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Abstract In this article, we describe some aspects of the diffuse interface modelling of
incompressible flows, composed of three immiscible components, without phase change. In
the diffuse interface methods, system evolution is driven by the minimisation of a free energy.
The originality of our approach, derived from the Cahn–Hilliard model, comes from the par-
ticular form of energy we proposed in Boyer and Lapuerta (M2AN Math Model Numer Anal,
40:653–987,2006), which, among other interesting properties, ensures consistency with the
two-phase model. The modelling of three-phase flows is further completed by coupling the
Cahn–Hilliard system and the Navier–Stokes equations where surface tensions are taken into
account through volume capillary forces. These equations are discretized in time and space
paying attention to the fact that most of the main properties of the original model (volume
conservation and energy estimate) have to be maintained at the discrete level. An adaptive
refinement method is finally used to obtain an accurate resolution of very thin moving internal
layers, while limiting the total number of cells in the grids all along the simulation. Different
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numerical results are given, from the validation case of the lens spreading between two phases
(contact angles and pressure jumps), to the study of mass transfer through a liquid/liquid inter-
face crossed by a single rising gas bubble. The numerical applications are performed with
large ratio between densities and viscosities and three different surface tensions.

Keywords Cahn–Hilliard/Navier–Stokes model · Three phase flows · Local adaptive
refinement

1 Introduction

Three-phase flows are encountered in many applications outside or within porous media.
Their impact on many processes is very important. For instance, the correct understand-
ing of three-phase flow (oil/gas/water) in petroleum engineering is crucial for the design
of efficient recovery techniques. Similarly, the flow of non-aqueous phase liquid (NAPL)
in the unsaturated zone determines the extent of the polluted zone and the future develop-
ment of a pollution plume in the aquifer. The macro-scale modelling of three-phase flow in
porous media is largely heuristic, based on generalized Darcy’s laws. The correct model-
ling of pore-scale mechanisms, mostly through direct numerical simulations, is expected to
bring a better understanding of the physics, and allow for better macro-scale models. Models
accurately solving pore-scale three-phase flow problems without major restrictions are des-
perately needed. Many problems outside porous media are also of great practical importance.
For instance, in nuclear safety, during a hypothetical major accident in a pressurized water
reactor, the deterioration of the core can produce a stratified pool crossed by a bubbly flow.
The mechanism of the entrainment of the heavy fluid in the light phase, induced by the bubbly
flow can heavily modify heat transfers, whose intensities are crucial in the progression of the
accident. This is the context of the works presented in this paper.

Direct simulations with diffuse interface models (see, for instance, the review in Anderson
et al. 1998) in the case of two-phase flows have proven to be very useful to answer fundamental
questions concerning the different occurring mechanisms (see, for examples, Bonometti and
Magnaudet 2007; Fichot et al. 2007; Yue et al. 2004). Unfortunately, few numerical models
are available to directly simulate three-phase flows. We can note the studies of Kim and co.
who studied how to generalize the coupling between such multi-component Cahn–Hilliard
models and the Navier–Stokes equations and how to implement efficient numerical solvers
(see Kim et al. 2004; Kim and Lowengrub 2005; Kim 2007).

In this article, we propose diffuse interface modelling based on the Cahn–Hilliard approach
for the study of incompressible flows, composed of three immiscible components. The con-
struction of a free energy that has good properties is crucial to obtain a model able to simulate
both two- and three-phase situations. Our approach ensures that there is no artificial apparition
of one phase inside the interface between the other two. In order to describe the hydrodynam-
ics of the mixture, the Cahn–Hilliard and the Navier–Stokes equations for incompressible
flows are coupled. The formulation of the momentum equation, used in this article, is not
classical and enables to control the kinetic energy. The interfacial surface tension forces are
naturally taken into account through volume capillary forces. The details of the construction
and the analysis of the three component Cahn–Hilliard model are given in Boyer and Lapuerta
(2006).

A numerical difficulty in using diffuse interface approaches is to be able to get an accu-
rate resolution of very thin moving internal layers. To address this question, we choose to
use a refinement method called Conforming Hierarchical Adaptive Refinement MethodS
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(CHARMS), initially developed by Krysl, Grinspun, Schröder in Krysl et al. (2003). The
key feature of the method is performing basis functions (un-)refinement instead of cells
(un-)refinement. We propose a new discretization for the Cahn–Hilliard/Navier–Stokes sys-
tem based on the adaptive refinement method. Moreover, the discretization ensures that the
kinetic energy does not blow up during simulations.

In this article, we propose a general description of the CH/NS model and of the dis-
cretizations used for the simulation of three-phase flows. The details of the analysis and
the developments are given in Boyer and Lapuerta (2006); Boyer et al. (2009); Boyer and
Minjeaud (2008, in preparation). We particularly point out here the most intricate aspects of
the simulation of complex flows with large ratios between densities and viscosities of the
phases. More precisely, we emphasize the necessity of a consistency property of the model
with two-phase flow cases, of the control of the total energy of the system, of the exact
volume conservation of each phase and finally, of the local adaptive refinement methods
that let us achieve a very small interface thickness in the simulations. The outline of the
article is as follows. In Sect. 2, after a brief introduction to the usual binary Cahn–Hilliard
model, we present the general construction of a ternary model. The next section is devoted to
the numerical schemes for the Cahn–Hilliard/Navier–Stokes system using the local adaptive
refinement method. Finally, in the last section, two applications are presented: the partial
and total spreading of the lens between two liquids and the gas bubble rising through two
stratified fluid layers.

