver below each maneuver of AOG. Note that
we have not yet gotten the final ht . The final determination of
ht depends on the inference result of the maneuver layer.

To calculate the emission probability for the maneuver
layer, we treat the inferred most-likely sub-maneuver ĥt

k as
an observation of its corresponding Mk given f t . Therefore,
the emission probability of Mk is approximated as the emission
probability of ĥt

k , i.e., P
(
ht |mt = Mk

) ≈ P
(

f t |ht = ĥt
k

)
.

Based on this relaxation, all the emission probabilities of the
maneuver layer can be directly derived from Pt

j,k , rather than
by tracing back to f t (the feature layer). i.e., the overall
inference process can be organized layer-by-layer.

Step 3: The inference in the maneuver layer
The input of this layer is the candidate sub-maneuver vector

ht and the emission probability P
(
ht |mt = Mk

)
of each Mk .

The output is the posterior probability Pt
k = P

(
mt = Mk |ht )

that Vs performs each Mk , the estimated maneuver mt , and
the estimated sub-maneuver ht .

Similar to the inference in the sub-maneuver layer, some
internal inputs are also needed in this layer, e.g., the posterior
probability Pt−�t

k at the time (t − �t). The duration dk , and

the probability P
(
zt = Zr

)
that Vs adopts the style Zr up to

time (t − �t).
Derived from Eq.(9), the maneuver inference regardless of

state transition style Zr follows:
Pt

i ∝ P
(
ht |mt = Mi

) ∑
k

P (Mk → Mi ) Pt−�t
k (15)

Considering state transition style zt−�t ∈ {Zr |1 ≤ r ≤ nr },
we can imitate Eq.(10)-(14) to implement the probabilis-
tic maneuver inference and the update of zt , finally obtain
the most-likely maneuver m̂ = arg maxMk Pt

k = mt .
Then the corresponding ĥt

k is treated as the most-likely
sub-maneuver ht .

Our layer-by-layer inference can effectively reduce the
computational complexity. Without the relaxation of the emis-
sion probability of maneuver, some “cross-maneuver” state
transitions like H j,k → H j,l will be legal and need to
consider, which will cause a great increase of state transi-
tion functions (and calculations). Moreover, to calculate the
emission probability of Mk , we must trace down to all the
sub-maneuvers (including sub-maneuvers of other maneuvers).
This calculation is over complicated and hard to implement.

C. The Calculation of State Transition Probability

In this paper, we adopt Logistic functions to calculate the
state transition probabilities from non-trivial nodes given the
duration of the last state (e.g. P

(
H j,k → Hi,k

)
in Eq.(6)).

Here, we introduce the calculation and the training method of
these functions.

Let h be an arbitrary non-trivial node of a certain STG.
Denote succ(h) as the set of all the successors of h, i.e., all
nodes that can be converted from h. Let fh→h′ be the
Logistic state transition probability function between h and
h′ ∈ succ(h), whose parameters are αh→h′ and βh→h′ . The
probability of this transition is:

P
(
h → h′) ∝ 1

1 + exp [− (αh→h′ d + βh→h′)]
(16)

where d is the duration of h.
The probability of keeping the state h is:

P(h → h) ∝ 1

n

∑
γ∈succ(h)

(1 − P(h → γ )) (17)

where n is the number of states in succ(h).
To obtain the value of αh→h′ and βh→h′ , we use Logistic

Regression to fit the Logistic function fh→h′ . First, we traverse
the training set and record the duration di of keeping state h
before the h → h′ transition occurs. The recorded dataset
is denoted as D = {di |1 ≤ i ≤ Nd }. Then we sample Nds

duration points according to the range of D and get sampled
set DS = {

ds j |1 ≤ j ≤ Nds
}
. Given any data di ∈ D, a set

of labeled training data can be derived:
Ti = {(

ds j , σi, j
) |1 ≤ j ≤ Nds

}
(18)

where σi, j =
{

1 if di ≤ ds j

0 else
.
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The likelihood of D based on fh→h′ is:

L = −
Nd∑

i=1

Nds∑
j=1

[
σi, j log fh→h′

(
ds j

)
+ (

1 − σi, j
)

log
[
1 − fh→h′

(
ds j

)]]
(19)

Then the parameters αh→h′ and βh→h′ can be optimized
based on gradient-based methods. In this paper, we have
actually filtered out the abnormal data with error labels before
starting the optimization. Otherwise, the abnormal data will
have a big impact on the likelihood L and optimized results.
We will describe the filtering approach of abnormal points
during model training in Section IV.

IV. INITIALIZATION AND DYNAMIC

MAINTENANCE OF AOG

In this section, we will present the initialization and
dynamic maintenance method for AOG training.

(1) Solving the difficulty of AOG initialization
The core idea of semi-supervised AOG initialization is

using a clustering method to classify adjacent points (with the
same maneuver label) in the feature space into the same sub-
maneuver. The main difficulty is how to filter out the abnormal
points in feature space caused by error labeling. Since we
assume that the feature vector follows a multi-dimensional
Gaussian distribution for each sub-maneuver. If some abnor-
mal points that are actually far away from all sub-maneuvers
are forcibly divided into one sub-maneuver, the distribution of
the sub-maneuver will be flatter and corresponding classifica-
tion ability is weakened.

In this paper, we adopt DBSCAN as the core clustering
method [30]. This density clustering algorithm can divide
points at high-density areas in the feature space into clusters,
while the outliers (at low-density area) will be well filtered
out. The clustered sub-maneuvers serve as good complements
to the rough maneuver labels and achieve a more elaborate
division of vehicle motion.

(2) Solving the difficulty of AOG dynamic maintenance
After building AOG models, with the introduction of new

training data, some new sub-maneuvers may be discovered or
some sub-maneuvers could be connected in the feature space
(i.e., merging to one sub-maneuver). Therefore, a dynamic
maintenance method is needed to maintain that the sub-
maneuver clusters always fit the amplified training set well.

The main difficulty is how to determine whether a sub-
maneuver should split or some sub-maneuvers should aggre-
gate. In this paper, we adopt the Bayesian Information Crite-
rion (BIC) as the determination basis. The core idea is to find
the better one from the original sub-maneuver (sub-maneuvers)
and the split sub-maneuvers (merged sub-maneuver) that better
fits the training set. Our dynamic maintenance algorithm will
modify the clustered sub-maneuvers

{
H j,k|1 ≤ j ≤ n j,k

}
of

each Mk and the corresponding STG (e.g. αh→h′ and βh→h′ ,
etc.).

In this section, we will first introduce the two basic
algorithms (DBSCAN and BIC) in Section IV-A. Then we
will present the detailed specific initialization (Section IV-B)

and dynamic maintenance (Section IV-C) approaches. The
presented DBSCAN and BIC will be used in these two
approaches.

