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Objectives

• To present research topics on �ow-induced vibrations;

• To highlight the contributions from EPUSP to the state-of-art.
• References: MsC dissertation written by Tatiana Ueno (2019), habilitation thesis

written by Gonçalves (2013, Fujarra (2013), Rateiro (2014) and Franzini (2019)
and selected papers.
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Some open questions

VIV still demands some investigations. Examples of open topics include:
• Flow around cylinders with low aspect ratio;

• Flow around cylinders with cross-sections other than circular;
• Passive control;
• Flexible cylinder VIV;
• Concomitant excitation.

4/48
PEF 6000



Some open questions

VIV still demands some investigations. Examples of open topics include:
• Flow around cylinders with low aspect ratio;
• Flow around cylinders with cross-sections other than circular;

• Passive control;
• Flexible cylinder VIV;
• Concomitant excitation.

4/48
PEF 6000



Some open questions

VIV still demands some investigations. Examples of open topics include:
• Flow around cylinders with low aspect ratio;
• Flow around cylinders with cross-sections other than circular;
• Passive control;

• Flexible cylinder VIV;
• Concomitant excitation.

4/48
PEF 6000



Some open questions

VIV still demands some investigations. Examples of open topics include:
• Flow around cylinders with low aspect ratio;
• Flow around cylinders with cross-sections other than circular;
• Passive control;
• Flexible cylinder VIV;

• Concomitant excitation.

4/48
PEF 6000



Some open questions

VIV still demands some investigations. Examples of open topics include:
• Flow around cylinders with low aspect ratio;
• Flow around cylinders with cross-sections other than circular;
• Passive control;
• Flexible cylinder VIV;
• Concomitant excitation.

4/48
PEF 6000



Flow around cylinders with low aspect ratio

• Monocolumn platforms have low aspect ratio (L/D < 5);

• The �ow around these structures lead to oscillatory responses on the horizontal
plane with amplitudes of order of one diameter (Vortex-Induced Motion - VIM);

• Tridimensional e�ects are of great importance (other �ow structures than the
vón Kármán wake);

• Lower branch is not so well de�ned;
• Examples of references: Gonçalves (2013), Fujarra (2013), Gonçalves et al

(2015)...
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Cylinders with di�erent cross-sections

• Floating platforms may exhibit cross-sections di�erent from the circular one;

• Examples of usual cross-sections: Square sections, with rounded corners;
• Possible coexistence of galloping and VIV;
• Gonçalves et al (2015): Oscillation amplitude strongly depends of the angle of

attack;
• Gonçalves et al (2016): Experimental investigation on the e�ects of round

corners.
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Passive suppression - strakes

Figura: Extraído de Korkischko & Meneghini (2011).
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Passive suppression - strakes

• The �ow separation occurs at �xed points located at the strakes;

• Decreases the correlation length;
• Direct interference on the �ow �eld.

8/48
PEF 6000



Passive suppression - strakes

• The �ow separation occurs at �xed points located at the strakes;
• Decreases the correlation length;

• Direct interference on the �ow �eld.

8/48
PEF 6000



Passive suppression - strakes

• The �ow separation occurs at �xed points located at the strakes;
• Decreases the correlation length;
• Direct interference on the �ow �eld.

8/48
PEF 6000



Passive suppression - NVA

• NVA (Nonlinear vibration absorber) or NES (Nonlinear Energy Sink): Mass
coupled to the main structure by means of an element of null linearized natural
frequency and a dashpot. Examples of NVA are (from Franzini (2019));

(a) VI-NES. (b) Translative NVA. (c) Rotative NVA.

• No preferential frequency for suppression;
• Numerical studies based on CFD presented in Tumkur et al (2013a,b) and

Blanchard (2016): A rotative NVA is e�cient in VIV mitigation;
• CFD calculations have high computational cost → Sensitivity studies with

respect to changes in the NVA parameters are practically impossible;
• On the other hand, wake-oscillators appear as an interesting alternative;
• The use of a rotative NVA is focus of the MsC. dissertation written by Ueno

(2019) and the paper Ueno & Franzini (2019).
• At least to the best of the authors' knowledge, passive suppression of VIV-2dof

using a rotative NVA was not found in the literature.
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Passive suppression - Rotative NVA

