
Multitasking, UC Berkeley: 1

PSI 3442 2020
Capítulo 11 do Livro Texto

Multitasking & Threads Programming in Embedded Systems

Multitasking, UC Berkeley: 2

Layers of Abstraction for
Concurrency in Programs

Multitasking, UC Berkeley: 3

Definition and Uses

Threads are sequential procedures that share
(concurrent dispute) memory.

Uses of concurrency:
� Reacting to external events (interrupts)
� Exception handling (software interrupts)
� Creating the illusion of simultaneously running

different programs (multitasking)
� parallelism in the hardware (real simultaneously) (e.g.

multicore machines).
� Dealing with real-time constraints.

Multitasking, UC Berkeley: 4

Thread Scheduling
Predicting the thread schedule is an iffy proposition.

� Without an OS, multithreading is achieved with interrupts. Timing is
determined by external events.

� Generic OSs (Linux, Windows, OSX, …) provide thread libraries (like
“pthreads” POSIX Threads IEEE Standard) and provide no fixed
guarantees about when threads will execute. absolute
non-determinism

� Real-time operating systems (RTOSs), like FreeRTOS, QNX,
VxWorks, RTLinux, MBED, NutOS, support a variety of ways of
controlling when threads execute (priorities, preemption policies,
deadlines, …).

� Processes are collections of threads with their own memory, not visible
to other processes. Segmentation faults are attempts to access
memory not allocated to the process. Communication between
processes must occur via OS facilities (like pipes or files).

Multitasking, UC Berkeley: 5

Posix Threads (PThreads) IEEE 1988

PThreads is an API (Application Program Interface)
implemented by many operating systems, both real-time
and not. It is a library of C procedures.

Standardized by the IEEE in 1988 to unify variants of
Unix. Subsequently implemented in most other operating
systems.

An alternative is Java, which may use PThreads under
the hood, but provides thread constructs as part of the
programming language.

Multitasking, UC Berkeley: 6

Creating and Destroying Threads

#include <pthread.h>

void* threadFunction(void* arg) {
 ...
 return pointerToSomething or NULL;
}

int main(void) {
 pthread_t threadID;
 void* exitStatus;
 int value = something;
 pthread_create(&threadID, NULL, threadFunction, &value);
 ...
 pthread_join(threadID, &exitStatus);
 return 0;
}

Can pass in pointers to shared variables.

Can return pointer to something.
Do not return a pointer to an local variable!

Return only after all threads have terminated.

Becomes arg parameter to
threadFunction.
Why is it OK that this is a
local variable?

Create a thread (may or may not start running!)

Multitasking, UC Berkeley: 7

Difficulties in thread programming

you must:
a) know how to programs in C;
b) details of the microprocessor
c) details of the operating system
and how the IEEE 1988 Pthreads works

Multitasking, UC Berkeley: 8

What’s Wrong with This?

#include <pthread.h>
#include <stdio.h>
void *myThread() {
 int ret = 42;
 return &ret;
}

int main() {
 pthread_t tid;
 void *status;
 pthread_create(&tid, NULL, myThread, NULL);
 pthread_join(tid, &status);
 printf("%d\n",*(int*)status); return 0;
}

Don’t return a pointer to a local
variable, which is on the stack.

Multitasking, UC Berkeley: 9

Notes

� Threads can (and often do) share variables
� Threads may or may not begin running immediately

after being created.
� A thread may be suspended between any two atomic

instructions (typically, assembly instructions, not C
statements!) to execute another thread and/or
interrupt service routine.

� Threads can often be given priorities, and these may
or may not be respected by the thread scheduler.

� Threads may block on semaphores and mutexes (we
will do this later in this lecture).

Multitasking, UC Berkeley: 10

Modeling Threads via Asynchronous Composition
of Extended State Machines

States or transitions represent atomic instructions

Interleaving semantics:
● Choose one machine,

arbitrarily.
● Advance to a next state if

guards are satisfied.
● Repeat.

Need to compute reachable states
to reason about correctness of the
composed systemCan Thread 1 be in C1 at the same

time Thread 2 is in C2?

Multitasking, UC Berkeley: 11

A Scenario

Under Integrated Modular Avionics,
software in the aircraft engine continually
runs diagnostics and publishes diagnostic
data on the local network.

Proper software
engineering practice
suggests using the
observer pattern.

An observer
process updates
the cockpit display
based on
notifications from
the engine
diagnostics.

Multitasking, UC Berkeley: 12

Typical thread programming problem

“The Observer pattern defines a one-to-many
dependency between a subject object and any number of
observer objects so that when the subject object changes
state, all its observer objects are notified and updated
automatically.”

Design Patterns, Eric Gamma, Richard Helm,
Ralph Johnson, John Vlissides
(Addison-Wesley, 1995)

Multitasking, UC Berkeley: 13

Observer Pattern in C
// Value that when updated triggers notification
// of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Multitasking, UC Berkeley: 14

Observer Pattern in C
// Value that when updated triggers notification of
// registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

typedef void* notifyProcedure(int);
struct element {
 notifyProcedure* listener;
 struct element* next;
};
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

Multitasking, UC Berkeley: 15

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {
 if (head == 0) {
 head = malloc(sizeof(elementType));
 head->listener = listener;
 head->next = 0;
 tail = head;
 } else {
 tail->next = malloc(sizeof(elementType));
 tail = tail->next;
 tail->listener = listener;
 tail->next = 0;
 }
}

Multitasking, UC Berkeley: 16

Observer Pattern in C
// Value that when updated triggers notification of
registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

// Procedure to update the value
void update(int newValue) {
 value = newValue;
 // Notify listeners.
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
}

Multitasking, UC Berkeley: 17

Model of the Update Procedure

Multitasking, UC Berkeley: 18

Observer Pattern in C
// Value that when updated triggers notification of registered listeners.
int value;

// List of listeners. A linked list containing
// pointers to notify procedures.
typedef void* notifyProcedure(int);
struct element {…}
typedef struct element elementType;
elementType* head = 0;
elementType* tail = 0;

// Procedure to add a listener to the list.
void addListener(notifyProcedure listener) {…}

// Procedure to update the value
void update(int newValue) {…}

// Procedure to call when notifying
void print(int newValue) {…}

Will this work in a
multithreaded context?

