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Abstract

Molecular dynamics (MD) is a discrete modelling technique that is used to capture the nano-

scale motion of molecules. MD can be used to accurately simulate a range of physical problems

where the continuum assumption breaks down. Examples include surface interaction, complex

molecules, local phase changes, shock waves or the contact line between fluids. However, beyond

very small systems and timescales (µm and msec), MD is prohibitively expensive. Continuum

computational fluid dynamics (CFD), on the other hand, is easily capable of simulating scales of

engineering interest, (m and s). However, CFD is unable to capture micro-scale effects vital for

many modern engineering fields, such as nanofluidics, tribology, nano-electronics and integrated

circuit development. This work details the development of a set of techniques that combine the

advantages of both continuum and molecular modelling methodologies, allowing the study of

cases beyond the range of either technique alone.

The present work is split into both computational and theoretical developments. The com-

putational aspect involves the development of a new high-performance MD code, as well as a

coupler (CPL) library to link it to a continuum solver. The MD code is fully verified, has similar

performance to existing MD software and allows simulation of a wide range of cases. The CPL

library is a robust, flexible and language independent API and the source code has been made

freely available under the GNU GPL v3 license. Both MD and CPL codes are developed to allow

very large scale simulation on high performance computing (HPC) facilities.

The theoretical aspect includes the development of a rigorous mathematical framework and

its application to develop novel coupling methodologies. The mathematical framework allows

a discrete molecular system to be expressed in terms of the control volume (CV) formulation

from continuum fluid dynamics. A discrete form of Reynolds’ transport theorem is thus obtained

allowing both molecular and continuum systems to be expressed in a consistent manner. This

results in a number of insights into the molecular definition of stress. This CV framework allows

mathematical operations to be localised to a control volume in space. It is ideally suited to apply

coupling constraints to a region in space. To link the CFD and MD solvers in a rigorous and

physically consistent manner, the CV framework is combined with the variational principles of

classical mechanics. The result is a unification of a number of existing equations used in the

coupling literature and a rigorous derivation of a new and more general coupling scheme.
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Preface

The work presented in this document represents a coherent story on the development of coupling.

It contains a summary of the vast majority of the work the author has been involved in during

the last four year. The work in chapter 4 on the control volume formulation, Smith, Heyes,

Dini & Zaki (2012), has been published in Physical Review E. The computational developments

of the coupling library has also resulted in two technical papers (Anton & Smith, 2012; Smith,

Trevelyan & Zaki, 2013) and an open source software project (Smith & Trevelyan, 2013).

However, not all of the work is reported here. The work on the connection between the

volume average and method of planes stress, Heyes, Smith, Dini & Zaki (2011) in the Journal

of Chemical Physics, is only mentioned in passing. Although this deserves a far more extensive

treatment, this would have required a tangent from the development of coupling schemes, which

this work is devoted to.

In addition, some work toward a project published in Journal of Chemical Physics, Heyes,

Smith, Dini, Spikes & Zaki (2012) on the study of lubrication between two sliding surface is not

reported herein. Much of the choice of setup and insight into Couette flow, which feature heavily

in this work, stems from the work in this publication. Again, however, a detailed review of this

work does not fit naturally into the story presented here.
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Chapter 1

Introduction

1.1 Motivation

The nature of reality has long been a source of philosophical debate. Around 400BC, Democritus

and Leucippus postulated an indivisible unit which they called the atom (Coveney & Highfield,

1991). With no evidence for the existence of atoms and the widespread adoption of Aristotelian

physics, the discrete paradigm largely fell from favour over the ensuing millennia. The first quan-

titative challenge to the continuous nature of reality is attributed to the alchemist Robert Boyle

in 1666 (Boyle, 1666). By introducing the corpuscle, he provided a mechanism for the behaviour

of gases as interacting particles. Despite this work and that of other “atomist” proponents like

John Dalton et al. (1808), the lack of experimental evidence for atoms ensured the continuum

dominated science over the next three hundred years. This view was so ingrained by the late 19th

century that, despite being central to Ludwig Boltzmann’s development of statistical mechanics,

discrete atoms were regarded as no more than a tool. Convincing evidence for the existence of

atoms was provided, in part, through Einstein’s atomistic explanation for Brownian motion and

the scattering experiments of Rutherford at the start of the 20th century. As a result of this

dichotomy, the fields of continuum mechanics and discrete particles dynamics evolved separately,

well into the age of computers. Even today, the two descriptions are often studied independently

by separate communities. Philosophically, the link between the two is far from clear. Molecular

analogues to even steady state continuum concepts such as pressure have proved troublesome

(Zhou, 2003). Move away from the steady state and the link between the continuum and discrete

is very difficult to define.

The nature of reality is no longer simply a philosophical debate. Engineering modelling is built

on the continuum hypothesis. As science attempts to explore smaller scales and more extreme

phenomena, the cracks begin to appear – from the apparently innocuous assumption of no-slip

between a solid and a fluid to the simulation of the extreme environment of space shuttle re-

entry. The failure to model the contact line between two phases of a fluid or a moving shock wave

highlights the limitations of this continuous view of matter. Many modern technologies employ

nano-scale components from the ubiquitous computer transistor to the various promising forms

of carbon. Modelling of nano-scales for these emerging technologies requires discrete effects to

be fully captured. This necessitates increased sophistication of the modelling techniques beyond

continuum only models.

It is this improvement in modelling techniques that motivates the current work. By attempt-

ing to resolve the differences between the continuous and discrete formulations, it will be possible

23



24

to combine the successes of both. The next sections outline a brief history of both formulations

and the progress to date in linking them.

1.2 Continuum Mechanics

The calculus developed by Newton and Leibniz in the seventeenth century motivates a view of

nature that is continuous in space. This notion of an infinitely divisible substance became popular

in the following two centuries underpinning the field of continuum mechanics. By ignoring the

atomic nature of material, it is possible to express solvable differential equations describing the

temporal and spatial evolution of a continuous field. The field of continuum mechanics includes

the study of solid mechanics, thermodynamics and fluid mechanics. A key distinction between

these fields is the choice of reference frame. As solids deform by small amounts, it is possible to

follow a fixed collection of material as it evolves in time. This is termed the Lagrangian reference

frame. For thermodynamics and fluid mechanics, the movement of the material is too great to

keep track of a fixed collection and it is simpler to observe the flow past a reference volume

(called a control volume). This is termed the Eulerian reference frame.

Solid mechanics attempts to model the stress and strain of a material. The solid mechanics

concepts of stress were developed by Lenard Euler and the Bernoullis (James then John) with the

notion of the stress tensor finally formalised by Cauchy in 1823 (Soutas-Little & Merodio, 2007).

In its modern guise, continuum solid mechanics has demonstrated great success through the

Finite Element Method (Zienkiewicz, 2005). However fracture mechanics, non-isotropic material

and extreme loads all require modelling techniques beyond the continuum assumption.

The field of thermodynamics was developed during the industrial revolution to quantify the

interplay of heat and work. It provides continuum notions of temperature, pressure and en-

tropy. The entire formulation of thermodynamics assumes a fluid at thermodynamic equilibrium

(Sandler & Woodcock, 2010). This significantly limits the applicability of thermodynamics, a

restriction that is likened by Coveney & Highfield (1991) to the field of medicine focusing on the

dead.

Continuum fluid dynamics models the flow of fluids away from hydrodynamic equilibrium,

typically for phenomena acting at larger time and length scales than required for thermodynamic

equilibrium (Gad-el Hak, 2006). It is governed by the Navier-Stokes equation. This equation was

formulated independently by Claude-Louis Navier in 1822 and George Gabriel Stokes in 1845

(Gad-el Hak, 1995) and represents a continuum implementation of Newton’s laws with a variety

of closure assumptions. By virtue of these assumptions, the solids mechanics stress tensor is often

replaced by a scalar hydrodynamic pressure, a shear viscosity and, in some cases, a bulk viscosity.

Analytical solution of these non-linear partial differential equations is impossible for all but the

simplest of ideal cases. Steady state solutions were obtained by Jean Louis Marie Poiseuille and

Maurice Couette for the now eponymously named flows, while Joseph Fourier pioneered a time

dependent solution in terms of trigonometric functions. Only with the advent of computers have

general solutions been possible, the modern field of computational fluid dynamics (CFD) (Hirsch,

2007). With these numerical solutions, chaotic behaviour can result, a phenomenon known in

fluid mechanics as turbulence. Turbulence is a feature of almost every case of engineering interest

and a detailed understanding of this phenomenon would allow untold improvements in design and

predictive capabilities. With the aid of computer simulation, great strides have been made in the

categorisation, modelling and understanding of turbulence. Direct numerical simulation (DNS)
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resolves the range of turbulent eddies down to the smallest dissipative scales (the Kolmogorov

length scale) (Kim et al., 1987). It is not known the role that smaller scale effects have on the

dynamics of the turbulence. It has been suggested, however, that the microscale fluctuations

play an important role in fluid instability (K. Kadau et al., 2010).

Although the focus of this work is primarily the field of fluid mechanics, it also contains

many elements of solid mechanics (stress) and thermodynamics, through statistical mechanics.

As discussed in the next section, molecular dynamics does not respect the separation between

the continuum fields of study, and can often contain features of all three in a single simulation.

Continuum mechanics is limited to simulations where the Knudsen number is much less than

unity throughout the entire domain. Many simulations of real world phenomena involve some

region where the length scale of interest is microscopic, for example, the liquid-solid interaction,

presence of multiple phases, impulse started walls or shock waves. Whenever these ‘disconti-

nuities’ are present in the continuum field, a molecular description is required to capture the

physics. In addition, the behaviour of the continuum fluid no longer conforms to Newtonian

mechanics or Stokes’ hypothesis (Gad-el Hak, 1995). Again, in these cases a molecular model

can be used to provide the correct behaviour for the fluid.

1.3 Molecular Dynamics

As for continuous systems, Newton’s laws of motion are of central importance at the molecular

level. They are valid for all but the most extreme scales where relativity or quantum mechanics

become important. Newton’s laws are still applicable at the atomic scale, although a closed form

solution to the motion of even three bodies is a long standing problem. The ‘many body’ problem

has been solved only through the advent of computers, with the first molecular simulations by

Alder and Wainwright (Alder & Wainwright, 1957, 1959). The solution of these systems reveal

an apparently chaotic set of molecular trajectories, similar to the chaotic behaviour observed

in the continuum. Indeed, the behaviour from large simulations of RayleighTaylor instability

using MD simulation at the micro-scale show agreement with turbulent behaviour observed on

the macroscale (K. Kadau et al., 2010).

This is the field of molecular dynamics (MD) which simulates nature as a collection of dis-

crete atoms. Within this framework, the full range of solid mechanics, thermodynamics or fluid

mechanics behaviour can be observed. At appropriately low temperatures, the molecules clus-

ter and form a solid lattice or boil at high temperatures and become a gas. The movement of

molecules and their collisions (on average) reproduce the predictions of empirical thermodynamic

laws.

Moving away from equilibrium molecular dynamics into the realm of non-equilibrium simu-

lation, one finds a very vibrant and active research area (Evans & Morriss, 2007). It is possible

to match results to the continuum analytical solution of Poiseuille and Couette as well as obtain

definition of concepts such as viscosity using Green-Kubo (Green, 1954; Kubo, 1957) formulas.

In the case of linear departures from equilibrium, theories exist which allow analysis of the onset

of non-Newtonian behaviour.

Molecular dynamics is by its nature very computationally expensive. The largest simulations

to date have been of the order 1012 molecules run for 10ps (Germann & Kadau, 2008). This may

appear to be a large number, but 1m3 of air contains over 1025 molecules. Therefore, molecular

dynamics is confined to the modelling of small systems at very short time scales. Predictions
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from the work of Germann & Kadau (2008), based on Moore’s law, suggest that 3D turbulence

(0.25mm for 100ns) will be possible in 50 years while 3D engineering scales (cm for ms) will take

over 100 years.

1.4 Coupling

Most cases which are of engineering interest require the resolution of molecular systems sizes

far beyond foreseeable computational capabilities. However, the molecular and continuum sim-

ulations show excellent agreement away from these discontinuities, discussed in the continuum

section 1.2. As a result, molecular simulation is only required close to the discontinuity, and a

continuum description can then be used to model the remainder of the domain. This observa-

tion is key to the work presented herein, where a continuum model and molecular model are

combined to simulate problems whose modelling is not achievable using either model by itself.

This allows the impact of microscopic effects to be observed over scales of engineering inter-

est. This approach, it is envisaged, will have widespread applications in nanofluidics, tribology,

micro-electronics, surface chemistry, surface texture research and fundamental fluid mechanics

simulations. Given future trends towards smaller scale engineering and increasing reliance on

numerical modelling, the need for coupled simulation tools can only become more pronounced.

However, despite excellent progress in recent publications, there remain a number of chal-

lenges to address before continuum to molecular coupling is a reliable tool for industrial engi-

neering. The inherent challenges to overcome, in order to develop a successful coupling, are

extremely non-trivial. The coupled problem is inherently one of computational optimisation,

where the continuum is employed to reduce the computing load of a large MD system. Even

with coupling based improvements, problems of interest will require state of the art high perfor-

mance computing techniques in order to exploit the architecture of many-core computers.

In addition, the theoretical and scientific challenges remain great. Molecular dynamics is

typically applied to thermodynamic problems; systems at steady state simulated with periodic

boundaries. These systems have very clear solutions in the canonical ensemble and numerical

models can be easily validated. Away from equilibrium, many problems must be overcome, several

of which are still active areas of research. It is no longer possible to use periodic boundaries,

therefore molecular walls must be created, forces generated to drive the flow and thermostats

applied to remove generated heat. Averaging to obtain properties away from equilibrium is

also non-trivial, with controversial definitions of pressures and temperature and statistical noise

plaguing attempts to average and retrieve continuum style properties. The problems of coupling

require methods to link the systems along the open boundaries of both systems. The issues of

numerical stability must be considered on the CFD side, especially in the presence of the noisy

boundary conditions obtained from the molecular system. Even once these problems have been

addressed, and an apparently successful coupling has been developed, it is unclear how to verify

that it is physically meaningful or correct for all but the simplest of cases.

The aim of this work is to develop the methodology for linking a local molecular description

to a large region simulated using a continuum description. This will include both computational

and theoretical development. The computational development will focus on a general purpose,

modern and robust computational tools to simulate a wide range of problems. The theoretical

emphasis will be on the development of a rigorous mathematical framework based on sound

physical principles. In doing this, some progress towards the goal of a unifying framework to link
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and verify coupled models will be made.

The work will be split into three strands:

The first will be computational; the development of efficient simulation tools, often from the

ground up, which work efficiently on modern computers and provide the flexibility to exchange

information between the various models. These are designed to use state of the art optimisations

(Plimpton, 1995; Rapaport, 2004) and build on modern developments in efficient parallelisa-

tion techniques for high performance computing (HPC) (Anderson et al., 2008; Gropp et al.,

1999a,b). The result of this development is a generalised computational library for coupling on

HPC platforms (Anton & Smith, 2012; Smith et al., 2013; Smith & Trevelyan, 2013)

The second strand is the development of a mathematical framework in order to provide a consis-

tent formulation for both systems. The link between descriptions in the continuous and discrete

system is explored, with particular emphasis on the controversial field of the molecular stress

tensor (Parker, 1954; Irving & Kirkwood, 1950; Noll, 1955; Tsai, 1978; Todd et al., 1995; Han

& Lee, 2004; Hardy, 1982; Lutsko, 1988; Cormier et al., 2001; Zhou, 2003; Murdoch, 2007, 2010;

Schofield & Henderson, 1982; Admal & Tadmor, 2010; Heyes et al., 2011). The result is a discrete

analogue of Reynolds’ transport theorem and an operator which allows localisation of mathemat-

ical operations to a control volume (Smith et al., 2012). This operator provides developments

and some resolutions in the field of molecular stress.

The final strand will be the development of a method to ‘stitch’ the two descriptions together

along their common interface. In this part of the work, tools are developed to link the continuum

model to the molecular in a physically meaningful and rigorous manner. This builds on the

modern and extensive literature on coupling schemes (O’Connell & Thompson, 1995; Hadjicon-

stantinou, 1998; Li et al., 1997; Hadjiconstantinou, 1999; Flekkøy et al., 2000; Wagner et al.,

2002; Delgado-Buscalioni & Coveney, 2003a; Curtin & Miller, 2003; Nie et al., 2004a; Werder

et al., 2005; Ren, 2007; Borg et al., 2010). The end result is a coupled framework which applies

a constraint to an arbitrary volume in space.

1.5 Outline of this Work

This document is organised as follows. In chapter 2 the basic mathematical forms of the contin-

uum and discrete systems, as well as the statistical mechanics used to link them, are presented.

Careful attention is given to the various forms of classical mechanics which allow constraints

to be applied. These constraints are important for the field of coupling also discussed in chap-

ter 2, where the literature will be reviewed with emphasis on the limitations of the existing

formulations. In chapter 3, the computational developments are outlined for a new molecular

dynamics (MD) solver, the adaption of an existing computational fluid dynamics (CFD) solver

and a new coupler (CPL) library to link them. High performance computing is an important

part of modern simulation work and details of the developments and optimisation are provided.

Verification tests will also be presented in support of later simulation results. Then, in chapter

4, a novel mathematical framework will be presented to express both systems in a consistent

manner in terms of the Control Volume (CV) formulation. The CV mathematical framework

will be verified and its utility demonstrated. The various constraint methodologies will be tested

and compared. The CV formulation will then be exploited together with constrained dynamics

to develop new methodologies for coupling in chapter 5. Finally, in chapter 6 the conclusions of
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this work will be presented along with aims for future work.



Chapter 2

Background

2.1 Introduction

In this chapter, the governing equations of molecular dynamics and continuum fluid dynamics

are introduced. The mathematical link between the two are discussed in the context of matching

reference frames, spatial and temporal averaging and definition of equivalent densities, momenta

and stresses between both systems. The chapter finishes with a review of the more advanced

developments in the field of computational coupling schemes.

The first part of this chapter, section 2.2, introduces the governing equations of molecular

dynamics (MD). In addition, a number of forms of variational principle are discussed in detail.

These alternate forms of classical mechanics are essential to coupling. The statistical mechanics

used to coarse grain a discrete system are also outlined.

The second part of this chapter, section 2.3, introduces the continuum formulation, starting

with the control volume form and discussing the approximations required to obtain the Navier-

Stokes equations. The various assumptions inherent in the Navier-Stokes equations are discussed.

The third part of this chapter, section 2.4, focuses on obtaining a mutually self-consistent

mathematical description in both systems. Equivalent state properties – density, velocity and

energy – are obtained by formulating both systems in the same reference frame following the work

of Irving & Kirkwood (1950). The time evolution of these state properties then yield equivalent

expressions for flux and the pressure in the two domains. The form of the pressure tensor is not

unique, an issue which is considered by reviewing the various descriptions of the stress tensor

proposed in the literature.

The fourth part of this chapter, section 2.5, investigates practical and computational aspects

of linking a continuum and molecular system for a fluid mechanics simulation. This includes a

review of the modern coupling literature which contains a number of methodologies, using either

state or flux coupling being applied either explicitly or implicitly. The most challenging aspect of

coupling is to ensure that the molecular system shares the same key state/flux variables (a non-

unique problem). Particular emphasis is placed on the methods employed to solve this problem,

including the use of constrained dynamics and the correct definition of localised state and flux

properties. The summary of the literature underpins the strategy adopted for the remainder of

this work.

This chapter finishes with a concluding summary in section 2.6.
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2.2 Molecular Dynamics

This section introduces molecular dynamics, variational principles and statistical mechanics.

A molecular dynamics system consists of a number of discrete molecules (N), where each

molecule i is located at a point in continuous space denoted by positional vector ri with velocity

vector ṙi. Each molecule in the domain is followed and its evolution is calculated as a function

of time - a Lagrangian framework for each molecule. The initial position and velocity of every

molecule is the required initial state. Using Newton’s second law it should (in principle) be

possible to obtain any future state of the N -body system.

2.2.1 Governing Equations

In its simplest form, MD involves solving Newton’s law for each molecule i of the N -molecule

system,

mir̈i = Fi (2.1)

where mi is the mass of molecules i and r̈i its acceleration. The force Fi is calculated by adding

the contribution from its interaction with the other N−1 molecules in the system box. The force

on molecule i is given by Fi = −∇Φ(r), where the potential Φ is a function of all the relative

molecular positions only. The potential Φ can be expressed as a series of interactions between

atomic pairs, triplets, etc,

Φ(r1, r2, . . . , rN ) =

N∑

i=1

Φ(ri) +

N∑

i=1

N∑

j>i

Φ(ri, rj) +

N∑

i=1

N∑

j>i

N∑

k>j

Φ(ri, rj , rk) + . . . (2.2)

where ri, rj and rk are the positions of molecules i, j and k respectively. The Φ(ri) is a

body term which represents an external field, while higher order terms represent the interactions

between two and higher numbers of molecules. The inclusion of pairwise and higher molecular

interactions mark the departure from the theory of dilute gas. The greater the density of a fluid,

the more terms required from Eq. (2.2) to model that fluid accurately. A common assumption for

molecular dynamics is that the potential, Φ, is dependent on external fields and pair interactions

only,

Φ(r1, r2, . . . , rN ) ≈
N∑

i=1

Φ(ri) +

N∑

i=1

N∑

j>i

Φ(ri, rj)≡
N∑

i=1

Φi +

N∑

i,j

Φij . (2.3)

In the interest of being concise, the double sum has been written using a single sum, where

i, j denote all pairs and the molecular indices used in the potential’s position dependence are

expressed by subscripts so Φ(ri, rj)≡Φij . The forces are then calculated from fij = −∂/∂rijΦ,

with rij = ri − rj and fiext = −∂/∂riΦ so that, the resulting form of Newton’s law is,

mir̈i = Fi =

N∑

j 6=i

fij + Fiext. (2.4)

In this work, the pairwise potential field is approximated using the Lennard-Jones potential

(Rahman, 1964), which is commonly used to model monatomic liquid argon, but is actually a
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good representation of more complex fluids,

Φ(rij) = 4ǫ

[(
ℓ

rij

)12

−
(
ℓ

rij

)6
]

− 4ǫ

[(
ℓ

rc

)12

−
(
ℓ

rc

)6
]

, |rij | ≤ |rc|. (2.5)

Φ(rij) = 0 , |rij | > |rc|, (2.6)

Although the Lennard-Jones potential describes the interaction of pairs of molecules, it also

shows very good agreement to experimental data for real systems which have two and greater

molecular interactions (Allen & Tildesley, 1987). This is because Φ in Eqs. (2.5) and (2.6) is

now an effective pair potential whose parameters incorporate, in a mean field sense, the three

body and higher order terms which are formally absent. It therefore represents a good balance

between simulation efficiency and accuracy.

In Eq. (2.5), ℓ is the length scale of the molecular system, the atomic diameter, and ǫ is a

constant specifying the strength of inter-atomic interactions. The term with an exponent of 12

represent the repulsion which becomes stronger as the two atoms move together. The term with

the exponent of 6 is the attraction and is greater than repulsion only when rij > 21/6. The effect

of the potential drops off rapidly with distance. For computational reasons, the calculation is

often truncated when rij > rc and shifted to be zero at rij = rc, where rc is an arbitrary cutoff

distance often chosen to be 21/6. Instead of an ‘all pairs’ system with all molecules interacting,

the interactions are local and each molecule is only affected by its immediate neighbours. It is

assumed the effects of the potential for rij > rc are insignificant.

Typically, the molecular representation is non-dimensionalised using length scale ℓ, mass m

and energy ǫ (Rapaport, 2004), resulting in the equation of motion 2.7 in terms of these LJ units,

r̈i = 48

N∑

j 6=i

(

r−12
ij − 1

2
r−6
ij

)

rij . (2.7)

Therefore, the variables in the above equation are non-dimensionalised by the molecular param-

eters. The method for discretising and solving this equation on a computer is deferred to chapter

3.

2.2.2 Variational Principles

The literature on coupling is introduced in detail in section 2.5, however, for the present it

is sufficient to note that the fundamental techniques for coupling require the introduction of

more general classical mechanics formulations than Newton’s laws. The requirement is to apply

constraints on the molecular system in a physically meaningful manner so that they evolve in

the same way as the coupled continuum fluid. In this section, two formulations which allow

constraints will be introduced: Hamilton’s principle and Gauss’ principle. The most commonly

used is Hamilton’s principle (the principle of least action). This forms the basis of much of modern

physics due to its applicability to relativistic and quantum mechanics as well as its exposure of the

underlying symmetries through Noether’s theorem (Neuenschwander, 2011). Gauss’ principle is

less well known in general but is commonly used for non-equilibrium molecular dynamics (NEMD)

(Hoover, 1991; Evans & Morriss, 2007).
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Integral Variational Principle – Hamilton’s principle

Hamilton’s principle (Goldstein et al., 2002) describes the evolution of the integral of a La-

grangian. For a classical N molecule system, the Lagrangian L is the difference between the

kinetic and potential energy in the form,

L =

N∑

i=1

1

2
miq̇i

2 − Φ(q1, q2, . . . , qN ), (2.8)

where qi is the generalised coordinate of molecule i and q̇i its velocity. The coordinates are, by

construction, independent of coordinate system and frame of reference. The so called action, A,

is defined through the following integral between times ta and tb,

A =

tb∫

ta

L(qi, q̇i)dt, (2.9)

where the endpoints of the integration are assumed to have fixed position, i.e. q(ta) = qa and

q(tb) = qb. Hamilton’s principle states that the true trajectory of a dynamical system will be one

in which action is an extremum,

δA = δ

tb∫

ta

L(qi, q̇i)dt = 0. (2.10)

In practice, the action must be a minimum for the solution to be physically significant. Assuming

the variation in action occurs smoothly, in time and space, the departure from the true trajectory

qi of molecule i can be written as,

qi(t, ǫ) = qi(t, 0) + ǫηi(t), (2.11)

where ǫ is the magnitude of the departure and ηi is a C2 continuous function which satisfies the

end points. The true trajectory of the system can then be obtained by ensuring ǫ is a minimum,

δA =
∂A

∂ǫ
=

tb∫

ta

N∑

i=1

[
∂L
∂qi

∂qi
∂ǫ

+
∂L
∂q̇i

∂q̇i
∂ǫ

]

dt = 0. (2.12)

The second terms can be expanded using integration by parts,

∂L
∂q̇i

∂q̇i
∂ǫ

=

[
∂L
∂q̇i

∂qi
∂ǫ

]tb

ta

−
tb∫

ta

d

dt

(
∂L
∂q̇i

)
∂qi
∂ǫ
dt. (2.13)

As the endpoints vanish, the first terms is zero. Taking out a common factor of ∂qi/∂ǫ = ηi, the

minimised action is,

δA =

tb∫

ta

N∑

i=1

[
∂L
∂qi

∂qi
∂ǫ

− d

dt

(
∂L
∂q̇i

)]

ηidt = 0. (2.14)
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From the fundamental lemma of the calculus of variation, in general ηi(t) 6= 0, so the action is a

minimum only if,

d

dt

∂L
∂q̇i

− ∂L
∂qi

= 0, (2.15)

at every point in time. This is the Euler-Lagrange equation. Eq. (2.15) can be expressed in

terms of the canonical momentum conjugate,

pi ≡
∂L
∂q̇i

; ṗi =
∂L
∂qi

, (2.16)

The Euler-Lagrange Eq. (2.15), can be shown to yield Newton’s second law by inserting the

Lagrangian of Eq. (2.8), with cartesian coordinates qi → ri,

mir̈i = − ∂Φ

∂ri
= Fi. (2.17)

The strength of a minimisation formulation like Eq. 2.10, over Newton’s law is the ability to

apply arbitrary constraints to a dynamical system in the form,

δA = δ

tb∫

ta

[

L(qi, q̇i) +

C∑

α=1

λαgα

]

︸ ︷︷ ︸

LC

dt = 0, (2.18)

where C is the total number of constraints gα and λα is a Lagrangian multiplier (Goldstein

et al., 2002). Constraints applied in this manner allow the dynamics of the system to evolve in

a physically correct manner (minimising the action) while simultaneously satisfying a prescribed

constraint condition. This is of vital importance when the molecular system must evolve in a

consistent manner with the continuum system. A constraint derived in this manner should also

satisfy conservation of energy for the system (Goldstein et al., 2002). The constraint gα can be

one of two types – a holonomic constraint (a function of position and time only),

gα(q, t) = 0, (2.19)

or a non-holonomic constraint (a function of position, velocity and time),

gα(q, q̇, t) = 0. (2.20)

For the case of the holonomic constraint in Eq. (2.19), Eq. (2.18) results in a modified Euler-

Lagrange equation (Goldstein et al., 2002),

d

dt

∂L
∂q̇i

− ∂L
∂qi

=

C∑

α=1

λα
∂gα

∂qi
. (2.21)
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For the case of the non-holonomic constraint in Eq. (2.20), Eq. (2.18) yields the following

equation,

d

dt

∂L
∂q̇i

− ∂L
∂qi

=

C∑

α=1

(

µ̇α
∂gα

∂q̇i
+ µα

[
d

dt

∂gα

∂q̇i
− ∂gα

∂qi

])

. (2.22)

where the Lagrangian multiplier is assumed to be a function of time only and is denoted

by µα = µα(t) to distinguish it from the holonomic case. It is known that this form of

constraint does not, in general, give the correct equations of motion for non-holonomic con-

straints (Saletan & Cromer, 1970). This is still an active area of research and some controversy;

the standard text on classical mechanics, Goldstein et al. (2002) 3rd edition in the errata at

http://astro.physics.sc.edu/Goldstein/ acknowledges several errors and suggests the reference by

Flannery (2005). The latest paper by Flannery (2011) demonstrates that non-holonomic con-

straints can be applied using the following equation,

d

dt

∂L
∂q̇i

− ∂L
∂qi

=

C∑

α=1

λα
∂gα

∂q̇i
. (2.23)

The validity of this method is justified using Gauss’ Principle of Least Constraint, favoured for

NEMD (Evans & Morriss, 2007). This is because Gauss’ Principle, as stated in Flannery (2011)

p23, is “a true minimisation principle, [...] with the additional and powerful advantage that it can

be applied to general non-holonomic constraints”. Gauss’ Principle of Least Constraint is outlined

in the next section – it is a local differential constraint and allows application of non-holonomic

constraints. The price for this generality is the loss of guaranteed energy conservation ensured

by Hamilton’s principle.

The difference between equations 2.22 and 2.23 with µ̇α → λα is the requirement that,

d

dt

∂gα

∂q̇i
− ∂gα

∂qi
= 0. (2.24)

This has the result that although Hamilton’s principle cannot be used with non-holonomic con-

straints in general, the exception is a constraint of a form which satisfies equation (2.24). These

are termed semi-holonomic constraints (Saletan & Cromer, 1970).

It is common in the NEMD literature to write the equations of motion in terms of the

canonical momentum conjugate of Eq. (2.16),

pi = miq̇i +

C∑

α=1

µα
∂gα

∂q̇i
(2.25a)

ṗi = Fi +

C∑

α=1

µα
∂gα

∂qi
. (2.25b)

Differentiating Eq. (2.25a) and combining the result with Eq. (2.25b) results in Eq. (2.22),

suggesting that these equations are valid provided the formula in Eq. (2.24) is satisfied.
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Differential Variational Principle – Gauss’ principle of least constraint

Gauss’ principle of least constraint is a local minimisation procedure similar to the least square

technique used in curve fitting. This can be compared to the global minimisation formulation

of Lagrange (global integral minimised) outlined in the previous section. It is derived from a

similar form to D’Alembert equations for static systems but considering the change in a system

due to a virtual acceleration (Morriss & Dettman, 1998),

∂

∂r̈j

[

1

2

N∑

i=1

mi

(

ri −
Fi

mi

)2
]

= 0. (2.26)

For molecules with no external forces this is equivalent to Newton’s 2nd law,

∂

∂r̈j

[

1

2

N∑

i=1

mi

(

r̈i −
Fi

mi

)2
]

=

N∑

i=1

mi

2

∂

∂r̈j

(

r̈2
i − 2

Fi · r̈i

mi
+

F 2
i

m2
i

)

= mj r̈j − Fj = 0, (2.27a)

where the force is not a function of acceleration, i.e. ∂Fi/∂r̈j = 0, and the acceleration of

molecule j is independent of the N − 1 other molecules, i.e. ∂/∂r̈j

∑N
i=1 r̈i = r̈j .

The strength of this formulation lies in the ability to apply non-holonomic constraints on any

of the system’s degrees of freedom using Lagrangian multipliers through,

∂

∂r̈j

[

1

2

N∑

i=1

mi

(

r̈i −
Fi

mi

)2

−
C∑

α=1

λαgα

]

= 0. (2.28)

As the Lagrangian description cannot be used for non-holonomic constraints, Gauss’ constraint

is a more general formulation for classical systems.

Due to its generality, the validity of any derived constraint will be checked against Gauss’

principle in this work.

2.2.3 Statistical Mechanics

The aim of this section is to introduce the mesoscopic framework which links the discrete micro-

scopic and the continuum macroscopic descriptions.

A molecular system can be described in three dimensions in terms of three molecular positions

r(t) and three momenta p(t) for every one of theN molecules at a time t. A convenient framework

to consider this system is a 6N dimensional phase space in which each combination of molecule

position and velocity has a unique value. Consider a probability function f which describes how

likely a given point in phase space is to contain a molecule.

f = f(r1, r2, ..., rN ,p1,p2, ...,pN , t). (2.29)

This can be normalised to unity over the whole of phase space,

∫

· · ·
∫

6N

f(r1, r2, ..., rN ,p1,p2, ...,pN , t)dr1dp1...drNdpN = 1, (2.30)

which, in this form, represents the canonical ensemble formulation of statistical mechanics. It is
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based on the idea of an average over an arbitrary number of independent molecular systems (an

ensemble). This average is used as a probability f of finding a molecule at a point in phase space.

In other words, for a given r and p how likely it is to find a molecule with these properties in any

of the ensemble of different systems. This is called a mesoscopic system as it is not based on the

macroscopic continuum hypothesis and does not follow individual microscopic discrete molecules.

The requirement is that a statistically significant number of molecules exist across the arbitrary

number of systems. The evolution in time of f is governed by the Liouville equations of statistical

mechanics. This is derived in an analogous way to the conservation equations of fluid mechanics

but using a volume in phase space (Evans & Morriss, 2007),

∂f

∂t
=

N∑

i=1

[

Fi ·
∂f

∂pi
− pi

mi
· ∂f
∂ri

]

. (2.31)

The Liouville equation in the form of Eq. (2.31) contains all the complexity of the averaged

MD systems, including the internal structure. The Liouville equation can be simplified to ob-

tain the Boltzmann equation by assuming a statistical model of pair collisions (a truncation

of the BBGKY hierarchy (Succi, 2001)). The key difference between the equation obtained by

Boltzmann and a MD approach comes from replacing the all pairs calculation in MD with the

assumption of uncorrelated collisions. This means that although both approaches model the

streaming and collision of molecules (albeit statistically vs. explicitly), the Boltzmann equation

does not model the microscopic structure of the fluid. For this reason, the Boltzmann equation,

especially in the form of the lattice Boltzmann method, is easily applied to macroscopic flows.

The Boltzmann equation can also be shown to yield the Navier-Stokes and other continuum

conservation equations through low Knudsen number expansion (Chapman & Cowling, 1970).

However, there has been limited success applying Boltzmann based equations to problems mod-

elling smaller scales. The use of mean field theory where an N -molecule system is approximated

as one molecule with a force applied to model the N − 1 other molecules cannot capture the

full underlying complexities of a dense fluid. The concept of a Knudsen number only applies to

dilute gases, governed by kinetic theory, for dense liquids very little theoretical guidance is avail-

able (Gad-el Hak, 2006). It is for this reason that molecular dynamics is essential in capturing

the effects of microscopic phenomena and, through coupling to the continuum, the effect on the

macroscopic flow properties.

For a property α, the expectation value of α can be obtained by evaluating the inner product

of Eq. (2.30) with the probability function defined by Eq. (2.29),

〈

α; f

〉

≡
∫

· · ·
∫

6N

α(r1, .., rN ,p1, ..,pN )f(r1, .., rN ,p1, ..,pN , t)dr1dp1..drNdpN , (2.32)

where angled bracket notation 〈α; f〉 is introduced to define the ensemble average. Here α is any

dynamic variable expressed as a function of position and velocity (although not time explicitly).

Assuming phase space is bounded, the evolution in time of the expected value of a property, α,

is,

∂

∂t

〈

α; f

〉

=

N∑

i=1

〈

Fi ·
∂α

∂pi
+

pi

mi
· ∂α
∂ri

; f

〉

, (2.33)
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which is obtained by Irving & Kirkwood (1950) from the Liouville Eq. (2.31). This equation

is the key to deriving the evolution in time of molecular properties in section 2.4.3 as well as

the new control volume formulation of chapter 4. In a molecular dynamics simulation, which

is the micro-canonical ensemble, a property is found by averaging in time and space. Sufficient

measurements in time and space must be taken to ensure the results are statistically significant

and representative of the system. The ergodic hypothesis is used to link the canonical ensemble,

based on independent systems, to the micro-canonical ensemble based on one system. That

is, sufficient time must has passed for the successive measurements being averaged to become

uncorrelated (Allen & Tildesley, 1987). The same result can be obtained in the micro-canonical

molecular simulation using.

〈

α; f

〉

≈ 1

∆t

t0+∆t∫

t0

α(r,p)dt ≈ 1

∆t

t0+∆t∑

t=t0

α(r,p), (2.34)

where the first equality follows from the ergodic hypothesis.

In this section, the microscopic molecular dynamics equations in terms of Newton’s laws were

outlined, followed by the variational principles of classical mechanics. The mesoscopic statistical

mechanical description was also introduced which is an intermediate between the discrete system

of molecular dynamics and continuum mechanics. The next section considers the macroscopic

continuum formulation of mechanics.

2.3 Continuum Fluid Dynamics

This section introduces the equations used in continuum fluid dynamics. The continuum as-

sumption states that the material being considered is continuous in space and time, allowing

calculus to be freely applied. It is widely assumed that the continuum assumption is reasonable

given the length scales of the problem are much larger than the mean free path of the individual

molecules, i .e. there are enough molecules in the smallest length scale that the material still

acts like a continuum (O(106) molecules for standard deviations in statistical fluctuations to be

less than 0.1% (Gad-el Hak, 2006)). This continuum assumption underpins the vast majority of

engineering simulations.

2.3.1 Governing Equations

The continuum conservation of mass and momentum balance can be derived in an Eulerian frame

by considering the fluxes through a Control Volume (CV). The mass continuity equation can be

expressed as,

∂

∂t

∫

V

ρdV = −
∮

S

ρu · dS, (2.35)

where ρ is the mass density and u is the fluid velocity. The rate of change of momentum is

determined by the balance of forces on the CV,

∂

∂t

∫

V

ρudV = −
∮

S

ρuu · dS + Fsurface + Fbody. (2.36)
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The forces are split into ones which act on the bounding surfaces, Fsurface, and body forces,

Fbody. Surface forces are expressed in terms the pressure tensor, Π, on the CV surfaces,

Fsurface = −
∮

S

Π · dS. (2.37)

The rate of change of energy in a CV is expressed in terms of fluxes, the pressure tensor and a

heat flux vector Q,

∂

∂t

∫

V

ρEdV = −
∮

S

[ρEu + Π · u + Q] · dS, (2.38)

which has been obtained by neglecting the term for the energy change due to body forces. In

order to express the CV equations in differential form, the divergence theorem is used This relates

surface fluxes to the divergence within the volume, e.g . for a variable A,

∮

S

A · dS =

∫

V

∇ · AdV. (2.39)

which in the limit of an infinitesimal control volume (Borisenko & Tarapov, 1979) defines the

differential form,

∇ · A = lim
V →0

1

V

∮

S

A · dS. (2.40)

Therefore, taking the zero volume limit of the conservation of mass through a control volume,

Eq. (2.35), results in the differential continuity equation,

∂ρ

∂t
+ ∇β(ρuβ) = 0. (2.41)

Index notation has been used with the Einstein summation convention. Subscript and bold

notations are used interchangeably to describe tensors throughout this work.

The differential momentum balance equation is obtained from the zero volume limits of the

CV momentum balance equation Eq. (2.36),

∂ρuα

∂t
+ ∇β [ρuαuβ − Παβ ] + Fαext = 0. (2.42)

with surface forces, Fsurface, expressed in terms of pressure using Eq. (2.37). Effects due to

external forces Fαext (body forces, Fbody, at a point) are usually not considered and will be

neglected in the following treatment. Finally for energy (E) conservation at a point is derived

from Eq. (2.38) as,

∂

∂t
ρE= −∇β [ρEuβ + Παβuα +Qβ ] , (2.43)

The pressure tensor, Παβ , can be further subdivided into the equilibrium pressure from kinetic

theory, P , and solid mechanics concept of stress σαβ acting on the control volume,

Παβ = −Pδαβ + σαβ , (2.44)

where δαβ is the Kronecker delta. The decomposition is arbitrary and it is only the total stress
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tensor Παβ that has any physical meaning, as it satisfies the definition of an infinitesimal force

acting on an infinitesimal area (Evans & Morriss, 2007). The term, σαβ , is the Cauchy stress

widely measured in solid mechanics. The pressure term, P , does not typically appear in the solid

mechanics formulation as the solid is assumed to be initially undeformed (gauge of zero). In a

fluid, P can vary throughout the domain. The convective term is unique to liquids as it describes

transport resulting from the actual movement of fluid through the control volume.

The stress tensor can be expanded as a power series in strain rate. Generally it is assumed

to be a linear function of strain rate (not assuming this for gases will lead to the Burnett or

super Burnett equations depending on the order of the relationship). A fourth order tensor is

the simplest linear relation between stress and strain (i.e. a relation linking each of the 9 stress

components linearly to each of the 9 strain components needs 81 components).

σαβ = Cαβγζεγζ . (2.45)

The assumed symmetry of the stress and strain tensors (Cαβγζ = Cβαγζ and Cαβγζ = Cαβζγ)

along with the requirement that work done by deformation be zero (Cαβγζ = Cγζαβ) allows

the 81 components to be reduced. The following relationship results between just second order

tensors with only two unknown coefficients, λ and µ,

Cαβγζ = λδαβδγζ + µ(δβγδαζ + δαγδβζ), (2.46)

The fluid is assumed to be physically and structurally isotropic meaning it can only deform by

shear and bulk deformation. The equation linking stress and strain takes the form,

σαβ = λδαβεγγ + µ(εγζ + εζγ). (2.47)

Using the definition of small strains for εαβ = ∇βuα +∇αuβ , the equation for Παβ can be written

(in vector notation) as,

Π = Pδ − µ(∇u + (∇u)T − ∇ · uδ) − λ∇ · uδ. (2.48)

The Stokes hypothesis relates the two co-efficients µ and λ which is exactly true for a monatomic

gas but a good approximation for most gases. The coefficient µ is often called the shear viscosity

coefficient and is the same form as the one in Newton’s law of viscosity. The bulk viscosity

coefficient is (λ − 2
3µ ) (Hoover, 1991), although some textbooks incorrectly describe λ itself as

the bulk viscosity. It is the bulk or compressional viscosity which is zero under Stokes’ hypothesis,

i.e. λ = 2
3µ. A bulk viscosity of zero is an approximation not correct for fluids with internal

structures (Gad-el Hak, 1995). Molecular dynamics explicitly incorporates the effect of finite

bulk viscosity.

Using the assumption of incompressibility, the continuity Eq. (2.41) reduces to ∇ · u = 0

and Eq. (2.42) can be simplified to

∂u

∂t
+ (u · ∇) u = −1

ρ
∇P + ν∇2u, (2.49)

where u(x, t) is the fluid velocity and P (x, t) pressure, at each spatial position x and time t. The

fluid is assumed to have a uniform density ρ and viscosity ν = ρ/µ. Non-dimensionalising using
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a length scale L, a characteristic velocity U and time of U/L with the definition of the Reynolds

number Re = UL/ν, Eq. (2.49) becomes,

∂u

∂t
+ (u · ∇) u = −∇P +

1

Re
∇2u, (2.50)

where the variables shown are non-dimensional for the continuum scale. The method for solving

this equation on a computer is outlined in chapter 3.

2.4 Towards a Consistent Mathematical Framework

This section outlines the mathematical relationship between the discrete framework of molecular

dynamics and the equations of continuum mechanics. First the difference in reference frame

used in the Eulerian fluid mechanics and the many Lagrangian molecules is discussed. The

link between these is provided by the seminal work of Irving & Kirkwood (1950) through the

Dirac delta functional. Using the Dirac delta, a number of localised ‘state’ properties are defined

including density, momentum, temperature and energy. The time derivatives of these state

properties can be used to obtain the fluxes (again following Irving & Kirkwood (1950)). The

fluxes include advection of momentum (convection) and the notion of the stress tensor in a

molecular system. A consistent stress definition is essential to flux coupling schemes, however,

the exact definition of the molecular stress is a controversial area. The various issues associated

with the molecular stress tensor are discussed in this section. This section directly motivate

chapter 4.

2.4.1 Lagrangian and Eulerian frameworks

Both the continuum and molecular systems are classical systems, entirely governed by Newton’s

law. It should therefore be possible to express the time evolution of both in an equivalent manner.

This is achieved in this subsection, by considering an arbitrary and equivalent Lagrangian element

in both systems. The link to the Eulerian formulation for both systems is then discussed.

Newton formulated his law based on the evolution of discrete objects, subject to impressed

forces 1. The equation resulting from Newton’s second law,

m
d2r

dt2
= F ,

relates a particle’s mass m and second temporal derivative of its position r to the forces it

experiences, F . The application of Newton’s law to a continuous substance requires the division

of that substance into arbitrary interacting regions. These “discrete elements” are often called

particles, although to avoid confusion, this term is here reserved for discrete molecules and the

term element is used instead.

A Lagrangian continuum element is defined to be an arbitrary and fixed quantity of contin-

uous media with a time evolving volume V = V (t) contained inside a bounding surface S. The

temporal evolution of this volume and the momentum inside is governed by the forces acting over

1“An impressed force is an action exerted upon a body, in order to change its state, either of rest, or

of moving uniformly forward in a right line.” Newton (1726) from definition IV, page 3 in the translation
by Motte (1729).
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Continuum

d

dt

∫

V (t)
ρ(t)u(t)dV = Fs(t)

d

dt

N∑

i=1

pi(t) =

N∑

i,j

fij(t)

Molecular

Figure 2.1: An equivalent Lagrangian element for the continuum and discrete system with cor-
responding forms of Newton’s law. An arbitrary fixed point r on the path of evolution represents
an infinitesimal Eulerian frame. The equations of motion in the Eulerian frame are given by
expressing the flow through this infinitesimal control volume in the continuum or application of
the Dirac delta function in the discrete system.

its bounding surface Fs. Figure 2.1 shows this continuum element and the form of Newton’s law

which governs its evolution.

In order to link the two, a similar element can be defined in the molecular system, containing

a fixed number of molecules N (c.f. the fixed quantity of continuous media) and surrounded by

a bounding surface S. The volume V = V (t) of this molecular element is given by the shape

enclosing the positions of all N molecules and its evolution is governed by the sum of all inter-

molecular forces acting over the surface fij . Note by following an ‘element’ of molecules, the

sum over all i and j is the surface forces, as internal interactions between molecules inside the

element cancel (Newton’s 3rd law).

These two element in both system are equivalent; both advancing due to Newton’s law,

following a fixed collection of substance and evolving as a result of external forces due to interac-

tions with substance outside the element. In this form, the equations represent the Lagrangian

formulation of mechanics (see Figure 2.1), in which the evolution of a fixed quantity of substance

is followed through time. However, fluid mechanics is almost always written in the Eulerian ref-

erence frame, which considers the flow past a fixed point in space. For this reason, the coupling

strategies employed in the solid mechanics literature (Curtin & Miller, 2003) are generally not

applicable to fluid system. The continuum can be written in an Eulerian frame using Reynolds

Transport Theorem (Reynolds, 1903)

d

dt

∫

V

ρudV =

∫

V

∂ (ρu)

∂t
dV +

∮

S

(ρuu) · dS.