A. Classical Algorithms That Are Used

1) Density Clustering Based on DBSCAN: In this paper,
we use the DBSCAN algorithm to perform density clustering
on the feature space and obtain a preliminary sub-maneuver
classification [30]. We use Euclidean distance as the distance
measure of DBSCAN and use KD-tree to achieve faster near-
est neighbor search. To implement better pre-classification,
we select the parameters including distance threshold ε and
minimum number n through experiments.

2) Node Splitting and Merging Based on BIC: In this
paper, we propose node splitting and merging criterions based
on the Bayesian Information Criterion (BIC) for dynamic
maintenance of sub-maneuver classification [31]. The splitting
criterion is used to determine whether one sub-maneuver in the
AOG should be further divided into two sub-maneuvers. The
merging criterion is used to determine whether two learned
sub-maneuver is similar enough to be merged.

For simplicity, we assume the node splitting is one into two
and the node merging is two into one. Then the splitting and
merging problems are transformed into one specific problem
that selecting one model which better fits the training set
from two candidate models. Specifically, under the Gaussian
distribution assumption of the feature vector, the two candidate
models are respectively a single Gaussian model G and a
GMM G′ (mixed by G1 and G2).

Suppose the dataset for BIC decision is F =
{ fi |1 ≤ i ≤ N}. θ , θ1, θ2 respectively denote the parameters of
G, G1, G2. Then the BIC value of the two candidate models
are:

B IC(G) = −2
N∑

i=1

ln (p ( fi |θ)) + d ln N (20)

B IC
(
G′) = −2

N∑
i=1

ln (pmax ( fi , θ1, θ2)) + d ln N1 + d ln N2

(21)

where p ( fi |θ) represents the likelihood of the sample fi under
the parameter θ (i.e., model G). d is the dimension of the
input feature fi . The pmax ( fi , θ1, θ2), N1 and N2 in Eq.(21)
are calculated by:⎧⎪⎪⎨

⎪⎪⎩
pmax ( fi , θ1, θ2) = max (p ( fi |θ1) , p ( fi |θ2))

N1 =
∑N

i=1
1 {p ( fi |θ1) ≥ p ( fi |θ2)}

N2 =
∑N

i=1
1 {p ( fi |θ1) ≤ p ( fi |θ2)}

(22)

where 1{a} =
{

1 if a is True
0 else

.

The first item of the BIC equation is the negative log-
likelihood of the corresponding training set. The other
items are penalty items, which are used to suppress the
over-segmentation of the sub-maneuvers. A lower BIC value
indicates that the model can better reflect the distribution
characteristic of the dataset.
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Suppose H is the sub-maneuver to be decided for node
splitting, which follows Gaussian distribution G. The feature
set belongs to this sub-maneuver is F . The node splitting
algorithm contains three steps:

1) Perform K-means clustering (K = 2) on the dataset F ′
which is downsampled from F ;

2) Label all the data of F based on the K-means clustering
result. Fit Gaussian distribution G1 and G2 based on the
two categories of labeled data;

3) Calculate the BIC values of G and G′ based on Eq.(20)-
(22). Split H into H1 and H2 which respectively follow
G1 and G2 if B IC(G) and B IC(G′) satisfy:

B IC
(
G′)

B IC(G)
< T hs (23)

where T hs is the threshold of node splitting (T hs < 1).
Suppose H1 and H2 are the sub-maneuvers to be decided for

node merging, which follow Gaussian distribution G1 and G2
respectively. The feature set belongs to the sub-maneuvers are
F1 and F2. The node merging algorithm contains two steps:

1) Fit Gaussian distribution G based on F = F1 ∪ F2;
2) Calculate the BIC values of G and G′ based on Eq.(20)-

(22). Merge H1 and H2 into H which follows G if
B IC(G) and B IC(G′) satisfy:

B IC
(
G′)

B IC(G)
> T hm (24)

where T hm is the threshold of node merging. T hm should
be larger than T hs to avoid oscillations between splitting and
merging.

In the subsequent experiments, when selecting the values of
T hs and T hm , we test multiple sets of these parameters and
choose a better set that can maintain a moderate frequency of
node splitting and merging.

B. AOG Initialization Algorithm

We design a semi-supervised approach to initialize AOG
from the labeled training set. First, we use the maneuver labels
to supervise the establishment of the maneuver layer. Then
we perform the DBSCAN clustering algorithm (Section IV-A)
on each maneuver node to learn sub-maneuvers. During the
clustering process, some outliers that resulting from error
labeling can be filtered out, thus the model can reduce the
impact of error labeling on sub-maneuver clustering results.
Finally, we perform node splitting (Section IV-A) on the
clustered sub-maneuver to ensure that the number of sub-
maneuver clusters in the learned AOG is above a certain
number.

The specific initializing procedure is detailed as follows and
also shown in Appendix-C (Algorithm 1). The main input of
this algorithm is the labeled training set and the output is the
initialized AOG.

1) Construct the scenario layer and maneuver layer accord-
ing to the known scenario and maneuver labels. Add an

additional unclassified model on each layer to store data
without the corresponding label.

2) Traverse the training set and store each data into the
maneuver nodes according to its label.

3) Perform DBSCAN-based pre-classification algorithm
on each maneuver node. Construct preliminary sub-
maneuver nodes after filtering out the noise classes.

4) Repeatedly traverse the preliminary sub-maneuvers (of
each maneuver) and perform node splitting on each
node, until no sub-maneuver can be split or the
total number of the sub-maneuvers reaches a specified
upper value. Then generate the STG among these sub-
maneuvers.

5) Finally, we generate the STG among all the maneuvers.

The STG generating algorithm used above is described as
follows and also shown in Appendix-C (Algorithm 2). The
main inputs of the algorithm are the set of patterns with state
transition relationships and the corresponding training set. The
output is the STG among these patterns.

1) Traverse the training set and inference the pattern of
each data based on the emission probability. When a
state transition is captured, we record the state transition
pair and the duration of the old state.

2) Traverse all the state transition pairs. If the transi-
tion is from a non-trivial node, we cluster the dura-
tion sequence (the number of clusters is equal to the
preset number of state transition styles) and fit the
state transition functions based on LR. If the tran-
sition is from a trivial node, we set the transition
probability of this state transition pair to a constant
value.

C. AOG Dynamic Maintenance Algorithm

In this subsection, we will propose the dynamic maintenance
algorithm of AOG. Given the initialized AOG and some
new training data, the algorithm repeated executes the BIC
node merging and splitting algorithm (Section IV-A) to fit the
amplified training set.

The specific maintenance procedure is detailed as follows
and also shown in Appendix-C (Algorithm 3). The main input
of this algorithm is the new labeled training set and the output
is the updated AOG model.

