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Samenvatting

Koppeling van Moleculaire Dynamica en Numerieke Stromingsleer

Eén van de belangrijkste ontwikkelingen van de afgelopen eeuwen is de evolutie van de mini-
aturisering en het inzicht wat daaruit is voorgebracht. Voor the fysische wetenschappen
betekende dit beter begrip van wat materie eigenlijk is, terwijl het vanuit een praktisch oog
punt betekende dat er meer geavanceerde toepassingen werden ontwikkeld. De succesvolle
ontwikkeling van de miniaturisering vereist zorgvuldige planning, en computer simulaties
helpen met dit aspect. Echter, verdere miniaturisering leidt ook tot problemen. Het is
algemeen bekend dat de wereld rond ons uit atomen bestaat, nochtans voor algemene mac-
roscopische verschijnselen werkt het concept van een continuiim erg goed. In plaats van
afzonderlijke atomen te bestuderen, wordt het gedrag van een zeer groot aantal atomen be-
studeerd en wordt deze uitgedrukt in wiskundige vergelijkingen die opgelost kunnen worden
met een bepaalde methode. Echter, de afgelopen decennia is er veel interesse getoond in nan-
otechnologie, d.w.z. de studie van fenomenen die gebeuren op de nano-schaal (< 0.0001mm)
waar de materie wordt gemanipuleerd op de atomische en moleculaire schaal. Het concept
van een continuiim zal in deze gevallen falen en andere technieken moeten worden gebruikt
om deze verschijnselen te simuleren. Er bestaat echter ook nog een tussenliggend gebied
(waar de typische grootte ~ 0.00001lmm-~ 0.0lmm), waar zowel de moleculaire effecten en
de continuiim effecten van belang kunnen zijn. Om dit te simuleren met één enkele methode
is zeer uitdagend. Bijvoorbeeld, een methode die zeer nauwkeurig op de kleine schaal is, zal
al snel te moeizaam zijn om op te lossen op de grote schaal. Aan de andere kant, methoden
die over het algemeen efficiént zijn voor de grote schaal, hebben alle details op de kleine
schaal verloren. Een oplossing voor dit probleem is om alleen die specifieke methode in een
gebied te gebruiken waar deze het meest geschikt is en zo bij elkaar het gehele domain op te
lossen. Echter, om dit mogelijk te maken, zullen beide methoden met elkaar moeten com-
municeren. In de praktijk betekent dit, dat de methoden worden gekoppeld. Het onderwerp
van dit proefschrift is het ontwikkelen, implementeren en testen van één van deze methoden,
die algemeen bekent staan als multiscale, gekoppelde, of hybride methoden.

In het huidige onderzoek, is de zogenaamde “Schwarz alternating method” gekozen om een
domein dat een vloeistof simuleert met behulp van moleculaire dynamica (MD) en een
domein dat continuiim methoden gebruikt, te koppelen. De methode koppelt de twee
domeinen op het beginsel dat de twee domeinen dezelfde oplossing hebben in een regio
waar ze elkaar overlappen. Binnen dit overlappinggebied wisselen de twee domeinen rand-
voorwaarden uit met elkaar. De randvoorwaarden voor het continuiim domein kunnen ge-
makkelijk worden verkregen uit de MD simulatie. De specificatie van randvoorwaarden voor
het MD domein is minder eenvoudig. In de huidige implementatie moeten drie belangrijke
stappen worden opgelost, welke worden besproken in sectie 3.2. Dit is gedaan voor zowel de
koppeling van vloeistoffen die bestaan uit één atoom, zoals argon en meer complexe vloeis-
toffen, zoals water. Voordat de koppeling kan worden gerealiseerd, is het zinvol om eerst te
kijken waar en wanneer er een koppeling mogelijk is en onder welke voorwaarden deze sim-
ulaties een juiste oplossing geven. Daarom wordt in het huidige onderzoek ook door middel
van MD simulaties/studies onderzocht wat de mogelijkheden en beperkingen zijn van pure
MD simulaties, terwijl hetzelfde wordt gedaan voor puur continuiim methoden.

Uit de resultaten van de MD simulaties is gebleken dat grote afwijkingen tussen continuim-
mechanica en MD vooral merkbaar zijn in de buurt van de wanden van nanokanalen of in de
buurt van nano-obstakels. Deze afwijkingen, zichtbaar als grote variaties in de verzamelde
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(continuiim) macroscopische variabelen uit de MD simulatie, zijn het resultaat van de in-
teractie van de atomen in de vloeistof met atomen in de wand, welke ook experimenteel
aangetoond kunnen worden. Verder weg van de wand tonen de macroscopische variabelen de
(verwachte) continuiim waarde. Echter, hoewel deze verschillen aantonen dat er grote niet-
continuiim effecten plaatsvinden, is het zo dat zelfs voor kleine nano kanalen van ongeveer
5 nm, continuiim-achtig gedrag kan worden waargenomen. Dit feit werd gebruikt om de
viscositeit als functie van de temperatuur voor vier verschillende water modellen te bepalen.
In het algemeen bleek dat in een kanaal met een hoogte van ongeveer 8 nm, kon worden
gesproken over een continuiim. Echter, dit betekent nog niet dat een puur continuiim meth-
ode voor het berekenen van de stroming in deze kanalen aan te raden is. Er zijn ook andere
redenen om niet een continuiim methode te gebruiken, want MD simulaties hebben sommige
unieke voordelen, zoals de mogelijkheid om realistische wand-vloeistof interacties te voor-
spellen. Bovendien, met MD kunnen verschillende andere verschijnselen worden gesimuleerd
die moeilijk of zelfs onmogelijk zijn met een continuiim techniek, zoals het afbreken van een
nano-jet. Het is echter gebleken dat veelgebruikte waarden om de moleculaire interacties
af te breken te laag zijn voor het nauwkeurig modelleren van enkele belangrijke fenomenen.
Aan de andere kant, bij de vergelijking van continuiim met experimentele resultaten bleek
dat voornamelijk de continuiim techniek die elektrokinetische effecten beschrijft, nauwkeurig
genoeg is voor zelfs een toepassing waar de hoogte slechts 150 nm is.

De resultaten van de gekoppelde simulaties worden getoond in de sectie 3.3. Hier wordt
uitgelegd hoe een gekoppelde simulatie in principe kan worden gezien als een methode om
nieuwe randvoorwaarde voor een continuiim domein te verkrijgen. Hier wordt de waarde nu
nauwkeuriger bepaald door de communicatie tussen het MD en continuiim domein. Dit werd
aangetoond door Poiseuille stroming van argon en water in een groot kanaal te simuleren.
De niet-continuiim verschijnselen in de buurt van de wand worden nauwkeurig gesimuleerd
door MD terwijl er geen lange MD rekentijd wordt verspild in het gedeelte dat zich gedraagt
als een continulim. De koppeling van MD en continuiim kan ook worden gebruikt om niet-
periodieke randvoorwaarden voor MD systemen te specificeren, welke moeilijk of onmogelijk
zijn om te implementeren in een pure MD simulatie. Het principe wordt aangetoond door
middel van een tweedimensionale gekoppelde simulatie van een “nanowire” in een uniforme
stroming van argon. De belangrijkste voordelen en de resultaten van dit soort simulaties
zijn dat de invloed op de stroming van één obstakel wordt onderzocht in plaats van de
één en al zijn periodieke beelden. De manier hoe de domeinen gekoppeld worden, kan
ook worden toegepast voor andere macroscopische variabelen dan snelheid, bijvoorbeeld
temperatuur. In dit onderzoek werd een kwalitatieve studie uitgevoerd waar een voorwerp
in een temperatuurgradiént is geplaatst door middel van de koppeling om thermophorese in
vloeistoffen te onderzoeken.

Tenslotte, in hoofdstuk 4 wordt een ander soort koppeling tussen moleculen en het continuiim
uitgelegd die zeer efficiént is om het gedrag van polymeren te bestuderen. Voor dit doel,
wordt een meso-schaal simulatie uitgevoerd voor de bepaling van de sterkte van de stroming
die nodig is een polymeer in een smal kanaal te duwen. De resultaten laten een zeer goede
overeenstemming zien met een voorspelling gebaseerd op een de Gennes blob model van het
polymeer, welke stelt dat de kritische snelheid flux voor translocatie lineair athankelijk is
van de temperatuur, maar onafhankelijk is van de lengte van de polymeerketen of de breedte
van het kanaal.



Summary

Connecting Molecular Dynamics and Computational Fluid
Dynamics

One of the most important developments in the last centuries is the process of miniaturisation
and understanding everything that it entails. For the physical sciences this meant the
continuing discovery what matter is and how it behaves, while from a practical point of
view it meant that more advanced medical, scientific, and consumer applications could be
developed. The successful development of miniaturisation requires careful planning, and
computer simulations are helping with this aspect. However, continued miniaturisation also
lead to several challenges concerning this matter. It is common knowledge that the world
around us is made of atoms, however for general macroscopic phenomena, the concept of
a continuum works very well. Instead of looking at individual atoms, the behaviour of
the collection of a very large number of atoms is studied and is expressed in mathematical
equations which can be solved accordingly. On the other hand, recent decades saw a lot
of interest in nanotechnology, i.e. the study of phenomenon that happen at the nano-scale
(< 0.0001 mm) which means controlling of matter on an atomic and molecular scale. In
these cases the concept of a continuum will fail and different techniques must be used to
simulate these phenomena. However, there exist an intermediate region (where the typical
size is ~ 0.00001 mm— ~ 0.01 mm), where both the molecular effects and the continuum
effects can be of importance. To simulate this with one single method is very challenging. For
example, any method that is very accurate at the small scale will soon be too cumbersome at
the large scale. On the other hand, any method that is efficient for the large scale generally
lost all the details at the small scale. A solution to this problem is to use both methods at
the same time and only apply it to the region where the specific method is most suitable.
However, in order for this to work, these methods should communicate with each other.
Effectively this means that the methods are coupled and are able to resolve the physical
phenomena over a wide range of scales. The subject of this thesis is to develop, implement
and test one of these methods, which are generally known as multiscale, coupled, or hybrid
methods.

In the present work, the Schwarz alternating method is chosen to couple a domain that
simulates a dense liquid using molecular dynamics (MD) and a domain that uses continuum
methods. The method couples the two domain on the principle that the two domain solve for
the same solution in a region where they overlap. Inside this overlap-region the two domain
interchange boundary conditions obtained from each other. The boundary conditions for
the continuum domain can easily be obtained from the MD simulation results. The speci-
fication of boundary conditions on the MD domain is less straightforward. In the current
implementation it involves three main steps, which are dealt with in Section 3.2, both for
the coupling of one-atom liquids like argon and more complex liquids like water. However,
before the coupling can accomplished, it is necessary to obtain more information about
where and when a coupling is possible and under which assumptions these coupled simu-
lations give a correct solution. Therefore, the present work also demonstrated several MD
simulations/studies to investigate the possibilities and limitations of pure MD simulations,
while also the possibilities and limitations of pure continuum methods are studied.

The results of the MD simulations showed that large deviations between continuum me-
chanics and MD are especially noticeable near the solid walls of (nano-sized) channels or
near obstacles and are local. These deviations, visible as large variations in the sampled
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(continuum) macroscopic variables in the MD simulation, are the result of the interaction
of the atoms in the liquid with the atoms in the solid wall and can also be observed ex-
perimentally. Only far away from the wall the macroscopic variables show their (expected)
continuum value without variations. However, although these large variations indicate large
non-continuum effects, even for small nano channels of about 5 nm, near continuum-like
behaviour can be extracted from the results. This fact was used to determine the viscosity
as a function of temperature for four different water models. In general, the results showed
that in a channel with a height of about 8 nm yield very good overall continuum-like be-
haviour. However, this does not yet mean that a pure continuum method to compute the
flow inside these channels is advisable. There are also different reasons why not to use a
continuum method to simulation certain phenomena, because MD simulations do have some
unique benefits, like predicting realistic wall-fluid interactions. Furthermore, with MD sev-
eral other phenomena can be simulated that are difficult or even impossible with a continuum
technique, like the nano-jet and nano-jet breakup. However, care must be taken, because
frequently used values of the cutoff radius are too low to accurately model several import-
ant phenomena. On the other hand, comparison of continuum results with experimental
result showed that, especially the continuum techniques describing electrokinetic effects, are
reasonably accurate enough, even for a nano-sized device where the height is only 150 nm.

The results of several coupled simulations are shown in Section 3.3. Here it is explained how
the coupled simulation can be seen as a new boundary condition for the continuum, where
the value is now more accurately supplied by the communication of the MD and continuum
domain. This was demonstrated by simulating Poiseuille flow of argon and water inside a
large channel. The non-continuum effects near the wall are simulated accurately by MD
and no expensive MD computation time is wasted on the part that resembles a continuum.
The coupling of MD and continuum also enabled the specification of non-periodic boundary
conditions for MD systems, which are difficult or impossible to implement in a pure MD
case. This was demonstrated by a two-dimensional coupled simulation of a nanowire inside
an uniform flow of argon. The main benefits and results of this type of simulation are
that it investigates the influence on the flow of one obstacle, instead of the one and all its
periodic images. The principles behind the coupling of domains can also be applied to other
macroscopic variables than velocity, for example temperature. In this work a qualitatively
study was performed on a particle inside a temperature gradient field by coupling the MD
domain and the continuum domain, effectively investigating thermophoresis in liquids.

Finally, in Chapter 4 a different kind of coupling between molecules and the continuum is
explained, which is very efficient to study the behaviour of polymers. For this purpose, a
mesoscale simulation to measure the strength of the velocity flux needed to push a polymer
into a narrow channel is demonstrated. Here excellent agreement is found with a prediction
based on a de Gennes blob model of the polymer, that the critical velocity flux for translo-
cation depends linearly on the temperature, but is independent of the length of the polymer
chain or the width of the channel.



Contents

1 Introduction 1
1.1 Motivation and Background . . . . . . . .. ..o oL 1
1.2 Outline and Scope of the Thesis . . . . . .. . ... ... ... ... ..., 3

2 Numerical Models 5
2.1 Modelling the Continuum: Computational Fluid Dynamics (CFD) . . .. .. 5

2.1.1 Continuum Flows (Navier-Stokes) . . ... . ... ... .. ...... 6

2.1.2 Electrokinetic Flows . . . ... .. ... ... ... .. . 0. 7

2.1.2.1 Electroosmosis . . . . . . . ... o 8

2.1.2.2  Electrophoresis . . . . . . .. ... o oo 8

2.1.2.3 Dielectrophoresis . . . . . . . ... L 9

2.1.3 Thermophoretic Flows (Thermophoresis) . . ... ... .. ... ... 10

2.2 Numerical: Finite Elements . . . . . .. ... ... ... ... .. ...... 11

2.2.1 Introduction / Theory . . .. .. ... .. ... .. ........... 11

2.2.2 Applied to Electrokinetic and Thermophoretic Flows . . . . . . .. .. 14

2.2.3 Applied to Stokes Flow . . . . . .. .. ... . 16

2.3 Modelling Molecules: Molecular Dynamics (MD) . . ... .. ... .. .... 17

2.3.1 The Essentials of Molecular Dynamics . . . . . .. .. ... .. .... 18

2.3.2 Standard Techniques for Molecular Dynamics . . . . . . . .. ... .. 20

2.3.3 Advanced Techniques for Molecular Dynamics . . . . . .. .. ... .. 25

2.3.3.1 Optimising the Force Loop . . . . . ... .. .. ... .... 25

2.3.3.2 Thermostats: Controlling the Temperature . . . ... .. .. 28

2.3.4 Long-Range Forces . . . . . . . .. .. ... ... ... ... 29

2.3.4.1 Ewald Summation . . . ... ... oo 30

2.3.4.2 Particle Mesh Methods . . . . ... ... ... ........ 31

2.3.4.3 Long-range Forces in Non-Periodic Domains . . . . . .. .. 34

2.3.5 Modelling Argon and Reduced Units . . . . . ... .. .. ... .... 35

2.3.6 Modelling Water . . . . . .. .. ... 36

24 Results. . . . . . e 39

2.4.1 CFD: Electrokinetic Flow Inside a Nanofluidic Device . . .. ... .. 39

2.4.2 MD: Investigating Flow Characteristics Inside Nano-sized Channels . 46

2.4.3 MD: Obtaining Viscosity Using Poiseuille and Couette Flow . . . . . . 52
2.4.4 MD: Using Particle Mesh Methods to Accurately Simulate Surface

Tension . . . . . . . e 95

2.4.5 MD: Comparing the Value of Viscosity for Several Water Models . . . 59

3 Coupling MD and CFD: Argon and Water 67
3.1 Schwarz Alternating Method . . . . . . ... ... . ... ... 67
3.2 Connecting Boundaries (MD—CFD, CFD—MD) . . ... ... . ... . ... 70

3.2.1 Connecting the Continuum Domain to the MD Domain . . . . .. .. 71
3.2.2  Connecting the MD Domain to the Continuum Domain . . . . .. .. 72

vii



viii CONTENTS

3.2.2.1 Imposing the Desired Macroscopic Properties to the MD Do-
Maill . . .o e e e e e e

72

3.2.2.2  Controlling the Mass Flux and Resulting Reinsertion of Atoms 75

3.2.2.3 Prevention of Fluctuations Near the Boundaries . . . . . ..

3.2.3 Connecting Boundaries when Modelling Water . . . ... ... .. ..

3.3 Results. . . . . .
3.3.1 Convergence Tests for the Schwarz Alternating Method . . . . .. ..
3.3.2 Comparison of a Pure MD and a MD/CFD Coupled Model . . . . ..
3.3.3 Coupled Simulations of Flow round nano-sized particles . . . . .. ..
3.3.4 Coupled Simulations Using Water / Boundary Force for Water . . . .
3.3.5 Coupled Simulations of Thermophoretic Flow . . . .. .. ... .. ..

4 Flow Injection of Polymers into Nanopores
4.1 Introduction . . . . . . . . . . . ..
4.2 Numerical Method . . . . . . .. ... ...
4.2.1 Lattice Boltzmann Method . . . . . . ... ... ... .. ... ....
422 Polymer Chains. . . . . . . .. ...
4.3 Simulation Details . . . . . . . . ..
4.4 Results. . . . . . e
4.4.1 Dependency on the Number of Beads “N” . . . .. .. .. ... ... ..
4.4.2 Dependency on the Temperature “kT” . . . . .. .. ... ... .. ..
4.4.3 Dependency on the Viscosity “p” . . . . . . . ... oo
4.44 Dependency on the Slit Width “A” . . . . .. .. ..o

4.4.5 Conclusions . . . . . . . .. e

5 Conclusions and Recommendations
5.1 Conclusions . . . . . . . . . .
5.2 Recommendations . . . . . . . . ..

A Electroosmosis
A.1 General Theory / Poisson-Boltzmann equation . . . ... ... ... .....
A.2 Thin Electric Double Layer Approximation . . . . . ... ... . ... ....
A.3 Thick Electric Double Layer Approximation . . . . . ... ... . ... ....

B General /" Expressions for Particle Mlesh Methods
Bibliography

List of Publications

Acknowledgments

About the Author

78

127

137

139

141



Chapter 1

Introduction

1.1 Motivation and Background

During the last two decades there is a lot of interest in numerical methods that are able to
resolve physical phenomena occurring both at the very small scale as well as the larger scale.
However, to accomplish this with one single method is very challenging. For example, any
method that is very accurate at the small scale will soon be too cumbersome at the large
scale. On the other hand, any method that is efficient for the large scale generally lost all
the details at the small scale. A solution to this problem is to use both methods at the same
time and only apply it to the region where the specific method is most suitable. However,
in order for this to work, these methods should communicate with each other. Effectively
this means that the methods are coupled and are able to resolve the physical phenomena
over a wide range of scales. The subject of this thesis is to develop, implement and test one
of these methods, which are generally known as multiscale, coupled, or hybrid methods.

The choice of the numerical method used for the small scale or the large scale depends on
the substance and physical phenomena under interest and the way how these are coupled
is linked to this. Generally speaking, the different coupled methods derived in literature
can be divided into coupled simulation involving either a solid, a liquid, or a gas. In these
cases, continuum mechanics is used for the large scale description, while particle or discrete
methods are used to describe the small scale. For example, previous proposals for multiscale
methods for solids concentrated on crack propagation in silicon [3, 164]. Here, at the large
scale, the commonly employed numerical method for solid mechanics, finite element methods,
are used. However, in the region near the crack the bonding between the atoms is very
accurately modelled with molecular dynamics and a semi-empirical quantum-mechanical
model. Other research concentrated on the modelling of crystals with more than a single
grain [170]. Here, again the large scale is computed with finite element methods, while the
atomic structure is modelled with a specialised (discrete) model for crystals. Once these
models are coupled, they are able to very accurately predict the propagation of the crack or
the behaviour of the crystal while the large scale effect are also computed. The multiscale
methods for solids have the characteristic that the motion of the atoms is local, i.e. atoms
do vibrate but will more or less remain in the same position.

