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Abstract

It is easy for today’s students and researchers to believe that modern bioinformatics emerged recently to assist next-
generation sequencing data analysis. However, the very beginnings of bioinformatics occurred more than 50 years ago,
when desktop computers were still a hypothesis and DNA could not yet be sequenced. The foundations of bioinformatics
were laid in the early 1960s with the application of computational methods to protein sequence analysis (notably, de novo
sequence assembly, biological sequence databases and substitution models). Later on, DNA analysis also emerged due to
parallel advances in (i) molecular biology methods, which allowed easier manipulation of DNA, as well as its sequencing,
and (ii) computer science, which saw the rise of increasingly miniaturized and more powerful computers, as well as novel
software better suited to handle bioinformatics tasks. In the 1990s through the 2000s, major improvements in sequencing
technology, along with reduced costs, gave rise to an exponential increase of data. The arrival of ‘Big Data’ has laid out new
challenges in terms of data mining and management, calling for more expertise from computer science into the field.
Coupled with an ever-increasing amount of bioinformatics tools, biological Big Data had (and continues to have) profound
implications on the predictive power and reproducibility of bioinformatics results. To overcome this issue, universities are
now fully integrating this discipline into the curriculum of biology students. Recent subdisciplines such as synthetic biology,
systems biology and whole-cell modeling have emerged from the ever-increasing complementarity between computer
science and biology.
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Introduction

Computers and specialized software have become an essential
part of the biologist’s toolkit. Either for routine DNA or protein
sequence analysis or to parse meaningful information in mas-
sive gigabyte-sized biological data sets, virtually all modern re-
search projects in biology require, to some extent, the use of
computers. This is especially true since the advent of next-
generation sequencing (NGS) that fundamentally changed the
ways of population genetics, quantitative genetics, molecular
systematics, microbial ecology and many more research fields.

In this context, it is easy for today’s students and research-
ers to believe that modern bioinformatics are relatively recent,
coming to the rescue of NGS data analysis. However, the very
beginnings of bioinformatics occurred more than 50 years ago,
when desktop computers were still a hypothesis and DNA could
not yet be sequenced. Here we present an integrative timeline

of key events in bioinformatics and related fields during the
past half-century, as well as some background on parallel
advances in molecular biology and computer science, and some
reflections on the future of bioinformatics. We hope this review
helps the reader to understand what made bioinformatics
become the major driving force in biology that it is today.

1950–1970: The origins
It did not start with DNA analysis

In the early 1950s, not much was known about deoxyribonucleic
acid (DNA). Its status as the carrier molecule of genetic informa-
tion was still controversial at that time. Avery, MacLeod and
McCarty (1944) showed that the uptake of pure DNA from a viru-
lent bacterial strain could confer virulence to a nonvirulent
strain [1], but their results were not immediately accepted by
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the scientific community. Many thought that proteins were the
carriers of genetic information [2]. The role of DNA as a genetic
information encoding molecule was validated in 1952 by
Hershey and Chase when they proved beyond reasonable doubt
that it was DNA, not protein, that was uptaken and transmitted
by bacterial cells infected by a bacteriophage [3].

Despite the knowledge of its major role, not much was
known about the arrangement of the DNA molecule. All we
knew was that pairs of its monomers (i.e. nucleotides) were in
equimolar proportions [4]. In other words, there is as much ad-
enosine as there is thymidine, and there is as much guanidine
as there is cytidine. It was in 1953 that the double-helix struc-
ture of DNA was finally solved by Watson, Crick and Franklin
[5]. Despite this breakthrough, it would take 13 more years be-
fore deciphering the genetic code [6] and 25 more years before
the first DNA sequencing methods became available [7, 8].
Consequently, the use of bioinformatics in DNA analysis lagged
nearly two decades behind the analysis of proteins, whose
chemical nature was already better understood than DNA.

Protein analysis was the starting point

In the late 1950s, in addition to major advances in determin-
ation of protein structures through crystallography [9], the first
sequence (i.e. amino acid chain arrangement) of a protein, insu-
lin, was published [10, 11]. This major leap settled the debate
about the polypeptide chain arrangement of proteins [12].
Furthermore, it encouraged the development of more efficient
methods for obtaining protein sequences. The Edman degrad-
ation method [13] emerged as a simple method that allowed
protein sequencing, one amino acid at a time starting from the
N-terminus. Coupled with automation (Figure 1), more than 15
different protein families were sequenced over the following 10
years [12].

A major issue with Edman sequencing was obtaining large
protein sequences. Edman sequencing works through one-by-
one cleavage of N-terminal amino acid residues with

phenylisothiocyanate [13]. However, the yield of this reaction is
never complete. Because of this, a theoretical maximum of 50–
60 amino acids can be sequenced in a single Edman reaction
[14]. Larger proteins must be cleaved into smaller fragments,
which are then separated and individually sequenced.

The issue was not sequencing a protein in itself but rather
assembling the whole protein sequence from hundreds of small
Edman peptide sequences. For large proteins made of several
hundreds (if not thousands) of residues, getting back the final
sequence was cumbersome. In the early 1960s, one of the first
known bioinformatics software was developed to solve this
problem.

Dayhoff: the first bioinformatician

Margaret Dayhoff (1925–1983) was an American physical chem-
ist who pioneered the application of computational methods to
the field of biochemistry. Dayhoff’s contribution to this field is
so important that David J. Lipman, former director of the
National Center for Biotechnology Information (NCBI), called
her ‘the mother and father of bioinformatics’ [15].

Dayhoff had extensively used computational methods for
her PhD thesis in electrochemistry [16] and saw the potential of
computers in the fields of biology and medicine. In 1960, she be-
came Associate Director of the National Biomedical Resource
Foundation. There, she began to work with Robert S. Ledley, a
physicist who also sought to bring computational resources to
biomedical problems [17, 18]. From 1958 to 1962, both combined
their expertise and developed COMPROTEIN, ‘a complete com-
puter program for the IBM 7090’ designed to determine protein
primary structure using Edman peptide sequencing data [19].
This software, entirely coded in FORTRAN on punch-cards, is
the first occurrence of what we would call today a de novo se-
quence assembler (Figure 2).