1) Traverse the new training set. We store the data with new
maneuver labels and built corresponding sub-maneuvers
by Algorithm 1 when enough data is accumulated. If the
maneuver label is already in AOG, we inference the sub-
maneuver of the data based on the method in Section III-
B, store the data in the most-likely sub-maneuver node
and update the sub-maneuver when enough data is
accumulated.

2) To update a sub-maneuver h, we first update the
Gaussian distribution for observation and the state tran-
sition probability functions of related directed edges
in STG. Then we traverse other sub-maneuvers (below
the same maneuver) and perform node merging with h.
Finally, we perform node splitting.
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V. FEATURE EXTRACTION FOR AOG

As mentioned in Section II-B, the feature vector used
in AOG includes ego features that are derived from the
historical trajectory of the target vehicle and interaction
features that are derived from the vehicle interaction
relationships. In this section, we will present the detailed
feature extraction method for AOG. Ego feature extraction is
presented in Section V-A, and interaction feature extraction is
presented in Section V-B,C.

A. Ego Features of the Target Vehicle

Many conventional works adopt some statistics (e.g. RMS,
mean, etc.) of vehicle velocity (coordinate) in specific histor-
ical time horizons to express the characteristics or changes
of the vehicle motion in the recent period of time [32]–[34].
These extracted features have been validated to be effective in
vehicle motion inference.

In this paper, we adopt six ego features: the instantaneous
velocity in longitudinal and lateral directions, the mean and
RMS value of lateral velocity in the historical horizon of 1 s
and 2 s. Note that these ego features need to be normalized
before inputting to AOG.

B. Vehicle Interaction Features Obtained From
Potential Field

Compared to ego features, interaction features are usually
heuristic and incorporate our prior knowledge. Some works
adopt risk assessment indicators as interaction features, such
as time to collision (TTC) and time to lane (TTL) [35]. The
potential field method is also a commonly used approach
to measure the risk level [17]–[19]. Although the values
of potential functions do not have clear physical meanings,
the construction of the potential field heuristically simulates
the interactions between vehicles.

Some other works attempt to extract more abstract semantic
features as the measure of vehicle interactions [14], [36], e.g.,
the prior probability that the target vehicle performs some
specific motions given the current traffic situation. This kind
of features is more interpretable and also harder to design.

In this paper, we present a combined interaction feature
extraction method. We first adopt a potential field method
to extract preliminary interaction features. Then we conduct
further feature extraction based on our prior knowledge and
obtain two features. These two features approximate the
prior left and right lane change probabilities affected by the
surrounding vehicles (without considering the ego historical
movement of the target vehicle). In this subsection, we will
present the potential field-based feature extraction method.
We will present the further feature extraction method in
Section V-C.

The used potential field method is derived from the concept
of safety risks, here, we detail the method as follows.

1) One-Dimensional Safety Gap: In the longitudinal direc-
tion (along the road), we measure the safe distance by the
formula of safe gap proposed in [37]. Let Vl (V f ) be the
leading (following) vehicle between Vi and Vs . The safe

Fig. 5. The illustration of safety field.

distance between the two vehicles is:

Dy = v f ρ +
(
v f

)2 − (vl)
2

2abrake
+ L = v̄�v

abrake
+(

v f ρ+L
)

(25)

where vl (v f ) is the longitudinal velocity of the Vl (V f ). L is
the average length of the two vehicles. ρ is the mean response
time of drivers. abrake is the brake deceleration of the two
vehicles. The average velocity v̄ = (

vl + v f
)
/2. The relative

velocity �v = v f − vl .
This safe distance imagines a car-following scenario,

the leading vehicle brakes by abrake until a full stop, and the
following vehicle keeps uniform during the response time ρ,
and then brakes by abrake until a full stop. This formula can be
considered as (a lower bound of) safe distance because when
two vehicles are closer than D, the following vehicle may not
be able to avoid collision by braking.

In the lateral direction (vertical to the road direction), we set
the safety distance to half of the lane width Llane:

Dx = Llane

2
(26)

2) Two-Dimensional Safety Field: We can roughly measure
the safety status between two vehicles in two directions by
comparing the actual distances to the safety distances (Dy and
Dx ). However, the evaluation in the longitudinal and lateral
directions are independent. If two cases have different “safe
value” in both of the two directions, it is hard to compare their
safety status.

In this paper, we build a two-dimensional safety field and
link the longitudinal and lateral measures by equipotential
lines; see Fig. 5. We assume that the equipotential lines
of the safety field are concentric ellipses. In other words,
the longitudinal and lateral safety gaps are equipotential (A
and B in Fig. 5).

Suppose the coordinates of Vs and Vi are Cs = [Xs , Ys ]T

and Ci = [Xi , Yi ]T respectively. �i is the safety potential
field generated by Vi .

Based on the assumption of elliptical equipotential lines, Cs

is equipotential with C ′
s , which has the same lateral coordinate

with Ci . The longitudinal distance between C ′
s and Ci is:

r = σy

√
(Cs − Ci )

T �−1 (Cs − Ci ) (27)

where � = diag
(
σ 2

x , σ 2
y

)
. Here, σx = Dx and σy = Dy .

Therefore, the two-dimensional safety potential field prob-
lem is transformed into a one-dimensional potential function
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problem. In this paper, we adopt Eq.(28) as the potential
function. There are still some conventional works adopt other
functions (such as the density function of 2-D Gaussian
distribution). We will discuss the advantage of our potential
functions over 2-D Gaussian distribution in Appendix-A.

ϑi = �i
(
C ′

s

) = �i (Cs) = A
exp(−r)

r
(28)

The potential function above lacks a numerical calibration,
thus ϑi generated from different Vi cannot be superimposed
directly. Here, we calibrate the potentials by calculating the
constant A of Eq.(28):

�i

([
σx , σy

]T
)

= 1 (29)

The potential value above depicts the safety risk of Vi

to Vs . A larger potential value indicates that Vi could
have a more significant effect on the future motion of Vs .
Then we can calculate the potential value of each Vi (i ∈
{ f l, rl, f s, rs, f r, rr}).

C. Further Feature Extraction Based on
Prior Knowledge

In this subsection, we perform further feature extraction
based on the extracted ϑi in Section V-B and generate two new
features. The new features incorporate our prior knowledge of
the vehicle movements in the research scenario, which helps
to reduce the feature dimension and accelerates the learning
process. Specifically, the two features have the semantic of the
prior left and right lane change probabilities.

Take the scenario of straight roads as an example, in this
paper, we superimpose the potentials of the same lane to
express the driving condition of the three lanes.

⎧⎪⎨
⎪⎩

ϕs = (
ϑ f s

)βs (ϑrs )
(1−βs)

ϕl = (
ϑ f l

)βl (ϑrs)
(1−βl )

ϕr = (
ϑ f r

)βr
(ϑrr )

(1−βr )

(30)

where βs , βl , βr ∈ [0, 1]. We use this form of superposition is
to obtain a sum formula when calculating log-likelihood.

