

GSA 501 - Petrografia de Minérios

Sulfetos de Cobre (Sistema Cu-S e Cu-Fe-S)

Lena Virgínia Soares Monteiro Rafael Rodrigues de Assis

https://br.pinterest.com/p in/476466835558237363/

Película de iridescência em calcopirita

Calcopirita (Mina do Sossego, Carajás)

Bornita

Propriedades Ópticas dos Principais Sulfetos de Cobre

Mineral	Formula	Cor	Anisotropia	Dureza	Outras
calcopirita	CuFeS ₂	Amarelo forte	Fraca	3,5 a 4,0	Dúctil
calcosita	Cu ₂ S	Cinza claro	Fraca	2,5 a 3,0	Baixa dureza, dúctil
bornita	Cu ₅ FeS ₄	Marrom rosado	Isótropa	3,0	Iridescência púrpura
covelita	CuS	Tons do azul	Muito forte (laranja intenso ao vermelho)	2,0 a 2,5	Forte pleocroísmo e anisotropia
digenita	Cu ₉ S ₅	Cinza azulado/azul	Isótropo	2,5 a 3,0	Reflectância baixa
cubanita	CuFe ₂ S ₃	Creme	Distinta (azul claro a marrom escuro)	3,5	
idaíta	Cu _{5.5} FeS _{6.} 5	Laranja claro	Forte (anisotropia turquesa a cinza acastanhada)	2,5 a 3,5	

Minério de cobre da Mina do Sossego

Calcopirita CuFeS₂

http://www.pandageoscience.co.nz/photomicrographs/

Mineral	Formula	Cor	Anisotropia	Dureza	Outras
calcopirita	CuFeS ₂	Amarelo forte	Fraca	3,5 a 4,0	Dúctil

https://www.crystalclassics.co.uk/ product/cc11522/

Formula

 Cu_2S

Cor

Cinza claro

Mineral

calcosita

Minério de cobre da Mina do Salobo (Melo, 2014)

Bornita Cu₅FeS₄

Magnetita

Bornita

Galena

Esfalerita

Anna Hjeltström (2015) Copper minerals under the microscope. Uppsala University. https://www.divaportal.org/smash/get/diva2:78 5865/FULLTEXT02

https://br.pinterest.com/p in/476466835558237363/ Anna Hjeltström (2015) Copper minerals under the microscope. Uppsala University. https://www.divaportal.org/smash/get/diva2:785865/F ULLTEXT02

Calcosita

100 µm

Silicatos/carbonatos

Bornita

Magnetita	
-----------	--

5	Mineral	Formula	Cor	Anisotropia	Dureza	Outras	
5	bornita	Cu ₅ FeS ₄	Marrom rosado	Isótropa	3,0	Iridescência púrpura	i

Calcopirita

Calcosita

Anna Hjeltström (2015) Copper minerals under the microscope. Uppsala University. https://www.divaportal.org/smash/get/diva2: 785865/FULLTEXT02

Bornita

https://www.dakotamatrix.com/products/2596/covellite#! prettyPhoto

© Dakota Matrix

Covelita CuS

Pracejus (2008)

Mineral	Formula	Cor	Anisotropia	Dureza	Outras
covelita	CuS	Tons do azul	Muito forte (laranja intenso ao vermelho)	2,0 a 2,5	Forte pleocroísmo e anisotropia

Cubanita CuFe₂S₃

https://www.fabreminerals.co m/search_results.php?LANG= &MineralSpeciment=Cubanite MineralFormulaCorcubanitaCuFe2S3Creme

Anisotropia

Distinta (azul claro a marrom escuro)

http://www.uranglasuren.com/ores/I ndex_S/Example_S02/index.html

Cubanita CuFe₂S₃

Mineral	Formula	Cor	Anisotropia
cubanita	CuFe ₂ S ₃	Creme	Distinta (azul claro a marrom escuro)

(Esquerda) Lamelas de cubanita (tons de creme, birrefletância) em calcopirita (azeitona amarelada); Strathcona mine, Sudbury, Canadá; Nic. //; (Direita) Lamelas de cubanita (tons de creme, birrefletância) em calcopirita; Mina Kaveltorp, Suécia

Cubanita CuFe₂S₃

Mineral	Formula	Cor	Anisotropia
cubanita	CuFe ₂ S ₃	Creme	Distinta (azul claro a marrom escuro)

(Esquerda) Nic. # mostrando forte anisotropia (tons verdes) na cubanita; Strathcona mine, Sudbury, Canadá; (Direita) Mina Kaveltorp, Suécia, Nic. #, aumento de 20x.