In the COMPROTEIN software, input and output amino acid
sequences were represented in three-letter abbreviations (e.g.
Lys for lysine, Ser for serine). In an effort to simplify the

Figure 1. Automated Edman peptide sequencing. (A) One of the first automated peptide sequencers, designed by William J. Dreyer. (B) Edman sequencing: the first N-

terminal amino acid of a peptide chain is labeled with phenylisothiocyanate (PITC, red triangle), and then cleaved by lowering the pH. By repeating this process, one

can determine a peptide sequence, one N-terminal amino acid at a time.
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handling of protein sequence data, Dayhoff later developed the
one-letter amino acid code that is still in use today [20]. This
one-letter code was first used in Dayhoff and Eck’s 1965 Atlas of
Protein Sequence and Structure [21], the first ever biological se-
quence database. The first edition of the Atlas contained 65 pro-
tein sequences, most of which were interspecific variants of a
handful of proteins. For this reason, the first Atlas happened to
be an ideal data set for two researchers who hypothesized that
protein sequences reflect the evolutionary history of species.

The computer-assisted genealogy of life

Although much of the pre-1960s research in biochemistry
focused on the mechanistic modeling of enzymes [22], Emile
Zuckerkandl and Linus Pauling departed from this paradigm by
investigating biomolecular sequences as ‘carriers of
information’. Just as words are strings of letters whose specific
arrangement convey meaning, the molecular function (i.e.
meaning) of a protein results from how its amino acids are
arranged to form a ‘word’ [23]. Knowing that words and lan-
guages evolve by inheritance of subtle changes over time [24],
could protein sequences evolve through a similar mechanism?
Could these inherited changes allow biologists to reconstitute
the evolutionary history of those proteins, and in the same

process, reconstitute the sequence of their ‘ancestors’?
Zuckerkandl and Pauling in 1963 coined the term
‘Paleogenetics’ to introduce this novel branch of evolutionary
biology [25].

Both observed that orthologous proteins from vertebrate
organisms, such as hemoglobin, showed a degree of similarity
too high over long evolutionary time to be the result of either
chance or convergent evolution (Ibid). The concept of orthology
itself was defined in 1970 by Walter M. Fitch to describe hom-
ology that resulted from a speciation event [26]. Furthermore,
the amount of differences in orthologs from different species
seemed proportional to the evolutionary divergence between
those species. For instance, they observed that human hemo-
globin showed higher conservation with chimpanzee (Pan troglo-
dytes) hemoglobin than with mouse (Mus musculus) hemoglobin.
This sequence identity gradient correlated with divergence esti-
mates derived from the fossil record (Figure 3).

In light of these observations, Zuckerkandl and Pauling
hypothesized that orthologous proteins evolved through diver-
gence from a common ancestor. Consequently, by comparing
the sequence of hemoglobin in currently extant organisms, it
became possible to predict the ‘ancestral sequences’ of
hemoglobin and, in the process, its evolutionary history up to
its current forms.

Figure 2. COMPROTEIN, the first bioinformatics software. (A) An IBM 7090 mainframe, for which COMPROTEIN was made to run. (B) A punch card containing one line of

FORTRAN code (the language COMPROTEIN was written with). (C) An entire program’s source code in punch cards. (D) A simplified overview of COMPROTEIN’s input

(i.e. Edman peptide sequences) and output (a consensus protein sequence).
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However, several conceptual and computational problems
were to be solved, notably, judging the ‘evolutionary value’ of
substitutions between protein sequences. Moreover, the ab-
sence of reproducible algorithms for aligning protein sequences
was also an issue. In the first sequence-based phylogenetic
studies, the proteins that were investigated (mostly homologs
from different mammal species) were so closely related that vis-
ual comparison was sufficient to assess homology between
sites [27]. For proteins sharing a more distant ancestor, or pro-
teins of unequal sequence length, this strategy could either be
unpractical or lead to erroneous results.

This issue was solved in great part in 1970 by Needleman
and Wunsch [28], who developed the first dynamic program-
ming algorithm for pairwise protein sequence alignments
(Figure 4). Despite this major advance, it was not until the early
1980s that the first multiple sequence alignment (MSA) algo-
rithms emerged. The first published MSA algorithm was a gen-
eralization of the Needleman–Wunsch algorithm, which
involved using a scoring matrix whose dimensionality equals
the number of sequences [29]. This approach to MSA was com-
putationally impractical, as it required a running time of O(LN),
where L is sequence length and N the amount of sequences [30].
In simple terms, the time required to find an optimal alignment
is proportional to sequence length exponentiated by the num-
ber of sequences; aligning 10 sequences of 100 residues each
would require 1018 operations. Aligning tens of proteins of
greater length would be impractical with such an algorithm.

The first truly practical approach to MSA was developed by
Da-Fei Feng and Russell F. Doolitle in 1987 [31]. Their approach,
which they called ‘progressive sequence alignment’, consisted
of (i) performing a Needleman–Wunsch alignment for all se-
quence pairs, (ii) extracting pairwise similarity scores for each
pairwise alignment, (iii) using those scores to build a guide tree
and then (iv) aligning the two most similar sequences, and then

the next more similar sequence, and so on, according to the
guide tree. The popular MSA software CLUSTAL was developed
in 1988 as a simplification of the Feng–Doolittle algorithm [32],
and is still used and maintained to this present day [33].

A mathematical framework for amino acid substitutions

In 1978, Dayhoff, Schwartz and Orcutt [34] contributed to an-
other bioinformatics milestone by developing the first probabil-
istic model of amino acid substitutions. This model, completed
8 years after its inception, was based on the observation of 1572
point accepted mutations (PAMs) in the phylogenetic trees of 71
families of proteins sharing above 85% identity. The result was
a 20 � 20 asymmetric substitution matrix (Table 1) that con-
tained probability values based on the observed mutations of
each amino acid (i.e. the probability that each amino acid will
change in a given small evolutionary interval). Whereas the
principle of (i.e. least number of changes) was used before to
quantify evolutionary distance in phylogenetic reconstructions,
the PAM matrix introduced the of substitutions as the measure-
ment of evolutionary change.

In the meantime, several milestones in molecular biology
were setting DNA as the primary source of biological informa-
tion. After the elucidation of its molecular structure and its role
as the carrier of genes, it became quite clear that DNA would
provide unprecedented amounts of biological information.