Here, a larger ϕ indicates that the lane has a greater
repulsion on Vs , i.e., approaching the lane may increase the
security risk of Vs .

According to our prior knowledge, we respectively use
ln ϕs/ϕl (ln ϕs/ϕr ) and ln ϕs to represent the subjective will
and objective condition of lane changes. A large ln ϕs/ϕl

(ln ϕs/ϕr ) indicates that the driving condition of the left
(right) lane is superior to the current lane, which may attract
the driver to perform lane change. A large ln ϕs indicates
that V f s and Vrs are very close to Vs , i.e., Vs has limited
lane change condition, thus the lane change probability is
relatively low.

The reprocessed features ln ϕs/ϕl (ln ϕs/ϕr ) and ln ϕs have
more interpretability than ϑi , thus we use these features to
model the prior left and right lane change probabilities based

TABLE I

THE OPTIMIZED PARAMETERS

Fig. 6. The comparison between prior lane change probability and statistical
lane change frequency: (a) Left lane change, (b) Right lane change.

on Logistic functions:⎧⎪⎨
⎪⎩

Prlc = 1

1 + e−gr (ϑ)

gr (ϑ) = αr1 ln
ϕs

ϕr
− αr2 ln ϕs

(31)

⎧⎪⎨
⎪⎩

Pllc = 1

1 + e−gl (ϑ)

gl(ϑ) = αl1 ln
ϕs

ϕl
− αl2 ln ϕs

(32)

where Pllc (Prlc) is the prior left (right) lane change prob-
ability. αr1, αr2, αl1, αl2 ∈ [0, 1]. Without loss of generality,
we can set αr1 + αr2 = 1 and αl1 + αl2 = 1.

Then the parameters (βs, βl , βr , αr1, αr2, αl1, αl2) could be
optimized by Maximum Likelihood Estimation (MLE) and the
Frank-Wolfe Algorithm. The optimized parameters are shown
in Table I. The evaluations of Prlc and Pllc are plotted in Fig. 6.

In Fig. 6, the x-coordinate represents the prior lane change
probability just considering the traffic conditions, i.e., vehi-
cle interactions. The y-coordinates represents the actual lane
change frequency corresponding to each value of prior lane
change probability. The positive correlation between x and y
coordinates indicates that Pllc and Prlc can provide reason-
able prior judgments on vehicle maneuver based on vehicle
interactions regardless of its historical movement. Therefore,
we select Pllc and Prlc as the vehicle interaction features for
AOG. Since the Logistic function in Eq. (31)-(32) can limit
the feature values in [0,1], it is no need to normalize these
features.

Finally, we concatenate the six ego features extracted in
Section V-A with the two interaction features extracted in
Section V-C and construct an 8-dimensional feature vector for
AOG. (i.e., the lateral and longitudinal instantaneous velocity,
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the mean and RMS value of lateral velocity in the historical
horizon of 1 s and 2 s, Pllc and Prlc).

VI. EXPERIMENTS

A. Dataset and Experiment Settings

1) Dataset Preprocessing: We train and evaluate our model
on the NGSIM I-80 dataset [43]. I-80 was collected on
Interstate 80 in Emeryville, California, which is a straight
road with multiple lanes. This dataset provides a wealth
of trajectory information including lateral and longitudinal
position and velocity, lane ID, the vehicle length and width,
etc. However, it does not provide the boundary coordinates
between lanes. Moreover, the dataset is unbalanced: Although
it includes a large number of lane change operations, going
straight trajectory still dominates the dataset, and the left
(right) lane changes are also unbalanced.

In order to compare our maneuver-based model with
our previous end-to-end model (ST-LSTM) [4], we adopt
the dataset preprocessing method proposed in [4], including
dataset balancing and trajectory trimming, to obtain the same
training and testing set. To enable the quick search of the
surrounding vehicles, we also perform necessary preprocess-
ing that records the neighboring relations between vehicles
according to their positions.

Moreover, in order to support the initialization algorithm
of AOG, we manually label the maneuver categories for
all trajectories in the preprocessed dataset. Limited by the
difficulty of maneuver labeling, we just provide five types of
rough category labels: going straight (GS), left lane change
(LLC), merging into the left lane (MLL), right lane change
(RLC), merge into the right lane (MRL).

Our maneuver labeling method for each specific trajectory
is described as follows. Since I-80 dataset provides the lane
ID of each vehicle at each sampling time, it is straightforward
to know whether the trajectory contains lane changes (and the
number of lane change). If no lane change is found, we can
label all the time of the trajectory as GS, otherwise, we mark
the jump time of lane ID as the boundary between LLC and
MLL (RLC and MRL). Then we artificially determine the start
and end time of each lane change by observing the trajectory
curve, which is respectively marked as the boundary between
GS and LLC (RLC) and the boundary between MLL (MRL)
and GS. Finally, we set the maneuver label for each moment
of the trajectory.

2) Training Details: Our training process is step-by-step.
First, we initialize the AOG by a subset of the training set.
Then we traverse the training set and dynamically maintain
the AOG. After obtaining the final AOG, we bind each sub-
maneuver with a specific ST-LSTM model. Finally, we train
all the ST-LSTM on the training set.

Since our AOG initialization algorithm includes performing
DBSCAN-based pre-classification on high dimensional feature
space, if the dataset for initialization is too large, the neighbor
searching for DBSCAN is time-consuming. Therefore, we just
use a subset of the training set during initialization to speed up
the calculation. We have tested some proportions and finally
select 10% of the training set for initialization.

During the AOG initialization and dynamic maintenance,
we set Nsub = 8 (Algorithm 1) to prevent excessive segmen-
tation of sub-maneuvers. The number of styles Nstyle = 2
(Algorithm 2). Nbu f should be determined according to the
size of the training set. In this paper, we set Nbu f = 100. The
threshold of AOG node splitting and merging are respectively
T hs = 0.8 and T hm = 0.9. The parameters to calculate safe
distance are abrake = 6 m/s2, ρ = 0.5 s and Llane = 4 m. The
hyperparameters βs, βl , βr , αr1, αr2, αl1, αl2 are calculated in
Section V-C.

As proposed in [4], the training of ST-LSTM contains
two sub-steps. The training of Cs (Ci ) and the training of
Ii . Cs (Ci ) and Ii are all modeled by LSTM, respectively
depicting the temporal relations of vehicle trajectories and the
influence of vehicle spatial interactions on the trajectory of
Vs . In this paper, we train a specific Cs (Ci ) for each sub-
maneuver to learn its own trajectory characteristics. We share
the Ii between LLC and MLL (RLC and MRL) to reduce
calculation, however, GS has its own Ii because the influence
of the surrounding vehicles during going straight is totally
different from that during changing lanes. The detailed training
process and loss function of ST-LSTMs are proposed in [4].