The Canadian Mineralogist Vol. 43, pp. 623-635 (2005)

25 µm

Idaite (laranja a acastanhado) contendo pequenas lamelas de calcopirita (amarelo) alinhadas ao longo do {100} e {111}, direções de clivagem da bornita parental. Luz refletida microscopia, luz plana polarizada

https://www.dakotamatrix.com/products/2482/idaite

100000

NAC DESCRIPTION CONTRACT

42 µ

Mineral	Fórmula	Estrutura	T máxima (°C)	T mínima (°C)
solução sólida calcosita-digenita	Variável $Cu_{9\pm x}S$ a Cu_2S	cúbica	1129	83-435
calcosita (cc _h)	Cu ₂ S	hexagonal	435	103
calcosita (cc _m)	Cu ₂ S	monoclínica	103	
djurleita (dj)	Cu _{1.93-1.97} S	ortorrômbica	93	
digenita (dg)	Cu ₉ S ₅	cúbica	83	
anilita	Cu ₇ S ₄	ortorrômbica	70	
covelita (bcv)	Cu _{1+x} S	hexagonal	157	
Covelita (cv)	CuS	hexagonal	507	
solução sólida calcosina-bornita (cc-bn _{ss})	Variável $Cu_{9\pm x}S_5$ - Cu_2S a $Cu_{5\pm x}FeS_{4\pm y}$	cúbica	1100	83-228
solução sólida intermediária (iss)	CuFeS _{2-x} c/ Cu/Fe e Cu+Fe/S variável	cúbica	960	20-200
bornita (bn)	Cu ₅ FeS ₄	tetragonal	228	
bornita x (bn-x)	Cu ₅ FeS _{4+x}	tetragonal	125	
Idaíta (id)	Cu _{5.5} FeS _{6.5}	tetragonal	501	
calcopirita (cp)	CuFeS ₂	tetragonal	557	
cubanita (cb)	CuFe ₂ S ₃	ortorrômbica	200-210	

Sistema Cu-S

> 813 °C: fusão sulfetada; < 813 °C: solução sólida calcosina-digenita < 507 °C: Nas composições mais ricas em enxofre, forma-se a covelita hexagonal < 435 °C: Nas composições mais ricas em cobre, ocorre a inversão para calcosina hexagonal. < 103,5 °C: calcosina monoclínica

Diagrama de composição versus temperatura e as relações de fases no sistema Cu-S (Vaughan e Craig, 1978)

Sistema Cu-S

< 813 °C: solução sólida calcosina-digenita < 507 °C: Nas composições mais ricas em enxofre, forma-se a covelita hexagonal < 435 °C: Nas composições mais ricas em cobre, ocorre a inversão para calcosina hexagonal. < 103,5 °C: calcosina monoclínica

Diagrama de composição versus temperatura e as relações de fases no sistema Cu-S a T < 700 °C (Vaughan e Craig, 1978)

Sistema Cu-Fe-S

1000 °C: soluções sólidas

(1) Pirrotita hexagonal rica em cobre (ss)(2) Calcocita-bornita (ss)

600 °C: soluções sólidas

(1) Pirrotita (po ss)(2) Calcocita-bornita (ss)(3) Solução sólida intermediária (iss)

Seção isotérmica do sistema Cu-Fe-S a 600 °C (Craig e Scott, 1974)

Sistema Cu-Fe-S

600 °C: soluções sólidas

(1) Pirrotita (po ss)
(2) Calcocita-bornita (ss)
(3) Solução sólida intermediária (iss)

Fases em equilíbrio:

- Pirrotita rica em cobre e iss rica em ferro e pobre em S;
- Pirita e iss rica em S;
- Enxofre (liq), pirita e iss;
- Enxofre (liq), iss rica em cobre e solução sólida bn-cc;
- Solução sólida cc-bn e S líquido
- Solução sólida cc-bn e iss
- Solução sólida cc-bn, iss e po

Seção isotérmica do sistema Cu-Fe-S a 600 °C (Craig e Scott, 1974)

MINÉRIO DE NÍQUEL-COBRE-(EGP)

Figure 1. Photo of sulphide intercept from SFRD0064 at conductor 2.