The use of the Dirac delta function provides a way to write the molecular systems in an Eulerian

framework. This is due to the property of the Dirac delta that,

h(r) =

∫ ∞

−∞

δ(ri − r)h(ri)dri, (2.52)

here, r is a location in space (of the Eulerian reference) and ri the location of molecule i.

Consider the point r in Figure 2.1, which includes molecules only as they pass through point

r. As the Dirac delta is defined only at a infinitesimal position in space, the molecular system

is effectively considered only at the location r. Regardless of the shape or size of the element,



42

the Dirac delta only considers the properties as they move past r. The analysis of Irving &

Kirkwood (1950) provides the link between the ensemble averaged microscopic variables and the

macroscopic density, momentum and energy at a fixed Eulerian point in space as discussed in

the next subsection. The reader is referred to Irving & Kirkwood (1950) for a full justification

of the Dirac delta function as a link between macroscopic and mesoscopic descriptions.

2.4.2 State Variable, Density Velocity and Temperature

In this subsection, an equivalent definition for state properties (density, momentum, energy

and temperature) is obtained for a fixed Eulerian point in space in both the molecular and

continuum system. Recall from section 2.2.3, that the expectation value of any variable α =

α(r1, ..., rN ,p1, ...,pN , t) is given by the inner product with the probability density function,

〈

α; f

〉

=

∫

· · ·
∫

6N

αf(r1, ..., rN ,p1, ...,pN , t)dr1dp1...drNdpN .

By letting α be the Dirac delta function, Irving & Kirkwood (1950) provided the link between

the Lagrangian and Eulerian descriptions. The macroscopic density definition follows from α =
∑N

i=1miδ(ri − r), giving,

ρ(r, t)≡
〈 N∑

i=1

miδ(ri − r); f

〉

. (2.53)

This returns the possible configurations of the system in phase space which satisfy the criterion

that a molecule is located at a point r. This is the definition of average density of mass located at

r for an ensemble of molecular systems. The momentum density at a point in space is similarly

defined by,

ρ(r, t)u(r, t)≡
N∑

i=1

〈

piδ(ri − r); f

〉

, (2.54)

where the momentum of molecule i is pi = miṙi. Note that pi is the momentum in the laboratory

frame, and not the peculiar value pi, which excludes the macroscopic streaming term at the

location of molecule i, u(ri), (Evans & Morriss, 2007). The laboratory frame and peculiar

momentum are related through,

pi ≡mi

(
pi

mi
− u(ri)

)

. (2.55)

The energy density at a point in space is defined by

ρ(r, t)E(r, t)≡
N∑

i=1

〈

eiδ(ri − r); f

〉

, (2.56)
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where the energy of the ith molecule is defined as the sum of the kinetic energy and the inter-

molecular interaction potential φij ,

ei ≡
p2

i

2mi
+

1

2

N∑

j 6=i

φij .

It is implicit in this definition that the potential energy of an interatomic interaction, φij , is

arbitrarily divided equally between the two interacting molecules, i and j. The factor of 1/2 in

the last term of the above equation is therefore included to avoid double counting. Related to the

energy is the definition of temperature, which can be defined at a point in terms of the peculiar

momentum,

T (r, t) =
1

3kB(N − 1)

N∑

i=1

〈
p2

i

mi
δ(ri − r); f

〉

. (2.57)

The time evolution of these state properties provides the fluxes in the next section.

2.4.3 Momentum Fluxes and the Pressure Tensor

The fluxes are obtained by evaluating the time evolution of state properties using the Irving &

Kirkwood (1950) time evolution equation (2.33). This section states only the main results of this

process as a full treatment is deferred to chapter 4, where control volume forms of these equations

are derived in an similar manner. The link to the equations in this section will be obtained in the

limiting case of zero volume (see appendix C.2). The reader is also referred to the original work

of Irving & Kirkwood (1950) for the full derivation of the equations presented in this section.

The time evolution of mass is obtained by taking the time derivative of both sides of Eq.

(2.53) and applying Eq. (2.33),

∂

∂t
ρ(r, t) =

∂

∂t

N∑

i=1

〈

miδ(ri − r); f

〉

= − ∂

∂r
·

N∑

i=1

〈

piδ(ri − r); f

〉

= − ∂

∂r
· ρ(r, t)u(r, t),

(2.58)

which results in the divergence of momentum given in Eq. (2.54). This circumvents the process

of defining the momentum in Eq. (2.54) and also results in a form of momentum which is not

unique (the gauge can be set by adding an arbitrary constant).

The time evolution of momentum is obtained by taking the time derivative of both sides of

Eq. (2.54) and applying Eq. (2.33),

∂

∂t
ρ(r, t)u(r, t) =

∂

∂t

N∑

i=1

〈

piδ(ri − r); f

〉

=
∂

∂r
· ρ(r, t)u(r, t)u(r, t) +

∂

∂r
· Π(r, t),

which results in the molecular flux and stress at a point in space. The resulting stress tensor,

known as the IK stress tensor, is of the form,

Π =

N∑

i=1

〈

mi

(
pi

mi
− u

)(
pi

mi
− u

)

δ(ri − r) +
1

2

N∑

j 6=i

fijrijOijδ(ri − r); f

〉

. (2.59)
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The Oij term is the Irving & Kirkwood (1950) operator resulting from a Taylor expansion of two

Dirac delta functionals, i .e.

δ(ri − r) − δ(rj − r) = −rij ·
∂

∂r
Oijδ(ri − r),

where the so-called IK operator is,

Oij =

(

1 − 1

2
rij ·

∂

∂ri
+ . . .+

1

n!
(−rij ·

∂

∂ri
)n−1 + . . .

)

. (2.60)

It is instructive to compare the continuum momentum equations Eq. (2.42) (with Π = PI − σ)

and the mesoscopic Eq. (2.59) obtained by Irving & Kirkwood (1950),

∂

∂t
ρu + ∇ · ρuu = ∇ · [ PI − σ ]

N∑

i=1

〈
∂

∂t
piδ(ri − r); f

〉

+ ∇ · ρuu = ∇ ·
N∑

i=1

〈
pipi

mi
δ(ri − r) +

1

2

N∑

j 6=i

fijrijOijδ(ri − r); f

〉

.

It is clear from this comparison that time evolution of momentum is equal to the divergence of

kinetic pressure P , Cauchy stress σ and fluid convection ρuu. The IK pressure of Eq. (2.59)

is a formally exact definition valid at a point in space. It can be simplified to yield the kinetic

theory (ideal gas) pressure as well as the virial pressure (Parker, 1954).

The kinetic pressure is obtained by assuming a homogeneous dilute gas (with φij(r) = 0) in

a closed volume V (Chapman & Cowling, 1970); Eq. (2.59) simplifies to,

KT

Π =
1

V

N∑

i=1

〈
pipi

mi
; f

〉

, (2.61)

which is the ideal gas kinetic theory definition of the pressure tensor. Note that a single value

is taken for the whole system and there is no local u (pi = pi). With no internal interactions,

the pressure tensor is entirely due to the ‘stress like’ movement of momentum by microscopic

fluctuations. This also appears to be consistent with the common definition of P in the continuum

literature (Potter & Wiggert, 2002).

The virial pressure is obtained from Eq. (2.59) in a closed volume V and taking only the first

term in the IK operator of Eq. (2.60), known as the IK1 approximation, so that δ(ri − r) = 1

and Oijδ(ri − r) = 1. The result is the well-known tensorial form of the virial pressure (Parker,

1954),

V IRIAL

Π =
1

V

N∑

i=1

〈
pipi

mi
+

1

2

N∑

i6=j

fijrij ; f

〉

.

The virial form of pressure is the most widely used in the molecular dynamics literature due

to its simplicity. However, the virial can only be used to provide a single pressure tensor for

an entire isolated system. Using the virial pressure locally is incorrect, as interactions with the

surrounding fluid are not included (Tsai, 1978). This is a consequence of neglecting terms of

higher order in Eq. (2.60). As a result, the effects of local inhomogeneity in the fluid are lost.

Away from equilibrium a localised description is required and the full Eq. (2.60) expression must
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be retained.

The IK form of pressure in Eq. (2.60) is formally exact and equal to the pointwise continuum

description. The Dirac delta function is defined in the infinitely thin, infinitely large limit which is

exactly the same limit in which the continuum infinitesimal is defined, as demonstrated formally

in chapter 4 and appendix C.2. However, despite this equivalence, the IK pressure has a number

of inherent problems, including:

a) The use of a Dirac delta functional in practice (Hardy, 1982).

b) The Taylor expansion in delta functions of Eq. (2.60), (Evans & Morriss, 2007).

c) The uncertainty in the inclusion of kinetic terms in the molecular stress (Zhou, 2003).

These issues stem from the non-uniqueness of the Irving & Kirkwood (1950) (and other molecular)

symmetrical stress tensors, as discussed by Schofield & Henderson (1982). These problems have

been addressed in a number of ways:

a) The Dirac delta functions have been avoided by integrating over the molecule i in phase space

as in Noll (1955), replacing the delta function by defining a non-infinite function with a finite

width and compact support as in Hardy (1982) and Murdoch (2007, 2010) or treating the

functions in Fourier space as in Lutsko (1988) and Evans & Morriss (2007) to yield more

mathematically amenable forms. These weighting function approaches have been reviewed

and expressed in a unified form in the paper by Admal & Tadmor (2010). The Dirac delta

functions can also be evaluated using an expansion in terms of their roots in time as done

first by Todd et al. (1995) and extended in Daivis et al. (1996).

b) The Taylor expansion of the delta functions has been weakened by reformulating the stress

as the integral between two molecules and integrating over a volume in Lutsko (1988) and

Cormier et al. (2001). This leads to the so-called Volume Average (VA) stress formulation

which includes the fraction of the length of the pair interaction included in a given volume in

space. This has the advantage that it is equivalent to the virial when averaged over the full

system,

VA

Π =
1

∆V

N∑

i=1

〈
pipi

mi
Λi +

1

2

N∑

i,j

fijrij lij

〉

, (2.62)

where ∆V is the local volume; the Λi functions is only non-zero for a molecule inside the vol-

ume and the lij includes the fraction of the interaction inside the averaging volume. Another

approach which avoids the expansion in Dirac delta functionals is to consider the interaction

over a plane; introduced empirically by Tsai (1978) and derived formally from the Irving

& Kirkwood (1950) form using Fourier manipulation by Todd et al. (1995), the Method Of

Planes (MOP) treatment gives three components of the stress tensor acting across a plane.

The MOP form has a number of advantages including the ability to deal with inhomogeneous

stress fields (Tsai, 1978),(Todd et al., 1995). The stress for a plane whose normal is aligned

along the x axis,

MOP

Π ∆Ax =

N∑

i=1

〈
pipix

mi
δ(xi − x) +

1

4

N∑

i,j

fij [sgn(x− xj) − sgn(x− xi)]

〉

.

where sgn(x) is the signum function of x, where sgn(x) = 1, if x > 1 and sgn(x) = −1, if x <

0. The original MOP formulation only provides three stress components, Πxx,Πxy and Πxz.
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As the plane is infinite in y and z, this returns only a single stress vector at each x location.

Han & Lee (2004) used three mutually perpendicular planes converging at a point to obtain

all nine components of stress and limited the planes to a local region of interest. In a recent

paper, Heyes et al. (2011), the MOP and VA were shown to be equivalent in the limit of zero

volume of a thin slice parallel to the plane. The derivation in this paper was carried out as

part of this work. As the pressure tensor is central to the link between the continuum and the

discrete representation, this is an important result for coupling. However, further discussion

of this point will be deferred to chapter 4 where a more general framework for coupling will

be introduced. In the coupling literature it is generally the virial pressure which is used,

although exceptions include the paper by Ren (2007) who uses the IK form of pressure but

localised to a volume (i.e. the VA of Eq. (2.62)).

c) The inclusion of kinetic terms is largely an unresolved problem, with Zhou (2003) arguing

the stress should include only force terms. This controversy is, in part, due to the differing

definitions of pressure/stress tensor in the solid mechanics, thermodynamics and fluid me-

chanics literature (note pressure is simply negative stress). In the solid mechanics literature,

the Cauchy stress tensor is defined in terms of forces at zero temperature (i .e. no kinetic

part). Often the temperature dependence is included using an extra term in the continuum.

Consistent behaviour is demonstrated in the molecular system by Subramaniyan & Sun (2007)

in a thermo-elastic study demonstrating the importance of temperature on stress. From a

thermodynamics perspective, kinetic pressure is due to a dilute gas atom colliding with the

walls of a container (or measured as they cross a hypothetical wall, see section 4.2). Fluid

mechanics includes both the kinetic pressure and the Cauchy type stress together with a con-

vection term. The problem of separating the pressure as in the continuum, Eq. (2.44), is one

of definition. There are two mechanisms for transmitting momentum – forces and movement

of molecules. The use of time averaged molecular simulations means convection can be zero

but fluctuations serve to transmit a change of momentum – this acts like a force. This issue

is discussed more fully in section 4.2.

In summary, the IK form of pressure in Eq. (2.60) is formally exact and equal to the pointwise

continuum description. However, in practice the Dirac delta function cannot be implemented in

a molecular system as no molecule will ever be exactly at point r. Therefore, some relaxation of

the Dirac delta is required and a number of possibilities from the literature have been discussed.

This problem is more acute for the purpose of coupling, as both systems effectively exist at the

same scales. Therefore, a spatial coarse grain of the MD to obtain continuum properties may not

be possible. It is the solution of this problem that motivates the formulation of both systems in

an equivalent manner, the control volume formulation, in chapter 4.

2.4.4 Energy Equations

The final type of flux expression is for energy, which includes the definition of the stress tensor.

The molecular equivalents of various terms from the energy evolution, Eq. (2.64), can be defined
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as follows,

ρEu =

N∑

i=1

〈

eiu δ (r − ri) ; f

〉

, (2.63a)

Π · u =
N∑

i=1

〈



pi pi

mi
− 1

2

N∑

j 6=i

fijrijOij



 · u δ (r − ri) ; f

〉

, (2.63b)

Q =

N∑

i=1

〈

ei
pi

mi
δ (r − ri) −

1

2

N∑

j 6=i

pi

mi
· fijrijOijδ (r − ri) ; f

〉

,

where the peculiar momentum and energy are defined by,

pi

mi
≡
(

pi

mi
− u

)

; ei ≡
p2

i

2mi
+

1

2

N∑

j 6=i

φij and ei ≡
p2

i

2mi
+

1

2

N∑

j 6=i

φij .

The energy equation at a point in space is therefore,

∂

∂t
ρE= −∇ ·

N∑

i=1

〈

eiu δ (r − ri) +




pi pi

mi
− 1

2

N∑

j 6=i

fijrijOij



 · u δ (r − ri)

+ei
pi

mi
δ (r − ri) −

1

2

N∑

j 6=i

pi

mi
· fijrijOijδ (r − ri) ; f

〉)

, (2.64)

It is possible to take the IK1 form of the energy, with Oijδ(r − ri) = 1 from Eq. (2.60) and

averaging over the Dirac delta function,

ρEu =

N∑

i=1

〈

eiu

〉

, (2.65a)

Π · u =

N∑

i=1

〈



pi pi

mi
− 1

2

N∑

j 6=i

fijrij



 · u
〉

, (2.65b)

Q =
N∑

i=1

〈

ei
pi

mi
− 1

2

N∑

j 6=i

pi

mi
· fijrij

〉

, (2.65c)

this is the most commonly used form of energy equation in the coupling literature due to it

simplicity. Many of the issues associated with the definition of the stress tensor also apply to the

energy equations and the heat flux Q.

The equations presented in this section provide a direct mathematical link between state

properties: mass, momentum, temperature and energy in the continuum and molecular system.

The linking of the flux properties, i .e. convection, energy advection, pressures and heat flux have

also been discussed. In the next section, the mathematical links between both descriptions form

the basis of the computational implementation in the modern field of coupling. However, there

are a number of problems associated with the definition of stress in the molecular system which

must be resolved before flux coupling is possible using the definitions presented in this chapter.

The solution of some of these problems will be presented in Chapter 4, where the control volume

formulation is applied to a molecular system.
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2.5 Coupling

This section describes the modern literature on continuum-to-molecular coupling, giving an out-

line of the state-of-the-art coupling methodologies and the shortcomings of these approaches.

This section starts with an outline of the main considerations for coupling in subsection

2.5.1. There are two branches in the coupling literature, state coupling and flux coupling. State

coupling is discussed first in subsection 2.5.2, split into explicit and implicit coupling techniques.

In this context, ‘explicit’ coupling means that equations in both the continuum and molecular

domains are solved locally and directly with an exchange between them to evolve the coupled

system. For ‘implicit’ coupling, the entire system is evolved globally solving the equations in

both domains together, by iteration or matrix inversion. Variational principle algorithms subject

to constraints are key to derive physically meaningful coupling schemes. Several state coupling

schemes from the literature apply these methods and the derivations are outlined in detail in this

section.

After state coupling, a description of the coupling of fluxes is provided in subsection 2.5.3

and the motivation, developments and associated problems are reviewed. By covering both types

of coupled properties, this section will highlight the relative advantages and disadvantages of

state coupling and coupling of fluxes. It will also highlight the shortcomings in the currently

developed flux coupling, in particular the lack of formal derivation of a flux-coupled scheme from

variational principles. This section directly motivate chapter 5.

2.5.1 Introduction to Coupling

The four key challenges which must be addressed by any coupling scheme are highlighted here.

1. Determine the spatial relationship between the two regions. The molecular system

can be embedded in the continuum system or overlap in part and exist in a separate

region. Embedding uses the molecular simulation as a local refinement of the continuum

system while when using two separate systems, each covers a distinct spatial region and

an overlap between the two regions allow gradual relaxation and agreement between the

two different descriptions. The appropriate choice depends on the problem of interest and

the assumptions inherent in each of the models.

2. Termination of the MD domain. A restraint mechanism is required at the boundary of

the molecular region to prevent molecules escaping. This can be a generic force (O’Connell

& Thompson (1995)/Nie et al. (2004a)) or one based on a previous simulation or calculated

from the radial distribution function (Werder et al., 2005). Alternatively, a buffer zone of

molecules can be used (Hadjiconstantinou, 1998).

3. Procedure for averaging the MD region to obtain the continuum boundary

conditions. This was discussed in the previous section 2.4, which in practice requires

summing over time and space to establish averaged values in discrete locations (Allen &

Tildesley, 1987) or averaging using least squares fitting to instantaneous data (Li et al.,

1997). The removal of statistical noise is a key issue, as is the choice of which properties are

transferred (density and velocity or stresses and fluxes) as well as the averaging methods

(Hadjiconstantinou et al., 2003).
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4. Constraint applied to the molecular region to match properties to the contin-

uum. This can be performed by an applied force derived as a constraint using a variational

principle formulation of mechanics (Goldstein et al., 2002), a numerically favourable con-

trol style algorithm (Borg et al., 2010), a selectively permeable membrane (Li et al., 1997)

or Maxwell’s demon type approach (Hadjiconstantinou, 1998). A method of inserting and

removing molecules is also required to match the mass flux from the continuum.

A typical coupled setup is show in Figure 2.2. The challenges above are addressed in this case

by domain decomposition (1), an arbitrary boundary force (2), average momentum to provide

the CFD boundary (3) and a constraint force applied at top of domain (4). In this section the

full range of possibilities for coupling will be discussed along with the justification for focusing

on the case shown in Figure 2.2 in subsequent chapters (3 and 5).

2.5.2 State Variable Coupling

The state variables, so called because they define the current state of a system are density,

velocity, pressure and temperature defined in section 2.4.2. For an isothermal continuum, the

stress which governs the systems temporal evolution,

∂ρu

∂t
+ ∇ · ρuu = ∇ · Π (2.66)

can be approximated in terms of state variables,

Π = Pδ − µ(∇u + (∇u)T − ∇ · uδ) − λ∇ · uδ. (2.67)

Consequently, knowledge of the density, velocity and scalar pressure P allows the stress to be

determined from Eq. (2.66) and the evolution of the continuum system to be calculated from

Eq. (2.67). Provided the viscosity is consistent, a coupling scheme should only need to ensure

these state variables agree between the two systems to ensure the stresses agree. State coupling is

a process which enforces one system’s state, i .e. the density, velocity and pressure, on the other

system to achieve this matching.

Explicit Coupling

O’Connell & Thompson (1995) is perhaps the first notable attempt to couple continuum fluid

dynamics and molecular dynamics. The previous work on discrete/continuum coupling, discussed

in O’Connell & Thompson (1995), had typically been used to model chemical reactions or obtain

thermodynamic properties, by embedding a particle model in a continuum simulation. There

have also been atomic-to-molecular coupling attempts in the solid mechanics literature dating

back as far as the 1970s (Curtin & Miller, 2003). However, the work of O’Connell & Thompson

(1995) attempts to address the problems unique to fluid mechanics in their implementation of

coupling.

The method of O’Connell & Thompson (1995) was novel in that it was the first to use separate

and distinct subdomain for both the continuum and molecular model, with an interface between

them. This arrangement can be used to represent a large number of problems of both practical

and engineering interest. An overlap region is introduced to allow the two descriptions to relax

into each other, avoiding sharp changes at the boundary of the molecular region. The use of an
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Figure 2.2: A schematic diagram illustrating the molecular and continuum regions with an over-
lap region. The MD has a constraint force (F C) and boundary force (F B). The CFD boundary
conditions are obtained from the average of the MD velocity. This setup represents a large num-
ber of domain decomposition-based coupling schemes discussed in this section, e.g . O’Connell &
Thompson (1995); Hadjiconstantinou (1999); Flekkøy et al. (2000); Nie et al. (2004a); Delgado-
Buscalioni & Coveney (2003a).

overlap region is in fact well established in the solid coupling literature (the “transition region”

(Curtin & Miller, 2003)). The interfacial region between the two solutions where the coupling

is applied is often relatively small. The overlap is many times as large and extends beyond this

into the continuum region to allow padding and averaging. This setup is shown in Figure 2.2.

Molecular to Continuum Exchange

For state coupling, the continuum boundary condition is determined from the average in a

cell I. This reduces all the NI degrees of freedom of the cells’ molecules to a single (average)

value. For example, the momentum MIuI is obtained from the momentum density defined in

Eq. (2.54) of the previous section,

MIuI =
1

NI

NI∑

n=1

〈

mnṙn; f

〉

≈ 1

∆tCFDNI

∆tCF D∑

t=0

NI∑

n=1

mnṙn, (2.68)

where the Irving & Kirkwood (1950) statistical average notation is replaced by a time-averaged

value. O’Connell & Thompson (1995) used Eq. (2.68) in order to obtain the boundary condition

for the continuum. This kind of spatiotemporal averaging is common to most state coupling

schemes in order to obtain state properties from the molecular system, e.g . Nie et al. (2004a);

Hadjiconstantinou (1998); Werder et al. (2005); Yen et al. (2007); Sun et al. (2010); Wang & He

(2007). In some cases, further averages over an ensemble of molecular systems are also taken (Nie

et al., 2004a). An alternative to Eq. (2.68) from the coupling literature is to use a technique

such as least squares inference to generate a continuous function from the molecular region (Li

et al., 1997) (called the thermodynamic field estimator). The size and length of averaging affect
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the noise introduced into the molecular system. The average is typically taken on the cell below

the overlap region, corresponding to the cell used to set the CFD bottom boundary - see Figure

2.2.

Continuum to Molecular Exchange

For the continuum to molecular coupling, the momentum in the molecular region is adjusted

to be the same as the continuum. This is done by applying a constraint force to the molecular

equations of motion.

mir̈i =

N∑

j 6=i

fij + F c,

where F c is a constraint force which adjusts the molecule’s average velocity to correspond with

the velocity field in the continuum at the same region of space. The location at which the

constraint is applied is typically at the top of the molecular domain, see Figure 2.2. A molecular

system has a large number of degrees of freedom to be specified and the solution is non-unique.

Ideally the constraint should be applied in a way which disturbs the dynamics as little as possible.

This is implemented in the paper of O’Connell & Thompson (1995) by minimising the action

(Hamilton’s principle, Eq. (2.10)) subject to a constraint. The constraint is consistent with the

continuum boundary condition and is of the form which minimises the difference in momentum

between the two regions 2,

gα(ṙαn) = MIuαI −
NI∑

n=1

mnṙαn = 0. (2.69)

The quantity MI is the mass of a fluid region I, containing NI molecules and uαI α ∈ {x, y, z} is

the component of velocity of the continuum element I. Note that the sum over NI molecules is

understood to limit the area of application of the force to only molecules located within a certain

spatial region (i.e. a positional dependence to the constraint). This seemingly minor technicality

motivates chapter 4 and is essential in chapter 5 where a rigorous treatment of local constraints

leads to a number of important conclusions. For now, the constraint in this form is assumed to

be integrable (semi-holonomic (Goldstein et al., 2002)). By integrating the equation in time it

can be written as a holonomic constraint,

fα =

∫

gαdt = MIuαIt−
NI∑

n=1

mnrαn −D1 = 0,

where D1 is an arbitrary constant of integration Notice the continuum velocity is assumed to

be constant in time. The derivation given in the thesis of O’Connell (1995) is reproduced here,

starting from Eq. 2.21, the constrained Euler-Lagrangian equation for holonomic constraints ,

d

dt

∂L
∂ṙi

− ∂L
∂ri

=
∑

α∈{x,y,z}

λα
∂fα

∂rαi
,

2The constraint applied in the thesis of O’Connell (1995) is MIuxIt −
P

NI
n=1

pxn = 0. In this work,
the constraint is modified using the substitution pi → miṙi. In order to be consistent with the use of
pi = miṙi in this chapter, the variable p

i
denotes the conjugate (or peculiar) momentum. The final form

of the constraint Eq. 2.72a, is unchanged from the work of O’Connell (1995).
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which yields the three components of Newton’s law with added constraint,

mir̈αi = Fαi + λαmi. (2.70)

This must be solved with Eq. (2.69) in order to apply the correct constraint. To do this, Eq.

2.70 is integrated with respect to time,

miṙαi = pαi + λαmit+ D2. (2.71)

The α component of the momentum is denoted pαn, where ṗαi = Fαi is used and D2 is an

arbitrary constant of integration. This expression for miṙi is substituted into the non-holonomic

form of constraint Eq. (2.69) to give,

λαmit+ D2 =
1

NI

[

MIuαI −
NI∑

n=1

pαn

]

,

which substituted into Eq. (2.71) yields the constraint equations of O’Connell (1995),

ṙαi =
pαi

m
+ ξ

[

MI

mNI
uαI −

1

NI

NI∑

n=1

pαn

m

]

(2.72a)

ṗαi = − ∂φ

∂rαi
= Fαi, (2.72b)

where ξ is an arbitrary relaxation parameter used to control the convergence rate to the required

solution. The relaxation is added in by O’Connell & Thompson (1995) and not a result of the

constraint derivation. The formula in Eq. (2.72a) can be interpreted as removing the mean

velocity in a molecular region and replacing it with the target continuum value. A Langevin

thermostat is applied to remove the heat added to the system by this constraint mechanism.

As the overlap consists of a number of regions, the force applied varies with location. This

positional dependence is not considered explicitly in the constraint Eq. (2.69); if it is, the

constraint is no longer holonomic and Hamilton’s principle is no longer applicable in the same

form. This important issue will be recalled in chapter 5 where the constraint is localised using a

new operator developed in this work.

O’Connell & Thompson (1995) use their model to simulate the unsteady evolution of coupled

wall driven flow. These results are recreated in section 3.4.1 to investigate the coupling and

explore the limitations of explicit state coupling. The timestep used in the paper by O’Connell &

Thompson (1995) is the same for both the molecular and continuum regimes (∆t
MD

= ∆t
CF D

).

A relaxation parameter ξ = 0.01 is introduced to the forcing term of Eq. (2.72a) to match

the velocities over a number of timesteps, so as to prevents the force from cancelling intrinsic

thermal fluctuations. As a result, in rapidly accelerating flows the molecular region lags behind

the continuum (Nie et al., 2004a).

This methodology is further developed in the paper by Nie et al. (2004a). The constraint

equations of Nie et al. (2004a) use a non-holonomic constraint of the form,

gα(ṙαn) = uαI(t) −
1

NI

NI∑

n=1

ṙαn = 0, (2.73)
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where the α index here represents one of the three Cartesian coordinates in which the constraint

is applied (i .e. C = 3). By combining Eqs. (2.72a) and (2.72b) into a single equation, and

assuming the total mass of the cell is constant, the constraint equations of Nie et al. (2004a)

can be obtained (see appendix B.1). Alternatively, they can be obtained directly using Gauss’

principle of least constraint. However, in line with the methodology of Nie et al. (2004a), the

derivation is shown using the non-holonomic form of the constraint equation 2.23 (Flannery,

2011),

d

dt

∂L
∂ṙi

− ∂L
∂ri

=
∑

α∈{x,y,z}

λα
∂gα

∂ṙi
.

which yields the following equation of motion for the molecules in the constrained system,

r̈αi −
Fαi

mi
+

1

NI
λα = 0. (2.74)

Equation (2.74) is substituted into the time derivative of the constraint given in Eq. (2.73).

Assuming a constant mass for all molecules in the cell (∀ i : mi = m), the Lagrangian multiplier

can be written as,

1

NI
λα =

1

mNI

NI∑

n=1

Fαi −
DuαI

Dt
= 0,

which substituted into Eq. (2.74) gives the equation of motion used by Nie et al. (2004a),

r̈ =
Fi

m
− 1

mNI

NI∑

i=1

Fi +
DuI

Dt
(2.75)

where the α notation has been replaced by boldface vector notation consistent with the work of

Nie et al. (2004a). The relaxation factor ξ of O’Connell & Thompson (1995) is not included by

Nie et al. (2004a) as they used different time step values for the molecular (∆t
MD

) and continuum

region (∆t
CF D

) with ratio ∆t
CF D

= 50∆t
MD

. The relaxation applied to the MD system therefore

occurs at twice the rate of O’Connell & Thompson (1995) (equivalent to ξ = 0.02). The CFD is

only updated every 50 MD timesteps and the constraint acts to ensure the MD agrees with the

CFD gradually over the 50 steps from t to t + 50∆
MD

. This is therefore 100 times more rigid

that the concurrent evolution of O’Connell & Thompson (1995) but applied gradually over 50

times as long. In combining the equations of O’Connell & Thompson (1995), the constraint is

now on the difference in time evolution of both systems (not just velocity). Nie et al. (2004a)

discretised the time derivative in a way which applies a further constraint. The velocity of the

cell at time t tends to the velocity of the continuum at time t+ ∆t
MD

according to,

DuI

Dt
≈ uI(t+ ∆tMD) − uI(t)

∆tMD
≈ 1

∆tMD

[

uI(t+ ∆tMD) − 1

NI

NI∑

i=1

ṙi(t)

]

. (2.76)

This ensures that the continuum and molecular velocity agree within the constraint region at
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each MD timestep,

r̈ =
Fi

m
− 1

mNI

NI∑

i=1

Fi +
1

∆tMD

[

uI(t+ ∆tMD) − 1

NI

NI∑

i=1

ṙi(t)

]

. (2.77)

Nie et al. (2004a) also introduce mass transfer using a mass flux scheme across the interface with

the particle number n′ defined as:

n′ =
−ρuyA∆tcont

m
, (2.78)

where n′ is related to the mass flux M ′ by M ′ = mn′. The mass flux is from the continuum

equation, Ṁ = ρuyA where A is the area over which the flow occurs (the xz plane), uy the

velocity in the y direction normal to this plane and Ṁ the number of molecules leaving in a

timestep Ṁ = M ′/∆tcont. Driven by the mass flux in the continuum, molecules are removed or

added to the molecular region at random positions.

Nie et al. (2004a) simulate impulse started Couette flow with the same setup as Figure 2.2,

matching the time evolution to a continuum solution. They extend this to the more complicated

cases of impulse Couette with a post on the molecular wall. The results show good agreement

when compared to a full molecular simulation. The same authors also apply their scheme to

singular corner flow in a second paper (Nie et al., 2004b). This allows the molecular region

to capture the discontinuity between boundary conditions present in corner flow at Re = 50.

Only 1% of the L = 250ℓ domain is modelled with MD and the interface is both horizontal and

vertical (so only the domain corner is modelled by the MD region). The coupled model works

successfully and provides insight into the molecular behaviour at the continuum discontinuity

between a stationary and moving no-slip wall.

The model of Nie et al. (2004a) has been extended to include heat transfer by the same

group, (Liu et al., 2007). The continuum temperature in the boundary region is obtained from

the molecular system by taking Eq. (2.57) and averaging,

T =
1

3kB(NI − 1)

NI∑

i=1

mi(ṙi − uI)
2,

The continuum must also apply a temperature constraint on the MD. In order to do this, a

velocity rescaling is implemented in the form,

ṙi = uI + [ṙi − uI ]

√

T
CF D

I

T
MD

I

,

where T
CF D

I is the set point CFD temperature and T
MD

I the current MD temperature. To prevent

the rescaling from cancelling important thermal fluctuations, large cells are used and the rescaling

is applied more than the correlation length away from the molecular domain (at the top of the

overlap region). This results in a local heating to the MD domain top and a resulting heat flux

downwards which acts to convey the heat flux from the continuum. The simulation construction

used to test this methodology was similar to the group’s previous work (Nie et al., 2004a) with

both steady state and unsteady tests performed including temperature profiles.

The Nie et al. (2004a) model has been applied to a large coupled simulation by Yen et al.
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(2007). They simulated a 102nm scale Couette flows with system heights of 400ℓ with simulation

times of 25, 000τ . The system domain was an order of magnitude larger than that of (Nie et al.,

2004a) with a proportionally smaller shear rate. The signal to noise ratio was less favourable

consequently Yen et al. (2007) proposed that the sum of the force terms be averaged in Eq.

(2.75) over M iterations,

1

mNI

NI∑

i=1

Fi ≈
〈

1

mNI

NI∑

i=1

Fi

〉

M∆t

.

This is applied together with the time averaged MD velocity instead of the instantaneous values

in Eq. (2.76),

1

NI

NI∑

i=1

ṙi(t) ≈
〈

1

NI

NI∑

i=1

ṙi(t)

〉

M∆t

.

A further extension of this averaged force model was deployed by Sun et al. (2010) who applied

the same force on all molecules in the overlap region. This could potentially have caused prob-

lems if the continuum profile varied sufficiently rapidly in the overlap region as this behaviour

would not be captured. Borrowing the Quadratic Upstream Interpolation for Convective Kinet-

ics (QUICK (Hirsch, 2007)) scheme from the continuum literature, the force applied was varied

linearly across the overlap region to provide the required velocity profile. Similarly the temper-

ature was controlled using a series of Langevin thermostat with set points based on the QUICK

scheme (Sun et al., 2010). They apply this model to Poiseuille flow with energy exchange (Sun

et al., 2010) and later to a wall of equally spaced posts (Sun et al., 2012).

In a similar vein, Wang & He (2007) re-introduced the scaling parameter, ξ(t), of O’Connell

& Thompson (1995) to the formula of (Nie et al., 2004a). The ξ parameter was derived as

a function of time by rearranging the constrained equation of motion and the constraint was

applied gradually over many MD timesteps.

Despite the superior performance for noisy simulation reported by Yen et al. (2007); Sun

et al. (2010) and Wang & He (2007) when using averaged or scaled form of the Nie et al. (2004a)

constraint, these changes represent a further departure from the equation obtained from Gauss’

principle. As will be shown in chapter 5, the instantaneous force is important as, together with

advection, these terms can be interpreted as isolating the molecular cell from the rest of the

system at each timestep. This isolation is shown to be essential to ensure the correct momentum

addition to the molecular system in a manner that ensures energy conservation.

This section has so far highlighted the explicit constraint of state properties to match contin-

uum values. These constraints are obtained from the principle of least action which are based on

well-established theory. A number of other coupling schemes have been proposed in the literature:

• Liu et al. (2008) introduce a control style algorithm which minimise the disturbance to

a system and avoids applying any forces. This is motivated by the observation that any

applied forces can have undesirable consequences; they add energy, have magnitudes 1012

times that of gravity and assume a constant pressure difference (Liu et al., 2008). To avoid

applying forces, Liu et al. (2008) use a selectively permeable membrane to bias flow in a

certain direction. This membrane was of the form of Maxwell’s demon, effectively reflecting

certain molecules and allowing others through in a manner which ensure the required flow
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profile.

• Hadjiconstantinou (1998) apply the transfer from the continuum-to-molecular by selecting

velocities from a Maxwell Boltzmann distribution,

f(ṙ) =

(
m

2πkBT

) 3
2

exp

(

−m(ṙ − u)2

2kBT

)

, (2.79)

for molecules located near the boundary of the domain. Here kB is Boltzmann’s constant,

u the continuum velocity and T the continuum temperature. The molecular domain of

interest is surrounded by a molecular reservoir. The molecule velocities are completely

re-defined in line with the velocities of the overlapping continuum region. A Taylor series

expansion to first order is used to establish the velocities and temperatures to be speci-

fied in the Maxwell Boltzmann distribution, Eq. (2.79). The velocity u, temperature T ,

velocity gradient ∂u/∂r and temperature gradient ∂T/∂r in the continuum are all used.

The surrounding reservoir ensures that a supply of molecules is available at the edge which

removes the need for a force to keep molecules in the domain. The reservoir region is

delimited by a periodic boundary. Although apparently crude, the effects on the dynamics

of this ‘Maxwell’s Demon’ approach are localised near the simulation boundary and the

performance is said to compare favourably to constrained dynamics approaches (Hadji-

constantinou, 1998). The application of the Maxwell Boltzmann distribution were later

found to result in slip Hadjiconstantinou (2005). In order to reduce this slip, the Maxwell

Boltzmann distribution function is replaced by a non-equilibrium distribution generated

by a Chapman Enskog expansion or previous MD simulations (Hadjiconstantinou, 2005).

• In other work, Borg et al. (2010) used proportional feedback control to apply the difference

in velocity as a control force,

r̈i =
Fi

m
− ξ

∆tMD

[

uI(t+ ∆tMD) − 1

NI

NI∑

i=1

ṙi(t)

]

where ξ is a tuneable parameter and this equation is written for a single MD step. This

equation can be seen to be similar to the constraint of Eq. (2.77) without the sum of

forces. This connection will be revisited in section 5.2.2.

These three coupling methodologies are well suited to certain problems and may perform in

a superior manner to algorithms based on constrained dynamics in some cases. The problem

with the Liu et al. (2008) and Hadjiconstantinou (1998) based schemes is that they cannot be

analysed using linear response theory. A similar problem is well known in the NEMD literature,

where SLLOD was introduced instead of Lees Edwards boundary driven flows (Evans & Morriss,

2007) for this reason. The control algorithm of Borg et al. (2010) is simple and robust making

it ideal for coupling schemes on non-uniform grids and parallel computers. However, the aim of

this work is to develop a coupling scheme based on minimisation principles in order to reduce

unphysical artefacts in the molecular system as far as possible. For this reason, the variational

principle approaches of (O’Connell & Thompson, 1995; Nie et al., 2004a) discussed in this section

are preferred.

Boundary Forces
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In addition to the constrained dynamics force, a second force is applied to the molecules in

the overlap region to prevent the molecules from leaving the top of the molecular domain. This

is termed the ‘boundary force’ (F B) in this work and is shown on Figure 2.2 acting at the top

of the molecular domain. The boundary force of O’Connell & Thompson (1995) is chosen to

maintain a prescribed density in the interface regions,

FB = −αP0ρ
− 2

3 y
T

(2.80)

where FB denotes this boundary force, P0 is the pressure in the domain, ρ the prescribed density

in the interface region, α a scaling constant and y
T

specifies the distance from the top of the MD

domain. This boundary force is common to the majority of coupling schemes as the molecules

need to be prevented from leaving the molecular domain.

The boundary force term of Nie et al. (2004a) used to prevent molecules escaping is similar

to O’Connell & Thompson (1995),

FB = −αP0
(y − y2)

1 − (y − y2)/(y3 − y2)
= −αP0∆y

[

1 − ∆y

y
T

]

for 0 ≤ y
T
≤ ∆y, (2.81)

where y2 and y3 denote the range of the top cell of the overlap region, P0 is the pressure in the

molecular region and y is the distance from the origin. Using y3 = y2 + ∆y and y
T

= y3 − y

this is re-written in terms of distance from the domain top y
T

and depth of application ∆y. The

applied force at the top means that there is always space for new molecules to be added by Eq.

(2.78). The paper by Werder et al. (2005) suggests that the boundary force of Eq. (2.81) can be

infinitely large and proposes a modified form which is defined to be zero outside a certain range

(although this was due to a misunderstanding of the applied force, see Liu et al. (2007)).

Figure 2.3: Graphical explanation

of force used to terminate domain in

paper by Werder et al. (2005)

This paper by Werder et al. (2005) also proposes

an improved form of the molecule trapping force which

approximates the structure of the missing fluid. This is

achieved using the radial distribution function (RDF)

which is calculated from the structure of the fluid. The

RDF is discussed in section 3.2.5. The boundary force

is,

FB = −2πρ

rc∫

z=rw

(r2
c−z2)

1
2

∫

x=0

g(r)
∂Φ(r)

∂r

z

r
xdxdz. (2.82)

This equation is in radial co-ordinates with z being the

axial component, x the radial and using the definition

that r = (x2 + z2)
1
2 . The density ρ is the average for

the molecular region. The sketch in Figure 2.3 outlines

the principle. The force applied is based on the average

molecular interaction expected if there were molecules

outside the domain.

This form is based on a pre-calculated Radial Distribution Function g(r) for the system at

equilibrium (for equivalent molecular system). For this reason it does not necessarily consider the

effects of the flow which may distort the RDF from its spherically symmetric form. In addition,



58

this boundary force does not prevent molecules leaving completely and a re-insertion mechanism

based on the USHER algorithm (Delgado-Buscalioni & Coveney, 2003b) is implemented in the

paper by Werder et al. (2005). This is combined with moving simulation boundaries based on

the mean flow in an effort to minimise fluctuations in systems when a mean flow passes through

the boundary.

Werder et al. (2005) show good results for a case at high temperatures and low density

(T = 1.8 and ρ = 0.6 in LJ units) but in a later work, the same group reported problems

extending the work to liquid densities and temperatures (e.g . ρ = 0.8 and T = 1.0) (Kotsalis

et al., 2007). To correct the density fluctuations, Kotsalis et al. (2007) introduce a further control

on the density using a feedback loop and filtering of spurious noise.

The three types of boundary force applied here all have an impact on the molecular system,

with the RDF approach of Werder et al. (2005) minimising this as far as possible. The approach

proposed in section 2.5.3 for flux coupling incorporates the boundary force as part of the con-

straint. The advantage of this is that an extra artificial force is removed from the coupling and

only the effect of the constraint need be considered. The disadvantage is that a force of this type

is not designed exclusively to prevent molecular escape, and results in the need for a mechanism

to handle molecular escape and re-insertion.

So far, the simultaneous evolution of both domains has been considered explicitly – both

systems evolve together and exchange data at regular intervals. The boundary conditions at the

interface between the domains are specified by the other domain. This is not the only way to

couple continuum to molecular dynamics. The next section looks at an implicit coupling, where

the two systems evolve iteratively until the description at the boundaries agree.

Implicit Coupling

The previous methods couple the two regions explicitly by applying forces and boundary condi-

tions to enforce agreement between the continuum and molecular system, which evolve together

in time. This has a major disadvantage that the time scales of the molecular and continuum must

be comparable. An alternative is to repeatedly re-run multiple realisations of both regions until

certain properties agree in the overlap between the domains. The assumption is that coupled

simulations are steady or can be modelled as a number of ’pseudo-steady’ states. That is, the

molecular simulation converges to a constant value over a short run and this is used to represent

the much longer timestep of the continuum. This has the advantage that the time scale can be

taken to be that of the continuum.

For steady state problems the use of implicit coupling can allow large length (L = 106ℓ) and

timescales (10−14s) to be spanned by running each scale to steady state before course graining.

The work of Nie et al. (2004b) modelling corner driven cavity flow was extended to domain sizes

of L = 106ℓ (Re = 6400) using implicit coupling (Nie et al., 2006). The continuum region was

modelled by a hierarchy of domains, each with 64 × 64 cells. The next domain in the hierarchy

was located in the top quarter of the larger domain and coupled along the interface. Moving down

through the scales, eventually a molecular scale model was employed, coupled at the interface

using the methodology of Nie et al. (2004a). A globally steady solution was obtained by iterating

from the coarsest to the finest scales and back until global convergence was obtained.

The mathematical technique for ensuring agreement at the interface between scales is for-

malised in the work of Hadjiconstantinou (1998) using the Schwarz alternating method. The
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Schwarz alternating method is an iterative method used to split a domain into connected sub-

domains and solve each separately. The solution of each sub-domain provides the boundary

condition for adjacent sub-domains. This method is often used for solving partial differential

equations in parallel as it allows sub-division of the domain between different processes. How-

ever, Hadjiconstantinou (1998) applied this method in the context of molecular to continuum

coupling. For the purpose of coupling, the molecular and continuum regions are treated as sep-

arate sub-domains and in the overlap region, the boundary conditions are iterated between the

two regions until there is good agreement. The Schwarz method is for steady state solutions or

pseudo-steady processes (where local equilibrium can be obtained). The iterative nature of this

coupling means that direct effects of molecules are not important and only an averaged ensemble

coupling is achieved. The advantage of this, as demonstrated by Nie et al. (2006), is that the

time scale of the molecular simulation and the continuum are decoupled allowing an average of

several short molecular simulations to represent a simulation run for a continuum timescale.

Figure 2.4: Graphical explanation of the Schwarz alternating method, based on figures 3-1 to

3-3 from Hadjiconstantinou (1998).

The coupling is implicit and iterative which means using the Schwarz decomposition to obtain

the state properties of density and momentum which are then used as boundary conditions for

the other domain. This is shown graphically in Figure 2.4. This is then said to couple fluxes in

the overlap region. This is because between boundaries the continuum velocity and temperature

are matched at two points so their gradients are also matched. The iterative scheme ensures

close agreement at the boundaries and this is assumed to be possible only if the fluxes match

in the domain. Stress comparisons in Hadjiconstantinou (1998) show good agreement in fluxes



60

between the two domains. Hadjiconstantinou (1999) used this model to investigate the moving

contact line problem.

Werder et al. (2005) combined their RDF based boundary condition, described in the previ-

ous section, together with the implicit Schwarz based algorithm. Their method uses O’Connell &

Thompson (1995) style coupling to apply velocity and a particle insertion picked from a Rayleigh

distribution for direct velocities and a Maxwell Boltzmann distribution for indirect velocities.

Werder et al. (2005) applied it to simulate flow past a carbon nanotube and observed the ana-

lytically predicted wake at low Reynolds numbers.

Recent work by Borg et al. (2013b) employ a number of representative MD simulations

connected by large regions solved using CFD. The combined solution is solved implicitly, with

the MD and CFD iterated until the mass flux agrees between the separate regions and solvers. In a

later paper, Borg et al. (2013a), the CFD solver was replaced by mass flow and pressure-difference

requirements which are used to guide the iteration of multiple coupled MD domains. Borg et al.

(2013b,a) apply these implicit coupling scheme to the steady state simulation of a converging-

diverging channel and several component of a micro-network (step contraction/expansion, long

channels and wall defects). Good agreement is observed to an all MD solution.

Implicit scheme have the advantage that they allow decoupling of time scales, so molecular

simulations can be run at the continuum timescale. However, they are limited to steady state

cases or multiple pseudo-steady steps in an unsteady simulation. As implicit coupling iterates

to steady state convergence, it does not required correct matching of the temporal evolution

between the two systems. Explicit coupling is therefore more onerous, as its requires the continued

matching of the time evolution of both systems. A successful explicit coupling algorithm should

be applicable to implicit coupling (indeed Werder et al. (2005) use O’Connell & Thompson (1995)

style coupling iteratively). For a given problem, it is necessary to establish whether direct time

coupling (explicit coupling) is required or the pseudo-steady assumption is sufficient (implicit

coupling). Ideally this could be determined a-priori using switching criteria, similar to Lockerby

et al. (2009) for dilute gases, to identify thermodynamic non-equilibrium. However, the extention

to dense fluid is far from trivial (Gad-el Hak, 2006) and prior MD simulations may be essential.