2 Three-Component Cahn–Hilliard/Navier–Stokes Model

In this section, we propose a general description of the ternary Cahn–Hilliard/Navier–Stokes
model. We only briefly present here the main steps in the construction of the model, since the
complete derivation and the analysis of this model are given in Boyer and Lapuerta (2006).

2.1 Introduction: Cahn–Hilliard Model

The Cahn–Hilliard approach consists of assuming that the interface thickness between two
phases in a system is small but greater than the real physical one. One phase is described
geometrically by a smooth function ci , called ‘order parameter’, which is equal to 1 in the
phase i and 0 outside, and which varies continuously in the interfaces between the phase i
and the others (Fig. 1). From a mathematical point of view, this approach may be understood
as a regularization of sharp interface models with small interfacial thickness Jacqmin (1999).

The system evolution is driven by the minimisation of a free energy. The two-component
Cahn–Hilliard free energy is defined by

Fdiph
σ,ε (c) =

∫

�

[
12

ε
F(c) + 3

4
σε|∇c|2

]
, (1)

with F(c) = σc2(1 − c)2. The first term is called ‘bulk energy‘ and the function F , called
the Cahn–Hilliard potential, has a classical double-well structure with two minima for c = 0
and c = 1 (Fig. 1) corresponding to the two pure phases. The bulk energy tends to reduce the
interfacial zone width whereas the second term |∇c|2, called capillary term, tends to increase
it. In this definition, σ is the surface tension and ε is the interface thickness. From a numerical
point of view, one of the main features of this model is that ε can be chosen larger than its
theoretical value without modifying the capillary properties of the interfaces.
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Fig. 1 Variation of the order
parameter between two phases
and double-well structure of the
Cahn-Hilliard potential F

Note that the fourth-order polynomial formula for F is in fact an approximation of the
actual value of the bulk free energy which is only valid, theoretically, in the vicinity of
the critical point. The diffuse interface modelling in multiphase flows actually consists of
using the same mathematical model outside its theoretical range of validity (see, for instance,
Anderson et al. 1998; Kim and Lowengrub 2005; Lowengrub and Truskinovsky 1998) taking
advantage of its interesting mathematical properties.

The evolution of the order parameter is driven by the gradient of the functional derivative

µ = δFdiph
σ,ε

δc , called generalized chemical potential:
⎧⎪⎪⎨
⎪⎪⎩

∂c

∂t
− ∇ · (M0∇µ) = 0,

µ = δFdiph
σ,ε

δc
= −3

2
σε�c + 24

σ

ε
c(1 − c)(1 − 2c).

(2)

The parameter M0, called the mobility, is a diffusion coefficient which may depend on
c. The boundary conditions are in general the homogeneous Neumann boundary conditions.
For the potential µ, this condition ensures that there is no mass diffusion through the bound-
ary. For the order parameter c, this condition implies that the interfaces are supposed to be
orthogonal to the boundary of the computational domain. One interesting feature of Cahn–
Hilliard models is that it is possible to consider non-homogeneous and non-linear Neumann
conditions to model more general contact angles.

2.2 Construction of a Three-Component Model

Our aim is to generalise the diphasic Cahn–Hilliard model presented above for the simula-
tion of three immiscible component flows, without phase change. We introduce three order
parameters, c1, c2 and c3, each representing the volume concentration of one component.
As the three phases are supposed to be immiscible, we in fact look for a model which is
able to simulate ‘three times two phase situations’. Indeed, in expected applications, most
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of the interfacial areas are only concerned with two phases and not with the third one. Of
course, ternary points may exist but have to be thought as exceptional: a typical situation
being the one of a gas bubble rising into a stratified two-fluid system, for which the physical
problem is mainly diphasic, except when the bubble crosses the liquid–liquid interface. To
this end, it is very important that the model used for three components enjoys a consistency
property with the two-phase system. This precisely means that, in areas where only two
phases among three are present in the system, the mathematical model should not artificially
generate the appearance of the third phase. Consequently, our approach consists of building
a mathematical model that satisfies the following constraints:

1.
3∑

i=1

ci = 1 for each point and each time,

2. the equations satisfied by c1, c2 and c3 should be formally identical,
3. the three-phase model should coincide with the two-phase model when only two phases

are present (that is, if for instance, c3 = 0 everywhere in the domain).

Remark 1 In particular, from a practical point of view, one of the order parameters, c1, c2

or c3, will be eliminated a posteriori and the solution must not depend on the choice of the
eliminated unknown. Therefore, only two coupled Cahn–Hilliard equations will be finally
solved to save computational work.