Although we set buffers in Algorithm 3 to avoid too few
similar points to aggregate into a separate category (sub-
maneuver), it is not guaranteed that all ST-LSTM models
get enough trajectory data for training. We have discussed
the critical volume of ST-LSTM training set in [4], and
we properly relax this requirement in this paper. We check
all the ST-LSTMs after training and delete the insufficient
trained ones due to limited data (and the corresponding nodes
in AOG).

3) Compared Models: In this paper, we will compare the
RMS prediction error between the following models: the end-
to-end model ST-LSTM (i.e., the ST-LSTM-1350 in [4]),
the maneuver-based model based on AOG and ST-LSTM
(denoted as AOG-ST) and one refined model AOG-ST-TB,
which is generated by trimming some bad clustered sub-
maneuvers from AOG-ST. Here, we directly compared with
our previous ST-LSTM model because it is evaluated to have
a lower prediction error than some SOTA models in [4].

B. The RMS Testing Results and Some Examples

In the following subsections, we will discuss the accuracy
of our model (AOG-ST and AOG-ST-TB) from two aspects.
In Section VI-B, we perform a basic numerical comparison
of the models and demonstrate the characteristic that our
model is sensitive to motion changes through several pre-
diction examples. In Section VI-C, we focus on the “false
alarm” predictions that are caused by the sensitivity to motion
changes, and discuss the impact of false alarms on the
prediction error.

In this paper, we adopt the RMS prediction error as the error
metric [4], [11]. Here, the RMS prediction error (denoted as
RM S P ) given prediction horizon P follows:

ms P = 1

P

P∑
i=1

(
σ t

i

)T
σ t

i (33)
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Fig. 7. The illustration of the predicted trajectories of AOG-ST and ST-LSTM when sudden change occurs: (a) T = 0s, (b) T = 0.4s, (c) T = 0.8s, (d)
T = 1.4s.

RM S P =
⎛
⎝ 1

Ntest

Ntest∑
j=1

ms P
j

⎞
⎠

1
2

(34)

where σ t
i =

[
X (t+i�t) − X̂ (t+i�t), Y (t+i�t) − Ŷ (t+i�t)

]T
.

ms P defines the mean-square error of one specific trajectory
in the prediction horizon P . Ntest is the number of trajectories
in the testing set.

The RMS testing result of the three models is shown in
Table II and indicates that the AOG-ST (AOG-ST-TB) has a
lower prediction error than ST-LSTM.

We also calculate the prediction consuming time of the two
models. Specifically, the average time of ST-LSTM to perform
a single trajectory prediction with the horizon of 6s is 8.16ms
on a TITAN X (Pascal) GPU. Note that the above value
includes the consuming time of the preliminary prediction for
six surrounding vehicles around the target vehicle. In practical
applications, when we perform prediction in a certain area,
the above preliminary trajectories can be reused. Therefore,
the apportioned consuming time of a single prediction should
be about half of this value (i.e., 4.08ms) since the calculations
of correction sequences cannot be shared. This value is closely
related to vehicle density, that is, it will get lower when the
vehicle is more sparse.

The average consuming time of one complete maneuver
inference (of our trained AOG) is 3.43 ms. Thus the consum-
ing time of AOG-ST is 7.51ms, which is not much different
from ST-LSTM.

We check some prediction instances to find the origin of
the prediction error. Then we find that AOG-ST has another
significant improvement which is not reflected by the numer-
ical RMS value. Specifically, the AOG-ST is more sensitive

TABLE II

RMS VALUE OF PREDICTION ERROR

to the sudden change of the target vehicle’s driving behavior
than ST-LSTM.

For example, suppose the target vehicle performs a sudden
cut-in to the right lane (RLC), AOG-ST can quickly notice
the change by motion inference. Then AOG-ST switches
to a reasonable RLC trajectory prediction model and thus
responds rapidly to the new driving behavior on the predicted
trajectories. In contrast, ST-LSTM cannot discover the change
until the historical (hidden) information of RLC accumulates
to a certain amount and starts to dominate the predicted results.

Other than significant lane changes, AOG-ST can even
sensitively detect lateral jitters when the target vehicle is going
straight. To demonstrate this characteristic, we randomly select
a lane-following trajectory segment with obvious lateral jitters,
take several snapshots in the time interval and compare the
predicted trajectories by AOG-ST and ST-LSTM in Fig. 7.
To highlight the difference between the prediction results of
the two results, we only plot the trajectory of the target
vehicle, but actually, the surrounding vehicles do exist and
are considered during trajectory prediction.

As shown in Fig. 7, the target vehicle follows the specific
lane in the trajectory segment, but its lateral velocity direction
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Fig. 8. The illustration of a false alarm prediction generated by AOG-ST.

is not constant. The target vehicle presents an obvious
tendency to the right in Fig. 7 (a), thus both of the two
models predict RLC trajectories. However, the tendency to the
right does not last a long time and the lateral velocity direction
change to the left, as shown in Fig. 7 (b)-(d). AOG-ST notices
this change rapidly and predicts a GS trajectory instead of
RLC, while the ST-LSTM still keeps predicting an RLC
trajectory for about 1 second. This example demonstrates
the sensitivity of AOG-ST to the sudden change of vehicle
movements.

However, we find that AOG-ST is more likely to generate
“false alarm” prediction than ST-LSTM due to the sensitivity
to sudden change. As shown in Fig. 8, despite the lateral
velocity direction of the target vehicle is indeed leftward at the
predicting time, the lateral offset is just a jitter of the straight
trajectory rather than the beginning of an LLC. However,
AOG-ST captures this offset and determines that as the sign of
LLC, thus outputs an LLC trajectory. The predicted trajectory
has significant differences with the ground truth trajectory and
may cause a large RMS error.

C. The Discussion on False Alarm Predictions

In this subsection, to discuss the impact of “false alarm”
on the overall prediction error, we do two experiments to
respectively calculate the frequency of false alarm prediction
and the RMS error caused by false alarm prediction of
the compared models. We will demonstrate that although
the AOG-ST model does generate more false alarm pre-
dictions than ST-LSTM, the false alarms do not lead to a
significant increase in the overall prediction error. In fact,
the RMS errors caused by false alarms in the two models are
roughly equal.

(1) The proportion of false alarm predictions
We conduct statistics of three kinds of prediction on the

testing set (False alarm, Undetected and Others), whose
proportions are shown in Table III. Here, “False alarm”
presents the cases that the predicted trajectory has significant
lateral velocity while the ground truth movement is going
straight (i.e., the cases like Fig. 8). In contrast, “Unde-
tected” presents the cases that the predicted trajectory has
small lateral velocity while the ground truth movement is
LLC or RLC. “Others” include the rest types of trajectory
predictions.