In this section, the successful matching between state properties has been achieved using

variational principles. In the next section, the limitations of state coupling are discussed and

the requirements for flux based schemes outlined. It is suggested that flux-based schemes result

in a more general coupling; however, no rigorous derivation of flux based coupling has been

provided using variational principles, an issue addressed in chapter 5 of this work. The next

section outlines the flux schemes already present in the literature.

2.5.3 Flux Coupling

Consider again the time evolution of an isothermal continuum system,

∂ρu

∂t
+ ∇ · ρuu = ∇ · Π

In the previous section, the pressure tensor was approximated in terms of state variables which are

exchanged during coupling. However, if the fluxes, ρuu, and pressure tensor, Π, are exchanged,

there is no need to approximate pressure in terms of state properties as in Eq. (2.48). The

notion of pressure is well defined in the continuum system and a form of stress can be obtained

as outlined in section 2.4.3 for a molecular system. The development of a more consistent stress
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description is a novel contribution of this work, detailed in chapter 4.

State coupling and flux coupling will be equivalent, provided the transport properties agree

between both systems and the assumptions used to decompose the stress are valid (e.g . linear

stress strain relation and Stokes’ hypothesis outlined in section 2.3.1). A key advantage of flux

coupling is it bypasses the need to define a linear stress-strain relation and links both system

directly.

As a result, state coupling requires that the two regions have the same transport properties,

with the consequent need for calibration simulations. For this reason, flux coupling is more

general, remaining valid when the transport properties in the continuum and molecular regions

differ and linearity breaks down. Delgado-Buscalioni & Coveney (2004) observed that a coupling

scheme fails if transport co-efficients in the two domains differ by more than 15%. Additionally,

only coupling through flux terms ensure positive entropy production of the model. They claimed

that it is not sufficient to control states at the boundary but that fluxes at the surface of the

cells should be included for unsteady flows to prevent numerical errors.

Statistical Errors

The paper by Werder et al. (2005), using the error analysis of Hadjiconstantinou et al. (2003),

suggests that the cost of averaging to obtain fluxes is 6 orders of magnitude larger than for

momentum density. This would make flux coupling schemes prohibitively expensive. Before

a review of the flux coupling literature is undertaken, this important point is reviewed in this

subsection.

The definition of error in the work of Hadjiconstantinou et al. (2003) is based on the relative

standard error E,

E =
s

µ
√
M
, (2.83)

where M is the number of statistically independent samples, µ is the mean and s is the stan-

dard deviation, obtained for mass, velocity and pressure from the standard statistical mechanics

formulas given in Landau & Lifshitz (1980),

Eρ =
1

Ac

√
N

1
√
Mρ

; Eu =
1

AcMa

√
γN

1√
Mu

; EP =
kBTAc

√
γN

PV

1√
MP

, (2.84)

where a is the speed of sound used in the Mach number, Ma = u/a and the acoustic number,

Ac = a/
√

γkBT/m, with γ = cp/cv being the ratio of specific heat capacities. Substituting the

Mach and acoustic numbers in Eq. (2.84) gives,

Eρ =
1

a

√

γkBT

mN

1
√
Mρ

; Eu =
1

u

√

kBT

mN

1√
Mu

; EP =
a
√
kBTmN

PV

1√
MP

. (2.85)

The error in shear stress was derived for a dilute gas in Hadjiconstantinou et al. (2003) and is

not included here. The error for density and velocity only are tested by Hadjiconstantinou et al.

(2003) using molecular dynamics simulation (i.e. dense fluids) showing good agreement. The

pressure and shear stress errors are not compared by Hadjiconstantinou et al. (2003) or Werder

et al. (2005) to molecular dynamics and it is unclear if this error analysis applies away from

the dilute gas limit (i .e. in dense molecular simulations). Despite this, it was claimed in a later
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review paper by Hadjiconstantinou (2005) that flux coupling is prohibitively expensive owing to

these errors. They reference the thesis of Werder (2005) as an application of the error analysis

to dense fluids, using the following forms given in the appendix of the thesis of Werder (2005),

Mρ =
κT kBT

V E2
ρ

; Mu =
kBT

u2

1

ρV E2
u

; MP =
γkBT

P 2κT

1

V E2
P

, (2.86)

where the speed of sound, a =
√

γ/ρκT is used to re-write Eq. 2.85 in terms of the isothermal

compressibility. However, the thesis of Werder (2005) does not state that this form explicitly

applies to dense fluids and the calculations are based on reasonably small volumes of size 1nm

at a reduced density of 0.6 and temperature 1.8 (which is well into the gas phase for molecular

dynamics (Baidakov et al., 2008)). Werder (2005) showed very good agreement between the

velocity error from Eq. (2.86) and molecular dynamics averages from Eq. (2.83) for a single

value. The error estimates for pressure and shear stress measurements were not compared to

the corresponding molecular dynamics quantities. A study of error in pressure is provided in

appendix E, where the magnitudes are not found to be prohibitive for coupling.

Another important result in the Hadjiconstantinou et al. (2003) paper, of particular relevance

to chapter 4, is the calculation of fluxes across a reference surface (i .e. over a plane). It can be

shown that statistical errors in the samples are of the same order as the volume based statistics

– only the ratio of volume to surface measurement being important.

Having considered the importance of greater statistics for flux coupling, the next section re-

views the literature on flux coupling. Typical flux coupling models do not report major problems

with the larger numbers of samples required. This issue is considered in more detail in appendix

E.

Explicit Coupling

The paper by Flekkøy et al. (2000) is the first paper which uses direct flux exchange. The flux in

each of the different domains is calculated and applied as a boundary to the other with an overlap

used to prevent the two regions from coinciding, as in Figure 2.2. The algorithm uses different

time steps for the molecular ∆tmol and continuum region ∆tcont with ∆tcont = 100∆tmol.

Molecular to Continuum Exchange

The continuum boundary condition can be applied in the form of a state quantity (Dirich-

let) or its derivative (Neumann). The flux from the molecular region is a Neumann boundary

condition, obtained from a time average over the 100 MD timesteps of the mass and momentum

flux density. This is written as,

ρu · n →
NI∑

i=1

m〈ṙi〉 · n. (2.87)

for momentum flux. Here n is the normal vector to the coupled interface. The arrow in the

above equation is the notation used in Flekkøy et al. (2000) denoting the algorithm to obtain
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continuum-to-molecular boundary condition. The stress is given by,

Π · n → 1

V

NI∑

i=1



m〈ṙiṙi〉 +
1

2

∑

i6=j

〈fijrij〉



 · n, (2.88)

and is calculated by the virial expression, Eq. (2.61),which is correct only for a homogeneous

system (recall the discussion in section 2.4.3). The localisation of the stress is an important point

discussed in chapter 4, and can have a significant impact on coupling scheme as demonstrated in

chapter 5. The stress Π in the continuum region is given by

Π = ρuu + P − µ(∇u + (∇u)T − ∇ · u) − λ∇ · u. (2.89)

Decomposing the stress leads to the Navier-Stokes equation in the continuum system, which can

be solved using standard CFD techniques (Hirsch, 2007).

Continuum to Molecular Exchange

In Flekkøy et al. (2000) continuum to molecular flux boundary conditions involve introducing

molecules at a rate of Ṅ = dN/dt into the molecular domain. The method used to insert particles

by Flekkøy et al. (2000) is not clear, however later papers based on the same flux coupling

(Delgado-Buscalioni & Coveney, 2003a) use an algorithm (USHER) developed to insert molecule

at a location which gives the required flux and energy (Delgado-Buscalioni & Coveney, 2003b).

The mass and momentum algorithms ensure momentum conservation by giving the inserted

particle a time averaged velocity equal to the continuum velocity UI = 〈ṙ〉 and making the applied

force Fi proportional to the force due to the stress σ = Π − ρuu. The applied momentum flux

due to added molecules is,

mṄ〈ṙ′〉 +
∑

i

Fi = AΠ · n, (2.90)

where the velocities ṙ′ are chosen randomly from a Maxwell Boltzmann distribution continuum

velocity u. The flux applied to the molecular region is implemented using a constraint force of

the form,

Fi =
g(xi)

∑

i

g(xi)
Aσ · n, (2.91)

where g(xi) is a weighting function which determines the distribution of total force between

different molecules. Flekkøy et al. (2000) used a function of the form,

g(x) = 2

[
1

L− 2x
− 1

L
− 2x

L2

]

where 0 ≤ x ≤ L

2
, (2.92)

which Flekkøy et al. (2000) states is arbitrary. This flux coupling applies not only a constraint

force but also opposes molecules leaving the domain with a magnitude equal to the continuum

pressure. As the constraint is normalised by the sum of all weighting functions, it does not entirely

prevent escape of molecules - a problem that must be addressed by some form of molecular

insertion/removal mechanisms. The flux coupling of Flekkøy et al. (2000) was tested to simulate
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steady state Couette flow using a molecular regions at the top and bottom of the domain and a

continuum region between them. In addition, steady state Poiseuille flow was simulated with a

molecular region simulating the length of the channel (including both walls) in the streamwise

direction. This flux exchange method was extended to include conservation of energy, (Wagner

et al., 2002). This was implemented by rescaling of the velocities of the molecules in the overlap

region. A thermostat was also introduced to remove the added energy created by the force

applied to conserve momentum.

Delgado-Buscalioni & Coveney (2003a) extended this model by introducing an energy-based

flux for the purpose of simulating unsteady flow with a finite volume continuum simulation. The

weighting function g(xi) = 1 was set so that the applied force was the same for all molecules to

allow conservation of energy,

F C
i = F C =

A

NI
σ · n. (2.93)

This results in a simplified energy equation which ensures uniform energy generation, as the

continuum energy change should equal the applied energy from the molecular region, AσC ·n·u =
∑NI

i=1〈F C · ṙi〉. The energy written with the unweighted force proposed by Delgado-Buscalioni

& Coveney (2003a) yields,

NI∑

i=1

〈

F C · ṙi

〉

= F C ·
〈 NI∑

i=1

ṙi

〉

= NIF
C · u = AσC · u · n,

where the last equality uses Eq. 2.93. The correct energy flux is ensured by inserting molecules

with the appropriate kinetic energy from the Maxwell Boltzmann distribution and at a location

which matches the required potential energy. Delgado-Buscalioni & Coveney (2003a) use a

steepest descent algorithm (USHER) to insert molecules with the required potential energy. The

conduction (as a temperature gradient) is matched to the continuum using a series of thermostats.

Delgado-Buscalioni & Coveney (2003a) simulate an oscillating wall (Stokes 2nd problem).

This appears to be one of the only examples of coupled code used for unsteady simulations. It

is worth noting that the work of Nie et al. (2004a), developed after Flekkøy et al. (2000) was

motivated by their testing of the flux coupling of Flekkøy et al. (2000). During these tests, Nie

et al. (2004a) concluded that the flux coupling of Flekkøy et al. (2000) is unstable for complicated

geometries such as the case of channel flow past a rough wall.

In later work, together with Flekkøy, Delgado-Buscalioni and Coveney (Flekkøy et al., 2005)

improve the energy application model by splitting the force into a constant part and a fluctuating

part.

F C
i = F C + F C′. (2.94)

The constant part, F C , is identical to Eq. (2.93) (with g(r) = 1), ensuring the momentum

constraint is applied correctly. The fluctuating part adds no momentum, instead providing only

energy. The fluctuating force is obtained by assuming that the applied constraint must be

reversible (not adiabatic as energy is added by molecular insertion). The proposed force ensures

feq = exp(−kBH/T )/Z is preserved at every timestep, where Z is the partition function. The
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resulting force is,

F C′ =
Aṙi

∑NI

i=1 ṙi
2

[

Ẽ − σ · 〈
NI∑

n=1

ṙn〉
]

,

where Ẽ is the energy flux and ṙi = ṙi −
∑NI

n=1 vn. The energy flux is not explicitly defined in

Flekkøy et al. (2005), but it is required to satisfy the relation,

ẼAdt =
∑

i

Fi · ṙidt+
∑

i′

∆ǫ′i,

where the i′ denotes summing over only the inserted or removed molecules and ∆ǫ′i is the energy

change due to these inserted/removed molecules.

Later work by the same group, (Fabritiis et al., 2007; Delgado-Buscalioni & Fabritiis, 2007)

replaced the continuum solver with the equation of fluctuating hydrodynamics (Landau & Lif-

shitz, 1969). These stochastic equations are simply the continuum equations with an extra noise

term to model the effects of small scale fluctuations. The noise term is generated using a Weiner

process and was tuned to satisfy the fluctuation-dissipation theorem. The reason Fabritiis et al.

(2007) claim this is essential is to include molecular fluctuations in the continuum part of the

solver. More recent developments for coupling to fluctuating hydrodynamics are covered in a

review by Delgado-Buscalioni (2012). When these extra fluctuating terms are important and in

what circumstances is still an active area of research. In many cases, their inclusion depends

on the amount of spatial and temporal averaging performed on the molecular region and the

modelled phenomenon of interest.

A work by Ren (2007) compares flux and state coupling. The modelling uses Lees Edwards

boundaries to apply shear (Evans & Morriss, 2007); Irving Kirkwood-based stress tensors and

a molecular region embedded in the continuum. Ren (2007) finds that coupling states in both

directions is stable. Fluxes applied from the continuum to molecular are stable only if states

are coupled the other way. Coupling fluxes both ways is shown to be unstable, possibly due to

fluctuations introduced by insufficient statistical averaging. This is supported by discussion of

the statistical problems associated with coupling fluxes in later work by Hadjiconstantinou et al.

(2003).

As a final note, this literature review has focused on the coupling of dense fluid mechanics

using a continuum based Navier-Stokes solver and molecular dynamics. There is also a consid-

erable literature on other coupling schemes involving Lattice Boltzmann or Dissipative Particle

Dynamics (Mohamed & Mohamad, 2009), which is outside the scope of the current work.

2.6 Overview

In this chapter, the governing equations of molecular dynamics and continuum fluid dynamics

were introduced, together with the methods for linking them. This included a full review of

the literature for both non-equilibrium molecular dynamics and the recent field of continuum to

molecular coupling strategies. The challenges in the literature are highlighted and this motivates

the work in the remainder of this document.

The molecular dynamics equation, Newton’s law for the N body system, were introduced
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first (section 2.2) with details of assumptions for molecular simulation. Next, a number of alter-

native formulations of mechanics were introduced, expressed in terms of the variational principles

(Goldstein et al., 2002). These formulations are essential to coupling and form the basis of the

work in chapter 5 developing a general and rigorous coupling scheme. The statistical mechani-

cal (mesoscopic) framework was then introduced to provide the bridge between the microscopic

molecular and the macroscopic continuum descriptions.

Next, the continuum equations were introduced (section 2.3) in control volume form with the

extension to MD being the subject of chapter 4. The control volume form in the infinitesimal

limiting cases yielded the continuous differential form and the assumption required to obtain the

Navier-Stokes equation from this form were discussed.

The purely formal mathematical link between the continuum differential form and a molecular

system was then discussed (section 2.4). The link between the Lagrangian molecular system and

Eulerian continuum system was obtained from the work of Irving & Kirkwood (1950). Equivalent

properties were defined in both systems and a number of issues were highlighted in the definition

of stress. The most important observation is that in moving away from the Irving & Kirkwood

(1950) pointwise stress, there is no unique definition of the stress tensor. Addressing this problem

motivates the definition of molecular control volume equations in chapter 4. This is of major

importance to flux coupling, where an accurate definition of stress is essential to ensure correct

properties are exchanged between the continuum and molecular systems.

For the remainder of the chapter (section 2.5), the practical implementation of coupling

was reviewed with an overview of the recent literature. This included a discussion of most of

the available literature on the subject of molecular-continuum fluid mechanics coupling. State

coupling (both implicit and explicit) as well as flux coupling were discussed with advantages and

limitations of both highlighted. Four main challenges for coupling were identified and current

solutions discussed through reference to the literature. These challenges are; 1 ) determining

the spatial relationship between the two regions; 2 ) enforcing a method of termination of the

MD domain; 3 ) determining a procedure for averaging the MD region to obtain the continuum

boundary conditions and 4 ) designing a control which, when applied to the molecular region,

matches properties to the continuum.

The first challenge 1 ) is implementation specific. Possibilities discussed include embedding

MD in the continuum or alternatively, coupling using domain decomposition with both regions

occupying different parts of the overall domain. Both have been discussed in this chapter, al-

though domain decomposition is the focus of the rest of this work. The reason for this focus is

the intention to simulate the more complicated case of a coupled simulation, where both regions

evolve together concurrently. This allows coupling to extend the range of molecular dynamics

simulation, possibly to turbulent flows. In addition, as domain decomposition requires greater

consistency between the two domains, the techniques developed for this case will be applicable

to embedded simulations. The second challenge 2 ) can be solved by a separate and arbitrary

boundary force or incorporated as part of the constraint force required by point 4 ) above. Both

were discussed with reference to the various existing schemes in the literature and the latter

approach is favoured in this work.

It is on the solution of the third and fourth challenge that the remainder of this work will focus.

The solution of challenge 3 ) requires correct averaging of either the state or flux formulation as

discussed in section 2.4. The various state and flux coupling schemes were introduced in this

chapter, as well as a number of other methodologies for exchanging properties between the
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systems. The Schwartz alternating method of Hadjiconstantinou (1999) was discussed, which is

limited to steady state and will not be considered further. It was found that none of the existing

flux scheme correctly localise the stress. The correct manner in which to do this is not obvious for

co-existing continuum and molecular system at the same scale. The control volume formulation,

introduced as part of this work in chapter 4, provides a way to address this challenge.

The solution of the fourth challenge requires the implementation of some form of control

on the molecular system to ensure it agrees with the continuum. The choice of constraint is

entirely arbitrary, although the variational principles introduced in section 2.2 are argued to

provides the most physically meaningful solution (Evans & Morriss, 2007). The work of O’Connell

& Thompson (1995), Nie et al. (2004a) and Werder et al. (2005) apply constraints based on

variational principles and have demonstrated good success. However, the flux coupling schemes,

(Flekkøy et al., 2000; Delgado-Buscalioni & Coveney, 2003a; Flekkøy et al., 2005) are not based on

constrained dynamics, with constraints often being applied as arbitrary forces or using statistical

arguments. Arbitrary forces do not ensure the molecule’s dynamics are changed in a physically

meaningful manner and add spurious energy to the system. The novel contribution of chapter

5 is an extension of the variational principle to include fluxes. In addition, chapter 5 provides

a common framework for many of the existing coupling schemes by explicitly localising the

constraint and linking the work of O’Connell & Thompson (1995), Nie et al. (2004a), Flekkøy

et al. (2000) and Delgado-Buscalioni & Coveney (2003a).

The next chapter, 3, is an introduction to the computational developments of this project.

The MD and CFD codes are introduced first followed by a computational implementation of the

coupling itself. Three of the coupling schemes introduced in this section (O’Connell & Thompson,

1995; Nie et al., 2004a; Flekkøy et al., 2000) are implemented as part of the verification of the

MD/CFD codes and their coupling. Many of the important features from the literature including

calculation of stresses, boundary forces, application of constraints and averaging methods are

addressed in the next chapter. The computational developments culminate in a generalised

coupling library to exchange data between any MD and CFD simulation. However, it is clear from

the results presented in the next chapter 3, together with the literature review in this chapter,

that the implementation of a general-purpose coupling requires further theoretical developments.

This therefore leads on to chapter 4 and 5, which focus on the development of a theoretical

framework and a well-grounded understanding of coupling strategies building on the excellent

literature summarised in this chapter.
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Chapter 3

Computational Development

3.1 Introduction

This section outlines the development, verification, profiling and functionality of the molecular

dynamics (MD), continuum computational fluid dynamics (CFD) and coupler codes (CPL) de-

veloped or utilised during this project. The main purpose of this section is to support the results

obtained in later sections by verifying the accuracy of the code against peer-reviewed publica-

tions, experiments and analytical solutions. This section also aims to serve as an introduction

to each of the codes for future users as well as a series of tests which the user can recreate to

verify new developments. The CPL library, developed in section 3.4 of this chapter, is a novel

contribution of this work. It should be a useful tool for researchers allowing them to coupled

their own high performance CFD and MD schemes and retain the scaling of both.

This chapter is organised as follows, the first section 3.2, contains an introduction to the new

molecular dynamics solver developed as part of this project. A major component of the work

completed has been the development of a new high-fidelity MD solver, written using state-of-the-

art optimisation techniques and developed to run in parallel using the Message Passing Interface

(MPI) paradigm. The reason for developing a new MD solver is so that it can be tailored to solve

fluid mechanical problems. It is therefore optimised for the simulation of large molecular systems

both individually and as part of a coupled simulation with a continuum solver. A description

of the numerical scheme is presented in subsection 3.2.1, the force optimisations in subsection

3.2.2 and code features are outlined in subsection 3.2.3. The optimisations, parallelisation, and

profiling are discussed in subsection 3.2.4. Finally, a full range of verification tests are presented

in section 3.2.5.

In section 3.3, the Continuum Fluid Dynamics (CFD) solvers used during this project are

discussed. The first subsection 3.3.1 introduces a new simple finite volume CFD solver developed

for the purpose of testing the coupling schemes. The code’s features and its verification are briefly

described. For more advanced cases, the highly optimised Direct Numerical Simulation (DNS)

code, T ransF low, was employed (Zaki & Durbin, 2005). A brief description of the features of

this code and the important changes required for coupling are outlined in subsection 3.3.2.

The final part of this chapter, section 3.4 outlines the key features of the coupler library

(CPL). The verification and implementation of this code is also included. The CPL library is a

novel contribution, and is available as open source software (Smith & Trevelyan, 2013).

69
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3.2 Molecular Dynamics Solver

3.2.1 Numerical Scheme

Molecular dynamics requires the solution of Newton’s laws for an N-body system. Under the

assumption of classical, non-relativistic system, the evolution of the molecules is described exactly

by Newton’s laws,

mir̈iγ (t) = Fiγ (t) (3.1)

where γ is index notation denoting the three cartesian spatial dimensions. The forces Fiγ on a

molecule i depends entirely on its relative positions to every other molecule in the system. The

next section details the process for obtaining this force Fγi in a molecular simulation. For now, it

is assumed that the force on molecule i is known and the procedure by which the spatial position

is derived from this force is discussed. This requires a numerical discretisation of Newton’s law.

The Verlet leap frog algorithm is chosen here. The time derivative of position can be written as

a Taylor expansion half a step forward and half a step backward in time,

ṙiγ (t+ 1/2∆t) = ṙiγ (t) +
∆t

2
r̈iγ (t) +

∆t2

6

...
r iγ (t) +O(∆t3) (3.2)

ṙiγ (t− 1/2∆t) = ṙiγ (t) − ∆t

2
r̈iγ (t) +

∆t2

6

...
r iγ (t) +O(∆t3). (3.3)

Taking the difference between these two equations gives an expression for the acceleration at t

in terms of the velocity at t± 1/2∆t,

r̈iγ (t) ∆t = ṙiγ (t+ 1/2∆t) − ṙiγ (t− 1/2∆t) . (3.4)

Substituting Eq. (3.4) into Eq. (3.1) yields,

miṙiγ (t+ 1/2∆t) = miṙiγ (t− 1/2∆t) + ∆tFiγ (t) . (3.5)

The inter-molecular force Fiγ (t) and the velocity at t− 1/2∆t allows the velocity at t+ 1/2∆t to

be obtained. A similar process is applied to obtain the position at the next time step t+ ∆t,

ṙiα (t+ 1/2∆t) =
1

∆t
[riα (t+ ∆t) − riα (t)] (3.6)

So the half timestep velocity is used to evolve the molecular position from t to t+ ∆t,

riα (t+ ∆t) = riα (t) + ṙiα (t+ 1/2∆t) ∆t (3.7)

Any numerical approximation of an integral is normally judged for its truncation error - how

well it represents the integral. The Verlet leap frog algorithm is a central difference formulation

and the truncation error is of order four O(4) due to the cancelling of the third order terms. In

addition to this good order of accuracy, it can be shown that the Verlet algorithm is symplectic

(phase space conserving). As a result, it displays excellent total energy (Hamiltonian) conser-

vation (Rapaport, 2004). This is due to the central nature of the numerical scheme where any

error is damped rather than allowed to build up over time.
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Figure 3.1: Schematic diagram of the successive optimisations of the molecular code – (a) All
pairs with N2 interactions, (b) Cell list optimisation, (c) Neighbour list optimisation

It is also possible to use an iterative scheme to integrate the equations of motion, the velocity

Verlet, which has also been developed as part of the project.

3.2.2 Force calculation

The interaction potential between the molecules is the only approximation in the process and,

for the work in this section, it is described by the Lennard-Jones potential,

Φ(|rij |) = 4ǫ

[(
ℓ

rij

)12

−
(
ℓ

rij

)6
]

− 4ǫ

[(
ℓ

rc

)12

−
(
ℓ

rc

)6
]

, |rij | ≤ |rc|, (3.8)

where rij is the difference between the vectorial postion of atom i located at ri and atom j

located at rj , i .e. rij = ri − rj , ℓ is the length scale of the molecular system, usually the atomic

diameter and ǫ is a constant specifying the strength of the atomic interaction.

In its simplest form, computation of pairwise molecular interactions requires N2 calculations

for a system of N molecules. The required N interaction calculations for a given molecule are

shown in Figure (3.1a). As the Lennard-Jones potential drops off rapidly with distance, the

majority of the N2 calculations are negligible. Enforcing a cutoff distance, rc, over which the

potential is not evaluated allows the calculation to be significantly accelerated, as only local

interactions need to be computed. A commonly used cutoff length is |rc| = 21/6, known as the

Week-Chandler-Andersen (WCA) potential (Rapaport, 2004). This sets the cutoff length to the

minimum of the potential well, removing the attractive tail. This has the advantage that the

cutoff is short, resulting in far fewer interaction calculations and significantly faster simulations.

This potential is useful for representative simulation, however a cutoff of |rc| > 2.5 is typically

required to correctly model many physical process. The use of a cutoff rc allows the N2 inter-

molecular calculations to be reduced to order N . This is achieved by splitting the domain into

a series of cutoff length sized cells and considering only the interactions between molecules in

neighbouring cells – a cell list (also know as the linked cell list (Allen & Tildesley, 1987)). This

reduces the task of checking all pairs of interactions to just a local check over the molecules

in the current and adjacent cells. The list of molecules per cell can be built efficiently using

integer division. The division into cells is shown in Figure (3.1b) where the grey circle represents

molecules within cut off radius rc and the current and adjacent cells can be seen to form a cube

that contains all interacting molecules.
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Further improvements are obtained by keeping a list of only the interacting neighbours to a

given molecule – a neighbour list (also know as the Verlet list (Allen & Tildesley, 1987)). This

ensures calculation of the forces on a molecule requires only the checking of molecules in the

surrounding sphere instead of the surrounding cube of adjacent cells. Building the neighbour

list, however, is more expensive than the cell list as it requires conditional checking based on a

sphere local to each molecule. To optimise this, the cell list is used to construct the neighbour

list, but with larger cells. The resulting sphere containing neighbour molecules has a radius larger

than |rc|, as shown in Figure (3.1c), so that rebuilding is not required at every timestep. This

extra distance can then be tuned for each case (using parameter studies) to optimise the checking

sphere size (e.g . rc + 0.3) and rebuild frequency (e.g . 15). Further improvement in efficiency is

made using Newton’s third law to halve the number of interactions calculated. For further details

of these methods see for example Rapaport (2004).

The improvement in simulation efficiency for the molecular dynamics solver has been tested

up to a system size of one million molecules, shown in Figure 3.2. The time taken for a given

simulation case, tcase, is divided by the time for the all pairs case, tap, in order to obtain a

speedup metric. These improvements result in a simulation which now scales as N .

Figure 3.2: Relative speedup compared to an all pairs calculation (tcase/tap) – using the cell

list (x), neighbour list (o) and neighbour list with half interaction (�) optimisations.

As the size of the cell/neighbour lists are not known in advance, an arbitrary array would

need to be allocated to contain all possible interactions. This array would grow or develop gaps as

the essential interactions change and molecules move in and out of range. To avoid this problem,

a linked lists system is used. Linked lists are a chain of FORTRAN data types connected by

pointers (see Figure 3.3). Each data type has an integer with the interacting molecule number

n and the pointer to the next (and previous) data type in the list. The molecular number

n identifies the location in memory of the molecule. This can be used to load the molecules
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position ri, velocity ṙi, acceleration ai, etc. The top and the bottom item in a list point to the

null pointer which identifies the end of the linked list. Each linked list is associated with a given

cell (or molecule in the neighbour list case). An array of head types contains the number of items

in each list and a pointer to the head element.

All cell or neighbour list operations are performed by a library of subroutines developed to

build, manipulate and destroy linked lists. This function library includes linklist print, search,

pop and push routines which prevent the user from having to deal with the list pointers directly.

These routines have been fully tested for memory leaks with Valgrind (Nethercote, 2004) and

‘soak tested’ for a wide range of different cases.

Figure 3.3: Schematic of the structure of a linked list and its reference to memory.

3.2.3 Code details

This subsection contains details of the code structure, philosophy and key features.

Code Structure

The code is structured in a modular way. The source code files are grouped into four types: setup

files (setup*), simulation files(simulation*), finalisation files (finish*) and general library files

(e.g. modules.f90, linklist.f90, messenger.f90). Each group performs the following tasks:

• Setup - Routines to initialise a new simulation or read in an old restart file; parameters

are set by the free form keyword based input file; arrays are allocated, the messenger

processor topology is initialised and output files are opened.

• Simulation - Routines which advances the code by calculating molecular interactive forces

and advancing the molecular trajectories. A spatial decomposition is used for parallelism

and message passing is used to exchange halos between the processes. Outputs are written

at user specified intervals.

• Finish - Save final state files, finish and close outputs and deallocate all arrays

• General library files - Routines used throughout the setup, simulation and final parts of

the code. All MPI routines are called through a messenger file which has a parallel and

serial version. Linklists manipulation and other general library routines are included in

this category

Compilation is performed using a makefile in the code directory. The code has been tested on

a number of compilers (Intel FORTRAN, gfortran, cray, gnu, pgi) and architectures (HECToR,

Imperial’s CX1/2, Linux Red Hat/Ubuntu, Apple Mac OS and Windows). The makefile uses

compiler information from a range of verified cases on various architectures built up during the
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code’s development and is designed to be easily supplemented when porting to new platforms.

The serial code is self-contained with no links to external libraries and the parallel code requires

only access to the MPI modules. There are a range of build options including serial and parallel

versions along with a number of debug, profiling and optimisation options.

The code reads a freeform keyword based input file which entirely specifies the simulation

parameters and required outputs and analysis. Most keywords are optional and a default value

is used if the keyword is missing. There is also a restart facility which reads in the parameters,

molecular positions and velocities from a previous simulation. The restart file is written in

the same format in serial or parallel using the MPI2 I/O libraries. The spatial position of a

molecule and its storage location in memory are not always consistent. As a result, restarts

on different processor topologies require re-ordering. This is performed on start-up for small

systems (procs < 33). For large system, parallel re-ordering is an inefficient use of time on a

supercomputer – therefore a separate serial code to reorder is provided.

Features Overview

Some of the features developed for the molecular dynamics code include,

Flow control Molecular
Properties

Output

Gaussian Thermostat
(Evans & Morriss, 2007)

Fixed atoms
(Rapaport, 2004)

Momentum/Energy/
Temperature/Pressure

Nosè-Hoover Thermostat
(Hoover, 1991)

Tethered Atoms (Petravic
& Harrowell, 2006)

VMD visualisation (Humphrey
et al., 1996)

Constrained Dynamics
((O’Connell & Thompson,
1995; Nie et al., 2004a;
Flekkøy et al., 2000))

Solid/Liquid
Potentials
(Allen & Tildesley, 1987)

Stress Tensor
(Virial (Allen & Tildesley, 1987),
MOP (Evans & Morriss, 2007),
Volume Averaged (Lutsko, 1988))
Control Volume (Smith et al., 2012)

SLLOD algorithm (Evans
& Morriss, 2007)

Sliding/moving walls Radial Distribution Function
Velocity Distribution Function
Boltzmann’s H function
(Rapaport, 2004)

Version Control and collaborative code development

A fully verified and working code is hosted on a subversion server to allow simultaneous develop-

ment by multiple users. To prevent corruption of the codes core functionality, a number of bash

and python scripts are used to check serial/parallel restarts along with other benchmarks. These

are run periodically to help in pinpointing errors introduced by code developments. The MD

code has been extended by other users (mainly David Trevelyan) to include more thermostats,

integration algorithms, Lees Edwards sliding boundaries and the suite of tools needed to simulate

a range of polymers.

3.2.4 Computational Developments

This subsection contains a description of the serial and parallel developments, optimisations and

benchmarking results for the MD solver.
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(a) Molecular domain (b) Molecular channel

Figure 3.4: VMD output from molecular simulation

Profiling and optimising the serial code

The interaction lists detailed in section 3.2.2 are the single biggest improvement to the compu-

tational speedup of the MD solver. However, a number of other improvements are possible as

outlined in this section. The code is compiled with full optimisation flags and profiled using

gprof (and later Tau) to obtain a detailed breakdown of time spent on various operations. This

profiling data is compared to established MD codes (DL POLY and LAMMPS). This process is

used to identify routines which take longer than established codes – these then become the focus

for optimisation. All profiling for the MD solver, DL POLY and LAMMPS is performed on one

core of the same quad core desktop (Intelr Core (TM) 2 Quad CPU Q9300 @ 2.50GHz with 4GB

of RAM).

Optimisation is separated into two types: limiting required operations and memory access

optimisations.

• Operations limiting improvements include limiting branching statements inside loops, re-

using calculated data by defining intermediate variables, moving operations out of loops

(as far as possible) and forcing function in-lining using compiler directives.

• Memory access optimisations include minimising memory allocations, avoiding superfluous

temporary array creations and maximising cache efficiency. As moving through linked list

results in non-contiguous data access and reduced cache efficiency, the code is checked using

Valgrind’s cachegrind. The cache misses are minimised by changing nested loop order and

sorting data in memory. In order to sort the data to maximise cache hits, the positions

of the molecules in memory are reordered based on spatial locality. A recursive function

to generate 3D Hilbert curves provides the ordering in memory of the molecules. This

is thought to provide the best mapping of the 3D spatial locality of molecular positions

to 1D memory (Anderson et al., 2008). There is a substantial reduction in cache misses

after re-ordering and a noticeable increase in speed of simulation for large system sizes and

longer simulations.

In addition, profile-guided optimisation is used to tune the compilation of the executable based
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on profiling data gathered from representative simulations. The results of these successive op-

timisations are summarised by chart 3.5 together with a comparison to LAMMPS (svn revision

8808) and DL POLY (version 4.03). The required operations for a molecular dynamics simula-

tion can be divided into five main areas; force calculation (forces), cell/neighbour list building

and manipulation (lists), movement of the molecules (move), exchange of boundary information

using halos (boundary) and other operations (other) including collecting statistics, re-ordering

data and compiler internal operations such as memory manipulations (e.g. intel new memset

is often in the top five most expensive routines).

The force routine is the most expensive part of the calculation and the successive improvement

attempts focus on this. Moving from all pairs to cell lists represents the biggest change with over

an order of magnitude improvement. The cell to neighbour list improvements, detailed in sec-

tion 3.2.2, have the disadvantage of requiring greater list building time – although this is offset

by the improvements in force computation. The next three optimisations include using New-

ton’s 3rd law to halve the number of interactions calculated (neighbour list half int), using

aggressive compiler based optimisation flags with other optimising operations outlined above

(Neighbour list optimised), and finally memory based optimisation and sorting (Neighbour

list reordered). The sorting can be seen to improve the speed of the forces,lists, move and

boundary routines by more than the increased time taken to sort (included in other).

DL POLY is a FORTRAN based code while LAMMPS is written in C++. The performance

of LAMMPS can be seen to be significantly better than DL POLY and so it is taken as the

benchmark. In total, LAMMPS can be seen to be faster than the MD solver by a factor of 1.3.

Profiling data indicates that the force calculation take a similar amount of time in LAMMPS and

the MD solver with re-ordering (which LAMMPS also employs). Manipulation of the interaction

list, including neighbour and cell list building is slower in the MD solver. This may be, in part, a

consequence of using linked lists in FORTRAN – these dynamic data structures are not native to

FORTRAN and require significant manipulation to build and search. They would also likely be

missed by FORTRAN compiler optimisation heuristics. The movement of molecules is faster in

the MD solver as the leap frog algorithm is used (instead of the velocity Verlet used by LAMMPS,

requiring twice the number of calculations per timestep).

The performance gap of 1.3 between LAMMPS and the in-house written MD code is deemed

acceptable. LAMMPS has existed since the mid-1990s and has been the subject of extensive

optimisation and development by Sandia labs, Lawrence Livermore National labs, at least three

companies and many researchers and computer scientists. The performance difference may be

a result of the comparisons between C++ and FORTRAN codes, especially using gprof, which

was developed for C++. This is supported by a disproportionate amount of the time spent in

routines which appear to be internal to the compiler (other). In addition, the performance of

the MD solver relative to the FORTRAN code DL POLY is extremely favourable.

Parallel computation of MD simulation using the Message Passing Interface

(MPI)(Gropp et al., 1999a)

Three different methods have been employed to parallelise molecular dynamics simulations on

distributed computing hardware. The first is based on atomic decomposition in order to distribute

the molecules evenly between processors. The second is to divide the most computationally

intensive step, the force calculation, over the different processors with each taking a section of
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Figure 3.5: Profiling breakdown of time spent in various routines for successive code optimisa-
tions – including a comparison to DL POLY and LAMMPS. Case is 2048 molecules, interacting
with a WCA (|rc| = 21/6) potential run for 10, 000 timesteps.

the calculation. The final decomposition method subdivides the domain into individual regions,

with each processor responsible for the integration of atomic trajectories in an assigned region.

Each of these methods has advantages under certain conditions. For example, an atomic

decomposition provides natural load balancing, but requires large amounts of data passing for all

but the smallest system. Plimpton’s (Plimpton, 1995) analysis of the different methods concludes

that, for short range systems with large numbers of molecules, a spatial decomposition scheme

provides the best performance. Most commonly used parallel MD codes make use of spatial

decomposition, including GROMACS (Spoel et al., 2005), DL POLY and LAMMPS (Plimpton

et al., 2003), as well as the algorithm used in this work. This approach also matches the parallel

model employed for the continuum solver, which is beneficial for the purpose of algorithmic

interfacing.

Verification of the parallel algorithm is performed by comparing the results for the same case

in serial and parallel: a simulation started in serial saves an initial state, which is then read by

the serial and parallel versions of the program (where the atoms are distributed to processor by

their location in parallel). This ensures identical starting configurations.

The intermolecular force calculation in parallel requires each processor to exchange informa-

tion with adjacent processors at each timestep (halo-exchange). Molecules must also be passed

between processors when they leave the processor domain, a process which only occurs every

rebuild time for neighbour-list calculations. The process of gathering statistics requires accumu-

lation of data on a single root processor, as well as MPI operations that govern data writing by

individual processors to a shared file, using the MPI2 standard (Gropp et al., 1999b).

The details of a typical communication run are addressed in the next section through profiling

data which is used to optimise parallel performance of the code.
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(a) Overview of a rebuild interval, in this
case approximately five timesteps

(b) Detailed view of halo data exchange
for part of a single step

Figure 3.6: MultiProcessing Environment logging data showing data exchange between eight
processes as a function of time. Light red – probe; grey – pack(light)/unpack(dark); red – receive;
green – send (non-blocking); orange – wait; lightblue – all reduce; dark blue – all gather and
black line – links send to receive;

Profiling and optimising the parallel code

The parallel code is profiled using MultiProcessing Environment (mpe) libraries which trace

the communication patterns during an MD simulation. An example of this logging data is

included in Figure 3.6, giving an insight into the parallel MD solver. The simulation is performed

using eight processors (2 × 2 × 2) solving a periodic WCA fluid using the neighbour lists. MPI

communications on the eight processors are shown on the vertical axis against time on the

horizontal. Figure 3.6a shows an overview of approximately five simulation timesteps, split into

alternating sections of blue and red/yellow/green blocks. The blue blocks are global (blocking

between all processors) and take far more time than the many local exchanges represented by the

collection of red/yellow/green blocks. Figure 3.6b shows further details of these local exchanges.

The communication process starts by packing the data into buffers to send (light grey blocks).

As the number of molecules a processor will receive is not known a-priori, the receiving proces-

sors use MPI probe (light red blocks) to establish how much data they expect to receive before

allocating appropriate memory. The MPI send command (green) is posted on a given processor

where the black arrows on Figure 3.6b trace the movement of a message to the corresponding

MPI receive (dark red) command on another processor. The receives are non-blocking, so a

MPI wait command (orange) is placed before the received data is required. The new molecular

data is unpacked using MPI unpack (dark grey blocks). The neighbour-list must be rebuilt when

a molecule has moved sufficient distance. As a local rebuild necessitates a global rebuild, rebuild

checks must be broadcast to ensure the neighbour-list is up to date. The blue blocks in Figure

3.6a are global communications (gather/scatter) to check for this rebuild (together with exchange

of other information required for rebuilding).

The profiling above is useful as it identifies areas to improve performance. MPI probe is

clearly inefficient and should be replaced by the sending of arbitrary sized buffers followed by

a check for overflow. In addition, gather/reduce operations should be limited, for example by

disabling the global rebuild check (usually satisfied every 15 steps) for an initial periods of time

(e.g . first ten steps) .

A parallel performance logging tool, Tau (Shende & Malony, 2006), was also employed.

This allows the user to compare time spent in computationally intensive routines, like the force

calculation, to waiting times for MPI communications. As a result, optimisation can focus

on expensive parallel routines and establishing the optimum particles-per-processor to balance

computation and communication. Use of profiling tools periodically during developments and
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before submission of long jobs help to optimise the utilisation of supercomputing resources.

Benchmark of Parallel scalability

Having verified the parallel code, it can be benchmarked for parallel scalability. This is done

using up to 1024 cores on HECToR. The profile shown in Figure 3.2.4 is for 5000 iterations of

a Lennard-Jones system with 3, 317, 760 molecules. The number of processors is increased for a

fixed system size (weak scaling) and the parallel efficiency is defined as the simulation time taken

by a single core (tp1) divided by the time for n cores (tpn) times n – e.g . E = tp1/(ntpn).
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Figure 3.7: Strong scaling of the MD solver on Imperial’s supercomputers CX1 (–���–) , CX2

(–♦♦♦–) and HECToR (-o-). The data for this plot was obtained from runs on HECToR as part

of the work detailed in Anton & Smith (2012).

The initial performance drop in using one, two, four then eight cores is attributed to the

increased complexity of passing data in one, two and three dimensions respectively. In serial, the

molecular data is simply copied internally. With two cores, only two faces must be passed, in

two dimensions, four edges and four faces must be passed. For the eight core cases, twelve edges,

six faces and eight corners must be passed separately. If scaling is instead defined vs the eight

core speed, the code can be shown to be 94% efficient on 1024 processors.

A note on Graphical processing units (GPU)

The use of GPU acceleration was investigated as part of the development of the molecular dy-

namics code. General purpose GPUs have been shown to give massive increases in computational

speeds. Current state of the art molecular dynamics application suggest a 30 times speed up

over the same code run on a CPU (Anderson et al., 2008). NVIDIA Compute Unified Device

Architecture is used as the programming model (the standard Open CL is under developed while
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NVIDIA have invested heavily in CUDA) (NVIDIA, 2010). CUDA is a C based set of libraries,

with some C++ extensions, allowing calculations to be performed on the GPU. As the major-

ity of the code is FORTRAN, C based wrappers are used to allow variables to be passed from

FORTRAN to C++ and then to CUDA C.

The first attempt to optimise the MD solver delegated only the force calculation to the GPU.

The positions of all interacting pairs of molecules were passed to the GPU and the forces passed

back. The performance improvement was found to be negligible as the time to copy the large

numbers of interacting pairs negated any computational speed up.

The next attempt at optimisation involved copying a single set of molecular positions into

GPU global memory and calculating the interaction forces. Although this showed some speed

up, the improvements were still very limited. The exchange of data still greatly reduces any

benefit in speed up. This is a similar discovery to the work Brown et al. (2011), where without

neighbour list builds on the GPU, the force calculation on a GPU was actually found to be slower

(0.7 speedup). In order to gain the 30 times speed up, the entire code (forces, movement, list

building and averaging) would need to be ported to the GPU with data exchange only for i/o

(Anderson et al., 2008). For a serial GPU this represents an entire redesign of the MD solver for

the GPU architecture, with all future developments written to maintain this structure.

The aim of this project is to model very large coupled runs, often simulating more molecules

than a single GPU could store. This would require multiple CPUs (connected by MPI) linking

together the multiple GPUs (ideally with clever use of page locked memory) (NVIDIA, 2010).

Load balancing would also be required in order to ensure the available resources are efficiently

utilised (Brown et al., 2011). Even with load balancing and multiple CPUs linked to multiple

GPUs, speed up of only 2.5 are reported when the force calculations (rc = 2.5) alone performed

on the GPUs (Brown et al., 2011). Due to the complexity of implementation, the inflexibility

of development and the added complication of required coupling to CFD codes, it was decided

to postpone the GPU development until CUDA libraries are sufficiently improved or perhaps

consider a solution using OpenCL.

3.2.5 Verification

As a new molecular dynamics code has been developed, full verification is essential before use as a

research tool. This section outlines a range of verification cases against standard benchmarks and

experimental results. The tests include energy conservation and trajectories, radial distribution

functions (RDF), phase diagrams and non-equilibrium molecular dynamics (NEMD) simulations

of canonical fluid mechanical flows.

Energy Conservation

The first and most important tests of a molecular dynamics algorithm are those related to

conservation of momentum and energy. Total energy conservation is actually a highly sensitive

test of the correctness of a program (Allen & Tildesley, 1987). This is the first verification test

after each successive algorithm change. The interchange between kinetic and potential energy

as well as the total energy is shown in Figure 3.8 for the NVE ensemble (constant number of

molecules N , Volume and Energy). This simulation used a WCA potential with a truncation

distance rc = 21/6 and 2048 molecules initialised in an 8×8×8 FCC lattice with reduced density

of 0.8 and temperature of 1.0. As a result, molecules start outside of interaction range and the
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Figure 3.8: System kinetic ( ), potential ( ) and total ( ) energy evolution against time
for a molecular simulation with periodic boundaries. Note – total energy is shown as half actual
value to emphasise symmetry in kinetic and potential energies.

initial potential energy is zero. Periodic boundaries are used in all three directions. All quantities

are given in terms of the length ℓ, atomic interaction strength ǫ and mass m of the particle so

the LJ potential equation 3.8 with ℓ = ǫ = m = 1 is,

Φ(rij) = 4
[
r−12

ij − r−6
ij

]
− 4

[
r−12

c − r−6
c

]
. (3.9)

The total energy remains (almost) constant, while the kinetic and potential interchange can

be seen by the mirrored peaks and troughs. The use of the leapfrog algorithm to discretise

the equation of motion is known to give good long time energy conservation properties (with

timesteps from 0.001 up to 0.01, Rapaport (2004)). However, it can be seen that for very long

simulations some energy drift occurs. Quantitative verification is performed by matching various

parameter to the book by Rapaport (2004) such as evolution of total energy.

Note that the total energy in both systems is the same from the start of the simulation

and stays constant throughout the time history of the simulation. The kinetic energies however,

fluctuate in different ways in the two systems as they evolve through phase space along completely

different trajectories.