2.2.1 Free Energy and Evolution Equations

In view of the diphasic case, we postulate that the free energy can be written as follows:

F triph
�,ε (c1, c2, c3) =

∫

�

[
12

ε
F(c1, c2, c3) + 3

8
ε�1|∇c1|2 + 3

8
ε�2|∇c2|2 + 3

8
ε�3|∇c3|2

]
,

(3)

with bulk energy F and three capillary terms.
The coefficients �1, �2, �3 and the function F will be determined later and we first con-

centrate here on the evolution equations associated to this model, taking into account the
constraint

3∑
i=1

ci = 1. (4)

As in the diphasic case, the evolution of the order parameters is driven by the minimisation
of the free energy. In order to ensure the constraint (4), a Lagrange multiplier technique is
used. The Cahn–Hilliard equations we finally obtain are

∀i ∈ {1, 2, 3},

⎧⎪⎪⎨
⎪⎪⎩

∂ci

∂t
= ∇ ·

(
M0

�i
∇µi

)
,

µi = 4�T

ε

∑
j �=i

(
1

� j

(
∂i F(c) − ∂ j F(c)

)) − 3

4
ε�i�ci ,

(5)

where the coefficient �T is defined by 3
�T

= 1
�1

+ 1
�2

+ 1
�3

.
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2.2.2 Consistency with the Two-Phase Model

In order to ensure the constraints described above, the model must satisfy two properties :

(P1) When a phase i is not present, the three-phase free energy is equal to the one of the
two-phase model,

(P2) When a phase i is not present at initial time, the phase must not appear artificially
during the evolution of the system.

In this case, we say that the model is consistent with the two-phase models.
Capillary terms: In order to satisfy the property (P1), we easily find that the capillary coef-
ficients have to be taken as follows:

�i = σi j + σik − σ jk, (6)

where the surface tensions σ12, σ13 and σ23 are given.
The coefficient Si = −�i is called spreading parameter of the phase i at the interface

between phases j and k Rowlinson and Widom (1982). If Si is positive, the spreading is said
to be total and if Si is negative, it is said to be partial (see Sect. 4.1). It is interesting to notice
here, and this will be enforced by the discussion in the sequel of the article, that the spreading
coefficient appears as a key parameter in the proposed Cahn–Hilliard formulation. Indeed,
there is an extensive literature that shows the importance of this parameter in the case of
three-phase flow, especially for flow in porous media (see Keller and Chen 2003; Mani and
Mohanty 1997).
Bulk energy: In view of the diphasic case, a natural bulk energy would be

F̄ = σ12c2
1c2

2 + σ13c2
1c2

3 + σ23c2
2c2

3. (7)

This formula for F̄ clearly degenerates into the diphasic potential σi j c2
i (1 − ci )

2 if the order
parameter ck is zero (so that c j = 1 − ci ), which is exactly property (P1). Unfortunately, the
second property (P2) that we required is not satisfied by this ternary potential.

To illustrate this, we propose to visualise the map of the function F̄ in barycentric coor-
dinates (see Fig. 2). More precisely, we represent the Gibbs triangle where the vertices cor-
respond to the three pure phases. The points located at the interior of the triangle represents
physically admissible values of the concentration. We observe inside the triangle a local min-
imum of F̄ . Since the evolution of the system is driven by the minimisation of the total energy,

Fig. 2 Surfaces defined by F̄ and F� in barycentric coordinates. a F̄ , non consistent potential. b F�, con-
sistent potential
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the choice of F̄ will lead to non-physical apparition of one phase in the interface between the
other two. Indeed, the least energy path between two vertices i, j (corresponding two pure
phases) goes into the interior of the triangle since there is a local minimum. In the numerical
illustrations given in Sect. 2.2.3, we will actually observe this unwanted behaviour and that
the proposed expression for the potential F given below in (8) gives the expected results.

In Boyer and Lapuerta (2006), we show that, instead of F̄ , using the Cahn–Hilliard po-
tential defined by

F� = σ12c2
1c2

2 +σ13c2
1c2

3 + σ23c2
2c2

3 + c1c2c3(�1c1 + �2c2 + �3c3) + �c2
1c2

2c2
3 (8)

with � ≥ 0, to be determined later, ensures the consistency properties (P1) and (P2). In Fig. 2,
we see that the function has no minimum in the Gibbs triangle and that the least energy path
between two vertices is exactly described by the corresponding edge of the triangle.

In practice, we note F� = F0 + P where

F0 = σ12c2
1c2

2 + σ13c2
1c2

3 + σ23c2
2c2

3 + c1c2c3(�1c1 + �2c2 + �3c3),

P = �c2
1c2

2c2
3.

(9)

Remark 2 Let us emphasize the fact that this formula for the potential has probably no true
microscopic physical meaning. However, it satisfies the required mathematical properties for
the final model to be consistent with the diphasic model, which is necessary for the simulation
of three immiscible component flows as illustrated in Sect. 2.2.3. It can then be understood as
a phenomenological extrapolation of the diphasic model to the ternary immiscible situation.

