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Objectives

• To present the fundamental aspects of galloping, �utter and vibrations induced
by the internal �ow in pipes discharging �uid;

• Examples of references: Textbooks by Blevins (2001), Païdoussis (1998),
Païdoussis et al (2011), Naudascher & Rockwell (2005) and selected papers;

• The graduate course PNV5203 - Fluid-Structure Interaction 1 brings deeplier
concepts on the theme.
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Translational galloping

• Contrary to VIV, galloping is not resonant;

• Example of application: In some countries with severe winters, the e�ective
cross-section of cables is changed due to ice deposition;

• Galloping may cause very large oscillation amplitudes;

• Focus of the class: prismatic rigid bodies of mass per unit length M, assembled
onto an elastic support of sti�ness ky and damping constant cy , both per unit
length. The characteristic dimension of the cross-section is D.
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Translational galloping

Extracted from Franzini (2019).

Equation of motion

M
d2Y

dt2
+ cy

dY

dt
+ kyY = Fy =

1

2
ρU2
∞DCy (1)
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Quasi-steady hypothesis

• The force coe�cient Cy is obtained by using the quasi-steady hypothesis;

• Consider an experiment in which the cylinder is �xed, with a certain angle of
attack α and immersed on a free-stream of intensity U∞;

• CD,L(α) = FD,L/0.5ρU
2
∞D

𝛼

Extracted from Franzini (2019).
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Validity of the quasi-steady hypothesis

• Two time-scales can be de�ned, namely the one associated with the prism
oscillation (its natural period) and that characteristic of the �ow Tf = D/U∞;

• For the validity of the quasi-steady approach, it is necessary:

Tn,y

Tf
>> 1↔

1
fn,y

D
U∞

>> 1↔
U∞

fn,yD
>> 1 (2)

• Blevins (2001) suggests:
U∞

fn,yD
> 20 (3)

• Physically, the validity of the quasi-steady hypothesis means that the
vortex-shedding frequency is much higher than the structural natural frequency;

• Concomitant VIV and galloping may occur. However, this is out of the scope of
this class. The interested reader should read Paidoussis et al. (2011).
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Forces acting on the oscillating prism

Extracted from Franzini (2019).

tanα =

dY
dy

U∞
(4)

U =

√(
dY

dt

)2

+ U2
∞ (5)
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Using the quasi-steady approach for CD and CL

• From the above �gure, we have:

FL =
1

2
ρU2DCL (6)

FD =
1

2
ρU2DCD (7)

Fy =
1

2
ρU2
∞DCy = −FD sinα− FL cosα (8)

Cy =

(
U

U∞

)2

(−CD sinα− CL cosα) (9)

• Assuming that the prism velocity is much smaller than the free-stream velocity

tanα ≈ α =
dY
dt

U∞
(10)

U ≈ U∞ (11)

Cy ≈ −CL(0)−
(
∂CL

∂α
+ CD

)
0

α (12)
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Equation of motion

• Since α =
dY
dt

U∞
, if
(
∂CL
∂α

+ CD

)
0
< 0, the trivial solution may become unstable,

depending on U∞;

• Usually, Cy is written in the form of a polynomial function of α in the form

Cy =
N∑

k=1

akα
k =

N∑
k=1

ak

(
dY
dt

U∞

)k

(13)

ak being coe�cients obtained from experiments.

• Using Eq. 13, the equation of motion for the prism under galloping reads

M
d2Y

dt2
+ cy

dY

dt
+ kyY =

1

2
ρU2
∞D

N∑
k=1

ak

(
dY
dt

U∞

)k

(14)
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Example of Cy (α) plot for a square section

Extracted from Parksinson & Smith (1964).
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Critical velocity Uc
∞

• We consider the linearized version of the equation of motion. Notice that the
term of the �uid force proportional to dY

dt
is included on the LHS:

M
d2Y

dt2
+

(
cy −

1

2
ρDU∞a1

)
dY

dt
+ kyY = 0 (15)

• The equivalent damping is composed of two terms, one associated with the
structure (cy ) and the second one from the �uid force.

• If a1 > 0, the equivalent damping may be negative, depending on the
free-stream velocity U∞. In this case, the equivalent damping is null if

Uc
∞ =

2cy

ρa1D
(16)

• If U∞ < Uc
∞ (sub-critical velocity), the structural response to small

disturbances on the initial conditions are damped.