1970–1980: Paradigm shift from protein to DNA
analysis
Deciphering of the DNA language: the genetic code

The specifications for any living being (more precisely, its ‘pro-
teins’) are encoded in the specific nucleotide arrangements of
the DNA molecule. This view was formalized in Francis Crick’s

Figure 3. Sequence dissimilarity between orthologous proteins from model organisms correlates with their evolutionary history as evidenced by the fossil record.

(A) Average distance tree of hemoglobin subunit beta-1 (HBB-1) from human (Homo sapiens), chimpanzee (Pan troglodytes), rat (Rattus norvegicus), chicken (Gallus gallus)

and zebrafish (Danio rerio). (B) Alignment view of the first 14 amino acid residues of HBB-1 compared in (A) (residues highlighted in blue are identical to the human

HBB-1 sequence). (C) Timeline of earliest fossils found for different aquatic and terrestrial animals.
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sequence hypothesis (also called nowadays the ‘Central
Dogma’), in which he postulated that RNA sequences, tran-
scribed from DNA, determine the amino acid sequence of the
proteins they encode. In turn, the amino acid sequence deter-
mines the three-dimensional structure of the protein.

Therefore, if one could figure out how the cell translates the
‘DNA language’ into polypeptide sequences, one could predict
the primary structure of any protein produced by an organism
by ‘reading its DNA’. By 1968, all of the 64 codons of the genetic
code were deciphered [35]; DNA was now ‘readable’, and this
groundbreaking achievement called for simple and affordable
ways to obtain DNA sequences.

Cost-efficient reading of DNA

The first DNA sequencing method to be widely adopted was the
Maxam–Gilbert sequencing method in 1976 [8]. However, its in-
herent complexity due to extensive use of radioactivity and haz-
ardous chemicals largely prohibited its use in favor of methods
developed in Frederick Sanger’s laboratory. Indeed, 25 years
after obtaining the first protein sequence [10, 11], Sanger’s team
developed the ‘plus and minus’ DNA sequencing method in

1977, the first to rely on primed synthesis with DNA polymer-
ase. The bacteriophage UX174 genome (5386 bp), the first DNA
genome ever obtained, was sequenced using this method.
Technical modifications to ‘plus and minus’ DNA sequencing
led to the common Sanger chain termination method [7], which
is still in use today even 40 years after its inception [36].

Being able to obtain DNA sequences from an organism holds
many advantages in terms of information throughput. Whereas
proteins must be individually purified to be sequenced, the
whole genome of an organism can be theoretically derived from
a single genomic DNA extract. From this whole-genome DNA
sequence, one can predict the primary structure of all proteins
expressed by an organism through translation of genes present
in the sequence. Though the principle may seem simple,
extracting information manually from DNA sequences involves
the following:

1. comparisons (e.g. finding homology between sequences
from different organisms);

2. calculations (e.g. building a phylogenetic tree of multiple
protein orthologs using the PAM1 matrix);

3. and pattern matching (e.g. finding open reading frames in a
DNA sequence).

Those tasks are much more efficiently and rapidly per-
formed by computers than by humans. Dayhoff and Eck showed
that the computer-assisted analysis of protein sequences
yielded more information than mechanistic modeling alone;
similarly, the sequence nature of DNA and its remarkable
understandability called for a similar approach in its analysis.

The first software dedicated to analyzing Sanger sequencing
reads was published by Roger Staden in 1979 [37]. His collection
of computer programs could be, respectively, used to (i) search
for overlaps between Sanger gel readings; ii) verify, edit and join
sequence reads into contigs; and (iii) annotate and manipulate
sequence files. The Staden Package was one of the first se-
quence analysis software to include additional characters
(which Staden called ‘uncertainty codes’) to record basecalling
uncertainties in a sequence read. This extended DNA alphabet

Figure 4. Representation of the Needleman–Wunsch global alignment algorithm. (A) An optimal alignment between two sequences is found by finding the optimal

path on a scoring matrix calculated with match and mismatch points (here þ5 and �4), and a gap penalty (here �1). (B) Each cell (i, j) of the scoring matrix is calculated

with a maximum function, based on the score of neighboring cells. (C) The best alignment between sequences ATCG and ATG, using parameters mentioned in (A).

Note: no initial and final gap penalties were defined in this example.

Table 1. An excerpt of the PAM1 amino acid substitution matrix

104 Pa Ala Arg Asn Asp Cys Gln . . . Val
A R N D C Q . . . V

Ala A 9867 2 9 10 3 8 . . . 18
Arg R 1 9913 1 0 1 10 . . . 1
Asn N 4 1 9822 36 0 4 . . . 1
Asp D 6 0 42 9859 0 6 . . . 1
Cys C 1 1 0 0 9973 0 . . . 2
Gln Q 3 9 4 5 0 9876 . . . 1
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Val V 13 2 1 1 3 2 . . . 9901

aEach numeric value represents the probability that an amino acid from the i-th

column be substituted by an amino acid in the j-th row (multiplied by 10 000).
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was one of the precursors of the modern IUBMB (International
Union of Biochemistry and Molecular Biology) nomenclature for
incompletely specified bases in nucleic acid sequences [38]. The
Staden Package is still developed and maintained to this pre-
sent day (http://staden.sourceforge.net/).

Using DNA sequences in phylogenetic inference

Although several concepts related to the notion of phylogeny
have been introduced by Ernst Haeckel in 1866 [39], the first mo-
lecular phylogenetic trees were reconstructed from protein
sequences, and typically assumed maximum parsimony (i.e.
the least number of changes) as the main mechanism driving
evolutionary change. As stated by Joseph Felsenstein in 1981
[40] about parsimony-based methods,

‘[They] implicitly assume that change is improbable a priori
(Felsenstein 1973, 1979). If the amount of change is small over the
evolutionary times being considered, parsimony methods will be
well-justified statistical methods. Most data involve moderate to
large amounts of change, and it is in such cases that parsimony
methods can fail.’

