
Scientific Visualization Module 3
Scalar Algorithms

prof. dr. Alexandru (Alex) Telea

www.cs.rug.nl/svcg

Department of Mathematics and Computer Science
University of Groningen, the Netherlands

1

www.cs.rug.nl/svcg

Dataset

The (spatial data) Visualization Pipeline - Recall

Process Dataset Process Dataset Dataset Process Process Dataset

data
formatting

data
filtering

data
mapping

3D to 2D
rendering

2

Scientific Visualization – The Dataset

Dataset

• key notion in visualization (SciVis, InfoVis, SoftVis)
• captures all relevant characteristics of a data collection

• structure
• data values
• data operations

 Dataset

Structure Attributes

Points Cells Scalar Vector Tenso
r

Operations

Reconstruction … …

f : Rm → Rn f : Rm → Rn f : Rm → Rn

f : R2 → Rn

f : R3 → Rn
f : Rm → R f : Rm → R3 f : Rm → R6..9 • piecewise constant

• piecewise linear

f : Rm → Rn

m-dimensional n-variate

www.cs.rug.nl/svcg

We’ll detail all these next

www.cs.rug.nl/svcg

Visualization data properties

Sampling
(data importing) Reconstruction

Sampling Reconstruction

Continuous data Measurements (samples)
at discrete set of points

Continuous data, as close as possible to input

Munzner, Fig. 2.2
5

Munzner, Fig. 2.2
6

www.cs.rug.nl/svcg

Algorithm classification

1. Scalar algorithms
• operate on scalar data
• color mapping, contouring, height plots

2. Vector algorithms
• operate on vector data
• hedgehogs, glyhps, derived quantities, stream surfaces, image-based methods

3. Tensor algorithms
• operate on symmetric 3x3 tensors
• tensor glyphs, hyperstreamlines, fiber tracing, principal component analysis

4. Modeling algorithms
• change attributes and/or underlying grid
• implicit functions, distance fields, cutting, selection, grid-less interpolation, grid

processing

7

www.cs.rug.nl/svcg

Algorithm classification

1. Scalar algorithms
• operate on scalar data
• color mapping, contouring, height plots

2. Vector algorithms
• operate on vector data
• hedgehogs, glyhps, derived quantities, stream surfaces, image-based methods

3. Tensor algorithms
• operate on symmetric 3x3 tensors
• tensor glyphs, hyperstreamlines, fiber tracing, principal component analysis

4. Modeling algorithms
• change attributes and/or underlying grid
• implicit functions, distance fields, cutting, selection, grid-less interpolation, grid

processing

8

Color mapping

www.cs.rug.nl/svcg

Basic idea
•Map each scalar value R at a point to a color via a function c : [0,1] → [0,1]3

Color tables
•precompute (sample) c and save results into a table
•index table by normalized scalar values

scalar value f

scalar value range [fmin , fmax]

f is color-mapped to ci

Color mapping

input data

determine input range

normalize input to [0,N]

desired color
transfer function color table

9

www.cs.rug.nl/svcg

Colormap design

What makes a good colormap?

•map scalar values to colors intuitively…
•…so we can visually invert the mapping to tell scalar values from colors

Recall example in Module 1

Data values mapped to RGB colors via a colormap

Invert mapping:
1.look at some point (x,y) in the image → color c
2.locate c in colormap at some position p
3.use the colormap legend to derive data value s from p

x,y

p
blue=0 red=100

answer: s = 90

10

www.cs.rug.nl/svcg

Gray-value colormap

• brightness = value
• natural in some domains (X-ray, angiography)

2D slice in 3D CT dataset
Scalar value: tissue density

Gray-value colormap
•white = hard tissues (bone)
•gray = soft tissues (flesh)
•black = air

Rainbow colormap
•red = hard tissues (bone)
•blue = air
•other colors = soft tissues 12

www.cs.rug.nl/svcg

Colormap comparison

2D slice in 3D hydrogen atom potential field

Gray-value colormap
•maxima are highlighted well
•lower values are unclear

Heat colormap
•maxima highlighted well
•lower values better
separable than with
gray-value colormap

Rainbow colormap
• maxima not prominent
• lower values better
• separable

Which is the better colormap? Depends on the application context!