• On the other hand, the structural response to small disturbances grows as
t →∞ if U∞ > Uc

∞;

• U∞c is a critical velocity, above which the equilibrium position losses stability
through a Hopf bifurcation.
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Post-critical responses

• In the linear model, the structural response in�nitely grows;

• Notice, however, that unbounded responses are not physically observed. As the
responses grow, the neglected non-linear terms play the important role of
limiting the structural responses, leading to a post-critical behavior;

Extracted from Paidoussis et al. (2011).
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Torsional galloping

• The angle of attack varies from point to point due to the angular velocity.
Hence, we can not de�ne an equivalent static con�guration for the proper
application of the quasi-steady approach;

• A reference distance rr is adopted for the quasi-steady model;

rr

G

�
U��

U��� rr� cos�r

rr�
�r

Ur
���
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Torsional galloping

• From the above �gure:

θ − α = atan

(
θ̇rr sin γr

U∞ − θ̇rr cos γr

)
(17)

• For small values of θ̇, Ur ≈ U∞ and

θ − α = atan

(
θ̇rr sin γr

U∞

)
≈
θ̇rr sin γr

U∞
→ α = θ −

θ̇R

U∞
;R = rr sin γr (18)

• Equation of motion:

J θ̈ + cθ θ̇ + kθθ =
1

2
ρU2
∞h2CM(α) (19)

where h is the characteristic dimension of the body and CM is the aerodynamic
moment coe�cient.
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Torsional galloping - instabilities

• We expand CM is Taylor series around α = 0 as:

CM = CM(0) +

(
∂CM

∂α

)
0

α+O(α2) (20)

• Substituting the above expression into the equation of motion:

J θ̈ +

(
cθ +

1

2
ρU2
∞h2

(
∂CM

∂α

)
0

R

U∞

)
θ̇ +

(
kθ −

1

2
ρU2
∞h2

(
∂CM

∂α

)
0

)
θ =

=
1

2
ρU2
∞h2CM(0) (21)

• Static instability (divergence) occurs if

kθ −
1

2
ρU2
∞h2

(
∂CM

∂α

)
0

< 0 (22)

• Dynamic instability occurs if

cθ +
1

2
ρU∞h2

(
∂CM

∂α

)
0

R < 0 (23)
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Sketch

Extracted from Blevins (2001).
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Mathematical model

• Equations of motion

mÿ + cy ẏ + kyy + Sx θ̈ = F ′y (24)

Jθ θ̈ + cθ θ̇ + kθθ + Sx ÿ = F ′θ (25)

• FL,D = 1
2
ρU2cCL,D and Fθ = 1

2
ρU2c2CM

• For small angles of attack α (without stall), CL >> CD and, consequently
Fy ≈ −FL (pay attention to the signal convention);

• Since the moment at the aerodynamic center (point associated with minimum
aerodynamic moment) is small, F ′θ = Fθ + FLa = FLa;

• Using quasi-steady hypothesis, the relative velocity is similar to the one obtained
for the torsional galloping. Notice, however, that the structural velocity ẏ must
be also taken into account. Then, we have

α = θ −
R

U
θ̇ +

ẏ

U∞
(26)

• In a steady hypothesis, α = θ.
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Instability analysis using the steady hypothesis

• Notice that

FL =
1

2
ρU2cCL(α) =

1

2
ρU2c

(
CL(0) +

(
∂CL

∂α

)
0

α+O(α2)

)
(27)

• Substituting this linearized equation in α into the equations of motion, we have:

mÿ + cy ẏ + kyy + Sx θ̈ = −
1

2
ρU2cCL(α) =

1

2
ρU2c

(
CL(0) +

(
∂CL

∂α

)
0

θ

)
(28)

Jθ θ̈ + cθ θ̇ + kθθ + Sx ÿ =
1

2
ρU2acCL(α) =

1

2
ρU2c

(
CL(0) +

(
∂CL

∂α

)
0

θ

)
(29)

• The above equations de�ne an autonomous system. The stability of the
equilibrium points can be easily studied using the Lyapunov indirect's method
with U as the control parameter.
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General de�nitions

• Classical and important dynamic problem, found in a series of engineering
applications such as heat exchangers and risers. A survey on the theme is found
in Païdoussis (1998). This class follows the derivation presented in Païdoussis
(1998) and also detailed in the qualifying report Maciel (2020),;

• Open-system problem: The total mass is not constant or the system is not
composed by the same particles → There is �ux of momentum and/or kinetic
energy across the boundary;

• Focus of the class: Linear and planar dynamics of a cantilevered pipe
discharging �uid.