On the other side of the spectrum there are the multiscale methods for gases. Now the
atoms are generally not at the same position for very long and only occasionally interact
with each other. When dealing with gases, the Knudsen number (Kn), which is the ratio
between the mean free path of the gas molecule and a characteristic length (e.g. the height
of a channel), gives a reasonable indication when the continuum assumption fails. If the
Knudsen number is much larger than unity, the gas is in the free-molecule regime and
continuum certainly fails and particle methods need to be applied. On the other hand,
when the Knudsen number is much smaller than unity, the substance behaves like a viscous
fluid and continuum is applicable. However, in the intermediate regime the continuum
concept can still be applied, as long as the continuum equations are adapted to account
for several phenomena , e.g. the now incorrect assumption of a no-slip boundary condition
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2 CHAPTER 1. INTRODUCTION

at the wall. However, there are cases where this is not possible and in this situation more
accurate solutions could be obtained if the particle methods and the continuum methods were
to be coupled. For example, previous research on coupled methods for gases concentrates
on hypersonic (rarefied) flows [26, 186, 191, 203] round a body or vehicle at high altitude.
Here the Boltzmann equation, solved using a particle method like Direct Simulation Monte
Carlo Method (DSMC), is the model used to accurately model the boundary layer near
the body and a Navier-Stokes flow solver is used to compute the (global) flow. The two
equations can be coupled by either the concept of friction [26], half-fluxes [186], or automatic
domain decomposition [191]. Other types of multiscale methods for gases used an overlapped
Schwarz alternating method to couple a DSMC method and a Stokes equation. This research
concentrated on the simulation of a microfluidic filters for particle trapping and sorting [6],
or an adaptive mesh and algorithm refinement method to couple DSMC with a compressible
Navier-Stokes solver [69, 209].

Next the multiscale methods that can be used for liquids are discussed. In the case of gases
there is only occasional interaction between atoms, which are free to move. In the case
of solids there is very strong interaction between the atoms, which remain more or less at
the same position. Between these cases, there are the atoms that represent a liquid. The
characteristic of a liquid is the fact that the atoms are constantly interacting with each other
while the atoms can diffuse. This also means that the type of interaction changes all the
time and the Knudsen number cannot be used. Therefore, for liquids it is less obvious to
tell when continuum fails. A very accurate but also computational expensive method to
simulate the interatomic interaction between atoms is Molecular Dynamics (MD). Although
computer power has increased dramatically recently, which means MD can be employed
successfully to study important phenomena at the nano scale, like wall effects, the method is
too expensive to be applied to complete nano devices. On the other hand, from an industrial
point of view, the devices that are used, for example for medical applications, become smaller
and smaller. In order to successfully design these devices, modelling is essential. Because
the size of the device is very small, the conventional continuum techniques can fail. Also,
especially in medical applications but also in more general micro and nano-fluidics, the
most important physics or phenomena happen at the molecular level. But, it is impossible
(and senseless) to model this device completely with a technique like molecular dynamics.
Therefore, combining the two methods: molecular dynamics and conventional continuum
methods, will solve this problem.

A concise review of the development of multiscale methods applied to liquids is given by
Wijesinghe et al. [208]. The main conclusion of this paper is that it does not matter which
solution coupling approach is used, as long as the continuum boundary condition is correctly
imposed on the molecular domain. An early, but successful example, of a way to impose
the continuum boundary condition was given by O’Connell et al. [40]. They introduced a
(one-dimensional) method where the dynamics of the atoms, near the boundary where MD
and the continuum are coupled, are constrained. The coupled method was demonstrated
to work by simulating unidirectional startup flow of a simple fluid near a solid interface.
However, the disadvantage of the solution coupling approach they used, is the fact that the
timescale of the MD domain and continuum domain is coupled, which is a major limitation.
Hadjiconstantinou et al. [81, 82] therefore proposed a solution coupling approach based on
a domain decomposition technique known as the Schwarz alternating method. By using
this method, one domain is subdivided into several subdomains. Length scale decoupling
is achieved by using an overlap area between each subdomain, while timescale decoupling
is achieved automatically. The reason for this is the fact that the Schwarz technique is a
steady-state solution method. However it is still possible to simulate transient problems
[81, 82]. Note that the use of an overlap area does mean that both methods that are
coupled should be able to compute the same solution inside the overlap area. Their method
worked on matching the velocity inside the overlap area and was validated by simulating
a moving contact-line problem. Werder et al. [206] also used the Schwarz alternating
method to couple the velocity field of a domain using molecular dynamics and a domain
using a continuum method, but expanded the coupled framework to a two-dimensional
one. In their work they accentuate the fact that large disturbances to the fluid structure
are visible near the overlap region, if nothing is done to prevent so. These disturbances
can be minimised by introducing an effective boundary potential that mimics the missing
interactions near the overlap domain. In more recent years, Kotsalis et al. [110] extended this
boundary potential. Another way to couple the MD and continuum domain using a domain
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decomposition technique, is to couple fluxes. For example, Flekkoy et al. [61] introduced a
method that aimed at keeping the fluxes of the conserved quantities continuous across the
MD-continuum interface. Nie et al. [137] introduced an improved version and showed how
it can be applied to an impulsively started Couette flow. However, by using the direct flux
exchange method, the time scales of the molecular and continuum simulations are again
coupled [82, 160], which, as mentioned before, is a major limitation. Further, Werder et
al. [206] showed that in order to obtain statistically meaningful estimates of the fluxes for
the continuum domain, an excessive amount of sampling of the atomistic region is needed,
which further adds to the computational effort needed for the flux method. The coupled
methods discussed so far were based on the fact the molecular scale and macroscopic scale
were computed in separate domains and coupled by means of an overlap area, i.e. using
domain decomposition methods. However, there is another strategy described in literature,
i.e. the so-called heterogeneous multiscale method (HMM) [53]. The idea of HMM is to
use a macroscopic model and numerical mesh for the whole domain, i.e. the part where
continuum is valid but also the part where a continuum method fails. However, it is the
task of a separate microscale model to solve for the non-continuum part locally and provide
meaningful macroscale data that is used/interpolated on the macroscopic model. A detailed
review of the heterogeneous multiscale method is given by E et al. [54], while a comparison
between this method and the other methods is given by Ren [159].

In the present work, the Schwarz alternating method is chosen to couple a domain that sim-
ulates a dense liquid using molecular dynamics and a domain that uses continuum methods.
The main reasons the Schwarz alternating method is chosen are:

e Length scale decoupling is achieved by using an overlap area between each subdomain,
while timescale decoupling is achieved automatically

e Compared to other MD /Continuum coupling methods, this method requires less amount
of sampling of the atomistic region in order to obtain statistically meaningful estimates
of continuum values

e The fact that two separate domains can be solved and only the overlap region between
the two domains need to be matched is an advantage.

The reason why this last item is an advantage is the fact that it will enable the possib-
ility to not only couple the macroscopic variable of velocity, but also other variables like
temperature or stress, either separately or combined. Further, previous research mainly
demonstrated how coupling can be achieved and illustrated the method by doing simula-
tions where the liquid consisted of simple (noble) atoms, i.e. no molecules. Here, it also
shown how a simulation with molecules, especially water, can also be used in a coupled
approach. On the other hand, recent developments in MD and computer hardware means
more can be achieved using MD alone. Very interesting phenomena that occur at the nano-
scale, can be modelled with MD very accurately. However, the effects on the larger scale in
these simulations must be ignored because of the computational limitations. A successful
coupling of MD and a continuum method might resolve this and a better understanding of
these phenomena is the result. However, before this can be accomplished, it is necessary
to obtain more information about where and when a coupling is possible and under which
assumptions these coupled simulations give a correct solution. Therefore, the present work
also demonstrates several MD simulations/studies to investigate the possibilities and limita-
tions of pure MD simulations, while also the possibilities and limitations of pure continuum
methods in similar conditions are studied. The results of these simulations are essential
for coupling and verification purposes. The Schwarz alternating method only works if the
overlap area between the two domains solve the same solution. Therefore a pure MD simu-
lation will reveal where the continuum method could also be used, while it also provides a
verification for the coupled solutions.

1.2 Outline and Scope of the Thesis

The focus of this thesis is the development of a coupled numerical simulation approach
for dense liquids where one domain is represented with molecular dynamics (MD), while
the other other domain solves the conventional continuum equations. The first part of
the thesis will focus on how well the continuum methods can be applied to nano-sized
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devices, followed by how MD can be used to provide better answers. Also, the limits of MD
simulations are explored, especially how a commonly used trick in the MD code to decrease
the computational effort, can greatly affect the final solution. The MD simulations are
also performed to investigate when MD is really necessary or when conventional continuum
techniques would provide the same answer. The second part will focus on how the two
methods can be coupled and how unique (better) solutions can be obtained if both methods
are used in a coupled manner.

The main contents of this thesis is divided in three chapters. The first one, Chapter 2, has
the purpose to introduce the reader to the numerical models that are used throughout the
book, but at the same time focuses on the phenomena encountered in nano-sized devices.
In Section 2.1 these phenomena, like electrokinetic flows and thermophoretic flows, are
introduced. The section is followed by Section 2.2.2 where the numerical technique to solve
the continuum equations is explained, namely the Finite Element Method (FEM). On the
other hand, Section 2.3 is entirely devoted to the numerical technique to solve the interatomic
interactions, namely Molecular Dynamics (MD). Chapter 2 ends with several applications
and results obtained either with a pure continuum method or completely with MD. Here
it is addressed that for relatively large nano-sized devices (~150 nm) continuum techniques
can still be employed. However, for smaller devices (<60 nm) or for devices where the most
important feature is on the molecular scale, e.g. the influence of one DNA molecule or wall
effects, these pure continuum techniques can fail. The remainder of Section 2.4 focuses on
employing only MD to investigate these phenomena.

Chapter 3 has the purpose to introduce a method how the two domains, continuum and
molecular, can be coupled. In Section 3.1 the methodology of the Schwarz alternating
method is introduced, while Section 3.2 goes in more detail how this technique is employed.
The chapter ends with Section 3.3, where several applications and results are shown of
coupled simulations.

Chapter 4 shows how a different type of coupling between the molecular and the continuum
domain can be used to investigate the flow injection of polymers into nanopores.

Finally, in Chapter 5, the main conclusions are summarised and recommendations for further
work and applications are given.



Chapter 2

Numerical Models

2.1 Modelling the Continuum: Computational Fluid Dy-
namics (CFD)

77

Throughout this thesis the terms “molecular dynamics”, “continuum”, and “non-continuum”
are used. In section 2.3 it will be explained what is meant with molecular dynamics, but first
the term continuum is further specified. When something is called a continuum it is assumed
that the substance of something is distributed throughout and has no gaps or holes, which
means that it can be divided infinitely. A continuum is most of the times simply referred
to as a solid, liquid, or a gas. This also means that the continuum completely ignores
the fact that everything is made of molecules. On the (classical) molecular scale, a solid,
a liquid, or a gas, can consist of the same molecules or atoms but with different spatial
configuration, where the rest of the space is a vacuum. The good thing about the concept
of a continuum is that it enables the possibility to express the behaviour of the substance
in differential equations that, when correctly applied, give the same results as experiments.
The term “non-continuum” basically refers to the situation where all or some of the above
is not applicable. However, to tell when this is the case is tricky, which is discussed next.

When dealing with gases, the Knudsen number (Kun), which is the ratio between the mean
free path of the gas molecule and a characteristic length (e.g. the height of a channel), gives
a reasonable indication when the continuum assumption fails. If the Knudsen number is
much larger than unity, the gas is in the free-molecule regime and continuum certainly fails.
On the other hand, when the Knudsen number is much smaller than unity, the substance
behaves like a viscous fluid and continuum is applicable. However, in the intermediate regime
the continuum concept can still be applied, as long as the continuum equation take several
phenomenon like the now incorrect assumption of the no-slip wall into account. Of course
continuum still fails when the molecular effects are becoming important in this intermediate
regime.

For liquids it is less obvious when continuum fails. The Knudsen number cannot be used,
because in the liquid state the molecules are in close contact and constantly interacting with
each other. Therefore for a liquid the question can be: how many molecules are needed
before the statistical fluctuations are small enough to accurately specify a mean value and
what typical length is associated with that? The statistical fluctuations d are related to the
number of atoms N as d = 1/v/~N |103], while the density of the liquid controls the occupied
volume of the N atoms. For example, for water at standard conditions, when the statistical
fluctuations are less than 1%, the typical length is 6.7 nanometres. However, this length is
only an indication again, because on this small scale other effects than atomic interaction
like electrical effects can be very strong. Also the presence of a solid structure such as a
channel wall can influence the continuum features of the liquid. In such cases molecular
dynamics is very effective to use. In section 2.4.2 an estimate is given for the minimum size
of a (nano-sized) channel where continuum techniques can safely be applied, using molecular
dynamics.
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From the above description of a continuum it is clear that as long as the typical dimension
of the flow is much larger than any molecular effect, the continuum approach can safely be
applied. More general, this can be specified by a surface to volume ratio, indicating the im-
portance of surface effect compared to volume effects. If this ratio is high, the surface effects
dominate and the continuum approach is very likely to fail. In the case when microfluidics
are considered, the typical dimension is much larger than any molecular effect. Here the
definition of microfluidics is: the description of the flow and phenomena of fluids, where at
least one of the dimensions is in the micrometre scale, usually defined as < 100 micrometre.
In microfluidics the flow can safely be described with the Navier-Stokes equation, however
other phenomena, for example surface effects like electrokinetics, also become important
because of the small scale. For the modelling of the flow this means that these effects must
be included in the simulation. Section 2.1.2 introduces the most frequently observed and
used phenomena, which are electroosmosis, electrophoresis, and di-electrophoresis. Beside
the electric effects, another phenomenon can be observed when temperature gradients are
present. Again, because of the small scale, small temperature differences inside a channel
result in very large temperature gradients inside the channel. These temperature gradi-
ents are the source of another phenomena called thermophoresis, which will be explained
in section 2.1.3. In general, these phenomena become more important when the typical di-
mension becomes smaller i.e. when the surface to volume ratio becomes higher. The regime
where the typical dimension goes down to nano size is called nanofluidics. In this case the
continuum hypothesis is not necessarily valid and surface effects (e.g. confinement in the
form of a channel) are now dominating. This also means that if you want to study small
scale flow and include molecular effects (e.g. solid boundaries) you have to use a coupled
method where molecular dynamics and continuum is solved together. How the coupling can
be achieved, is discussed in chapter 3. Luckily in most cases the normally used continuum
equations are still applicable with some minor alterations which will be discussed in the next
subsections. This section ends with a overview of the continuum numerical methods used
throughout the book.

2.1.1 Continuum Flows (Navier-Stokes)

In the introduction it was described what continuum entails and that it can be used to
successfully describe microfluidics and nanofluidics. In this section the basic continuum
(governing) equation for fluid flow are given. In typical microfluidic and nanofluidic appli-
cations, the flow can be considered as incompressible. In this case the conservation of mass
can be specified as:

V-u=0 (2.1)

where  is the velocity vector. Equation 2.1 is called the continuity equation. The second
equation is the conservation of momentum, which equals Newton’s second law applied to a
small volume element of fluid, and can be written as:

P (%+(a-V)ﬁ)=ﬁ+ﬁ (22)

where py is the density of the fluid, ﬁ, is a body force density, and f; is a surface force
density. The surface force density for a Newtonian fluid with constant viscosity jr is given
by:

fs==Vp+usV3a (2.3)
where p is the pressure. The i-th component of the body force density, fp;, in terms of a
general stress tensor o;; is given by:

80'ij

Joi = 7z,

(2.4)

which in the case of gravity is simply given by f_; = prg. Substitution of all the equations
into equation 2.2 results in:

ow . _. L
Pf (E + (- V)U) = —Vp+ us Vi + pyg (2.5)
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which is called the Navier-Stokes equation and is valid for any isotropic, incompressible flow
with constant viscosity. However, in many cases discussed hereafter, there is no need to solve
the full Navier-Stokes equation. The flow is these cases are considered steady and laminar
and therefore can safely be described with the Stokes equation:

Vp = pusV>3i+ psg (2.6)

2.1.2 Electrokinetic Flows

In this section the electrokinetic effects and the resulting electrokinetic flow are discussed.
These electrokinetic effects basically happen on the molecular scale, but luckily they can be
reasonably described with pure continuum equations only.

When a micro or nano channel is filled with a liquid, especially a polar liquid like water, the
walls of the channel acquire a surface electric charge. This charge is caused by natural pro-
cesses like ionisation, ion adsorption, or ion dissolution. However, in practical applications
the liquid inside the channel also contains a concentration of certain salts, with an equal
amount of negatively and positively charged ions. Because the wall also has a certain charge,
the ions of opposite wall charge (counter-ions) are attracted towards the surface, whereas
ions of like charge (co-ions) are repelled away from the surface. However, due to thermal
motion, the ions tend to distribute themselves evenly over the solution. The result is a com-
promise in which the concentration of the counter-ions is high near the surface and decreases
gradually till the bulk value is reached at a large distance from the surface. On the other
hand, close to the surface a rigid charge layer of counter-ions is formed. This layer, which
has the thickness of approximately one ion, is called the Stern layer. This layer is bounded
by strong electrostatic forces, and hence it is immobile. The Stern layer together with the
diffuse layer of co-ions and counter-ions, is called the electric double layer (EDL). The typical
thickness of this layer is determined by the opposing forces of electrostatic attraction and
thermal diffusion, which is on the order of the Debye length of the medium. Typical values
range from one nanometre to several hundreds of nanometres and therefore can ignored in
macroscopic flows, but is important in microfluidics and nanofluidics, especially when the
typical scale becomes comparable to the Debye length.

So far the theory still involves discrete objects like ions and molecules and the basic principles
all happen at this molecular scale. However, the fact that there is an electric double layer
results in some very useful effects on the much larger (continuum) scale. For example, when
an external electrical field is applied to the electric double layer, this will set the ions inside
the diffuse layer in motion. This motion will induce drag due to the fluid viscosity, which as
a result induces motion of the (continuum) bulk fluid. This principle is called electroosmosis,
and the resulting flow is called electroosmotic flow (EOF). This flow can be used to transport
fluids inside a micro or nano sized fabricated device. However, this same electric double layer
is also formed at the solid-liquid interface of a solid (charged) particle when this particle
is immersed in the liquid present in the device. When in that case an external electric
field is applied, the charged particle and the ions inside the diffuse layer are set in motion.
This principle is called electrophoresis and can be useful to transport individual particles.
Another useful method for the manipulation of particles is called dielectrophoresis, which
is the motion of particles caused by polarization effects in an applied non-uniform electric
field. In this case the particle does not have to be charged, and it only occurs whenever
there are gradients inside the electric field, which can be either AC or DC. Dielectrophoresis
is especially useful for the manipulation of molecules or (biological) cells.

The EDL can be utilised for continuum applications, therefore to predict the continuum
behaviour, the governing equations need to be specified. These are discussed in detail
in appendix A but the general idea is as follows: For electroosmotic flow, the governing
equations are four coupled equations [123]. The first equation specifies the transport of the
ions in the solution, which is the Nernst-Planck equation. The second equation, derived
from Maxwell’s equations, specifies the relation between the electric field and the net charge
density of the ions obtained from the concentration of the ions. The third and fourth
equations specify conservation of mass and momentum, which are the continuity equation
and the Navier-Stokes equation discussed before. However, the latter is modified such that
the interaction between the ions and the applied electrical field are taken into account.
Fortunately, in most cases there is no need to solve all four equations simultaneously, and
simplifying approaches can be used, which are summarised in section 2.1.2.1. The same



8 CHAPTER 2. NUMERICAL MODELS

applies for electrophoresis and dielectrophoresis, where in most cases the governing equations
can be reduced to a simple force balance between the (di)electrophoretic force and the Stokes
drag force, which are given in section 2.1.2.2 and 2.1.2.3. respectively.