Properties: The analysis of the consistent ternary Cahn-Hilliard model is given in Boyer and
Lapuerta (2006). In particular, we show that the system is mathematically well-posed if the
parameter � is chosen large enough, and if we assume that the following conditions hold{

�1�2 + �1�3 + �2�3 > 0,

�i + � j > 0 for i �= j .
(10)

Notice that the second condition is always satisfied because, from (6), we deduce that

�i + � j = 2σi j > 0. (11)

Moreover, the only condition on the sign of the coefficients �i is the first equation in
(10). In particular, the model is able to take into account for some total spreading situations
(see Paragraph 4.1) provided that � > 0 is chosen large enough. In other situations (all
coefficients �i > 0), one can take � = 0.

2.2.3 Numerical Example: Consistent/Non-Consistent Model

In order to compare the consistent and non-consistent models, we used the classical problem
of the simulation of the partial spreading of a liquid lens between two other liquid phases.
At the equilibrium, the shape of the lens and the contact angles are well known (Young’s
relation). This example is studied in detail in Sect. 4.1.

For three different surface tensions,

σupper/lens = 0.8,

σlower/lens = 1.4,

σlower/upper = 1,

the numerical solution for the consistent model (F = F�) is given in Fig. 3.
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Fig. 3 Equilibrium state for the
partial spreading of a lens
between two stratified liquids

Fig. 4 Visualisation of the order
parameter of the lower phase
computed with a consistent (left)
and a non-consistent (right)
model. a Consistent model
F = F�. b Non-consistent
model F = F̄

In Fig. 4, we visualise the order parameter associated to the lower liquid phase. When we
use the non-consistent model (F = F̄), we observe that the lower phase appears artificially
in the interface between the upper phase and the lens. This unsatisfactory behaviour is no
more present when we use the potential F = F�.

2.3 Coupling with the Hydrodynamics

In order to complete the modelling of three-phase incompressible flows, the Cahn–Hilliard
system Boyer et al. (2009) is then coupled with Navier–Stokes equations (for more details,
see Boyer 2002; Boyer and Lapuerta 2006; Jacqmin 1999; Kim 2005).

The velocity jump being zero between two phases, it is possible to define a unique velocity
field that is smooth on the domain. In order to couple the equations, a convective term is
added in the order parameters evolution equations and a capillary force,

Fca = µ1∇c1 + µ2∇c2 + µ3∇c3, (12)

is considered in the momentum balance. This force is a volumic approximation of the surface
tension force (see Kim 2005). To this end, the Navier–Stokes equations are written as follows:
{√

	
∂

∂t

(√
	u

) + (	u · ∇) u + u
2
∇ · (	u) − ∇ · (

η(∇u + ∇ut )
) + ∇ p = 	g + Fca,

∇ · u = 0,
(13)

where the density 	 and viscosity η are smooth functions that depend on the order parameters
and satisfy, in the i-phase,

	 = 	i , η = ηi , (14)

(details are given in Sect. 3.1).

Remark 3 If we try to write the evolution of the total energy of the system (kinetic energy +
Cahn–Hilliard free energy), then we have to multiply the evolution equation of each ci by µi

and the Navier–Stokes equation by u and then sum up the results. We see that the free energy
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creation by convection is exactly balanced with the kinetic energy creation by capillarity (see
Jacqmin 1999).

This Navier–Stokes formulation is equivalent with the classical form
{

	
∂u
∂t

+ (	u · ∇) u − ∇ · (
η(∇u + ∇ut )

) + ∇ p = 	g + Fca,

∇ · u = 0,
(15)

if one uses the usual mass balance equation ∂
∂t ρ + ∇ · (	u) = 0.

However, in the diffuse interface modelling framework, the mass balance equation has a
slightly different form since 	 depends on c1, c2, c3 which have their own evolution equation.
In practice, the mass balance equation possesses an additional diffusion term (which comes
from diffusion terms of (5)). Hence, the above formulation of the Navier–Stokes equations
is strictly equivalent neither to the conservative formulation nor to the non-conservative for-
mulation. Note that, in each phase, the mass balance is satisfied since the density is uniform
	 = 	i .

The reason for the choice of this formulation, initially proposed by Guermond and Quar-
tapelle (2000) in the more usual context of variable-density incompressible single phase
flows, is that it guarantees the control of the kinetic energy even if the mass balance equation
is not of the classical form, or is not exactly satisfied (which can be the case in numerical
computations). Indeed, multiplying the momentum equation by u and integrating on the
domain, the time derivative form enables the time derivative kinetic energy to be obtained as∫

�

∂

∂t

(√
	u

) · √
	u = 1

2

d

dt

∫

�

	u2. (16)

Furthermore, the convective contribution is zero∫

�

[
u · (	u · ∇) u + u2

2
∇ · (	u)

]
= 0. (17)

Indeed, assuming that u = 0 on the boundary of the domain, then for any scalar function f ,
we have∫

�

f (	u · ∇) f +
∫

�

f 2

2
∇ · (	u) = 1

2

∫

�

∇ · (
	u f 2) = 1

2

∫

∂�

	 f 2u · n = 0. (18)

In the Navier–Stokes equations, we use this calculation for each velocity component. The
other terms in Eqs. 13 are written under a standard form.