The different evolutions of kinetic energy in table 3.1 represents a very important phenomenon

in molecular simulation, which is the chaotic behaviour. This is an inevitable consequence of em-

ploying a finite precision computer in the solution of the equations of motion. Chaotic behaviour

has wide ranging implications for molecular simulation, the most immediate of which is that

matching the evolution of energy, or indeed any property between two molecular systems, is

impossible beyond a certain number of timesteps. To demonstrate this, two identical simulations

(same input data, operations and computer architecture/compiler) were run on a single processor

and then split between two processors. The comparison of these two systems (serial-parallel) is

shown in Figure 3.9. The divergence of trajectories, although initially at the limit of precision for

a single molecule, eventually grows to 0.01% after 200 reduced time units and plateaus. This is
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Table 3.1

Rapaport Table 2.1 This Work’s Simulation

step KE Total
Energy

Pressure KE Total
Energy

Pressure

100 0.6592 0.9952 4.5371 0.6472 0.9951 4.6392

200 0.6490 0.9951 4.5829 0.6442 0.9950 4.6686

300 0.6397 0.9951 4.6454 0.6643 0.9951 4.3660

400 0.6477 0.9951 4.5675 0.6325 0.9951 4.6938

500 0.6596 0.9951 4.4702 0.6349 0.9951 4.6563

1000 0.6480 0.9950 4.5496 0.6391 0.9950 4.7037

2000 0.6497 0.9951 4.5371 0.6257 0.9951 4.7560

3000 0.6539 0.9952 4.5184 0.6582 0.9952 4.4758

7000 0.6370 0.9952 4.6203 0.6684 0.9952 4.3523

Figure 3.9: The discrepancy in energy measured for the parallel ( ) or serial ( ) code
compared to the serial code as reference for trajectory divergence. The discrepancy is defined as
the total energy Eparallel from the parallel solution minus the serial solution Eserial divided by
the serial solution: [Eparallel − Eserial]/Eserial.
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Table 3.2

Density Rapaport Table 2.2 This Work’s Simulation

Total Energy KE Pressure Total Energy KE Pressure

0.8 0.650 0.995 4.537 0.650 0.997 4.554

0.6 0.823 0.994 1.954 0.823 0.995 1.964

0.4 0.915 0.994 0.815 0.915 0.995 0.818

Figure 3.10: Molecular dynamics simulation RDF at densities ρ = 0.6 (×), ρ = 0.8 (�) and
ρ = 1.0 (O), matched to results from Rapaport’s C++ program at the same densities (shown by
lines with matching colours).

because the system’s total energy is the same (to within 0.01% flucatations) and only the initial

trajectories differ. This behaviour is observed for any changes to order of operations (during

code development) or comparisons between restarted calculations. For this reason, initial agree-

ment and trajectory divergence must be taken into account during the verification of changes

made to parallel/serial codes. Any verification of new code developments therefore consist of

checking agreement for the initial period of time (up to the divergence at ∼ 1500 time units) and

agreement of long time statistical properties.

The next table 3.2 compares the variation in energy at different densities to the values

reported in Rapaport (2004). Very good agreement can be seen between the obtained results

and those of Rapaport (2004).

Radial Distribution Functions

Further tests of the three dimensional code included comparing the radial distribution function

(RDF), g(r) as shown in Fig. 3.10.

The RDF is a normalised measure of the local particle number density as a function of
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Figure 3.11: MD Radial Distribution Function (x) matched to experimental results (–) from

Yamell et al. (1973) at T = 85K and ρ = 0.02125Å
−3

.

distance r from the centre of an arbitrary particle. Peaks and troughs indicate the presence of

coordination shells and inter-shell regions, respectively. The RDF shows a key difference from

models based on a dilute gas and a molecular dynamics simulation. It is for this reason that a

full molecular simulation is required when small length scale effects become important.

The radial distribution function is an important quantity as it can also be obtained from

experiments. For liquid Argon, experimental data from Yamell et al. (1973) with T = 85K

and ρ = 0.02125Å
−3

is shown in Figure 3.11. In LJ units this is T ∗ = 0.708 and ρ∗ = 0.8352;

simulation results for the corresponding case are shown on the same Figure 3.11.

Density, Temperature and Pressure Relationships

Density, Temperature and Pressure relationships are a thorough test of a molecular model over

a range of different conditions. By adjusting the density and temperature the model is tested

over a range of operating conditions – from solid to gas. Density, Temperature and Pressure

relationships also allow verification of features such as the Nosé-Hoover thermostats and pres-

sure calculations. The change of phase from a liquid to a solid can be observed for the lower

temperature/density cases.

In comparing the results from the present MD code to those of Rapaport (2004), the LJ

energy has been corrected using the standard long range correction factors (Allen & Tildesley,

1987) while the pressure results are not corrected. It is not clear from the text in Rapaport

(2004) if this correction is applied to the energy or pressure. Rapaport (2004) suggests applying

the correction to energy and not pressure as the magnitude is negligible in the latter case.

The density-pressure relationships are also compared to experimental data for liquid Argon

at a temperature of 90.1K (T ∗ = 0.75), Itterbeek & Verbeke (1960). The experimental data

is only available for a small density range, so the reference data for the LJ potential calculated

using grand-canonical transition-matrix Monte Carlo (TMMC) with rc = 3.0 (NIST, 2013), is
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(a) Total energy vs temperature from MD code compared with Rapaport (2004)

(b) Pressure vs temperature from MD code compared with Rapaport (2004)

Figure 3.12: (−) Rapaport Lennard-Jones (rc = 2.5); (−−) Rapaport Weaks-Chandler-

Andersen (WCA) (rc = 2
1
6 ); (×) MD code Lennard-Jones (rc = 2.5) (◦) MD code WCA; (�)

ρ = 0.4; (�) ρ = 0.6; (�) ρ = 0.8; (�) ρ = 1.0
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also included. The TMMC reference data for the whole range is shown on the insert. In order

to match the pressure, the standard long range correction must be applied. Two cutoff lengths

are compared in the MD simulation, rc = 2.5 and rc = 4.0. The cutoff of 2.5 is chosen as a

value commonly used in the literature, representing a good compromise between efficiency and

accuracy (Rapaport, 2004). The cutoff value of rc = 4.0 should be greater than required to

capture all important interactions and match to experimental data. Reasonable agreement is

observed between the MD, TMMC methods and experimental data, although the results for

rc = 2.5 appear to significantly underpredict the pressure. The longer MD cutoff, rc = 4.0,

provides closer agreement to both TMMC and experiments.
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Figure 3.13: MD code Lennard-Jones for rc = 2.5 (×) and rc = 4.0 (©), experimental re-

sults for liquid Argon (�) and benchmark data from the results for Lennard-Jones fluid using

grand-canonical transition-matrix Monte Carlo with rc = 3.0 ( ) from the National Institute

of Standards and Technology (NIST, 2013).

Non-equilibrium molecular dynamics simulations

Continuum fluid flow problems for which there exist analytical solutions to the Navier-Stokes

provide a convenient test for non-equilibrium molecular dynamics (NEMD) algorithms. The case

of Couette flow is considered here, using the time evolving analytical solution derived in appendix

A,

u(y, t) =

M∑

n=1

−2U0

nπ

(

1 − e−
(nπ)2t

H2Re

)

sin
nπy

H
+ U0ϕ

( y

L

)

, (3.10)

where H is the domain height and U0 is the wall velocity and Re is the Reynold number. This

function was plotted over M = 10, 000 modes.
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Couette Flow

In this study, Couette flow was simulated by entraining a model liquid between two solid

walls. The top wall was set in translational motion parallel to the bottom (stationary) wall and

the evolution of the velocity profile towards the steady-state Couette flow limit was followed. All

dimensions are given in LJ units.

(a) Schematic of the MD Couette flow channel
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(b) Results from Couette Flow

Figure 3.14: The y− dependence of the streaming velocity profile at times t = 2n for n =

0, 2, 3, 4, 5, 6 from right to left. The squares are the NEMD CV data values and the analytical

solution Eq. (3.10) are the black lines.

The velocity profile is compared with the analytical solution of the unsteady diffusion equa-

tion. Four layers of tethered molecules were used to model each wall, with the top wall given a

sliding velocity of, U0 = 1.0 at the start of the simulation, time t = 0. The temperature of both

walls was controlled by applying the Nosé-Hoover (NH) thermostat to the wall atoms (Hoover,

1991). The two walls were thermostatted separately, and the equations of motion of the wall

atoms were,

ṙi =
pi

mi
+ U0n

+
x , (3.11a)

ṗi = Fi + fiext
− ξpi, (3.11b)

fiext
= ri0

(
4k4r

2
i0 + 6k6r

4
i0

)
, (3.11c)

ξ̇ =
1

Qξ

[
N∑

n=1

pn · pn

mn
− 3T0

]

, (3.11d)

where n+
x is a unit vector in the x− direction (only non-zero for the top wall), mi ≡ m, and

fiext
is the tethered atom force, obtained using the formula of Petravic & Harrowell (2006)

(k4 = 5 × 103 and k6 = 5 × 106). The vector, ri0 = ri − r0, is the displacement of the tethered

atom, i, from its lattice site coordinate, r0. The Nosé-Hoover thermostat dynamical variable is

denoted by ξ, T0 = 1.0 is the target temperature of the wall, and the effective time constant

or damping coefficient, in Eq. (3.11d) was given the value, Qξ = N∆t. The simulation was
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carried out for a cubic domain of sidelength 27.40, of which the fluid region extent was 20.52

in the y−direction (see Figure 3.14a). Periodic boundaries were used in the streamwise (x) and

spanwise (z) directions. The results presented in Figure 3.14b are the average of eight simulation

trajectories starting with a different set of initial atom velocities. The lattice contained 16, 384

molecules and was at a density of ρ = 0.8. The molecular simulation domain was sub-divided into

16 averaging slices of height 1.72 and the velocity was determined in each of them. The results

show good agreement in both space and time, although some discrepancy is observed near the

molecular walls. This is due to molecular layering and stick-slip behaviour near the walls in

the molecular system which is not captured in the no-slip boundary assumed in the continuum

solution.

The case of Couette flow is revisited repeatedly in this work, using the CFD code and in

coupled simulations. This case is chosen because it is simple enough to afford an analytical

solution and has been widely studied in the MD, CFD and coupling literature. The Couette flow

case for a wide range of pressures has been studied fully, as part of a side project to the work

presented herein (Heyes et al., 2012). The setup parameters used in this work are based on this

published work Heyes et al. (2012), as are many of the insights into the behaviour of MD and

coupled simulations.

3.3 Continuum code

3.3.1 Simple Finite Volume Solver

A two dimensional finite volume code which simulates the diffusive terms of the Navier Stokes

equation has been developed to test the initial coupling. The unsteady diffusive equations are

obtained by simplifying the 3 dimensional Navier Stokes Eq. (2.50) under the assumptions of

developed laminar flow, a wide channel in the spanwise direction, negligible pressure gradient

and no gravitational effects.

∂u

∂t
=

1

Re

∂2u

∂y2
. (3.12)

This equation is discretised in space using a central finite volume scheme on a uniform grid

(Hirsch, 2007). The subscripts I and J denote cell indices in the x and y direction respectively.

The equation was discretised in time using a simple forward Euler scheme

ut+1
IJ = ut

ij +
∆t

Re

uI+1,J + uI−1,J + uI,J+1 + uI,J−1

4(∆y)2
, (3.13)

with the corners cells calculated using an average of the three adjacent cells. A halo cell system

was used to specify boundary conditions with a no-slip boundary on the top, moving wall on the

bottom and periodic boundaries at both ends. The halo velocity was set to ensure the boundary

condition on the surface of a finite volume cell. The analytical solution Eq. (3.10) is compared

to a numerical simulation with 100 cells in Figure 3.15a. The analytical solution in Figure 3.15a

appears to agree exactly at all points (N.B. outer cell values appear larger/smaller as boundary

value is enforced at cell surface). In order to study this agreement, the L2 norm is plotted in

Figure 3.15b. In order to obtain the L2 norm, the square of the discrepancy between analytical

and numerical solutions at every point in the domain is obtained. The square root of the sum of



Chapter 3. Computational Development 89

(a) Plot of analytical solution and numer-
ical solution at times (t = 0.1 × 2n, n =
1, 2, .., 14).

(b) Plot of L2 error between analytical and numerical
solutions against time

Figure 3.15: Plot of CFD Couette flow against the analytical solution (left) and the L2 norm
error against time (right) for 6 ( ),12 ( ),24 ( ),48 ( ) and 96 ( ) cells. Reynolds number
Re = 10, height L = 10 and wall velocity is U0 = 1.

these squared discrepancies is the L2 norm. The L2 norm error can be seen to decrease as the

solution tends to the steady state and as the number of cells used (resolution) increases in figure

3.15b. The initial error is attributed to the use of an impulse started plate which the analytical

solution would not be able to accurately re-create. The agreement between solutions appears to

be good, verifying the CFD code outlined in this section and to be used in coupled Couette flow

simulation.

The in-group Direct Numerical Simulation code, T ransF low, is discussed in the next section.

Coupling to T ransF low is essential in order to facilitate simulation of more complicated cases

than Couette flow.

3.3.2 The continuum DNS algorithm: T ransF low

The T ransF low code is designed to preform direct numerical simulation (DNS) of the Navier-

Stokes, Eq. (2.50). Simulations are performed using a staggered grid algorithm with a local vol-

ume flux formulation in general (curvilinear) coordinates (Rosenfeld et al., 1991; Wu & Durbin,

2001). The time advancement of the convection terms is solved by a second order Adams-

Bashforth scheme and the diffusive terms by Crank-Nicholson scheme (Hirsch, 2007). The so-

lution to the Poisson equation for pressure P (x, t) is obtained by the fractional step method

devised by Chorin (1967). Provided the streamwise and spanwise directions are periodic and ho-

mogeneous, Fourier transforms are employed to accelerate the solution of the possion equation.

The T ransF low algorithm has been verified in prior investigations of shear flow stability (Zaki

& Durbin, 2005, 2006).

T ransF low is parallelised using the Message Passing Interface (MPI). Performance testing

was carried out using a curvilinear mesh, for turbulent flow around a compressor blade. The

flow was simulated using 370, 000 grid points per MPI-task, on an SGI Altix 4700, Intel Itanium

2 (HLRB, Super-Computing Centre, Germany). During these parallel performance tests, the

equations were advanced 1000 time steps, and each time-step required 19 seconds of wall-clock
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Figure 3.16: Parallel performance of TransFlow.

time. The weak scaling performance results are shown in Figure 3.16. Weak scaling means as

the number of cores is increased, the number of cells per core is held fixed. Parallel efficiency is

defined with respect to the performance on 16 cores and at 768 cores, the algorithm performed

at 94.4% parallel efficiency.

Both the molecular and continuum algorithms have been constructed as a collection of FOR-

TRAN 90 modules, which allows for efficient interfacing to other multi-physics algorithms. The

coupling is described in the next section.

3.4 Coupling of the DNS and MD algorithms

This section outlines the coupler library. This has been developed with the intention of making

the source code available to the research community. As a result, it is written using modern

FORTRAN (2008) with a completely modular structure and a clear functional interface to each

routine to facilitate interoperability with other languages. Thorough documentation has been

included in the source codes, formatted to allow generation of HTML based documentation using

f90doc (Available online; accessed 07/13 http://erikdemaine.org/software/f90doc/doc.html). As

of May 2013, the code is freely available under a GNU GPL v3 license (Smith & Trevelyan,

2013). The development of the code has been documented in two technical reports, Anton &

Smith (2012) and Smith et al. (2013).

Combining the capabilities of the DNS and MD codes requires interfacing and synchronising

several elements of the two simulations. Each code models part of the physical problem, and is

therefore responsible for a region of the computational domain. An overlap exists between those
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two domains; MD and continuum information must be “communicated” between the two codes

in this region, in order to dynamically couple the two simulations.

The most significant challenge is to carry out efficient and scalable (thousands of processors)

computations of large continuum-molecular coupled systems. To do this, a framework must be

developed to allow large scale coupling between the two parallel codes.

The proposed framework with separated coupler module and halo exchange is general enough

to allow implementation of many of the existing coupling strategies (O’Connell & Thompson,

1995; Nie et al., 2004a; Flekkøy et al., 2000; Hadjiconstantinou, 1998; Werder et al., 2005;

Delgado-Buscalioni & Coveney, 2003a). This generality ensures that the code development will

continue to be useful as the field develops.

3.4.1 Coupler Outline

The coupler (CPL) consists of a series of function calls which are loosely based on the MPI

framework in terms of both functionality and scope. They have been developed in FORTRAN

2008 with sufficient generality that they can be used as a language independent API through

External functional interfaces. These routines are compiled into a library module which is linked

to both the MD and CFD codes. Both codes are then run using the MPI multiple program

multiple data paradigm (MPMD) with a call of the form,

mpiexec -n 128 ./md.exe : -n 8 ./cfd.exe.

The codes have entirely separate scopes and can only communicate through the coupler rou-

tines. The use of the MPMD framework enforces this separation and prevents conflicts between

matching nomenclature in both the MD and CFD codes. It also pre-empts the use of dynamic

processor allocation under MPI2, (MPI spawn), providing a framework to support dynamic load

balancing during a simulation.

The coupler consists of three classes of functions – setup, exchange and enquiry. Details of

the structure and routines are included below:

• Setup The setup process is run once per simulation and entirely establishes the relation-

ships between the two codes. The coupler setup routines and all coupler parameters are

contained in a FORTRAN 2003 module with the protected attribute. This ensures only

the three setup routines located inside this module can changes parameters internal to the

coupler library. This prevents side-effects resulting from the interface with the CFD/MD

codes as well as functions inside the coupler. The coupler setup functions have extensive

error checking to ensure the inputs are of the correct form and the setup is completed

correctly. A key part of the philosophy of the coupler is that both codes have copies of an

identical set of read-only parameters including the complete knowledge of the processor

topology of both regions. This ensures inter-communication between the codes is kept to

a minimum.

– CPL create comm – Setup MD/CFD INTRA COMM and INTER COMM between them.

This should be called after both codes have initialised MPI. It defines a global commu-

nicator CPL WORLD COMM, local intra-communicators MD COMM/CFD COMM and an inter-

communicator CPL INTER COMM between them to allow information exchange between

the two domains Gropp et al. (1999b). The COUPLER.in input file is read to define

relative processor topologies. The coupler input also includes parameters which are

not specified from either of the coupled domains, such as the location and size of the



92

overlap regions, the ratio of timestep between the two codes, as well as the facility

to redefine variables in both codes in line with the coupled setup.

– CPL CFD/MD init – Input CFD/MD parameters required to setup coupler parameters.

Using a minimal set of parameters from both the CFD and MD code, together with

the coupler input file, the entire coupling relationship between both domains is setup.

The parameters are a minimal set of required and an extended range of optional ar-

guments passed to the CPL CFD/MD init function. A hierarchy of communicators are

established as part of the mapping process, including communicators containing only

topologically overlapping processors CPL OLAP COMM and an optimised communicator

based on the network topology of the overlapping processors CPL GRAPH COMM derived

from the MPI graph function. The details of the communicators are largely hidden

from the user as described in the next section.

• Exchange The exchange routines are the core part of the coupler library. They include

the following subroutines:

– CPL gather – CFD processors gather required data from overlapping MD processors.

– CPL scatter – CFD processors scatter required data to overlapping MD processors.

– CPL send – Send from current realm to overlapping processors on other realm.

– CPL recv – Receive on current realm to overlapping processors on other realm.

All routines require two inputs; an array containing data for all the cells on the calling

processor and the global cell numbers specifying the location and range (global extents)

of the subset of these cells that the user wants to exchange. The use of global extents

prevents the user from requiring any knowledge of the processor’s local numbering system,

communicators or the mapping between domains. The global cell number conventions used

in exchanges are identical on all processors, so the same input is used on the corresponding

exchange routine in the other realm. Only processors with cells in the specified region

send and receive the data between the domains. The data array can be of arbitrary size,

allowing any number of properties to be exchanged (e.g . density (1), velocity (3) or stresses

(9)). As an example, consider sending the MD velocity to be used as the CFD boundary

condition for the setup discussed in chapter 2 (Specifically Figure 2.2). Each MD processor

averages the velocity and passes its local array of 3 averaged velocity components per cell

to CPL send. The extents are specified to include all global CFD cells in xz plane at the

CFD minimum cell location in y. Every CFD processor posts a corresponding CPL recv

with the same global extents. Every CFD processor on the bottom of the domain then

receives an array containing the required boundary cells per processor.

• Enquiry A library of functions to retrieve parameters defined in the other realm or internal

to the coupler. The use of intent out on all enquiry routines forces the user to make local

copies of the returned variables. This is a further safeguard against corruption of data in

the coupler and the associated side effects.

– CPL get – Returns any parameter considered protected public in the coupler li-

brary.

– CPL Cart coords – Returns processor cartesian topology for any processor on either

realm.

– CPL COMM rank – Returns processor rank in any of the communicators

– CPL extents – Various extent routines to return cells on the current processor, in
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the overlap region or for arbitrary INPUT=limits subject to the limits of the current

processor and overlap region.

As the coupled topology is set-up at the beginning, all processors have a copy of all

processor information in both regions. As a results, the enquiry routines require no

communication.

As data from the MD and CFD codes must be manipulated before being passed to the

CPL, it is recommended that coupler calls be done in socket routines which contain code written

specifically for a given CFD or MD implementation. Calls to the coupler routines in either code

can be removed by the use of pre-processing flags or dummy socket routines to allow each code

to continue to function separately.

The following flowchart in Figure 3.4.1 shows the conceptual operation of a typical coupled

setup.

CFD MD

Create CFD INTRA COMM Create MD INTRA COMM

Create INTER COMM Create INTER COMM

read CFD.in read MD.in

CFD setup

CPL CFD init(...) CPL MD init(...)

MD setup

Send CFD to MD Constraint force

CFD Main MD Main

Boundary condition
Average & Send

MD to CFD

Write restart Write restart

finish finish

Figure 3.17: Flowchart outlining a coupled simulation using the CPL-library. The pink boxes

are coupled operations, while the white boxes are internal CFD (left) and MD (right) operations.
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(a) Parallel speedup of the MD solver only (×), coupled code (◦) against the ideal
speedup (−−)

Figure 3.18: Scalability of the coupled application. The data for this plot was obtained from
runs on HECToR as part of the work detailed in Anton & Smith (2012).

3.4.2 Benchmarking and scalability of the coupled algorithm

As the coupling module is expected to load balance between both simulations and interface them

efficiently, it is reasonable to expect that the coupled code will scale as well as the individual

codes. The coupling region is local and can be decomposed spatially for parallel computations

in the same manner as both of the codes it couples. As there is no greater requirement for

communication in the coupling region, the observed scaling should be similar.

For the case of laminar Couette flow, the computational requirements of the continuum solver

are almost negligible, and the continuum solver is run on a single processor with 64 cells in x

and 7 in y. The speedup of the coupled code therefore depends almost entirely on the scaling of

the MD solver and the coupler. If the coupler is performing efficiently, this combined speedup

can be expected to be similar to the scaling of the MD solver alone. The scaling of the coupler

is compared to

StreamMDin Figure 3.18a, up to 1024 processes. The system size (N = 3, 317, 760) is the same

as used in the previous all MD scaling tests, section 3.2.4. The coupled timestep ratio is 50.

Figure 3.18a demonstrates that the couplers performance only slightly deteriorates speedup.

It is therefore not a severe bottleneck of performance of the coupled codes.

3.4.3 Verification of the Coupler

A part of the development of the coupler library, simple functions (e.g . sinusoidal profiles) are

used to verify the passing is implemented correctly. A testing suite was written to ‘soak test’

the various coupler routines for a wide range of processor topologies in both the CFD and MD
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Figure 3.19: Coupled schematic showing a typical setup used in a coupling scheme, including
arrows to denote the velocities in the continuum and the applied forces in the molecular (con-
straint and boundary forces). The crosses denote the locations at which the boundary conditions
are specified in the CFD code by setting the values of the halo cells (grey). The key dimensions
required to entirely define the coupled simulation are included and defined in the text for the
various cases described in this section.

domains.

In this subsection, the coupler will be verified using three different types of coupling scheme

from the literature. These include the state coupling of O’Connell & Thompson (1995) and Nie

et al. (2004a) both discussed in section 2.5.2 as well as the flux coupling scheme of Flekkøy et al.

(2000) discussed in section 2.5.3. These three coupling schemes will be revisited in chapter 5

where several interesting feature will be highlighted. A general schematic for the cases in this

section is shown in Figure 3.19.

O’Connell & Thompson (1995)

The paper by O’Connell & Thompson (1995) presented an investigation of a sliding bottom wall

in the molecular dynamics region with a fixed top wall in the continuum region. The bottom wall

accelerates from stationary with a decaying exponential velocity of the form uw(t) = U(1−e−t/t0)

where U = 1 and t0 = 160 in LJ units. The results of O’Connell & Thompson (1995) are recreated

in Figure 3.20 as part of the coupler verification. These results are compared to the time evolving

analytical solution provided in the thesis of O’Connell (1995). The essential parameters of the

setup are identical and the reader is referred to O’Connell & Thompson (1995) for full details.

Only the main parameters and differences are summarised here. The molecular domain had

dimensions 11.9 × 18.7 × 8.5 at ρ = 0.81 resulting in N = 1330 molecules. The cutoff length

was rc = 2.2 and the temperature T = 1.1. A bottom wall of thickness 2.34 was kept in place

using the Petravic & Harrowell (2006) tethering potential introduced in section 3.2.5. The same

density was used for the solid walls and the wall/fluid interaction potential ǫ = 1.0 was chosen
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Figure 3.20: Coupled MD-CFD start-up plate simulation using the O’Connell & Thompson
(1995) coupling scheme. The results are plotted at the same times as the work of O’Connell
& Thompson (1995), t = 100, 200, 300, 400. Note the (bottom) MD wall slides and the (top)
continuum is fixed.

instead of the 0.6 used by O’Connell & Thompson (1995). The domain was terminated by

the O’Connell & Thompson (1995) boundary force ( Eq. (2.80)) applied at the top to prevent

molecules escaping. Application of this boundary force results in a compression of the MD

system causing the propagation of a shock wave. To prevent this effect, a number of molecules

are removed to ensure the density remains at the intended ρ = 0.81 in the presence of the

boundary force. A Nosè-Hoover thermostat was applied instead of the Langevin thermostat used

in O’Connell & Thompson (1995). A number of thermostatting strategies were tested including z-

component only, profile unbiased thermostat (PUT) and wall only thermostatting. No discernible

difference was found in the behaviour of the profile when compared to the analytical solution.

The setup of the coupled case was specified by the various parameters in Figure 3.19, including

molecular domain top, y+
MD

= 18.7, CFD domain bottom y−
CF D

= 9.34, total coupled domain

height H = 25.68 and cell size ∆y = 2.34. The overlap region consists of four overlap cells. The

arbitrary coupling strength coefficient is set to ξ = 0.01, as in O’Connell & Thompson (1995).

Molecules in the top MD cell experience the boundary force ( Eq. (2.80)) to prevent them

escaping the domain. In addition, the top cell, together with the cell below, experiences a

constrained force ( Eq. (2.72a)/ Eq. (2.72b)) to force the average molecular velocity inside to

match the continuum. The halo cell for the CFD was obtained by averaging the momentum,

Eq. (2.68), in the pure MD region at the location covered by the bottom grey cell in Figure 3.19.

The coupling was verified first using the 2D simple finite volume CFD solver outlined in

section 3.3.1 with fixed top boundary condition and bottom boundary passed from the MD region.

The CFD solver used a viscosity of µ = 2.14 (or equivalent Reynolds number of Re = 0.378)

which was matched to the MD value obtained from Green-Kubo (Green, 1954; Kubo, 1957)

calibration calculations.



Chapter 3. Computational Development 97

Figure 3.21: Coupled MD-CFD impulse started plate simulation using the Nie et al. (2004a)
coupling scheme. The results are plotted at the same times as in the work of Nie et al. (2004a),
t = 10, 40, 75, 150, 1500, denoted by the varying analytical lines.

Good agreement was observed to the analytical solution for an accelerating plate. The setup

of this problem applies the moving boundary condition in the molecular region, which in turn

drives the continuum due to the coupling between them.

This model implements no mass flux and the scaling parameters ξ is said to cause lagging

behind the continuum solution in time evolving flows by Nie et al. (2004a). The coupling method

presented in the work of Nie et al. (2004a) is claimed to ameliorate this problem. The imple-

mentation of this method using the CPL library is presented in the next section.

Nie et al. (2004a)

This section implements the coupled simulation of Nie et al. (2004a). The setup of the coupled

simulation in this section aims to be similar to that of the previous section while matching the

essential parameters of Nie et al. (2004a). As before, the reader is referred to the original work

(Nie et al., 2004a) for full details of the setup used. The simulation is impulse started Couette

flow, where the top wall in the CFD domain was moved at a velocity of uw(t) = 1 and the bottom

wall in the molecular region was stationary.

The MD domain size was 34.06× 34.06× 34.06 with a density of ρ = 0.81 giving N = 27, 200

molecules. The molecular domain was simulated on 4 processes with topology 2 × 2 × 1. The

bigger domain size provides better statistics and each cell was twice the size (in each direction)

of those used by O’Connell & Thompson (1995). Nie et al. (2004a) use the average of 10 MD

ensembles, each of width 4.82, to provide boundary conditions for a single CFD instance. The

implementation here instead uses a wider domain in z and a single MD simulation. A bottom

wall of thickness 2.62 was kept in place using the Petravic & Harrowell (2006) tethering potential

introduced in the NEMD section 3.2.5. The same density was used for the solid walls and fluid
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(a) Velocity (b) Stresses

Figure 3.22: Velocity (left) and stress (right) plotted at times t = 10 and at steady state t→ ∞
using the Nie et al. (2004a) type constraint.

regions and for simplicity the wall/fluid interaction potential is set to ǫ = 1.0, instead of the 0.6

used by Nie et al. (2004a). The cutoff length was rc = 2.2 and the temperature T = 1.1. A Nosè-

Hoover thermostat was applied instead of the Langevin. Again application of the thermostat in z

only, in a profile unbiased manner or simply thermostatting the wall results in similar agreement

to the Couette flow time-evolving analytical solution shown in Figure 3.21.

The setup of the coupled case was specified by molecular domain top, y+
MD

= 31.3, CFD

domain bottom y−
CF D

= 15.6, total coupled domain height H = 52.1 and cell size ∆y = 5.12.

The overlap was of size 15.6, split into four overlap cells. Molecules in the top MD cell are

subjected to the boundary forces ( Eq. (2.81)) to prevent them from escaping. In addition, the

top cell, together with the cell below, experiences a constrained force ( Eq. (2.75)) to ensure

average molecular velocities are matched to the continuum. The halo for the CFD was obtained

by averaging the pure MD region below the overlap region. The ratio of timesteps between the

MD and CFD simulations was 50.

The coupling was verified using the 2D simple finite volume CFD solver and full 3D DNS

code T ransF low (run on a single processor). Both CFD solvers used a viscosity of µ = 2.14 (or

equivalent Reynolds number).

The velocity against time shows good agreement to the analytical solution in Figure 3.22a.

The stress in both the CFD and MD simulation can also be evaluated for the coupled case

and the agreement compared to the analytical solution for stress (see appendix A Eq. (A.12)).

In the MD region, the stress was obtained from the volume average (VA) localisation of the

virial stress (Cormier et al., 2001) discussed in section 2.62. In the CFD region, the stress can

be calculated using the hydrodynamic pressure, the gradient of velocity and the shear viscosity

via Eq. (2.48). The stress in both simulations and across the coupled region can be seen to

match the analytical solution as shown in Figure 3.22b. The constraint on velocity can be seen

to ensure the stress is also matched between both domain. In the next section, the stress itself

is constrained, using the flux coupling schemes of Flekkøy et al. (2000).
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Figure 3.23: Coupled MD-continuum impulse started plate simulation using the Flekkøy et al.
(2000) coupling scheme at t = 100, 400, 750, 1500, 15000, denoted by the varying analytical lines.

Flekkøy et al. (2000)

The final verification case is based on the flux coupling work of Flekkøy et al. (2000), who model

Couette flow using an MD domain between two CFD regions. The results presented are only

for steady state Couette flow. This section extends these results to verify the time evolution of

a coupled Couette flow with flux coupling. A much larger molecular domain was used to test

the coupler for large system sizes. This also addresses the higher averaging requirement of flux

coupling outlined in section 2.5.3. The MD domain size was 164.2×51.3×41.0 at density ρ = 0.8,

resulting in N = 276, 480 molecules. The molecular domain was simulated on 32 processes with

topology 8 × 2 × 2. The bottom wall was tethered with a thickness of 5.13 and a Nosé-Hoover

thermostat was applied to only the wall molecules with a temperature setpoint of T = 1.0. The

WCA potential was used (rc = 2
1
6 ) for computational efficiency.

The paper by Flekkøy et al. (2000) is unclear of exact domain sizes but states that cells of

size 7.6 are employed with 10 cells shown in the MD domain on their Fig. 2 (i .e. an MD domain

of 76.0). This MD region is sandwiched between two CFD domains in Flekkøy et al. (2000) with

a coupling region on each side of width 22.8. Only one sided coupling was used here, again based

on the setup shown in Figure 3.19. A domain of similar height without the bottom coupling

region was used, y+
MD

= 46.17. The cells were chosen to be slightly smaller than Flekkøy et al.

(2000) and consistent with Nie et al. (2004a) at ∆y = 5.13. The continuum domain bottom was

located at y−
CF D

= 25.65 and the total domain was twice the size of Nie et al. (2004a) with a

height of H = 107.8

The constraint force of Flekkøy et al. (2000) given in Eq. (2.91) with weighting function

Eq. (2.92) applies both the appropriate direct pressure and shear pressure to the MD domain.

As the pressure applied is not designed to prevent molecules from escaping, only to match the

continuum pressure, specular walls are also employed. These reflect molecules back with identical

x and z velocities and exactly opposite y components of velocity. Specular walls are chosen as
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(a) Velocity (b) Stresses

Figure 3.24: Velocity (left) and stress (right) plotted at times t = 100 and at steady state
t→ ∞ using the Flekkøy et al. (2000) constraint.

the continuum solver was incompressible and does not expect a mass flow into the bottom of the

continuum domain, therefore restricting mass flux is consistent. Moving these walls with a mean

velocity, as in the work of (Werder et al., 2005), was unnecessary as the mean flow rate in the

wall normal direction is, on average, zero for this case.

The viscosities are also matched in this simulation with continuum viscosity set to µ = 1.6

(again from Green-Kubo autocorrelation functions). The coupling was between the MD and the

full 3D DNS code T ransF low with Reynolds number Re = 0.5. The parallel nature of the DNS

code was employed with the 32 × 16 × 8 CFD cells split between 4 × 2 × 1 processes.

The coupled solution for velocity is compared to the analytical solution in Figure 3.23. Good

agreement is observed at equivalent times to those shown for Nie et al. (2004a) in the previous

section. As the domain is over 3 times the size of the previous Nie et al. (2004a) case, the time

scales are proportional to the square of the domain height and are scaled accordingly. Note the

greater number of symbols due to the much greater numbers of cells in both domains.

As the stress in both regions was matched by the coupler, this is seen to match in Figure

3.24b. The velocity can also be seen to agrees in Figure 3.24a as a result of this stress matching

scheme. The near wall agreement in Figure 3.24a appears to be superior to the Nie et al. (2004a)

coupling shown in Figure 3.22a. This is a consequence of the larger system size which reduces

the effect of near wall molecular behaviour and improves velocity averages.

The halo for the CFD (bottom grey cells in Figure 3.19) was obtained by averaging the

momentum in the pure MD domain below the overlap region in line with Eq. (2.68). This is a

departure from the work of Flekkøy et al. (2000) who average the stresses from the MD region

in line with Eqs. (2.87) and (2.88). The manner in which to obtain the stress tensor from the

MD is not clear (as discussed in section 2.4.3), so the averaging of stress will be deferred until

the CV form is developed in chapter 4. This mixed coupling is based on the work of Ren (2007),

where flux-state coupling is found to be stable, while flux-flux coupling was found to be unstable.

There are also concerns about the sample requirements, which are said to be prohibitive for flux

schemes in Hadjiconstantinou et al. (2003). However, a parameter study of error in appendix E

of this work demonstrate these averages requirements for flux shemes, while often large, are not

prohibitive for all cases. Despite this, the mixed flux-state exchange was deemed to be a simpler
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(a) Viscosity µCFD = 10.0, µMD = 2.14 (b) Viscosity µCFD = 10.0, µMD = 2.14

Figure 3.25: Velocity and stress evolution at similar couette profile development times to Fig
3.22 using the Nie et al. (2004a) type constraint. Note the scale on the axis is four times that
used in Figure 3.22.

and more robust way to test the coupling software.

Having verified the coupler gives identical results using both flux and state coupling, the

impact of specifying the wrong viscosity is evaluated in the next section. The validity of state

based coupling schemes is shown to be contingent on a consistent viscosity being specified in

both domains. The impact of this finding is then discussed.

3.4.4 Mismatched Viscosity in Couette Flow

The case of coupled Couette flow with a mismatch of viscosity between the continuum and

molecular systems is considered in this subsection.

When coupling the continuum and molecular systems, the scaling between the two regions

must be consistent. As discussed in sections 2.2 and 2.3 the continuum and molecular domains

are scaled based on different parameters. The molecular region is based on length scale ℓ, mass

m and energy ǫ, while the continuum is dependent on the Reynolds number Re = ρUL/µ.

The two regions are matched by ensuring the length scales ℓ vs. L and densities ρ
CF D

vs.

ρ
MD

= ρ
MD

(m, ℓ) are consistent. The velocity or stress matching is then ensured by the coupling

mechanism. Viscosity is a tuneable parameter in the continuum but it is a measureable quantity

in a molecular simulation, not an input parameter. Nie et al. (2004a) use a viscosity of µ = 2.14

based on previous simulations. As shown in the previous subsection, using this pre-matching

of viscosity, good agreement is observed for both the velocity and stress between both systems,

Figure 3.22. For the case where the viscosities are not the same in both regions, the velocity

profiles can be seen to match but the stresses do not, Figure 3.25. Consider next the flux couping

of Flekkøy et al. (2000). The use of the same viscosity in both domain (µ = 1.6) obtained by

prior simulation, Figure 3.24 in the previous subsection showed good agreement for both velocity

and stresses. The use of different viscosity in both regions results in disagreement in the velocity

but good agreement in the stresses, Figure 3.26.

The results for a mismatched stress in figure 3.26 are consistent with the simulation of two

phase fluids with different viscosities. Molecular fluid will typically experience different viscosity

measurements in the vicinity of the walls or at high shear rates (shear thinning). By using state
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(a) Viscosity µCFD = 10.0, µMD = 2.14 (b) Viscosity µCFD = 10.0, µMD = 1.6

Figure 3.26: Velocity and stress evolution at similar couette profile development times to Fig
3.24 using the Flekkøy et al. (2000) constraint.

coupling, this behaviour would not be correctly transmitted to the CFD realm as a constant

viscosity is implicitly assumed throughout the MD. In addition, it is possible to unknowingly

simulate cases with viscosity difference and still obtain apparently correct velocity profiles. The

conclusion is that the flux coupling scheme are more general, require no assumption of the

viscosity in the MD region and simply apply a force consistent with the current state of stress in

the CFD.

The results from this study of mismatched viscosity suggest that a more stringent set of tests

are required in order to establish the consistency between the two realms of a coupled simulation,

a problem that motivates the next chapter with the development of a consistent control volume

framework for both systems. In addition, flux coupling scheme are more general and should

be preferred in the computational implementation of a general purpose coupling simulation tool,

which was the aim of this chapter. As they are not currently derived from a constrained dynamics

approach, some theoretical development is required and this motivates the work in chapter 5.

This section has introduced a coupling library for simulation of large scale cases on many

processors. The intention was to couple simulations which approach scales of engineering interest,

including the modelling of turbulent phenomenon. However, there are a number of problems to

overcome before a generalised coupling scheme can be implemented. The overview of this chapter

is given in the next section.

3.5 Overview

This chapter includes the details of the software developments and verifications in the develop-

ment of a coupled continuum-molecular solver. In order to couple molecular dynamics (MD) to

continuum computational fluid mechanics (CFD), a new MD code was developed, a CFD code

was adapted and a coupling library designed to manage the data exchange between them.

In section 3.2, the details of the development and testing of a new MD code were presented.

The MD code was designed to use cell/neighbour lists, Hilbert curve re-ordering and other

optimisations to obtain similar serial speeds to LAMMPS. The code is then parallelised using

MPI to allow running on high performance computing platforms. The parallel performance is
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tested and shows 94% efficiency when scaling from 8 processors to 1024. The MD code was verified

by checking the energy conservation, trajectory agreement (and divergence), radial distribution

function, phase diagrams and simulation of Couette flow. The optimised MD code is therefore

ready for large-scale simulation of molecular dynamics and coupling problems, and is applied in

the next two chapters.

Section, 3.3, outlined the development and verification of a simple CFD code. This was used

as part of the development of the coupling library and for simple CFD test cases. For more

complicated cases, the T ransF low DNS code was used. Scaling properties of T ransF low are

provided demonstrating the code is 94.4% efficient when scaling from 16 cores to 768.

The final part of this chapter, section 3.4, outlined the development of a robust and minimal

coupling (CPL) library. This was designed as a language independent APIs using FORTRAN

2008, which implements the data exchange between the CFD and MD codes. Implementation

of coupling should be as simple as initialising the CPL module by passing the key simulation

parameters from both MD/CFD codes. The data can be exchanged by CPL send/CPL recv calls

which ensure all data is passed correctly. The library was soak tested and verified for range of

cases and topologies from the literature (O’Connell & Thompson, 1995; Nie et al., 2004a; Flekkøy

et al., 2000). In order to test the scaling of the coupler, performance of a CPL simulation was

compared to an uncoupled case. The difference in speedup on 1024 processor was found to be 575

for the full MD and 449 for a coupled case, compared to the ideal 1024. The coupler is therefore

seen to have minimal impact on the scaling of the two codes.

The conclusion of this chapter is that all three codes are ready for large-scale simulations.

However, the conceptual and mathematical framework for a general-purpose simulation of turbu-

lent flow is not yet developed. Therefore, the next two chapters are dedicated to the development

of this framework. The CPL library is ready for the time when coupled simulation is possible on

a large scale.
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Chapter 4

The Control-Volume Representation of

Molecular Dynamics

4.1 Introduction

It is advantageous to cast the fluid dynamics equations in a consistent form for both the molec-

ular, mesoscale and continuum approaches. This objective is achieved using a Control Volume

(CV) formulation applied to a molecular system. This is one of the main innovations of this

work, as the construction enables a formally rigorous link between the continuum and discrete

formulations. The resulting CV operator is instrumental in the derivation of rigorous localised

constraint equations for use in coupled simulations in the next chapter. The work in this chapter

is a slightly more thorough version of a manuscript published in Physical Review E (Smith et al.,

2012). It is expected that the methodology developed in this chapter will be applicable to a wide

range of non-equilibrium molecular dynamics problems.

The Control Volume approach is widely adopted in continuum fluid mechanics, where Reynolds

Transport Theorem (Reynolds, 1903) relates Newton’s laws of motion for macroscopic fluid

parcels to fluxes through a CV. In this form, fluid mechanics has had great success in simu-

lating both fundamental (Zaki & Durbin, 2005, 2006) and practical (Hirsch, 2007; Rosenfeld

et al., 1991; Zaki et al., 2010) flows. However, when the continuum assumption fails, or when

macroscopic constitutive equations are lacking, a molecular-scale description is required. Ex-

amples include nano-flows, moving contact lines, solid-liquid boundaries, non-equilibrium fluids,

and evaluation of transport properties such as viscosity and heat conductivity (Evans & Morriss,

2007).

Molecular Dynamics (MD) involves solving Newton’s equations of motion for an assembly of

interacting discrete molecules. Averaging is required in order to compute properties of interest,

e.g. temperature, density, pressure and stress, which can vary on a local scale especially out

of equilibrium (Evans & Morriss, 2007). As discussed in section 2.4, a rigorous link between

mesoscopic and continuum properties was established in the seminal work of Irving & Kirkwood

(1950), who related the mesoscopic Liouville equation to the differential form of continuum

fluid mechanics. However, the resulting equations at a point were expressed in terms of the

Dirac δ function 1 — a form which is difficult to manipulate and cannot be applied directly in

a molecular simulation. Furthermore, a Taylor series expansion of the Dirac δ functions was

1Strictly a generalised function.
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Figure 4.1: The CV function and its derivative applied to a system of molecules. The figures
were generated using the VMD visualisation package, (Humphrey et al., 1996). From left to right,
(a) Schematic of ϑi which selects only the molecules within a cube, (b) Location of cube centre
r and labels for cube surfaces, (c) Schematic of ∂ϑi/∂x which selects only molecules crossing the
x+ and x− surface planes.

required to express the pressure tensor. The final expression for pressure tensor is neither easy

to interpret nor to compute (Zhou, 2003). As a result, there have been numerous attempts to

develop an expression for the pressure tensor for use in MD simulation, as discussed in section

2.4.3 (Parker, 1954; Noll, 1955; Tsai, 1978; Todd et al., 1995; Han & Lee, 2004; Hardy, 1982;

Lutsko, 1988; Cormier et al., 2001; Zhou, 2003; Murdoch, 2007, 2010; Schofield & Henderson,

1982; Admal & Tadmor, 2010). Some of these expressions have been shown to be equivalent in

the appropriate limit. For example, Heyes et al. (2011)) demonstrated the equivalence between

the Method of Planes (MOP Todd et al. (1995)) and Volume Average (VA Lutsko (1988)) in the

limiting case of a zero thickness volume.

In order to avoid use of the Dirac δ function, the current work adopts a Control Volume

representation of the MD system, written in terms of fluxes and surface stresses. This approach is

in part motivated by the success of the control volume formulation in continuum fluid mechanics.

At a molecular scale, control volume analyses of NEMD simulations can facilitate the evaluation of

local fluid properties. Furthermore, the CV method also lends itself to coupling schemes between

the continuum and molecular descriptions, as discussed in section 2.5 (O’Connell & Thompson,

1995; Hadjiconstantinou, 1998; Li et al., 1997; Hadjiconstantinou, 1999; Flekkøy et al., 2000;

Wagner et al., 2002; Delgado-Buscalioni & Coveney, 2003a; Curtin & Miller, 2003; Nie et al.,

2004a; Werder et al., 2005; Ren, 2007; Borg et al., 2010).

In section 4.2, a Lagrangian to Control Volume (LCV ) conversion function is used to express

the mesoscopic equations for mass and momentum fluxes. Section 4.2.3 focuses on the stress

tensor, and relates the current formulation to established definitions within the literature (Lutsko,

1988; Cormier et al., 2001; Todd et al., 1995). In Section 4.3, the CV equations are derived for

a single microscopic system, and subsequently integrated in time in order to obtain a form

which can be applied in MD simulations. The conservation properties of the CV formulation are

demonstrated in NEMD simulations of Couette flow in Section 4.4. Finally, the key equations of

this chapter are summarised and the main results outlined in the concluding section 4.5.
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4.2 The Control Volume Formulation

In order to cast the governing equations for a discrete system in CV form, a ‘selection function’

ϑi is introduced, which isolates those molecules within the region of interest. This function is

obtained by integrating the Dirac δ function, δ(ri − r), over a cuboid in space, centred at r and

of side length ∆r as illustrated in figure 4.1a 2. Using δ(ri − r) = δ(xi − x)δ(yi − y)δ(zi − z),

the resulting triple integral is,

ϑi ≡
x+
∫

x−

y+
∫

y−

z+
∫

z−

δ(xi − x)δ(yi − y)δ(zi − z)dxdydz

=

[[[

H(xi − x)H(yi − y)H(zi − z)

]x+

x−

]y+

y−

]z+

z−

=
[
H(x+ − xi) −H(x− − xi)

]

×
[
H(y+ − yi) − H(y− − yi)

]

×
[
H(z+ − zi) − H(z− − zi)

]
, (4.1)

where H is the Heaviside function, and the limits of integration are defined as, r− ≡ r − ∆r
2 and

r+ ≡ r + ∆r
2 , for each direction (see Fig. 4.1b). Note that ϑi can be interpreted as a Lagrangian-

to-Control-Volume conversion function (LCV ) for molecule i. It is unity when molecule i is

inside the cuboid, and equal to zero otherwise, as illustrated in Fig. 4.1a. Using L’Hôpital’s rule

and defining, ∆V ≡∆x∆y∆z, the LCV function for molecule i reduces to the Dirac δ function

in the limit of zero volume,

δ(r − ri) = lim
∆V →0

ϑi

∆V
.