2.1.2.1 Electroosmosis

The first electrokinetic effects that will be described is electroosmosis and electroosmotic
flow, where the charged ions inside the electric double layer near the channel wall are used
to set the bulk fluid into motion. The governing equation for electroosmotic flow are given
in appendix A. There it is explained that the typical thickness of the EDL, given by the

Debye length:
1 ecokpT
Y (S 2.7
K 2z22e2cq (2.7)

compared to the typical dimension of a microfluidic or nanofluidic device can be used to
greatly simply the equations. In the case of microfluidic devices, the typical dimension of
the device, h, is on the order of several micrometres while the typical thickness of the EDL
is in the nanometre scale. This case is called the thin EDL case and the EOF velocity is
given by the Helmholtz-Smoluchowski velocity:

€0Cu 5 _ o (2.8)

UpoF = —

where a,s = —e€€pCyw/p is a constant that depends only on the surface and electrolyte
properties. The Helmholtz-Smoluchowski velocity is the velocity at the outer edge of the
EDL, induced by the moving ions inside the EDL. Because the EDL is very thin, from a
macroscopic point of view this can be seen as a slip velocity specified at the wall. This also
means that the electric potential is effectively only the externally applied potential ¢ and
which can be solved using a Laplace equation:

Vip=0 (2.9)
where the boundary conditions can be an applied voltage by means of a Dirichlet bound-

ary condition or an electric insulation/leakage boundary condition by means of a Neumann
boundary condition. The electric field is derived by taking the minus gradient of the po-

tential: £ = —V¢. However, under certain conditions [42] the process of specifying the slip
velocity and solving for the flow can be skipped altogether, in which case the local velocity
in the bulk is entirely given by the Helmholtz-Smoluchowski relation. In that case the flow
pathlines exactly follow the electric field lines.

On the other hand, in a nanofluidic device the dimensions of the device are similar to the
size of the EDL or smaller. In this case the full theory still needs to be applied. However,
when the typical thickness of the EDL is several hundreds of nanometres, the EDL can be
considered “thick” compared to the nanodevice. In this case, i.e. the thick EDL case, the
EOF velocity can be derived using a Hele-Shaw-like approximation [86]. Consequently, the
velocity profile is a Poiseuille velocity profile and the average EOF velocity is given by the
expression:

_ €€oGw E—I»(Iih)Q
1 12

which is just the Helmholtz-Smoluchowski relation multiplied with a certain factor given by
the value of kh.

(igor) = (2.10)

2.1.2.2 Electrophoresis

In the last section it was shown how the EDL that is formed near the walls of micro or
nano sized fabricated device can be used to create electroosmotic flow inside the device.
However, when a solid (charged) particle or bead is inserted inside this device, an electric
double layer is also formed around the particle. When an external electric field is applied,
the charged particle and the counter-ions inside its diffuse layer are set in motion. This
principle is called electrophoresis [123]. Similar to what was the case with electroosmotic
flow, when a very thin or a very thick electric double layer compared to the particle radius
is considered, simple expression for the electrophoretic velocity can be derived[123]. In the
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case of a thin EDL the derivation is similar to that of the Helmholtz-Smoluchowski relation,
and the value of the electrophoretic velocity can be determined with the same equation
except for the sign. In the case of a thick EDL the particle can be seen as point charge in
an electric field. The electrophoretic velocity is then given by the Hiickel equation, which
is 2/3 the value of the velocity in the thin EDL case. In the general case, the fact that the
charged particle and the counter-ions inside the diffuse layer have an opposite charge and
thus opposite direction of motion, must be taken into account. Eventually the velocity of
the particle will be somewhere between the value of the thin and thick EDL case. Therefore
the general electrophoretic velocity is given by [123]:

Tpp = % £ (k) EEZCPE (2.11)

where f (krp) is called the Henry function which is a dimensionless function that is dependent
on the ratio of particle radius, r,, and to double layer thickness. This function goes from
1.0 in the thick-EDL case to 3/2 in the thin-EDL case.

2.1.2.3 Dielectrophoresis

So far two electrokinetic principles were discussed which were based on the principle that the
wall of the device and the particle were charged. However, there is another very interesting
and useful electrokinetic principle that does not require the particle to be charged at all and
that is called di-electrophoresis [151]. This principle is based on the fact that when a particle
is polarised due to an electric field, the particle forms a dipole. When the electric field would
be uniform, nothing would happen, because the force on each pole of the di-pole is the same
and opposite in direction. However, when this same particle is put in a non-uniform electric
field, at each pole a different force is applied, and hence a net force acting on the particle
remains that can set the particle into motion. In general the di-electrophoretic force on the
particle can be expressed as:

Fppp=p-VE (2.12)
where p'is the dipole moment vector and VE is the gradient of the electric field. For the

special case of a homogeneous dielectric sphere with radius r, and permittivity e; immersed
in a fluid with permittivity €;, the expression for the effective dipole moment is [100]:

Pepy = 4mer K (e2,€1) rp E (2.13)
where: ( )
€y — €71

K = = 2.14

(€2,€1) (&1 20) (2.14)

is called the Clausius-Mossotti function that provides a measure of the strength of the
polarisation of the spherical particle as a function of the permittivities of the particle and
the fluid. Substitution of equation 2.14 into equation 2.13 and making use of a simple vector
identity, the di-electrophoretic force for the sphere equals:

ﬁDEp - 27T61K (62,61)T§6E2 (215)
The di-electrophoretic velocity of the sphere can be determined by the fact that when the
motion of the spherical particle is steady, the di-electrophoretic force is equal to the Stokes
drag force, hence:
€1K (62, 61) 7‘127

3py

where E? is the electric field intensity. Traditionally, two di-electrophoretic classes are
distinguished; positive di-electrophoresis (+DEP) and negative di-electrophoresis (-DEP).
In the case of +DEP, K > 0 or ¢ > €1, and the particles are attracted to electric field
intensity maxima and repelled from minima. On the other hand, for -DEP, K < 0 or
€2 < €1, and the particles are attracted to electric field intensity minima and repelled from
maxima.

This concludes the section where three electrokinetic effects were discussed that can be used
for useful applications in microfluidics and nanofluidics; electroosmosis, electrophoresis, and
di-electrophoresis. In section 2.4 an example will be given of a nano-sized device where all
three effects are used to move and sort DNA molecules.

ippp = VE? (2.16)
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2.1.3 Thermophoretic Flows (Thermophoresis)

In the last section several electrokinetic effects were discussed that can be used to move
or manipulate particles or DNA molecules inside microscopic or nanoscopic sized devices
using electric fields and the response of the particles inside this electric field. However, in
the last two decades another effect has attracted more attention for this purpose too. The
driving force behind this effect is the temperature (gradient) field which results in a mass
flux and effectively particles or species will migrate. This effect is called thermophoresis, or
alternatively known as thermal diffusion, thermodiffusion, or the Ludwig—Soret effect [105]
after Ludwig who discovered the effect in 1856 and Soret who further investigated it in 1897.
The purpose of this section is to give a simple introduction to thermophoresis. For more
details see for example [105, 150, 207] and the references therein.

Similar to the derivation of the electrokinetic effects, it starts with the Nernst-Planck equa-
tion, equation A.3 which sums several types of transport of species in a (dilute) solution.
Thermophoresis is simply an additional particle transport type inside the equation for the
total mass flux. In the case where there is no electric field or external flow, and low concen-
tration, this mass flux is written as [150]:

J=—-DVc¢—cDpVT (2.17)
where ¢ the concentration of the species in solution, D denotes the diffusion coefficient, and
Dy is called the thermal diffusion coefficient (or better: thermophoretic mobility). The first
step in investigating thermophoresis further is to consider the stationary state where the
mass flux J disappears. Equation 2.17 can be rewritten to:

§p= LY (2.18)

where St = Dr/D is called the Soret coefficient and gives an indication how effective the ther-
mophoretic effect is. On the other hand, a steady-state concentration gradient is obtained,
described by:

Ve=—cSrVT (2.19)

which means that depending on the sign of the Soret coefficient, particles focus either at the
cold or the hot side. This is also indicated by the the drift velocity of a particle inside the
temperature gradient, given by :

ur = —DTVT (220)

which means that when S > 0 the particles move to the cold side, while when S < 0
the particles move to the hot side. It is however the sign and value of the Soret coefficient
itself which is difficult to predict, as for example, it can change sign, simply by changing the
concentration, temperature, pH, or ionic strength of the solution. For gases there exist a
theory that describes thermophoresis very well [78], however for liquids this generally is not
the case and the value and correct sign of the Soret coefficient are not predicted. Molecular
dynamics simulations proved to be useful for the investigation of thermophoresis and showed
both good qualitative and quantitative agreement with experiments [207]. However, several
continuum approaches are applicable to larger molecules or colloidal suspensions.

In the case of colloidal suspensions, applied to thermophoresis, a similar method how elec-
trophoresis was explained in section 2.1.2.2 can be used. In the case of electrophoresis, an
electric double layer is formed around any particle, and when an external electric field (a po-
tential gradient) is applied, the counter-ions inside its electric double layer are set in motion.
In other words, the resulting bulk motion is the result of movement of ions in a very small
layer near the particle only. It was also noted that the resulting electrophoretic velocity is
generally a function of several properties, summarised in the Henry function, f (xr,). In
the limit of a very small or very large diffuse layer compared to the particle radius, the
velocity becomes independent of this function. Connected to this, Ruckenstein [163] showed
how thermophoresis, diffusiophoresis and electrophoresis can be described as the result of a
variation of the surface tension. Starting with the electrophoretic velocity in the case of a
thin EDL and one dimensional case, equation 2.11 can be rewritten to:

1d
660<p:| 4 (c9) (2.21)
o | p dz

where o is the surface charge density. The next step is to notice that the term between
square brackets has the dimension of a length, while the last factor is the gradient of a kind

UEP:_[
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of interfacial tension due to the external field. Therefore the equation can be rewritten to:

I dy
Upp = u dz (2.22)
where under the conditions of a low surface potential, the characteristic length is determined
by the reciprocal Debye length, | = k=1 and 7 is the interfacial tension. Rubenstein suggests
that a similar expression for the velocity can be written for thermophoresis, where the
gradient now is due to the temperature gradient:

up = —-L & (2.23)

where Ip = (26)”". In other words, the motion is therefore seen as a Marangoni effect,
where the interfacial tension gradients in the small layer near the particle are caused by an
external field, which in the case of thermophoresis are the temperature differences.

This concludes this section where thermophoresis was shortly introduced. Although this
phenomenon is sharing some of the properties of electrokinetic flows, i.e. the phenomenon is
local and of molecular nature while the effect is noticeable in the bulk, there are no complete
satisfactorily theories available for liquids like there are for electrokinetic flows. One of the
methods that can be used to derive these models can be molecular dynamics.

2.2 Numerical: Finite Elements

The previous sections introduced the governing continuum equations of several types of flow
that are commonly used or encountered when dealing with micrometre or nanometre sized
devices. Roughly speaking, the equations solve for the velocity, pressure, electric, and the
temperature fields, and may or may not be coupled. Of course these continuum equations
need to be numerically solved, and the choice of method here is the finite element method
(FEM). Although fluid dynamics tend to be mainly solved with finite volume methods,
because of the automatic conservation properties, there are also good techniques available
for FEM. Furthermore, there is also the need to solve for the other variables which can be
done relatively easy in FEM.

The history of the finite element method mainly starts in the study of solid mechanics (e.g.
structural analysis problems) as early as the 1940’s. The basic idea is to discretise the
continuum problem into a mesh made out of discrete sub-domains, so-called elements. The
most commonly used finite element method is based on the theory of Galerkin’s weighted
residual. A short introduction to the theory of this method is given in the next section.
For a more thorough introduction, the reader is referred to for example [52] or [217]. After
the basic theory, it will be shown how the finite element method can be used to compute
the temperature field and electric fields. The computation of the flow (velocity field and
pressure) needs some more attention and will be discussed last.

2.2.1 Introduction / Theory

The (Galerkin) finite element method basically consist of two separate steps. First the
boundary value problem or differential equation is rewritten (from the strong form) to the
weak form, or variational form, which in most cases can be done by hand instead of computer.
The second step involves the discretisation, where the weak form is subdivided into elements.
However, to define the weak form of the boundary value problem, two collections of functions
need to be defined first; the test or weighting functions and the trial or admissible solutions.
To explain this further it is necessary to define a general computational domain 2 where
part of the boundary, I'p, is specified with Dirichlet boundary conditions, and where the
other part of the boundary, I'y, is specified with Neumann boundary conditions. Both
the weighting functions and trial solutions are general functions which are (at least) square
integrable and have square integrable first derivatives over the computational domain 2.
However, the weighting functions, hereafter noted as w, vanish on the Dirichlet part of the
boundary, I'p, while the trial solutions actually satisfy the boundary conditions at the same
boundary. When the variable that needs to be solved is properly chosen, this last fact can be
used to automatically satisfy the Dirichlet boundary condition. However, the same thing can
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also be done for the Neumann boundary condition, which is best shown with an example.

For this example, consider the Poisson equation which is solved for the computational domain
Q introduced above:

~Vip=f in O
Y =¢p onI'p (2.24)
n-Vo=pnN on 'y

Here f is a source term, pp is the value of ¢ on the Dirichlet boundary, while the ¢y is
the value of ¢ on Neumann boundary, where 77 is the outward normal of this boundary.
The formulation of the weak form of the boundary value problem can be achieved by first
multiplying the differential equation by the weighting function w and then integrating over
the domain Q which results in:

_/Qwv2(de:/wadQ (2.25)

The next thing to do is to expand the first term by using some vector identities and by
applying the divergence theorem to transform a volume integral to a surface integral, which
results in:

f/wvzgadﬂzf/(V'(nga)wa'ch)dQ:/Vw'chde/wO?Vgp)dF
Q Q Q T

(2.26)
Please note that by doing so, the term inside the surface integral contains the Neumann
boundary condition defined before. The weighting function, w, is per definition zero at the
Dirichlet boundary, which results that the surface integral is only over the Neumann part of
the boundary. Consequently this means that the Neumann boundary condition is included
naturally. The total equation in weak form then becomes:

/Vw-Vgde:/wfdQ—i—/ wendl (2.27)
Q Q Ty

However, this equation does not include the Dirichlet boundary condition yet, but this can
be achieved by making sure that the mathematical space where ¢ belongs to is the same as
the space of the trial solutions, as these do satisfy the boundary condition per definition.
This ends the first step for making the differential equation ready for the finite element
method.

The second step involves the discretisation of the weak form. As may be obvious from the
name of the method, the discretisation is done in elements, however an element entails more.
Every element is built out of nodes, or nodal points where each element can have a different
number of nodes, and several elements may use the same node. This also means that the
number of elements meeting at a node may vary from node to node, which means that the
method handles unstructured meshes naturally. The interpolation between all the nodes is
governed by so-called shape functions, which will be explained in more detail later. The
goal of the discretisation is to first compute the (local) contribution of each element to the
integral in the weak form. After this is done, all these contributions are assembled to create
one (global) complete system in the form of a matrix equation which can be solved by any
appropriate matrix solver. By using the interpolation by shape functions as described above,
the approximate solution noted as ¢" can be written as:

" (@)= > Na(@)pa+ Y Na(®ep (&) (2.28)
AeX\\Ap Aelp

Here A represents a global node number in the finite element mesh, Ap represents the nodes
where Dirichlet boundary conditions are specified, N4 is the shape function associated with
node number A, and ¢4 is the (unknown) value at node number A. Additionally, in the
Galerkin formulation the (discrete) arbitrary test functions, w”, are defined such that they
are the collection of all (finite) linear combinations of the elements of N4. Substitution of
this into the weak form, equation 2.27, and rearranging results into the following discrete
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Figure 2.1: The general quadrilateral element and how the global nodes and coordinate
system are mapped onto a local nodes and coordinate system.

weak form:

Z (,OA/ VNp-VN,dQ) = / NdeQ+/ NBcdeFf Z ©YD (fA)/ VINpg-VNdS2
AeX\Ap @ @ Iy Aexp @

(2.29)
where A and B represent the global node numbers and BeA\\Ap. What remains now is to
specify the shape functions, which is done next.

The theory explained so far can be applied in 1D, 2D, or 3D, however most of the upcoming
continuum simulations only ask for a 2D solution. Commonly used meshes in two dimensions
consist of triangular and/or quadrilateral elements. The left illustration in figure 2.1 shows
a general quadrilateral element with its global node numbers and attached global coordinate
system. However, constructing a shape functions in the global coordinates (x,y) for this
general quadrilateral would result in very complex algebraic expressions. Therefore it is
better to construct the shape function in a local coordinate system which is shown in the
right illustration. For this purpose, each quadrilateral is mapped onto a canonical square
with normalised local coordinates (¢,17) € [—1,1] x [—1,1]. The shape function of the
quadrilateral in local coordinates simply is defined by:

Moo= ;0-90-n) (2.30)
N = 1+90-n) 2:31)
N3 = %(1+§)(1+n) (2.32)
Ni = 10-6@+n) (2.3)

Where the value of the variable ¢ can now be evaluated (interpolated) anywhere inside the
mapped quadrilateral element using the nodes by:

" (&) =D Na(&n)¢a (2.34)

Under special circumstances the same shape functions can also be used to specify the re-
lation between the global (z,y) and local (£,7n) coordinates, in which case the element is
called isoparametric of which the four-node quadrilateral is an example. The coordinate
transformation is then defined as:

{ y }:;:Na “’”’{ e } (2.35)

where a define the local nodes of the element. The discrete weak form not only uses the
shape functions N, but also the derivatives with respect to the global coordinates (z,y).
Luckily these derivatives can easily be converted from one coordinate system to another by
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Figure 2.2: The 9-node bi-quadratic quadrilateral element and its shape functions

using the chain rule of partial differentiation. This results in:
1o}
D€
o

{ % } =J! v ] (2.36)

where J is the Jacobian matrix. The integrals inside the discrete weak form also need to be
transformed. This can be done with the determinant of J, det J as follows:

/ / dady = / / \det J| dédn (2.37)

What remains is to evaluate the integrals, which could be done analytically. However, for
general purposes they are evaluated numerically using Gaussian quadratures rules which
states that

/ / F (€ dedn =Y wy (&,m5) (2.38)

which will give an exact result for polynomials of degree 2n — 1 or less by a suitable choice
of the points (§;,7;) within the element and weights w;. For n = 2, these are w; = [1,1] for

points [— V13, \/1/_3} and for n = 3, these are w; = [3/9,8/9,5/9] for points [—\/3/—5, 0, \/%}

With the techniques explained above, the contribution of the integrals in equation 2.29 can
be numerically solved for every individual element. After this is done the contribution of
every element is assembled (stored in the right spot) into one big matrix. Please note that
these matrices are very sparse in most cases.

The (bilinear) quadrilateral element discussed above is in most cases accurately enough,
however if better solutions are needed the type of element can simply be changed into one
that is more accurate while the underlying theory (and computer programme) remains the
same. The most obvious way of improving the accuracy is using quadratic shape functions
instead of linear ones. This means that on each side of the element one node is added.
However, for reasons explained later when the finite element method is applied for Stokes
flow, one extra node will be added in the centre of the element. Figure 2.2 demonstrates
this 9-node bi-quadratic quadrilateral element and its shape functions.

This concludes the basic theory of the finite element method. In the next subsections it will
be shown how the method can be used to compute electric fields, temperature, and Stokes
flow.