For complex simulations with large ratios between densities and viscosities of the phases,
the control of the total energy of the system is essential, even in the diphasic situation. We
illustrate this point by comparing two numerical simulations of a bubble rising in a quiescent
liquid. The properties of the two fluids are

– 	b = 0.1, 	� = 7, 800 (kg · m−3),
– ηb = 7.3 10−5, η� = 0.001 (Pa · s),
– σ = 0.8 N · m−1.

If we use the standard form (15) of the momentum equation, then we observe in Fig. 5a
that the kinetic energy blows up rapidly leading to instabilities that prevent the computation
to be performed until the end. This unwanted behaviour is no more observed when we use
the alternative formulation (13) (see Fig. 5b).
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Fig. 5 Evolution of the kinetic energy during the bubble rising in a quiescent fluid. a Using the classical form
of the momentum equation 15. b Using the alternative form of the momentum equation 13

3 Numerical Methods

A typical numerical issue in using diffuse interface approaches is to ensure accuracy of the
resolution of very thin moving internal layers while limiting the total number of cells in the
grid and thus the computational cost. The solution adopted here is the use of a local adaptive
refinement method (CHARMS) initially proposed by Krysl et al. (2003), and more precisely
described and studied in Boyer et al. (2009).

In this section, we give the time and spatial discretizations for the Cahn–Hilliard and
Navier–Stokes (CH/NS) system, which ensures that the discrete total energy (the sum of the
Cahn–Hilliard free energy and the kinetic energy) are controlled, at least for a small enough
time step. Then, we propose a brief description of the CHARMS method and of its use for
our applications.

The practical implementation has been performed using the software object-oriented com-
ponent library PELICANS, developed at the french ‘Institut de Radioprotection et de Sûreté
Nucléaire‘ (IRSN) and distributed under the CeCILL-C license agreement (an adaptation of
LGPL to the French law).

3.1 Time and Space Discretizations

In order to solve the CH/NS system, we use a Galerkin finite element method. The time dis-
cretization used is semi-implicit to split the Cahn–Hilliard and the Navier–Stokes problems
within a time step as explained below. The resolution is performed using a Newton–Raphson
method for the Cahn–Hilliard system and an Augmented Lagrangian method for Navier–
Stokes equations.

Denoting by Vx the finite element approximation space where we seek the discrete un-
known x, the time marching in a time step is written as follows:

Let cn
i , µn

i , un be known for i = 1, 2,

1. find (cn+1
1 , cn+1

2 , µn+1
1 , µn+1

2 ) ∈ (Vc,µ)4 such that ∀ν ∈ Vc,µ, we have for i = 1, 2

∫

�

cn+1
i − cn

i

�t
ν +

∫

�

Mn
0

�i
∇µn+1

i · ∇ν +
∫

�

un · ∇cn+1ν = 0, (19)

∫

�

µn+1
i ν =

∫

�

Di (cn+1, cn)ν +
∫

�

3

4
�iε∇cn+1

i · ∇ν. (20)

123



Cahn–Hilliard/Navier–Stokes Model for the Simulation of Three-Phase Flows 473

with Di (cn+1, cn) = 4�T

ε

∑
j �=i

(
1

� j

(
di (cn+1, cn) − d j (cn+1, cn)

))
, where di repre-

sents a semi-implicit discretization of ∂ci F� defined by

di (cn+1, cn) = ∂i F0(cn+1) + 2

3
�cn+1

i

[
(cn

j )
2(cn

k )2

+1

2
(cn+1

j )2(cn
k )2 + 1

2
(cn

j )
2(cn+1

k )2 + (cn+1
j )2(cn+1

k )2
]

. (21)

2. Using cn+1
i andµn+1

i (i = 1, 2), compute cn+1
3 , µn+1

3 , Fn+1
ca = ∑3

i=1 µn+1
i ∇cn+1

i , 	n+1

and ηn+1.
3. Find un+1 ∈ Vu and pn+1 ∈ Vp such that ∀v ∈ Vu and ∀q ∈ Vp

∫

�

√
	n+1

√
	n+1un+1 − √

	nun

�t
· v +

∫

�

2ηn+1 D(un+1) : ∇v

+1

2

∫

�

(
	n+1(un · ∇)un+1) · v − 1

2

∫

�

(
	n+1(un · ∇)v

) · un+1

=
∫

�

pn+1∇ · v +
∫

�

(Fn+1
ca + 	n+1g) · v, (22)

∫

�

∇ · un+1q = 0. (23)

In (20), the time discretization Di (cn+1, cn) of the non-linear terms (defined in (21)) is
semi-implicit to ensure the control of the discrete Cahn–Hilliard free energy. Indeed, a sepa-
rate study of the pure Cahn–Hilliard system (19)–(20) (i.e. without convective terms, un = 0)
shows that the discrete free energy control is mandatory to prove the existence of the approx-
imate solution and its convergence towards the solution of the initial problem. If this energy
is not controlled, we observed cases where the Newton method does not converge. Other
possible choices for the time discretizations di and the analysis of corresponding schemes
are given in Boyer and Minjeaud (2008, in preparation).