Furthermore, the evolution of proteins is driven by how the
genes encoding them are modeled by selection, mutation and
drift. Therefore, using nucleic acid sequences in phylogenetics
added additional information that could not be obtained with
amino acid sequences. For instance, synonymous mutations
(i.e. a nucleotide substitution that does not modify the amino
acids due to the degeneracy of the genetic code) are only detect-
able when using nucleotide sequences as input. Felsenstein
was the first to develop a maximum likelihood (ML) method to
infer phylogenetic trees from DNA sequences [40]. Unlike parsi-
mony methods, which reconstruct an evolutionary tree using
the least number of changes, ML estimation ‘involves finding
that evolutionary tree which yields the highest probability of
evolving the observed data’ [40].

Following Felsenstein’s work in molecular phylogeny, sev-
eral bioinformatics tools using ML were developed and are still
widely developed, as are new statistical methods to evaluate
the robustness of the nodes. This even inspired in the 1990s, the
use of Bayesian statistics in molecular phylogeny [41], which
are still commonly used in biology [42].

However, in the second half of the 1970s, several technical
limitations had to be overcome to broaden the use of computers

in DNA analysis (not to mention DNA analysis itself). The fol-
lowing decade was pivotal to address these issues.

1980–1990: Parallel advances in biology and
computer science
Molecular methods to target and amplify specific genes

Genes, unlike proteins and RNAs, cannot be biochemically frac-
tionated and then individually sequenced, because they all lay
contiguously on a handful of DNA molecules per cell. Moreover,
genes are usually present in one or few copies per cell. Genes
are therefore orders of magnitude less abundant than the prod-
ucts they encode (Figure 5).

This problem was partly solved when Jackson, Symons and
Berg (1972) used restriction endonucleases and DNA ligase to
cut and insert the circular SV40 viral DNA into lambda DNA,
and then transform Escherichia coli cells with this construct. As
the inserted DNA molecule is replicated in the host organism, it
is also amplified as E. coli cultures grow, yielding several million
copies of a single DNA insert. This experiment pioneered both
the isolation and amplification of genes independently from
their source organism (for instance, SV40 is a virus that infects
primates). However, Berg was so worried about the potential
ethical issues (eugenics, warfare and unforeseen biological haz-
ards) that he himself called for a moratorium on the use of re-
combinant DNA [43]. During the 1975 Asilomar conference,
which Berg chaired, a series of guidelines were established,
which still live on in the modern practice of genetics.

The second milestone in manipulating DNA was the poly-
merase chain reaction (PCR), which allows to amplify DNA with-
out cloning procedures. Although the first description of a
‘repair synthesis’ using DNA polymerase was made in 1971 by
Kjell Kleppe et al. [44], the invention of PCR is credited to Kary
Mullis [45] because of the substantial optimizations he brought
to this method (notably the use of the thermostable Taq poly-
merase, and development of the thermal cycler). Unlike Kleppe
et al., Mullis patented his process, thus gaining much of the rec-
ognition for inventing PCR [46].

Both gene cloning and PCR are now commonly used in DNA li-
brary preparation, which is critical to obtain sequence data. The
emergence of DNA sequencing in the late 1970s, along with
enhanced DNA manipulation techniques, has resulted in more

Figure 5. DNA is the least abundant macromolecular cell component that can be sequenced. Percentages (%) represent the abundance of each component relative to

total cell dry weight. Data from the Ambion Technical Resource Library.
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and more available sequence data. In parallel, the 1980s saw
increasing access to both computers and bioinformatics software.

Access to computers and specialized software

Before the 1970s, a ‘minicomputer’ fairly had the dimensions
and weight of a small household refrigerator (Illustration 1),
excluding terminal and storage units. The size constraint made
the acquisition of computers cumbersome for individuals or
small workgroups. Even when integrated circuits made their ap-
parition following Intel’s 8080 microprocessor in 1974 [47], the
first desktop computers lacked user-friendliness to a point that
for certain systems (e.g. the Altair 8800), the operating system
had to be loaded manually via binary switches on startup [48].

The first wave of ready-to-use microcomputers hit the con-
sumer market in 1977. The three first computers of this wave,
namely, the Commodore PET, Apple II and Tandy TRS-80, were
small, inexpensive and relatively user-friendly at his time. All
three had a built-in BASIC interpreter, which was an easy lan-
guage for nonprogrammers [49].

The development of microcomputer software for biology
came rapidly. In 1984, the University of Wisconsin Genetics
Computer Group published the eponymous ‘GCG’ software suite
[50]. The GCG package was a collection of 33 command-line
tools to manipulate DNA, RNA or protein sequences. GCG was
designed to work on a small-scale mainframe computer (the
DEC VAX-11; Illustration 2). This was the first software collec-
tion developed for sequence analysis.

Another sequence manipulation suite was developed after
GCG in the same year. DNASTAR, which could be run on an
CP/M personal computer, has been a popular software suite in

the 1980s and 1990s for its capabilities in assembling and ana-
lyzing Sanger sequencing data. In the years 1984–1985, other se-
quence manipulation suites were developed to run on CP/M,
Apple II and Macintosh computers [51, 52]. Some of the develop-
ers of those software offered free code copies on demand, there-
by exemplifying an upcoming software sharing movement in
the programming world.

Bioinformatics and the free software movement

In 1985, Richard Stallman published the GNU Manifesto, which
outlined his motivation for creating a free Unix-based operating
system called GNU (GNU’s Not Unix) [53]. This movement later
grew as the Free Software Foundation, which promotes the phil-
osophy that ‘the users have the freedom to run, copy, distribute,
study, change and improve the software’ [54]. The free software
philosophy promoted by Stallman was at the core of several ini-
tiatives in bioinformatics such as the European Molecular
Biology Open Software Suite, whose development began later in
1996 as a free and open source alternative to GCG [55, 56]. In
fact, this train of thought was already notable in earlier initia-
tives that predate the GNU project. Such an example is the
Collaborative Computational Project Number 4 (CCP4) for
macromolecular X-ray crystallography, which was initiated in
1979 and still commonly used today [57, 58].

Most importantly, it is during this period that the European
Molecular Biology Laboratory (EMBL), GenBank and DNA Data
Bank of Japan (DDBJ) sequence databases have united (EMBL
and GenBank in 1986 and finally DDBJ in 1987) in order, among
other things, to standardize data formatting, to define minimal
information for reporting nucleotide sequences and to facilitate
data sharing between those databases. Today this union still
exists and is now represented by the International Nucleotide
Sequence Database Collaboration (http://www.insdc.org/) [59].