2.2.2 Applied to Electrokinetic and Thermophoretic Flows

In the previous section the basic steps to solve a boundary value problem with the finite ele-
ment method were explained. In this section these techniques are applied to the continuum
equation for electrokinetic flows which were derived in section 2.1.2 and the thermophoretic
flows derived in section 2.1.3. It was shown that in the case of microfluidics, the electric
double layer generally is much smaller than any typical dimension of the microfluidic de-
vice. The consequence of this is that the effects of the electric double layer merely act as a
boundary condition for the bulk flow and the electric field that needs to be simulated is only
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the externally applied electric field E, which is given by £ = —V ¢, where the potential, ¢,
is the applied voltage on the electrodes and can be computed with the Poisson equation:

V3 =0 (2.39)
It was also shown that in the opposite case where the electric double layers do overlap
cousiderably (e.g. in small nanofluidic devices), the flow is still directly related to the
externally applied electricity field. In the case of electrophoresis the velocity of the particles
or bead are also directly related to the electric field. Therefore in order to compute the
flow, equation 2.39 needs to be solved. This Poisson equation was already rewritten for the
finite element method in the previous section, the only difference is that the source term
here disappeared. So the discrete weak form becomes:

3 qu/ VNp-VNAdQ= [ Ng(ii-Vé)dl— Y ép (:E‘A)/ VNp-VN4dQ (2.40)
AeX\Ap £ Iy Aexp Q

The Neumann boundary condition contains the term (77 - V¢), which can be considered as
the amount of electric current leakage. In most microfluidic devices the walls can be assumed
to be good insulators, which means that the normal component of the electric field (and the
complete Neumann boundary condition) is set to zero. When equation 2.40 is rewritten to
a matrix form, the result is:

Kop=f (2.41)

where ¢ is the vector with only the unknown (internal) values of the potential and f is
computed using the K-matrix and the Dirichlet boundary conditions. The value of the
Dirichlet boundary condition is the applied voltage to the electrode. Once the matrix is
solved, the value of the potential is known in the whole device. However, in order to
compute the electroosmotic flow and electrophoretic velocity of a particle or bead, the value

of the electric field must be computed. In order to do this, the fact that E= —V¢ can be
used again. The discrete weak form of this equation is given by:

ZEA/ NpNadQ = Z(bA/ NAVNpdQ (2.42)
AeX Q AeX Q

This equation must be solved for the two dimensions of the electric field, which in matrix
form for the x-component means that:

ME, =G.¢ (2.43)
and similar for the y-component:
ME, =Gy¢ (2.44)

Here the G-matrix is split into a matrix acting as the gradient in x-direction and y-direction.
Once the electric field is computed the electroosmotic velocity can simply be computed
by equation 2.8 or equation 2.10, while the electrophoretic velocity can be computed by
equation 2.11. Di-electrophoresis can computed very similar to the way how the electric
field is computed. The dielectrophoretic velocity for a spherical particle is given by equation
2.16 and is dependent on the gradient of the electric field intensity. Therefore, first the
electric field intensity is computed and then the G5 , Gy, and M matrices can be used
again to compute the gradient in x and y-direction.

In the case of thermophoretic flows, it was shown that the flow is caused by a temperature
gradient. Although there are several ways to simulate temperature inside a continuum do-
main, the most straightforward one is the heat equation, giving the temperature distribution
through time:

oT 9
— =aV°T 2.45
5 (2.45)
where « is called the thermal diffusivity and 7" is the temperature as a function of time and
x, y, and z. In the case of a steady state, this equation simply reduces to:

VT =0 (2.46)
and is solved exactly the same as the Poisson equation for the electric potential. The
boundary conditions can be a certain (wall) temperature or a temperature gradient.
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2.2.3 Applied to Stokes Flow

In the last section it was shown that variables like the temperature and electric field can
easily be obtained using the finite element method. The same can be said about obtaining
the velocity field and pressure field for Stokes flow, but there is one issue that need to be taken
care of first. The flow in all cases discussed hereafter are considered to be incompressible and
it is the incompressibility condition that is the problem. The continuity equation, equation
2.1, takes care of the incompressibility, but only puts a constraint on the velocity field and
not the pressure, which is now a variable without any constitutive equation to describe it. On
the other hand, in the Stokes equation, equation 2.6, the pressure is an added variable that
adjust itself (instantaneously) in order to satisfy the incompressibility condition. Clearly
this is not unique to the finite element method and whatever discretisation or numerical
method is chosen, in the end the system that needs to be solved will look similar to:

o Sl[5]- [ ean

where K is a square matrix, G a rectangular matrix, and w, p, f, and h have the corre-
sponding dimensions. The problem of course is that this matrix system can become singular.
If standard discretisation techniques are used, the computed pressure will be highly oscilla-
tory or simply unknown. In finite difference methods this can be solved by using staggered
grids, where the variables of pressure and velocity are computed on different nodes. Some-
thing similar can be used for the finite element method, where the velocity and pressure are
computed using different (or mixed) elements. However, not every combination of elements
for the velocity and pressure variables are suitable for a stable solution. The mixed elements
that are suitable for finding a stable solution do follow the so-called Ladyzhenskaya-Babuska-
Brezzi (LBB) compatibility condition [12, 28, 116]. Basically the LBB condition states that
velocity and pressure spaces cannot be chosen arbitrarily because a link between them is
necessary. This link ensures that the matrix system is not singular. Luckily, several com-
binations are available, and the one that is used here is the Taylor-Hood element [187]. In
that case the velocity field is solved on a 9-node bi-quadratic quadrilateral element, which
was already introduced above. The pressure on the other hand is solved using the bi-linear
quadrilateral element, where the local node numbers 1, 2, 3, and 4 (see figure 2.2) are shared
among the two element types.

Next the strong form is converted into weak form. The system of equations and boundary
conditions in strong form can generally be given by:

—Vp+ V34 =0 in Q
V-u=0 in Q
“=v o (2.48)
U =1Up onI'p
—pi+pp(A-V)i=t on I'y

where the last equations are the boundary conditions on the Dirichlet and Neumann bound-
ary. The weak form of the Stokes equation requires the introduction of weighting functions
and trial solutions for the velocity field and the pressure field but also needs to take care
of the incompressibility condition. Similar to what was defined before, for the velocity field
the weighting functions, now noted by @, vanish on the Dirichlet part of the boundary, I'p,
while the trial solutions satisfy the boundary conditions. The weighting functions and trial
solutions of the pressure field can be defined similar. However, it is possible to solve the
system without specifying any pressure boundary condition, in which case the pressure is
defined up to a constant. The incompressibility condition requires the definition of an extra
set of weighting functions, defined as ¢. With the definition of these functions, the strong
form of the system of equations can be converted into the weak form. The pressure gradient
term and the viscous term can be rewritten using the divergence theorem, while the other
term is very straightforward. If all the terms are added up and the Neumann boundary
conditions are taken into account, the resulting equation in weak form becomes [52]:

f/p(Vwﬁ)quLuf/Vu?:VﬁdQ—/q(V»ﬁ)dQ:/fLUﬁdQ+/ WEAT  (2.49)
Q Q Q Q T'n

The discretisation of this equation requires the introduction of the approximate solutions of
the velocity components v and pressure p”, as well as their associated weighting functions
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wlh and ¢". The way to proceed is similar to what was done before, however the results are
somewhat messier because of the vector components. For the details the reader is referred
to [52], but in the end the matrix system is exactly the same as equation 2.47. In this
system the (square) K-matrix is the viscosity matrix containing the discretised viscosity
term and because of the velocity components has the size of the number of element nodes
used for the velocity times the number of dimensions. The G-matrix, similar to what was
the case before, is the discrete gradient operator and contains the pressure gradient term.
This rectangular matrix has the dimension of the viscosity matrix in one dimension times
the number of element nodes used for the pressure in the other dimension. The GT-matrix
acts as the discrete divergence operator and contains the incompressibility condition. The
vector f contains the body force term, the Neumann boundary condition term, but also the
effect of the velocity, #p, on the Dirichlet boundary originating from the viscosity matrix.
The vector h contains the effect of the velocity, ©p originating from the compressibility
condition.

The way how the matrix system is solved needs some more attention. The system of equa-
tions is (very) sparse and therefore any solver for sparse systems should find the solution.
However, for efficient solving of the system and memory requirements of the solver, it is also
important that all the values are near the diagonal of the matrix. This can be accomplished
by reordering the nodes where the global node numbers are changed in such a way that in
the end, when the final matrix is assembled from the separate element, all values are as near
to the diagonal of the matrix as possible. The reordering method used here is the Reverse
Cuthill-McKee algorithm [44]. If this method is used, even systems with up to 200,000
nodes can still be solved easily with any direct (non-iterative) method on a modern desktop
computer.

This concludes this section where the basic theory of the finite element method was explained
and where it was shown how the method can be used to discretise the continuum equations
to compute the electric field, temperature, velocity field, and the pressure inside any micro-
sized or nano-sized device. In the next section a different kind of discretisation is explained.
Here, instead of continuum equations being discretised, the system itself is discrete in nature.

2.3 Modelling Molecules: Molecular Dynamics (MD)

In the last section the concept of a continuum was used to derive (continuum) differential
equations that can describe continuum (e.g. pressure driven) flows, electrokinetic flows, and
thermophoretic flows very well. This is despite that all these flows originate from molecules
or atoms interacting with each other, for example, electrokinetic flows where the charge of
individual atoms, the charged wall and the Brownian motion result in the electric double
layer. However, there may be cases where the continuum hypothesis fails, for example when
the size of the device of interest is very small or when the behaviour of one or several
molecules make a huge difference, e.g. when studying the effects near (molecular) walls.
In that case one would like to model the atoms or molecules themselves rather than the
continuum behaviour of many of them. On the other hand, with a modelling technique
that can do this, it is also interesting to study how many molecules can make a continuum
or how continuum parameters like viscosity can be determined from them. This section
will introduce one of such modelling techniques called Molecular Dynamics (MD) where the
motion of individual atoms and molecules is simulated. A more detailed introduction can
be found in for example [8, 63, 156].

First the basic framework is explained in section 2.3.1, followed by section 2.3.2 where some
standard techniques which are prerequisites for any simulation are explained. However, for
more practical simulations more advanced techniques are needed. These are given in section
2.3.3. This section ends with two subsections where two commonly used atomic systems are
explained. In 2.3.5 the parameters for the simulation of inert materials like argon are given,
while in section 2.3.6 it is explained how a polar liquid like water can be simulated.
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2.3.1 The Essentials of Molecular Dynamics

Molecular dynamics is a numerical technique where the motion of individual atoms and
molecules is simulated. However, a system of interacting atoms actually consist of nuclei
and electrons that interact with each other, or more in general, quantum physics should be
employed in the form of the Schrodinger equation that describes how the quantum state (or
wave function) of the system changes in time. This is definitely possible for simple systems,
but for more realistic problems approximation schemes have to be employed. Molecular
dynamics basically employs two very reasonable approximations in order to be of practical
use. The first approximation is called the Born-Oppenheimer approzimation [25|, which
takes into account that the nuclei are much heavier than the electrons and that the electrons
move a lot faster than the nuclei. This fact can be used to rewrite the Schrédinger equation
into two separate equations. The first equation takes into account that from the electron’s
perspective the nuclei can be regarded as fixed, and because of that a term enters the
equation that is only dependent on the coordinates of the nuclei. This term is called the
interatomic potential. In the second equation this term is also present, and the rest of
the equation does not contain any dependency on the coordinates of the electrons. All
effects due to electron movement are incorporated into the interatomic potential. Hence,
this implies that once the interatomic potential is known, the motion of the nuclei can be
computed. The second approximation that is employed in MD is the fact that under the
right circumstances (i.e.. no quantum effects), the Schrodinger equation can effectively be
replaced with Newton’s laws of motion. This means that in MD the motion of the nuclei
(or atoms) are described by classical mechanics.

The first step in order to do a molecular dynamics simulation is to specify the interatomic
or interparticle potential, i.e. a certain function that depends on the atom coordinates.
Basically there are two ways of doing this. The first is to use empirical potentials, while the
other is to solve the electronic structure problem, defined by the two equations mentioned
in the introduction. The latter technique is called ab initio molecular dynamics, or the
Car-Parrinello method named after Car and Parrinello [33] who developed the method. The
strength of this method is that the potential is computed rather than empirically obtained.
However, the disadvantage of this method is that it requires much larger computational
effort. In order to do computations of reasonably sized MD systems (> 10000 atoms) there
is the need for empirical potentials. Obviously the choice of the used empirical potential
depends on the material that is modeled. Arguably the most popular potential used is the
Lennard-Jones 12-6 potential, given in equation 2.50, after Sir John Edward Lennard-Jones.
This potential is especially useful to describe the interaction between noble gas atoms and
non polar molecules. The potential is [121]:

v (5) - (7) |

where € defines the depth of the potential well or the interaction strength with units of energy
(J = Nm), o is the distance (m) at which the interparticle potential is zero, and r;; is the
distance between the atom 7 and atom j. The first term inside the potential, with power
r~12, defines a repulsive term similar to Pauli repulsion, which acts as electrostatic repulsion
between the electron clouds of two atoms when they are close to each other. The second
term, with power r—6, describes a long-range attraction, due to van der Waals forces. Figure
2.3 shows the interaction energy versus the interatomic distance. Note that the potential
is an approximation, especially because the repulsive term should depend exponentially on
the distance. However, the exponent 12 is chosen simply because it is easy and efficient to
compute it from the exponent 6 of the attractive term.

Although the interparticle potential describes how the atoms interact with each other, it
is the resulting force that affects the atoms’ motion. By definition, a force field can be

determined by taking minus the vector gradient of the potential, f = —VU. The force field
resulting from the potential 2.50 is:

> 48e o\? 1/0\°
e (=) = () |7y 2.51
i T l(m) 2 (Tz'j) o 25

where ﬁj is the vector defining the force on atom i, resulting from atom j, 75; is the vector
defining the distance of atom ¢ and j in every separate direction (z, y, z), while r;; is the
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Figure 2.3: The Lennard-Jones 12-6 potential (left) and resulting force (right). Here € defines
the depth of the potential well, o is the distance at which the interparticle potential is zero.
At short range the potential is repulsive, while at long-range the potential is attractive.

total distance between atom ¢ and j. Figure 2.3 shows this force as a function of interatomic

distance.

Under the conditions mentioned before, the motion of the atoms can simply be computed

using Newton’s laws of motion. Applying Newton’s second law to one atom results into:
d?7; >

where m; is the mass of atom i. To obtain the motion of all atoms in time, equation 2.52

must be integrated with respect to time for all <.

There are several obvious factors that dictate whether a certain integration method is a
good one or a bad one to integrate equation 2.52 for MD systems, but there are also some
less obvious factors [63]. For example the speed of the method is not at all important,
because in most MD simulations most time (>85%) is spent on the identification of inter-
acting atoms and the computation of the interparticle forces. On the other hand it would
seem important to be able to use large time steps, exactly for the same reason mentioned.
However, energy conservation is very important, although two kinds of energy conservation
must be distinguished; short term (<100 time steps) and long term (millions of time steps).
In general, high-order algorithms with respect to the time step have very good short term
energy conservation, but tend to drift in the long term. Because a MD simulation basically
computes the trajectory of atoms, one could think that accurately predicting the positions
of all atoms in time is the most important factor any algorithm should fulfill, however such
an algorithm does not exist [63]. Luckily that is not the aim of a MD simulation; the aim
is to collect meaningful statistical (average) information about the system and fortunately
that is possible with very simple algorithms as long as the time integration algorithm is
symplectic [168]. Then finally the algorithm should be time reversible, as the equations of
motion also are.

The Verlet algorithm [199, 200] is a very good algorithm for integration of the equations
of motion in a MD simulation and definitely the most commonly used time integration
algorithm. The derivation starts with two Taylor expansions of the coordinates of an atom,
around time t + At and ¢t — At. The summation of these two expansion is:

0%r; (t

i (t4 At) 1y (8 — At) = 2r; (t) + (;; ) Ar2 + 0 (At (2.53)
which after rearranging, using equation 2.52 and dropping the fourth-order and higher-order

terms in At can be rewritten to:
i (t+ At) =~ 2r; (t) — i (t — At) + Jui g2 (2.54)

m;

Note that the value of the velocities of the atoms are not required to compute the new
position of the atoms. However, most of the time the value of the velocity of the atoms is
still required, e.g. for the computation of the kinetic energy. In this case the value of the
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velocity, u, is easily obtained from the central difference,

t+ At)—r(t— At

u(t) = rit+ )m:( ) o (A#?) (2.55)
The second-order accuracy is sufficient for most cases. However, if needed, more advanced
integration schemes can be used [63]. Instead of the Verlet-algorithm, another frequently-
used algorithm is the so-called velocity Verlet-algorithm [185]. The new position of the atom
is then computed with:

i (t 4 At) =7 () +u () At + éfi—*jAtQ (2.56)
m;

and the new velocity of the atom is computed with
L fig (t+ A+ fij
Zmi

In this algorithm the new velocity can only be computed once the new position of the atom
is known and, resulting from that, the new force on the atom. However, it can be shown
that the velocity Verlet-algorithm is exactly the same as the “normal” Verlet-algorithm.
However, in this way both the position and velocity are known at the same time. Although
the Verlet algorithm is not accurate for long time steps, the main reason the Verlet algorithm
is frequently used, is because of its little long-term energy drift compared to other algorithms
[63]. Also, the time step is severly limited anyway, because of the very high forces involved
in the MD simulation when two atoms come close to eachother. Furthermore, the size of
the time step will also be dependent on which atoms are simulated, and will be discussed
in section 2.3.5 and 2.3.6. The simulation code used in this thesis is using the velocity
Verlet-algorithm.

This concludes this section, where the bare minimum computational requirements were
described for a MD simulation. Any MD simulation code first computes the interparticle
forces using the current positions of all atoms and from those forces, the new positions (and
velocities) are computed, and the loop continues. However, to start a MD simulation some
initial conditions and boundary conditions need to be specified. Further, to simulate relevant
situations, control those situations, post-process them, and compute them efficiently, a whole
range of other techniques is required. The next section describes these.

w; (t+ At) ~ u; (t) ®) At (2.57)

2.3.2 Standard Techniques for Molecular Dynamics

All simulations need boundary conditions, with MD simulations not being any different.
However, for a continuum boundary conditions are normally specified for a certain differ-
ential equation. In that case a boundary condition can be a certain velocity, pressure,
temperature, or even a certain gradient of a property. Although in MD simulations New-
ton’s laws of motion are solved, the boundary conditions must be applied to the atoms or
particles. Properties like velocity or pressure only make sense when many atoms are av-
eraged over many time steps, however the boundary conditions for the atoms need to be
applied at every time step. Therefore, specifying a certain (continuum) velocity to a MD
system is not straightforward and will be discussed in Chapter 3. Luckily, several boundary
conditions are easy to implement and are very useful for obtaining relevant results with MD
simulations.

Before the actual boundary conditions are discussed, it is first investigated to what the
boundary conditions need to be applied to. Figure 2.4 shows the simulation domain, the so-
called MD system box. This is a box with a certain volume that contains a certain number
of atoms that all interact with each other. All atoms also have a certain velocity, and the
total system has a certain amount of total energy. The MD system box used throughout this
thesis is three-dimensional, but one or two-dimensional systems can be simulated with the
same principles. The MD system box has in total 6 boundaries and for all these boundaries
a boundary condition needs to be specified. Because MD simulations are progressing in
time, an initial condition is also needed. This initial condition must be applied to both the
boundaries and the interior of the MD system box. This means that on each atom an initial
condition must be applied.

The simplest boundary condition to implement is a periodic boundary condition. In MD
simulations a periodic boundary means that if an atom for example crosses one system
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Figure 2.4: The MD system box. A three dimensional box with a certain volume and number
of atoms. The system has a certain amount of energy, and it has six boundaries.
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Figure 2.5: Periodic boundary conditions in MD. The central MD system now interacts with
an infinite number of copies of itself.

boundary, its position is changed to that where it just passed the opposite system boundary
in the box. The left diagram in figure 2.5 shows this occurrence. This concept is very
simple, however one must keep in mind that when simulating periodic boundary conditions,
actually an infinite number of periodic MD systems is simulated. This is illustrated in the
right diagram of figure 2.5. In other words, the atoms inside our MD box interact with
the imaginary atoms inside the other MD boxes, which basically are copies of themselves.
Clearly a trick must be used, else the MD simulation would consume infinite time.

One particular method is frequently employed to simplify the computation of the interac-
tions, which is the use of a cutoff radius. The idea is simple, especially when a Lennard-Jones
potential is applied. Inspecting Figure 2.3 reveals that when the atoms are in close range
(rij < o) or medium range (r;; < 20), the interaction energy is large. However, when the
atoms are far away from each other (r;; > 20), the interaction energy vanishes and rapidly
becomes many times smaller than the interaction at closer range. The cutoff method makes
use of this fact by only considering the interactions between atoms that are within the cutoff
radius and thus significantly reduces the computational effort of MD. However, choosing the
right value of the cutoff radius is still a challenge. Commonly used cutoff radii in literature
are either r. = 2.30 or r. = 2.50, where the interaction energy has dropped to only 1.6%
and 0.8% of the maximum possible attraction value, respectively. Figure 2.6 shows this
cutoff radius for the Lennard-Jones potential. For every atom, only the interaction between
all atoms inside the surrounding sphere of radius r. need to be computed. In most cases,
simulations using these cutoff radii give close to satisfactory results while keeping the com-
putation time within acceptable limits. However, when longer range attractive forces are
important, which is the case when simulating surface tension or electric forces, one must
use larger cutoff radii and/or use additional techniques. These techniques are explained in
section 2.3.4.
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Figure 2.6: To optimise the computation a cutoff radius is used. The interparticle interaction
for the central atom is only computed within this radius.