• Hypothesis:

1 Small displacements, rotations and strains (linear elasticity);
2 Bernoulli-Euler beam model;
3 Horizontal pipe (no gravitational e�ect is considered) of mass per unit

length m, length L and bending sti�ness EI ;
4 plug-�ow model: Fluid has mass per unit length M, incompressible �ow,

the velocity pro�le is uniform (there is no internal boundary layer) and is
equal to U (in relation to the pipe).
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Open system

(a) System at t. (b) System at t + dt.

Extracted from Maciel (2020).
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Open system

• Consider the closed system, de�ned by a volumn Vc (t) and bounded by Sc (t).
In addition, consider an open system Vo(t) bounded by Sc (t) ∪ So(t).

• vp is the instantaneous velocities of the particles pertaining to the pipe and u

refers to the velocities of the �uid particles;

• We interpret Sc (t) as the surface associated with the pipe wall and So(t) the
inlet/outlet. So moves with velocity (V .n).boldsymboln, n is the outward
normal.
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Investigated problem

ξ
_

U, M

U, M

z

x

L, EI, m

w(x,t)

g

Extracted from Maciel (2020).
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Mathematical model

• From McIver (1973), the formulation for an open system reads:

∫ t2

t1

{
δLo + δW +

∫∫
Bo (t)

ρ(u · δr)(V− u) · ndS
}

dt = 0 (30)

• Lo is the Lagrangean of the open system, δW is the virtual work of the
non-conservative forces and the third term is the �ux of momentum across the
surface of the open system;

• Casetta & Pesce (2013) obtained a more general formulation for open systems
which includes the �ux of kinetic energy accross the surface. Notice, however,
that for compressible internal �ows, the latter term is important.
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Mathematical model

τ

(c) De�nitions.

δ

δ

δ

δ δ

(d) Inextensibility.

Extracted from Maciel (2020).
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Kinematics

R

R

R

R

0 0

R

φ
φ

φ

Extracted from Maciel (2020).
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Mathematical model

• It trivial to observe that

u = x − x0 (31)

w = z − z0 = z

• For small rotations

sinφ ≈ tanφ ≈ φ (32)

cosφ ≈ 1

• From the above approximation:

uR = u − zR
∂w

∂x
(33)

wR = w ,w/L ∼ O(ε)

• The inextensibility condition is written as δs = δs0, with

(δs)2 = (δx)2 + (δz)2 (34)

(δs0)
2 = (δx0)

2 + (δz0)
2 = (δx0)

2
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Mathematical model

• The inextensibility condition can be written as function of the displacements as:

(
1+

∂u

∂s

)2

+

(
∂w

∂s

)2

= 1 (35)

• Expanding the inextensibility condition

1+ 2
∂u

∂s
+

(
∂u

∂s

)2

+

(
∂w

∂s

)2

= 1 (36)

• Neglecting the term
(
∂u
∂s

)2
, we have

u ∼= −
∫ s

0

1

2

(
∂w

∂s

)2

ds, u/L ∼ O(ε2) (37)
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Kinetic energy

• The velocity of a point pertaining to the centreline is

vp = ẋ i+ żk (38)

• The velocity of a particle of �uid reads (τ = ∂x
∂s

i + ∂z
∂s

k = x ′i + z ′k):

u = vp + Uτ = ẋ i+ żk+ Ux ′i+ Uz ′k = (ẋ + Ux ′)i+ (ż + Uz ′)k (39)

• Term of the kinetic energy associated with the pipe:

Tp =
1

2
m

∫ L

0

(vp · vp)ds =
1

2
m

∫ L

0

(ẋ2 + ż2)ds (40)

• Term of the kinetic energy associated with the internal �uid:

Tf =
1

2
M

∫ L

0

(u · u)ds =
1

2
M

∫ L

0

[(ẋ + Ux ′)2 + (ż + Uz ′)2]ds (41)
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Kinetic energy

• We are interested in obtaining a linear mathematical model. Hence, the kinetic
energy must contain up to quadratic terms. With this in mind and recalling that
ż = ẇ , we have the following quantities associated with the pipe

Tp =
1

2
m

∫ L

0

(ẋ2 + ż2)ds =
1

2
m

∫ L

0

ż2ds =
1

2
m

∫ L

0

ẇ2ds (42)∫ t2

t1

δTpdt =
∫ t2

t1

(
1

2
m

∫ L

0

2ẇδẇds

)
dt =

1

2
m

∫ L

0

∫ t2

t1

2ẇδẇdtds =

=
1

2
m

∫ L

0

[
[2ẇδw ]t2t1 −

∫ t2

t1

2ẅδwdt

]
ds = −

∫ t2

t1

∫ L

0

mẅδwdsdt (43)

• We have the expressions below for the �uid

Tf =
1

2
M

∫ L

0

(U2 + ẇ2 + 2Uẇw ′ + 2Uu̇)ds (44)∫ t2

t1

δTf dt = −
∫ t2

t1

∫ L

0

(Mẅ + 2MUẇ ′)δwdsdt +

∫ t2

t1

(MUẇLδwL)dt (45)
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Potential energy

• Since we are considering a horizontal pipe, the gravitational acceleration plays
no role. However, it can be easily included in the formulation.