The AOG-ST-TB in Table III is generated based on AOG-
ST by trimming some redundant clustered sub-maneuvers. The
reason we trim is that these redundant sub-maneuvers increase

TABLE III

THE PROPORTION OF DIFFERENT KINDS OF PREDICTION

Fig. 9. The illustration of the impact of different prediction statuses
(False alarm, Undetected and Others) on RMS prediction error, includ-
ing the pie chart of different statuses and the bar chart of the propor-
tion to total RMS error of different statuses: (a) ST-LSTM; (b) AOG-ST;
(c) AOG-ST-TB.

the omission rate (the proportion of Undetected) of AOG-ST,
as shown in Table III. The specific reason of this phenomenon
is that our clustering algorithm may aggregate some abnormal
GS movements (e.g. GS with lateral jitters) and generate
redundant sub-maneuvers. These abnormal trajectory points
are outliers relative to the general GS movements, but they
may be adjacent to LLC (RLC) movements in the feature
space. Therefore, some LLC (RLC) movements are inferred
to these redundant GS sub-maneuvers, resulting in missed
detection. Although our AOG initialization and dynamic main-
tenance algorithms have designed corresponding approaches to
filter out the outliers by setting buffers, the algorithms cannot
filter out moderate lateral fluctuations since they are actually
not rare.

Table III indicates that the AOG-ST (AOG-ST-TB) is more
likely to produce false alarms than ST-LSTM, which is in
line with our previous analysis. The trimmed AOG-ST-TB can
maintain a similar omission rate to ST-LSTM.

(2) The RMS error caused by false alarm predictions
To study whether the increased false alarm predictions of

AOG-ST has a significant negative impact on the prediction
task, we calculate the contribution of the three kinds of pre-
dictions to the total RMS error, which is shown in Fig. 9 and
Table IV-VI.
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TABLE IV

RMS ERROR ANALYSIS OF ST-LSTM

TABLE V

RMS ERROR ANALYSIS OF AOG-ST

TABLE VI

RMS ERROR ANALYSIS OF AOG-ST-TB

In Table IV-VI, the RMS-like statistics r P
0 , r P

1 and r P
2 are

used to measure the specific value of the RMS error caused
by the three kinds of predictions:

ms P = 1

P

P∑
i=1

(
σ t

i

)T
σ t

i (35)

r P
k =

⎛
⎝ 1

Ntest
1

{
l j = k

} Ntest∑
j=1

ms P
j

⎞
⎠

1
2

(36)

where k ∈ {0, 1, 2}. l j is the prediction status (i.e., one of
False alarm, Undetected and Others) given the historical tra-
jectory j . It is straightforward to get the relationship between
RM S P and r P

k : (
RM S P

)2 =
∑

k

(
r P

k

)2
(37)

Therefore, the proportion (denoted as pk) of error caused
by prediction status k to the total RMS error is calculated by:

pk =
(

r P
k /RM S P

)2
(38)

The tables and figures demonstrate that although the false
alarm prediction of AOG-ST (AOG-ST-TB) accounts for

a larger proportion than ST-LSTM, the RMS error value
caused by false alarms in the three models are almost equal.
In contrast, the RMS errors generated by undetected and
other predictions have significant reductions in AOG-ST,
which demonstrates AOG-ST yields better performance than
ST-LSTM.

We examine a large number of trajectory instances that
AOG-ST (AOG-ST-TB) and ST-LSTM present different kinds
of prediction. Most of these trajectories have significant lat-
eral oscillation and be different from both typical GS and
LLC (RLC), such as the case in Fig. 8. When performing
trajectory predictions, AOG-ST is aggressive to determine
these motions as LLC (RLC) and generate corresponding
trajectories. In contrast, since ST-LSTM cannot actively infer
the motions, it keeps generating GS predictions until accu-
mulating enough lateral fluctuation information. Both of these
two prediction results may be dissimilar with the ground truth
trajectory and produce large but comparable prediction errors.
However, from the perspective of forewarning, this sensitive
false alarm is beneficial, which helps to improve the security
of decision making and planning.
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D. The Compatibility of AOG-ST With Other Scenarios

In this paper, we only train and evaluate our AOG-ST on a
“six surrounding vehicle scenario”. However, it does not mean
that AOG-ST cannot handle scenarios with other numbers of
surrounding vehicles or other types of roads, nor does it mean
that a trained AOG-ST cannot normally run when less than six
surrounding vehicles are available. In fact, AOG-ST models
(whether have been trained or not) have great flexibilities. We
will respectively explain the flexibility of each part of AOG-ST
as follows:

(1) AOG
AOG only defined the semi-supervised learning of sub-

maneuvers and the hierarchical inference method of multi-
level labels. Since the vehicle spatial interactions are extracted
as input features of AOG, there is no direct relation between
the number of surrounding vehicles and the structure and
calculation of AOG.

(2) The interaction feature extraction method for AOG
The interaction feature (prior lane change probabilities)

extraction algorithm models the impact of all surrounding
vehicles as potential functions, and then performs a lane-wise
superimposition to represent the objective driving condition
of each lane. Therefore, it is straightforward that the number
of surrounding vehicles is not limited since the superposition
method allows any number of potential values.

If we want to model other types of roads, we should change
the interaction features according to the prior knowledge of
vehicle movements and some AOG hyperparameters rather
than modifying the AOG structure.

(3) ST-LSTM
ST-LSTM serializes and models the spatial impact of each

surrounding vehicle as a trajectory correction sequence, which
semantically means the potential correction of the target vehi-
cle to avoid the safety risk caused by this surrounding vehicle.
The calculation of the correction sequences are independent,
and they are superimposed by a set of normalized dynamic
weights. Therefore, the prediction can adapt to any number of
surrounding vehicles.

Therefore, our overall model can theoretically adapt to any
scenario after appropriate modifications of hyper-parameters
or features. However, as we introduced in [4], ST-LSTM has
a critical training set volume to avoid severe overfitting, while
the data volume requirement of AOG-ST is much larger than
that of a single ST-LSTM. We have not found an open-source
dataset in other scenarios that have similar volume and quality
to NGSIM I-80 (and US-101). We have trained our model on
some (self-collected or simulated) small-scale dataset in other
scenarios, but they are proven not enough to well train AOG-
ST. Therefore, we only display the results of straight road
scenarios in this paper.

VII. CONCLUDING REMARKS

In this paper, we propose a new flexible and explainable
framework for motion prediction. We inherit the merit of using
deep leering from end-to-end approaches to build flexible and
accurate prediction models and meanwhile formulate explain-
able maneuver divisions for prediction results. We address

Fig. 10. The illustration of 1-D potential superposition, μ1 = 0, σ1 =
σ2 = 2, δ = μ2 − μ1: (a)-(c): Gaussian-like functions, (d)-(f): Inverse
proportional-like functions, (a)(d): The original potential functions, (b)(e): The
combined potential by additive superposition, (c)(f): The combined potential
by multiplicative superposition (in logarithmic coordinates).

four difficulties of maneuver-based models and propose four
corresponding solutions.