Periodic boundary conditions are ideal for simulating bulk properties of the fluid. However,
another interesting problem to simulate is the behaviour of liquids near walls or objects. In
continuum computations this boundary condition is specified by, for example, the no-slip
boundary condition (velocity is zero at the boundary), or more general, a certain velocity
at the boundary. As explained before, specifying a certain (continuum) velocity is not
straightforward in MD, because this is an average property over many atoms and many
time steps. Luckily the solution is very elegant; instead of specifying a certain artificial
boundary condition, the molecular structure and behaviour of the wall can be modelled
with MD as well. Although in theory a complete modelling of the solid wall with specialised
potentials for certain metals or crystals is possible. However, the required time step to
integrate the very strong intermolecular forces and the required time step to capture the
vibrations of the atoms inside the wall, which are generally smaller than those required
for the MD simulation of the atoms for the liquid, makes this solution computationally
expensive. Luckily several simplified models can be used that still produce realistic physical
behaviour, which is shown in Section 2.4. The simplest model is where all the interactions
of the wall working on the liquid is incorporated into a single potential that only depends
on the normal distance from the wall. This so-called “smooth wall” potential [177, 181, 193]
can be obtained from the integrated interaction energy from all the atoms inside the wall.
One of the assumptions of this potential is that the structure of the wall, parallel to the
wall, is the same everywhere. Therefore this wall potential can not be used for simulating
a wall with molecular imperfections or a curved wall. In that case it is still necessary to
compute the atomic structure of the wall in a simplified manner. This method is known as
an “atomistic wall” where it is necessary to compute the interaction with each of the wall
atoms individually. Figure 2.7 shows the case of atoms composing a liquid in the vicinity of
an imperfection in the solid (atomistic) wall. The strength of this method is that the wall
atoms do not need to be identical. In other words, they can for example represent atoms
of different types of metals. This can be controlled by specifying the interaction energy of
each atom and its interaction distance with the atoms in the fluid, which are €, and oy,
respectively. However, as explained before, to simulate actual solid atoms, the time step
needs to be made smaller than required for the fluid atoms and possibly many more atoms
need to be modeled. Therefore to allow efficient computations, some simplifications have to
be made. The first of such simplifications is to constrain the atoms to their lattice site with
springs [176, 189, 194|, thus simulating thermal motion only. It is also possible to actually
fix the atoms to their lattice site [85, 216]. In this case a direct thermal motion exchange
is not simulated, but other physical properties of solid-fluid interaction, like wetting, can
still be modelled. Finally, another wall boundary condition can be applied to a MD system
boundary, i.e. the specular wall. A specular wall changes the sign of the velocity component
of the atom perpendicular to this wall. This means that no interparticle interactions are
modelled with the wall. This boundary condition is mostly suitable for gas atoms, because in
that case the interparticle interactions are less important. For atoms representing a liquid
the applicability is therefore limited, but as long as the boundary is far away from the
simulation area of interest, it is an efficient way of keeping all atoms inside a MD system
box.
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Figure 2.7: An atomistic wall and the interaction between the wall and atoms in a liquid
which can be controlled by changing €, and o, to simulate different material and surface
properties.

Figure 2.8: A typical initial solution for an MD system. All atoms are ordered in an
FCC lattice and are given initial velocities that obey Maxwell’s distribution at a given
temperature. The simulation starts by “melting” the system. The different colours of the
atoms indicate the different layers of the lattice.

As mentioned before, besides the boundary conditions, any simulation progressing in time
also needs an initial condition. Similar to the case of a steady state continuum, to improve
the speed of convergence, one would like an initial condition that is in a state close to the
finally desired solution. However, unlike in continuum where only several variables need to
be determined, in MD many different positions and velocities of the atoms correspond to
basically the same state of the system (total energy, temperature, etc.). Furthermore, the
equilibrium properties of the system should not depend on the initial conditions, therefore the
initial condition can be determined by convenience. If the solid state of a certain molecular
material is simulated, it makes sense to initialise the system in its known crystal structure.
For example, for metals one should choose either the bee (body-centred cubic), the fee (face-
centred cubic), or the hep (hexagonal close packed) crystal structure. The distance between
the lattices is determined by the desired density of the substance. Similarly, to model the
liquid state of a substance, one also initialises the system in one of the crystal structures,
and subsequently the system will “melt” once the simulation is started [63]. This is because,
at the temperature and density of the liquid state, the solid state is not thermodynamically
stable. Figure 2.8 shows the initial condition of a Lennard-Jones fluid at density p and the
resulting lattice distance. The initial condition is not complete yet with only the initial
position of the atoms specified. To complete the initial condition, the velocity of every atom
needs to be specified. The most convenient way to do this, is to assign to the atoms the
velocities according to a Maxwellian distribution at a given temperature. However, as the
system is melting, the actual temperature of the system will change, so that property is not
critical.

Now the initial conditions are defined, the boundary conditions have been specified, and
the interparticle potential is chosen, the basic MD simulation can commence. First the
interparticle forces are computed from the current positions of the atoms. These forces
are used to advance the positions in time and if needed, the (instantaneous) velocities of
the atoms are computed. Then the time iteration step is completed and the simulation
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is continued to the next iteration. However, the purpose of a MD simulation is to obtain
macroscopic properties of a certain atomic substance. In other words, the average property
of many atoms over a long enough time is wanted. The collection of meaningful macroscopic
properties such as pressure and temperature from MD simulations is commonly known as
“binning”. Figure 2.9 demonstrates this. At certain times during the simulation, which could
be every n-th time step, all known (instantaneous) simulation parameters of all atoms whose
position is inside the bin are collected. For example, to obtain the (local) density of the
fluid inside the bin, one simply adds up the masses of the atoms inside the bin, and divides
that number by the volume of the bin. This step yields the average wanted property in
space. By taking the average of this property for the same bin through time, the property is
both averaged in space and time, and results in the macroscopic density. Other commonly
binned properties are (macroscopic) velocity, (macroscopic) temperature, and (macroscopic)
pressure.

For the (macroscopic) velocity, the bin simply collects the average instantaneous velocity
or momenta of all the atoms inside the bin through time. Similarly, the (macroscopic)
temperature is obtained by averaging the so-called instantaneous temperature inside the bin
through time. The instantaneous temperature however is not a simulation variable that is
readily available, like position or momentum, and therefore must be determined from the
simulation variables somehow. This is the field of classical statistical mechanics, and the
theory that translates the simulation variables into a temperature is called the equipartition
theorem [204]. This theorem states that in thermal equilibrium each microscopic degree of

freedom contains an amount %ka of thermal energy associated with it. In case of N atoms
with s degrees of freedom, this means that the total internal energy is given by:

U= N%kBT (2.58)

In case the degrees of freedom are only the three translational degrees of freedom, this energy
corresponds to the three components of velocity, i.e. the total kinetic energy. Rewriting this
for the temperature results into

N
1
Tinst = ko N ; m; (v}, + ’Ul-z,y +v7,) (2.59)

When more complex molecules are modelled, the number of degrees of freedom changes. In
that case there are also rotational degrees of freedom and vibrational degrees of freedom,
which for example refer to the bonds between individual atoms. This change in the degrees
of freedom will be further discussed in Section 2.3.6, where it will be explained how a more
complex molecule, like water, can be represented in a MD simulation.

Likewise, the (macroscopic) pressure must also be determined from the simulation variables.
There are several ways to do this [184], but the most common one is based on the virial
equation for the pressure. The virial equation for the pressure describes the stresses in terms
of the positions, velocities, and resulting interparticle forces. The components (« and 3) of
the stress tensor are given by [96]:

R LA
Yop = 3 > mvjavis+ 3 SN rijafis (2.60)
J LiE]
where v; o, represents the o component of the velocity of atom j. From a practical point of
view, because the pressure is obtained using the interparticle forces, the value of the product
in the second sum in 2.60 is determined at the same time when the interparticle force is
determined. In other words, this value is determined inside the “force loop”, and at the end
of this loop every atom has its contribution to the total stress associated to it. The final

stress is obtained by adding these contributions.

This concludes the section on the basic techniques required for a molecular dynamics simula-
tion. However, for more realistic simulation several more advanced techniques are required.
For example, a simulation where the temperature needs to be controlled, or where long-
range force are important. Also, there are several techniques available that speed up the
force computation, which is the most time-consuming part of any MD code. These subjects
will be discussed in the next section.
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Figure 2.9: In order to obtain meaningful macroscopic or averaged properties from a MD
system, like density, the instant values of the simulation are collected or “binned” every time
step.

2.3.3 Advanced Techniques for Molecular Dynamics

Although the techniques and conditions explained in the previous section are sufficient to
perform an MD simulation, one will find out that the number of atoms that can be simulated
is severely limited by the available computational resources (i.e. memory and CPU speed).
Furthermore, it is sometimes necessary to do a simulation at a certain temperature or a
simulation in presence of temperature gradients. This section discusses several techniques
that are required to enable such simulations.

2.3.3.1 Optimising the Force Loop

As mentioned in the previous section, in a MD simulation the interactions between all atoms
is computed. So when the MD domain contains N atoms, in total N (N — 1) interactions
must be computed. However, as long as the interparticle potential allows it, only short-range
interaction can be considered to render a more efficient computation. This is accomplished
by using a cutoff radius r. as explained in Section 2.3.2. In the three-dimensional case
this means that only the interactions between the atoms within a sphere of radius r. need
to be considered. This means that for a single atom, on average, the interaction between
Npe = %wpnrf atoms need to be determined, where p,, is the number density. So, in total
there are now only Nn,. interactions to be determined. This is a substantial reduction in
computational effort in comparison to the full evaluation when the number of atoms is very
large. Figure 2.10 shows the “force loop” in pseudo-code. The shaded area in the code is
only enabled when a cutoff radius is used. So, by using a cutoff radius, the actual value
of the force on atom i between the atoms does not have to be determined for every atom
j- This obviously saves some computation time, however the distance between atom ¢ and
all other atoms in the MD system still needs to be determined before it can be concluded
whether it is within the cutoff radius, i.e. it still requires N (N — 1) operations. Luckily, for
this problem there are some very simple solutions.

The goal is to minimise the (needless) amount of times the distance between two atoms is
checked that are far away from each other. The first very simple approach is to divide the
MD system into cells of a given size. This organisation of every atom in a certain cell takes
only N operations. After this step is completed, every atom knows to which cell it belongs
and every cell knows how many and which atoms are within that cell. The strength of this
method, which is called the cell list method or linked cell method [8], is that now only the
distance of an atom in one cell and between all atoms in the surrounding cells needs to be
considered. This then strongly reduces the amount of distance checks. The cell size has not
yet been specified. The most commonly used value for the cell size is actually the cutoff
radius or a slightly larger value. Why this value is chosen, is explained next. Figure 2.11
shows an atom that is belonging to a certain cell (the central shaded area) which size is
equal to the cutoff radius. The thick black circle shows the spherical radius of the cutoff
radius in which all the interactions need to be determined. It can be clearly seen that in
this case only the adjacent cells need to be checked for the interatomic distances. In this
case, in three dimensions, in total 27 cells need to be considered in order to obtain all
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for each atom i (1 to N)

{

for each atom j except i

{

rij = distance between atom i and j
if (rij < cuttoff radius)

{

compute interparticle force
assign force from atom j to atom i

}
H
}

Figure 2.10: The most naive version of a MD “force loop” in pseudo code. The shaded area
is the extra part of code when performing an MD simulation with a cutoff radius. Although
this shows how easy the principle of a MD simulation is, in this form it is not very efficient.

interactions for a single atom. This means that for one atom, on average, the interaction
between n. = 27p,rs atoms need to be determined. Note that if the third law of Newton
can be used, i.e. f;; = fj;, then the number of interactions can be reduced to 13 +1 = 14
cells. Nevertheless, in total there are now Nn,; distance checks needed instead of N (N — 1),
which means for reasonable N ~ O (103) a huge reduction in computational effort. The cell
list method eliminates many needless computations of the distance between atoms, however
the number of checks, n., is still about 6 times higher than the maximum needed checks,
nyc. This can be optimised by choosing the proper size of the cell, which will be discussed
later. However, first another simple but effective method to speed-up the interparticle force
computation is discussed.

As mentioned before, typical time steps in MD simulations are very small because it is
necessary to integrate the very steep interparticle force function. This means that the
distance the atoms travel in one time step does not change considerably, and as a result
the interaction between basically almost the same set of atoms need to be determined over
several time steps. This can be utilised by making a list of all the atoms that are within
the cutoff sphere with a radius r. plus all atoms with a position inside a slightly larger
sphere with a radius r. + rs,. Here, rg, is the radius of the shell surrounding the cutoff
sphere. The list containing these atoms is called the neighbourhood list [199, 200]. Figure

Figure 2.11: The cell list method with cell size r. can be used to optimise the compuation
of the interparticle interactions by onlt considering the central cell and only its directly
surrounding cells.
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just after updating list after several time steps list is invalid

Figure 2.12: The neighbourhood list method can be used to prevent the computational effort
of creating a list of all possible interactions with one atom every time step. Now the (cell)list
only needs to be updated once one of the interacting atoms leaves the outer shell.

2.12 illustrates this method. The strength of this method is that once this list is compiled,
no new list is needed for every time step, but only when new atoms enter the inner cutoff

sphere. Further, only n,; = %wp (re + rsh)3 distance checks need to be computed, which
under most circumstances results in 5 times fewer checks in comparison with a cell list
method. However, the big disadvantage of this method is the actual compilation of this list.
Finding all atoms within the neighbourhood cutoff radius (7. + r4p) still requires N (N — 1)
operations, although it is not needed for every time step.

The cell list method has the advantage that it is independent of the size of the MD domain
and that the number of distance checks scales linearly with the number of atoms, O (N).
The neighbourhood list method has the advantage that even fewer distance checks need to be
performed, but has the big disadvantage that making the list requires O (N 2) operations.
Therefore, a logical outcome is to combine these methods. This means that the cell list
method is used to make the neighbourhood list whenever needed, which requires ng,; =

27N py, (re + rsh)g distance checks. Once the neighbourhood list is created, as long as the list

is valid, the force loop ounly needs to consider Nn,; = 4/37Np,, (r. + rsh)3 distance checks.
Figure 2.13 illustrates the combination of the two methods. However, which of the three
method to choose, depends on several system specific conditions, especially system size. A
comparison of the three methods is for example given by Muth et al. [134].

However, As was briefly mentioned before, the cell list method can be optimised further by
choosing the proper cell size. This is elaborated in Figure 2.14. The left diagram shows
the situation where the cell size is equal to the cutoff radius (this is the standard way of
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Figure 2.13: Combination of the neighbourhood list method with the cell list method.
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doing this). As is evident from the diagram, with the current position of the interaction
atom, it is not necessary to compute the distance with the atoms on the far left and far
bottom. In other words, most atoms in the adjacent cells do not need to be considered
for the interaction. The solution to this is to subdivide the MD domain into cells with
a size that is half the cutoff radius. This is shown in the right diagram of Figure 2.14.
Although in this case 125 surrounding cells have to be considered, or 64 + 1 = 65 when the
third law of Newton is applied (so more than the 27 or 14 in the previous case), the size of

the cells are smaller. Therefore, in total only ngs = 125Np, ( %rc)g distance checks need
to be performed, which is more than 1.7 times less than using the standard method. The
downside of this sub-division is that more cells need to be stored and checked in the memory
of the computer, which makes the duration of the loop longer. In test cases (not reported
here) it was confirmed that for a small total number of atoms, N < 2048, the speed-up
was 20 — 40% compared to the standard method. For a reasonable total number of atoms,
N =~ 10%, the time saved was only 10% and the code even becomes slightly slower than
the standard method, when N is increased beyond that (N > 10%). However, for reasons
explained in Chapter 3, this cell list method with cell size equal to half the cutoff radius, is
used for all results obtained in this thesis.

° ‘a ‘L’ N ) o
L5 AP P
° e ° 0
' @ ° (&) () IL'-
1 ‘ ;
\
- o °
o -6 o |®
o o |®
| O interaction atom @ atoms in cell list atoms removed from cell list |

Figure 2.14: A more efficient celllist by making a celllist with 1/2r. resulting in less distance
checks inside the code.

2.3.3.2 Thermostats: Controlling the Temperature

In certain cases, the purpose of the MD simulation would be to obtain the behaviour of a
liquid at a given target temperature, for example, obtaining a system property like viscosity
at a given temperature. However, without exactly specifying it, all simulation techniques
discussed so far apply to the microcanonical ensemble or NVE ensemble. In other words, in
every simulation the number of atoms, IV, the volume of the MD domain, V', and the total
energy (potential plus kinetic energy) remain constant during the simulation. For a MD
simulation at constant temperature, the simulation is performed in a canonical ensemble or
NVT ensemble. In this case heat can flow through the MD system boundaries so energy
can vary, but the temperature of the MD system matches that of a (virtual) surrounding
thermal bath [63]. As was discussed in Section 2.3.2, the instantaneous temperature in
a MD simulation is related to the total kinetic energy. However, referring to a constant
temperature simulation is not the same as saying that the instantaneous temperature or
kinetic energy is constant. This is connected to the fact that the instantaneous temperature
demonstrates (natural) fluctuations and by keeping the kinetic energy (perfectly) constant,
these would disappear.

The simplest and most naive way of simulating a constant temperature is to actually ignore
the fluctuations in the instantaneous temperature. This is opposing the facts discussed in
the previous paragraph. However, it still can be used to obtain relevant results, but it will
of course fail when the temperature fluctuations are important. This method is called the
velocity-rescale method, and, as the name implies, rescales the velocities of the atoms in such
a way that the total kinetic energy corresponds to the desired temperature. The kinetic
energy of the MD system is changed by rescaling the velocities of all atoms by a single
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scaling factor, which is equal to y/Twanted/T;,.,. This scaling is applied at every time step,
which consequently holds the kinetic energy of the MD system at exactly the same value.
There are however weaker formulations of this approach, and one of them is the Berendsen
thermostat [18] where the temperature is maintained by coupling the system to an external
heat bath, which has a fixed (target) temperature. The velocities are still scaled at each
time step, but in such a way that the rate of change of temperature is made proportional
to the difference in temperature: 47/at = /7 (Tyanted — Tinst), where 7 is a time scale that
controls the strength of the coupling. In this case the scaling of the velocity is equal to

V/1+ At/7 (Twantea/T,,,, — 1), and typical values of 7 in literature are taken as 50At. Please
note that when 7 = At, the method reduces to the velocity rescale method.

The velocity-rescale method and Berendsen thermostat are very easy to implement and
generally give satisfactory results. The methods however do not exactly solve the true
NVT ensemble, but fortunately several methods are available that can achieve this. The
most commonly used one is called the Nosé-Hoover thermostat [91, 139], after Nosé who
introduced the method and by Hoover who reformulated the method. The general idea is to
consider the heat bath as an integral part of the system. This is done by extending the real
system by the addition of an artificial variable s associated with a mass @ and a velocity

5. Here the magnitude of ) determines the coupling between the reservoir and the real
system, and consequently influences the temperature fluctuations, while s plays the role of
a time-scaling parameter. The time-scaling in the extended system ensures that although
the positions of the atoms in both systems are identical, the velocities in the extended
system are amplified by a factor 5! compared to the velocities in the real system. By a
suitable choice of the Lagrangian for the extended system, it can be shown that although
the equations of motion sample a microcanonical (NVE) ensemble in the extended system,
they do sample a canonical (NVT) ensemble in the real system. However, because of the
involved time-scaling, the sampling is now done at uneven time steps which can become
quite complicated. Luckily, there is a way to reformulate the equations in terms of real
system variables by a clever transformation [91]. The result is an equation of motion for the
real system, which incorporates the coupling between the heat bath and the real system,
instead of a separate rescaling.

So far the thermostats were applied to the whole MD system. In other words, the whole
MD system is kept at the same temperature. However, there are cases, especially in the
case of thermophoresis, were (local) temperature gradients need to be modelled. In the
case of the modelling of a nano-sized channel with a temperature gradient, one could only
thermostat the solid atoms in the atomistic wall. The atoms that compose the liquid near
each wall will be thermostatted to the temperature of the wall by means of the solid-fluid
interaction. On the other hand, it might be interesting to simulate the behaviour of a liquid
in a certain temperature field. In that case the wanted temperature for the thermostat
becomes a function of space. In practice this implies that the MD domain is divided in
small sections where each section is thermostatted to the appropriate temperature. For
convenience, and reasons explained in Chapter 3, where the coupling between MD and the
continuum is explained, the subdivision is chosen to be equal to the cells used in the cell list
method discussed previously. Please note that the thermostat can also be used to merely
equilibrate the MD system to a certain temperature. If there are no external forces acting
on the MD system, the thermostat can be switched off once the wanted temperature has
been reached. From then on, the MD simulation continues to simulate the NVE-ensemble
again.