The spatial derivative in the x direction of the LCV function for molecule i is,

∂ϑi

∂x
= −∂ϑi

∂xi
=
[
δ(x+ − xi) − δ(x− − xi)

]
Sxi, (4.2)

where Sxi is

Sxi ≡
[
H(y+ − yi) − H(y− − yi)

]

[
H(z+ − zi) − H(z− − zi)

]
. (4.3)

Eq. (4.2) isolates molecules on a 2D rectangular patch in the yz plane. The derivative ∂ϑi/∂x

is only non-zero when molecule i is crossing the surfaces marked in Fig. 4.1c, normal to the x

direction. The contribution of the ith molecule to the net rate of mass flux through the control

surface is expressed in the form, pi · dSi. Defining for the right x surface,

dS+
xi ≡ δ(x+ − xi)Sxi, (4.4)

2The cuboid is chosen as the most commonly used shape in continuum mechanic simulations on
structured grids, although the process could be applied to any arbitrary shape
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and similarly for the left surface, dS−
xi, the total flux Eq. (4.2) in any direction r is then,

∂ϑi

∂r
= dS+

i − dS−
i ≡ dSi. (4.5)

The LCV function is key to the derivation of a molecular-level equivalent of the continuum CV

equations, and it will be used extensively in the following sections. The approach in sections

4.2.1, 4.2.2 and 4.2.8 shares some similarities with the work of Serrano & Español (2001) which

considers the time evolution of Voronoi characteristic functions. However the LCV function has

precisely defined extents which allows the development of conservation equations for a microscopic

system. In the following treatment, the CV is fixed in space (i.e., r is not a function of time).

The extension of this treatment to an advecting CV is made in Appendix C.1.

4.2.1 Mass Conservation for a Molecular CV

In this section, a mesoscopic expression for the mass in a cuboidal CV is derived. The time

evolution of mass within a CV is shown to be equal to the net mass flux of molecules across its

surfaces.

The mass inside an arbitrary CV at the molecular scale can be expressed in terms of the

LCV as follows,

∫

V

ρ(r, t)dV =

∫

V

N∑

i=1

〈

miδ(ri − r); f

〉

dV =

N∑

i=1

x+
∫

x−

y+
∫

y−

z+
∫

z−

〈

miδ(ri − r); f

〉

dxdydz=

N∑

i=1

〈

miϑi; f

〉

.

(4.6)

Taking the time derivative of Eq. (4.6) and using Eq. (2.33),

∂

∂t

∫

V

ρ(r, t)dV =
∂

∂t

N∑

i=1

〈

miϑi; f

〉

=

N∑

i=1

〈
pi

mi
· ∂

∂ri
miϑi + Fi ·

∂

∂pi
miϑi; f

〉

. (4.7)

The term ∂miϑi/∂pi = 0, as ϑi is not a function of pi. Therefore,

∂

∂t

∫

V

ρdV = −
N∑

i=1

〈

pi ·
∂ϑi

∂r
; f

〉

, (4.8)

where the equality, ∂ϑi/∂ri = −∂ϑi/∂r has been used. From the continuum mass conservation

given in Eq. (2.35), the macroscopic and mesoscopic fluxes over the surfaces can be equated,

6∑

faces

∫

Sf

ρu · dSf =

N∑

i=1

〈

pi · dSi; f

〉

. (4.9)

The mesoscopic equation for evolution of mass in a control volume is given by,

∂

∂t

N∑

i=1

〈

miϑi; f

〉

= −
N∑

i=1

〈

pi · dSi; f

〉

. (4.10)

Appendix C.2 shows that the surface mass flux yields the Irving & Kirkwood (1950) expression

for divergence as the CV tends to a point (i.e. V → 0), in analogy to Eq. (2.40).
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4.2.2 Momentum Balance for a Molecular CV

In this section, a mesoscopic expression for time evolution of momentum within a CV is derived.

The starting point is to integrate the momentum at a point, given in Eq. (2.54), over the CV,

∫

V

ρ(r, t)u(r, t)dV =

N∑

i=1

〈

piϑi; f

〉

. (4.11)

Following a similar procedure to that in section 4.2.1, Eq. (2.33) is used to obtain the time

evolution of the momentum within the CV,

∂

∂t

∫

V

ρ(r, t)u(r, t)dV =
∂

∂t

N∑

i=1

〈

piϑi; f

〉

=
N∑

i=1

〈
pi

mi
· ∂

∂ri
piϑi

︸ ︷︷ ︸

KT

+Fi ·
∂

∂pi
piϑi

︸ ︷︷ ︸

CT

; f

〉

, (4.12)

where the terms KT and CT are the kinetic and configurational components, respectively. The

kinetic part is,

KT =

N∑

i=1

〈
pi

mi
· ∂

∂ri
piϑi; f

〉

=

N∑

i=1

〈
pipi

mi
· ∂ϑi

∂ri
; f

〉

, (4.13)

where pipi is the dyadic product. For any surface of the CV, here x+, the molecular flux can be

equated to the continuum convection and pressure on that surface,

∫

S+
x

ρ(x+, y, z, t)u(x+, y, z, t)ux(x+, y, z, t)dydz +

∫

S+
x

K+
x dydz =

N∑

i=1

〈
pipix

mi
dS+

xi; f

〉

,

where K+
x is the kinetic part of the pressure tensor due to molecular transgressions across the

x+ CV surface. The average molecular flux across the surface is then,

{ρuux}+ + K+
x =

1

∆A+
x

N∑

i=1

〈
pipix

mi
dS+

xi; f

〉

, (4.14)

where the continuum expression {ρuux}+ is the average flux through a flat region in space with

area ∆A+
x = ∆y∆z. This kinetic component of the pressure tensor is discussed further in Section

4.2.3.

The configurational term of Eq. (4.12) is,

CT =

N∑

i=1

〈

Fi ·
∂

∂pi
piϑi; f

〉

=

N∑

i=1

〈

Fiϑi; f

〉

, (4.15)

where the total force Fi on particle i is the sum of pairwise-additive interactions with potential

φij , and from an external potential ψi.

ϑiFi = −ϑi
∂

∂ri





N∑

j 6=i

φij + ψi



 .

It is commonly assumed that the potential energy of an interatomic interaction, φij , can be
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divided equally between the two interacting molecules, i and j, such that,

N∑

i,j

ϑi
∂φij

∂ri
=

1

2

N∑

i,j

[

ϑi
∂φij

∂ri
+ ϑj

∂φji

∂rj

]

, (4.16)

where the notation
∑N

i,j =
∑N

i=1

∑N
j 6=i has been introduced for conciseness. Therefore, the

configurational term can be expressed as,

CT =
1

2

N∑

i,j

〈

fijϑij ; f

〉

+
N∑

i=1

〈

fiext
ϑi; f

〉

, (4.17)

where fij = −∂φij/∂ri = ∂φji/∂rj and fiext
= −∂ψi/∂ri. The notation, ϑij ≡ϑi − ϑj , is

introduced, which is non-zero only when the force acts over the surface of the CV, as illustrated

in Fig. 4.2.

Figure 4.2: A section through the CV to illustrate the role of ϑij in selecting only the i and j

interactions that cross the bounding surface of the control volume. Due to the limited range of

interactions, only the forces between the internal (red) molecules i and external (blue) molecules

j near the surfaces are included.

Substituting the kinetic (KT ) and configurational (CT ) terms, from Eqs. (4.13) and (4.17)

into Eq. (4.12), the time evolution of momentum within the CV at the mesoscopic scale is,

∂

∂t

N∑

i=1

〈

piϑi; f

〉

= −
N∑

i=1

〈
pipi

mi
· dSi; f

〉

+
1

2

N∑

i,j

〈

fijϑij ; f

〉

+

N∑

i=1

〈

fiext
ϑi; f

〉

. (4.18)

Equations (4.10) and (4.18) describe the evolution of mass and momentum respectively within

a CV averaged over an ensemble of representative molecular systems. As proposed by Evans

& Morriss (2007), it is possible to develop microscopic evolution equations that do not require

ensemble averaging. Hence, the equivalents of Eqs. (4.10) and (4.18) are derived for a single

trajectory through phase space in section 4.3.1, integrated in time in section 4.3.2 and tested
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numerically using molecular dynamics simulation in section 4.4.

The link between the macroscopic and mesoscopic treatments is given by equating their

respective momentum Eqs. (2.36) and (4.18),

−
∮

S

ρuu · dS + Fsurface + Fbody = −
N∑

i=1

〈
pipi

mi
· dSi; f

〉

+
1

2

N∑

i,j

〈

fijϑij ; f

〉

+

N∑

i=1

〈

fiext
ϑi; f

〉

.

(4.19)

As can be seen, each term in the continuum evolution of momentum has an equivalent term in

the mesoscopic formulation.

The continuum momentum Eq. (2.36) can be expressed in terms of the divergence of the

pressure tensor, Π, in the control volume from,

∂

∂t

∫

V

ρudV = −
∮

S

[ρuu + Π] · dS + Fbody (4.20a)

= −
∫

V

∂

∂r
· [ρuu + Π] dV + Fbody. (4.20b)

In the following subsection, the right hand side of Eq. (4.19) is recast first in divergence form as

in Eq. (4.20b), and then in terms of surface pressures as in Eq. (4.20a).

4.2.3 The Pressure Tensor

The average molecular pressure tensor ascribed to a control volume is conveniently expressed

in terms of the LCV function. This is shown inter alia to lead to a number of literature

definitions of the local stress tensor. In the first part of this section, the techniques of Irving &

Kirkwood (1950) are used to express the divergence of the stress (as with the right hand side of

Eq. (4.20b)) in terms of intermolecular force. Secondly, the CV pressure tensor is related to the

Volume Average (VA) formula ((Lutsko, 1988; Cormier et al., 2001)) and, by consideration of

the interactions across the surfaces, to the Method Of Planes (MOP) (Todd et al., 1995; Han &

Lee, 2004). Finally, the molecular CV Eq. (4.18) is written in analogous form to the macroscopic

Eq. (4.20a).

The pressure tensor, Π, can be decomposed into a kinetic κ term, and a configurational stress

σ. In keeping with the engineering literature, the stress and pressure tensors have opposite signs,

Π = κ − σ. (4.21)

The separation into kinetic and configurational parts is made to accommodate contention that

the kinetic term should not be included in the definition of the molecular stress tensor (Zhou,

2003; Subramaniyan & Sun, 2007; Hoover et al., 2009).

In order to avoid confusion, the stress, σ, is herein defined to be due to the forces only

(surface tractions). This, combined with the kinetic pressure term κ, yields the total pressure

tensor Π first introduced in Eq. (2.37).

4.2.4 Irving Kirkwood Pressure Tensor

As discussed in section 2.4.3, the virial expression for the stress cannot be applied locally as it is

only valid for a homogeneous system, (Tsai, 1978). The Irving & Kirkwood (1950) technique for
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evaluating the non-equilibrium, locally-defined stress resolves this issue, and is herein extended

to a CV. To obtain the stress, σ, the intermolecular force term of Eq. (4.19) is defined to be

equal to the divergence of stress,

∫

V

∂

∂r
· σdV ≡ 1

2

N∑

i,j

〈

fijϑij ; f

〉

=
1

2

N∑

i,j

∫

V

〈

fij [δ(ri − r) − δ(rj − r)] ; f

〉

dV. (4.22)

Irving & Kirkwood (1950) used a Taylor expansion of the Dirac δ functions in rij to express the

pair force contribution in the form of a divergence,

fij [δ(ri − r) − δ(rj − r)] = fij [δ(ri − r) − δ(ri − r − rij)]

= fij

[

rij ·
∂

∂ri
δ(ri − r) +

1

2
r2

ij ·
∂2

∂r2
i

δ(ri − r) +
1

3!
r3

ij ·
∂3

∂r3
i

δ(ri − r) + . . .

]

= fijrij ·
∂

∂ri

[

1 +
1

2
rij ·

∂

∂ri
+

1

6
r2

ij ·
∂2

∂r2
i

+ . . .

]

δ(ri − r) = − ∂

∂r
· fijrijOijδ(ri − r),

where rij = ri − rj and using ∂/∂riδ(ri − r) = −∂/∂rδ(ri − r) gives Oij , the so-called ‘IK’

operator which acts on the Dirac δ function,

Oij ≡
(

1 − 1

2
rij ·

∂

∂r
+ . . .− 1

n!

(

rij ·
∂

∂r

)n−1

+ . . .

)

. (4.23)

Equation (4.22) can therefore be rewritten,

∫

V

∂

∂r
· σdV = −1

2

N∑

i,j

∫

V

〈
∂

∂r
· fijrijOijδ(ri − r); f

〉

dV. (4.24)

The Taylor expansion in Dirac δ functions is not straightforward to evaluate. This operation can

be bypassed by integrating the position of the molecule i over phase space (Noll, 1955), or by

replacing the Dirac δ with a similar but finite-valued function of compact support (Hardy, 1982;

Murdoch, 2007, 2010; Admal & Tadmor, 2010). In the current treatment, the LCV function,

ϑ, is used, which is advantageous because it explicitly defines both the extent of the CV and its

surface fluxes. The pressure tensor can be written in terms of the LCV function by exploiting

the following identities (based on the Appendix of Ref. (Irving & Kirkwood, 1950)),

Oijδ(ri − r) =

1∫

0

δ(r − ri + srij)ds, (4.25)

which can be verified from the Taylor expansion of the right hand side of Eq. (4.25),

1∫

0

δ(r − ri + srij)ds =

1∫

0

[

1 + srij ·
∂

∂ri
+
s2

2
rij ·

∂2

∂r2
i

+ . . .

]

δ(ri − r)ds

=

[

1 +
1

2
rij ·

∂

∂ri
+

1

6
rij ·

∂2

∂r2
i

+ . . .

]

δ(ri − r) = Oijδ(ri − r), (4.26)



Chapter 4. The Control-Volume Representation of Molecular Dynamics 113

Equation (4.24) can therefore be written as,

∫

V

∂

∂r
· σdV = −

∫

V

1

2

N∑

i,j

〈
∂

∂r
· fijrij

1∫

0

δ(r − ri + srij)ds; f

〉

dV. (4.27)

Equation (4.27) leads to the VA and MOP definitions of the pressure tensor.

4.2.5 VA Pressure Tensor

The VA definition of the stress tensor of Lutsko (1988) and Cormier et al. (2001) can be obtained

by rewriting Eq. (4.27) using the fundamental theorem of the calculus,

∂

∂r
·
∫

V

σdV = − ∂

∂r
·
∫

V

1

2

N∑

i,j

〈

fijrij

1∫

0

δ(r − ri + srij)ds; f

〉

dV. (4.28)

Equating the expressions inside the divergence on both sides of Eq. (4.28)3 and assuming the

stress is constant within an arbitrary local volume, ∆V , gives an expression for the VA stress,

VA

σ = − 1

2∆V

∫

V

N∑

i,j

〈

fijrij

1∫

0

δ(r − ri + srij)ds; f

〉

dV. (4.29)

Swapping the order of integration and evaluating the integral of the Dirac δ function over ∆V

gives a different form of the LCV function, ϑs,

ϑs ≡
∫

V

δ(r − ri + srij)dV =
[
H(x+ − xi + sxij) −H(x− − xi + sxij)

]

×
[
H(y+ − yi + syij) − H(y− − yi + syij)

]

×
[
H(z+ − zi + szij) − H(z− − zi + szij)

]
, (4.30)

which is non-zero if a point on the line between the two molecules, ri − srij , is inside the cubic

region (c.f. ri with ϑi). Substituting the definition, ϑs (Eq. 4.30), into Eq. (4.29) gives,

VA

σ = − 1

2∆V

N∑

i,j

〈

fijrij lij ; f

〉

, (4.31)

where lij is the integral from ri (s = 0) to rj (s = 1) of the ϑs function,

lij ≡
∫ 1

0

ϑsds.

Therefore, lij is the fraction of interaction length between i and j which lies within the CV, as

illustrated in Fig. 4.3. The definition of the configurational stress in Eq. (4.31) is the same as in

the work of Lutsko (1988) and Cormier et al. (2001). The microscopic divergence theorem given

in Appendix C.1 can be applied to obtain the volume averaged kinetic component of the pressure

3The resulting equality satisfies Eq. (4.28) and both sides are equal to within an arbitrary constant
(related to choosing the gauge).



114

Figure 4.3: A plot of the interaction length given by the integral of the selecting function
ϑs defined in Eq. (4.30) along the line rij between ri and rj . The cases shown are for two
molecules which are a) both inside the volume (lij = 1) and b) both outside the volume with
an interaction crossing the volume, where lij is the fraction of the total length between i and j
inside the volume. The line is thin (blue) outside and thicker (red) inside the volume.

tensor, KT , in Eq. (4.13),

N∑

i=1

〈
pipi

mi
· dSi; f

〉

=
∂

∂r
·

N∑

i=1

VA

{ρuu} +
VA
κ

︷ ︸︸ ︷
〈

pipi

mi
ϑi; f

〉

.

Note that the expression inside the divergence includes both the advection,
VA

{ρuu}, and kinetic

(peculiar velocity) components of the pressure tensor. The VA form (Cormier et al., 2001) is

obtained by combining the above expression with the configurational stress
VA

σ ,

VA

{ρuu} +
VA

κ − VA

σ =
VA

{ρuu} +
VA

Π =
1

∆V

N∑

i=1

〈
pipi

mi
ϑi +

1

2

N∑

i,j

fijrij lij ; f

〉

. (4.32)

In contrast to the work of Cormier et al. (2001), the advection term in the above expression is

explicitly included, in order for this definition of the stress tensor to be compatible with the right

hand side of Eq. (4.20b) and definition of the pressure tensor, Π.

4.2.6 MOP Pressure Tensor

The stress in the CV can also be related to the tractions over each surface. The continuum

concept of a traction is the force acting over each surface of an infinitesimal element shown in

Figure 4.4. In analogy to the prior use of the molecular LCV function, ϑi, to evaluate the flux,

the stress LCV function, ϑs, can be differentiated to give the tractions over each surface. These

surface tractions are the ones used in the formal definition of the continuum Cauchy stress tensor.

The surface traction (i.e., force per unit area) and the kinetic pressure on a surface combined
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Figure 4.4: A schematic showing the tractions acting on the six surfaces of a infinitesimal
element, together with the surface normals.

give the MOP expression for the pressure tensor (Todd et al., 1995).

In the context of the CV, the forces and fluxes on the six bounding surfaces are required to

obtain the pressure inside the CV. It is herein shown that each face takes the form of the Han

& Lee (2004) localisation of the MOP pressure components. The divergence theorem is used to

express the left hand side of Eq. (4.27) in terms of stress across the six faces of the cube. The

mesoscopic right hand side of Eq. (4.27) can also be expressed as surface stresses by starting with

the LCV function ϑs,

6∑

faces

∫

Sf

σ · dSf = −1

2

N∑

i,j

〈

fijrij ·
1∫

0

∂ϑs

∂r
ds; f

〉

.

The procedure for taking the derivative of ϑs with respect to r and integrating over the volume

is given in Appendix C.3. The result is an expression for the force on the CV rewritten as the

force over each surface of the CV. For the x+ face, for example, this is,

∫

S+
x

σ · dSS+
x

= −1

4

N∑

i,j

〈

fij

[
sgn(x+ − xj) − sgn(x+ − xi)

]
S+

xij ; f

〉

.

The combination of the signum functions and the S+
xij term specifies when the point of intersec-

tion of the line between i and j is located on the x+ surface of the cube (see Appendix C.3).

Corresponding expressions for the y and z faces are defined by S±
αij when α = {y, z} respectively.

The full expression for the MOP pressure tensor, which includes the kinetic part given by

Eq. (4.14), is obtained by assuming a uniform pressure over the x+ surface,

∫

S+
x

Π · dS+
x = [κ − σ] · n+

x ∆A+
x ≡

[
K+

x − T+
x

]
∆A+

x = p+
x ∆A+

x , (4.33)

where n+
x is a unit vector aligned along the x coordinate axis, n+

x = [+1, 0, 0]; T +
x is the config-

urational stress (traction) and p+
x the total pressure tensor acting on a plane. Hence,
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Figure 4.5: Representation of those molecules selected through dSxij in Eq. (4.35) with
molecules i on the side of the surface inside the CV (red) and molecules j on the outside (blue).
The CV is the inner square on the figure.

p+
x =

1

∆A+
x

N∑

i=1

〈
pipix

mi
δ(xi − x+)S+

xi; f

〉

+
1

4∆A+
x

N∑

i,j

〈

fij

[
sgn(x+−xj) − sgn(x+−xi)

]
S+

xij ; f

〉

,

(4.34)

where the peculiar momentum, pi has been used as in Todd et al. (1995). If the x+ surface

area covers the entire domain (S+
xij = 1 in Eq. (4.34)), the MOP formulation of the pressure is

recovered (Todd et al., 1995).

The extent of the surface is defined through S+
xij , in Eq. (4.34) which is the localised form of

the pressure tensor considered by Han & Lee (2004) applied to the six cubic faces. For a cube

in space, each face has three components of stress, which results in 18 independent components

over the total control surface. The quantity,

dSαij ≡
1

2

[
sgn(r+α − rαj) − sgn(r+α − rαi)

]
S+

αij − 1

2

[
sgn(r−α − rαj) − sgn(r−α − rαi)

]
S−

αij ,

selects the force contributions across the two opposite faces; similar notation to the surface

molecular flux, dSij = dS+
ij − dS−

ij (c.f. Eq. (4.5)), is used. The case of the two x planes located

on opposite sides of the cube is illustrated in Fig. 4.5.

Taking all surfaces of the cube into account yields the final form,

6∑

faces

∫

Sf

σ · dSf = −1

2

N∑

i,j

〈

fij

3∑

α=1

dSαij ; f

〉

= −1

2

N∑

i,j

〈

fijñ · dSij ; f

〉

=
1

2

N∑

i,j

〈

ςij · dSij ; f

〉

.

(4.35)

The vector ñ, obtained in Appendix C.3, is unity in each direction. The tensor ςij is defined, for
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notational convenience, to be the outer product of the intermolecular forces with ñ,

ςij ≡−fijñ = −fij

[

1 1 1
]

= −






fxij fxij fxij

fyij fyij fyij

fzij fzij fzij




 .

In this form, the ϑij function for all interactions over the cube’s surface is expressed as the sum

of six selection functions for each of the six faces, i.e. ϑij = −∑3
α=1 dSαij .

4.2.7 Relationship to the continuum

The forces per unit area, or ‘tractions’, acting over each face of the CV, are used in the definition

of the Cauchy stress tensor at the continuum level. For the x+ surface, the traction vector is the

sum of all forces acting over the surface,

T+
x = − 1

4∆A+
x

N∑

i,j

〈

fij

[
sgn(x+ − xj) − sgn(x+ − xi)

]
S+

xij ; f

〉

, (4.36)

which satisfies the definition,

T±
x = σ · n±

x ,

of the Cauchy traction (Nemat-Nasser, 2004). A similar relationship can be written for both the

kinetic pressure and total pressure,

K±
x = κ · n±

x ,

p±
x = Π · n±

x ,

where n±
x is a unit vector, n±

x = [±1 0 0]T .

The time evolution of the molecular momentum within a CV ( Eq. (4.18)), can be expressed

in a similar form to the Navier-Stokes equations of continuum fluid mechanics. Dividing both

sides of Eq. (4.18) by the volume, the following form can be obtained; note that this step requires

Eqs. (4.14), (4.34) and (4.36):

1

∆V

∂

∂t

N∑

i=1

〈

pαiϑi; f

〉

+
{ρuαuβ}+ − {ρuαuβ}−

∆rβ

= −
K+

αβ −K−
αβ

∆rβ
+
T+

αβ − T−
αβ

∆rβ
+

1

∆V

N∑

i=1

〈

fαiext
ϑi; f

〉

, (4.38)

where index notation has been used (e.g. T±
x = T±

αx) with the Einstein summation convention.

In the limit of zero volume, each expression would be similar to a term in the differential

continuum equations (although the pressure term would be the divergence of a tensor and not

the gradient of a scalar field as is common in fluid mechanics). The Cauchy stress tensor, σ, is

defined in the limit that the cube’s volume tends to zero, so that T+ and T− are related by an

infinitesimal difference. This is used in continuum mechanics to define the unique nine component

Cauchy stress tensor, dσ/dx ≡ lim∆x→0[T
+ + T−]/∆x. This limit is shown in Appendix C.2 to

yield the Irving & Kirkwood (1950) stress in terms of the Taylor expansion in Dirac δ functions.
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Rather than defining the stress at a point, the tractions can be compared to their contin-

uum counterparts in a fluid mechanics control volume or a solid mechanics Finite Elements (FE)

method. Computational Fluid Dynamics (CFD) is commonly formulated using CV and in dis-

crete simulations, Finite Volume (Hirsch, 2007). Surface forces are ideal for coupling schemes

between MD and CFD. Building on the pioneering work of O’Connell & Thompson (1995),

there are many MD to CFD coupling schemes discussed in chapter 2. Finite volume algorithms

have been used extensively in coupling methods (Nie et al., 2004a; Werder et al., 2005; Delgado-

Buscalioni & Coveney, 2004; Fabritiis et al., 2006; Delgado-Buscalioni & Fabritiis, 2007) together

with equivalent control volumes defined in the molecular region. An advantage of the herein pro-

posed molecular CV approach is that it ensures conservation laws are satisfied when exchanging

fluxes over cell surfaces — an important requirement for accurate unsteady coupled simulations

as outlined in the finite volume coupling of Delgado-Buscalioni & Coveney (2004). For solid cou-

pling schemes, (Curtin & Miller, 2003), the principle of virtual work can be used with tractions

on the element corners (the MD CV) to give the state of stress in the element (Zienkiewicz,

2005),

∫

V

σ · ∇NadV =

∮

S

NaTdS, (4.39)

where Na is a linear shape function which allows stress to be defined as a continuous function of

position. It will be demonstrated numerically in the next section, 4.3, that the CV formulation is

exactly conservative: the surface tractions and fluxes entirely define the stress within the volume.

The tractions and stress in Eq. (4.39) are connected by the weak formulation and the form of

the stress tensor results from the choice of shape function Na.

4.2.8 Energy Balance for a Molecular CV

In this section, a mesoscopic expression for time evolution of energy within a CV is derived. As

for mass and momentum, the starting point is to integrate the energy at a point, given in Eq.

(2.56), over the CV,

∫

V

ρ(r, t)E(r, t)dV ≡
∫

V

N∑

i=1

〈

eiδ(ri − r); f

〉

dV =

N∑

i=1

〈

eiϑi; f

〉

, (4.40)

where the energy of the ith molecule is ei =
p2

i

2mi
+ 1

2

∑N
j 6=i φij . The aim is to compare the time

evolution of both sides of Eq. 4.40. The time evolution of energy in a continuum CV is known

to be,

∂

∂t

∫

V

ρ(r, t)E(r, t)dV +

∮

S

ρ(r, t)E(r, t)u(r, t) · dS

= −
∮

S

Q(r, t) · dS −
∮

S

Π(r, t) · u(r, t) · dS. (4.41)

Obtaining a similar time evolution of the microscopic energy in a CV is the aim of this subsection.

Taking the time derivative of the energy in the molecular control volume using the (Irving &
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Kirkwood, 1950) Louiville equation, Eq. (2.33),

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

=

N∑

i=1

〈
pi

mi
· ∂

∂ri
eiϑi + Fi ·

∂

∂pi
eiϑi; f

〉

. (4.42)

Evaluating the derivatives of the energy and CV function results in,

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

= −1

2

N∑

i,j

〈[
pi

mi
· fij +

pj

mj
· fji

]

ϑi; f

〉

−
N∑

i=1

〈

ei
pi

mi
· dSi − Fi ·

pi

mi
ϑi; f

〉

.

which can be manipulated as follows,

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

+

N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

=

N∑

i=1

〈






Fi · pi

mi
− 1

2

N∑

j 6=i

[

fij ·
pi

mi
+ fji ·

pj

mj

]





ϑi; f

〉

=

N∑

i,j

〈[

fij ·
pi

mi
−
(

fij ·
pi

2mi
+ fji ·

pj

2mj

)]

ϑi; f

〉

=

N∑

i,j

〈

fij ·
(

pi

2mi
+

pj

2mj

)

ϑi; f

〉

=

N∑

i,j

〈

fij ·
pi

2mi
(ϑi − ϑj) ; f

〉

=

N∑

i,j

〈

fijϑij ·
pi

2mi
; f

〉

(4.43)

where external forces fext are neglected and fij = −fji has been used with indices re-labelled.

The CV energy equation, Eq. (4.42), therefore becomes,

∂

∂t

N∑

i=1

〈

eiϑi; f

〉

=
1

2

N∑

i,j

〈
pi

mi
· fijϑij ; f

〉

−
N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

. (4.44)

Comparing the microscopic CV energy, Eq. (4.42), to the continuum counterpart, Eq. (4.41)

yields,

energy flux
︷ ︸︸ ︷

−
∮

S

ρEu · dS−

heat flux
︷ ︸︸ ︷∮

S

Q · dS−

pressure heating
︷ ︸︸ ︷∮

S

Π · u · dS =

−
N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

+
1

2

N∑

i,j

〈
pi

mi
· fijϑij ; f

〉

. (4.45)

In its current form, the microscopic equation does not delineate the contribution due to en-

ergy flux, heat flux and pressure heating. To achieve this division, the notion of the peculiar

momentum at the molecular location ri must be invoked. The peculiar velocity is written as

pi/mi = pi/mi + u(ri). Expressing the first term on the right of Eq. 4.45, in terms of peculiar
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velocity leads to an expression for the energy flux,

N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

=

N∑

i=1

〈

ei
pi

mi
· dS; f

〉

+

N∑

i=1

〈

eiu(ri) · dSi; f

〉

=

N∑

i=1

〈

ei
pi

mi
· dS; f

〉

+

∮

S

ρ(r, t)E(r, t)u(r, t) · dS. (4.46)

The second equality results from the continuum surface energy flux being equated to the energy

carried by the microscopic streaming velocity. This is justified by the use of the dSi term which is

zero everywhere except the CV surface, so that u(ri)dSi = u(r±)dSi. Including the expression

for energy flux (Eq. 4.46) in the energy equation 4.45 yields,

−
∮

S

Q · dS −
∮

S

Π · u · dS =
1

2

N∑

i,j

〈
pi

mi
· fijϑij ; f

〉

−
N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

. (4.47)

To obtain the division between stress heating and heat flux the peculiar momentum is used again.

The two terms on the right of Eq. 4.47 are expressed as,

1

2

N∑

i,j

〈
pi

mi
· fijϑij ; f

〉

=
1

2

N∑

i,j

〈
pi

mi
· fijϑij + u · fijϑij ; f

〉

. (4.48)

and,

N∑

i=1

〈

ei
pi

mi
· dSi; f

〉

=

N∑

i=1

〈



pi · pi

2mi
+

1

2

N∑

j 6=i

φij




pi

mi
· dSi; f

〉

=

N∑

i=1

〈
pi pi

mi
· u; f

〉

+

N∑

i=1

〈



pi

2

2mi
+
u2

2
+

N∑

j 6=i

φij



pi · dSi; f

〉

. (4.49)

Equation (4.47) can now be written entirely in terms of peculiar momenta,

∮

S

Q(r, t) · dS +

∮

S

Π(r, t) · u(r, t) · dS = −
N∑

i=1

〈
pi pi

mi
· u(ri) · dSi; f

〉

+
1

2

N∑

i,j

〈

fij · u(ri)ϑij ; f

〉

+
1

2

N∑

i,j

〈
pi

mi
· fijϑij ; f

〉

−
N∑

i=1

〈
u2

2

pi

mi
· dSi; f

〉

−
N∑

i=1

〈
pi

2

2mi

pi

mi
· dSi; f

〉

−
N∑

i,j

〈

φij
pi

mi
· dSi; f

〉

,

(4.50)

where the terms with dependence on macroscopic velocity u have been collected. Using the

definition of stress at the CV surface Eq. (4.35), dotted with the macroscopic velocity u(r),

∮

S

Π(r, t) · u(r) · dS ≡
N∑

i=1

〈
pi pi

mi
· u(r) · dSi −

1

2

N∑

i,j

ςij · u(r) · dSij ; f

〉

, (4.51)

As with the energy flux, the dSi function ensures the microscopic u(ri) is at the same surface as

the macroscopic velocities u(r±). However, the macroscopic (configurational) stress at a surface

is related to the microscopic stress by the dSij function. This includes all interactions crossing
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the CV surface with stress from molecules which are not, in general, located on the surface.

Taking this expression for stress heating from the energy equation, 4.47, yields an expression for

the heat flux vector,

∮

S

Q(r, t) · dS =
1

2

N∑

i,j

〈

ςij ·
(

pi

mi
+ u(ri) − u(r)

)

· dSij ; f

〉

+
N∑

i=1

〈

ei
pi

mi
· dSi +

u2(ri)

2

pi

mi
· dSi; f

〉

, (4.52)

where internal energy ei has been introduced as,

ei ≡
〈
pi

2

2mi
+

N∑

j 6=i

φij ; f

〉

. (4.53)

In CV form, the heat flux vector provides a useful insight not possible with the pointwise Dirac

delta form of Irving & Kirkwood (1950). This concerns the first line of Eq. (4.52) for the

interaction between i and j crossing a surface selected by dSij . It can be seen that
∮

S
Q · dS

result, in part, from a difference in the streaming velocity u at the point r and the streaming

velocity at the location of the molecule ri.

In the next section, the CV equations derived in this section will be implemented.

4.3 Implementation

In this section, the CV equation for mass, momentum and energy balance, Eqs. (4.10), (4.18)

and (4.44), will be proved to apply and demonstrated numerically for a microscopic system

undergoing a single trajectory through phase space.

4.3.1 The Microscopic System

Consider a single trajectory of a set of molecules through phase space, defined in terms of their

time dependent coordinates ri and momenta pi. The LCV function depends on molecular coordi-

nates, the location of the centre of the cube, r, and its side length, ∆r, i.e., ϑi ≡ ϑi(ri(t), r,∆r).

The time evolution of the mass within the molecular control volume is given by,

d

dt

N∑

i=1

miϑi(ri(t), r,∆r) =

N∑

i=1

mi
∂ϑi

∂t
=

N∑

i=1

mi
dri

dt
· ∂ϑi

∂ri
= −

N∑

i=1

pi · dSi, (4.54)

using, pi = midri/dt. The time evolution of momentum in the molecular control volume is,

∂

∂t

N∑

i=1

pi(t)ϑi(ri(t), r,∆r) =
N∑

i=1

[

pi
∂ϑi

∂t
+
dpi

dt
ϑi

]

=
N∑

i=1

[

pi
dri

dt
· ∂ϑi

∂ri
+
dpi

dt
ϑi

]

.

As, dpi/dt = Fi, then,

∂

∂t

N∑

i=1

piϑi =

N∑

i=1

[

−pipi

mi
· dSi + Fiϑi

]

= −
N∑

i=1

pipi

mi
· dSi +

1

2

N∑

i,j

fijϑij +

N∑

i=1

fiext
ϑi, (4.55)
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where the total force on molecule i has been decomposed into surface and ‘external’ or body

terms. The time evolution of energy in a molecular control volume is obtained by evaluating,

∂

∂t

N∑

i=1

eiϑi =

N∑

i=1

[

ei
∂ϑi

∂t
+
∂ei

∂t
ϑi

]

= −
N∑

i=1

ei
pi

mi
· dSi +

N∑

i=1

ṗi · pi

mi
ϑi −

1

2

N∑

i,j

[
pi

mi
· fij +

pj

mj
· fji

]

ϑi

using, dpi/dt = Fi and the decomposition of forces. The manipulation proceeds as in the

mesoscopic system to yield,

∂

∂t

N∑

i=1

eiϑi = −
N∑

i=1

ei
pi

mi
· dSi +

1

2

N∑

i,j

pi

mi
· fijϑij +

N∑

i=1

pi

mi
· fiext

ϑi, (4.56)

The average of many such trajectories defined through Eqs. (4.54), (4.55) and (4.56) gives the

mesoscopic expressions in Eqs. (4.10), (4.18) and (4.44), respectively. In the next subsection, the

time integral of the single trajectory is considered.

4.3.2 Time integration of the microscopic CV equations

Integration of Eqs. (4.54), (4.55) and (4.56) over the time interval [0, τ ] enables these equations

to be usable in a molecular simulation. For the conservation of mass term,

N∑

i=1

mi [ϑi(τ) − ϑi(0)] = −
τ∫

0

N∑

i=1

pi · dSidt. (4.57)

The surface crossing term, dSi, defined in Eq. (4.4), involves a Dirac δ function and therefore

cannot be evaluated directly. Over the time interval [0, τ ], molecule i passes through a given x

position at times, txi,k, where k = 1, 2, ..., Ntx
(Daivis et al., 1996) . The positional Dirac δ can

be expressed as,

δ(xi(t) − x) =

Ntx∑

k=1

δ(t− txi,k)

|ẋi(txi,k)| , (4.58)

where |ẋi(txi,k)| is the magnitude of the velocity in the x direction at time txi,k. Equation (4.58)

is used to rewrite dSi in Eq. (4.57) in the form,

dSαi,k ≡
[

sgn(t+αi,k− τ) − sgn(t+αi,k −0)
]

S+
αi,k(t+αi,k)

−
[

sgn(t−αi,k−τ) − sgn(t−αi,k −0)
]

S−
αi,k(t−αi,k), (4.59)

where α = {x, y, z}, and the fluxes are evaluated at times, t+αi,k and t−αi,k for the right and left

surfaces of the cube, respectively. Using the above expression, the time integral in Eq. (4.57)

can be expressed as the sum of all molecule crossings, Nt = Ntx
+ Nty

+ Ntz
over the cube’s
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faces,

Accumulation
︷ ︸︸ ︷

N∑

i=1

mi [ϑi(τ) − ϑi(0)] = −
N∑

i=1

Nt∑

k=1

mi

3∑

α=1

pαi

|pαi|
dSαi,k

︸ ︷︷ ︸

Advection

. (4.60)

In other words, the mass in a CV at time t = τ minus its initial value at t = 0 is the sum of all

molecules that cross its surfaces during the time interval.

The momentum balance equation Eq. (4.55), can also be written in time-integrated form,

N∑

i=1

[pi(τ)ϑi(τ) − pi(0)ϑi(0)] = −
τ∫

0





N∑

i=1

pipi

mi
· dSi −

1

2

N∑

i,j

fijϑij −
N∑

i=1

fiext
ϑi



 dt,

and using identity (4.59),

Accumulation
︷ ︸︸ ︷

N∑

i=1

[pi(τ)ϑi(τ)−pi(0)ϑi(0)] +

Advection
︷ ︸︸ ︷

N∑

i=1

Nt∑

k=1

pi

3∑

α=1

pαi

|pαi|
dSαi,k =

N∑

i,j

τ∫

0

fij(t)ϑij(t)dt+

N∑

i=1

τ∫

0

fiext
(t)ϑi(t)dt

︸ ︷︷ ︸

Forcing

.

(4.61)

The integral of the forcing term can be rewritten as the sum,

τ∫

0

fij(t)ϑij(t)dt ≈ ∆t

Nτ∑

n=1

fij (tn)ϑij (tn) ,

where Nτ is the number time steps. Equation (4.61) can be rearranged as follows,

N∑

i=1

pαi(τ)ϑi(τ) − pαi(0)ϑi(0)

τ∆V
+

{ρuαuβ}+ − {ρuαuβ}−
∆rβ

= −K
+

αβ −K
−

αβ

∆rβ

+
T

+

αβ − T
−

αβ

∆rβ
+

1

Nτ∆V

N∑

i=1

Nτ∑

n=1

fαiext
(tn)ϑi(tn), (4.62)

where the overbar denotes a time average. The time-averaged traction in (4.62) is given by,

T
±

αβ = − 1

Nτ

1

4∆Aβ

N∑

i,j

Nτ∑

n=1

fαij(tn)dS±
βij(tn),

The time-averaged kinetic component of the surface pressure in (4.62) is,

K
±

αβ =
1

τ

1

2∆Aβ

N∑

i=1

Nt∑

k=1

pαi(tk)pβi(tk)

|pβi(tk)| dS±
βi,k(tk) − {ρuαuβ}±.

Equation (4.62) demonstrates that the time average of the fluxes, stresses and body forces on a

CV during the interval 0 to τ completely determines the change in momentum within the CV
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for a single trajectory of the system through phase space (i.e. an MD simulation). The time

evolution of the microscopic system, Eq. (4.62), can also be obtained directly by evaluating

the derivatives of the mesoscopic expression (4.38) and invoking the ergodic hypothesis, hence

replacing
〈
α; f

〉
with 1

τ

∫ τ

0
αdt. The use of the ergodic hypothesis is justified provided that the

time interval, τ , is sufficient to ensure phase space is adequately sampled.

Finally, there are no new techniques required to integrate the energy Eq. 4.56,

N∑

i=1

[ei(τ)ϑi(τ) − ei(0)ϑi(0)] = −
τ∫

0





N∑

i=1

ei
pi

mi
· dSi −

1

2

N∑

i,j

pi

mi
· fijϑij



 dt (4.63)

which gives the final form, written without external forcing,

Accumulation
︷ ︸︸ ︷

N∑

i=1

[ei(τ)ϑi(τ)−ei(0)ϑi(0)]+

Advection
︷ ︸︸ ︷

N∑

i=1

Nt∑

k=1

ei

3∑

α=1

pαi

|pαi|
dSαi,k =

1

2

N∑

i,j

τ∫

0

pi(t)

mi
· fij(t)ϑij(t)dt

︸ ︷︷ ︸

Forcing

. (4.64)

As in the momentum balance equation, the integral of the Forcing term in Eq. (4.64) can be

approximated by the sum,

τ∫

0

pi(t)

mi
· fij(t)ϑij(t)dt ≈ ∆t

Nτ∑

n=1

pi(tn)

mi
· fij (tn)ϑij (tn) ,

where Nτ is the number time steps. In the next section, the elements, Accumulation, Advection

and Forcing in the above equations are computed individually in an MD simulation to confirm

Eqs. (4.60), (4.61) and (4.64) numerically.

4.4 Verifying the Control Volume Function

Molecular Dynamics (MD) simulations in 3D are used in this section to validate numerically,

and explore the statistical convergence of, the CV formalism for three test cases. The first inves-

tigation was to confirm numerically the conservation properties of an arbitrary control volume.

The second simulation compares the value of the scalar pressure obtained from the molecular CV

formulation with that of the virial expression for an equilibrium system in a periodic domain.

The final test is a Non Equilibrium Molecular Dynamics (NEMD) simulation of the start-up of

Couette flow initiated by translating the top wall in a slit channel geometry. The NEMD system

is analysed using the CV expressions Eqs. (4.60), (4.61) and (4.64), and the shear pressure was

computed by the VA and CV routes. Newton’s equations of motion were integrated using the

half-step leap-frog Verlet algorithm, Allen & Tildesley (1987). The repulsive Lennard-Jones (LJ)

or Weeks-Chandler-Andersen (WCA) potential (Rapaport, 2004),

Φ(rij) = 4ǫ

[(
ℓ

rij

)12

−
(
ℓ

rij

)6
]

+ ǫ, rij ≤ rc,

was used for the molecular interactions, which is the Lennard-Jones potential shifted upwards

by ǫ and truncated at the minimum in the potential, rij = rc ≡ 21/6ℓ. The potential is zero for
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rij > rc. The energy scale is set by ǫ, the length scale by ℓ and molecular mass by m. The results

reported here are given in terms of ℓ, ǫ and m. A timestep of 0.005 was used for all simulations.

The domain size in the first two simulations was 13.68, which contained N = 2048 molecules,

the density was ρ = 0.8 and the reduced temperature was set to an initial value of T = 1.0.

Test cases 1 and 2 described below are for equilibrium systems, and therefore did not require

thermostatting. Case 3 is for a non-equilibrium system and required removal of generated heat,

which was achieved by thermostatting the wall atoms only.

Case 1

In case 1, the periodic domain simulates a constant energy ensemble. The separate terms of

the integrated mass, momentum and energy equations given in (4.60), (4.61) and (4.64) were

evaluated numerically for several sizes of CV. The mass conservation can readily be shown to be

satisfied as it simply requires tracking the number of molecules in the CV. The momentum and

energy balance equations are conveniently checked for compliance at all times by evaluating the

residual quantity,

Residual = Accumulation − Forcing + Advection, (4.65)

which must be equal to zero at all times for the CV equations to be satisfied. This was demon-

strated to be the case, as may be seen in Figs. 4.6a and 4.6b, for a cubic CV of side length 1.52 in

the absence of body forces. The evolution of momentum inside the CV is shown numerically to

be exactly equal to the integral of the surface forces until a molecule crosses the CV boundary.

Such events give rise to a momentum flux contribution which appears as a spike in the Advection

and Accumulation terms, as is evident in Fig. 4.6a. The residual nonetheless remains identically

zero (to machine precision) at all times. The energy conservation is also displayed in Fig. 4.6b.

The average error over the period of the simulation (100 LJ time units) was less than 1%, where

the average error is defined as the ratio of the mean |Residual| to the mean |Accumulation| over

the simulation. The error is attributed to the use of the leapfrog integration scheme, a conclusion

supported by the linear decrease in error as timestep ∆t→ 0.

Case 2

As in case 1, the same periodic domain is used in case 2 to simulate a constant energy ensemble.

The objective of this exercise is to show that the average of the virial formula for the scalar

pressure, Πvir, applicable to an equilibrium periodic system,

Πvir =
1

3V

N∑

i=1

〈
pi · pi

mi
+

1

2

N∑

i6=j

fij · rij ; f

〉

, (4.66)

arises from the intermolecular interactions across the periodic boundaries (Tsai, 1978). The CV

formula for the scalar pressure is,

ΠCV =
1

6

(
P+

xx+P−
xx+P+

yy+P−
yy+P+

zz+P−
zz

)
, (4.67)

where the P±
αα normal pressure is defined in Eq. (4.34) and includes both the kinetic and

configurational components on each surface. Both routes involve the pair forces, fij . However,
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Figure 4.6: The various components in Eq. 4.65, ‘Accumulation’ ( ), the time integral of the
surface force, ‘Forcing’ (×), and momentum flux term, ‘Advection’ ( ) are shown. ‘Forcing’
symbols are shown every 4th timestep for clarity and the insert shows the full ordinate scale over
the same time interval on the abscissa. From top to bottom, (a) Momentum Control Volume,
(b) Energy Control Volume.

the CV expression which uses MOP counts only those pair forces which cross a plane while

VA (Virial) sums fijrij over the whole volume. It is therefore expected that there would be

differences between the two methods at short times, converging at long times. A control volume

the same size as the periodic box was taken. The time averaged control volume, (ΠCV ) and virial

(Πvir) pressure values are shown in Fig. 4.7a to converge towards the same value with increasing

time. The simulation is started from an FCC lattice with a short range potential (WCA) so

the initial configurational stress is zero. It is the evolution of the pressure from this initial state

that is compared in Fig. 4.7a. The virial kinetic pressure makes use of the instantaneous values

of the domain molecule’s velocities at every time step. In contrast, the CV kinetic part of the

pressure is due to molecular surface crossings only, which may explain its slower convergence to

the limiting value than the kinetic part of the virial expression. To quantify this difference in

convergence for the two measures of the pressure, the standard deviation, SD(x), is evaluated,

ensuring decorrelation (Delgado-Buscalioni & Fabritiis, 2007) using block averaging (Rapaport,

2004). For the kinetic virial, SD(κvir) = 0.0056, and configurational, SD(σvir) = 0.0619. For the

kinetic CV pressure SD(κCV ) = 0.4549 and configurational SD(σCV ) = 0.2901. The CV pressure,

which makes use of the MOP formula, would therefore require more samples to converge to a

steady state value (and is therefore more noisy in Fig. 4.7a). However, the MOP pressures

are generally more efficient to calculate than the VA. This is especially true for large CV sizes,

as only measurements at the surface of a volume are required instead of every molecule inside.