• Results from Ueno (2019) and Ueno & Franzini (2019).
• Use of wake-oscillators allowed developing sensitivity studies with respect to the

in�uence of the NVA on the suppression;
• In the following results: r̂ = 0.50 e ζθ = 0.10. G1-Sim1: m̂ = 0.03, G1-Sim2:

m̂ = 0.07, G1-Sim3: m̂ = 0.10, G1-Sim4: m̂ = 0.12 and G1-Sim5: m̂ = 0.15.
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Extracted from Ueno (2019).
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Passive suppression - Rotative NVA

• Example of time-histories r̂ = 0.50, ζθ = 0.10, m̂ = 0.15 - Ur = 6. VIV-1dof.
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• 1 : 1 : 1 resonance (TET mechanism).

Adapted from Ueno (2019).
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Passive suppression - Rotative NVA and VIV-1dof

• In the colorbar, the map above shows an e�ciency criterion. Values close to 1
refer to high e�ciency.

Extracted from Ueno (2019).

12/48
PEF 6000



Passive suppression - Rotative NVA and VIV-1dof

Extracted from Ueno (2019).
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Flexible cylinders under VIV

• Already discussed: The response to VIV is intrinsically more intricate than that
observed in rigid and elastically supported cylinders;

• Derivation of reduced-order models (ROMs): How can we choose a set of
projection functions to be adopted in the Galerkin's method?

• Possible alternative: �Quasi-Bessel� modes.
• Due to the non-linear character of the mathematical model, the system of ODEs

will be coupled How to evaluate the number of adopted modes?
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Flexible cylinders under VIV

• Use of wake-oscillators: Forces due to the �uid-structure interaction are
distributed along the span;

• Spatial distribution: Nodal (via FEM) continuously?
• What is the projection function to be adopted in the Galerkin's method for

discretizing the PDE associated with the van der Pol equation?
• Use of wake-oscillators for �exible cylinder VIV: Is valid to use the empirically

calibrated parameters obtained from experiments with rigid and elastically
mounted cylinders?

• What is the gain allowed by the use of �non-standard� techniques such as the
use of invariant manifolds in VIV analysis?

• A comprehensive research project on nonlinear dynamics of risers was developed
at EPUSP and LMO led the experimental activities. This class brings
experimental results from this project.
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Modal-amplitude time-histories: vertical �exible cylinder

• Modal decomposition: Decompose the measured data into a set of projection
functions. Allows identifying the participation of di�erent modes in the response.

ãxn(tj ) =

∫ 1
0 X∗(z, tj )ψn(z)dξ∫ 1

0 (ψn(z))2dξ
(1)

ãyn(tj ) =

∫ 1
0 Y ∗(z, tj )ψn(z)dξ∫ 1

0 (ψn(z))2dξ
(2)
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Extracted from Franzini et al (2016).
16/48

PEF 6000



Example of experimental analysis - Ur ,1 = 6.99

Di�erent regimes may appear in the same nominal modal reduced velocity
Ur,1 = U∞/fn,1D. The �gure below is extracted from Franzini (2019).

(a) Scalogram y∗(ξ, τ). (b) Scalogram x∗(ξ, τ).
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Example of experimental analysis - Ur ,1 = 6.99

Trajectories on the horizontal plane.

(a) 50 < τ < 55. (b) 150 < τ < 155.

Extracted from Franzini (2019).
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Example of experimental analysis - Ur ,1 = 11.57

The �gure below is extracted from Franzini (2019).

(a) Scalogram y∗(ξ, τ). (b) Scalogram x∗(ξ, τ).
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Example of experimental analysis - Ur ,1 = 11.57

Trajectories on the horizontal plane.

(a) 50 < τ < 55. (b) 150 < τ < 155.

Extracted from Franzini (2019).
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Analyses with modal-amplitude time-histories

• Modal-amplitude time-histories allow investigating the participation of each
mode in the response. They contain information of all measured points. We
illustrate two modal amplitude time-histories from di�erent tests (di�erent U∞),
but at similar modal reduced velocity Ur,k = U∞/fn,kD. From free-decay tests,
fn,2 = 2fn,1, fn,3 = 3fn,1

τ = tfn,1

0 50 100 150 200 250 300

ã
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Ur ,1 ≈ Ur ,2 ≈ 5.70. Extracted from Franzini (2019).
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ã
x 2
(τ
)