The 1980s were also the moment where bioinformatics be-
came present enough in modern science to have a dedicated
journal. Effectively, given the increased availability of computers
and the enormous potential of performing computer-assisted
analyses in biological fields, a journal specialized in bioinformat-
ics, Computer Applications in the Biosciences (CABIOS), was estab-
lished in 1985. This journal, now named Bioinformatics, had the
mandate to democratize bioinformatics among biologists:

‘CABIOS is a journal for life scientists who wish to understand how
computers can assist in their work. The emphasis is on

Illustration 1. The DEC PDP-8 Minicomputer, manufactured in 1965. The main

processing module (pictured here) weighed 180 pounds and was sold at the

introductory price of $18 500 (�$140 000 in 2018 dollars). Image: Wikimedia

Commons//CC0.

Illustration 2. The DEC VAX-11/780 Minicomputer. From right to left: The com-

puter module, two tape storage units, a monitor and a terminal. The GCG soft-

ware package was initially designed to run on this computer. Image: Wikimedia

Commons//CC0.
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application and their description in a scientifically rigorous for-
mat. Computing should be no more mystical a technique than any
other laboratory method; there is clearly scope for a journal pro-
viding descriptive reviews and papers that provide the jargon,
terms of reference and intellectual background to all aspects of
biological computing.’ [60].

The use of computers in biology broadened through the free
software movement and the emergence of dedicated scientific
journals. However, for large data sets such as whole genomes
and gene catalogs, small-scale mainframe computers were used
instead of microcomputers. Those systems typically ran on
Unix-like operating systems and used different programming
languages (e.g. C and FORTRAN) than those typically used on
microcomputers (such as BASIC and Pascal). As a result, popular
sequence analysis software made for microcomputers were not
always compatible with mainframe computers, and vice-versa.

Desktop computers and new programming languages

With the advent of x86 and RISC microprocessors in the early
1980s, a new class of personal computer emerged. Desktop
workstations, designed for technical and scientific applications,
had dimensions comparable with a microcomputer, but had
substantially more hardware performance, as well as a software
architecture more similar to mainframe computers. As a matter
of fact, desktop workstations typically ran on Unix operating
systems and derivatives such as HP-UX and BSD (Illustration 3).

The mid-1980s saw the emergence of several scripting lan-
guages that would still remain popular among bioinformati-
cians today. Those languages abstract significant areas of
computing systems and make use of natural language charac-
teristics, thereby simplifying the process of developing a pro-
gram. Programs written in scripts typically do not require
compilation (i.e. they are interpreted when launched), but per-
form more slowly than equivalent programs compiled from C or
Fortran code [61].

Perl (Practical Extraction and Reporting Language) is a high-
level, multiparadigm, interpreted scripting language that was
created in 1987 by Larry Wall as an addition to the GNU operat-
ing system to facilitate parsing and reporting of text data [62].
Its core characteristics made it an ideal language to manipulate
biological sequence data, which is well represented in text for-
mat. The earliest occurrence of bioinformatics software written
in Perl goes back to 1994 (Table 2). Then until the late 2000s, Perl

was undoubtedly the lingua franca of bioinformatics, due to its
great flexibility [63]. As Larry Wall stated himself, ‘there’s more
than one way to do it’. The development of BioPerl in 1996 (and
initial release in 2002) contributed to Perl’s popularity in the bio-
informatics field [64]. This Perl programming interface provides
modules that facilitate typical but nontrivial tasks, such as (i)
accessing sequence data from local and remote databases, (ii)
switching between different file formats, (iii) similarity
searches, and (iv) annotating sequence data.

However, Perl’s flexibility, coupled with its heavily punctu-
ated syntax, could easily result in low code readability. This
makes Perl code maintenance difficult, especially for updating
software after several months or years. In parallel, another
high-level programming language was to become a major actor
in the bioinformatics scene.

Python, just like Perl, is a high-level, multiparadigm pro-
gramming language that was first implemented by Guido van
Rossum in 1989 [70]. Python was especially designed to have a
simpler vocabulary and syntax to make code reading and main-
tenance simpler (at the expense of flexibility), even though both
languages can be used for similar applications. However, it was
not before the year 2000 that specialized bioinformatics libraries
for Python were implemented [71], and it was not until the late
2000s that Python became a major programming language in
bioinformatics [72]. In addition to Perl and Python, several non-
scripting programming languages originated in the early 1990s
and joined the bioinformatics scene later on (Table 3).

The emergence of tools that facilitated DNA analysis, either
in vitro or in silico, permitted increasingly complex endeavors
such as the analysis of whole genomes from prokaryotic and
eukaryotic organisms since the early 1990s.

1990–2000: Genomics, structural
bioinformatics and the information
superhighway
Dawn of the genomics era

In 1995, the first complete genome sequencing of a free-living
organism (Haemophilus influenzae) was sequenced by The
Institute for Genomic Research (TIGR) led by geneticist J. Craig
Venter [83]. However, the turning point that started the genomic
era, as we know it actually, was the publication of the human
genome at the beginning of the 21st century [84, 85].

The Human Genome Project was initiated in 1991 by the U.S.
National Institutes of Health, and cost $2.7 billion in taxpayer
money (in 1991 dollars) over 13 years [86]. In 1998, Celera
Genomics (a biotechnology firm also run by Venter) led a rival,

Table 2. Selected early bioinformatics software written in Perl

Software Year
released

Use Reference

GeneQuiz 1994
(oldest)

Workbench for protein
sequence analysis

[65]

LabBase 1998 Making relational
databases of sequence data

[66]

Phred-Phrap-
Consed

1998 Genome assembly
and finishing

[67]

Swissknife 1999 Parsing of SWISS-PROT data [68]
MUMmer 1999 Whole genome alignment [69]

PubMed Key: (perl bioinformatics) AND (“1987”[Date-Publication]:“2000”[Date-

Publication]).

Illustration 3. An HP-9000 desktop workstation running the Unix-based system

HP-UX. Image: Thomas Schanz//CC-BY-SA 3.0.
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private effort to sequence and assemble the human genome.
The Celera-backed initiative successfully sequenced and
assembled the human genome for one-tenth of the National
Institutes of Health (NIH)-funded project cost [87]. This 10-fold
difference between public and private effort costs resulted from
different experimental strategies (Figure 6) as well as the use of
NIH data by the Celera-led project [88].

