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Dataset 

The (spatial data) Visualization Pipeline - Recall 

Process Dataset Process Dataset Dataset Process Process Dataset 

data 
formatting 

data 
filtering 

data 
mapping 

3D to 2D 
rendering 
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Scientific Visualization – The Dataset 

Dataset  
 

• key notion in visualization (SciVis, InfoVis, SoftVis)  
• captures all relevant characteristics of a data collection  

• structure 
• data values 
• data operations 

 
 Dataset 

Structure Attributes 

Points Cells Scalar Vector Tenso
r 

Operations 

Reconstruction … … 

f : Rm → Rn f : Rm → Rn f : Rm → Rn 

f : R2 → Rn 

f : R3 → Rn 
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant 

• piecewise linear 

f : Rm → Rn 

m-dimensional n-variate 
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We’ll detail all these next 
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Visualization data properties 

Sampling 
(data importing) Reconstruction 

Sampling Reconstruction 

Continuous data Measurements (samples) 
at discrete set of points 

Continuous data, as close as possible to input 



Munzner, Fig. 2.2 
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Munzner, Fig. 2.2 
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Algorithm classification 

1. Scalar algorithms 
• operate on scalar data 
• color mapping, contouring, height plots  
 

2. Vector algorithms 
• operate on vector data 
• hedgehogs, glyhps, derived quantities, stream surfaces, image-based methods 
 

3. Tensor algorithms 
• operate on symmetric 3x3 tensors 
• tensor glyphs, hyperstreamlines, fiber tracing, principal component analysis 
 

4. Modeling algorithms 
• change attributes and/or underlying grid 
• implicit functions, distance fields, cutting, selection, grid-less interpolation, grid 

processing 
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Color mapping 

www.cs.rug.nl/svcg 

Basic idea 
•Map each scalar value         R at a point to a color via a function c : [0,1] → [0,1]3 

 
Color tables 
•precompute (sample) c and save results into a table 
•index table by normalized scalar values 

scalar value f  

scalar value range [fmin , fmax]  

f is color-mapped to ci 

Color mapping 

input data 

determine input range 

normalize input to [0,N] 

desired color  
transfer function color table 
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Colormap design 

What makes a good colormap? 
 
•map scalar values to colors intuitively… 
•…so we can visually invert the mapping to tell scalar values from colors 
 

Recall example in Module 1 

Data values mapped to RGB colors via a colormap 
 
Invert mapping: 
1.look at some point (x,y) in the image → color c 
2.locate c in colormap at some position p 
3.use the colormap legend to derive data value s from p  
 

x,y 

p 
blue=0 red=100 

answer: s = 90 
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Gray-value colormap 
 
• brightness = value  
• natural in some domains (X-ray, angiography)  

2D slice in 3D CT dataset 
Scalar value: tissue density 

Gray-value colormap 
•white = hard tissues (bone) 
•gray = soft tissues (flesh) 
•black = air 

Rainbow colormap 
•red = hard tissues (bone) 
•blue = air 
•other colors = soft tissues 12 
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Colormap comparison 

 
2D slice in 3D hydrogen atom potential field 

Gray-value colormap 
•maxima are highlighted well 
•lower values are unclear 

Heat colormap 
•maxima highlighted well 
•lower values better 
separable than with 
gray-value colormap 

Rainbow colormap 
• maxima not prominent 
• lower values better 
• separable 

 
Which is the better colormap? Depends on the application context! 
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Colormap design techniques 

We cannot give universal design rules 
• but some technical guidelines/tricks still exist 

 
1. Fully use the perceptual spectrum 
• colormap entries should differ in more, rather than less, HSV components 

 
 
 
 
 
 
 
 

2. Colormap should be easily invertible 
• avoid colormap entries with 

• similar HSV entries 
• which are perceived as similar (see color blindness issues) 
• which are hard to perceive (e.g. dark or strongly desaturated colors) 

 

scalar value ~ V; H,S not used 

scalar value ~ H; S,V not used 

scalar value ~ H,V; S not used 

Good design guidelines: www.colorbrewer.org 
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Colormap design techniques 

3. Design based on what you need to emphasize 
•specific value ranges 
•specific values 
•value change rate (1st derivative of scalar data) 
•…  

2D function 

Gray-scale colormap 
•highlights plateaus 
•value transitions hard 
to see 

Zebra colormap 
•highlights value variations (1st derivative) 
•dense, thin bands: fast variation 
•thick bands: slow variation 

16 



www.cs.rug.nl/svcg 

Colormap implementation details 

Where to apply the colormap? 
• per grid-cell vertex 

64x64 points 32x32 points 16x16 points 

 
2D periodic high-frequency function 

 
As we decrease the sampling frequency, strong colormapping artifacts appear 
Why is this so? 
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Colormap implementation details 

Where to apply the colormap? 
•per pixel drawn – better results than per-vertex colormapping 
•done using 1D textures 

64x64 points 32x32 points 16x16 points 

 
2D periodic high-frequency function 

 
Explanation 
•per-vertex: f → c( f ) → interpolation(c( f ))      color interpolation can fall outside colormap! 
•per-pixel:   f → interpolation( f )→ c(interpolation( f ))  colors always stay in colormap 

See Sec. 5.2 for details 
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Color banding 