However, our work also has some limitations:
First, we only test our model in the scenario of straight

roads, due to the limited testing data. However, we have shown
that AOG-ST does not restrict itself to handle scenarios with
a certain number of surrounding vehicles or a certain type of
environment information in Section IV-D. In our future work,
we will collect data from different scenarios and perform a
more comprehensive evaluation of AOG-ST.

Second, our trajectory predictions do not consider road
information [38] due to the limitation of the data set. More-
over, it is hard to encode and utilize such information for
current motion prediction models. In fact, road information
is very important in the prediction of complex scenarios.
In our future work, we will also explore the methods to utilize
road information based on our deeper understanding of the
influence mechanism of different road information on human
driving.

In addition, we believe that the quantitative evaluation
of false alarm predictions is also an issue worth studying.
We have qualitatively discussed in Section IV-C that for critical
trajectory cases that contain significant driving oscillations,
the boundary between false alarm predictions and timely
forewarnings is blurred. However, whether it is actually a false
alarm or a successful forewarning, an appropriate sensitivity of
aggressively discovering the potential behavior changes from
trajectories is worth encouraging (while excessive sensitivity is
not recommended). In future works, we will further investigate
the impact of this sensitivity and try to find a quantitative index
to guide the corresponding model design and evaluation.

APPENDIX A
THE COMPARISON OF TWO TYPES OF VEHICLE

POTENTIAL FUNCTIONS

In conventional works, there are two types of commonly
used vehicle potential functions: inverse proportional-like
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Algorithm 1 AOG Initialization
Input: F , Nsub.
F : The training set with scenario and maneuver labels.
Nsub: The maximum number of sub-maneuvers
subordinate to one maneuver.
Output: AOG includes M, H j,k , G j,k , ST G(M)

ST G(H j,k).
M = {Mk |1 ≤ k ≤ nk}: maneuver set (contains one
unclassified node to store unlabeled data).
H j,k =

{
H i

j,k|1 ≤ j ≤ n j,k

}
: sub-maneuver set

subordinate to Mk (contains one unclassified node).
G j,k : Gaussian distributions set corresponding to H j,k .
ST G(M): The state transition graph of ST G(M).
ST G(H j,k): The state transition graph of H j,k .

1 Construct M according to the known maneuver labels;
2 for f in F do
3 Store f into M according to its maneuver label;
4 end
5 for k = 1 : 1 : nk do
6 i := 0;
7 Perform DBSCAN (Section IV-A) on Mk and obtain

sub-maneuvers Hi =
{

H i
j,k|1 ≤ j ≤ n j,k

}
after

filtering out the noise classes;
8 Fit Gaussian distributions Gi for Hi ;
9 while n j,k < Nsub do

10 i := i + 1;
11 for h in Hi−1 do
12 Perform node splitting (Section IV-A) on h;
13 end
14 Obtain new sub-maneuvers Hi (with Gi );
15 if Hi = Hi−1 then
16 break;
17 end
18 end
19 H j,k := Hi and G j,k := Gi ;
20 Generate ST G(H j,k) (use Algorithm 2);
21 end
22 Generate ST G(M) (use Algorithm 2);
23 return the AOG.

functions and Gaussian-like functions. The main difference
between the two types of functions is the values of peaks.

Inverse proportional-like functions: Suppose r is one
distance measure between Vi and Vs . Rasekhipour et al. [39]
use the function of A

r and Wolf et al. adopt A exp(−r)
r to

construct the potential field generated by Vi . Wang et al. also
use a similar form [18], [40]. The potential values of this
kind of functions approach to infinity as r decreases, which
indicates the center of the potential field, i.e., the position of
Vi is uncrossable.

Gaussian-like functions: Wahid et al. [41] use the probabil-
ity density function of 2-D Gaussian distribution to construct
the potential field. This kind of functions have a finite peak,
thus Rasekhipour et al. [39] also use them to model crossable
obstacles.

Algorithm 2 STG Initialization
Input: N , FN , Nstyle

N = {Nk |1 ≤ k ≤ nN }: The set of patterns with state
transition relationships.
FN : The training set of this STG.
Nstyle: The number of state transition styles.
Output: ST G(N ) includes P , S.
P = {

(Ni , N j )|Ni , N j ∈ N }
: The set of state transition

pairs within N .
S = {

fr (Ni , N j , di )|Ni , N j ∈ N , 1 ≤ r ≤ Nstyle
}
: The

set of state transition probability functions (values)
corresponding to P .
fr (Ni , N j , di ): The transition probability function (value)
from Ni to N j given transition style r and duration di .

1 for f in FN do
2 Calculate the observation probability of f by AOG

and obtain the most-likely pattern Nnow ;
3 if a state transition is captured then
4 Record the state transition pair (Nold , Nnow) and

the duration of Nold in P ;
5 end
6 end
7 for P = (Ni , N j ) in P do
8 Obtain the duration sequence S(Ni , N j ) of P;
9 if Ni is a non-trivial node then

10 Cluster S(Ni , N j ) into Nstyle classes;
11 for r = 1 : 1 : Nstyle do
12 Fit fr (Ni , N j , di ) based on LR (Section III-C);
13 end
14 end
15 else
16 Constant value

fr (Ni , N j , di ) ∝ length(S(Ni ,N j ))∑
n∈succ(Ni )

length(S(Ni ,n))

17 end
18 end
19 Constant value fr (n, n, di ) = T (n)

T where n is the trivial
node in STG, T (n) is the total time of pattern n and T is
the total time of FN ;

20 Normalization of state transition probabilities of the
trivial node;

21 return the ST G(N ).

The influence of peak value appears when perform-
ing potential superposition. Take 1-D Gaussian potential
functions as an example, let N

(
μ1, σ

2
1

)
and N

(
μ2, σ

2
2

)
be the potential field generated by V1 and V2. Addi-
tive superposition and multiplicative superposition are two
commonly used potential superposition methods in conven-
tional works. The corresponding combined Gaussian potential
functions are:

f+(x) = a1e
− (x−μ1)

2

σ2
1

(
1 + a2

a1
e
−

(
σ1
σ2

)2 (x−μ1)
2

(x−μ2)
2

)
(39)

fx(x) = a1a2e
− (x−μ1)

2

σ2
1

− (x−μ2)
2

σ2
2 (40)

Authorized licensed use limited to: UNIVERSIDADE DE SAO PAULO. Downloaded on December 02,2020 at 18:17:52 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

18 IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS

Algorithm 3 AOG Dynamic Maintenance
Input: Fnew , Nbu f

Fnew : The new training set to update the AOG.
Nbu f : The maximum volume of each AOG node to store
new data.
Output: The updated AOG.