In addition, a Heaviside function can be defined using assembly language to greatly optimise

collecting MOP style statistics. More usefully, from an evaluation of only the interactions over

the outer CV surface, the pressure in a volume of arbitrary size can be determined.

Figure 4.7b is a log-log plot of the Percentage Discrepancy (PD) between the two (PD =

[100 × |ΠCV − Πvir|/Πvir]). After 10 million timesteps or a reduced time of 5×104, the percent-

age discrepancy in the configurational part has decreased to 0.01%, and the kinetic part of the

pressure matches the virial (and kinetic theory) to within 0.1%. The total pressure value agrees
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Figure 4.7: Comparison of the pressures calculated using Πvir and ΠCV from Eqs. (4.66) and
(4.67) respectively as a function of time.

to within 0.1% at the end of this averaging period.

The simulation average temperature was 0.65, and the kinetic part of the CV pressure was

statistically the same as the kinetic theory formula prediction, κCV = ρkBT = 0.52 (Rapaport,

2004). The VA formula for the pressure in a volume the size of the domain is by definition

formally the same as that of the virial pressure. The next test case compares the CV and VA

formulas for the shear stress in a system out of equilibrium.

Case 3

In this simulation study, Couette flow was simulated by entraining a model liquid between two

solid walls. The top wall was set in translational motion parallel to the bottom (stationary)

wall and the evolution of the velocity profile towards the steady-state Couette flow limit was

followed. The velocity profile, and the derived CV and VA shear stresses are compared with the

analytical solution of the unsteady diffusion equation. Four layers of tethered molecules were

used to represent each wall, with the top wall given a sliding velocity of, U0 = 1.0 at the start of

the simulation, time t = 0. The temperature of both walls was controlled by applying the Nosé-

Hoover (NH) thermostat to the wall atoms (Hoover, 1991). The two walls were thermostatted

separately, and the equations of motion of the wall atoms were,

ṙi =
pi

mi
+ U0n

+
x , (4.68a)

ṗi = Fi + fiext
− ξpi, (4.68b)

fiext
= ri0

(
4k4r

2
i0 + 6k6r

4
i0

)
, (4.68c)

ξ̇ =
1

Qξ

[
N∑

n=1

pn · pn

mn
− 3T0

]

, (4.68d)
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(a) Schematic diagram of the NEMD simulation
geometry consisting of a sliding top wall and sta-
tionary bottom wall, both composed of tethered
atoms. The simulation domain contained a lat-
tice of contiguous CV used for pressure averaging
(shown by the small boxes) while the thicker line
denotes a single CV containing the entire liquid
region.
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(b) The y− dependence of the streaming veloc-
ity profile at times t = 2n for n = 0, 2, 3, 4, 5, 6
from right to left. The squares are the NEMD
CV data values and the analytical solution to the
continuum equations of Eq. (4.71) is given at the
same six times as continuous curves.

Figure 4.8: Couette flow domain schematic and velocity results

where n+
x is a unit vector in the x−direction, mn ≡ m, and fiext

is the tethered atom force,

using the formula of Petravic & Harrowell (2006) (k4 = 5 × 103 and k6 = 5 × 106). The vector,

ri0 = ri − r0, is the displacement of the tethered atom, i, from its lattice site coordinate, r0. The

Nosé-Hoover thermostat dynamical variable is denoted by ξ, T0 = 1.0 is the target temperature

of the wall, and the effective time constant or damping coefficient, in Eq. (2.65c) was given

the value, Qξ = N∆t. The simulation was carried out for a cubic domain of sidelength 27.40,

of which the fluid region extent was 20.52 in the y−direction. Periodic boundaries were used

in the streamwise (x) and spanwise (z) directions. The results presented are the average of

eight simulation trajectories starting with a different set of initial atom velocities. The lattice

contained 16384 molecules and was at a density of ρ = 0.8. The molecular simulation domain

was sub-divided into 4096 (163) control volumes, and the average velocity and shear stress was

determined in each of them. A larger single CV encompassing all of the liquid region of the

domain, shown bounded by the thick line in Fig. 4.8a, was also considered.

The continuum solution for this configuration is considered now. Between two plates, there

are no body forces and the flow eventually becomes fully developed, (Potter & Wiggert, 2002)

so that Eq. (2.36) can be simplified and after applying the divergence theorem from Eq. (2.39)

it becomes,

∂

∂t

∫

V

ρudV = −
∫

V

∇ · ΠdV,

which is valid for any arbitrary volume in the domain and must be valid at any point for a
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continuum. The shear pressure in the fluid, Πxy(y), drives the time evolution,

∂ρux

∂t
= −∂Πxy

∂y
.

For a Newtonian liquid with viscosity, µ, (Potter & Wiggert, 2002),

Πxy = −µ∂ux

∂y
, (4.69)

this gives the 1D diffusion equation,

∂ux

∂t
=
µ

ρ

∂2ux

∂y2
, (4.70)

assuming the liquid to be incompressible. This can be solved for the boundary conditions,

ux(0, t) = 0 ux(L, t) = U0 ux(y, 0) = 0,

where the bottom and top wall-liquid boundaries are at y = 0 and y = L, respectively. The

Fourier series solution of these equations with inhomogeneous boundary conditions (Strauss,

1992) is,

ux(y, t) =







U0 y = L
∞∑

n=1

un(t)sin
(nπy

L

)

0 < y < L

0 y = 0

(4.71)

where λn = (nπ/L)2 and un(t) is given by,

un(t) =
2U0(−1)n

nπ

[

exp

(

−λnµt

ρ

)

− 1

]

.

The velocity profile resolved at the control volume level is compared with the continuum solution

in Fig. 4.8b. There were 16 cubic NEMD CV of side length 1.72 spanning the system in the

y direction, with each data point on the figure being derived from a local time average of 0.5

time units. The analytic continuum solution was evaluated numerically from Eq. (4.71) with

n = 1000 and µ = 1.6, the latter a literature value for the WCA fluid shear viscosity at ρ = 0.8

and T = 1.0, (Silva et al., 2003). There is mostly very good agreement between the analytic and

NEMD velocity profiles at all times, although some effect of the stacking of molecules near the

two walls can be seen in a slight blunting of the fluid velocity profile very close to the tethered

walls (located by the horizontal two squares on the far left and right of the figure) which is an

aspect of the molecular system that the continuum treatment is not capable of reproducing.

The VA and CV shear pressure, given by Eqs. (4.32) and (4.34), are compared at time t = 10

in Fig. 4.9a. The comparison is for a single simulation trajectory resolved into 16 cubic volumes

of size 1.72 in the y−direction, with averaging in the x and z directions and over 0.5 in reduced

time.

The figure shows the shear pressure on the faces of the CV. Inside the CV, the pressure
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(b) As Fig. 4.9a, except that the NEMD results
are averaged over a set of eight independent simu-
lations of 1, 000 timesteps (5 reduced time units)
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pressures are compared with the continuum an-
alytical solution given in Eq. (4.72) (solid black
line). The jump in the profile on the right of the
figure is due to the presence of the tethered wall.

Figure 4.9: Couette flow shear pressure results

was assumed to vary linearly, and the value at the midpoint is shown to be comparable to the

VA-determined value. Figure 4.9a shows that there is good agreement between the VA and CV

approaches. Note that the CV pressure is effectively the MOP formula applied to the faces of

the cube, and hence this case study demonstrates a consistency between MOP and VA. We have

shown previously that this is true for the special case of an infinitely thin bin or the limit of the

pressure at a plane (Heyes et al., 2011). Practically, the extent of agreement in this exercise is

limited by the inherent assumptions and spatial resolution of the two methods; a single average

over a volume is required for VA, but a linear pressure relationship is assumed for CV to obtain

the pressure tensor value corresponding to the centre of the CV.

The continuum analytical xy pressure tensor component can be derived analytically using

the same Fourier series approach for ∂ux/∂y,(Strauss, 1992),

Πxy(y, t) = −µU0

L

[

1 + 2

∞∑

n=1

(−1)ne−
λnµt

ρ cos
(nπy

L

)
]

, (4.72)

which is valid for the entire domain 0 ≤ y ≤ L.

A statistically meaningful comparison between the CV, VA and continuum analytic shear

pressure profiles requires more averaging of the simulation data than for the streaming velocity,

(Hadjiconstantinou et al., 2003), and eight independent simulation trajectories over 5 reduced

time units were used. Figure 4.9b shows that the three methods exhibit good agreement within

the simulation statistical uncertainty.
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As a final demonstration of the use of the CV equations, the control volume is now chosen to

encompass the entire liquid domain (see Fig. 4.8a), and therefore the external forces arise from

interactions with the wall atoms only. The momentum equation, Eq. (4.55), is written as,

∂

∂t

N∑

i=1

piϑi = −
N∑

i=1

1©
︷ ︸︸ ︷
pipi

mi
· dSi +

N∑

i=1

3©
︷ ︸︸ ︷

fiext
ϑi −

1

2

N∑

i,j

[
fijdSxij
︸ ︷︷ ︸

2©
+ fij
︸︷︷︸

4©
dSyij + fijdSzij

︸ ︷︷ ︸

2©

]
,

which can be simplified as follows. For term, 1© in the above equation, the fluxes across the

CV boundaries in the streamwise and spanwise directions cancel due to the periodic boundary

conditions. Fluxes across the xz boundary surface are zero as the tethered wall atoms prevent

such crossings. The force term, 2©, also vanishes because across the periodic boundary, fijdS
+
xij =

−fijdS
−
xij , (similarly for z). The external force term, 3©, is zero because all the forces in the system

result from interatomic interactions. The sum of the fyij force components across the horizontal

boundaries will be equal and opposite, and by symmetry the two fzij terms in 4© will be zero on

average. The above equation therefore reduces to,

∂

∂t

N∑

i=1

piϑi = −1

2

N∑

i,j

[
fxijdS

+
yij − fxijdS

−
yij

]
. (4.73)

As the simulation approaches steady state, the rate of change of momentum in the control volume

tends to zero because the difference between the shear stresses acting across the top and bottom

walls vanishes. The forces on the xz plane boundary and momentum inside the CV are plotted

in Fig. 4.10 to confirm Eq. (4.73) numerically. The time evolution of these molecular momenta

and surface stresses are compared to the analytical continuum solution for the CV,

∂

∂t

∫

V

ρuxdV = −
[
∫

S+
f

ΠxydS
+
f −

∫

S−

f

ΠxydS
−
f

]

. (4.74)

The normal components of the pressure tensor are non-zero in the continuum, but exactly balance

across opposite CV faces, i.e. Π+
xx = Π−

xx. By appropriate choice of the gauge pressure, Πxx does

not appear in the governing Eq. (4.74). The left hand side of the above equation is evaluated

from the analytic expression for ux,

∂

∂t

∫

V

ρuxdV = 2∆x∆z
µU0

L

∞∑

n=1

[1 − (−1)n] e−
λnµt

ρ . (4.75)

The right hand side is obtained from the analytic continuum expression for the shear stress, for

the bottom surface at y = 0,

∫

S+
f

ΠxydS
+
f = −2∆x∆z

µU0

L

∞∑

n=1

e−
λnµt

ρ , (4.76)

and for the top y = L,

∫

S−

f

ΠxydS
−
f = −2∆x∆z

µU0

L

∞∑

n=1

(−1)ne−
λnµt

ρ . (4.77)
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In Fig 4.10, the momentum evolution on the left hand side of Eq. (4.73) is compared to Eq.

(4.75). Equations (4.76) and (4.77) are also given for the shear stresses acting across the top and

bottom of the molecular control volume (right hand side of Eq. (4.73)).
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Figure 4.10: The evolution of surface forces and momentum change for a molecular CV from

Eq. (4.73), (points) and analytical solution for the continuum (Eqs. (4.76), (4.77) and (4.75)),

presented as lines on the figure. The Residual, defined in Eq. (4.65), is also given. Each point

represents the average over an ensemble of eight independent systems and 40 timesteps.

The scatter seen in the MD data reflects the thermal fluctuations in the forces and molecular

crossings of the CV boundaries. The average response nevertheless agrees well with the analytic

solution, bearing in mind the element of uncertainty in the matching state parameter values.

This example demonstrates the potential of the CV approach applied on the molecular scale, as

it can be seen that computation of the forces across the CV boundaries determines completely

the average molecular microhydrodynamic response of the system contained in the CV. In fact,

the force on only one of the surfaces is all that was required, as the force terms for the opposite

surface could have been obtained from Eq. (4.73).
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4.5 Overview

In analogy to continuum fluid mechanics, the evolution equations for a molecular system have

been expressed in a Control Volume (CV) form. A key ingredient is the definition and manipula-

tion of a Lagrangian to Control Volume conversion function, ϑ, which identifies molecules within

an arbitrary CV.

The key equations from this work are summarised here as they will form the basis for the

next chapter. The Control Volume operator and its derivative are of the form,

ϑi ≡
[
H(x+ − xi) −H(x− − xi)

]
dSxi ≡

∂ϑi

∂x
=

[
δ(x+ − xi) − δ(x− − xi)

]

×
[
H(y+ − yi) − H(y− − yi)

]
×
[
H(y+ − yi) − H(y− − yi)

]

×
[
H(z+ − zi) − H(z− − zi)

]
, ×

[
H(z+ − zi) − H(z− − zi)

]

where ϑi = 1 if molecule i is inside the CV and zero otherwise. Its derivative is only non-zero

as i is crossing one of the surfaces of the CV. An analogous LCV function can be defined for the

line of interaction ι≡ ri − srij between two molecules i and j,

ϑs ≡
[
H(x+ − ιx) −H(x− − ιx)

]
dSxij ≡

[
δ(x+ − ιx) − δ(x− − ιx)

]

×
[
H(y+ − ιy) − H(y− − ιy)

]
×
[
H(y+ − ιy) − H(y− − ιy)

]

×
[
H(z+ − ιz) − H(z− − ιz)

]
, ×

[
H(z+ − ιz) − H(z− − ιz)

]

With derivative dSij selecting interactions crossing the x+ and x− surfaces of the control

volume. Using these two forms of the LCV functions and their derivative, it is then possible to

derive discrete analogues to the continuum control volumes equations. These include,

The time evolution of the mass,

d

dt

N∑

i=1

miϑi = −
N∑

i=1

pi · dSi, (4.78)

where mi is molecular mass and pi the momentum. The time evolution of momentum in the

molecular control volume is,

d

dt

N∑

i=1

piϑi

︸ ︷︷ ︸

Accumulation

= −
N∑

i=1

pipi

mi
· dSi

︸ ︷︷ ︸

Advection

+
1

2

N∑

i,j

ςij · dSij +

N∑

i=1

fiext
ϑi

︸ ︷︷ ︸

Forcing

, (4.79)

where ςij is a form of inter-molecular stress tensor and fiext
the external force term. The time

evolution of energy, ei, in a molecular control volume is,

d

dt

N∑

i=1

eiϑi = −
N∑

i=1

ei
pi

mi
· dSi +

1

2

N∑

i,j

pi

mi
· ςij · dSij +

N∑

i=1

pi

mi
· fiext

ϑi, (4.80)

The left hand sides of Eqs. (4.78), (4.79) and (4.80) are the time evolution of a volume in

space and the resulting right hand side is written in terms of stresses and surface fluxes. The

final appearance of the equations has the same form as Reynolds’ Transport Theorem applied

to a discrete system (see appendix A). The equations presented follow directly from Newton’s
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equation of motion for a system of discrete particles, requiring no additional assumptions and

therefore sharing the same range of validity.

Using the LCV function, the relationship between Volume Average (VA) (Lutsko, 1988;

Cormier et al., 2001) and Method Of Planes (MOP) pressure (Todd et al., 1995; Han & Lee,

2004) has been established, without Fourier transformation. These avoids the assumption of

homogeneity in any coordinate direction and is therefore a three dimensional generalisation and

localisation of the MOP form. The MOP and VA definitions of pressure are shown numerically

to give equivalent results away from equilibrium and, for homogeneous systems, shown to equal

the virial pressure.

A Navier–Stokes-like equation was derived for the evolution of momentum within the control

volume, expressed in terms of surface fluxes and stresses. This provides an exact mathematical

relationship between molecular fluxes/pressures and the evolution of momentum and energy in

a CV. Numerical evaluations of the terms in the conservation of mass, momentum and energy

equations demonstrated consistency with theoretical predictions.

The CV formulation is general, and can be applied to derive conservation equations for any

fluid dynamical property localised to a region in space. It can also facilitate the derivation of

conservative numerical schemes for MD, and the evaluation of the accuracy of numerical schemes.

Finally, it allows for accurate evaluation of macroscopic flow properties, in a manner consistent

with the continuum conservation laws. These properties will be exploited in the next chapter to

derive coupling schemes localised to a region in space.



Chapter 5

Mathematical Development of a Coupling

Scheme

5.1 Introduction

The LCV function formalism developed and verified in the previous chapter is used to devise a

coupling scheme in this chapter.

This function is invoked in order to define the molecular equivalents to the continuum control

volumes, i .e. for number of molecules, mass and momentum in a CV,

NI =

N∑

i=1

ϑi;

∫

V

ρdV =

N∑

i=1

miϑi;

∫

V

ρudV =

N∑

i=1

miṙiϑi.

The sums over all molecules N with a LCV function replaces the commonly used convention of

summing over a limited subset in a given region NI , i .e. for some arbitrary quantity Ai,

N∑

n=1

Aiϑi ≡
NI∑

n=1

Ai ≡
∑

n∈S

Ai where S = {i|r− < ri < r+}. (5.1)

The advantage of these functional localisation, using ϑi, is in its mathematical utility. By using

the LCV function, the limits of the sums in Eq. (5.1) are explicitly enforced by ϑi and the effects

of integrals and derivatives are replaced by mathematical manipulation of the LCV function. This

was demonstrated in the previous chapter where the time evolution of LCV localised regions was

shown to yield the CV conservation Eq. (4.54), (4.55) and (4.56). The momentum equation, Eq.

(4.55),

∂

∂t

N∑

i=1

miṙiϑi = −
N∑

i=1

miṙiṙi · dSi +
1

2

N∑

i,j

fijϑij +

N∑

i=1

fiext
ϑi,

and energy equation, Eq. (4.80), are relevant in this chapter,

d

dt

N∑

i=1

eiϑi = −
N∑

i=1

eiṙi · dSi +
1

2

N∑

i,j

ṙi · ςij · dSij +

N∑

i=1

ṙi · fiext
ϑi,

A change of notation is performed in this chapter, with pi replaced by miṙi as in this equation.
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The symbol pi is reserved for the canonical momentum conjugate in this chapter, therefore

pi 6= miṙi in general. The intermolecular forces can be expressed in terms of the stress over the

CV surfaces,

N∑

i,j

fijϑij =

N∑

i,j

ςij · dSij ,

where dSi selects the molecules i currently crossing the CV surfaces and dSij select the interaction

between i and j that are currently crossing the CV surface. As the overlap between the continuum

and the MD may consist of a number of different CFD cells, the notation I, J and K is introduced

to denote the cartesian location of the continuum cells. The CV function and its derivative

include a superscript to denote the continuum volume which they correspond to, e.g . ϑIJK
i or

its derivative dSIJK±

i for cell I, J,K with the ± denoting top and bottom surfaces.

The LCV function will be utilised in order to derive constrained dynamics algorithms which

interlinks the evolution of the molecular system with its continuum counterpart. These algorithms

will be derived from the principle of least action and Gauss’ principle of least constraint. The key

novelty here is the localisation of these constraints to a region in space, a requirement unique to

coupling which is applied along an interface between two co-existent domains. It is here that the

importance of the LCV function as a method to ensure the localisation of the constraint becomes

clear. The resulting LCV coupling equation can be shown to be the most general form of coupling

equation. Under certain assumptions, it can be shown to yield the coupling schemes discussed in

the literature (see chapter 2) namely those of O’Connell & Thompson (1995), Nie et al. (2004a)

and Flekkøy et al. (2000). The various assumptions inherent in the existing coupling schemes

are thereby exposed. A study of the various terms in the LCV coupling equations, using MD

simulation, provides insight into the importance of these terms and the nature of the coupling

algorithm itself. The focus of this chapter is the derivation and anatomy of a new LCV coupling

equation, not coupling in general. Coupled simulations are therefore presented to motivate this

equation, before discussing the various terms in the context of controlling molecular systems

only. A fully coupled case would introduce significant extra complexity and obscure the main

contribution of the LCV coupling equations presented.

This chapter is organised as follows: section 5.2 contains the derivation of a LCV localised

state coupling algorithm, first from the principle of least action and then from Gauss’ principle. A

general coupling equation is obtained and the relationship to the O’Connell & Thompson (1995)

and Nie et al. (2004a) schemes is established. In the next section, 5.3, the various terms in the

generalised constraint equations are tested numerically using coupled MD and CFD simulation

of impulse-started Couette flow, Couette flow with wall roughness and a full MD simulation of

a converging-diverging channel. Finally, the relationship to flux coupling is explored in section

5.4, followed by concluding remarks from this chapter in 5.5.

5.2 Control Volume State Coupling

In this section, the Control Volume methodology is applied to the field of MD-continuum coupling.

The main challenge in coupling is to ensure that the molecular system matches the continuum.

There is no unique solution as four averaged continuum parameters (u, P ) must govern 6N

molecular degrees of freedom. There are, however, guiding physical principles in the form of the



Chapter 5. Mathematical Development of a Coupling Scheme 137

principle of least action or Gauss’ principle of least constraint. These methods were introduced

in chapter 2, section 2.2.2 and their application to coupling discussed in section 2.5.2. Using

these methods, it is possible to develop equations of motion which evolve according to physical

principles while ensuring the dynamics match, on average, those of the continuum system. The

aim of this section is to develop a physically sound constraint localised to a consistent control

volume in space.

This section starts by applying the principle of least action localised using the control volume

function. The resulting equations are written in Hamiltonian form (q̇, ṗ) to allow it to be related

to the constrained form in the first paper on coupling by O’Connell & Thompson (1995). The

assumptions required to obtain the form of O’Connell & Thompson (1995) are discussed. Through

mathematical manipulation, the two Hamiltonian equations are written in a single equation in the

form of Newton’s law subject to a constraint force. The equation in terms of Newton’s law can be

shown to be consistent with the form obtained from Gauss’ principle of least constraint localised to

a control volume. The assumptions required to obtain the form of Nie et al. (2004a) are discussed.

In the process, a number of additional terms not present in other coupling methodologies are

identified and the importance of these are explained.

5.2.1 Control Volume Coupling Scheme from the Principle of Least

Action

The principle of least action is employed in this section in order to constrain a CV in the molecular

region. The governing equations will be expressed in Hamiltonian (q,p) form. This has a number

of advantages and is commonly used in the NEMD literature (Evans & Morriss, 2007). It also

allows the constraint to be compared to the coupling scheme of O’Connell & Thompson (1995).

The constraint applied is the difference in momentum between a control volume in the continuum

and molecular regions,

g(q, q̇, t) =
N∑

n=1

mnq̇nϑn −
∫

V

ρudV = 0, (5.2)

where V here is the volume of an equivalently size control volume in both regions. Notice that

by expressing the constraint in terms of the CV function, the region of application is explicitly

contained within the definition and the sum is over all possible molecules N in the system. In

addition, the constraint is applied in the Eulerian reference frame in both MD and continuum

regions. A constrained Lagrangian,

Lc ≡L + λ · g, (5.3)

is to be minimised using the principle of least action, expressed in terms of the canonical mo-

mentum as in Eqs. (2.25a) and (2.25b). Recall from section 2.2.2 (see also Flannery (2005)) that

the equations of motion for a non-holonomic constraint are obtained from,

d

dt

∂Lc

∂q̇i
− ∂Lc

∂qi
= 0, (5.4)

which is consistent with the non-holonomic form of the Euler Lagrange equation ( Eq. (2.23))

and Gauss’ Least constraint ( Eq. (2.28)), provided the constraint satisfies Eq. (2.24) – i .e. Eq.
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(5.2) is semi-holonomic. The CV constraint of Eq. (5.2) is substituted into Eq. (2.24) and gives,

d

dt

∂gα

∂q̇i
− ∂gα

∂qi
= mi

dϑi

dt
−miq̇i

∂ϑi

∂qi
= miq̇idSi −miq̇idSi = 0, (5.5)

which demonstrates that the constraint of Eq. (5.2) is semi-holonomic. The Eq. (5.4) can

therefore be used to derived equations of motion for this constrained system. It is the aim of

this section to write the equations of motion in (q,p) form; therefore, the constrained conjugate

momentum is obtained using the definition,

pi =
∂Lc

∂q̇i

= miq̇i +miϑiλ. (5.6)

The time evolution of the momentum in terms of ṗi is given by substituting Eq. (5.6) into the

constrained Euler Lagrange equation 5.4,

ṗi =
∂Lc

∂qi

= Fi − λmiq̇i · dSi. (5.7)

Substituting Eq. (5.6) into the constraint Eq. (5.2), and solving for λ gives,

λ =
1

∑N
n=1mnϑ2

n

[
N∑

n=1

pnϑn −
∫

V

ρudV

]

, (5.8)

which is expressed in terms of the peculiar momenta pi. The Hamiltonian form of the equations

of motion are therefore,

q̇i =
pi

mi
− ϑi

MI

[
N∑

n=1

pnϑn −
∫

V

ρudV

]

, (5.9a)

ṗi = Fi −
miq̇i · dSi

MI

[
N∑

n=1

pnϑn −
∫

V

ρudV

]

, (5.9b)

on introducing the definitionMI ≡
∑N

n=1mnϑn (noteMI ≡
∫

V
ρdV ) and using the property of the

Heaviside functions1, ϑ2
i = ϑi. The constraints in Eqs. (5.9a) and (5.9b) are explicitly localised

by the CV function, ϑi or dSi and are therefore valid for the entire system. Outside of the

constrained region, ϑi = 0 or dSi = 0 and the dynamics are unconstrained. By deriving this

equation using the principle of least action and a semi-holonomic constraint, the conservation of

energy is ensured (Goldstein et al., 2002).

The physical interpretation of Eq. (5.9a) is that the peculiar velocity of a given molecule i

inside the constrained CV is adjusted in line with the difference between the molecular and the

continuum momenta. This ensures the molecules move, on average, with a velocity consistent

with the continuum. Equation (5.9b) applies a force to the molecules as soon as it enters or

leaves a volume. This force acts to accelerate the entering molecule in line with the constraint

currently applied to the molecules inside the volume.

Consider two adjacent MD cells with different constraints due to the difference in velocities

in the overlapping continuum grid. These cells are denoted by I and I + 1 and the CV function

includes a superscript to identify which cell it corresponds to in a similar manner to the continuum

1The derivative of dϑ2

i /dri = 2ϑidSi = dSi, because ϑ(r = r±) = 1/2 as H(0) = 1/2.
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CV volume numbering,

ṗi = Fi − miq̇xidS
I+

xi −miq̇xidS
I−

xi

MI

[
N∑

n=1

pnϑ
I
n −

∫

VI

ρudVI

]

− miq̇xidS
[I+1]+

xi −miq̇xidS
[I+1]−

xi

MI+1

[
N∑

n=1

pnϑ
I+1
n −

∫

VI+1

ρudVI+1

]

,

The top surface of CV I is the bottom of CV [I + 1] so that q̇xidS
I+

xi = q̇xidS
[I+1]−

xi . If the two

adjacent volumes have the same momentum difference,

1/MI+1

[
∑N

n=1 pnϑ
I+1
n −

∫

VI+1
ρudVI+1

]

= 1/MI

[
∑N

n=1 pnϑ
I
n −

∫

VI
ρudVI

]

, the connected sur-

face flux terms will cancel and no forces are applied,

ṗi = Fi − miq̇xidS
[I+1]+

xi −miq̇xidS
I−

xi

MI

[
N∑

n=1

pnϑ
I
n −

∫

VI

ρudVI

]

(5.11a)

This equation therefore only applies a force to molecules which cross the top or bottom surface

of the consolidated CV (size based on the combined I and I + 1), which demonstrates that this

equation remains valid for MD cells of an arbitrary size. As the MD cells volume tends to zero,

the difference in constraint magnitude between cells will be less and the surface fluxes between

adjacent cells become less significant.

Relationship to the method of O’Connell & Thompson (1995)

Once the formulation is expressed in the (q̇,ṗ) form, it can be compared to those of O’Connell &

Thompson (1995), (see Eqs. (2.72a) and (2.72b in chapter 2). In order to obtain the equations

of O’Connell & Thompson (1995), a number of assumptions are required. The link between Eq.

(5.9a) and Eq. (2.72a) is considered first. The mass of all molecules in the systems is assumed

to be be the same (∀ i : mi = m) so that MI = m
∑N

i ϑ = mNI . The momentum for the CV is

approximated as a single value
∫

V
ρudV ≈M

CF D

I uI so that Eq. (5.9a) is,

q̇i =
pi

m
+ ϑi

[

M
CF D

I

mNI
uI −

1

NI

N∑

n=1

pn

m
ϑn

]

, (5.12a)

which is identical in form to Eq. (2.72a) (i .e. equation 4a in the paper of O’Connell & Thompson

(1995)). Note the LCV function replaces the limited sum notation as demonstrated by Eq. (5.1).

The constraint ensures that the average of the molecular system follows the continuum values

exactly. To prevent the constraint from being too rigid, O’Connell & Thompson (1995) introduce

a scaling factor, ξ, in Eq. (5.12a) (c.f. Eq. (2.72a)) to relax the solutions over a number of

timesteps.

Next, the link between Eqs. (5.9b) and (2.72b) is considered. Equation (5.9b) is equal to Eq.

(2.72b) (i .e. equation 4b in O’Connell & Thompson (1995)) provided that the current molecule

i is not crossing the surface (miq̇i · dSi = 0) or alternatively the constraint is satisfied and
∑N

n=1 pnϑn =
∫

V
ρudV . The result is that Eq. (5.9b) simplifies to,

ṗi = Fi,
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which is Eq. (2.72b). Discretising the equations in this form is non-trivial, as the constraint

requires the molecular positions at the next time step. An iterative solution would be required in

order to solve these equations effectively. Instead, implementation is deferred to the next section

where this equation is written in the form of Newton’s law and applied as a force. In this form,

it can be verified by ensuring agreement with Gauss’ principle of least constraint and compared

to the coupling scheme derived by Nie et al. (2004a).

5.2.2 Reformulating in Terms of Newton’s Law

In this section, the Hamiltonian equations (5.9a) and (5.9b), obtained in the previous section

are combined to obtain a form of Newton’s law with a constraint force. In this form, it can be

verified against Gauss’ principle of least constraint and compared to the coupling technique of

Nie et al. (2004a). The starting point is Eqs. (5.9a) and (5.9b) simplified using λ from Eq. (5.8),

q̇i =
pi

mi
− λϑi, (5.14a)

ṗi = Fi − λmiq̇i · dSi. (5.14b)

Differentiating Eq. (5.14a) and substituting the resulting expression in Eq. (5.14b) gives,

q̈i =
Fi

mi
− λ̇ϑi. (5.15)

The time derivative of the CV function dϑi/dt = −q̇i · dSi cancels with the surface flux in Eq.

(5.9b) (a consequence of the constraint satisfying the semi-holonomic condition Eq. (2.24)). The

time derivative of λ from Eq. (5.8) is,

λ̇ =
1

MI

[
d

dt

N∑

n=1

pnϑn

︸ ︷︷ ︸

A

− d

dt

∫

V

ρudV +
λ

MI

N∑

n=1

mnq̇n · dSn

]

. (5.16)

The A term can be re-written using Eqs. 5.14a and 5.14b,

A =
d

dt

N∑

n=1

pnϑn =

N∑

n=1

[ṗnϑn − pnq̇n · dSn]

=

N∑

n=1

[Fnϑn −mnq̇nq̇n · dSn] − λ

N∑

n=1

[mnϑnq̇n · dSn +mnϑnq̇n · dSn] ,

so that the time evolution of the Lagrangian multiplier becomes,

λ̇ =
1

MI

[
N∑

n=1

Fnϑn −
N∑

n=1

mnq̇nq̇n · dSn − d

dt

∫

V

ρudV

]

+
λ

MI

[
N∑

n=1

mnq̇n · dSn − 2

N∑

n=1

mnϑnq̇n · dSn

]

. (5.18)
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using ϑndSn = 1/2dSn the second term in Eq. (5.18) is zero, inserting the remaining term into

the equation of motion, Eq. (5.15) gives,

q̈i =
Fi

mi
− ϑi

MI

[
N∑

n=1

Fnϑn −
N∑

n=1

mnq̇nq̇n · dSn − d

dt

∫

V

ρudV

]

. (5.19)

It is important to verify Eq. (5.19) by comparing it to the one derived using the same CV

constraint, Eq. (5.2), applied via Gauss’ principle of least constraint Eq. (2.28) (or identically

Eq. (2.23)). The notation is changed to represent the departure from the use of generalised

coordinates, qi → ri. The derivation is shown in appendix B.3 with the resulting equation,

r̈i =
Fi

mi
− ϑi

MI

[
N∑

n=1

Fnϑn −
N∑

n=1

mnṙnṙn · dSn − d

dt

∫

V

ρudV

]

. (5.20)

Equation (5.20) is identical to Eq. (5.19), confirming the equations obtained in the previous

section are physically meaningful and correct. This is an important verification, as Gauss’ prin-

ciple is often considered to be more fundamental (Flannery, 2011) and capable of applying more

general constraints (Evans & Morriss, 2007).

Relationship to the Nie et al. (2004a) method

The form of constraint Eq. (5.20) can be used to obtain the equations of Nie et al. (2004a),

subject to three key assumptions: equivalent mass in both systems, convective flux is negligible

and velocity in the molecular system tends to the continuum over the timestep ∆t
CF D

. The first

two assumptions are required to obtain the equation of motion, the third to obtain the actual

discretised equations implemented in the numerical algorithm proposed by the authors.

The first assumption means that the temporal change of mass inside the CV can be assumed

to be negligible so that,

1

MI

d

dt

∫

V

ρudV ≈ ρ

MI

d

dt

∫

V

udV ≈ ρ∆V

MI

Du

Dt
.

In addition, the mass in both systems is assumed to be the same ρ∆V = MI and the mass of

all molecules is identical ∀ i : mi = m, so that MI = m
∑N

i ϑ = mNI . The equations of motion,

Eq. (5.20), is then,

r̈i =
Fi

mi
− ϑi

mNI

N∑

n=1

Fnϑn + ϑi
Du

Dt
+

ϑi

mNI

N∑

n=1

mnṙnṙn · dSn. (5.21)

The second assumption is that the surface momentum flux is negligible,
∑N

n=1mnṙnṙn ·dSn = 0.

The equations of motion, Eq. (5.21), therefore reduce to,

r̈i =
Fi

m
− ϑi

NIm

N∑

i=1

Fiϑi + ϑi
Du

Dt
. (5.22)

The above equation takes the form of Nie et al. (2004a) (c.f. Eq. (2.75) in section 2.5.2 or

equation (2.6) in the paper by Nie et al. (2004a)) expressed in the formalism of the CV.
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Figure 5.1: The time evolution of the unsteady Couette flow analytical solution, Eq. (A.11),
velocity u and its temporal derivative du/dt. The velocity is evaluated at y = H/2 for a domain
representative of a typical MD simulation with height H = 52.1, Reynolds number Re = 0.372
and wall velocity u0 = 1.0.

In the work of Nie et al. (2004a), the Lagrangian time derivative Du/Dt is discretised:

Du

Dt
≈ u(t+ ∆tMD) − u(t)

∆tMD
(5.23)

which is simply the forward Euler discretisation (a first order approximation for the derivative).

Substituting Eq. (5.23) into Eq. (5.22) results in an entirely differential constraint. This would

apply a force only as the velocity changes, acting to maintain a velocity but not to enforce it.

The result of applying Eq. (5.23) is demonstrated in Figure 5.1, using the analytical solution for

Couette flow, Eq. (A.11) from appendix A, as a test case. Note the velocity change is very small

so the force due to the velocity difference is two orders of magnitude less than the force due to the

differences in velocity. The associated difficulties of applying the differential form of constraint

resulting from Gauss’ principle is well known in the NEMD literature. These difficulties occur

for example in the implementation of the Gaussian thermostat (Evans & Morriss, 2007), where

the algorithm is often supplemented with a rescaling or adjustment of the total temperature

periodically to prevent drift. These techniques are typically applied to maintain a temperature,

not to control it. For the case of coupling, the set-point of the constraint must change as a

function of time (as in Figure 5.1).

In order to apply a time varying constraint, Nie et al. (2004a) implemented what they

described as a ‘special discretisation’. This is the third assumption required to obtain the Nie

et al. (2004a) form of coupling. In order to apply the correct velocity, Nie et al. (2004a) introduce

the definition of averaged macroscopic velocity, u(t) = 1/NJ

∑〈
ṙi(t)

〉

MD
into the forward Euler
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discretisation of Eq. (5.23),

Du

Dt
≈ 1

∆tMD



u(t+ ∆tMD) − 1

NJ

N ′
I∑

i=1

〈
ṙi(t)

〉

MD



 , (5.24)

which is the final equation (2.7) in the work of Nie et al. (2004a). Here N ′
I is the some fixed

number of molecules moving through space in the constrained Lagrangian ‘parcel’. The ‘special

discretisation’ of Eq. (5.24) changes the nature of the constraint from purely differential to a

hybrid of proportional and differential. It is this step that makes Nie et al. (2004a) a state

(velocity) based coupling. This subtle but important point results in the difference in the sum of

the molecular and continuum velocity being applied as a constraint. The constrained equation

Eq. (5.24) is inserted into Eq. (5.22) to yield,

r̈i =
Fi

m
− ϑi

NIm

N∑

i=1

Fiϑi +
ϑi

∆tMD



u(t+ ∆tMD) − 1

NJ

N ′
I∑

i=1

〈
ṙi(t)

〉

MD



 . (5.25)

The Nie et al. (2004a) style of discretisation in Eq. (5.24) applies proportional control to a

moving volume in space. This proportional control ensures the difference in velocity between

the Lagrangian collection of N ′
I molecules (at time t) and the velocity of the coupled continuum

Lagrangian parcel (at time t+∆tMD) is applied as a force. In practice both constrained region and

continuum are in the Eulerian reference frame. Provided the continuum convection is negligible,

as in Couette flow, this detail is unimportant (i .e. Du/Dt ≈ ∂u/∂t). However, a generalised

coupling scheme is presented in the next section which considers the convection term explicitly

using Reynolds’ transport theorem and avoids the three assumptions introduced in this section.

5.2.3 General Constraint Equation

In practice, the continuum is expressed as a fixed Eulerian control volume. As a result, it is more

convenient to express the time evolution of the continuum volume in Eq. (5.20), using Reynolds’

transport theorem,

d

dt

∫

V

ρudV =

∫

V

∂ (ρu)

∂t
dV +

∮

S

(ρuu) · dS. (5.26)

The constraint in Eq. (5.20) therefore becomes,

r̈i =
Fi

mi
− ϑi

MI

[
N∑

n=1

Fnϑn −
∫

V

∂ (ρu)

∂t
dV −

∮

S

(ρuu) · dS −
N∑

n=1

mnṙnṙn · dSn

]

. (5.27)

This is the most general form of constrained equation, owing to is explicit localisation using the

LCV function. The localised constraint was applied using Gauss’ principle which is the most

fundamental form of constrained dynamics algorithm. It has also been shown that it is also

derivable from the general Hamiltonian equations of constraint, Eqs. (5.9a) and (5.9b), which

can be shown to simplify to the equations of O’Connell & Thompson (1995). Equation (5.27)

can also be simplified to obtain the Nie et al. (2004a) form of coupling as already demonstrated

in the previous subsection. The importance of the various terms in this equation, and the link

to the existing works in the literature, will be explored through numerical simulation in the next
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section, 5.3. Finally, in section 5.4 of this chapter, it will be shown that the general constraint

Eq. (5.27) is a form of flux coupling and can be simplified to obtain the flux coupling scheme of

Flekkøy et al. (2000).

5.3 Implementation

The aim of this section is to test the importance of the various terms in the general constraint

equation form, Eq. (5.27),

r̈i =
Fi

mi
−

Nie et al. (2004a) terms
︷ ︸︸ ︷

ϑi

MI

[ N∑

n=1

Fnϑn

︸ ︷︷ ︸

MD Forcing

−
∫

V

∂ (ρu)

∂t
dV

︸ ︷︷ ︸

CFD Accumulation

]

−

New to current work
︷ ︸︸ ︷

ϑi

MI

[ ∮

S

(ρuu) · dS
︸ ︷︷ ︸

CFD Advection

−
N∑

n=1

mnṙnṙn · dSn

︸ ︷︷ ︸

MD Advection

]

, (5.27L)

This equation includes all the necessary terms for coupling between the continuum and the MD

descriptions. As discussed in the previous section, simplifications of this constraint are successful

because of carefully designed control strategies (constraints) for the specific problem of interest.

The key change was to discretise the temporal evolution term, changing it from a differential

constraint to a proportional constraint,

∫

V

∂ (ρu)

∂t
dV ≈ 1

∆tMD

[
∫

V

ρu(r, t+ ∆tMD)dV −
∫

V

ρu(r, t)dV

]

(5.28)

≈ 1

∆tMD

[
∫

V

ρu(r, t+ ∆tMD)dV −
N∑

i=1

miṙi(t)ϑi(r, t)

]

. (5.29)

It is demonstrated in this section that the ‘CFD Accumulation’ term alone, written as a momen-

tum difference in Eq. (5.29), is sufficient to ensure the success of the coupling scheme in the cases

tested by Nie et al. (2004a). These include starting Couette in subsection 5.3.1 and Couette with

wall roughness in subsection 5.3.2. In both cases, the ‘New to current work’ terms of Eq. (5.27L)

are shown to be inappreciable, as are the ‘MD Forcing’ terms. In subsection 5.3.3, the case of a

converging-diverging channel is investigated, being one of the simplest geometry which includes

a permanent and significant ‘MD Advection’ term. The importance of this term relative to the

‘MD Forcing’ term is explored. The ‘MD Advection’/‘MD Forcing’ terms are shown to govern

the time evolution of molecules in a CV. They can be reformulated in terms of stress, convection

and pressure. This leads on to the need for flux coupling in scenarios where advection is present

and this is discussed in section 5.4.

5.3.1 Starting Couette

The coupled simulation setup in this section is identical to the verification case used in section

3.4.3. The reader is referred to section 3.4.3 and the original work of (Nie et al., 2004a) for full

details of the setup. The simulation is a coupled simulation of impulse started Couette flow with

the top wall in the CFD domain moved at a velocity of uw(t) = 1 with the MD bottom wall

stationary. The constraint of Eq. (5.27L) will be investigated in three parts;
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The first case, a), will address the ‘CFD Accumulation’ term in Eq. (5.27L) using the discreti-

sation Eq. (5.28) and assuming equivalent mass in both systems,

r̈i =
Fi

m
+ ϑi

u(t+ ∆t
CF D

) − u(t)

∆t
CF D

. (5.30 a)

Next, in case b) the ‘CFD Accumulation’ term of the previous equation will be expressed as a

proportional constraint using Eq. (5.29) with equivalent mass in both systems,

r̈i =
Fi

m
+

ϑi

∆t
MD

[

u(t+ ∆t
MD

) − 1

NJ

NJ∑

i=1

〈
ṙi(t)

〉

MD

]

, (5.30 b)

where the time step has been changed due to requirement that velocities be averaged and com-

pared at every timestep. The CFD velocity can be interpolated between t and t + ∆t
CF D

. The

constraint is in the form of the proportional velocity control of Borg et al. (2010). This simpli-

fied approach is based on control theory with a proportional velocity control chosen to correctly

match the dynamics between the two systems.

Finally, in case c) the full ‘Nie et al. (2004a) terms’ of Eq. (5.27L) are applied, again with the

discretisation of Eq. (5.29) and assuming equivalent mass in both systems,

r̈i =
Fi

m
− ϑi

NIm

N∑

i=1

Fiϑi +
ϑi

∆t
MD

[

u(t+ ∆t
MD

) − 1

NJ

NJ∑

i=1

〈
ṙi(t)

〉

CF D

]

. (5.30 c)

is identical to Eq. (5.25).

These three test cases do not consider the ‘New to Current Work’ terms. The results of

implementing these three constraints for the identical coupled simulation of impulse started

Couette are displayed in Figure 5.2. Case a) is close to zero throughout the evolution of the

system and is shown by triangles which appear below the other results (negative) as a result

of fluctuations. Case a) is applied as a differential constraint and, as expected, only applies a

force when the system is evolving in time. The result is no evolution beyond the initial unsteady

period. Good agreement to the analytical solution is observed for cases to b) and c).

It is clear that the constraint of Borg et al. (2010), case b), offers similarly good agreement

to Nie et al. (2004a), case c), for unsteady Couette flow. The misalignment in symbols observed

in Figure 5.2 is an artefact of the plotting process. The analytical solution is matched to the

location where the molecular fluid no longer has zero velocity. The different constraints have

an effect on the apparent location of zero velocity in the molecular system. The extra term in

the full Nie et al. (2004a) formulation (case c) above) acts to compress the system, resulting in

greater stick near the wall and, therefore, the location of zero velocity moving further into the

liquid part of the channel.
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Figure 5.2: Coupled cases Eq. (5.30a) differential velocity constraint (△), Eq. (5.30b) pro-

portional velocity constraint (Borg et al., 2010) and Eq. (5.30c) Nie et al. (2004a) constraint.

(×)

There are three main conclusions drawn from the results of this coupled simulation of impulse

started Couette flow.

The first and most important conclusion is that without the ‘special discretisation’ of Nie

et al. (2004a), given in Eq. (5.29), the constraint does not work. This is supported by the failure

of case a) in enforcing any agreement between the CFD and MD systems. The assumption from

Eq. (5.28) to Eq. (5.29) is key to the success of the coupling methodology of Nie et al. (2004a).

It changes the constraint from differential to proportional, making it a form of state coupling

which enforces the correct velocity difference between systems.

The second conclusion is that the ‘Nie et al. (2004a) terms’ in Eq. (5.27L) are sufficient

to correctly couple the temporal evolution of both systems. The ‘MD Advected’ and ‘CFD

Advected’ terms have not been included and the coupling performs correctly. This is consistent

with the derivation of the analytical solution of time evolving Couette flow (appendix A), in

which the ‘CFD Advection’ term is assumed to be negligible. It is clear that a more complicated

case is required to fully evaluate the general coupling Eq. (5.27L).

The third conclusion is that the ‘MD Forcing’ term of Eq. (5.27L) is also not essential to apply

successful coupling in this case. The agreement between cases b) and c) in Figure 5.2 suggests

that the feedback algorithm of Borg et al. (2010) performs as well as the less straightforward

algorithm proposed by Nie et al. (2004a) for the case of Couette flow. Again, a more complicated

case is required to fully evaluate the importance of the ‘MD Forcing’.

In the next subsection, the more complicated case of a post on the wall is recreated from the

work of Nie et al. (2004a) to further test the various constraints.
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5.3.2 Couette with Wall Roughness

In line with the second verification case of Nie et al. (2004a), the simulation of Couette flow with

a single post is recreated in this subsection. The coupling scheme of Nie et al. (2004a) (case

c) above) is applied and the results are verified against the original paper. Having verified the

coupling is correct, the importance of the ‘MD Advected’ and ‘MD Forcing’ in Eq. (5.27L) is

investigated for this case.

The bottom wall includes a square post of dimension 5.12× 5.12× 41.0, with all dimensions

in this section given in MD units. The MD region is 41.0× 41.0× 41.0 with a density of ρ = 0.8

giving N = 51, 840 molecules. The molecular domain is simulated on 4 processes with topology

2 × 2 × 1. The MD code was coupled to the full 3D DNS code T ransF low (run on a single

processor). The CFD solver uses a viscosity of µ = 2.14 (or equivalent Reynolds number).

This viscosity is matched using prior simulations. Without this matching, the coupling scheme

would fail. This point is revisited in subsection 3.4.4, where the importance of flux coupling is

investigated.