Pirrotita com inclusões ou "flames" de pentlandita

Blebs de pirrotita envolvidos por calcopirita

Associação de minério: pirrotita, pentlandita [(Fe,Ni)₉S₈], Copentlandita, millerita (NiS), vaesita, calcopirita, magnetita

> Flame de pentlandita e

Texturas indicativas da origem magmática dos sulfetos

Variações texturais em gotas de sulfeto (basalto de dorsais mesooceânicas)

textura zonada: grãos segregados de mss e iss

MSS = monosulfide solid solution (Ni, Fe)S ISS = intermediate solid solution

FeCuS₂

mss Pn. Quenched Iss Oxide mss Mss Quenched Iss 50.0 µm Oxide mss ISS Mss Mss Pn Pn Massive Iss Oxide 50.0 µm

50.0 ym

The Can. Mineral., 2012, Vol. 50 (3), pp. 681, fig. 4

Representação esquemática do fracionamento de um glóbulo de sulfeto com ênfase no comportamento dos EGP em temperaturas magmáticas

Holwell, D.A., McDonad, I. 2010. A review of Platinum Group Elements within Natural Sulfide Ore systems. Platinum Metals Rev., 54: 26-36.

Holwell, D.A., McDonad, I. 2010. A review of Platinum Group Elements within Natural Sulfide Ore systems. Platinum Metals Rev., 54: 26-36.

Sistema Cu-Fe-S

400 °C: covelita, idaíta e calcopirita tornam-se estáveis;

Fases em equilíbrio

Covelita-idaita-solução sólida cc-bn; Pirita-daita-solução sólida cc-bn; Pirita-solução sólida cc-bn (T < 568 °C); Pirita-calcopirita-solução sólida cc-bn; Pirita-iss Pirrotita-iss Pirrotita-pirita e iss Pirrotita, iss e solução sólida cc-bn;

Seção isotérmica do sistema Cu-Fe-S a 400 °C (Craig e Scott, 1974)

Calcocita-Bornita no Depósito IOCG Olympic Dam na Austrália

Seção simplificada do sistema Cu-Fe-S a 400 ° C (Yund e Kullerud, 1966). As duas soluções sólidas de bornita são marcadas como Bn_{ss1} (marrom, pobre em Cu) e Bn_{ss2} (roxo, rico em Cu). O campo (diminuído) de iss é mostrado em amarelo. A inserção mostra a divisão de Bn_{ss2} em direção a digenita (Dg) e calcocita hexagonal (CcH). Outras fases mostradas são pirita (Py), pirrotita (Po), calcopirita (Cp) e cubanita (Cb).

Exsolução de Calcopirita

Imagem ótica de exsolução de calcopirita em bornita de Olympic Dam, Australia. Parte da bornita está sendo substituída por calcocita. Fotomicrografia de K. Ehrig.

> Mineralium Deposita https://doi.org/10.1007/s00126-018-0820-6

Ore Geology Reviews 81 (2017) 1218-1235

Exsolução de calcopirita em bornita no Depósito IOCG Olympic Dam na Austrália

Imagem de elétrons retroespalhados em MEV do produto de reação da calcopirita. A reação foi conduzido em um tampão de acetato (pH 25 ° C = 6) contendo 1 m NaCl em 300 ° C por 4 dias, seguido de recozimento a 150 ° C por (a) 4 horas, (b) 8 horas, (c) 24 horas e (d) 48horas. As linhas pontilhadas em (a) e (d) realçam o limite do grão de calcopirita original. A elipse em (d) destaca uma região contendo finas lamelas (até ~ 10 μ m de comprimento) de bornita (tom mais escuro de cinza) em uma matriz digenita (cinza mais claro)