In practice, the mobility coefficient Mn
0 depends on order parameters at time tn and is

zero outside the interfaces: it is said to be degenerate. This has the effect of limiting diffu-
sion outside the interface due to the pure Cahn–Hilliard equations and keeping the spatial
localisation of the interfaces all along the simulations.

In order to ensure the conservation of the total volume of each constituent, we use the
same element for the pressure as for the order parameters and the chemical potentials that is
Vc = Vµ = Vp . Indeed, in that case, we have

∫

�

cn+1
i − cn

i

�t
= −

∫

�

un · ∇cn+1
i =

∫

�

cn+1
i ∇ · un . (24)

The last integral is zero thanks to the discrete incompressibility constraint (23) provided
that cn+1

i belongs to the pressure approximation space. In the numerical examples given in
Sect. 4, the velocity is discretized using the Q2 element and the other fields using the Q1

element, which leads to an inf-sup stable numerical method.
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In (22), the convective terms,
∫

�

(
	n+1 (

un · ∇)
un+1) · v +

∫

�

un+1 · v
2

∇ · (	n+1un),

are written under the form

1

2

∫

�

(
	n+1(un · ∇)un+1) · v − 1

2

∫

�

(
	n+1(un · ∇)v

) · un+1.

In this formulation, the contribution of the convective terms in the kinetic energy balance
equation is zero even though the numerical integrations for the finite element method are not
exact.

The functions 	n+1 and ηn+1 are defined by

	n+1 = (	1 − 	3)He(c
n+1
1 − 0.5) + (	2 − 	3)He(c

n+1
2 − 0.5) + 	3,

ηn+1 = (η1 − η3)He(c
n+1
1 − 0.5) + (η2 − η3)He(c

n+1
2 − 0.5) + η3,

(25)

where He is a smooth approximation of the Heaviside function. Contrary to the arithmetic
or harmonic averages used in the literature, this relation (25) enables to preserve the values
	i and ηi in the phase i even though ci is not exactly 1 due to numerical errors. Hence,
this averaging technique avoids additional numerical errors, which appear to be critical in
particular when there are large ratios between densities and viscosities of the phases.

3.2 Local Adaptive Refinement

In the finite element method, basis functions have a small support in comparison to the size
of the domain. The idea is to use basis functions with increasingly small support around
the smeared interfaces. The basic principle of the CHARMS method is to refine/unrefine
primarily basis functions and not directly the cells.

The study of this method and its application to Cahn–Hilliard systems are given in detail
in Boyer et al. (2009). We only recall next the main features of the method.

3.2.1 Adaptation Procedure

Consider an initial conforming grid (possibly unstructured) together with its finite elements
structure. A conceptual hierarchy of nested grids is defined by successive divisions of cells
into cells of the same type obtained by uniformly applying the same subdivision pattern. We
obtain a sequence of Lagrange conformal finite element spaces X j , with the property that
each basis function at a given level j can be written as a linear combination of some basis
functions of the immediate finer level j + 1:

X j ⊂ X j+1 ⇒ ϕ
j
k =

∑
l

β
j+1

k,l ϕ
j+1

l ,

leading to a Child/Parent relationship,

β
j+1

k,l �= 0 ⇔ ϕ
j
k is a parent of ϕ

j+1
l ⇔ ϕ

j+1
l is a child of ϕ

j
k .

Since the supports of basis functions are small, most of the coefficients β
j+1

k,l are zero. Within
a set of basis functions, the refinement (resp. unrefinement) of a parent is then defined by the
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addition (resp. removal) of all its children. Geometric cells are accordingly split and coars-
ened, leading to nonconforming grids, but their role is limited to the integration domains
and support of the basis functions which, more importantly, span conforming finite element
spaces.

3.2.2 Time Marching and Grid Construction

For the discrete problem CH/NS proposed in Paragraph 3.1, we use the CHARMS method
that involves few modifications in particular for the finite element approximation spaces.

In a time step, from the solution obtained at the previous time tn , we refine or unrefine
the basis functions that belong to Vn using a given criterion (a criterion for the Cahn–
Hilliard/Navier–Stokes applications is given in the following Paragraph 3.2.3). This stage
enables to define the new finite element approximation space Vn+1 in which we search the
solution at time tn+1. The spaces Vn+1 differ, in general, from the approximation space at
time tn . Notice that these spaces do not necessarily have the same dimensions (the grids may
be different at each time step).

This method implies that in the variational formulations, some integrals contain basis
functions that belong to two distinct approximation spaces Vn+1 and Vn . For example, we
have to cope with the following integral

∫

�

cn
ih

�t
νn+1, with cn

ih ∈ Vn, and νn+1 ∈ Vn+1.