How many distinct colors N to use in a color table? 
• more colors:   better sampled c thus smoother results 
• fewer colors:  color banding appears 

color banding 

Question 
• can we see sharp color banding 

with per-vertex colormapping? 
Why (not)? 
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Contouring 

How to see where some given values appear in a dataset? 
• recall color banding 
• a transition separating two consecutive bands = a contour 

contour = all points having  
the scalar value s = 0.11 

seven different contours, 
equidistant in value space 

20 



Contouring 
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Contours are known for hundreds of years in cartography 
•also called isolines (‘lines of equal value’) 

hand-drawn contours on 
geographical map 

computer-generated 
contours of temperature map 

How to compute contours? 
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Contour properties 
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Definition 
 

 
 

Contours are always closed curves (except when they exit D) 
• why? Recall that f is C0 

 
Contours never (self-)intersect, thus are nested 
• why? Think what would mean if a point belonged to two different contours  
 
Contours cut D into values smaller resp. larger than the isovalue 
• why? Think of definition 
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Contour properties 
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Contours are always orthogonal to the scalar value’s gradient 
•why? Recall definitions 

 
 contour:              since f constant along I 

gradient:                        by definition of gradient 

gradient of a scalar field 
(drawn with arrows) is 
orthogonal to contours 
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Basic contouring algorithm 
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Find countour with value v = 0.48 

c = a cell of the dataset 
e = (pi,pj) an edge of a cell c 
pi, pj endpoints of edge e  
vi,vj attribute values at end points pi and pj  
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Basic contouring algorithm 

for(each cell c in D) 
{ 
          //no contour-edge cuts 
   for(each edge e=(pi,pj) of c) 
   { 
       if(vi < v < vj)          //e cuts contour 
       { 
            
 
             
       } 
   } 
   connect points in S with lines to build contour; 
} 
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Works OK but it is 
• cumbersome: connecting contour-edge cuts into lines is not trivial to program 
• slow: edges intersecting contours are processed twice 
Question 
• Are contours piecewise-linear? Why (not)?  
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Contouring amiguity 
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Consider this situation after 
identifying the countour 
intersections in a cell 
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Contouring ambiguity 
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Each edge of the red cell intersects the contour 
• which is the right contour result?  

Both answers are equally correct! 
• we could discriminate only if we had higher-level information (e.g. topology) 
• at cell level, we cannot determine more 
• same would happen if we first split quads into triangles (2 splits possible..) 
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Marching squares 
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Fast implementation of 2D contouring on quad-cell grids 
 
1. Encode inside/outside state of each vertex w.r.t. contour in a 4-bit code 
 
 
 
 
 
 
 
 
 
2. Process all dataset cells 
• for each cell, use codes as pointers into a jump-table with 16 cases 
• each case has hand-optimized code to 

• compute only the existing edge-contour intersections 
• automatically create required contour segments (connect intersections) 
• reuse already-computed contour segment vertices from previous cells 

e.g. 
inside:   f > f0  
outside: f ≤ f0  
 

Note: same can be done for triangles (‘marching triangles’) 
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Marching cubes 

Fast implementation of 3D contouring (isosurfaces) on parallelepiped-cell grids 
 
1. Encode inside/outside state of each vertex w.r.t. contour in a 8-bit code 
 
 
 
 
 
 
 
 
 
 
 
 
2. Process all dataset cells 
• for each cell, use codes as pointers into a jump-table with 15 cases 

(reduce the 28=256 cases to 8 by symmetry considerations)  
 

e.g. 
inside:   f > f0  
outside: f ≤ f0  
 

www.cs.rug.nl/svcg 
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Marching cubes (cont’d) 

• For each case 
• compute the cell-contour intersection → triangles, quads, pentagons, hexagons 
• triangulate these on-the-fly → triangle output only 
 

3. Treat ambiguous cases 
• 6 such cases (see bold-coded figures on previous slide) 
• harder to solve than in 2D (need to prevent false cracks in the surface) 
• see Sec. 5.3 for algorithmic details 

 
4. Compute isosurface normals 
• by face-to-vertex normal averaging (see Module 2, Data resampling) 
• directly from data 
 

 
 
 
5. Draw resulting surface as a (shaded) unstructured triangle mesh  
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(gradient is normal to contours, see previous slides) 
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Marching cubes 
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isosurfaces 

scalar CT volume 
(tissue density) 

isosurface for scalar value 
corresponding to skin 

• extremely simple to use tool 
• insightful results isosurfaces for skin and bone 
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Isosurface examples 

colon (CT dataset) electron density in molecule velocity in 3D fluid flow 

velocity in 3D fluid flow magnetic field in sunspots 
fuel concentration, colored 
by temperature in jet engine 
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Marching cubes – technical points 
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overview detail 

Does this person have wavy wrinkles on his head’s skin? 
•so it looks from the visualization… 
•these are so-called ‘ringing artifacts’ 

• due to the near-tangent orientation of the isosurface w.r.t. finite-resolution 
volume grid 

isosurface 
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Summary 
Scalar Algorithms (book Chapter 5) 
 
• colormapping 
 

• contouring (2D and 3D) 
 
• height plots 
 
• displacement plots 
 

• read Ch. 5 in detail to understand all the algorithmic issues! 
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Happy so far? 

Next module 
 
• volume visualization algorithms 
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