Mineralium Deposita https://doi.org/10.1007/s00126-018-0820-6

Sistema Cu-Fe-S

Seção isotérmica do sistema Cu-Fe-S a 300 °C (Craig e Scott, 1974)

335 °C: quebra da solução sólida cc-bn em duas soluções sólidas cc_{ss} e bn_{ss}

228 °C: bornita é formada

Fases em equilíbrio

Pirita-calcopirita-pirrotita; Pirita-bornita-calcopirita; Pirita-idaíta-bornita Pirrotita-iss; Pirrotita-iss-calcopirita; Pirrotita-iss-bornita; Idaita-covelita-calcosita-digenita ss Idaita-bornita ss-calcocita-digenita ss

Texturas simplectíticas

CC

bn

Figueiredo, B.R. 2000. Minérios & Ambiente. Editora Unicamp. 399p.

Calcocita-Bornita no Depósito IOCG Olympic Dam na Austrália

> Cc em níveis mais rasos
> Bornita-Cpy em profundidade

T > 300 °C e resfriamento a < 120 °C

Fotomicrografias em luz refletida destacando aspectos da petrografia de sulfetos de Cu-(Fe). Amostras de zonas superiores (a) e mais profundas (b) mostrando variação na distribuição, proporção e tamanho de bornita (Bn) e calcocita (Cc). (c) 'Blaubleibender covellin', compreendendo intercrescimentos de espécies, incluindo anilita. (d) Calcocita hexagonal anisotrópica (CcH) contendo lamelas de digenita (Dg). (e) Bornita 'marrom' contendo lamelas de exsolução de calcopirita (Cp). A linha tracejada mostra os limites de grãos de Bn com base na orientação das lamelas Cp. Hm: hematita.

Calcocita-Bornita no Depósito IOCG Olympic Dam na Austrália

Fotomicrografias em luz refletida destacando aspectos da petrografia de sulfeto de Cu-(Fe). (a) Calcopirita grossa (Cp) envolvida por bornita (Bn); (b) Detalhe, mostrando estreita zona de substituição ao redor da calcopirita. (c) Intercrescimento de calcopirita e esfalerita (Sp), com bornita subordinada. (d) Detalhe do intercrescimento simplectítico de calcopirita e bornita com esfalerita e hematita subordinadas.

Ore Geology Reviews 81 (2017) 1218–1235

Sistema Cu-Fe-S

Seção isotérmica do sistema Cu-Fe-S a 25 °C (Craig e Scott, 1974)

The Canadian Mineralogist Vol. 43, pp. 623-635 (2005)

Sistema Cu-Fe-S (Intemperismo)

O intemperismo dos sulfetos de cobreferro é mostrado esquematicamente pelo seta no sistema Cu-Fe-S. O ferro é preferencialmente removido da calcopirita (cp), formando bornita (bn) e, em última instância, digenita (dg) e/ ou covellita (cv). A pirita pode se formar, mas geralmente está ausente devido à dificuldade de nucleação pirita em baixas temperaturas

Substituição da calcopirita por bornita, digenita e covellita

Seção isotérmica do sistema Cu-Fe-S a 25 °C (Craig e Scott, 1974)

Textura de Substituição

Estágio Avançado

Luz refletida, polarizadores //

Covellita (azul, birrefletância forte) substituindo bornita (relictos acastanhados) e calcopirita (lamelas amarelas); Avila, Salamanca, Espanha; Nic. //

Pracejus (2008)

Sistema Cu-Fe-S

Pirrotita é estável apenas a baixos valores de log aS_{2.} em equilíbrio com **bornita**;

Pirrotita pode coexistir com **iss** em log aS₂ intermediárias;

Pirita é estável em condições de log aS_2 maiores, em equilíbrio com **calcopirita** ou com **bornita**.

> Diagrama log(aS₂) versus 1000/T com os campos de estabilidade de fases no sistema Cu-Fe-S (Barnes, 1973)