In order to compute these terms, the grid is built in such a way that each basis function
belonging to either Vn or Vn+1, is expressed as a polynomial function on each cell (the basis
function is not piecewise defined on a cell). Thus, if one uses suitable quadrature rules, such
integrals can be computed exactly. This method avoids, in particular, the use of intricate
transfer operators between the grids.

3.2.3 Refinement/Unrefinement Criterion

In order to build Vn+1 from Vn , we need to define a refinement/unrefinement criterion. For
our applications, we want to refine in the interface zone (that is where the order parameters
have important variations) and to unrefine away from the interfaces. This strategy is justified
by the fact that, in our applications, the flow is not turbulent, and therefore, the small scales
structures of the solution are only located at the interfaces. For other applications considering
more turbulent flows, it is possible to adapt the refinement/unrefinement criterion to capture
more complex hydrodynamic phenomenon.

As a consequence, we need to introduce an indicator measuring whether or not a given
cell (resp. basis function) lies near the interfaces. The cell indicator is defined at time tn by

ηK = max

(
1

|K|
∫

K
cn

1 ,
1

|K|
∫

K
cn

2 ,
1

|K|
∫

K
cn

3

)
. (26)

This cell indicator can be interpreted as follows:

– ηK = 1 means that the cell K is completely filled with one of the bulk phases.
– ηK < 1 means that the cell K contains an interface.
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Fig. 6 Use of different finite
elements (P1 and Q1)

Using the cell indicator, we can deduce a criterion for deciding whether or not a given
basis function ϕ ∈ Vn may be (un-)refined. We use a volume weighted average of ηK over
the support of ϕ:

ηϕ = 1

|supp[ϕ]|
∑

K∩supp[ϕ]�=∅
|K |ηK .

Given an expected cell size hinterface for the interface neighbourhood, the two following
criteria let us decide if a basis function ϕ has to be refined or unrefined:

– Refinement criterion:

ηϕ < 0.90 and diam(K ) > hinterface for at least one cellK ⊂ supp[ϕ].
– Unrefinement criterion:

ηϕ > 0.95.

In practice, hinterface is chosen in such a way that each interface contains approximately
three cells, that is 3hinterface ≈ ε.

3.2.4 Summary

The CHARMS method presents the following advantages:

– there is no modification of the discrete problem due to the mesh adaptation,
– the possible geometric non-conformity of the adapted meshes are implicitly handled,
– there is no specific treatment due to particular Lagrange finite elements (P1, Q1 see

Fig. 6),
– all the procedure is independent of the space dimension (see Fig. 7),
– no need of transfer operators for fields defined on two distinct refined grids.

The use of adaptive local refinement enables us to choose an interface thickness ε very
small while conserving a reasonable number of cells as we can see on Fig. 8 in the case of a
rising gas bubble (this application is studied in Sect. 4.2)

4 Applications

In this section, we present two applications: the one of a lens spreading between two different
liquids and the one of a gas bubble rising in two stratified liquid layers.

The computations are performed in axisymmetric 3D geometry using local adaptive refine-
ment as described above.
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Fig. 7 Example of adaptive local
refinement in 3D

Fig. 8 Rising gas bubble in a
stratified two-liquid geometry
using local adaptive refinement

4.1 Spreading Lens between Two Stratified Liquid Layers

In this section, we show that the Cahn–Hilliard/Navier–Stokes model enables the accurate
computation of contact angles and pressure jumps in the case of the partial spreading of a
lens, and also the simulation of total spreading situations. In these numerical results, gravity
effects are not taken into account since we are only interested in the computation of capillary
effects.

4.1.1 Partial Spreading - Laplace’s Law

At equilibrium, the positions of the interfaces are known: the shape of the lens is the intersec-
tion of two spherical caps. The contact angles depend on the three surface tensions as given
by the Young’s relation (see Fig. 9).

In Fig. 10, we present numerical solutions for different surface tension values. The white
zone corresponds to the diffuse interface. We obtain a very good agreement with the theo-
retical solution (black solid line on the figure).

At the equilibrium, if there are no external forces, the theoretical velocity is zero and the
pressures are uniform in each phase. The pressure jump between two phases is given by the
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Fig. 9 Shape of the lens at equilibrium

Fig. 10 Equilibrium states
obtained numerically for different
surface tensions (σ12; σ13; σ23).
a (1; 1; 1). b (1; 0.8; 1.4)

Fig. 11 Pressure jump for different surface tensions (σ12; σ13; σ23). a (1; 1; 1). b (1; 0.8; 1.4)

Laplace’s law and is written as

pi − p j = 2
σi j

ri j
(27)

where ri j is the radius of the curvature of the interface between the phases i and j . In the
present case, this leads to

{
p1 = p2,

2
σ13

r13
= p3 − p1 = p3 − p2 = 2

σ23

r23
.

(28)

In Fig. 11 and in Table 1, we can see that the Cahn–Hilliard/Navier–Stokes model enables
the accurate computation of the pressure jump for different surface tensions values.