2.3.4 Long-Range Forces

In this section a short overview is given of what is involved in computing long-range forces,
such as electrical effects or surface tension effects, in molecular dynamics. The problem with
such long-range interactions, especially Coulombic interactions that decays as (~ 1/r), is that
the interaction potential cannot be truncated without loosing crucial accuracy, since it is
slowly decaying, while at short-range the interactions change very rapidly. Therefore, more
advanced techniques need to be employed that accurately compute the long-range forces,
albeit the computational effort increases considerably. Recently these long-range methods
were also used for the van der Waals attraction term, i.e. the 1/r% term in the Lennard-
Jones potential 2.50, to more accurately describe it. Shinha et al. [175] and Bo Shi et
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[172] showed that this improved simulation results where the long-range attraction is
very important, in this case surface tension, while keeping the cutoff radius to a small value
whereas normally one had to increase the cutoff value considerably to obtain similar results.

2.3.4.1 Ewald Summation

The most widely used method to compute long-range forces is Fwald-summation [59], where
the slowly converging interacting potential is split into a short-range part and a long-range
part. The key to the success of this method is that the short-range part sums quickly in real
space, while the long-range part sums quickly in Fourier space. Of course, because Fourier
series are used, the method only works really well for MD domains that are infinitely periodic
in all dimensions. However, there are alterations to the method to work with a domain that
is periodic in only 1 or 2 dimensions are periodic, which will be shown in Section 2.3.4.3. The
main drawback of the method is that the method scales like O (N?), where N is the number

of charged atoms inside the system, or at best scales like O (N 5/ 2), if optimised cutoff values

are used [50]. There are several ways to derive the Ewald summation equations, where the
traditional method is derived using Poisson’s equation for the electrostatic potential [63].
However, there are more general methods available that can also be used to get solutions
even for long-range interactions other than Coulombic interactions, which will be discussed
later. To illustrate the Ewald summation for Coulombic interactions, consider a cubic MD
system box with length L, containing N atoms with charges ¢; and positions 7;. The system
box has periodic boundary conditions everywhere, and the net charge of the system is zero,
i.e. neutral. This means that the total electrostatic energy of the system is given by [63]:

Z Z S L — (2.61)
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where 77 is a vector in integer space representing the discrete periodic copies of the MD
domain in all three directions. The problem of this equation is that in this form it is only
conditionally convergent, and therefore it is not possible to solve this equation efficiently.
However, by means of Ewald summation [59], the equation can be rewritten, i.e. the original
equation can be split into two equations. The first step to split the equation is achieved by
assuming that each charged atom is surrounded by a diffuse charge distribution of opposite
sign, which neutralises the charge of the atom, i.e. effectively screening the atom. This
distribution is local and can be computed by direct computation over all atoms. The second
step is to restore the original system, which is done by considering the Coulombic interaction
of similarly charged distributions centred at the charged atoms, but now with the same sign
as the original ions. This term exactly cancels the charge distribution before, so that the
total interaction only comes from the point charges. This last term is a slowly varying
function, which is best solved in reciprocal space. For the Ewald summation for Coulombic
interaction, the required Fourier transforms are particularly simple when the shape of the
charge distributions is chosen to be Gaussian [63]. There are however two other terms to
be considered. The first one is the self interaction correction term, taking into account that
the summation was over all atoms in Fourier space including the atom itself. The second
one is the so-called bipolar correction, which takes into account that the modified system is
surrounded by a medium with a certain effective dielectric constant e€.,. In conclusion, the
Ewald summation makes it possible to write the Coulombic potential into [50]:

Uort = U +U®  Uy®) 4 U@ (2.62)
where:
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U ) 5T k_72r exp ( k2/4a2) ‘ﬁ (k) (2.64)
E#0

are the real, fast decaying part and the slowly varying part, while the self interaction cor-
rection and bipolar correction terms are given by:
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2
U(S) = —— Zqz and U d) = (1 T 26 (Z q1Tz> (265)

In these equations, k= 27f/LlH, where [ = (Iz,1y,1.), is the lattice vector in Fourier space, V,

the volume of the original system box, and the Fourier transformed charge density p (E) is
defined as:

- — N —
p (k) = /V p (7)exp (—zk : F) dr = Z qj exp (—zk . F}) (2.66)
j=1

The parameter « in these equations, which will be referred as the Ewald or splitting para-
meter, tunes the relative weights of the real space and the reciprocal space contributions.

For computational efficiency the Fourier sum must be terminated somewhere at Emaz, and
the real part uses a cutoff radius of r,,,4,. The magnitude of the cutoffs can be optimised for
a certain value of «, such that the accuracy of the approximated Ewald sum is the highest

possible [50]. The Coulombic force field can simply be determined by f = —VU,.oul, where
Ucoui is the Coulomb potential.

2.3.4.2 Particle Mesh Methods

The Ewald summation is a great way of implementing the long-range forces, but the draw-
back is that the method scales as O (Nz) ,or O (Na/z) at best [50]. The most time consuming
part is the Fourier transformation in 2.64, therefore several methods were developed where
the original problem is rewritten, such that the fast-Fourier-transformation (FFT) can be
used, meaning that the computational effort of the Fourier part is reduced to O (N log N).
However, the FFT is a grid transformation, which therefore means that the charges need
to be discretised on a mesh, and the resulting error must be minimised/controlled. This
type of methods are called Particle Mesh methods, and although several of them exist, they
follow similar ideas but are different in detail. The first particle mesh method was developed
by Hockney and Eastwood [89] and is called the Particle-Particle/Particle-Mesh (PPPM)
method. Variants of this method are the Particle Mesh Ewald (PME) method [47], and the
Smooth Particle Mesh Ewald (SPME) method [58]. However, in two papers by Deserno and
Holm [50, 51] it was shown that the PPPM method is the most accurate one, and that it
has a way of estimating the error. Also, the new ideas used in the variants of the method
can as well be applied to PPPM, so this method remains the preferred method to be used
[50].

Next, the basic steps involved in the PPPM method are briefly explained; for a more thor-
ough introduction the reader is referred to the references mentioned before. Similar to the
Ewald summation method, the general idea of the PPPM method is to split the interparticle
force into an exponentially decaying short-range force, and a smoothly varying long-range
part that should be equal to the actual value at large distance and that can be determined
efficiently with an FFT. The short range part can be computed with a direct particle-particle
(PP) force summation, where a certain cutoff radius can be used and can be evaluated using
the cell list method, as discussed in Section 2.3.3. The long-range part, on the other hand,
is determined on a particle mesh (PM), meaning that the system first needs to be mapped
onto a mesh. Once discretised, the charge-potential can be computed using the FFT. After
this is done, the appropriate values of a given property, e.g. the electric field, need to be de-
termined using the mesh. The final step is to interpolate the (long-range) grid data back to
the atomic positions. Each step incurs a numerical error. However, by a clever optimisation
of the method, the inaccuracies in the individual steps can be made (almost) self cancelling
overall [89]. The four steps are summarised in Figure 2.15.

The first step, i.e. the mapping of the charges on a grid representation of charge density at
discrete locations, basically means that the charge of the atom at position 7 is assigned to
several mesh points @, per coordinate direction. This is accomplished by means of a charge
assignment function W (&) that assigns the fraction of charge to the mesh point &, due to
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Figure 2.15: The four steps of obtaining the long-range part of the force using a Particle-
Mesh method. 1. the MD system with charged atoms. 2. The charges are mapped onto
a mesh. 3. the charge-potential on the mesh is computed using the FFT. 4. The charge-
potential is mapped back to the atom positions.

a (unit) charge at position 7. The mesh-based charge density can then be written as [89]:

N U D
pu (Tp) = 73 Z%‘W (T —7%) (2.67)
i=1

where h = L/n,, is the grid spacing where Nj; are the number of mesh points in each
direction. In the original PPPM method [89] the charge assignment function was chosen to
be a function that distributes the charge of a single atom between its P nearest mesh points
(i.e. function is said to be of the P*-order). The Fourier transformed charge assignment
function in that case can be written as [89]:

. . . P
) (E) _ 3 Slnl(%kzh) sin (%kyh) Slnl(%kzh)

The first part of the PPPM method is straightforward, which cannot be said about the next
step which is solving for the potential field and obtaining the derivatives of the potential
field to obtain the electric field and corresponding forces on the mesh. In the original Ewald
summation the Fourier part of the summation is given by 2.64, but this equation now needs
to be rewritten, so it can be solved on a mesh with an FFT. Each of the three particle mesh
methods mentioned above uses a different technique to achieve this. The easiest method is to
substitute the transformed charge density with a FFT of the discretised charge density, which
is done in the PME method [47]. Although this is easy to implement, it is not necessarily
the most accurate solution possible [50]. The PPPM method uses a clever technique applied
to the Fourier transform in which case the difference between the results of the computation
on the mesh (with the mapped charges) and the continuum problem (Poisson’s equation
with the real positions of the charges) is minimised. This is accomplished by multiplying
the Fourier transform of the mesh based charge density with the Fourier transform of the

so-called optimised influence function éopt which is noted as Clopt and equals [89]:

o D(F) S 02 (R + Zm) B (K + 2
o () -

(2.68)

1
2

— — (2.69)
1D (F)[ [z 02 (R + 320 |

where: o
0 (E) - Whgk) (2.70)

and D (E) is the Fourier transform of the employed differentiation operator that is dis-

cussed next. The term R (k) in 2.69 is the Fourier transform of the long-range part of the
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interparticle force, and in the case of Coulombic interaction it is defined as [89]:

L 47 k>
However, this term can be changed when different long-range forces need to be computed,
as will be shown later. Please note that the influence function in this form does not depend
on the positions of the atoms and therefore it only needs to be computed for each FFT
mesh. Once the electric potential has been solved, the electric field, defined as £ = —V ¢,
can be computed by taking the finite differences on the mesh. However, another way to

differentiate the potential is to do it already in Fourier space. This can be accomplished by
multiplication with (minus) the Fourier transform of the employed differentiation operator,

2k. In that case the mesh based electric field, Eyy, is computed by [50]:
By (%,) = FFT [—u‘é x FFT [oar] x éopt] () (2.72)
where the arrows indicate whether it is the backward or forward FFT that is computed,

and consequently D (E) =k in the optimised influence function. After this operation the

electric field is known on the mesh.

The final stage of the particle mesh method is to interpolate the discrete values on the mesh
back to the actual positions of the atoms and to compute the force on each atom. This can
be accomplished in a similar manner as what was done when assigning the charges to the
mesh, e.g. by some assignment function, as follows [89]:

fi=a; Y Ey(Zp)W (7 — ip) (2.73)
fpeM
where the summation is done over all mesh points in the mesh M. For practical reasons
the assignment function in this equation is chosen exactly the same as the one used before,
however it can be proven [89] that this is also one of the minimum requirements to obtain
conservation of momentum.

This concludes the four steps involved in the computation of the long-range part in the
PPPM method. By adding the short-range term and the long-range term, the total force
on each atom is known. However, the value of the force is only accurate enough, i.e.. with
errors less than 1077, if the proper values are used for the model parameters like o and FFT
mesh size. A detailed discussion of this is given by Deserno and Holm [51].

So far, mainly Coulombic interaction, (1/r), is discussed, but it is also possible to use the
PPPM method for other interactions of the type (1/+#) by only changing small parts of the
functions used in the PPPM method [175]. The force splitting in the PPPM method is
based on the following trivial identity:

1—f(r)

L f(r)

P + o (2.74)
where the first part is the exponentially decaying short-range term and the second part the
slow varying long-range term. These requirements leave many choices for the function f (r).

Essmann et al. [58] propose such a function. The non-trivial derivation of this function is
given in Appendix B. The result is a general expression for 1/r:

=m0 [ gy () oo i 200 27)
where =3 oo
@)=y [ e as (276)
and
9 (x) = %/ s"exp (—5%) ds (2.77)

In these equations, I is the (Euler) Gamma function, defined as:

I () = /0 T Lexp (<t dt (2.78)
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Table 2.1: The functions f, and g, for several values of p. Here I' [a, 2] = [ t*~!exp (—t)dt

p [y (x) | gp ()

1 exp(—2?) /22 /7 erfc (x)

2 YT orfc (z) I [0,2?]

3 QF[O’””Q]/ﬁ erfc (z) 4 2= C)cp(frz)/\/;r
6 | 5[(1—22%) exp (—a?) + 20% /ente ()] exp (—a?) (1+a% + Jo?)

These equations give the long-range part that can be solved with the particle mesh method
and the short-range part that can be solved with a particle-particle method for any 1/r»
type of interaction. The only requirement is to solve the f, and g, functions, which in most
cases can be done analytically, and compute the Fourier transformed long-range part of the

interparticle force, R (k). Table 2.1 gives the function fp and g, for several values of p.

For the Coulombic interaction it can easily be seen how the comparable values of f, and
gp appear in the Ewald summation 2.63, 2.64. However, this method can now also be used
to compute the long-range Van der Waals attraction term in the Lennard-Jones potential
when the functions of p = 6 are used. The strength of this method is that there is no
need for using a cutoff, where the cutoff can cause significant errors in system properties,
like surface tension. The 1/rS term is split in the long-range and short-range part according
to B.10, where the long-range part of the potential and the resulting part of the force by
differentiation, is solved with the particle mesh method explained in this section. The short-
range part of the potential is 96(8r)/»¢. The force, including the 1/r'? term, can be computed

by f=—VU:

> 48 (o \° |/ o\ 1 o\® 1 dg(Br) (o \°|.
fijﬁR_?(E) l(a) _596(ﬁ7‘) (E) +ﬁrij7<;j) miy - (2.79)

and is easily incorporated in the normal force loop. In section 2.4.4 several droplet formation
simulations are done to compare the influence of the cut-off value on the droplet break-up and
formation. These results will be compared to a simulation where the long-range techniques
are also used for the Van der Waals attraction term while using a small cut-off radius.

2.3.4.3 Long-range Forces in Non-Periodic Domains

The methods to compute the long-range forces discussed so far assume an infinite periodic
domain in all directions. However, in certain situations, for example when there are atomistic
boundaries present, the domain is only periodic in two dimensions or even only in one
dimension. In these cases the Ewald sum or Particle Mesh methods do not compute the
appropriate solution and therefore need to be adapted.

One of the first methods to compute the Coulombic interaction in a domain with two periodic
dimensions, was developed by Parry [144, 145], Heyes et al. [88], and de Leeuw et al. [119].
This resulted in a 2D Ewald method, where the reciprocal space is defined in two directions.
However, the disadvantage of this method is that no error estimate is available, and the
method is very impractical for larger systems (i.e. N > 10%). The next development was
by Spohr [179], who used the conventional 3D Ewald technique with a different boundary
condition and added an empty space in the direction that is not periodic with the aim to
minimise the (artificial) interaction between the replicated domains in the reciprocal space.
The advantage of this method is that error estimates are available. However, it was shown
by Yeh and Berkowitz [213] that the error is only reduced slowly when increasing the size of
the empty space. Also, depending on the splitting parameters, at some point the increase
of the empty space no longer result in a smaller error. To improve the error convergence,
a correction term, consisting of the total dipole moment of the original MD system was
introduced [213]. Their method showed that the same accuracy can be achieved with a much
smaller empty space, but the error does not vanish and reaches a plateau [30]. Improved
accuracy is obtained by the method of Arnold et al. [11, 99], where an additional correction,
the so-called electrostatic layer correction (ELC), is applied that removes the unwanted
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Figure 2.16: The idea behind the 2D slab ELC method [11]. A vacuum is added to the
(periodic) MD system and resulting slab-slab interaction is corrected.

interactions of the system with the replicated layers along the z-axis. This method is also
easily incorporated into the PPPM method [11] and only requires slightly more computation
time than the conventional method where all three dimensions are periodic. Figure 2.16
illustrates this method.

Similar methods were developed for the case where only one dimension is periodic. using
similar techniques that are used to develop the 2D Ewald method, Porto [153] developed a

1D Ewald method. However, this method has a O (N 2) scaling, and again no a-priori error

estimate is available. On the other hand, there exist methods [77, 79] that are based on the
Lekner method [120]. Using the Lekner method the summation of the Coulomb interactions
is done entirely in reciprocal space and is faster than the 1D Ewald method, but it becomes
numerically unstable for small distances between the charges. Arnold et al. [10] developed
a method, called MMMI1D, that uses the Lekner approach for charge interaction at large
distances, while for charges at close distances a rapidly convergent series is used. In this
way the numerical instability is avoided.

2.3.5 Modelling Argon and Reduced Units

In the previous sections, the general theory of molecular dynamics and some advanced
techniques were discussed. In this section it will be explained how the method can be
used to obtain results using a certain substance or material. One of the earliest successful
molecular dynamics simulations were done in 1964 by Rahman [155], where the properties of
liquid argon were investigated. Together with the fact that the forces between argon can be
simulated very accurately by a (simple) Lennard-Jones potential, argon remains the liquid
of choice when the molecular dynamics method is discussed in the literature. However,
the Lennard-Jones potential also gives good results for other liquids, where the interaction
between the atoms is well-presented by long-range van der Waals attraction and short-range
Pauli repulsion. However, the Lennard-Jones 12-6 potential has only two parameters, €
and o, which need to be determined by comparing simulations and, for example, the values
of the pressure obtained from empirical equations of state, or real properties that can be
measured in experiments. These parameters are different for every liquid that is modelled,
and therefore the equations derived so far also change accordingly. For example, Table
2.2 gives some commonly used values for e and o for different noble gasses [20]. Please
note that the value for € is given in units of temperature by using the Boltzmann constant,
kp = 1.3807 x 10" 23JK 1,

However, there is a way to rewrite (or scale) the equations in such a way that they are
identical for every liquid, i.e. the molecular dynamics simulation code can be made inde-
pendent of the actual values of o and e. This is done by using suitable dimensionless units,
hereafter called reduced units. They are based on the choice of o, m, and € as the units of
length, mass, and energy, respectively. This is shown in Table 2.3 where the formula of how
different physical units can be converted into reduced units is given. By using these reduced
units, the Lennard-Jones 12-6 potential, 2.50 can be rewritten as:
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Table 2.2: The Lennard-Jones parameters € and o, which can be used to accurately simulate
a certain substance

Element | €/kp (K) o (nm)
Ne 35.7 0.2789
Ar 122.4 0.3432
Kr 170.0 0.3675
Xe 234.7 0.4009

Table 2.3: The conversion of several sampled variables between reduced units and physical
units as a function of the Lennard-Jones potential parameters o and €. The reduced units are
indicated with an asterisk. The right column shows how the one reduced units corresponds
to physical units for argon, given the mass of an argon atom, m = 39.948 x 1.6605 x 10~24¢.

Variable | Formula for argon (1 reduced units =)
Time | t — t*\/mo7je | 21502 x 10 25
Density | p — p*m/s® 1.6410 x 103 kg/m?
Velocity | v — v*\/¢/m 159.61 /s
Temperature | T — T%¢/kp 1224K
Force | f— f*¢/o 4.9240 x 10712N
Stress | o — o*¢/o® 41.805 MPa
Viscosity | p — p*vem/q? 0.8989 x 10~*Pas

. ey —12 +\—6
vr=4 ((rij) - (r3;) ) (2.80)
while the corresponding force, 2.51, can be rewritten in reduced units as:
i * -2 * —12 ]‘ * —6 —%
fiy =48 (r};) [(Tij) ) () ] Tij (2.81)

The parameters with an asterisk are the reduced values of the corresponding parameter.
After a certain simulation with any liquid is performed, the real (physical) values of, for ex-
ample velocity, pressure, or temperature, can be computed using the appropriate conversion
factors. For argon these are provided in the third column of Table 2.3. Please note that
where specified otherwise, all results of the simulations are given in reduced units.

In Section 2.3.1 the Verlet algorithm was introduced, which is used to integrate the MD
equation in time. However, so far nothing was mentioned how large the time step should be.
Typical time steps for the Verlet integration are taken as At* = 0.005, which corresponds to
At =1.0751 x 10~ s for argon. This incredibly small time step means that for 1 nanosecond
in physical time, almost 10° iterations (and interparticle force computations) need to be
performed. Luckily, this small time step does not limit the fact that molecular dynamics is
still a very useful technique in obtaining macroscopic (long time averaged) properties.

This concludes this section where reduced units are introduced and what the meaning of
the Lennard-Jones parameters are. In the next section, it will be shown how more realistic
fluids, like water, can be modelled. These models still use the Lennard-Jones potential and
its parameters, but also the electric forces between atoms and molecules is included.