Although the scientific community was experiencing a time
of great excitement, whole-genome sequencing required mil-
lions of dollars and years to reach completion, even for a bacter-
ial genome. In contrast, sequencing a human genome with 2018
technology would cost $1000 and take less than a week [91].
This massive cost discrepancy is not so surprising; at this time,
even if various library preparation protocols existed, sequencing
reads were generated by using Sanger capillary sequencers
(Illustration 4). Those had a maximum throughput of 96 reads
of 800 bp length per run [92], orders of magnitude less than
second-generation sequencers that emerged in the late 2000s.
Thus, sequencing the human genome (3.0 Gbp) required a rough
minimum of about 40 000 runs to get just one-fold coverage.

In addition to laborious laboratory procedures, specialized
software had to be designed to tackle this unprecedented
amount of data. Several pioneer Perl-based software were
developed in the mid to late 1990s to assemble whole-genome
sequencing reads: PHRAP [67], Celera Assembler [93], TIGR
Assembler [94], MIRA [95], EULER [96] and many others.

Another important player in the early genomics era was the
globalized information network, which made its appearance in
the early 1990s. It was through this network of networks that
the NIH-funded human genome sequencing project made its
data publicly available [97]. Soon, this network would become
ubiquitous in the scientific world, especially for data and soft-
ware sharing.

Bioinformatics online

In the early 1990s, Tim Berners-Lee’s work as a researcher at the
Conseil Européen pour la Recherche Nucléaire (CERN) initiated
the World Wide Web, a global information system made of
interlinked documents. Since the mid-1990s, the Web has

Table 3. Notable nonscripting and/or statistical programming languages used in bioinformatics

Fortrana C R Java

First appeared 1957 1972 1993 1995

Typical use Algorithmics, calculations,
programming modules
for other applications

Optimized
command-line
tools

Statistical analysis,
data visualization

Graphical user interfaces,
data visualization,
network analysis

Notable fields of
application

Biochemistry, Structural
Bioinformatics

Various Metagenomics,
Transcriptomics,
Systems Biology

Genomics, Proteomics,
Systems Biology

Specialized bioinformatics
repository?

None None Bioconductor, [73],
since 2002

BioJava [74], since 2002

Example software or
packages

Clustal [32, 33], WHAT IF [75] MUSCLE [76],
PhyloBayes [77]

edgeR [78], phyloseq [79] Jalview [80], Jemboss [81],
Cytoscape [82]

aEven though the earliest bioinformatics software were written in Fortran, it is seldom used to code standalone programs nowadays. It is rather used to code modules

for other programs and programming languages (such as C and R mentioned here).

Figure 6. Hierarchical shotgun sequencing versus whole genome shotgun sequencing. Both approaches respectively exemplified the methodological rivalry between

the public (NIH, A) and private (Celera, B) efforts to sequence the human genome. Whereas the NIH team believed that whole-genome shotgun sequencing (WGS) was

technically unfeasible for gigabase-sized genomes, Venter’s Celera team believed that not only this approach was feasible, but that it could also overcome the logistical

burden of hierarchical shotgun sequencing, provided that efficient assembly algorithms and sufficient computational power are available. Because of the partial use of

NIH data in Celera assemblies, the true feasibility of WGS sequencing for the human genome has been heavily debated by both sides [89, 90].
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revolutionized culture, commerce and technology, and enabled
near-instant communication for the first time in the history of
mankind.

This technology also led to the creation of many bioinfor-
matics resources accessible throughout the world. For example,
the world’s first nucleotide sequence database, the EMBL
Nucleotide Sequence Data Library (that included several other
databases such as SWISS-PROT and REBASE), was made avail-
able on the Web in 1993 [98]. It was almost at the same time, in
1992, that the GenBank database became the responsibility of
the NCBI (before it was under contract with Los Alamos
National Laboratory) [99]. However, GenBank was very different
from today and was distributed in print and as a CD-ROM in its
first inception.

In addition, the well-known website of the NCBI was made
available online in 1994 (including the tool BLAST, which allows
to perform pairwise alignments efficiently). Then came the es-
tablishment of several major databases still used today:
Genomes (1995), PubMed (1997) and Human Genome (1999).

The rise of Web resources also broadened and simplified ac-
cess to bioinformatics tools, mainly through Web servers with a
user-friendly graphical user interface. Indeed, bioinformatics
software often (i) require prior knowledge of UNIX-like operat-
ing systems, (ii) require the utilization of command lines (for
both installation and usage) and (iii) require the installation of
several software libraries (dependencies) before being usable,
which can be unintuitive even for skilled bioinformaticians.

Fortunately, more developers try to make their tools avail-
able to the scientific community through easy-to-use graphical
Web servers, allowing to analyze data without having to per-
form fastidious installation procedures. Web servers are now so
present in modern science that the journal Nucleic Acids Research
publishes a special issue on these tools each year (https://aca
demic.oup.com/nar).

The use of Internet was not only restricted to analyzing data
but also to share scientific studies through publications, which
is the cornerstone of the scientific community. Since the cre-
ation of the first scientific journal, The Philosophical Transactions
of the Royal Society, in 1665 and until recently, the scientists
shared their findings through print or oral media.

In the early 1980s, several projects emerged to investigate
the possibility, advantages and disadvantages of using the
Internet for scientific publications (including submission, revi-
sion and reading of articles) [100]. One of the first initiatives,
BLEND, a 3-year study that used a cohort of around 50 scientists,

shed light on the possibilities and challenges of such
projects [101]. These studies pioneered the use of the Internet
for both data set storage and publishing. This usage is exempli-
fied by the implementation of preprint servers such as Cornell
University’s arXiv (est. 1991) and Cold Spring Harbor’s bioRxiv
(est. 2013) who perform these tasks simultaneously.

Beyond sequence analysis: structural bioinformatics

The first three-dimensional structure of a protein, that of myo-
globin, was determined experimentally in 1958 using X-ray dif-
fraction [102]. However, the first milestones concerning the
prediction of a protein structure were laid by Pauling and Corey
in 1951 with the publication of two articles that reported the
prediction of a-helices and b-sheets [103]. As with other areas in
the biological sciences, it is now possible to use computers to
perform calculations to predict, with varying degrees of cer-
tainty, the secondary and tertiary structure (especially thanks
to fold recognition algorithms also called treading) of proteins
[104, 105].