In our computations, the velocity is not zero but very small. We observe parasitic currents,
which are a common problem for methods where the surface tension force is approximated
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Table 1 Relative error of the
pressure jump for different
surface tensions

(σ12; σ13; σ23) Theoretical Numerical Relative
pressure jump pressure jump error

(1; 1; 1) 113.101 113.59 0.453%

(1; 0.8; 1.4) 121.644 122.9 1.03%
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Fig. 12 Evolution of the kinetic energy for different surface tensions (σ12; σ13; σ23). a (1; 1; 1). b (1; 0.8; 1.4)

by a volume force (see Jamet et al. 2002). These spurious currents decrease when the system
tends to the equilibrium state. Indeed, in Fig. 12, we can see that the kinetic energy decreases
during time.

4.1.2 Total Spreading

In the case where one of the spreading parameters Si is positive (that is �i < 0), the spreading
is said to be total. Two configurations of total spreading are simulated: when the lens spreads
between the liquids and when the upper liquid spreads between the lens and the lower liquid.
The surface tensions are

– for the lens spreading: (σ12; σ13; σ23) = (3; 1; 1),�3 < 0,
– for the upper phase spreading: (σ12; σ13; σ23) = (1; 1; 3),�1 < 0.

We can see in Fig. 13 that in both cases, the phase spreads in such a way that the triple
points disappear. Then, the system tends to the equilibrium state: the interfaces are finally
plane or spherical.

4.2 Behaviour of a Bubble in Two Stratified Layers

During a gas bubble rise in a two stratified liquid layers configuration, the bubble can either
remain captured in the interface, or can penetrate in the lighter phase and possibly entrain
the heavy phase. In Greene et al. (1988, 1991), the authors suggest two criteria on the bubble
volume to predict the bubble penetration and the entrainment phenomenon. These criteria,
based on a macroscopic balance between buoyancy and surface tension forces, have been
validated experimentally. The physical parameters we used are given in Table 2. This test case
confirms that the model and the numerical method we proposed are able to simulate three-
phase flows with large density and viscosity ratios with a good qualitative and quantitative
agreement with theoretical results.
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Fig. 13 Evolution of the interface for total spreading situation. a (σ12; σ13; σ23) = (3; 1; 1). b
(σ12; σ13; σ23) = (1; 1; 3)

Table 2 Physical properties
Surface tension (N · m−1)
σgas−liquid 0.07

σliquid−liquid 0.05
Density (kg · m−3)
Bubble c1 1
Heavy liquid c2 1,200
Light liquid c3 1,000
Viscosity (Pa · s)
Bubble c1 10−4

Heavy liquid c2 0.15
Light liquid c3 0.1

We are interested here in the first criterion which predicts the bubble penetration if its
volume V is greater than:

Vp =
⎛
⎝2π

( 3
4π

) 1
3 σ23

(	3 − 	1)g

⎞
⎠

3
2

 8.87 10−8 m3,

i.e., for a bubble radius greater than rp  2.76 10−3 m. The numerical study gives rnum
p 

2.5 10−3 m, which is in agreement with the criterion (see Fig. 14).
In the entrainment situations, the authors of Greene et al. (1991) experimentally stud-

ied the entrained volume of a heavy fluid into a light fluid when densities and viscosi-
ties vary. We propose to find these behaviours qualitatively by computing the quantity of
the heavy liquid that is above the initial liquid–liquid interface position. In our study, the
simulation with a bubble radius of r = 8 mm is considered as the reference case (see
Fig. 15, circled marks in Fig. 16). The physical properties are the same as the previous
ones.

Our results are in agreement with experiments: we observe an increase of the quantity of
entrained volume when the light liquid density increases (see Fig. 16) and a decrease of the
entrained volume when the viscosities and the heavy liquid density increase (see Fig. 16a, c
and d).
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Fig. 14 Bubble rising in two
stratified layers.
a r = 0.002 m < r p .
b r = 0.0029 m > r p

Fig. 15 Entrainment of the heavy liquid during the bubble rising with a radius r = 8mm

5 Conclusion

In this article, we described a Cahn–Hilliard/Navier–Stokes model for the simulation of
incompressible flows composed of three immiscible components, with no phase change.
The model is consistent with the two-phase model: there is no artificial apparition of the
third phase in the interface between the other two. Moreover, the model is able to simulate
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Fig. 16 Evolution of the entrained volume Ve of the heavy liquid in the light liquid. a Impact of the heavy
liquid density. b Impact of the light liquid density. c Impact of the heavy liquid viscosity. d Impact of the light
liquid viscosity

flows with a large ratio between the densities and the viscosities, with three different surface
tensions and it takes into account total spreading situations.

The local adaptive refinement method enables us to simulate thin interfaces and have an
accurate resolution in the interfacial zone. Finally, to compute 3D flows, it is necessary to use
efficient linear solvers. In this context, a possible strategy is to use the multi-level structure
naturally obtained by the local refinement algorithm to build multigrid preconditioners. Such
a methodology and corresponding numerical results are described in Boyer et al. (2009).

In further studies, we will concentrate on the precise mathematical study of the full numer-
ical method including the coupling between the Cahn–Hilliard and Navier–Stokes equations
and the adaptive local refinement method.
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