Will there be
unexpected/undesirable
behaviors?

Multitasking, UC Berkeley: 19

Using Posix mutexes on
the observer pattern in C

#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 elementType* element = head;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
 pthread_mutex_unlock(&lock);
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

However, this carries a
significant deadlock risk.
The update procedure
holds the lock while it
calls the notify
procedures. If any of
those stalls trying to
acquire another lock, and
the thread holding that
lock tries to acquire this
lock, deadlock results.

Multitasking, UC Berkeley: 20

After years of use without problems, a Ptolemy Project code review found
code that was not thread safe. It was fixed in this way. Three days later, a
user in Germany reported a deadlock that had not shown up in the test suite.

Multitasking, UC Berkeley: 21

One possible “fix”#include <pthread.h>
...
pthread_mutex_t lock;

void addListener(notify listener) {
 pthread_mutex_lock(&lock);
 ...
 pthread_mutex_unlock(&lock);
}

void update(int newValue) {
 pthread_mutex_lock(&lock);
 value = newValue;
 ... copy the list of listeners ...
 pthread_mutex_unlock(&lock);
 elementType* element = headCopy;
 while (element != 0) {
 (*(element->listener))(newValue);
 element = element->next;
 }
}

int main(void) {
 pthread_mutex_init(&lock, NULL);
 ...
}

What is wrong with this?

Notice that if multiple
threads call update(), the
updates will occur in
some order. But there is
no assurance that the
listeners will be notified in
the same order. Listeners
may be mislead about the
“final” value.

Multitasking, UC Berkeley: 22

This is a very simple, commonly used design
pattern. Perhaps Concurrency is Just Hard…

Sutter and Larus observe:

“Humans are quickly overwhelmed by concurrency and find
it much more difficult to reason about concurrent than
sequential code. Even careful people miss possible
interleavings among even simple collections of partially
ordered operations.”

H. Sutter and J. Larus. Software and the concurrency revolution. ACM
Queue, 3(7), 2005.

Multitasking, UC Berkeley: 23

If concurrency were intrinsically hard, we
would not function well in the physical world

It is not
concurrency that
is hard…

Multitasking, UC Berkeley: 24

…It is Threads that are Hard!

Threads are sequential processes that share
memory. From the perspective of any thread, the
entire state of the universe can change between
any two atomic actions (itself an ill-defined
concept).

Imagine if the physical world did that…

Multitasking, UC Berkeley: 25

What it Feels Like to Use Mutexes

Im
ag

e
“b

or
ro

we
d”

 f
ro

m
 a

n
Io

m
eg

a
ad

ve
rt

is
em

en
t

fo
r

Y2
K

so
ft

wa
re

an

d
di

sk
 d

ri
ve

s,
 S

ci
en

ti
fi

c
A

m
er

ic
an

, S
ep

te
m

be
r

19
99

.

Multitasking, UC Berkeley: 26

Message-passing programs may be better

But there is still risk of
deadlock and
unexpected
nondeterminism!

Multitasking, UC Berkeley: 27

Claim

Nontrivial software written with threads,
semaphores, and mutexes is
incomprehensible to humans.

� Need better ways to program concurrent systems
(we will see some later in the course)

� Better tools to analyze and reason about
concurrency (e.g. model checking)

Multitasking, UC Berkeley: 28

Do Threads Have a Sound Foundation?

If the foundation is
bad, then we either
tolerate brittle
designs that are
difficult to make work,
or we have to rebuild
from the foundations.

Note that this whole enterprise is
held up by threads

Multitasking, UC Berkeley: 29

Problems with the Foundations

A model of computation:

 Bits: B = {0, 1}
 Set of finite sequences of bits: B*

 Computation: f : B*→ B*

 Composition of computations: f ∙ f '
 Programs specify compositions of computations

Threads augment this model to admit concurrency.

But this model does not admit concurrency gracefully.

Multitasking, UC Berkeley: 30

Basic Sequential Computation

initial state: b0 ∈ B*

final state: bN

sequential
composition

bn = fn (bn-1)

Formally, composition of computations is function composition.

Multitasking, UC Berkeley: 31

When There are Threads,
Everything Changes

suspend

A program no longer
computes a function.

resume

another thread can
change the state

bn = fn (bn-1)

b'n = fn (b'n-1)

Apparently, programmers find this
model appealing because nothing has
changed in the syntax.

Multitasking, UC Berkeley: 32

Succinct Problem Statement

Threads are wildly nondeterministic.

The programmer’s job is to prune away the
nondeterminism by imposing constraints on execution
order (e.g., mutexes) and limiting shared data accesses
(e.g., OO design).

Multitasking, UC Berkeley: 33

Incremental Improvements to Threads

• Object Oriented programming
• Coding rules (Acquire locks in the same order…)
• Libraries (Stapl, Java >= 5.0, …)
• Transactions (Databases, …)
• Patterns (MapReduce, …)
• Formal verification (Model checking, …)
• Enhanced languages (Split-C, Cilk, Guava, …)
• Enhanced mechanisms (Promises, futures,

asynchronous atomic callbacks …)

Multitasking, UC Berkeley: 34

IEEE Computer, May, 2006