Although advances in the field of 3D structure prediction are
crucial, it is important to remember that proteins are not static,
but rather a dynamic network of atoms. With some break-
throughs in biophysics, force fields have been developed to de-
scribe the interactions between atoms, allowing the release of
tools to model the molecular dynamics of proteins in the 1990s
[106]. Although theoretical methods had been developed and
tools were available, it remained very difficult in practice to per-
form molecular dynamics simulations due to the large compu-
tational resources required. For example, in 1998, a
microsecond simulation of a 36-amino-acid peptide (villin
headpiece subdomain) required months of calculations despite
the use of supercomputers with 256 central processing units
[107].

Despite the constant increase in the power of modern com-
puters, for many biomolecules, computing resources still re-
main a problem for making molecular dynamics simulations on
a reasonable time scale. Nevertheless, there have been, and
continue to be, several innovations, such as the use of graphics
processing units (GPUs) through high-performance graphics
cards normally used for graphics or video games, that help to
make molecular dynamics accessible [108, 109]. Moreover, the
use of GPUs also began to spread in other fields of bioinformat-
ics requiring massive computational power, such as the con-
struction of molecular phylogenies [110, 111].

However, the ease brought by the Internet for publishing
data, in conjunction with increasing computational power,
played a role in the mass production of information we now
refer to as ‘Big Data’.

2000–2010: High-throughput bioinformatics
Second-generation sequencing

DNA sequencing was democratized with the advent of second-
generation sequencing (also called next-generation sequencing
or NGS) that started with the ‘454’ pyrosequencing technology
[112]. This technology allowed sequencing thousands to mil-
lions of DNA molecules in a single machine run, thus raising
again the old computational challenge. The gold-standard tool
to handle reads from 454 (the high-throughput sequencer) is
still today the proprietary tool Newbler, that was maintained by
Roche until the phasing out of the 454 in 2016. Now, several

Illustration 4. Array of ABI 373 capillary sequencers at the National Human

Genome Research Institute (1993). Image: Hank Morgan//SPL v1.0.
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other companies and technologies are on the market [113] and a
multitude of tools is available to deal with the sequences.

In fact, there are now so many tools that it is difficult to
choose a specific one. If this trend persists, it will become in-
creasingly difficult for different teams to compare their findings
and to replicate results from other research groups.
Furthermore, switching to newer and/or different bioinformat-
ics tools requires additional training and testing, thereby mak-
ing researchers reluctant to abandon software they are familiar
with [114]. The mastering of new tools must therefore be justi-
fied by an increase in either computing time or results of signifi-
cantly better quality. This has led to competitions such as the
well-known Assemblathon [115], which rates de novo assem-
blers based on performance metrics (assembly speed, contig
N50, largest contig length, etc.). However, the increasing
amount of available tools is dwarfed by the exponential in-
crease of biological data deposited in public databases.

Biological Big Data

Since 2008, Moore’s Law stopped being an accurate predictor of
DNA sequencing costs, as they dropped several orders of magni-
tude after the arrival of massively parallel sequencing technolo-
gies (https://www.genome.gov/sequencingcosts/). This resulted
in an exponential increase of sequences in public databases
such as GenBank and WGS (Figure 7) and further preoccupa-
tions towards Big Data issues. In fact, the scientific community
has now generated data beyond the exabyte (1018) level [116].
Major computational resources are necessary to handle all of
this information, obviously to store it, but also to organize it for
easy access and use.

New repository infrastructure arose for model organisms
such as Drosophila [117], Saccharomyces [118] and human [119].
Those specialized databases are of great importance, as in add-
ition to providing genomic sequences with annotations (often
curated) and metadata, many of them are structuring resources
for the scientific community working on these organisms. For
example, Dicty Stock Center is a directory of strains and plas-
mids and is a complementary resource to dictyBase [120], a
database of the model organism Dictyostelium discoideum. In add-
ition, we have also been witnessing the emergence of general
genomic databases such as the Sequence Read Archive [121]

and The European Nucleotide Archive [122], which were imple-
mented to store raw sequencing data for further reproducibility
between studies.

Given the large number of genomic sequences and databases
that emerge, it is important to have standards to structure these
new resources, ensure their sustainability and facilitate their
use. With this in mind, the Genomic Standards Consortium was
created in 2005 with the mandate to define the minimum infor-
mation needed for a genomic sequence [123, 124].

High-performance bioinformatics and collaborative
computing

The boom in bioinformatics projects, coupled with the
exponentially increasing amount of data, has required adaptation
from funding bodies. As for the vast majority of scientific studies,
bioinformatics projects also require resources. It goes without
saying that the most common material for a project in bioinfor-
matics is the computer. Although in some cases and according to
the necessary calculations, a simple desktop computer can suf-
fice, some projects in bioinformatics will require infrastructures
much more imposing, expensive and requiring special expertise.
Several government-sponsored organizations specialized in high-
performance computing have emerged, such as:

• Compute Canada (https://www.computecanada.ca), which man-

ages the establishment and access of Canadian researchers to

computing services;
• New York State’s High Performance Computing Program (https://

esd.ny.gov/new-york-state-high-performance-computing-

program);
• The European Technology Platform for High Performance

Computing (http://www.etp4hpc.eu/); and
• China’s National Center for High-Performance Computing

(http://www.nchc.org.tw/en/).

The importance of high-performance computing has also
led some companies, such as Amazon (https://aws.amazon.
com/health/genomics/) and Microsoft (https://enterprise.micro
soft.com/en-us/industries/health/genomics/), to offer services
in bioinformatics.

In addition, the rise of community computing has redefined
how one can participate in bioinformatics. This is exemplified

Figure 7. Total amount of sequences on the NCBI GenBank and WGS (Whole Genome Shotgun) databases over time. The number of draft/incomplete genomes has sur-

passed the amount of complete genome sequences in June 2014, and stills continues to grow exponentially. Source: https://www.ncbi.nlm.nih.gov/genbank/statistics/.
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by BOINC [125], which is a collaborative platform that allows
users to make their computers available for distributed calcula-
tions for different projects. Experts can submit computing tasks
to BOINC, while nonexperts and/or science enthusiasts can vol-
unteer by allocating their computer resources to jobs submitted
to BOINC. Several projects related to life sciences are now avail-
able through BOINC, such as for protein–ligand docking, simula-
tions related to malaria and protein folding.