Figure 5.3: Full reference MD solution (left) compared to coupled case (right). In the MD
domain, red atoms are tethered and blue are liquid. In the CFD domain, Grey cells are boundary
conditions and blue are domain cell. The labels define the key dimension in the coupled layout,
defined in the text.

A VMD (Humphrey et al., 1996) snapshot of the coupled case is shown in Figure 5.3 compared

to an equivalent MD domain of size 41.0×71.8×41.0 with N = 96, 768 simulated using 2×2×2

processors. The same case simulated using MD to model the entire domain allows verification

of the coupled algorithm as well as collection of detailed CV statistics at the location where
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coupling is applied.

The setup of the coupled case (see Figure 5.3) was specified by molecular domain top, y+
MD

=

31.3, CFD domain bottom y−
CF D

= 15.6, total coupled fluid domain height H = 52.1 with cell size

of ∆y = 5.12. The overlap was of size 15.6 and was split into three overlap cells. Molecules in the

top MD cell were subjected to the boundary forces ( Eq. (2.81)) to prevent molecules escaping.

A number of molecules were removed heuristically during initialisation in order to maintain the

same density in the presence of this boundary force. In addition, the top cell, together with the

cell below, experienced the constrained force ( Eq. (5.25)) to ensure they were matched to the

continuum. The halo for the CFD was obtained by averaging the pure MD region below the

overlap region. The ratio of timesteps between the MD and CFD simulations was 50.

A bottom (and top) wall of thickness 10.24 were kept in place using the Petravic & Harrowell

(2006) tethering potential introduced in the NEMD section 3.2.5. Both solid walls and fluid

regions were initialised at the same density of 0.8. The fluid-fluid and solid-fluid interaction

potential were both ǫ = 1.0, which represents a departure from Nie et al. (2004a) who used 0.6

for the solid-fluid interactions. The cutoff length was rc = 2.2 and the temperature T = 1.0. A

Nosè-Hoover thermostat was applied instead of the Langevin with application to the z component

of momentum only.

The contour plots of velocity are presented in Figure 5.4 for the full MD and coupled case.

The velocity profiles are shown for the steady state averaged over the z direction and 20, 000 MD

samples each separated by 15 timesteps. The velocity field is consistent for both the all MD ref-

erence and the coupled simulation. More detailed comparison is provided by the two verification

plots from the work of Nie et al. (2004a), reproduced in Figure 5.5. The full comparison of the

streamlines in Figure 5.5a shows good agreement between both cases. The vertical component

of velocity is shown as a function of y for each x location in Figure 5.5b. Note a mechanism for

particle insertion is not applied and the mass flux is not included in this model. Despite this,

the agreement between the all-MD case and the coupled simulation appears to be fairly good.

The shear stress in both the full MD and coupled cases are in good agreement, as shown

in Figure 5.6. In the MD region, the stress was obtained using the CV stress discussed in

the last Chapter 4, section 4.2.7. In the CFD region, the stress can be calculated using the

hydrodynamic pressure, the gradient of velocity and shear viscosity via Eq. (2.48). The highest

shear was next to the post on the walls (magnitudes of σxy = −0.55/0.24 for minimum/maximum

respectively). The remaining domain has a finite stress with a domain average of σxy = 0.04

in Figure 5.6. This is consistent with the steady state analytical solution for Couette flow,

σxy = µ∂ux∂y = 2.14[1− 0]/51.2 = 0.04. The post is relatively small and the effect on the stress

field is minimal and localised to the region adjacent to the post. The effect of this post at the

coupling interface would therefore be expected to be negligible.
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(a) All MD (b) Coupled

Figure 5.4: Velocity contour plots for all MD case (left) and coupled simulation (right) at
steady state. Dotted lines indicate the limits of the tethered regions.

(a) Streamlines: CPL (×) vs all MD ( ) (b) Velocity v : CPL ( ) vs all MD ( )

Figure 5.5: Recreation of the verification plots from Nie et al. (2004a) showing matching
between all MD and the coupled simulations.
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(a) All MD (b) Coupled

Figure 5.6: Stress contour plots for all MD case and coupled simulation

(a) ‘MD Advection’ (b) ‘MD Forcing’

Figure 5.7: The x magnitude contours with x and y components vector plots of the ‘MD

Advection’ and ‘MD Forcing’ terms from Eq. (5.27L) in an all MD system.
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Having verified the results of the coupled simulation are consistent with the full MD, the

reason the coupling works without the ‘MD advection’ term is explored. Figure 5.7b shows a

contour of the x component of ‘MD advection’ (5.7a) and ‘MD Forcing’ (5.7b) for the full MD

reference case. The vector of x and y components of advection and forcing are overlaid to show

the relative magnitude of the y component. These averages are taken at steady state, counting

every force and flux on a CV for 300, 000 MD time units. It is clear that both the ‘MD advection’

and ‘MD Forcing’ are, on average, zero even a small distance away from the post. At the location

of the constrained region (y = 31.3), these terms would be zero on average and not contribute to

the constrained dynamics of Eq. (5.27L). However, these terms are not zero instantaneously and

fluctuate considerably. The importance of these fluctuations will become clear in the next section

on flux coupling 5.4, where these terms are shown to be the forces and fluxes which govern the

evolution of the CV each timestep.

The conclusion from simulating steady state coupled flow over a post in this subsection is

that the ‘MD Advection’ and ‘MD Forcing’ terms in 5.27L are not essential for correct simulation

of this case. In the above simulation, the ‘MD Advection’ and ‘MD Forcing’ terms were inappre-

ciable away from the post, and hence the state coupling of Nie et al. (2004a) was sufficient. This

is, in part, a result of using a small post which has minimal impact on the flow field. Taking a

bigger post would result in greater disturbance of the stress field which would in turn introduce

significant ‘MD Advection’ and ‘MD Forcing’ terms. In the next subsection 5.3.3, the logical

extreme of this case is taken with an all MD simulation of a converging-diverging channel.

5.3.3 Converging-Diverging Channel

In this section, an all MD simulation of a converging-diverging channel is performed in order to

explore the relationship between the ‘MD Forcing’ and ‘MD Advection’ terms of Eq. (5.27L),

r̈i =
Fi

mi
− ϑi

MI

[ N∑

n=1

Fnϑn

︸ ︷︷ ︸

MD Forcing

−
∫

V

∂ (ρu)

∂t
dV

︸ ︷︷ ︸

CFD Accumulation

]

− ϑi

MI

[ ∮

S

(ρuu) · dS
︸ ︷︷ ︸

CFD Advection

−
N∑

n=1

mnṙnṙn · dSn

︸ ︷︷ ︸

MD Advection

]

, (5.27L)

The details of the setup and extended analysis of the converging-diverging channel is included in

the appendix D with only the main results for forcing and advection considered here.

The channel was formed by molecules tethered using a cosinusoidally varying curve. The

channel maximum height was Ly = 47.0ℓ, the minimum (centre) height was ly = 18.5ℓ (defined

as the channel throat) and the channel length was Lx = 285ℓ. The total simulation domain

dimensions were 285 × 56.9 × 11.4ℓ with 200 × 40 × 1 control volumes each of size 1.4227 ×
1.4227 × 11.4ℓ. The walls had a minimum thickness of half a binsize (0.711ℓ) above a Nosé-

Hoover thermostatted region. The thermostatted region has a width of three binsizes (4.268ℓ).

The domain is homogeneous in z with periodic boundaries in the x and z direction. A force is

applied to the molecules between x = 0 and x = 10 to drive the flow by enforcing a difference

in inlet pressure and outlet (or reservoir) pressure. The simulation is run for 500, 000 timestep

with a timestep of ∆t
MD

= 0.005.

Figure 5.8 shows a plot of the x component of ‘MD Advection’ (top) and ‘MD Forcing’

(bottom) for the converging-diverging channel, both are displayed on the same colour scale. The

system is run for 120, 000 timesteps to steady state before records are taken. The results are

then obtained by recording every molecular crossing and force over every surface of the 8000 CV
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Figure 5.8: x component of ‘MD Advection’ (top) and ‘MD Forcing’ (bottom) contours on the
same colour scale.

for 380, 000 timesteps. It can be seen in Figure (5.8 top) that the ‘MD Advection’ term is zero

in the tethered region. This is a consequence of no molecules crossing the CV surfaces and so no

additions to the ‘MD Advection’ term. There is a maximum in the forced region near the inlet

due to the application of the localised external force. The magnitude of the ‘MD Advection’ terms

increases from the inlet reaching a maximum at the throat of the channel. The key observation

is the ‘MD Advection’ term in Figure (5.8 top) remains non-zero on average. It would therefore

be an important and sustained contribution to the general constraint Eq. (5.27L). This is a key

change from the Couette post case in which the ‘MD Advection’ term was zero for the steady

state.

Similarly, the ‘MD Forcing’ also remains non-zero in the steady state and will therefore

contribute to Eq. (5.27L). The largest difference in the ‘MD Forcing’ of Figure (5.8 bottom)

is next to the wall. The dense tethered molecules are stationary, resulting in a large interactive

force with the moving fluid. Ignoring the wall regions and the inlet-forced region, the contour in

the fluid region is seen to be identical to the ‘MD Advection’.

The identical ‘MD Forcing’ and ‘MD Advection’ profiles can be understood by considering

the time evolution of a representative control volume. The CV of interest is located just before

the nozzle, where the ‘MD Forcing’/‘MD Advection’ contribution is greatest. The CV is chosen

to include only the fluid part of the converging-diverging channel between x = 104 and x = 118,

up to but not including the walls located at y = 18.5 and 38.4, and for all z. The results are

shown in Figure 5.9, with each light grey point the result of the sum of every force and flux

over the CV surface for a period of 3, 000 timesteps (15 MD time units). The magnitudes in

Figure 5.9 are equivalent to those of Figure 5.8 divided by the timestep ∆tMD = 0.005. The

results fluctuate significantly (light grey results), however, the general trend is displayed using the

thick lines/red crosses, obtained using polynomially smoothed fits. The details of the smoothing
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are unimportant. These plots are comparable to the ones used to demonstrate conservation of

momentum in a CV Figure 4.6a, displayed in the previous chapter. The sum of the ‘MD Forcing’

and ‘MD Advection’ terms over a CV surface can be seen to be exactly equal to the time evolution

within that CV, from Eq. (4.61),

d

dt

N∑

i=1

miṙiϑi

︸ ︷︷ ︸

MD Accumulation

= −
N∑

i=1

miṙiṙi · dSi

︸ ︷︷ ︸

MD Advection

+
1

2

N∑

i,j

ςij · dSijϑi

︸ ︷︷ ︸

MD Forcing

, (5.31)

The control volume conservation is observed to machine precision. The time evolution of mo-

mentum is shown in Figure 5.9 and is exactly equal to the difference in the ‘MD Forcing’ and

‘MD Advection’ terms. The ‘MD Forcing’ and ‘MD Advection’ are different during the initial

unsteady part of the simulation, but tend to the same value over time. When both forcing and

advection terms are equal, the system is at steady state and there is no further change in mo-

mentum over time. Notice however that both terms remain non-zero at steady state. This is an

important point, only if both ‘MD Forcing’ and ‘MD Advection’ are included would no force be

applied at steady state. Including only ‘MD Forcing’ in a constraint equation would introduce a

spurious and continuous force at steady state that should have been cancelled by the correspond-

ing fluxes. Another key observation is that these terms continue to fluctuate significantly even

when the overall system is no longer evolving in time. To not include these fluctuating terms

in Eq. (5.31) would mean a significant and meaningful contribution would be omitted from the

constrained equation. The impact of this can be observed by substituting Eq. (5.31) into the

constraint Eq. (5.27L),

r̈i =
Fi

mi
− ϑi

MI

d

dt

N∑

i=1

miṙiϑi

︸ ︷︷ ︸

MD Accumulation

+
ϑi

MI

[ ∫

V

∂ (ρu)

∂t
dV

︸ ︷︷ ︸

CFD Accumulation

+

∮

S

(ρuu) · dS
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CFD Advection

]

, (5.32)

The general constraint Eq. (5.27L) in this guise can be interpreted as removing any change in

the time evolution of the molecular CV and replacing it with the continuum values.
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Figure 5.9: The time evolution (in reduced units) of terms in a CV located near the channel

throat (fluid between x = 104 and x = 118). The faint grey values are the sum of counting every

molecular crossing ( ), intermolecular force (×) or external force ( ) over an interval of 15

MD time units. The continuous line is the change in velocity between the start and finish of the

same time interval ( ). The thick lines are smoothed (using MATLAB second order polynomial

smoothing) to highlight the conservation of momentum from Eq. (5.31). The ‘Accumulation’

( ), ‘MD Forcing’ (×), and ‘MD Advection’ ( ) sum to zero. Smoothed ‘Forcing’ symbols

are shown every 4th averaging time for clarity

In order to gain further insight into the nature of the ‘MD Forcing’ and ‘MD Advection’

terms, they can be split into their constitutive parts. The ‘MD Forcing’ terms can be written in

terms of configurational stress. The ‘MD Advection’ expressed in terms of kinetic pressure and

convection.

The ‘MD Forcing’ term can be written in terms of the forces acting over each of the MD CV

surfaces,

N∑

i=1

Fiϑi =

N∑

i,j

fijϑij =

N∑

i,j

ςij · dSij .

Each of the surface terms is a form of traction, given by the definition from Eq. (4.35) in the

previous chapter, for example the CV top surface in the x direction has the following component
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of surface stress,

∫

S+
x

σ · dSS+
x

=

N∑

i,j

ςxijdSxij = −1

4

N∑

i,j

fijdS
+
xij .

where ςij on the x surface is simply ςxij = fijñx = fij and dS+
xij selects only the interactions

crossing the top x surface. The average stress for a given surface
∫

S+
x

σ · dSS+
x

≈ T+
x ∆A+

x (as

σ · n+
x = T+

x , the traction),

T+
x = − 1

4∆A+
x

N∑

i,j

fijdS
+
xij . (5.33)

which are approximations for the direct and shear stresses, σxx, σyx and σzx, localised to the x+

surface of the CV. The shear stresses are statistically similar to the forces on a different surface,

for example σyx the y component of force acting over the x+ surface is similar to σyx defined by

the x component of force acting over the y+ surface,

T+
yx = − 1

4∆A+
x

N∑

i,j

fyijdS
+
xij ; T+

xy = − 1

4∆A+
y

N∑

i,j

fxijdS
+
yij .

The use of a finite volume means the stress components are defined at different location and are

not exactly symmetric.

The ‘MD Advection’ term can be split into a convective (streaming) and kinetic pressure

contribution,

N∑

n=1

mnṙnṙn · dSn =

∮

S

{ρuu}
MD

· dS +

N∑

n=1

mnṙiṙi · dSn (5.34)

using the breakdown of Irving & Kirkwood (1950) for interactions localised to the CV surfaces

where ṙi ≡ (ṙn − u). Each of the peculiar parts of the surface fluxes are a form of kinetic pressure.

For example, the kinetic pressure on the x+ CV surface is,

∫

S+
x

κ · dSS+
x

=

N∑

i=1

ṙiṙix

mi
dS+

xi. (5.35)

The average kinetic pressure for a given surface
∫

S+
x

κ · dSS+
x
≈ K+

x ∆A+
x (as κ · n+

x = K+
x , the

kinetic pressure analogue to traction) is,

K+
x =

1

∆A+
x

N∑

i=1

miṙiṙixdS
+
xi. (5.36)

which are approximations for the direct and shear kinetic pressures, κxx, κyx and κzx localised

to the x+ surface of the CV. Therefore, the total pressure on the x surface p+
x = K+

x −T+
x is the

combination of kinetic and configurational terms,

p+
x =

1

∆A+
x

N∑

i=1

miṙiṙixdS
+
xi +

1

4∆A+
x

N∑

i,j

fijdS
+
xij , (5.37)
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which corresponds to Πxx, Πxy and Πxz components of pressure localised to the x+ surface of

the CV. This is identical in form to the method of planes stress (Todd et al., 1995) but localised

to a region in space (Han & Lee, 2004).

The ‘MD Forcing’ term can be expressed in terms of configurational stresses using the def-

inition Eq. (5.33). The ‘MD Advection’ terms can be written in terms of kinetic pressure and

convection using Eq. (5.34) together with the definition Eq. (5.36). Therefore, both the ‘MD

Forcing’ and ‘MD Advection’ terms together are,

N∑

n=1

Fαnϑn −
N∑

n=1

mnṙαnṙβn · dSβn = −{ρuαuβ}+
MD

− {ρuαuβ}−MD

∆rβ
−
K+

αβ −K−
αβ

∆rβ
+
T+

αβ − T−
αβ

∆rβ
,

where the right hand side is a sum over 18 terms for each coordinate direction. There are 9

components of configurational stress, 9 components of convection and 9 components of kinetic

pressure defined for both top and bottom CV surface. For flow in a converging-diverging nozzle,

only the x convection {ρuxux}MD
, the three direct configurational stress σαα, three direct kinetic

pressures καα and the Πxy/Πyx shear pressures components for each surface are significant (>

0.01). It is the magnitudes of these convection, pressure and stress terms that will be considered

in this subsection.

The contour plot of the molecular convective terms {ρuxux}MD
is displayed in Figure 5.10,

where the maximum is observed in the centre. The direct kinetic pressure and configurational

stresses are plotted as contours in Figures 5.11 and 5.12 respectively. All three directions are

statistically equal, therefore the average of the three direct components over the x, y and z faces

are shown in Figures 5.11 (κ
CV

≡K+
xx + K−

xx + K+
yy + K−

yy + K+
zz + K−

zz) and 5.12 (σ
CV

≡T+
xx +

T−
xx + T+

yy + T−
yy + T+

zz + T−
zz). Figure 5.13 shows a contour of the total Πyx shear component

including both kinetic and configurational contributions. This is statistically identical to the Πxy

component obtained from the y components of force and flux on the x CV surfaces.

Figure 5.10: Convection in the x direction {ρuxux}MD
for the MD converging diverging channel
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Figure 5.11: Kinetic pressure contour κ
CV

in the MD converging diverging channel

Figure 5.12: Configurational stress contour σ
CV

in the MD converging diverging channel

Figure 5.13: Shear stress Πxy/Πyx (kinetic and configurational contour in the MD converging

diverging channel).

The centreline profiles as a function of x for the convective term, the kinetic pressure and

the configurational stress are plotted in Figure 5.14. The kinetic pressure in Figure 5.11 is a

maximum after the pumping region and drops to a minimum at the outlet. Similar behaviour is

observed for the configurational stresses in Figure 5.12. However, comparison of the centreline
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profiles in Figure 5.14 reveals a difference in the spatial behaviour of the two. The kinetic pressure

drops continuously throughout the channel while the configurational drops most noticeably in

the narrowest part of the channel, before reaching a minimum value at around x = 200.

The maximum configurational stress is of order 5 while the kinetic pressure account for 1.4

of the total pressure. The convective term has a magnitude of about 1.8 while the shear stress

is relatively small at a maximum of about ±0.3 near the wall. In the wall, configurational stress

values are as high as 65 because molecules are held artificially close by the tethered potential.

The large configurational stresses are balanced by the tethered forces which are accounted for as

external body forces in the CV balance.

The ‘MD Forcing’ and ‘MD Advection’ terms are a result of the differences in the convection,

stress and pressure as a function of spatial position. Therefore, the relative magnitudes of the

various components are not relevant, only the changes as a function of spatial position are. It is

clear from the four contour plots above, 5.10,5.11,5.12 and 5.13 that spatial gradients are present

throughout the domain. These are most significantly in the x direction for kinetic pressure (Figure

5.11) and configurational stress (Figure 5.12). The x dependence is clearly seen in Figure 5.14.

The shear stress has strongest gradients in the y direction in Figure 5.13, although it has a weak

gradient in x following the nozzle geometry. The convective term contour of Figure 5.10 appears

elliptic and varies continuously in both x and y. Consideration of the various convective and

stress components in this section provides insight into the magnitudes of the ‘MD Forcing’ and

‘MD Advection’ terms. The key observation is that the terms present in the generalised coupling

equation Eq. (5.27L) are related to the spatial variation in stresses, convections and pressures

throughout the molecular system. The importance of these terms as fluxes and stresses is the

subject of the next section where the generalised Eq. (5.27L) is shown to be a form of flux

coupling.

There are three key conclusions from the study of the converging-diverging nozzle.

The first conclusion is that the ‘MD Forcing’ and ‘MD Advection’ terms are not zero for

this geometry, unlike the previous case of Couette flow with a post. They have an average value

which does not disappear. It is reasonable to expect that many coupled simulations of interest

will also contain persistent advection and forcing components at steady state. As a result, these

terms will not disappear and correct coupling will require them to be enforced.

The second conclusion is that the sum of the ‘MD Forcing’ and ‘MD Advection’ terms is zero

for a steady state system. In fact, these two terms are the right hand side of the molecular CV

equation Eq. (5.31) and entirely govern the evolution of that CV in time. To include only one of

the terms would introduce spurious oscillations into a steady state solution. If both are included,

these fluctuations are balanced and cancel on average. However, even for a steady state system,

the instantaneous ‘MD Forcing’ and ‘MD Advection’ terms will not be zero, possibly taking very

large values. By interpreting these terms as the right hand side of Eq. (5.31), they can be seen to

govern entirely the time evolution inside the CV as a result of interaction with molecules outside

the CV. In the generalised constraint Eq. (5.27L), the ‘MD Forcing’ and ‘MD Advection’ are

negative and so are removed from the system by the constraint. The effect of removing these

terms can therefore be seen to prevent the time evolution of the molecular CV as a result of

interacting with the surrounding system.

The third conclusion of this section is that the ‘MD Forcing’ and ‘MD Advection’ terms in

Eq. (5.27L) can be re-written in terms of the convection, pressures and stresses (fluxes) for the

constrained CV. The various fields for these flux terms were examined and the effect on the ‘MD
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Figure 5.14: The change in x of various flux/stress quantities along the centre line in the
converging-diverging channel. The configurational pressure σCV /σ0CV ( ), the left hand side
of Eq. (5.34) normalised to one ( ), broken down into kinetic pressure κCV /κ0CV ( ) and the
convective term ρuu/ρ0u0u0 ( o ). The mass flux ratio ( ) obtained from flow of molecules (
Eq. (4.60) Advection) is also plotted which, on average, matches ρu/ρ0u0 in figure D.8. Subscript
0 denotes channel maximum, σ0CV = 4.6, κ0CV = 1.3 and ρ0u0u0 = 1.8.
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Forcing’ and ‘MD Advection’ terms in Eq. (5.27L) were discussed. With the terms interpreted in

this manner, subtracting them as part of the constraint applied in Eq. (5.27L) can be interpreted

as removing the fluxes in the molecular system. This will be shown explicitly in the next section

5.4, where Eq. (5.27L) is shown to be a form of flux coupling.

5.4 Control Volume Flux Coupling

This section discusses the extension of the general equation, Eq. (5.27), to the coupling of fluxes.

Flux coupling is used by several authors and has a number of advantages including; higher-order

agreement between the MD and CFD (Shan et al., 2006), allowance for viscosity mismatch as

well as positive entropy generation (Delgado-Buscalioni & Coveney, 2004). However, it should be

noted that the work of Hadjiconstantinou et al. (2003) suggests that flux coupling is prohibitively

expensive. In appendix E, this claim is shown to be true only for certain points on the phase

diagram.

The general form of constraint, Eq. (5.27), is expressed in terms of the divergence of flux

discussed in the previous section. This form of equation is shown to control an arbitrary molecular

CV in a manner which exactly matches a continuum CV. Next, the assumptions required to obtain

the flux coupling schemes of Flekkøy et al. (2000) and Delgado-Buscalioni & Coveney (2003a)

are discussed. This exposes the underlying relationship between the Nie et al. (2004a) form and

flux coupling schemes of Flekkøy et al. (2000) and Delgado-Buscalioni & Coveney (2003a). The

momentum equation and stresses derived in chapter 4 are essential for this process. The result

is a rigorous derivation of a flux coupling scheme from the variational principles of mechanics.

5.4.1 The General Equation as the Divergence of Flux

As a starting point, consider the most general form of constraint equation, Eq. (5.27), with the

terms reordered,

r̈i =
Fi

mi
− ϑi

MI

[

−
∮

S

(ρuu) · dS −
∫

V

∂ (ρu)

∂t
dV −

N∑

n=1

mnṙnṙn · dSn +

N∑

n=1

Fnϑn

]

. (5.27R)

In this section, the discretisation of ∂ (ρu) /∂t used by Nie et al. (2004a) is avoided, instead the

time evolution of the continuum element is rewritten as the forces acting over the surface of an

element (neglecting body forces in the continuum),

∫

V

∂ (ρu)

∂t
dV = Fsurface =

∮

S

Π · dS.

which includes both kinetic pressure κ and the stress σ. The force in the MD can be expressed

in terms of surface tractions,

N∑

n=1

Fnϑn =

N∑

n,m

fnmϑnm =

N∑

n,m

ςnm · dSnm.

The time evolutions of both continuum and molecular CV can then be rewritten in terms of fluxes

and stresses using the continuum momentum balance equation ( Eq. (2.36)) and the molecular
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CV time evolution

in MD system − Advection − Forcing → Isolated CV

Figure 5.15: Schematic of the effect of removing the ‘MD advection’ and ‘MD Forcing’ terms
from Eq. (5.38) leaving an effectively isolated CV of molecules.

Isolated CV + [CFD Advection → CV time evolution

+ CFD Forcing ] in CFD system

Figure 5.16: Schematic of the effect of adding the ‘CFD advection’ and ‘CFD Forcing’ terms
from Eq. (5.38). The isolated CV of molecules from figure 5.15 therefore evolves as if directly
surrounded by the continuum fluid.

equivalent Eq. (4.55),

r̈i =
Fi

mi
− ϑi

MI

[ ∮

S

ρuu · dS
︸ ︷︷ ︸

CFD Advection

−
∮

S

Π · dS
︸ ︷︷ ︸

CFD Forcing

−
N∑

n=1

mnṙnṙn · dSn

︸ ︷︷ ︸

MD Advection

+
1

2

N∑

n,m

ςnm · dSnm

︸ ︷︷ ︸

MD Forcing

]

. (5.38)

A schematic view of the effect of applying the constraint of Eq. (5.38) is shown in Figures 5.15

and 5.16. First, in Figure 5.15 the ‘MD advection’ and ‘MD Forcing’ terms are removed. These

terms describe the sum of all fluxes and external forces acting over the CV surface. Removing

them has the effect of ensuring that the CV of molecules is isolated from the rest of the MD

system in an average sense (as shown on the far left of Figure 5.15). Note that fluctuations due

to the surrounding system and local interaction are retained, only the average forces and fluxes

are removed. The isolated CV then has the ‘CFD Advection’ and ‘CFD Forcing’ added to it.

These terms define the continuum field which acts over the surface of a continuum CV. This has

the effect, as shown in Figure 5.16, of ensuring that the molecules in the CV evolve as if they

are surrounded by the continuum fluid. This will be shown rigorously in the next subsection by

combining the constraint Eq. (5.38) with the CV momentum Eq. (5.39).
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Effect on the Momentum Equation

As the constraint in Eq. (5.38) is an external force applied to the system, it can be shown

to apply the correct momentum flux equation by substituting it as an external force into the

molecular momentum CV Eq. (4.55),

∂

∂t

N∑

i=1

miṙiϑi = −
N∑

i=1

miṙiṙi · dSi +
1

2

N∑

i,j

ςij · dSij +

N∑

i=1

fiext
ϑi. (5.39)

This equation, introduced in the previous chapter, governs the time evolution of a molecular

control volume. The time evolution is due to molecular flux, molecular forces and the external

force fiext
, typically neglected in the previous section. The constraint force of Eq. (5.38) can be

considered as a form of external force of the form,

fiext
= −mi

MI

[ ∮

S

ρuu · dS −
∮

S

Π · dS −
N∑

n=1

mnṙnṙn · dSn +
1

2

N∑

n,m

ςnm · dSnm

]

. (5.40)

Therefore, Eq. (5.38) can be written as Newton’s law with an additional external force, mir̈i =

Fi + fiext
ϑi. Substituting Eq. (5.40) into Eq. (5.39) and noting that

∑N
i miϑi/MI = 1, the

molecular terms cancel and the momentum conservation equation becomes,

∂

∂t

N∑

i=1

miṙiϑi = −
∮

S

ρuu · dS +

∮

S

Π · dS, (5.41)

which shows that the molecular momentum evolution is exactly equal to the continuum surface

fluxes and forces in the constrained control volume. This has the corollary that,

∂

∂t

N∑

i=1

miṙiϑi =
∂

∂t

∫

V

ρudV, (5.42)

the MD CV evolves in time in exactly the same way as the coupled continuum CV. The impor-

tance of removing the molecular momentum terms before adding the continuum values is clear.

If the continuum values are simply applied as a force to the molecular system they will introduce

additional momentum, rather than ensuring that the momentum evolution reaches the required

value. This would also result in an addition of energy as discussed next.

Effect on the Energy Equation

The derivation of the effect on the momentum equation is exact. No assumption was required

in the derivation and the constraint of momentum ensures that the MD system matches the

continuum evolution exactly at all times. The energy applied to the system by the constraint

of Eq. (5.38) can also be explored by considering the external term in the energy equation, Eq.

(4.56). The energy equation for a CV is,

∂

∂t

N∑

i=1

eiϑi = −
N∑

i=1

eiṙi · dSi +
1

2

N∑

i,j

ṙi · ςij · dSij +

N∑

i=1

ṙi · fiext
ϑi, (5.43)
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The energy added to the molecular system by the external body force from Eq. (5.40) is,

N∑

i=1

ṙi · fiext
ϑi =

1

MI

N∑

i=1

miṙi ·
[ ∮

S

ρuu · dS −
∮

S

Π · dS

−
N∑

n=1

mnṙnṙn · dSn +
1

2

N∑

n,m

ςnm · dSnm

]

ϑi. (5.44)

The energy applied can be understood by expressing the fluxes in terms of time evolution using

Eq. (4.61) for the molecular terms and Eq. (2.36) for the continuum,

N∑

i=1

ṙi · fiext
ϑi =

1

MI

N∑

i=1

miṙiϑi ·
[
∂

∂t

∫

V

ρudV − ∂

∂t

N∑

i=1

miṙiϑi

]

. (5.45)

From the insertion of the constraint force into the momentum equation in the previous subsection,

it was shown that the time evolution of the molecular CV is exactly matched to the continuum

CV Eq. (5.42). Therefore, the energy applied by the external constraint force is zero,

N∑

i=1

ṙi · fiext
ϑi = 0. (5.46)

The general constraint equation of Eq. (5.27L) or equivalently Eq. (5.38) are therefore seen to

add exactly no energy to the molecular system in the process of constraining the momentum.

This is consistent with the derivation of Eq. (5.27L) from the principle of least action applying

non-holonomic constraints, which is known to conserve energy (Goldstein et al., 2002). Note, the

insertion of molecules into the molecular system is not considered in this energy equation.

In the next section, the requirement of exact matching of the divergence in both systems of

Eq. (5.38) is relaxed to instead ensure the agreement of individual fluxes between both systems.

Although this constraint should still satisfy Eq. (5.38), the agreement of the time evolution of

both systems may no longer be exact. The process in the next section weakens the formulation

in a way which is analogous to weakening a continuum description using the finite element

method (FEA). The continuum FEA formulation is derived in a manner which ensures energy

conservation, therefore it should be possible to construct a flux scheme which exactly maintains

the energy conservation demonstrated here.

5.4.2 Flux Coupling from the General Equation

The flux form of the general constraint Eq. (5.38) is the starting point for the work in this

section. The requirement of this constraint, Eq. (5.38), is that the difference in stress over

all CV surfaces is the same in both systems. If each surface is instead matched independently,

the original constraint requirement would still be satisfied. Using a similar concept to the finite

element method (Zienkiewicz, 2005), the constraint force can be re-written in a manner which

allows stress at every point inside the molecular CV to be linked using a weighting function. The

requirement is that Eq. (5.38) is satisfied by the choice of weighting function.

Noting that the stress acting over the surface is by definition the traction which can be related

to the internal stresses using a shape function Na (see Eq. (4.39) and associated discussion in
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section 4.2.7). The constraint Eq. (5.38) can therefore be written as,

r̈i =
Fi

m
− Naϑi

MI





∮

S+

ρuu · dS+ −
∮

S+

Π · dS+ −
N∑

i=1

mṙnṙn · dS+
n +

1

2

N∑

n,m

ςnm · dS+
nm





− (1 −Na)ϑi

MI





∮

S−

ρuu · dS− −
∮

S−

Π · dS− −
N∑

i=1

mṙnṙn · dS−
n +

1

2

N∑

n,m

ςnm · dS−
nm



 .

(5.47)

The choice of weighting function is entirely arbitrary provided the surface stresses and fluxes

are satisfied. The simplest choice in order to satisfy the boundaries is a linear shape function,

Na = (riβ − r−β )/∆rβ , where r−β = rβ − ∆rβ/2. The CV function is only non-zero where

rβ −∆rβ/2 < riβ < rβ + ∆rβ/2, so that 0 < Na < 1. It is also possible to use more complicated

functions for Na, for example an RDF based shape function of the type given in Eq. (2.81) and

derived from the representation used by Werder et al. (2005). The RDF weighting function could

be used to apply forces in a manner as close as possible to inter-molecular forces,

Na = −2π

rc∫

z=rw

(r2
c−z2)

1
2

∫

x=0

g(r)
xz

r
dxdz (5.48)

where g(r) is the radial distribution function in radial coordinates. The choice of shape function

could also be different for the molecular system and continuum system, for example,

r̈i =
Fi

m
−

N∑

i=1

mṙnṙn · dSn +
1

2

N∑

n,m

ςnm · dSnm − Naϑi

MI





∮

S+

ρuu · dS+ −
∮

S+

Π · dS+





− (1 −Na)ϑi

MI





∮

S−

ρuu · dS− −
∮

S−

Π · dS−



 ,

where all the CV molecular interactions are entirely removed and the continuum forces are applied

based on a weighting function. This ensures that the fluxes and forces of the molecular system

are exactly removed as in Eq. (5.41), and that the continuum forces can be applied using any

choice of weighting function. The appropriate choice of weighting function is implementation

specific and can result in the various forms of flux coupling from the literature, as shown in the

next subsection.

The constraint Eq. (5.47) can be interpreted as removing molecular fluxes/forces and re-

placing them with the continuum fluxes/forces, as shown schematically in Figures 5.15 and 5.16.

The key change in this section is that Eq. (5.47) no longer simply constrains the sum of all the

fluxes/forces. Instead, the flux and force are constrained on a surface by surface basis for the six

CV surfaces. The constraint force therefore varies throughout the control volume and enforces a

higher order of agreement. In the previous section, using Eq. (5.38), a single force was applied

to each volume and only the sum of all the surfaces fluxes/forces was enforced.
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Relationship to the methods of Flekkøy et al. (2000) and Delgado-Buscalioni

& Coveney (2003a)

The pioneering flux coupling methodology of Flekkøy et al. (2000) can be seen as a special case

of Eq. (5.47), given by appropriate choice of weighting function. The flux constraint of Flekkøy

et al. (2000) does not include removal of the ‘MD advection’ and pressures at each timestep so

Eq. (5.47) simplifies to,

r̈i =
Fi

m
− Naϑi

MI





∮

S+

ρuu · dS+ −
∮

S+

Π · dS+



− (1 −Na)ϑi

MI





∮

S−

ρuu · dS− −
∮

S−

Π · dS−



 ,

(5.49)

The importance of removing the molecular terms was demonstrated in the previous subsection

5.4.1 using the momentum and energy equation. By simply adding the continuum flux, the

constraint of Flekkøy et al. (2000) add energy to the system without any corresponding removal

of molecular energy. Later work by the same group removed the added energy by velocity

rescaling (Wagner et al., 2002) when considering the coupled energy exchange.

The work of Flekkøy et al. (2000) apply the pressure
∫

S+
y

Π·dS+
y and convection

∫

S+
y
ρuu·dS+

y

at the top of the molecular region only i .e.
∫

S− Π · dS− = 0 and
∫

S− ρuu · dS− = 0 so,

r̈i =
Fi

m
− Nay

ϑi

MI






∫

S+
y

ρuu · dS+
y −

∫

S+
y

Π · dS+
y




 . (5.50)

This constraint enforces the three components of continuum convection and pressure acting over

the top surface. The convection terms are adjusted to be consistent with the insertion of molecules

and the applied force is corrected to take this into account. The weighting function chosen by

Flekkøy et al. (2000) is said to be arbitrary. A diverging function, Eq. (2.92), is chosen which

provides a lower density region in which to insert molecules.

The work of Delgado-Buscalioni & Coveney (2003a) extends the coupling of Flekkøy et al.

(2000). As with Flekkøy et al. (2000), the molecular fluxes/stresses of Eq. (5.47) are not removed

before adding the continuum forces so the reduced form of Eq. (5.49) is used. Delgado-Buscalioni

(2012) asserts that the applied force must have a constant value to prevent heat being produced

in an uncontrolled manner. This constant force can be implemented in the framework of Eq.

(5.49) by setting Na = 1/2 in Eq. (5.49), so that the average value between the top and bottom

surfaces is applied,

r̈i =
Fi

m
− 1

2

ϑi

MI





∮

S+

ρuu · dS+ −
∮

S+

Π · dS+ +

∮

S−

ρuu · dS− −
∮

S−

Π · dS−



 . (5.51)

Setting Na to a constant value would not satisfy the original constraint Eq. (5.38) exactly, as

a constant weighting cannot simultaneously satisfy the different top and bottom surface fluxes.

Delgado-Buscalioni & Coveney (2004) observe that the flux values at the surfaces and not cell

centres are required to accurately enforce a coupling scheme. Therefore, the coupling scheme

in this form would be offset by half a cell in practice, in order to ensure the centre is a surface

flux of the cell of interest. As the ‘MD Forcing’ and ‘MD Advection’ are not removed, energy is
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added to the system. The correct energy exchange between the systems is ensured by removing

this energy through a combination of localised thermostats and particle insertions with appropri-

ate kinetic and potential energies (Delgado-Buscalioni & Coveney, 2003a). However, the more

elegant scheme introduced in later work by Flekkøy, Delgado-Buscalioni and Coveney (Flekkøy

et al., 2005) ensures the constraint does no work on the molecular system. This is derived using

thermodynamics arguments and results in a number of the molecular terms (‘MD Forcing’ and

‘MD Advection’ split into streaming and fluctuating parts) being added into the constraint. As

a result, it is closer to the more general coupling of Eq. (5.47) which includes removal of the

molecular contribution and does not result in any addition of energy to the molecular system.

5.5 Overview

This chapter has discussed the application of the control volume (CV) formulation derived in

chapter 4 to the field of coupling. By using the localising properties of the CV operator, together

with variational principles of mechanics, a rigorous and general constraint equation, Eq. (5.27),

was obtained,

r̈i =
Fi

mi
− ϑi

MI

[

≈σ
MD

−Π
CF D

︷ ︸︸ ︷

N∑

n=1

Fnϑn

︸ ︷︷ ︸

MD Forcing

−
∫

V

∂ (ρu)

∂t
dV

︸ ︷︷ ︸

≈u
CF D

−u
MD

−
∮

S

(ρuu) · dS +

N∑

n=1

mnṙnṙn · dSn

︸ ︷︷ ︸

Advection (New to current work)

]

. (5.27O)

where the underbrace and overbrace denote the interpretation of the various terms discussed

in this section. As Eq. (5.27O) is directly derived using variational principles of mechanics, it

provides the molecular system with a trajectory as close as possible to the true trajectory, but

subject to the required constraint for coupling.

Equation (5.27O) is the key contribution of this chapter and the interpretations of its various

terms have been demonstrated through numerical experiments and comparison to the literature.

The manner in which it can simplified to obtain the various form of existing coupling has also

been shown, demonstrating the link between the existing literature (O’Connell & Thompson,

1995; Borg et al., 2010; Nie et al., 2004a; Flekkøy et al., 2000; Delgado-Buscalioni & Coveney,

2003a). Finally, the advection terms in Eq. (5.27O) are new to this work and their importance

has been demonstrated.

The summary of the various forms of constraints is shown in Figure 5.17 with the generalised

equation, Eq. (5.27O), highlighted in light grey.

The starting point of Figure 5.17 is to enforce the ‘CV momentum constraint’ which ensures

the momentum of a localised CV agrees between both systems,

g(q, q̇, t) =

N∑

n=1

mnq̇nϑn −
∫

V

ρudV = 0. (5.52)

The use of the LCV function is key to ensure the constraint is applied correctly, localised to a

volume in space. The result from applying this constraint, using the principle of least action,

is the Hamiltonian form of the equations of motion Eq. (5.9a) and Eq. (5.9b). These can be

simplified to yield the (O’Connell & Thompson, 1995) form of coupling, as shown in Figure 5.17.
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 

 
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 
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Figure 5.17: Schematic summary of the constraint derivation in this chapter. The dark arrows
represent formal mathematical manipulations while the grey arrows indicate steps which require
neglecting terms or assumptions. The light grey box is the generalised equation Eq. (5.27O).

The Hamiltonian equations can also be combined to give Newton’s law with constraint, Eq.

(5.27O). The Newtonian form can also be obtained directly from Gauss’ principle, as shown

in Figure 5.17, demonstrating that the least action and Gauss’ principles are consistent for this

case.

Newton’s law with the constraint can be shown to yield the Nie et al. (2004a) form (see Figure

5.17) using a ‘special discretisation’ to replace the velocity differential with a velocity difference,

Du/Dt ≈ u
CF D

− u
MD

/∆t and neglecting ‘Advection’. This assumption is of key importance

to the success of the Nie et al. (2004a) coupling, as demonstrated in section 5.3.1. The ‘special

discretisation’ converts the constraint to a form of state coupling, where the ‘MD Forcing’ terms

is unimportant. The more complicated case of Couette flow with a post in section 5.3.2, also

demonstrates the relative unimportance of ‘MD Forcing’ and the new ‘Advection’ terms to the

steady state solution.

The reason for the unimportance of the ‘MD Forcing’ and ‘Advection’ terms was attributed

to the small post. These terms will be expected to be increasingly more important as the post

becomes larger. The logical limit of this assertion was taken using an all MD simulation of a

converging diverging nozzle in section 5.3.3. The importance of the ‘MD Forcing’ and ‘Advection’

terms is then demonstrated as they are seen to be non-zero at steady state. Furthermore, the

‘MD Forcing’ and ‘Advection’ terms together are shown to entirely govern the time evolution of

momentum in a control volume (from Eq. (4.79)). This demonstrates that they are not only

required in general, but that the new ‘Advection’ component in Eq. (5.27O) is as important as

the ‘MD Forcing’, having equal magnitude at steady state. Without both terms, spurious forces

would be introduced into the steady state solution by the coupling constraint of Nie et al. (2004a).

Finally, the ‘MD Forcing’ and ‘Advection’ terms are shown to be the result of variations in the

convection and pressure (flux) field in the MD converging-diverging channel. The importance of

these terms was therefore demonstrated as a form of flux based constraint.

This leads on to the final section 5.4, where the constraint is weakened in order to obtain a

form of flux coupling. On Figure 5.17, this is shown by the link from the Newtonian form of the

equation of motion to the flux form. The flux form of the general equation, Eq. (5.27O), was

then linked to the flux constraints of Flekkøy et al. (2000) and Delgado-Buscalioni & Coveney

(2003a).

This achieves the goal of providing a rigorous derivation of flux coupling from the variational
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principles. The advantage is that the evolution due to the flux constraint is consistent with the

variational principles. In addition, the energy conservation is automatically satisfied due to the

derivation of the constraint from the principle of least action (Goldstein et al., 2002). In addition,

the CV framework provides a way of validating the choice of constraint in section 5.4.1. This

is performed by evaluating the effect of the constraint on the molecular momentum and energy

equations.



Chapter 6

Conclusions and Future Work

6.1 Motivation and challenges

This work has presented the development of coupling methodologies between continuum compu-

tational fluid mechanics (CFD) and molecular dynamics (MD). This emerging subject is of vital

importance to the future of micro and nano scale engineering.

The field of continuum based fluid mechanics has a long history, however there remain very

few analytical solutions. Only since the development of computers and the field of CFD have real

solutions of the fluid flow equations been possible. The development of stable numerical methods

and techniques occurred hand in hand with the growth of computing power. Understanding and

modelling of turbulence has also developed, with large eddy simulation and Reynolds averaged

Navier-Stokes equations being essential for most engineering applications. CFD is now widely

used in many fields of engineering prediction, for example aerodynamics, automotive, nuclear

reactors, gas turbines, weather modelling and biological flows. However, at smaller scales and

in limiting cases, even direct numerical simulation (DNS) of the Navier-Stokes equations can be

insufficient to capture the full extent of the physics.

The discrete modelling techniques of molecular dynamics provide many advantages. Cases

where the continuum assumption is no longer valid can be explored, including detailed capturing

of shockwaves, the contact line between fluids and insight into the non-slip boundaries even for

apparent discontinuities of impulse started or corner flow. The effect of realistic molecular walls

or surface textures can be easily explored. The molecular model naturally captures many phys-

ical effects, which would require complex extensions to the Navier-Stokes equations. Examples

include bubble formation, shear thinning, viscosity change due to temperature, solidification and

heat flow. The modelling of complicated fluids and solids is greatly simplified by MD, as the

actual molecular structure of polymers, complicated lubricants or carbon nano-tube structures

can be explicitly built into the model. Even the modelling of the surface chemistry is within

the remit of molecular dynamics. The engineering importance of simulating these effects is clear

in many fields, for example the nano-tribology of microelectromechanical (MEMS) and nano-

electromechanical (NEMS) devices, the aerodynamics of space shuttle re-entry and the design of

computing hardware from cooling transistors to the nano-scale gap problems in hard drive design.

Beyond the purely practical engineering advantages of MD, lies the theoretical possibilities of

improved insight into concepts such as viscosity, pressure, heat flows and the microscale origins

of turbulence.

The field of non-equilibrium molecular dynamics, as with CFD, originated with the birth
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of computers. In moving away from equilibrium, very little theoretical guidance is available

(Rapaport, 2004). The theoretical framework and techniques for simulation have been developed

recently (Thermostats (Hoover, 1991; Evans & Morris, 1984; Morriss & Dettman, 1998), Green-

Kubo (Green, 1954; Kubo, 1957), SLLOD (Hoover, 1991; Todd & Daivis, 2005), constrained

dynamics (Evans & Morriss, 2007; Flannery, 2005; Saletan & Cromer, 1970; Goldstein et al.,

2002), polymers (Rapaport, 2004), wall tethering (Petravic & Harrowell, 2006; Liem et al., 1992))

and, despite rapid advances, are still developing. Many of these techniques remain the subject of

some controversy and debate (e.g . SLLOD vs p-SLLOD, Velocity rescaling, Langevin, Gaussian

or Nosè Hoover thermostats).

Molecular dynamic simulation is prohibitively expensive at all but sub-micrometer scales

and very short times. By combining molecular scale models with the widely used larger scale

simulation techniques of continuum CFD, the range of problems which can be addressed is

expanded far beyond either simulation technique alone. However, the linking of these models

is a hard problem. The coupling between them must surmount both CFD and MD difficulties,

before addressing a consistent way to link the two. Attempts to link the continuum and discrete

systems extends well beyond the conception of calculus, however, the type of computational

coupling discussed in this document is a very modern field (since 1995). The mathematical link

is most attributable to Irving & Kirkwood (1950) and this has formed the basis for much of the

work in chapter 4. Developing these mathematical models and converting them into algorithms

to couple the continuum and molecular description has been the aim of this work.

6.2 Overview of this Work

6.2.1 Summary

In this work, the problem of coupling has been attacked on three fronts: the development of

robust and efficient computing tools, the development of a rigorous theoretical framework to link

the two systems and a method to apply a coupling constraint to the MD system in a physically

meaningful way.

6.2.2 Software Developments

As a result of this project, software has been developed to enable the simulation of coupled MD-

CFD schemes on a large scale. The MD, CFD and CPL-library have all been designed to work

efficiently on high performance computing (HPC) architecture.