1 for f in Fnew do
2 if f has a new maneuver label then
3 Store f ;
4 if Stored f more than Nbu f then
5 Construct the sub-maneuvers of the new

maneuver in AOG based on Algorithm 1
6 end
7 end
8 else
9 Inference the maneuver m f and the sub-maneuver

h f based on AOG (Section III-B);
10 Store f in h f ;
11 if Stored f more than Nbu f then
12 Update the Gaussian distribution of h f ;
13 Update functions fr (h f , succ(h f ), di ) and

fr (pred(h f ), h f , di ) of the STG;
14 for h′ �= h f subordinate to m f do
15 h f := merge(h f , h′) if the merging success

(Section IV-A); update the STG;
16 end
17 Perform node splitting (Section IV-A) on h f ;
18 update the STG;
19 end
20 end
21 end
22 return the updated AOG.

As shown in Fig. 10 (a)-(c), when V2 approaches to V1
(i.e, μ2 → μ1), both f+(x) and f×(x) approach to Gaussian
functions and a new peak appears between μ1 and μ2. This
means that the region between V1 and V2 is even more
dangerous than the region where V1 or V2 is located, which
is obviously contrary to our intuition. In contrast, as shown
in Fig. 10 (d)-(f), inverse proportional-like functions do not
have this problem. Therefore, the inverse proportional-like
functions are more suitable for the scenarios that have large
amounts of potential superposition. Especially, we adopt the
function A exp(−r)

r in this paper.

APPENDIX B
THE NOMENCLATURE LIST

Symbol Definition

The basic notations of the trajectory prediction
problem
Vs The target vehicle of trajectory pre-

diction.
Vi One surrounding vehicle of Vs (i ∈

{ f l, rl, f s, rs, f r, rr}).

[
Xt

s , Y t
s

]
(
[
Xt

i , Y t
i

]
)

The ground truth coordinates of Vs

(Vi ) at the time t .
v t

X,s, v
t
Y,s

(v t
X,i , v

t
Y,i )

The ground truth lateral and longitu-
dinal velocities of Vs (Vi ) at the time
t .

�t The time resolution level.[
X̂ (t+�t)

s , Ŷ (t+�t)
s

]
The predicted coordinates of Vs at
the time (t + �t).

th The length of historical time horizon.
tp The prediction time horizon.
I t The input of the trajectory prediction

model (a th+�t
�t × 28 matrix).

f t The extracted feature vector for AOG
(a 8 × 1 vector).

ôt
s The output of the trajectory predic-

tion model (a 2tp × 1 vector).
mt (ht ) The estimated maneuver (sub-

maneuver) of Vs at the time t .
ot

s The ground truth future trajectory of
Vs .

Mt The manually labeled maneuver of
Vs at the time t .

xt
s (xt

i ) The input of ST-LSTM trajectory
prediction model (derived from I t ).

yt
s The output of ST-LSTM trajectory

prediction model (calculate ôt
s ).

The basic notations of AOG
S The research scenario.

{Mk |1 ≤ k ≤ nk} The maneuvers of AOG (learned
from the maneuver labels of the
training set).{

H j,k|1 ≤ j ≤ n j,k
}
The sub-maneuvers that subordinate
to maneuver Mk (learned by then
semi-supervised algorithm).

Nstyle The number of And-nodes (con-
figurations) under each Or-nodes
(maneuvers and sub-maneuvers) in
AOG.

Zr One configuration (style) that
belongs to S (1 ≤ r ≤ Nstyle).

Zr,k One configuration (style) that
belongs to Mk (1 ≤ r ≤ Nstyle).

The parameters of AOG inference

P
(

f t |ht
k = Hi,k

) The emission probability of sub-
maneuver H j,k.

P
(
ht

k = H j,k| f t) The posterior probability of H j,k

given f t (also denoted as Pt
j,k).

d j,k The duration of H j,k up to the time
(t − �t).

P
(

zt−�t
k = Zr,k

)
The probability that Vs adopts the
style Zr,k up to the time (t − �t).

P
(
H j,k → Hi,k

)
The transition probability from H j,k

to Hi,k regardless the state transition
style of Hi,k .

Pr
(
H j,k → Hi,k

)
The transition probability from H j,k

to Hi,k under the state transition style
Zr,k .
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ĥt
k The most-likely sub-maneuver

among H j,k (below Mk ).
ht The candidate sub-maneuver vec-

tor that stores the most likely sub-
maneuver ĥt

k below each Mk .
P

(
ht |mt = Mk

)
The emission probability of maneu-
ver Mk .

P
(
mt = Mk |ht ) The posterior probability of Mk (also

denoted as Pt
k ).

dk The duration of Mk up to the time
(t − �t).

P
(
zt−�t = Zr

)
The probability that Vs adopts the
style Zr up to the time (t − �t).

P (Mk → Mi ) The transition probability from Mk

to Mi regardless the state transition
style of Mk .

Pr (Mk → Mi ) The transition probability from Mk

to Mi under the state transition style
Zr .

m̂ The most-likely maneuver among
Mk .

αh→h′ , βh→h′ The parameters of the state transition
probability function that correspond-
ing to the transition h → h′.

L The loss function to optimize αh→h′
and βh→h′ .

Nd The number of times that the transi-
tion h → h′ occurs in the training
set.

{Ti |1 ≤ i ≤ Nd } The generated dataset to optimize
αh→h′ and βh→h′ .

The parameters of AOG initialization and dynamic
maintenance
ε The distance threshold of DBSCAN

for AOG initialization.
n The minimum number of points in

each cluster generated by DBSCAN.
G, G′ Two candidate models to be com-

pared by BIC. G is a single Gaussian
model and G′ is a GMM that mixed
by G1 and G2.

θ , θ1, θ2 The parameters of G, G1 and G2.
T hs The threshold of AOG node splitting.
T hm The threshold of AOG node merging.
Nsub The maximum number of sub-

maneuvers subordinate to one
maneuver.

Nbu f The maximum volume of each AOG
node to store new unclassified data.

The parameters of feature extraction
Dx , Dy The lateral and longitudinal safe dis-

tance between two adjacent vehicle
Vs and Vi .

abrake The maximum deceleration rate of
the follower vehicle and the leader
vehicle.

ρ The response time of the following
vehicle.

Llane The width of the lane.
A The coefficient of the potential func-

tions.
�i The potential field generated from

Vi .
ϑi The potential value of Vs generated

from �i .
αl1, αl2, αr1, αr2,
βs, βl , βr

The parameters to calculate the prior
left (right) lane change probabilities.

Prlc (Pllc) The prior probability of right (left)
lane change considering surrounding
vehicles.

APPENDIX C
THE ALGORITHMS

Algorithm 1: The AOG initialization algorithm
Algorithm 2: The STG initialization algorithm
Algorithm 3: The AOG dynamic maintenance algorithm
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