• The relevant strain is

εR =
∂(uR)

∂s
=
∂(u − zRw

′)

∂s
= u′ − zRw

′′ (46)

• From the constitutive equation (Hooke's law), σR = EεR . The potential energy
due to the solid deformation and its �rst variation are:

Udef =

∫∫∫
V

σRεR

2
dV =

∫ L

0

∫∫
A

σRεR

2
dAds =

∫ L

0

∫∫
A

Eε2R
2

dAds (47)

δUdef =

∫ L

0

∫∫
A
EεRδεRdAds (48)

• Neglecting higher-order terms and after some manipulations already discussed in
the course, we have

δUdef =

∫ L

0

EIw ′′δw ′′ds (49)
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Potential energy and the other terms

• Integrating by parts twice, recalling that virtual displacements vanish at t1 and
t2 and using the essential boundary conditions δw0 = δw ′L = 0, we write

∫ t2

t1

δUdef dt =
∫ t2

t1

(
EIw ′′L δw

′
L − EIw ′′′L δwL +

∫ L

0

EIw ′′′′δwds

)
dt (50)

• Now, we consider the term associated with the non-conservative force due to
pressure. The control surface is ∂Vo = Si ∪ Se ∪ Sc , where Si is the inlet, Se the
outlet (both open) and Sc is the pipe wall (closed surface).∫∫

∂Vo

p(δr · n)d∂Vo (51)

• In the above equation, δr = 0 at the inlet (clamp). We assume that the pipe
(excepted the inlet) is at atmospheric pressure (p = 0), this integral vanishes.
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Potential energy and the other terms

• The term associated with the �ux of momentum is∫∫
∂Vo

ρ(u · δr)(u− V) · nd∂Vo (52)

• At the inlet, δr = 0. On the pipe wall, there is no �ux of momentum. Hence,
only the outlet contributes with this term.

• At the outlet, uL = ṙL + UτL and (u − V ) · n = U and the above integral is

MU(ṙL + UτL) · δrL =

MUu̇LδuL +MU2δuL −
1

2
MU2w

′2
L δuL +MUẇLδwL +MU2w ′LδwL (53)

• Neglecting higher-order terms, the above equation is given by

MU2δuL +MU(ẇL + Uw ′L)δwL (54)

• Notice that

−MU2

∫ t2

t1

δuLdt = −MU2

∫ t2

t1

δ

[∫ L

0

(
−
1

2
w ′

2
)
ds

]
dt = +MU2

∫ t2

t1

∫ L

0

w ′δw ′dsdt
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Final equation of (transverse) motion

• Integrating from t1 to t2 of the classical variational problem:∫ t2

t1

[
δW −

∫∫
∂Vo

ρ(u · δr)(u− V) · nd∂Vo

]
dt = (55)

= −MU2

∫ t2

t1

∫ L

0

w ′′δwdsdt −MU

∫ t2

t1

ẇLδwLdt

• Using the discussed quantities into the extended version of the Hamilton's
principle leads to the equation of motion given by:

EIw ′′′′ +MU2w ′′ + 2MUẇ ′ + (m +M)ẅ = 0 (56)

• Notice that the second and the third terms are associated with the centrifugal
and the Corioli's forces, respectively.
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Natural boundary conditions and �nal comments

• The use of the extended version of the Hamilton's principle leads to the
following natural boundary conditions:

EIw ′′′L = 0

EIw ′′L = 0

corresponding to null shear force and bending moment at the tip of the
cantilevered pipe discharging �uid.

• The dynamics of the pipe discharging �uid can be investigated using the
Galerkin's method. For this, the natural modes of the cantilevered beam not
conveying �uid can be used as projection functions.

• The application of the Galerkin's method leads, after some algebraic work, to a
system of �rst-order autonomous equations.

• The stability of the vertical con�guration can then be investigated using the
Lyapunov's indirect method and the internal �ow velocity as the control
parameter.

• Usually, the minimum value of U that leads to instability of the vertical
equilibrium con�guration is know as critical velocity.

• Investigations concerning the e�ects of lumped-masses placed along the pipe
can be easily made using the Dirac delta function (see the quali�cation report
by Maciel (2020)).
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