A major part of the work during this project has been on the development of a new molecular

dynamics (MD) solver. The MD solver has been optimised so as to have similar performance

to the MD code LAMMPS but designed especially for non equilibrium fluid dynamics (NEMD)

and fluid mechanics style simulations. It is written in parallel, using the message passing inter-

face (MPI). The code has been fully verified, implements a range of NEMD techniques such as

thermostats, tethered molecules and constraints, additionally it contains a range of statistical

collection techniques and post processing routines.

The CFD code employed in this project, T ransF low, is fully optimised and has been used

in high performance calculations. Further to this, a simple CFD solver was written as part of

the development and testing of the coupled framework.
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The CPL library computational framework is designed to link any CFD and MD codes on a

HPC platform. The philosophy is similar to MPI, where a number of initialised calls are used to

setup the topology of the grid. The user then simply specifies which cells to exchange and the

send and receive commands handle all the appropriate communication. This software has been

made open source (Smith & Trevelyan, 2013) and it is hoped it will be beneficial to the coupling

community.

The CPL-library has been employed to link the CFD and MD codes and a number of cases

from the literature have been recreated to verify its functionality. The largest case tested, al-

though relatively small (32 MD cores and 8 CFD cores), includes all the possible communicational

complexity of simulation using any number of processes. In addition, the profiling test pushed

the coupled MD system to over 3 million molecules and 1024 cores. The coupled T ransF low-MD

solver has been validated for an exhaustive range of cases and is ready to simulate coupled cases

of arbitrary size.

6.2.3 CV Formulation to Link Descriptions

The work in chapter 4 developed a novel mathematical framework to extend the concept of a

control volume (CV) to the molecular system. The derivation builds on the rigorous approach of

Irving & Kirkwood (1950). The motivation for this is to express both the continuum and molec-

ular systems in a consistent manner. As both continuum and molecular system exist together in

a coupling simulation, a one-to-one correspondence is required between points in both domains.

By using the CV form, the requirement of an exact description at a point is relaxed so that only

the changes and fluxes over a CV are required. The advantage of writing both descriptions in

terms of an averaged CV is that they can be directly related. Continuum CFD is often solved

using the finite volume (FV) method so this is naturally amenable to connecting the different

regions in this form.

A key advantage of the CV formulation is a re-interpretation of the descriptions of stress. In

this form, the volume average (VA (Lutsko, 1988; Cormier et al., 2001)) and method of planes

(MOP (Todd et al., 1995)) forms of stress are seen as simply the result of different assumption in

the derivation of the CV formulation. The MOP description is also localised and generalised to

three dimensions. The stress tensor is known to be non-unique (Schofield & Henderson, 1982),

however, a direct and exact link is given between the CV surface stresses (MOP over six surface of

a CV) and the change of momentum inside the CV. The surface stresses are formally the starting

point for the Cauchy definition of stress, and by taking the limit as the volume tends to zero,

it was demonstrated that the Irving & Kirkwood (1950) expression is formally equivalent to the

Cauchy stress. Therefore, it is shown that any practical implementation of the MD stress cannot

correspond to the Cauchy definition but must always relax the requirement using an averaged

volume. The advantage of the CV methodology is the choice of average volume is very explicit in

the formulation. The choice of CV can be made entirely consistent with the continuum as part

of a coupling scheme. Therefore, the resulting stresses on the coupling interface are also exactly

consistent and can be directly linked to the time evolution of the coupled system.

The new mathematical operator defined in chapter 4 is useful as it mathematically localises

MD properties to a region in space (CV). The time evolution of this localised description can

then be explored mathematically in order to obtain conservation equations for that CV. This

leads to equations for mass, momentum and energy that have been demonstrated to be exactly
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conservative using MD simulation, with agreement to machine precision. The LCV operator also

has the advantage that mathematical operations can be localised – the starting point for the

derivation of localised constraint equations in chapter 5.

6.2.4 Variational Formulation Localised with CV Function

In the final chapter of this work 5, the localisation properties of the CV are employed, together

with variational principles, in order to derive physically meaningful equations. The molecular

system has 6N degrees of freedom compared to the 4 degrees of freedom in the continuum.

The manner in which a constraint is applied to force the MD system to match the continuum

is therefore non-unique. The use of constrained dynamics is essential as it provides a system

evolution which is as close as possible to the true dynamics, while still satisfying the constraint.

The resulting equation from this process is shown to be the most general form of coupling

equation. Through simplification, it is shown that the various existing state and flux coupling

schemes present in the literature can be recovered (O’Connell & Thompson, 1995; Borg et al.,

2010; Nie et al., 2004a; Flekkøy et al., 2000; Delgado-Buscalioni & Coveney, 2003a). In addition,

the general equation has extra advection terms which are shown to be essential to the correct

evolution of the system. The constrained algorithm is shown to add no energy to the molecular

system as a result of the constraint.

The aim of this work was to develop the methodology for linking a local molecular description

to a large region simulated using a continuum description. This included both computational and

theoretical developments. The computational development focused on a general purpose, modern

and robust computational tools to simulate a wide range of problems. The theoretical emphasis

was on the development of a rigorous mathematical framework based on sound physical principles.

This framework was then employed in order to derived constrained dynamics algorithms based on

fundamental physical principles. The end result is a constraint applied to a local region in space

which evolves according to the continuum values. The coupled algorithm is shown to yield extra

terms, previously not considered in the coupling literature. These extra terms are shown to be

essential in order to give the correct dynamics and ensure the constraint applies no energy to the

system. The analysis of this coupled system is possible using the CV formulation. Finally, these

theoretical developments are supplemented with the development of a range of computational

tools to facilitate coupling. The end result of this computational development is a coupled MD-

CFD code which is verified for use on multi-core architecture. The next step is to bring together

the general coupling equation with the coupled computer code to simulate coupled problems of

interest. This is discussed in the next section on future work.

6.3 Future work

6.3.1 Short Term

Development and Maintenance of Existing Software

The software developed and used during this project is hosted on a subversion server in order

to allow collaborative developments. A number of bash and python scripts are periodically

employed to compare serial/parallel codes, verify correct and consistent output of statistics and

run simple test cases. In addition, the CPL-library includes a dummy test suite used to ‘soak
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test’ all possible inputs. As part of the ongoing collaborative software development of both the

the MD solver and the CPL-library, a more formal method of verification and error detection is

required. This may employ a FORTRAN based unit test (e.g . FORTRAN Unit Test Framework

Fruit) or possibly the python unit testing framework interfaced with FORTRAN. In addition,

this testing process should recreate the range of verification tests detailed in section 3.2.5.

In addition, batch runs, input consistency checks, ensemble averages of many runs and post

processing are currently handled using a combination of bash, python and MATLAB scripting.

The development of a single python framework is currently underway owing to its flexibility and

open-source licence.

Port the CPL library to link OpenFoam to LAMMPS

The coupling framework developed as part of this project is available as open source code (Smith

& Trevelyan, 2013). This includes extensive documentation but no example applications with

established open source or commercial software. As part of the development of the coupling code,

the CPL library will be used to link LAMMPS and OpenFoam. This requires writing interfaces

to allow the code to work with C++. This interoperability is provided by the latest FORTRAN

standard so should be relatively straight forward to implement.

Explore the Energy Conservation of the Weakened Form of Equations

The energy conservation presented in section 5.4 is only for the total flux on a CV. By careful

construction of the weakened form using principles from the FEA literature it should be possible

to demonstrate energy conservation of the weakened flux based coupling. This should then

provide a link to fluctuation added in later work by Flekkøy et al. (2005).

Exactly Conservative Coupling

The Finite Volume method used in the continuum is, by construction, exactly conservative for

every volume. A number of smaller volumes can be combined and the large volume is also

conservative. The CV formulation for the MD system also allows the same conservation to be

checked in the MD system. Therefore, by defining a CV surrounding the coupling interface, the

conservation of the coupling scheme can be evaluated, see Figure 6.1.
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Figure 6.1: Schematic showing CV (thick line) which could be used to verify coupling is exactly

conservative.

This will provide a rigorous platform in order to evaluate the various existing coupling schemes

and explore the performance of the one proposed in this work. More importantly, the combined

effect of the averaged MD properties applied as a boundary condition to the CFD code, together

with the applied constraint can be evaluated. The effect of flux-flux or velocity-flux can be

examined and a coupling scheme derived which exactly ensures the mass, momentum and energy

flux of the coupling between the domains.

Implement the General Coupled Equations

Having developed a conservative coupling, the implementation of the general coupling equation

to a problem of interest is the next step in the development of the coupling schemes. This

involves accounting for all flux and pressure terms in the coupled region for a problem where

the inclusion of these terms is essential. This model can then be applied to the simulation of a

microscale problem of engineering interest.

6.3.2 Longer Term

Development and Maintenance of Existing Software

The long term aims of the development is to combine unit testing, batch runs, pre-processing and

post-processing into a single python based framework. The entire process of running a coupled

simulation can therefore be initiated by a single command. This would provide the possibility

for a GUI, where inputs are chosen and evolving graphical results are displayed to allow the user

to ensure the simulation is progressing correctly.

The implementation of GPGPU acceleration using the latest CUDA libraries will also be

reviewed, together with OpenCL which allows implementation of other GPUs than NVIDIA.

Since the previous attempt to employ CUDA, hardware and software have greatly improved

(especially double precision support). In addition, OpenCL has been applied to MD problems
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with superior results in some cases (Mulla et al., 2013). In addition, the recent introduction

of compiler directives may prove a simple way to obtain speed-up. However, it is possible that

transfer of data will still be a bottle-neck, as discussed in section 3.2.4. Therefore, it is more

likely that speed-up will be obtained by delegating an internal subsection of the domain to a

bank of GPUs. The current MD code can therefore simulate the boundaries with complicated

tethering, coupling forces and thermostatting routines, while a simple and optimised GPU code

solves a large number of the internal molecules entirely on the GPU. In this way, data exchange

will be limited to the connecting boundaries between the CUDA MD block and the rest of

the simulation. This has the advantage that the CPL-library can, in principle, be employed

to facilitate this exchange of data between the CUDA MD block and the MD solution of the

remaining domain.

Add Mass Conservation in a Rigorous Manner

Mass conservation and insertion of molecules has not been explored in this work. The insertion

of mass can be included in the variational principles using a constraint of the form,

g(q, t) =

N∑

n=1

mnϑn −
∫

V

ρdV = 0. (6.1)

This would provide a rigorous mechanism for the insertion of molecules that satisfies the correct

dynamics and should add no energy to the system.

Simulation of turbulent flow using Couette flow minimal channel

Based on the work of Jimenez & Moin (1991), the minimum channel size required to support

turbulent flow is expected to be (6000π× 12000× 1800π) MD units with 64× 256× 32 cells in x,

y and z respectively. This is based on the scaling from Re = 3, 000 using the CFD length scale

to Re = 0.5 using MD length scales. This results in a cellsize of ∆x = 295 and ∆z = 177. For a

coupling scheme where the MD domain occupies the near wall region with a height of ∼ 20 MD

units, each cell requires around 1 million molecules at a density of ρ = 0.8. This domain could

be computed on a single processor and the MD domain could be simulated on 2048 processes in

order to explore the near wall effect of turbulence on an MD system. Although reasonably large,

this scale of simulation is easily possible with modern HPC facilities. Alternatively, a subset of

the near wall region in x and z could be solved using MD and the remainder using CFD.

Explore Surface Roughness, Textures and Polymer Coating.

Building on the coupled simulation of the minimal channel, the effect of using different wall

textures on the overall flow could be explored. The use of real molecularly rough wall could

be used to gain insight into the no-slip assumption. The effect of nano-posts and wall textures

could also be explored. Inclusion of polymers and other complex fluids near the wall could be

used to explore the effect of surface coating on drag reduction. More complicated solid structures

such as graphene could also be employed to investigate the reduction in slip length and low drag

properties.
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6.4 Concluding Remarks

Coupling is an extremely complicated problem and the work presented here represents a contribu-

tion towards greater rigour and understanding. It is hoped that the computational, theoretical

and algorithmic tools developed herein may be of use to the future development and ongoing

research in this field. There remain many challenges in the field of continuum to molecular cou-

pling, however as computing power grows and engineering moves to smaller and smaller scales,

it is anticipated that the rewards of the research will continue to grow too.
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Analytical solution for unsteady couette flow

The Navier-Stokes equation is simplified to,
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The aim is to find the analytical solution of the diffusion equation in dimensionless form,

∂u

∂t
=

1

Re

∂2u

∂y2
, (A.2)

with boundary conditions in domain 0 < y < H and t > 0,

u(y = 0, t) = 0 (A.3a)

u(y = H, t) = u0 (A.3b)

u(y, t = 0) = 0. (A.3c)

Try the following solution based on a Fourier series for non-Homogeneous boundary conditions

in Strauss (1992),

u(y, t) =

N∑

n=1

un(t)sin
nπy

H
, (A.4)

where un(t) for the boundary conditions u(0, t) = h(t), u(H, t) = j(t),

un(t) = Ce−λnkt − 2nπH−2k

H∫

0

e−λnk(t−s) [(−1)nj(s) − h(s)] ds. (A.5)

Note that the definition k = 1/Re is used for simplicity and C is a constant of integration to

be evaluated by choice of initial condition. Now, for the impulse started plate case, we set the

boundary conditions as follows h(t) = U0 and j(t) = 0, which results in

un(t) = Ce−λnkt − 2nπH−2k

t∫

0

U0e
−λnk(t−s)ds, (A.6)
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This can be integrated exactly to give,

H∫

0

e−λnk(t−s)ds =

[
e−λnk(t−s)

λnk

]t

0

. (A.7)

Applying limits in Eq. (A.7) gives,

[
e−λnk(t−s)

λnk

]t

0

=
e−λnk(t−t)

λnk
− e−λnk(t−0)

λnk
=

1

λnk

[
1 − e−λnkt

]
, (A.8)

the quantity un can be simplified using λn = (nπ/l)
2

to,

un(t) = Ce−λnkt − 2U0

nπ

[
1 − e−λnkt

]
. (A.9)

Evaluating C using un(0) = 0 gives the final form of the solution to the equation for unsteady

diffusive flow,

u(y, t) =

N∑

n=1

−2U0

nπ

(
1 − e−λnkt

)
sin

nπy

H
. (A.10)

Notice that the solution in Eq. (A.10) does not accurately reproduce the wall velocity U0 as

sin(H/H) = 0. An extra functional is introduced to give the expected form of the analytical

solution,

u(y, t) =

N∑

n=1

−2U0

nπ

(
1 − e−λnkt

)
sin

nπy

H
+ U0ϕ

( y

H

)

. (A.11)

Here ϕ(x) is defined as

ϕ(x)≡
{

1 if x = 0

0 else

.

The continuum analytical xy pressure tensor component can be derived analytically using

the same Fourier series approach for ∂ux/∂y,(Strauss, 1992),

Πxy(y, t) = −µU0

L

[

1 + 2

∞∑

n=1

(−1)ne−
λnµt

ρ cos
(nπy

H

)
]

, (A.12)

which is valid for the entire domain 0 ≤ y ≤ H.
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Constrained Dynamics

B.1 From O’Connell & Thompson (1995) Coupling to Nie

et al. (2004a)

The following section combines the constraint equations of O’Connell & Thompson (1995) 2.72a

and 2.72b to give the equation of Nie et al. (2004a). Starting from Eqs. (2.72a) and (2.72b),

repeated here for convenience,

ṙαi =
pαi

m
+ ξ

[

MI

mNI
uαI −

1

NI

NI∑

n=1

pαn

m

]

(B.1a)

ṗαi = − ∂φ

∂rαi

= Fαi. (B.1b)

Differentiating B.1b with respect to time and combining with the equation B.1b,

q̈i =
ṗi

m
+ ξ

d

dt

[

1

NI

(

MIUI

m
−

NI∑

i=1

pi

m

)]

, (B.2)

expanding out the derivative,

ẍi =
ṗi

m
+
dNI

dt

ξ

N2
I

[

MIUI

m
−

NI∑

i=1

pi

m

]

+
ξ

mNI

[(
dMI

dt
UI +MI

dUI

dt

)

−
NI∑

i=1

ṗi

]

. (B.3)

Assuming the number of molecular in the cell is constant, dNI/dt and the mass of the continuum

is constant dMI/dt (incompressibility),

ẍi =
ṗi

m
+

ξ

mNI

[

MI
dUI

dt
−

NI∑

n=1

Fn

]

, (B.4)

where equation B.1b has been used. As the two regions overlap in a region where both descriptions

apply, the molecular mass is assumed to be equal to the sum of all the molecules’ individual masses

so that MI = mNI ,

ẍi =
Fi

m
+

[

dUI

dt
− 1

NI

NI∑

n=1

Fn

m

]

, (B.5)
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where for ξ = 1 the equations of Nie et al. (2004a) are recovered.

B.2 Nie et al. (2004a) Constraint Equations from Gauss’

Principle

Using Gauss’ principle of least constraint which can incorporate non-holonomic constraints for a

constrain equation of the form,

g(x, ẋ, t) =
1

NI

NI∑

i=1

ẋi − UI = 0, (B.6)

Nie et al. (2004a) take the ‘Lagrangian derivative’ D/Dt.

ġ(x, ẋ, t) =
1

NI

NI∑

i=1

ẍi −
DUI

Dt
= 0. (B.7)

In this form (accelerations) the constraint Eq. (B.6) can be introduced into Eq. (2.28).

∂

∂r̈j

[

1

2

N∑

i=1

mi

(

r̈i −
Fi

mi

)2

− λ

(

1

NI

NI∑

i=1

ẍi −
DUI

Dt

)]

. (B.8)

Multiplying out the brackets and differentiating the equation gives the constrained equation of

motion.

ẍj =
Fxj

m
+

λ

mNI
. (B.9)

Note that ∂ẍi/∂ẍj = 0 as all degrees of freedom of the system are independent. This results in

the equation of a particle j with all other terms of the sums being zero. This equation B.9 is

solved with B.7 to obtain the value of λ.

λ = mNI
DUI

Dt
−

NI∑

i=1

Fxi. (B.10)

So the equation of motion for the constrained system obtained using Gauss’ least constrain is

the form stated by Nie et al. (2004a)

ẍ =
Fxi

m
+

[

DUI

Dt
− 1

mNI

NI∑

i=1

Fxi

]

. (B.11)

B.3 Derivation of the Control Volume Constraint Equa-

tions from Gauss’ Principle

The control volume form of non-holonomic constraint Eq. 5.2 is,

g(r, ṙ, t) =

N∑

n=1

mnṙnϑn −
∫

V

ρudV = 0. (B.12)
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differentiating with respect to time,

ġ(ri, ṙi) = −
N∑

n=1

mnṙnṙn · dSn +

N∑

n=1

mnr̈nϑn − d

dt

∫

V

ρudV = 0, (B.13)

which is introduced into Gauss’ principle of least constraint,

∂
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V

ρudV
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(B.14)

Multiplying out the brackets and differentiating the equation gives the constrained equation of

motion.

mir̈i = Fi − λmiϑi (B.15)

Note that ∂r̈n/∂r̈i = 0 as all degrees of freedom of the system are independent. This equation

B.15 is substituted into Eq. B.13 to obtain the value of λ,

λ =
1

MI

[

−
N∑

n=1

mnṙnṙn · dSn +
N∑

i=1

Fnϑi −
d

dt

∫

V

ρudV

]

(B.16)

So the CV equation of motion for the constrained system obtained using Gauss’ least constrain

is,

r̈i =
Fi

mi
− ϑi

MI

[
N∑

n=1

Fnϑn −
N∑

n=1

mnṙnṙn · dSn +
d

dt

∫

V

ρudV

]

(B.17)
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Appendix C

The Control Volume Operator

C.1 Discrete form of Reynolds’ Transport Theorem and

the Divergence Theorem

In this Appendix, both Reynolds’ Transport Theorem and the Divergence Theorem for a discrete

system are derived. The relationship between an advecting and fixed control volume is shown

using the concept of peculiar momentum.

The microscopic form of the continuous Reynolds’ Transport Theorem (Reynolds, 1903) is

derived for a property χ = χ(ri,pi, t) which could be mass, momentum or the pressure tensor.

The LCV function, ϑi, is dependent on the molecule’s coordinate; the location of the cube

centre, r, and side length, ∆r, which are all a function of time. The time evolution of the CV is

therefore,

d

dt

N∑

i=1

χ(t)ϑi(ri(t), r(t),∆r(t)) =

N∑

i=1

[
dχ

dt
ϑi + χ

dri

dt
· ∂ϑi

∂ri
+ χ

dr

dt
· ∂ϑi

∂r
+ χ

d∆r

dt
· ∂ϑi

∂∆r

]

.

The velocity of the moving volume is defined as ũ = dr/dt, which can be different to the

macroscopic velocity u. Surface translation or deformation of the cube, ∂ϑi/∂∆r, can be included

in the expression for velocity ũ. The above analysis is for a microscopic system, although a similar

process for a mesoscopic system can be applied and includes terms for CV movement in Eq.

(2.33).

Hence Reynolds treatment of a continuous medium (Reynolds, 1903) is extended here to a

discrete molecular system,

d

dt

N∑

i=1

χ(t)ϑi(ri(t), r(t),∆r(t)) =

N∑

i=1

[
dχ

dt
ϑi + χ

(

ũ − pi

mi

)

· dSi

]

. (C.1)

The conservation equation for the mass, χ = mi, in a moving reference frame is,

d

dt

N∑

i=1

miϑi =
N∑

i=1

[

mi

(

ũ − pi

mi

)

· dSi

]

. (C.2)

In a Lagrangian reference frame, the translational velocity of CV surface must be equal to the
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molecular streaming velocity, i.e., ũ(r±) = u(ri), so that,

N∑

i=1

[

mi

(

u − pi

mi

)

· dSi

]

= −
N∑

i=1

pi · dSi.

The evolution of the peculiar momentum, χ = pi, in a moving reference frame is,

d

dt

N∑

i=1

piϑi =

N∑

i=1

[

Fiϑi + pi

(

u − pi

mi

)

· dSi

]

=

N∑

i=1

[

Fiϑi −
pipi

mi
· dSi

]

.

Here an inertial reference frame has been assumed so that dpi/dt = dpi/dt = Fi. For a simple

case (e.g. one dimensional flow) it is possible to utilise a Lagrangian description by ensuring,

ũ(r±) = u(ri), throughout the time evolution. In more complicated cases, this is not always

possible and the Eulerian description is generally adopted.

Next, a microscopic analogue to the macroscopic divergence theorem is derived for the gen-

eralised function, χ,

∫

V

N∑

i=1

∂

∂r
·
[

χ(ri,pi, t)δ(ri − r)

]

dV =

∫

V

N∑

i=1

χ(ri,pi, t) ·
∂

∂r
δ(ri − r)dV.

The vector derivative of the Dirac δ followed by the integral over volume results in,

∫

V

∂

∂r
δ(xi − x)δ(yi − y)δ(zi − z)dV =






[δ(xi − x)H(yi − y)H(zi − z)]V
[H(xi − x)δ(yi − y)H(zi − z)]V
[H(xi − x)H(yi − y)δ(zi − z)]V






=






[δ(xi − x+) − δ(xi − x−)]Sxi

[δ(yi − y+) − δ(yi − y−)]Syi

[δ(zi − z+) − δ(zi − z−)]Szi




 = dSi,

where the limits of the cuboidal volume are, r+ = r + ∆r
2 and r− = r − ∆r

2 . The mesoscopic

equivalent of the continuum divergence theorem (Eq. (2.39)) is therefore,

∫

V

∂

∂r
·

N∑

i=1

χδ(ri − r)dV =

N∑

i=1

χ · dSi.

C.2 Relation between Control Volume and Description at

a Point

This Appendix proves that the Irving & Kirkwood (1950) expression for the flux at a point is the

zero volume limit of the CV formulation. As in the continuum, the control volume equations at

a point are obtained using the gradient operator in Eq. (2.40). the flux at a point can be shown

by taking the zero volume limit of the gradient operator of Eq. (2.40). Assuming the three side

lengths of the control volume, ∆x,∆y and ∆z, tend to zero and hence the volume, ∆V , tends to
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zero,

∇ · ρu = lim
∆x→0

lim
∆y→0

lim
∆z→0

1

∆x∆y∆z
×

N∑

i=1

〈

pix
∂ϑi

∂x
+ piy

∂ϑi

∂y
+ piz

∂ϑi

∂z
; f

〉

. (C.3)

from Eq. (4.9). For illustration, consider the x component above, where

∂ϑi

∂x
=

xface

︷ ︸︸ ︷
[
δ(x+ − xi) − δ(x− − xi)

]
Sxi. (C.4)

Using the definition of the Dirac δ function as the limit of two slightly displaced Heaviside

functions,

δ(ξ) = lim
∆ξ→0

H
(

ξ + ∆ξ
2

)

−H
(

ξ − ∆ξ
2

)

∆ξ
,

the limit of the Sxi term is,

lim
∆y→0

lim
∆z→0

Sxi = δ(yi − y)δ(zi − z)

The ∆x → 0 limit for xface (defined in Eq. (C.4)) can be evaluated using L’Hôpital’s rule,

combined with the property of the δ function,

∂

∂(∆ξ)
δ

(

ξ − ∆ξ

2

)

= −1

2

∂

∂ξ
δ

(

ξ − ∆ξ

2

)

,

so that,

lim
∆x→0

xface =
∂

∂x
δ (x− xi) .

Therefore, the limit of ∂ϑi/∂x as the volume approaches zero is,

lim
∆x→0

lim
∆y→0

lim
∆z→0

∂ϑi

∂x
=

∂

∂x
δ (ri − r) ,

Taking the limits for the x, y and z terms in Eq. (C.3) yields the expected Irving & Kirkwood

(1950) definition of the divergence at a point,

∇ · ρu =
N∑

i=1

〈
∂

∂r
· piδ(ri − r); f

〉

.

This zero volume limit of the CV surface fluxes shows that the divergence of a Dirac δ function

represents the flow of molecules over a point in space. The advection and kinetic pressure at a

point is, from Eq. (4.13),

∇ · [ρuu + κ] =

N∑

i=1

〈
∂

∂r
· pipi

mi
δ(ri − r); f

〉

.
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The same limit of zero volume for the surface tractions defines the Cauchy stress. Using Eq.

(2.40) and taking the limit of Eq. (4.35), written in terms of tractions,

∇ · σ= lim
∆V →0

1

∆V

6∑

faces

∫

Sf

σ · dSf = lim
∆rx→0

lim
∆ry→0

lim
∆rz→0

×
[

T+
x − T−

x

∆rx
+

T+
y − T−

y

∆ry
+

T+
z − T−

z

∆rz

]

.

For the r+x surface, and taking the limits of ∆ry and ∆rz using L’Hôpital’s rule,

lim
∆V →0

T+
x

∆rx
= − lim

∆rx→0

1

2∆rx

N∑

i,j

〈

fαij̟
+
xyz; f

〉

.

where ̟ is

̟†
βκγ ≡

[

H(r†β − rβj) −H(r†β − rβi)
]

×δ
(

rκ − rκi −
rκij

rβij

(

r†β − rβi

))

×δ
(

rγ − rγi −
rγij

rβij

(

r†β − rβi

))

. (C.5)

The indices β, κ and γ can be x, y or z and † denotes the top surface (+ superscript), bottom

surface (− superscript) or CV centre (no superscript). The ̟ selecting function includes only

the contribution to the stress when the line of interaction between i and j passes through the

point r† in space. The difference between T+
x and T−

x tends to zero on taking the limit ∆rx → 0,

so that L’Hôpital’s rule can be applied. Using the property,

∂

∂(∆ξ)
δ

(

ξ − 1

2
∆ξ

)

H

(

ξ − 1

2
∆ξ

)

= −1

2

∂

∂ξ
δ

(

ξ − 1

2
∆ξ

)

H

(

ξ − 1

2
∆ξ

)

,

then,

lim
∆V →0

T+
x − T−

x

∆rx
= −1

2

N∑

i,j

〈

fαij
∂̟xyz

∂rx
; f

〉

.

where r+ → r and r− → r. The ̟βκγ function is the integral between two molecules introduced

in Eq. (4.25),

1∫

0

δ(r − ri + srij)ds = sgn

(
1

rxij

)
1

|rxij |

× [H(rx − rxj) −H(rx − rxi)]

×δ
(

ry − ryi −
ryij

rxij
(rx − rxi)

)

×δ
(

rz − rzi −
rzij

rxij
(rx − rxi)

)

.
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where the sifting property of the Dirac δ function in the rx direction has been used to express

the integral between two molecules in terms of the ̟xyz function. Hence,

1∫

0

δ(r − ri + srij)ds =
̟xyz

rxij
.

As the choice of shifting direction is arbitrary, use of ry or rz in the above treatment would

result in ̟yzx and ̟zxy, respectively. Therefore, Eq. (4.27), without the volume integral, can

be expressed as,

1

2

N∑

i,j

〈

fαijrβij
∂

∂rβ

1∫

0

δ(r − ri + srij)ds; f

〉

=
1

2

N∑

i,j

〈

fijα

[
∂̟xyz

∂rx
+
∂̟yxz

∂ry
+
∂̟zxy

∂rz

]

; f

〉

.

As Eq. (4.27) is equivalent to the Irving & Kirkwood (1950) stress of Eq. (4.24), the Irving

Kirkwood stress is recovered in the limit that the CV tends to zero volume.

This Appendix has proved therefore that in the limit of zero control volume, the molecular CV

Eqs. (4.10) and (4.38) recover the description at a point in the same limit that the continuum

CV Eqs. (2.35) and (2.36) tend to the differential continuum equations. This demonstrates that

the molecular CV equations presented here are the molecular scale equivalent of the continuum

CV equations.

C.3 Relationship Between Volume Average and Method

Of Planes Stress

This Appendix gives further details of the derivation of the Method Of Planes form of stress from

the Volume Average form. Starting from Eq. (4.27) written in terms of the CV function for an

integrated volume,

−
6∑

faces

∫

Sf

σ · dSf =
1

2

N∑

i,j

〈

fijrij ·
1∫

0

∂ϑs

∂r
ds; f

〉

=
1

2

N∑

i,j

〈

fij

1∫

0

[

xij
∂ϑs

∂x
+ yij

∂ϑs

∂y
+ zij

∂ϑs

∂z

]

ds; f

〉

.

(C.6)

Taking only the x derivative above,

xij
∂ϑs

∂x
= xij

[

x+
face

︷ ︸︸ ︷

δ(x+ − xi + sxij) −δ(x− − xi + sxij)
]
G(s) (C.7)

where G(s) is,

G(s)≡
[
H(y+ − yi + syij) −H(y− − yi + syij)

]

×
[
H(z+ − zi + szij) −H(z− − zi + szij)

]
.
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As δ(ax) = 1
|a|δ(x) the xijx

+
faceG(s) term in Eq. (C.7) can be expressed as,

xijx
+
faceG(s) =

xij

|xij |
δ

(
x+ − xi

xij
+ s

)

G(s). (C.8)

The integral can be evaluated using the sifting property of the Dirac δ function (Thankoppan,

1985) as follows,

1∫

0

xijx
+
faceG(s)ds =

xij

|xij |

1∫

0

δ

(
x+ − xi

xij
+ s

)

G(s)ds = sgn(xij)

[

H

(
x+ − xj

xij

)

−H

(
x+ − xi

xij

)]

S+
xij .

where the signum function, sgn(xij)≡xij/|xij |. The S+
xij term is the value of s on the cube

surface,

S+
xij = G

(

s = −x+−xi

xij

)

which is,

S+
xij ≡

[

H

(

y+ − yi −
yij

xij

(
x+ − xi

)
)

−H

(

y− − yi −
yij

xij

(
x+ − xi

)
)]

×
[

H

(

z+ − zi −
zij

xij

(
x+ − xi

)
)

−H

(

z− − zi −
zij

xij

(
x+ − xi

)
)]

. (C.9)

The definition S+
xij (analogous to Sxi in Eq. (4.3)) has been introduced as it filters out those

ij terms where the point of intersection of line rij and plane x+ has y and z components between

the limits of the cube surfaces. The corresponding terms, S±
ijα, are defined for α = {y, z}. Taking

H(0) = 1
2 , the Heaviside function can be rewritten as H(ax) = 1

2 (sgn(a)sgn(x) − 1), and,

H

(
x+ − xj

xij

)

−H

(
x+ − xi

xij

)

=
1

2
sgn

(
1

xij

)
[
sgn(x+ − xj) − sgn(x+ − xi)

]
,

so the expression, xijx
+
faceG(s) in Eq. (C.7) becomes,

xij

1∫

0

x+
faceG(s)ds =

1

2
sgn(xij)sgn

(
1

xij

)

×
[
sgn(x+ − xj) −sgn(x+ − xi)

]
S+

xij .

The signum function, sgn
(

1
xij

)

, cancels the one obtained from integration along s, sgn(xij).

The expression for the x+ face is therefore,

−
∫

S+
x

σ · dSS+
x

=
1

2

N∑

i,j

〈

fijxij

1∫

0

x+
faceG(s)ds; f

〉

=
1

4

N∑

i,j

〈

fij

[
sgn(x+ − xj) − sgn(x+ − xi)

]
S+

xij ; f

〉

Repeating the same process for the other faces allows Eq. (C.6) to be expressed as,

6∑

faces

∫

Sf

σ · dSf = −1

2

N∑

i,j

〈

fijrij ·
1∫

0

∂ϑs

∂r
ds; f

〉

= −1

4

N∑

i,j

〈

fij

3∑

α=1

ñα

[
dS+

αij − dS−
αij

]
; f

〉

,
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where dS±
αij ≡ 1

2 [sgn(r±α − rαj) − sgn(r±α − rαi)]S
±
αij and ñα ≡ sgn(rαij)sgn

(
1

rαij

)

= [1 1 1].

This is the force over the CV surfaces, Eq. (4.35), in section 4.2.3.

To verify the interpretation of S+
xij used in this work, consider the vector equation for the

point of intersection of a line and a plane in space. The equation for a vector a between ri and

rj is defined as a = ri − s
rij

|rij |
. The plane containing the positive face of a cube is defined by

(r+ − p) · n where p is any point on the plane and n is normal to that plane. By setting a = p

and upon rearrangement of
(

r+ − ri + s
rij

|rij |

)

·n, the value of s at the point of intersection with

the plane is,

s = − (r+ − ri) · n
rij

|rij |
· n ,

The point on line a located on the plane is,

a+
p ≡ ri + rij

[
(r+ − ri) · n

rij · n

]

.

Taking n as the normal to the x surface, i.e.

n → nx = [1, 0, 0], then,

x+
αp =






x+
xp

x+
yp

x+
zp




 =






x+

yi +
yij

xij
(x+ − xi)

zi +
zij

xij
(x+ − xi)






written using index notation with α = {x, y, z}. The vector x+
p is the point of intersection of line

a with the x+ plane. A function to check if the point x+
p on the plane is located on the region

between y± and z±, would use Heaviside functions and is similar to the form of Eq. (4.3),

S+
xij =

[
H
(
y+ − x+

yp

)
−H

(
y− − x+

yp

)]

×
[
H
(
z+ − x+

zp

)
−H

(
z− − x+

zp

)]
,

which is the form obtained in the text by direct integration of the expression for stress, i.e. Eq.

(C.9).
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Appendix D

Simulation of a Converging Diverging Channel

This appendix contains full setup details and detailed results for the converging-diverging channel

discussed in section 5.3.3.

D.1 Setup

The walls consisted of tethered molecules using the Petravic & Harrowell (2006) potential with

k4 = 5, 000 and k6 = 5, 000, 000. Two strips of molecules away from the fluid were thermostatted

as shown in red in Figure D.1. This allows the walls to develop a temperature profile and

prevents the thermostatted region from interfering strongly with the simulation. The Nosè-

Hoover thermostat was used with a target temperature of T = 1.0 (the same as the initial

temperature of the simulation) and temperature is seen to be controlled adequately reaching an

average value of T ≈ 1.3 at steady state.

The WCA potential was employed for both fluid and wall atoms. The wall needed to be

sufficiently dense to ensure it conducted heat from the liquid to the thermostatted region. It was

found that FCC crystals with ρ < 0.8 do not interact for the WCA potential. The wall density

was ρ = 1.389 and molecules were removed from the non-tethered liquid region to give a lower

fluid density (ρ = 0.6) giving 172, 476 molecules in total. This was simulated using 20 processors

with topology 20 × 1 × 1. The process of control volume averaging requires calculation of forces

for each CV, essentially an averaging bin. For computational efficiency and simplicity these were

chosen to be the same size as the computational cells. The solid density was chosen to ensure

the FCC crystal unit cells were equivalent in size to the averaging bins/computational cells.

The top and bottom walls formed a smoothly varying surface whose y-coordinate is given by

the equation,

y±w = ±α
[

1 − cos

(
2πx

Lx

)]

(D.1)

where α = (Ly − ly)/2 with the maximum channel height Ly = 47.0ℓ, the minimum (centre)

height ly = 18.5ℓ (defined as the channel throat) and the channel length Lx = 285ℓ. The total

simulation domain dimensions are 285 × 56.9 × 11.4ℓ with 200 × 40 × 8 averaging bins of size

1.4227 × 1.4227 × 1.4227ℓ. The wall have a minimum thickness of half a binsize (0.711ℓ) above

the thermostatted region. The thermostatted region has a width of three binsizes (4.268ℓ). The

domain is homogeneous in z with periodic boundaries in the z direction.
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Figure D.1: Channel VMD (Humphrey et al., 1996) snapshot with blue liquid molecules and
grey wall molecules. The overlayed annotations show the forced region, the key channel dimen-
sions and the thermostatted regions (red overlay). The four vertical lines denote the location
where planer slices are taken in figures D.4 and D.7.

The molecules were driven through the channel using an external force Fext = 0.5 applied

in a local region of width 10ℓ near the inlet of the domain, and periodic boundaries are applied

in x so molecules are fed in from the domain outlet. This force works as a type of molecular

pump resulting in a pressure (and density) gradient along the length of the channel. This is

the preferred method of force application for non-uniform geometries (Liang & Tsai, 2012; Borg

et al., 2013a) where the pressure gradient cannot be approximated by a constant force.

After an initial transient period (600 time units), the system reached a steady state and time

averages of the quantities of interest were collected. These included number of molecules NI ,

density Eq. (4.6), velocity Eq. (4.11) and the CV integration of temperature Eq. (2.57) for

each control volume,

NI =

N∑

i=1

〈
ϑi

〉
;

∫

V

ρdV =

N∑

i=1

〈
miϑi

〉
;

∫

V

ρudV =

N∑

i=1

〈
miṙiϑi

〉
;

3

2

∫

V

ρkBTdV =
1

2

N∑

i=1

〈
mi (ṙi − u) · (ṙi − u)ϑi

〉
,

Here the advantage of the CV notation is apparent in the concise and explicit definition of

localised bin averaged quantities. The angular brackets denote the temporal average of the

steady state system. Assuming an average in each bin
∫

V
AdV ≈ AV , kB = 1 and ρ = NI/V

yields the familiar expressions for density, velocity and temperature (Rapaport, 2004) localised

to a spatial bin,

ρ =
1

N

N∑

i=1

〈
miϑi

〉
; u =

1

NI

N∑

i=1

〈
miṙiϑi

〉
; T =

1

3NI

N∑

i=1

〈
mi (ṙi − u) · (ṙi − u)ϑi

〉
, (D.2)

D.2 Results

The flow fields generated using Eq. (D.2) for volumes V = 1.42273 = 2.8795 are shown in contour

form in Figures D.2, D.3 and D.5 for density, velocity and temperature respectively. The results

are averaged over 20, 000 snapshots separated by 25 timesteps and 10 bins in the spanwise z

direction. All axis quantities are in MD units. The density and velocity profile as a function of y

at the inlet (x = 0), at a quarter of the way down the domain (x = 71.1), at half way (y = 142.3)

and at three quarters (x = 213.4) are plotted in Figure D.4. The centreline density, velocity,
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momentum and temperature values are plotted as a function of x in Figure D.7.

This density contour of Figure D.2 shows a variation throughout the system. The pumping

region increases the density from ρ ≈ 0.55 to ρ ≈ 0.7 and the velocity, induced by this pumping,

causes the molecules to move into the converging part of the channel. This increases the density

to give a maximum at around x = 75 (1/4 of the domain), shown by the largest y profile in

D.4a. The centreline density profile as a function of x shown in Figure D.4a drops to a minimum

around x = 200 (3/4 of the domain) shown by the smallest y profile in D.4a. The density

drops smoothly throughout both the converging and diverging parts of the channel between this

maximum and minimum, appearing almost perfectly anti-symmetric about the channel centreline

in Figure D.4a.

Figure D.2: Density contour in the MD converging diverging channel

This velocity contour shown in Figure D.3 indicates acceleration through the converging

section to a maximum velocity at the throat followed by slowing in the diverging part. The

velocity maximum is off centre, attributed in part to the use of a pumping region which introduces

asymmetry in the channel. However, the density drop is the main reason for this asymmetry as

highlighted in Figure D.8. The x profile to the momentum drop ρu/ρ0u0 is seen to be almost

symmetric about the centreline x = 142.3 while the velocity is clearly off-centre. The velocity

profiles are parabolic, as in Poiseuille flow, with an increasing magnitude at the narrower locations

D.4b.

Figure D.3: Velocity contour in the MD converging diverging channel
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Density Velocity

Figure D.4: Profiles at four locations alone the converging diverging channel – the entry (x = 0),
at one quarter along the domain (x = 71.1) at the throat (x = 142.3) and at three quarters
(x = 213.4)

.

This localised values of temperature are displayed in Figure D.5. Instead of using the defi-

nition of temperature in terms of the peculiar momentum of equation Eq. (D.2), the expression

is reformulated by expanding out the terms in brackets,

T =
1

3NI

N∑

i=1

〈
miṙ

2
i ϑi

〉

︸ ︷︷ ︸

T

−2u

3
· 1

NI

N∑

i=1

〈
miṙiϑi

〉

︸ ︷︷ ︸

u

+
u2

3NI

N∑

i=1

〈
ϑi

〉

︸ ︷︷ ︸

NI

= T − 1

3
ρu2.

The form, T , is advantageous as it is simply the square of the laboratory frame velocity for

the molecules in a given bin. The square of velocity can then be removed as part of post

processing. The resulting temperature contour in the domain shows the highest temperatures

near the ‘pumping region’ which include all the liquid region from 0 to 10. This generation of

heat is consistent with the physical act of pumping. The force attempts to generate coherent

velocity ux in the x direction, however, the molecules move directly into the slower molecules in

the adjacent unforced region and much of this directional velocity will become thermal.

Figure D.5: Temperature contour in the MD converging diverging channel
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The wall in the converging regions in Figure D.5 act as a heat sink, being kept cooler by

the attached Nosé Hoover thermostat region. As a result, the walls show a temperature contour

with highest temperatures at the interface with the fluid and decreases moving towards the

thermostatted regions. However, for fluid in the throat of the channel, the generation of heat

by the interaction (shear) with the walls becomes evident. The high flowrate through the centre

coupled with the highest shear rates at the wall results in an unusual temperature profile with a

lower value in the centre. The shear stress contour are shown in Figure D.6 which supports this

showing highest shear rates in the nozzle throat adjacent to the walls.

The temperature and shear stress profile as a function of y at the inlet (x = 0), at a quarter

of the way down the domain (x = 71.1), at half way (y = 142.3) and at three quarters (x = 213.4)

are plotted in Figure D.7.

Figure D.6: Shear stress Πxy (kinetic and configurational, see Eq. (5.37)) contour in the MD

converging diverging channel.

Temperature Shear Stress

Figure D.7: Profiles at four locations alone the converging diverging channel – the entry (x = 0),
at one quarter along the domain (x = 71.1) at the throat (x = 142.3) and at three quarters
(x = 213.4)

.

In order to obtain fine-grained statistics, a number of smaller cubic CV are used throughout

the domain. As conservation is ensured locally, these can be upscaled to obtain larger control
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volumes which are also conserved.

Figure D.8: The change in x of various quantities state quantities along the centre line in the

converging-diverging channel. The density ratio ρ/ρ0 ( ), the velocity ratio u/u0 ( ) and the

temperature ratio T/T0 ( ). The momentum ratio ρu/ρ0u0 ( ) is also plotted. Subscript 0

denotes channel maximum where ρ0 = 0.7, u0 = 1.8 and T0 = 1.9.

The simulation setup and results presented in this appendix support the discussion in section

5.3.3.



Appendix E

Error analysis of flux coupling

The error analysis of Hadjiconstantinou et al. (2003) is extended to density, velocity and pres-

sure/stress calculation of dense fluids. The error in the pressure results are obtained from a

molecular simulation. Using the standard deviation s and mean µ of the MD pressure, the re-

quired samples MP for an error EP is calculated in Hadjiconstantinou et al. (2003) from the

relative standard error, Eq. (2.83),

MP =

(
s

µEP

)2

. (E.1)

The molecular system used a cutoff of rc = 3.0, the standard long range corrections were included

and a Nosè-Hoover Thermostat was applied to control the temperature. The required samples

for 5% error (EP = 0.05) at three temperatures values across a range of densities are plotted as

points in Figure E.1.

The samples estimated obtained from MD simulation using, Eq. (E.1), can be compared to

the Hadjiconstantinou et al. (2003) estimates which are derived from Eq. (E.1) and should be

equivalent,

Mρ =
κT kBT0

V E2
ρ

Mu =
kBT

u2

1

ρV E2
u

MP =
γkBT

P 2κT

1

V E2
P

, (E.2)

In order to evaluate Eq. (E.2), accurate values of the density (ρ), velocity (u), pressure (P ),

isothermal compressibility (κT ) and ratio of specific heats (γ) at each state point are required.

To obtain these parameters, the pressure, temperature and density are matched to empirical

expressions for the Lennard-Jones phase diagrams (Johnson et al., 1993). The Johnson et al.

(1993) empirical values for isothermal compressibility and ratio of specific heats are used in Eq.

(E.2) to generate the full range of averaging requirements at all densities. These are shown as

lines in Figure E.1. Typically, the analytical Lennard-Jones phase diagram of Johnson et al.

(1993) is valid for temperatures greater than T = 1 (a real temperature of 120K).

The MD results from Eq. (E.1) and results using analytical Lennard-Jones values from Eq.

(E.2) show similar trends. The largest value, given by the peak in Figure E.1a is at the same

location from both methods. Typically the MD results are larger than the analytical, although

at higher density this is no longer true. Only the general trends are important for the conclusions

in this section.
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(a) Required samples at temperature T = 1.0 (b) Required samples at temperature T = 1.3

(c) Required samples at temperatureT = 1.5

Figure E.1: Estimate of the required samples for a 5% error from Eq. 2.86 shown by Mρ (−),

Mu (−) and MP (−) with MD estimates for MP (•◦) calculated from equation E.1

The number of required samples becomes prohibitively large, Õ(104) on Figure E.1a, a con-

clusion supported by both MD and analytical results. This is a result of the mean pressure

approaching a value of zero (µ in the denominator of Eq. (E.1)), while fluctuations (standard

deviation s) remains non-zero. This is a numerical artefact of the definition of relative standard

error, Eq. (E.1), and not representative of the quality of averaged variables in a coupling scheme.

This suggests that the standard error, s/MP , may be a better measure of signal to noise ratio

for coupling. For common molecular temperatures and densities, the requires samples for a 5%

error in pressure are of order 102 or lower. In addition, the velocity or density can sometimes

be more expensive than flux averages. The velocity used in the above parameter curve for Mu

is calculated from average molecular speed using Maxwell Boltzmann statistics u =
√

2kBT/m.

In practice, with no driving forces, the average velocity of a cell tends to zero as the averaging

region increases and the sample estimate for velocity would also tend to infinity.

The conclusion of this parameter study is that flux coupling is not prohibitively expensive

as stated in Hadjiconstantinou (2005). Typicall pressure sample requirements are Õ(102) or

less for a unit volume. This does not diminish the importance of removing noise in molecular to

continuum coupling, but it does suggest that for dense fluid the errors in fluxes are not prohibitive.

In addition, a different measure of errors may be more appropriate to evaluate the feasibility of

coupling schemes.
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