-1

0

1

Ur,1 = U∞/fn,1D =5.63

f̂ = f/fn,1

0 1 2 3 4 5 6

S̃
x 2

0

0.05

0.1

0.15

(b) ãx
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ã2kx × ãky , Ur ,1 ≈ Ur ,2 ≈ 5.70.
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Extracted from Franzini (2019).
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Flexible cylinder VIV - catenary

Extracted from Rateiro et al (2016).
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Flexible cylinder VIV - catenary

• Risers and other slender structures are usually hanged in catenary con�guration
and their response to VIV are not fully understood;

• The angle of incidence between �ow and centreline varies along the structure;
• Use of the independence principle: The �ow characteristics are de�ned only be

the component of the free-stream that is normal to the cylinder axis;
• Near or far current incidence plays a role;
• Modal decomposition: Characteristic modal-amplitude versus modal reduced

velocity exhibit good agreement in di�erent modes.
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Combined excitation

In the o�shore engineering scenario, problems involving VIV occur under combined
excitation. Two cases are herein highlighted:
• Concomitant VIV and parametric excitation: Depending on the frequency of the

top motion ft , the response is highly increased (Franzini et al (2016, 2017,
2018)). Interesting case ft : fN,1 = 2 : 1;

• Concomitant VIV and internal �ow: The dynamic behavior becomes richer
(Meng et al (2017a,2017b)) Changes in the natural frequencies, decrease in the
oscillation amplitudes, mode switching;

• Key-point in modeling: wake-oscillators are developed and calibrated from �Pure
VIV� experiments obtained with rigid and elastically supported cylinders;

• Experimental data of VIV under combined excitation are rare. For concomitant
VIV and parametric excitation, LMO led a comprehensive experimental
campaign that provided these data;

• At least to the best of the author's knowledge, experimental data concerning
concomitant VIV and internal �ow excitation are not found.
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Combined excitation

• Combined �exible cylinder VIV and parametric excitation: Experimental results
published in Franzini (2018);

• This class focuses on the simultaneous VIV and parametric excitation with
ft : fn,1 = 2 : 1 and At/L0 = 1%. Figure below, adapted from Franzini (2018),
illustrates the cross-wise envelope amplitude and the cross-wise amplitude
spectra;

• The simultaneous VIV and parametric excitation with ft : fn,1 = 2 : 1 (principal
parametric instability in the �rst mode) signi�cantly a�ects the response of the
hydroelastic system;

• A marked increase in the oscillation amplitude is observed.
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Combined excitation
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Adapted from Franzini et al (2018).
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Combined excitation

• Combined �exible cylinder VIV and excitation due to the internal �ow is also an
important and complex issue → Ongoing research topic developed at LMO;

• Usual approach: To consider wake-oscillator models with the same empirically
calibrated parameters obtained for rigid and elastically mounted cylinders;

• Superposition of models associated with �pure VIV� and �pure� internal �ow
excitation;

• Experiments on this combined excitation are quite complex → Planed to be
carried out by LMO (part of the PhD research developed by Wagner Defensor).

• In Orsino et al (2018), the numerical results show that there is a range of
internal �ow velocities associated with VIV mitigation.
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Numerical studies

• Focus on the galloping of a square prism, �tted with a rotative NVA;
• Studies developed by Bianca Teixeira (former undergraduate student) and

presented in Teixeira et al (2018) and in Franzini (2019).
• Use of the quasi-steady hypothesis;

Extracted from Franzini (2019).
• Equations of motion
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Numerical studies

r̂ = 0.40, ζθ = 0.05, ζy = 0.0009.
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Extracted from Franzini (2019).
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Numerical studies

Ur = 12, ˆm = 0.13, r̂ = 0.40, ζθ = 0.05 and ζy = 0.0009.
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Extracted from Franzini (2019).
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Ŝ(m̂; r̂)

ζθ = 0.05 e Ur = 6.5. Standard-deviation of the response without suppressor is
ystd,0 = 0.34. Ŝ = 1− ystd,NVA

ystd,0
.

Extracted from Franzini (2019).
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Experimental results

• Wind tunnel experiments carried out at École Polytechnique de Montréal;
• Balls constrained to move along circular tracks;
• Experiments carried out by Michael Selwanis (PhD candidate) and published in

Selwanis et al (2021).

Extracted from Selwanis et al (2021).
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Experimental results

• The proposed suppressor has proved to be highly e�cient!