2.3.6 Modelling Water

So far the modelling of atoms and molecules was limited to non-polar cases, especially
noble substances like argon, where the Lennard-Jones potential can be applied reliably.
Although numerous experiments were done with liquid argon, a substance like water does
have many practical technical applications. Therefore, to study phenomena encountered in
these applications, a model of water for use in a molecular dynamics code would be desirable.
On the other hand, water does have some unique properties, and appropriate models of
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Table 2.4: The model parameters for the SPC [17], SPC/E [16], TIP3P [101], TIP4P [102],
TIP4P/Ew [92], TIP4P /2005 [2], and TIP5P [125] water model.

Water model SPC SPC/E TIP3P TiP4P TIP4P/Ew  TIP4P /2005 TIP5P
Type 3-sites 3-sites 3-sites 4-sites 4-sites 4-sites 5-sites
eoo (¥I/mol) 0.650 0.650 0.6364 0.6480 0.680946 0.7749 0.6694
000 (A) 3.166 3.166 3.15061  3.15365 3.16435 3.1589 3.12
q1 (e) +0.410  +0.4238 +0.4170  +0.5200 +0.52422 +0.5564 +0.2410
q2 (e) —0.820 —0.8476 —0.8340 —1.0400 —1.04844 —1.1128 —0.2410
Lon (&) 1.0000 1.0000 0.9572 0.9572 0.9572 0.9572 0.9572
Lop (R) - - - 0.15 0.125 0.1546 0.70
0(°) 109.47 109.47 104.52 104.52 104.52 104.52 104.52
®(°) - - - 52.26 52.26 52.26 109.47
-

b))

Figure 2.17: The water models that use three (a), four (b), and five (c) interaction sites.

water could give more insight into these properties. However, because of the complexity of
the behaviour of water and the accompanied difficulty of modelling this together with the
required computational time, some trade-offs are required. Roughly speaking, the different
models in use today can be distinguished by how many sites (points of charge or atoms) are
included in the model and the inclusion of flexible bonds and/or polarisation. The models for
water introduced next all have a number of things in common. Firstly, the interaction due
to charge is computed with Coulombic interaction, while the normal interatomic interaction
is modelled with the (normal) Lennard-Jones potential. Secondly, the length of the bonds
between the oxygen atom and the hydrogen atoms is kept constant, which is also applied
to the angle between the atom bonds. However, the models differ in where the interactions
takes place. Figure 2.17 gives the general impression of the different water models, while
table 2.4 gives the parameters for several models explained next.

The simplest model has three sites, where the interaction sites correspond to the relative
positions of the oxygen atom and the hydrogen atoms. All atoms have a charge, but only
the oxygen atom has Lennard-Jones parameters. The most commonly used 3-site models
include the SPC [17] (Simple Point Charge) model, the SPC/E [16] (Extended version of
the latter), and the TTP3P [101] (Transferable Intermolecular Potential with 3 Points). The
difference between these models are the Lennard-Jones parameters that are used, the bond
length (O-H), and the HOH-angle. Consequently, the models also predict different bulk
properties and have different phase diagrams. Therefore, the model in the MD code must
be chosen carefully.

The models that use four interaction sites introduce a dummy atom that carries (and there-
fore moves) the charge of the O-atom away from the O-atom itself. In doing so, the elec-
trostatic distribution around the water molecule can be modelled more accurately. Possibly
the oldest realistic model of water is a 4-site model and was developed in 1933 by Bernal
and Fowler [19]. Because this model (the BF-model) was developed before the onset of com-
puter simulations, the parameters of the model are not optimised, and consequently the bulk
properties of water are not simulated correctly. However, nowadays the model parameters
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can be optimised to match a range of bulk properties, especially density, radial distribution
functions, and diffusion constant, as best as possible. Popular 4-site models include the
TIP4P [102] model and several variants that specialise in a certain property to match. For
example, the TIP/P/2005 model [2], where the focus is on the phase diagram of water,
or the TIP4P/FEw model [92], which is optimised to work with Ewald summations. Again
the models differ only in their parameters, which now also includes the length of the bond
between the dummy atom and the oxygen atom and the angle at which the dummy atom is
placed with respect to the H-atom.

There are also several models that use more than four interaction sites. However, with every
added site the computational effort increases, so they are only worthwhile if they actually
improve the accuracy of the target property that is modelled. The idea of the 5-site water
model, for example the TIP5P model [125], is to add two charged dummy atoms that again
move the charge away from the O-atom. These negative charges on the outside try to model
the Lone pair of the water molecule [125]. Because the water molecule itself is electrically
neutral, each dummy atom has the same value, but a different sign of the charge as the
H-atoms. And finally the 6-site model [135] includes the dummy atoms of both the 4-site
and 5-site models.

It was mentioned in the introduction that all models discussed here put constraints on the
length of the bonds and/or angles between the atoms. There are a couple of advantages in
doing so. The main obvious advantage is the maximum allowed time step for the accurate
integration of the equations of motion. The fastest motions in the water molecule are the
bond vibrations. Taking away this motion, by fixing the bond-length, allows an increase in
the time step. Connected to this, the (actual) vibrating frequency can be so high that the
classical approximation (Newtonian) is no longer valid anymore, and quantum effects become
important. So, to avoid this to happen, holonomic (fixed) constraints are used. The most
popular algorithm used is called SHAKE [165]. Generally speaking, in MD the constraint
algorithm computes the constraint forces on the atoms in such a way that the length of the
bond remains exactly fixed after the end of each time step used in the MD sode. This (non-
linear) computation is done iteratively, and therefore needs the specification of a tolerance
or maximum number of iterations. SHAKE uses the Verlet integration scheme, although
other versions of SHAKE, like RATTLE [9] or WIGGLE [118], make use of the velocity
Verlet method. In the case of the water molecule, where (only) two or three bonds need
to be fixed, analytical versions of the constraint algorithms are available. This algorithm
is called SETTLE [131]. By using these constraint algortihms, the commonly accepted
maximum allowed time step can be taken between At = 1 — 2fs in most MD simulations
of water, which is about five to ten times smaller than in typical MD simulations of argon.
But unforunately, if larger time steps in water simulations (¢ > 4fs) are used, this will lead
to severe energy drifts and incorrect statistical properties [97], because of instabilities in
the integration of the equations of motion. However, there are ways, called multiple time
stepping intergrators, where an approzimate MD simulation can be performed with larger
time steps [97, 124]. These methods work on the principle that the forces are split into fast
and slow components, where the fast component is evaluated more frequently that the slow
component. Using this method allows for time steps of 4 — 6 fs, or if a (targeted) Langevin
coupling [124] is employed, time steps of up to 16 fs are possible.

In the previous section the reduced units were explained and how they are applied when
simulating argon. Although the same can be applied for the simulation of water, it is more
common to work in physical, but specially scaled units. For example, the unit of time
is femtoseconds, (fs), while length is expressed in Angstroms, (A), and mass in atomic

weights, or (&/mol). A frequently used cutoff radius for the interatomic interactions is taken
as T'eyr = 1nm, which is slightly more than the cutoff value used for argon (see Section
2.3.3).

As will become clear in Chapter 3, the material property that is important for the coupling
is mainly the viscosity. However, most of the aforementioned water models were never
optimised for this property, and therefore they give wrong values of the viscosity at a certain
temperature compared to experimental values. In Section 2.4.5, the viscosity of several water
models is given as a function of temperature. From these results, the best fitting water model
is selected for the MD /continuum coupling.
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2.4 Results

2.4.1 CFD: Electrokinetic Flow Inside a Nanofluidic Device

In this section * it is shown how the pure continuum equations of motion for electrokinetic
flow can be used to successfully simulate nanofluidics, while the underlying phenomenon is
basically on the molecular scale.

In the last few years, a large number of fluidic devices are being studied, driven by the
motivation to develop bio-medical applications that consume small amounts of reagents and
analytes. Among these, one important explored direction is the development of devices
that allows for single molecule detection (SMD) and single molecule manipulation (SMM)
[62, 180]. If a reliable SMD method exists, it will allow for a sensitive detection of very low
concentrations of the tested fluid, a key issue in medical diagnostics. The main challenge
in SMD is to optically detect small volumes. Different methods have been described to
detect small volumes, among others is to use submicrometer-sized fluidic channel [180]. On
the other hand, the major challenge in SMM is the precise manipulation of single (large)
molecules, which requires a sufficient control of the molecule and the flow. Many lab-on-
a-chip applications use electroosmotic flow to solve this challenge. In order to perform an
efficient study on single molecules, both the challenges on SMD and SMM have to be solved
simultaneously. On the other hand, nanofluidic channels and Lab-on-a-Chip devices have
also been used and developed to perform investigation on DNA molecules, an interesting
issue in genomic studies and polymer science [188]. The information obtained from the DNA
sequernce is particularly important in genomic applications, as was highlighted in the Human
Genome Project [198]. A crucial step in the sequencing process is the size-based separation
of DNA fragments under an electric field, which conventionally requires a sieving tool due
to the size-independent electrophoretic DNA mobility in free-solution [202]. In practice,
the sieving tool can be in the form of a drag-tag [129], gel matrices [202], dielectrophoretic
traps [148, 157], membranes [183], or microfabricated periodic structures [13, 31, 37, 67,
66, 83, 95, 94]. The idea of a DNA separation in Lab-on-a-Chip that does not require any
sieving tool is very appealing, because extra preparatory steps (as in the cases of drag-tag
and gel matrices) or complicated sieve designs (as in the cases of dielectrophoretic traps,
membranes, and periodic microstructures) could then be avoided. On top of that, the DNA
separation scheme should be able to run continuously, which would allow high throughput
[56]. Some interesting observations have been reported on electrokinetic phenomena of
DNA in nanofluidic channels [15, 111, 161], and more recently sieve-less DNA separation in
nanochannels have been reported, although they are operated in a non-continuous manner
[41, 146]. In this section, the electrokinetic pathlines of DNA molecules in U-turn nanofluidic
channels are studied, in order to develop a continuous, sieve-less, size-based DNA separation.

The U-turn nanofluidic device that is used and modelled in this section is shown in Figure
2.18. The device has a 100 micrometre wide straight inlet channel, which is connected
to a semi-circular chamber with a radius of 1 millimetre. This chamber is connected to
twelve 100 micrometre wide sub-outlets collecting the fluid out of the chamber into a 273
pm wide main outlet. However, the height of the device is only 150 nanometres. This
small depth of the device allows to optically detect fluorescence from a volume as small
as 270 attoliters (al), which is adequate for sensitive SMD. The molecule-sorting scheme
relies on electrophoresis and dielectrophoresis, combined with the branched U-turn shape
of the device, while the transport is accomplished with electroosmosis. The externally
applied electric field is accomplished by electrodes at the inlet and the outlet of the device,
which generates the electric potential (voltage) difference. Here the numerical details will
be highlighted, therefore for detailed information regarding the fabrication of the device and
the used experimental setup, the reader is referred to [141], [142] for the electroosmotic and
electrophoretic setup, and [143] for the di-electrophoretic setup.

Before dielectrophoretic behaviour of DNA inside the device is investigated, first the elec-
troosmotic flow and the electrophoretic behaviour of simple solid particles (i.e. beads) are
examined. The device has a depth of only h = 150 nanometres, whereas the working fluid
is distilled water, for which the Debye length is of the order of 1 micrometre. This means
that kh ~ 0.1, where « is defined in 2.7. Furthermore, the Reynolds number of the flow is of
the order of 1073, These conditions meet the requirements needed to invoke the thick EDL

*Published as: [126, 142, 143]
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Figure 2.18: Microphotograph of the nanofluidic device which is investigated. Electrodes are
used to create electroosmotic, electrophoretic, and dielectrophoretic flow inside the device
to manipulate and sort DNA molecules.

approach, and therefore this device can be used to verify the approach. To visualise the elec-
troosmotic flow inside the device, a solution of 110 nanometres diameter fluorescent beads
are used as the tracer-particles. These beads are set in motion due to electrophoresis, so the
visualisation is the sum of electroosmotic and electrophoretic flow. In Section 2.1.2.1 it was
established that the electroosmotic velocity profile in the thick EDL case has a parabolic
shape in the direction of the height of the device, but an external observer is more likely
to only see the beads moving. Therefore a connection between the velocity profile and the
velocity of the beads is needed. One way of doing this is to use the vertically-averaged ve-
locity inside the channel. As the diameter of the beads is of the order of the channel height,
these beads do not flow at this averaged velocity, given to their limited size, but travel at
a certain velocity between the average and the maximum velocity. For a parabolic velocity
profile the maximum velocity is % of the mean velocity, therefore 2.10 is modified with a

factor, in which 1 < C; < %, and that is dependent of the size of the bead. Meanwhile,
the electrophoretic velocity of the beads, which have a non-zero zeta potential (,, can be
computed using 2.11 in the thick EDL case. This means that in total, the observed velocity

of the bead in the experiments will be:

- €€ (kh)? 2
Uobserved = [ D) ( 12 ClC’w 3Cp (282)

However, because the individual parameters are not known exactly it is more convenient to
rewrite this equation into:

cColess 3 (2.83)
1

where (¢ is an effective zeta potential that incorporates the effect of the wall zeta potential,
the finite size of the beads, and the zeta potential between the beads and the liquid. The
local velocity is still directly related to the local electric field inside the channel, and it
has the same format as the Helmholtz-Smoluchowski relation 2.8, where the zeta potential
is substituted by an effective zeta potential. Because of the dimensions of the device, the
electric field is simply computed using Laplace’s equation 2.9 for the electric potential, and is
solved using the finite element method discussed in Section 2.2.2. The boundary conditions
for this equation depend on the voltage applied to the electrodes. However, note that,
because of the governing equations, only the strength of the electric field depends on the
value of the applied voltage, while the shape of the electric field is invariant. Consequently,
this also applies to the velocity vectors. To make certain that the numerical geometry
matches that of the physical geometry, a photo of the structure taken through a microscope
is used as reference. Further, this photo does not show any visible rhougness at the walls

= —
Uobserved = —
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Figure 2.19: The numerical results of the electric field lines (top left), the resulting pathlines
(bottom left), and the details near the entrance where the pathlines of the beads obtained
from the measurement with an applied voltage potential of 300 Volts are compared with the
numerical results represented by the continuous pathlines (right)

of the device. Therefore, to aid the numerical model, the walls are assumed to be perfectly
smooth.

In [142] an electroosmotic flow analysis of the nanofluidic device was presented for a voltage
potential of 100 Volts applied between the electrodes. The images of the tracer-particles in
the fluid were captured, and the streamlines and the velocity distribution of the fluid in the
device were analyzed and computed. This provided the opportunity to determine how well
the actual flow field from the measured tracer motion can be determined. Also, when all
the images captured during the experiment are added up, they create a single image of the
(real) pathlines of the beads. In general, the measured and computed pathlines agreed with
each other. The observed deviations are most likely the result of Brownian motion, which
is not included into the numerical simulation. To verify this, additional experiments with
voltage potentials of 30 V and 50 V between the electrodes were performed. The results
showed that the deviations were indeed caused by Brownian motion. Higher potential imply
a higher velocity of the tracer particles, and when the velocity is significantly higher than
the rms drift velocity of the Brownian motion, the drift of the particles from their respective
pathlines becomes negligible. Therefore, the meaurements are repeated with a electrode
potential difference of 300 V. The new results of this meaurement are shown in Figure 2.19.
Here the top-left part shows the electric fieldlines inside the device, the bottom-left part
shows the resulting theoretical pathlines, while the right figure shows the details of the
comparison between the numerical and the experimental pathlines near the entrance. In
this case the measured streamlines do coincide with the pathlines computed with the thick
EDL approach. This can especially be observed for the several diverging streaks that start at
the inlet at the right (indicated by the circle in the figure). The pathlines diverge in similar
ways. The experimental pathlines in the first sub-outlet show a part that goes into the
sub-outlet and a part that escapes from the sub-outlet with a stagnation point indicated by
an arrow in Figure 2.19. This is also seen in the computed pathlines. Further, the computed
pathlines just above the walls between the inlet and the sub-outlets follow a similar path as
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Figure 2.20: Two examples of the sets of pathlines of DNA molecules, where the value of
the electric field is V = 15.3 V (DC) at the top, and the numerical results of electric field

12
intensity ‘E ’ at the bottom. The top left figure shows the pathlines of A-DNA molecules,
while the top right figure shows the pathlines of T4AGT7-DNA molecules. For the numerical

_)2 )2
results several iso-level contours of ’E’ are also shown in the figure (‘E‘ equal to 0.1-10°,
0.2-10%,0.5-10%,1-105,2-10%, 3-10% 4-10°, 5-10%, and 10 - 10°) for visual aid.

the experimental pathlines. Therefore it can be concluded that the simple equations of the
thick EDL approach do compute the correct type of flow behaviour inside this nano-sized
device.

The next set of experiments are done with DNA molecules, which means that the di-
electrophoretic effect becomes apparent because the DNA molecules can be polarised. There-
fore the total velocity field now consist of the electroosmotic, electrophoretic, and dielectro-
phoretic velocity fields, which can be written as:

Gpna = pipor/epE + ppppVE? (2.84)
where upor/pp is the combined electroosmotic and electrophoretic mobility and upgrp is

the dielectrophoretic mobility [43]. The device that is used for these experiments is the same
shape, however the height of the device is now 400 nanometres. In total, two types of DNA
molecules are used; A-DNA with a contour length of 48 kbp (kilo base pairs) and T4GT7-
DNA with a contour length of 165.6 kbp. The purpose of the experiment is to investigate
what influence the DNA size and the type of applied electric field has on the pathlines of
the DNA molecules. This will help in the development of a continuous, sieve-less, size-based
DNA separation device [143]. Please note that the (unconfined) radius-of-gyration of both
the DNA molecule types (\DNA = 0.74 micrometre, TAGT7-DNA = 1.37 micrometre) are
larger than the height of the device, therefore the molecules will be confined and squeezed by
the upper and lower walls of the device. The strength of the dielectrophoresis, and thus the
ability to change the pathlines of the DNA molecules, depends on the gradient of the square
of the electric field. In the analysis of EOF and EP flow it was established the strongest
electric field (gradients) are located where the straight channel inlet is connected to the
semi-circular chamber, therefore this area will be the centre of attention in the following
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Table 2.5: List of parameter choices in the experiments, V = asin (27 ft) + b, along with
the respective dataset names and colours used in the plot

Parameters / DNA molecule | A-DNA (48.5 kbp) | T4GT7-DNA (165.6 kbp)
a=0V, f=0Hz b=7.5V | Dataset A (black) Dataset F (grey)
a=0V, f=0Hz b=15.3V | Dataset B (black) Dataset G (grey)
a=14V, f =1Hz, b=15.3 V | Dataset C (black) Dataset H (grey)
a=14V, f =1kHz, b=15.3 V | Dataset D (black) Dataset I (grey)
a=14V, f=1MHz, b =153V | Dataset E (black) Dataset J (grey)

experiments and simulation results of the electric field intensity. However, the numerical
mesh first needs some more attention. Because infinitely sharp corners cannot be practically
achieved during the fabrication, and the fact that if sharp corners would be simulated it
would result in a non-realistic singularity of the electric field intensity at that corner, the
channel corners in the simulation are (slightly) rounded. However, it must be noted that
this does not significantly change the qualitative distribution of the electric field intensity
in the whole device, but only results in a more smooth distribution near those corners.

The bottom part of figure 2.20 shows the numerical results of the the electric field intensity
in the area of interest, obtained using the finite element method. The top part of figure
2.20 shows two examples of the experimentally obtained pathlines of DNA molecules driven
by an electric field of V' = 15.3 V (DC), where the top left figure shows the pathlines of
A-DNA molecules, while the top right figure shows the pathlines of TAGT7-DNA molecules.
It is very difficult to compare and analyse the two experimental images using only visual
inspection. For example, qualitative comparison between the results obtained without DEP
show very similar pathlines, even though quantitatively this may not be the case. Therefore
some image analysis steps on the measured fluorescent images are performed using the image
processing toolbox DIPimage [122]. For this purpose first a “background image” by averaging
all images (typical number of images is ~ 1000) in one particular measurement is created.
The “background image” is then subtracted from each of the images in that measurement in
order to remove unwanted signals such as auto-fluorescence from the channel walls and static
objects in the channels. Afterwards, DNA molecules in each resulting images are segmented
from the background using a fixed threshold algorithm [215]. The analysis is only done in
a region-of-interest (ROI), which is defined as a rectangle around a single DNA molecule of
interest, where the position of the molecule is determined by measuring the center-of-gravity
across the ROIL. In order to track the moving molecule, the ROI is also moved along with
the molecule. This is done by using the measured molecule’s center-of-gravity to specify the
center of the moved ROI. Individual pathlines are then determined by tracking the molecules
through the image sequence in the measured data.