13

www.cs.rug.nl/svcg

Colormap design techniques

We cannot give universal design rules
• but some technical guidelines/tricks still exist

1. Fully use the perceptual spectrum
• colormap entries should differ in more, rather than less, HSV components

2. Colormap should be easily invertible
• avoid colormap entries with

• similar HSV entries
• which are perceived as similar (see color blindness issues)
• which are hard to perceive (e.g. dark or strongly desaturated colors)

scalar value ~ V; H,S not used

scalar value ~ H; S,V not used

scalar value ~ H,V; S not used

Good design guidelines: www.colorbrewer.org
15

www.cs.rug.nl/svcg

Colormap design techniques

3. Design based on what you need to emphasize
•specific value ranges
•specific values
•value change rate (1st derivative of scalar data)
•…

2D function

Gray-scale colormap
•highlights plateaus
•value transitions hard
to see

Zebra colormap
•highlights value variations (1st derivative)
•dense, thin bands: fast variation
•thick bands: slow variation

16

www.cs.rug.nl/svcg

Colormap implementation details

Where to apply the colormap?
• per grid-cell vertex

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

As we decrease the sampling frequency, strong colormapping artifacts appear
Why is this so?

17

www.cs.rug.nl/svcg

Colormap implementation details

Where to apply the colormap?
•per pixel drawn – better results than per-vertex colormapping
•done using 1D textures

64x64 points 32x32 points 16x16 points

2D periodic high-frequency function

Explanation
•per-vertex: f → c(f) → interpolation(c(f)) color interpolation can fall outside colormap!
•per-pixel: f → interpolation(f)→ c(interpolation(f)) colors always stay in colormap

See Sec. 5.2 for details
18

www.cs.rug.nl/svcg

Color banding

How many distinct colors N to use in a color table?
• more colors: better sampled c thus smoother results
• fewer colors: color banding appears

color banding

Question
• can we see sharp color banding

with per-vertex colormapping?
Why (not)?

19

www.cs.rug.nl/svcg

Contouring

How to see where some given values appear in a dataset?
• recall color banding
• a transition separating two consecutive bands = a contour

contour = all points having
the scalar value s = 0.11

seven different contours,
equidistant in value space

20

Contouring

www.cs.rug.nl/svcg

Contours are known for hundreds of years in cartography
•also called isolines (‘lines of equal value’)

hand-drawn contours on
geographical map

computer-generated
contours of temperature map

How to compute contours?
21

Contour properties

www.cs.rug.nl/svcg

Definition

Contours are always closed curves (except when they exit D)
• why? Recall that f is C0

Contours never (self-)intersect, thus are nested
• why? Think what would mean if a point belonged to two different contours

Contours cut D into values smaller resp. larger than the isovalue
• why? Think of definition

22

Contour properties

www.cs.rug.nl/svcg

Contours are always orthogonal to the scalar value’s gradient
•why? Recall definitions

 contour: since f constant along I

gradient: by definition of gradient

gradient of a scalar field
(drawn with arrows) is
orthogonal to contours

23

Basic contouring algorithm

www.cs.rug.nl/svcg

Find countour with value v = 0.48

c = a cell of the dataset
e = (pi,pj) an edge of a cell c
pi, pj endpoints of edge e
vi,vj attribute values at end points pi and pj

24

Basic contouring algorithm

for(each cell c in D)
{
 //no contour-edge cuts
 for(each edge e=(pi,pj) of c)
 {
 if(vi < v < vj) //e cuts contour
 {

 }
 }
 connect points in S with lines to build contour;
}

www.cs.rug.nl/svcg

Works OK but it is
• cumbersome: connecting contour-edge cuts into lines is not trivial to program
• slow: edges intersecting contours are processed twice
Question
• Are contours piecewise-linear? Why (not)?