Extracted from Selwanis et al (2021).
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Experimental results

• Some features of the response numerically observed appear in the experiments

Extracted from Selwanis et al (2021).
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VSIV phenomenon

• Vortex-self induced vibrations: VIV associated with oscillatory incoming �ow;

• Applications in structures hanged in catenary: Motion prescribed to the top of
the catenary induces, at each cross-section, oscillatory �ow;

• Structural response depends on the amplitude/frequency of the applied motion -
see Pesce et al (2017).

• In the dynamics of catenary risers: Motion prescribed to the top+parametric
excitation+VIV+internal �ow e�ects=?.
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VSIV phenomenon

Extracted from Pesce et al (2017).
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Overview

• Usually, we are interested in mitigating FIV;

• Recent research topic: energy harvesting - Conversion of part of the mechanical
energy available in the vibrating structure into another form of energy (electric
energy, for example);

• Di�erent ways for converting energy: Gravitational potential energy,
electromagnetic conversion, piezoelectric conversion;

• Focus on low-power systems (small sensors, for example).
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Some works - �utter and galloping

• Tang et al (2009): Flutter of a �exible plate under axial �ow and immersed in a
magnetic �eld �tted with wires: Flutter-mill concept;

• Barrero-Gil et al (2010): Galloping of prismatic bodies → In�uence of the
cross-section on the energy dissipated at the dashpot;

• Fernandes & Armandei (2014): Torsional galloping is employed for lifting
weights;

• Franzini et al (2016,2017): Concomitant parametric excitation and galloping
increases the harvested power in piezoelectric circuits.
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Hémon et al (2017)

Magnets are placed at the tip of the leaves-springs and can move relative to coils.

Extracted from Hémon et al (2017).
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Energy harvesting from VIV

• Bernitsas et al (2006): VIVACE (Vortex-Induced Vibrations Aquatic Clean
Energy) project → Experimental device based on VIV of a series of aligned
(tandem) cylinders. Electromagnetic e�ect;

• Grouthier et al (2012,2014): Energy harvesting from VIV → wake-oscillator
models (VIV-1dof) and energy is harvested at the dashpot;

• Mehmood et al (2013): Rigid cylinders, mounted on piezoelectric supports →
Electric power is harvested from the electrical resistance. CFD is employed for
modeling the hydrodynamic load;

• Bunzel & Franzini (2017), Franzini & Bunzel (2018): Piezoelectric energy
harvesting from VIV → Pioneer in including in-line oscillations in the analysis.
Sensitivity studies focusing on the in�uence of the piezoelectric parameters;

• Madi et al (2019): Developed by Leticia Madi (PhD candidate), this paper deals
with piezoelectric energy harvesting from �exible cylinder VIV.
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Electric power is harvested from the electrical resistance. CFD is employed for
modeling the hydrodynamic load;

• Bunzel & Franzini (2017), Franzini & Bunzel (2018): Piezoelectric energy
harvesting from VIV → Pioneer in including in-line oscillations in the analysis.
Sensitivity studies focusing on the in�uence of the piezoelectric parameters;

• Madi et al (2019): Developed by Leticia Madi (PhD candidate), this paper deals
with piezoelectric energy harvesting from �exible cylinder VIV.
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Result from Akaydin et al (2012)

Piezoelectric patches are included at the clamp.

(e) Experimental arrangement. (f) Electrical power.

Extracted from Akaydin et al (2012).
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Result from Grouthier et al (2014)

Existence of a critical structural damping ratio ξ for maximizing energy harvesting
e�ciency.

Extracted from Grouthier et al (2014).
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Piezoelectric energy harvesting from VIV

• The rigid cylinder is assembled onto a piezoelectric support. The electrical
circuit is characterized by its capacitance CP,y and resistance Ry . θy is the
electromechanical coupling term.

• For the VIV-1dof condition, the solid-�uid-electric system is governed by:
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Extracted from Franzini & Bunzel (2018).
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Piezoelectric energy harvesting from VIV

• Due to energy harvesting, a small decrease in the cylinder response.
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Adapted from Franzini & Bunzel (2018).
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Piezoelectric energy harvesting from VIV

• Energy harvesting is more e�cient if the cylinder is assembled onto a 2dof
elastic support.
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Extracted from Franzini & Bunzel (2018).
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