2010–Today: Present and future perspectives
Clearly defining the bioinformatician profession

A recent evolution related to bioinformatics is the emergence of
researchers specialized in this field: the bioinformaticians [126].
Even after more than 50 years of bioinformatics, there is still no
definite consensus on what is a bioinformatician.

For example, some authors suggested that the term
‘bioinformatician’ be reserved to those specialized in the field of
bioinformatics, including those who develop, maintain and de-
ploy bioinformatics tools [126]. On the other hand, it was also
suggested that any user of bioinformatics tools should be
granted the status of bioinformatician [127]. Another tentative,
albeit more humorous, defined the bioinformatician contraposi-
tively, i.e. how not to be one [128].

What is certain, however, is that there is a significant in-
crease in (i) user-friendly tools, often available through integra-
tive Web servers like Galaxy [129], and (ii) helping communities
such as SEQanswers [130] and BioStar [131]. There is also an ex-
plosive need for bioinformaticians on the job market in academ-
ic, private and governmental sectors [132]. To fill this necessity,
universities were urged to adapt the curriculum of their bio-
logical sciences programs [133–136].

Now, life scientists not directly involved in a bioinformatics
program need to be skilled at basic concepts to understand the
subtleties of bioinformatics tools to avoid misuse and erroneous
interpretations of the results [136, 137].

The International Society for Computational Biology pub-
lished guidelines and recommendations of core competencies
that a bioinformatician should have in her/his curriculum [133],
based on three user categories (bioinformatics user, bioinfor-
matics scientist and bioinformatics engineer). All three user cat-
egories contain core competencies such as:

‘[using] current techniques, skills, and tools necessary for compu-
tational biology practice’, ‘[applying] statistical research methods
in the contexts of molecular biology, genomics, medical, and
population genetics research’ and ‘knowledge of general biology,
in-depth knowledge of at least one area of biology, and under-
standing of biological data generation technologies’.

Additional competencies were defined for the remaining
two categories, such as:

‘[analyzing] a problem and identify and define the computing
requirements appropriate to its solution’ for the bioinformatics
scientist, and ‘[applying] mathematical foundations, algorithmic
principles, and computer science theory in the modeling and de-
sign of computer-based systems in a way that demonstrates com-
prehension of the tradeoffs involved in design choices’ for the bio-
informatics engineer’.

Is the term ‘bioinformatics’ now obsolete?

Before attempting to define the bioinformatician profession,
perhaps bioinformatics itself requires a proper definition.

Indeed, the use of computers has become ubiquitous in biology,
as well as in most natural sciences (physics, chemistry, math-
ematics, cryptography, etc.), but interestingly, only biology has
a specific term to refer to the use of computers in this discipline
(‘bioinformatics’). Why is that so?

First, biology has historically been perceived as being at the
interface of ‘hard’ and ‘soft’ sciences [138]. Second, the use of
computers in biology required a certain understanding of the
structure of macromolecules (namely, nucleic acids and pro-
teins). This led biology to computerize itself later than other
‘hard’ sciences such as physics and mathematics. This is not so
surprising, knowing that the first computers were designed spe-
cifically to solve mathematical calculations in the field of phys-
ics. For example, one of the first fully electronic computers, the
ENIAC (1943–1946), was first used for the development of the
hydrogen bomb during World War II.

The combination of these factors might clarify why the con-
nection between biology and computers was not immediately
obvious. This could also explain why the use of the term
‘Bioinformatics’ still remains in common usage. Today, when
virtually any research endeavor requires using computers, one
may question the relevance of this term in the future. An inter-
esting thought was made to this regard by the bioinformatician
C. Titus Brown at the 15th annual Bioinformatics Open Source
Conference. He presented a history of current bioinformatics
but told from the perspective of a biologist in year 2039 [139]. In
Brown’s hypothetical future, biology and bioinformatics are so
intertwined that there is no need to distinguish one from the
other. Both are simply known as biology.

Towards modeling life as a whole: systems biology

The late 20th century witnessed the emergence of computers in
biology. Their use, along with continuously improving labora-
tory technology, has permitted increasingly complex research
endeavors. Whereas sequencing a single protein or gene could
have been the subject of a doctoral thesis up to the early 1990s,
a PhD student may now analyze the collective genome of many
microbial communities during his/her graduate studies [140].
Whereas determining the primary structure of a protein was
complex back then, one can now identify the whole proteome
of a sample [141]. Biology has now embraced a holistic ap-
proach, but within distinct macromolecular classes (e.g. genom-
ics, proteomics and glycomics) with little crosstalk between
each subdiscipline.

One may anticipate the next leap: instead of independently
investigating whole genomes, whole transcriptomes or whole
metabolomes, whole living organisms and their environments
will be computationally modeled, with all molecular categories
taken into account simultaneously. In fact, this feat has already
been achieved in a whole cell model of Mycoplasma genitalium, in
which all its genes, their products and their known metabolic
interactions have been reconstructed in silico [142]. Perhaps we
will soon witness an in silico model of a whole pluricellular or-
ganism. Even though this might seem unfeasible to model mil-
lions to trillions of cells, one must keep in mind that we are
now achieving research exploits that would have been deemed
as computationally or technically impossible even 10 years ago.

Key Points

• The very beginnings of bioinformatics occurred more
than 50 years ago, when desktop computers were still a
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hypothesis and DNA could not yet be sequenced.
• In the 1960s, the first de novo peptide sequence assem-

bler, the first protein sequence database and the first
amino acid substitution model for phylogenetics were
developed.

• Through the 1970s and the 1980s, parallel advances in
molecular biology and computer science set the path
for increasingly complex endeavors such as analyzing
complete genomes.

• In the 1990–2000s, use of the Internet, coupled with
next-generation sequencing, led to an exponential in-
flux of data and a rapid proliferation of bioinformatics
tools.

• Today, bioinformatics faces multiple challenges, such
as handling Big Data, ensuring the reproducibility of
results and a proper integration into academic
curriculums.
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