25

Contouring amiguity

www.cs.rug.nl/svcg

Consider this situation after
identifying the countour
intersections in a cell

26

Contouring ambiguity

www.cs.rug.nl/svcg

Each edge of the red cell intersects the contour
• which is the right contour result?

Both answers are equally correct!
• we could discriminate only if we had higher-level information (e.g. topology)
• at cell level, we cannot determine more
• same would happen if we first split quads into triangles (2 splits possible..)

27

Marching squares

www.cs.rug.nl/svcg

Fast implementation of 2D contouring on quad-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 4-bit code

2. Process all dataset cells
• for each cell, use codes as pointers into a jump-table with 16 cases
• each case has hand-optimized code to

• compute only the existing edge-contour intersections
• automatically create required contour segments (connect intersections)
• reuse already-computed contour segment vertices from previous cells

e.g.
inside: f > f0
outside: f ≤ f0

Note: same can be done for triangles (‘marching triangles’)
28

Marching cubes

Fast implementation of 3D contouring (isosurfaces) on parallelepiped-cell grids

1. Encode inside/outside state of each vertex w.r.t. contour in a 8-bit code

2. Process all dataset cells
• for each cell, use codes as pointers into a jump-table with 15 cases

(reduce the 28=256 cases to 8 by symmetry considerations)

e.g.
inside: f > f0
outside: f ≤ f0

www.cs.rug.nl/svcg
29

Marching cubes (cont’d)

• For each case
• compute the cell-contour intersection → triangles, quads, pentagons, hexagons
• triangulate these on-the-fly → triangle output only

3. Treat ambiguous cases
• 6 such cases (see bold-coded figures on previous slide)
• harder to solve than in 2D (need to prevent false cracks in the surface)
• see Sec. 5.3 for algorithmic details

4. Compute isosurface normals
• by face-to-vertex normal averaging (see Module 2, Data resampling)
• directly from data

5. Draw resulting surface as a (shaded) unstructured triangle mesh

www.cs.rug.nl/svcg

(gradient is normal to contours, see previous slides)

30

Marching cubes

www.cs.rug.nl/svcg

isosurfaces

scalar CT volume
(tissue density)

isosurface for scalar value
corresponding to skin

• extremely simple to use tool
• insightful results isosurfaces for skin and bone

31

Isosurface examples

colon (CT dataset) electron density in molecule velocity in 3D fluid flow

velocity in 3D fluid flow magnetic field in sunspots
fuel concentration, colored
by temperature in jet engine

32

Marching cubes – technical points

www.cs.rug.nl/svcg

overview detail

Does this person have wavy wrinkles on his head’s skin?
•so it looks from the visualization…
•these are so-called ‘ringing artifacts’

• due to the near-tangent orientation of the isosurface w.r.t. finite-resolution
volume grid

isosurface

33

Summary
Scalar Algorithms (book Chapter 5)

• colormapping

• contouring (2D and 3D)

• height plots

• displacement plots

• read Ch. 5 in detail to understand all the algorithmic issues!

www.cs.rug.nl/svcg

Happy so far?

Next module

• volume visualization algorithms

37

	Scientific Visualization Module 3�Scalar Algorithms
	The (spatial data) Visualization Pipeline - Recall
	Scientific Visualization – The Dataset
	Visualization data properties
	Número do slide 5
	Número do slide 6
	Algorithm classification
	Algorithm classification
	Color mapping
	Colormap design
	Gray-value colormap
	Colormap comparison
	Colormap design techniques
	Colormap design techniques
	Colormap implementation details
	Colormap implementation details
	Color banding
	Contouring
	Contouring
	Contour properties
	Contour properties
	Basic contouring algorithm
	Basic contouring algorithm
	Contouring amiguity
	Contouring ambiguity
	Marching squares
	Marching cubes
	Marching cubes (cont’d)
	Marching cubes
	Isosurface examples
	Marching cubes – technical points
	Summary