The next step in the analysis is to quantitatively compare and analyse each pathline in all
measurements and for that purpose two parameters as shown in the left figure of figure 2.21
are defined. First the “start distance”’, rs.q,¢, as the distance along the x-axis from the first
corner in the walls is measured. After this, the “finish distance”, 7f;,:sn, as the distance
along the y-axis from the second corner in the same walls is measured. The distances (from
pixels) are then calculated using the known scale of the photo (to micrometres). The electric
field applied during the measurements can be expressed by the equation V = asin (27 ft)+b,
where f and a are the frequency and amplitude of the AC signal, respectively, while b is the
DC offset superimposed on the AC signal. The total contour length of the channels between
the inlet and outlet ports, where the electric fields are applied, is approximately 2 cm. Table
2.5 shows the parameters chosen for the experiments, resulting in 10 datasets. In order to
test the repeatability of the observations, a second set of experiments more than one month
after the first set of experiments is performed, using different microchips. The plots in figure
2.21 and figure 2.22 summarise the results of the experiments, where the notations “1” and
“2” on the datasets are used to indicate the first and second set of experiments, respectively.

In Figure 2.21, 7 finish VS Tstare for all datasets are plotted. If size-based DNA sorting occurs,
then A-DNA and T4GT7-DNA will systematically have different pathlines, and consequently
have different values of 7451, even though they start at the same position in the inlet and
have the same value of 75:4,+. Next the black markers (datasets A-E, i.e. A-DNA in 400-nm
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Figure 2.21: An illustration of the two parameters, rgqr+ and 7finish, used to analyse the
experimental data and the plot of 7finisn VS Tstare for all datasets.
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Figure 2.22: The plot of (7 finish/Tstart) VS Tstart along with the simulated pathlines, for all
Tstart values in the left figure and a close-up for rgiq.+ < 25 in the right figure. The dashed
lines and error-bars represent trend lines and error margins of the experimental data (only
for visual aid).

channels) and the grey markers (datasets F-J, i.e. T4GT7-DNA in 400-nm channels) in
figure 2.21 are compared. Particularly for rgqr¢ <~ 25 pm, the black markers consistently
have 7¢inisp values lower than the grey markers. Physically this indicates that a mix of A-
DNA and T4GT7-DNA in 400-nm deep channels can be sorted for rgq,¢ <~ 25 um, because
for the same values of 7444+ their pathlines end up with different r¢;y,;5,. Meanwhile, figure
2.22 show the plots of (rfinish/Tstart) VS Tstart fOr the same datasets. Compared to the plot
in Figure 2.21, these plots allow a better assessment of the trends of the datasets. Again,
for 7s¢are < 725 um the black markers have lower values of (7 finish/Tstart) than the grey
markers. This confirms the remark above that for rs14rt <~ 25 ym a mix of A-DNA and
T4GT7-DNA inside the channels can be sorted.

To compare the experimental results with the numerical results, the electrokinetic DNA
pathlines are also computed using the finite element method. In the simulation, the ratio
of dielectrophoretic mobility, upgrp, and the combined electroosmotic and electrophoretic
mobility, Ugop pp, as defined in equation 2.84 are changed to match the experimental



2.4. RESULTS 45

results. This ratio is noted as, p, = 1pEP/upor, pp and has the units mke/s7a3. The simu-
lation results are plotted in figure 2.22, for p, = 0 (i.e. when there is no dielectrophoresis
effect in the system; shown as black box with lines), p, = 200 - 10~ (shown as grey

line), and p, = 500 - 10~ (shown as black line); the latter two simulation cases repre-
sent positive dielectrophoresis, where the DNA electrokinetic pathlines are shifted toward
the highest electric field gradient indicated in the numerical results shown in figure 2.20.
Comparison between the simulation and experimental data in figure 2.22 shows that the
simulation of p, = 200 - 10~ matches the datasets with black markers, while the simula-

tion of p, = 500- 107! matches the datasets with grey markers (In the right figure in figure
2.22; also the trend lines and error margins of the experimental data are shown for visual
aid). This shows that the pathlines of the larger DNA (T4GT7-DNA) are attracted by di-
electrophoresis toward the walls corner less strongly than the pathlines of the smaller DNA
(A-DNA). These observations are surprising, because Chou et al. reported that, in contrast
to the above observations, dielectrophoretic effects on DNA molecules increase when the
DNA size is increased [38]. A possible explanation is that as the DNA molecules pass the
sharp corners at the U-turn, almost all of the monomers in the shorter DNA (A-DNA) are
affected by the attracting dielectrophoretic force while only some monomers in the longer
DNA (T4GT7-DNA) are affected by the same force. The dielectrophoresis effects are there-
fore rendered to be less effective on the longer DNA than on the shorter DNA. On top of
that, we also have to note that the experiments above are done in a nanofluidic setup, while
Chou et al. used a microfluidic setup which has a much smaller confinement effect on the
DNA molecules.

In order to see the effect of modifying the applied electric fields, the trends of datasets in
each colour of the markers (i.e. comparison between datasets A-E among the black markers,
and between datasets F-J among the grey markers) are compared. The plots in figures
2.21 and 2.22 show that there is no clear distinction between the trends of datasets in each
colour of the markers. In other words, no significant effect by changing the applied electric
fields in the experiment can be observed. However, the AC fields in the experiments only
have a frequency of 1 Hz, 1 kHz or 1 MHz. Further investigations could also be done with
higher frequencies, because the dielectrophoresis effect has been reported to increase when
the AC frequency is increased [38]. Meanwhile, the results from the experiments using DC
fields also indicate that DNA molecules experience positive dielectrophoresis, even though
there is no periodic modulation of the electric field as typically caused by AC fields. This
could be explained by the highly non-uniform ion and counter-ion concentrations along the
nanofluidic channel depth, particularly when the depth is sufficiently small such that the
electric double layer from the upper and lower channel walls are very close to each other,
which is the case here. This would cause significant dynamic transverse transport of the ions
along the channel depth (i.e. the z-axis) [147], and consequently the combination of DNA
molecules and their surrounding counter-ions are perpetually polarized along the channel
depth (i.e. the z-axis) [15], even though no AC fields are applied between the channel inlet
and outlet. Any significant electric field gradient, such as caused by the sharp corner at
the U-turn in the nano-device, would therefore cause positive dielectrophoresis to the DNA
molecules regardless of whether the applied electric fields are AC or DC.

This section showed the numerical computations and experimental results of electroosmotic,
electrophoretic and di-electrophoretic flows obtained inside nano-sized devices. Especially, it
was shown that DNA molecules can be sorted based on their size particularly for rs¢q¢ <~ 25
pm, i.e. for pathlines that are close enough to the highest gradient of the electric field inten-
sity in the device. This indicates that by the combination of electroosmotic, electrophoretic,
and di-electrophoretic flow, for the first time, size-based DNA sorting can be done in a
continuous, sieve-less, manner. The sorting is enabled by dielectrophoretic forces, which
alter the DNA pathlines. These results are novel compared to the previous results of other
authors, where dielectrophoresis has been used either for continuous sorting but only for
cells or for spherical beads [43], or for manipulating DNA but only by trapping and not by
continuous sorting [38, 157]. Meanwhile, for rs4+ >~ 25 um, no sorting can effectively be
done because the pathlines are too far away from the corners in the channel walls, hence
no significant dielectrophoresis effect exists. Please note however, that the dimensions and
configurations of the channels in the branched U-turn nanofluidic channels are not yet opti-
mised for an effective sorting operation and several geometry modification could be done to
the sorting of DNA more effective [143]. However, it is also shown that the numerical simula-
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tion, which where based on the pure continuum equations for electrokinetic flow, neglecting
the fact the underlying phenomenon is basically on the molecular scale, can successfully
be used to simulate the nanofluidics in this device. Furthermore, the numerical simulations
also indicate that the observed pathlines can be explained by dielectrophoresis, which occurs
even under DC electrical fields, presumably due to the nanofluidic confinement.

2.4.2 MD: Investigating Flow Characteristics Inside Nano-sized Chan-
nels

In the previous section it was shown how several nano-scale phenomena that are basically the
result of molecular behaviour can be described satisfactorily by pure continuum equations.
In this section the opposite is done: here (pure) molecular dynamics simulations on nano-
sized channels are performed, and any deviations from continuum mechanics are explored.

With MD, the geometry used in the simulation must be constructed using atoms. Therefore,
the nano-sized channel is simulated using two parallel solid atomic walls placed at a certain
distance from each other, while between the two walls, atoms representing a liquid are
placed. Figure 2.23 demonstrates this setup in 2D and 3D projections. The total number
of atoms simulated is N = 2048, while the simulated (average) particle number density is,
p = 0.8 units. Each wall of the nano channel consists of two layers of solid atoms, placed
in a fcc lattice, while the total number of atoms in the liquid is N; = 1536. The centers
of the two walls are separated by 11.9698 units, which corresponds to approximately 4.1
nanometres when using the parameters for argon (see Table 2.3). The two walls will act as
a boundary condition for the MD domain in the z-direction. Periodic boundary conditions
are specified for the remaining boundaries of the MD domain. The MD domain is kept
at a constant temperature, 7' = 1.2, using the Nosé-Hoover thermostat [72]. During each
simulation several properties are binned. The MD domain is divided into 500 bins in z-
direction and each bin collects the local value of the density, velocity, and the six stresses:
Eww; Eyy: Ezz; 2:mya Emz; and Eyz-

In the first simulation the values of density, velocity, and stresses in the bins are collected,
while no flow (i-e. no applied bodyforce) is present. The MD simulation is run for a total of
6.4 x 10° timesteps, which is just over 69 nanoseconds when using LJ-parameters to convert
to physical units. The averaged values of each bin are computed by averaging over the last
5 x 10% time steps of the simulation. As expected, the collected (average) velocity is zero
with some small fluctuations caused by the discrete behaviour of MD. However, the other
results need closer attention. Figure 2.24 shows the results for the density, shear stress 3, ..,
and the averaged normal components of the stress, P = % (Xzz + gy + 2..), referred to as
the pressure inside the nanochannel. The density profile shows large variations around the
average value of p = 0.8 units, where the variations near the wall are the largest. These
variations are the result of the interaction of the atoms in the liquid with the solid atoms of
the wall and can also be observed experimentally [34]. The variations are not a result of the
flow, because no flow is present in this case. Further, Bitsanis et al. [21] showed that indeed
the flow itself does have negligible effect on the density profile even when high shear rates are
simulated. However, the large variations are present because of the finite temperature of the
MD system, because this means that atoms are always in motion and therefore interacting
with the wall and the other atoms all the time. The result is that atoms in the liquid spend
more time inside certain layers near the wall, where the interaction between the wall and the
surrounding liquid is more in equilibrium than elsewhere. These layers are the peaks visible
in the density profile. On the other hand, because of the dense layer of atoms, the remaining
atoms can not come close to this layer, because of the strong repulsion at close range. That
means that on either side of a dense layer fewer atoms are present on average, which are
the valleys in the density profile. Only when the atoms in the liquid are far enough from
the wall, the interaction between the surrounding atoms is much more important, and the
result is that, on average, or more or less constant density is reached. The results for this
very small nano channel do not show a constant density anywhere and Other researchers
[84, 177] showed how this is more evident in even smaller channels. Therefore, any flow
behaviour of this nano channel or smaller nano channels, could not be computed with a
standard continuum method. The same applies to the pressure profile, which is shown in
the right part of Figure 2.24. This profile has large variations near the wall, while the values
in the middle show fewer variations. Even without flow, the profile still shows a finite value,
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Figure 2.23: The geometry used for the MD simulation of flow in a nanochannel. The cubic
MD system box is ~ 12 units which is ~ 4.1 nanometres. The total number of simulated
fluid atoms are N; = 1536. The MD system has periodic boundary conditions in z and
y-direction, while the z-direction has an atomistic wall as boundary condition.
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there is no flow present. The profiles are obtained by binning 5 x 10° time steps.
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because it is also determined by the interparticle forces between the atoms. On the other
hand, the shear stress is zero, as is expected in the absence of a net flow.

In the next simulation, the effect of the wall interaction on the flow field is investigated.
When using a continuum method, flow is generally applied by either (1) applying a pressure
difference between the two sides of the channel, (2) by specifying the velocity itself at the
boundary, or (3) by applying a (volume) body force. The first two options in the case of
MD are not straightforward, and even so, the periodic boundary conditions will limit the
applicability anyway. Therefore, the option that remains, is to apply a body force, which in
MD means that each atom undergoes an additional force. Of course, when applying a body
force inside a continuum fluid where the no-slip condition applies at the walls, the flow field
will be that of a Poiseuille flow and the velocity profile is parabolic. However, as shown in the
previous paragraph and shown by other researchers using Poiseuille flow [106, 107, 194, 195],
deviations from this result can be expected in the case of a MD nanochannel. This MD
simulation is run for a total of 2.4 x 105 timesteps, and the average values of the bins are
collected from the last 1.6 x 105 time steps. Figure 2.25 shows the resulting density, velocity,
shear stress, and pressure profile along the z-direction in the nano channel (illustrated in
figure 2.23) when a bodyforce of f, = 0.100 units is applied. The density profile in Figure
2.25 is almost exactly the same as the density profile in the absence of flow, Figure 2.24.
This result accentuates the fact that the variations of density are a result of the wall-
fluid molecular interaction, rather than the flow of the liquid. The overall velocity profile
resembles a Poiseuille flow, however the velocity does show slight variations, especially near
the wall. This is of course a direct consequence of the variations in density. When the
density is higher, more atoms are present at a certain location, and because of this their
motion is impaired. So, again the result show clear non-continuum aspects. This effect is
especially visible in even smaller channels. For example, Travis et al. [194, 195] showed
that for systems where the height is less than 4 units (less than 1.3 nanometres in the case
of argon) the velocity profile is no longer parabolic. However, in the next section it will
be discussed how much (or little) the velocity profile deviates from that of a continuum
Poiseuille flow in the nano channel simulated here.

The following two results are the pressure and the shear stress. The pressure in the fluid
with a bodyforce in Figure 2.25 is almost the same as the pressure in Figure 2.24. The
only difference is the pressure due to the actual flow field, which is negligible to the total
pressure that arises from the interparticle forces. The shear stress on the other hand shows
a completely different result. In the continuum case, the shear stress profile in a Poiseuille
flow is equal to a straight line, where the absolute values at the wall are the highest, and the
shear stress is exactly zero in the middle of the channel. It is very obvious that the same
qualitative behaviour is found with the MD simulation, where only near the wall, variations
are clearly noticeable. In the next section this fact is used to determine a value for the
viscosity of the liquid.

The previous simulation showed that when a certain bodyforce is applied to each atom
of the liquid, the velocity profile closely resembles that of a velocity profile expected for
a continuum with a constant viscosity, namely Poiseuille flow. However, the walls in the
previous simulation were ideal, i.e. exactly lined in a fcc lattice and without surface defects.
The next simulation simulates a nanochannel where the walls are not exactly in a fcc lattice
and where the surface of the walls is not perfect smooth anymore. This basically simulates
(real life) roughness of a nanochannel and the purpose of the simulation is to find the
resulting velocity profile. Figure 2.26 shows the geometry that is used for this simulation.
The MD domain is three times longer than previously used, making the total number of
atoms that is simulated, N = 6144. The (periodic) roughness is modelled by adding several
imperfections on the surface. Also every atom inside the wall is moved away from the
perfect fce lattice by adding a certain sinusoidal function to each of the atom’s position.
This results in the wavy character of the wall shown in the figure. The same bodyforce as
before is applied, i.e. f, = 0.100, and the other simulation parameters remain unchanged.
The distribution and number of bins is adapted. Now two sets are defined: one set for the
flow visualisation and one set for general post-processing. The first set collects the average
values in 300 x 100 bins in the x-direction and z-direction respectively. The second set
of bins collects the average values in 8 x 500 bins, which gives detailed profiles in the z-
direction at 8 different position in the x-direction inside the channel. The simulation is run
for a total of 2.4 x 10° timesteps, and the averaged values of the bins are collected from the
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Figure 2.25: The density profile (left), velocity profile (middle), and stress profiles (right)
inside the nanochannel when the bodyforce, f, = 0.100. The results are obtained by binning
the last 1.6 x 10° time steps (~ 17.2 nanoseconds). The velocity profile is very much similar
to a (Poiseuille flow) parabola, however near the wall deviations occur.
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Figure 2.27: The velocity magnitude contours in the nanochannel with rhoughness.



30 CHAPTER 2. NUMERICAL MODELS

0.5 o slice 1 0.5, |o velocity (rthough)
o slice 2 o velocity (smooth)
o slice 7 ;
0.4 0.4
03 o3
iy z
5 5
3 0.2 o 0.2
> > .
0.1 0.1} =
0'%.0 40 80 120 0'00.0 40 .80 120
z-position (-) z-position (-)

Figure 2.28: The velocity profile at three different positions in the nanochannel. The right
figure shows a comparison of the average velocity profile of the nanochannel with rhoughness
and the nanochannel with smooth walls, with the same bodyforce applied, f, = 0.100
units. In both cases the velocity profile is similar to a parabola, except for near the wall.
However, equivalent to the continuum case, the maximum velocity is less in the channel with
rhoughness than that with the channel with smooth walls.

last 1.6 x 106 time steps.

Figure 2.27 shows the resulting velocity magnitude contours. Three peaks in the flow are
visible, coinciding with the most narrow cross-sections due to the imperfections at the wall.
The flow pattern basically corresponds to what can be expected for a continuum channel
with constrictions, however the peaks in the figure are now less than a nanometre in size.
Near and around the imperfections on the wall the variations in velocity, in other words the
layering of atoms, is again visible. The results of the MD simulation show a very detailed
view on the velocity in the nano channel, which is generally not available in experiments. An
experimentalist observing the flow in this nano channel will at best see the average velocity
profile. This is where the second set of the bins is used for.

Figure 2.28 shows several velocity profiles that are collected from the second set of bins. The
left figure shows the velocity profiles in the z-direction taken from bins 1, 2, and 7, in the
x-direction, respectively. The right figure shows the average velocity profile along all 8 bins
in the x-direction. This is the velocity profile that an experimentalist would likely observe.
As a reference the velocity profile in the nanochannel without the wall imperfections (i.e.
the smooth wall) is also shown. Both velocity profiles are the result of the flow inside the
nanochannel with the same value of the body force. In other words, for an external observer,
equivalent to the continuum case, it looks like the channel has roughness, and therefore the
resulting maximum velocity is less than that with a smooth wall.

In the previous simulation, imperfections where added to the wall to simulate (actual) rough-
ness. However, there are other ways of simulating wall-fluid behaviour. In the Lennard-Jones
model two empirical parameters are used for the interparticle behaviour of the fluid atoms,
i.e. € and 0. However, it is possible to specify different values of ¢ and o for the interaction
between the wall and the fluid. In the next simulation the parameter €,¢, which is the
interaction strength between the wall and the fluid atoms, is changed from 1.0 to 0.7. As
before, the simulation is run for a total of 2.4 x 10° time steps and the average values of the
bins are collected from the last 1.6 x 10% time steps. The MD domain is divided into 500
bins in z-direction, and the flow is induced by a body force, f, = 0.100 units.

Figure 2.29 shows the resulting velocity and shear stress profiles. As a reference, the velocity
and shear stress profiles for the smooth nano channel with €, = 1.0 is shown. The velocity
profile in the nano channel with the reduced wall-fluid interaction shows a shift of the
velocity; the shape is in most parts the same, however an apparent wall slip occurs. This
fact is more clear in the shear stress profile, where indeed the shear stress is exactly the same
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Figure 2.29: This figure shows how the velocity profile changes, if the parameter €, is
changed. Now a slip velocity near the wall is visible.

everywhere except very near the wall. There the absolute value of the shear stress is larger
than the value for the nano channel with the strong interaction. The equivalent property
in the case of a pure continuum computation would be the specification of a certain slip
velocity. When a slip velocity is specified at the wall, the Poiseuille velocity profile simply
shifts. In the case of the MD simulation, the reduced interaction between the wall and the
fluid means that the fluid atoms are less influenced by the wall. Together with the body
force this means that the fluid atoms, on average, are less slowed down when they interact
with the wall. This last fact also means that the density profile changes slightly.

All results of the previous simulations show clearly that large variations in properties are
present near the wall, and gradually become less at larger distances from the wall. Despite
that, the previously simulated nano channels were too small to observe any averaged values
without significant variations due to the finite number of atoms, i.e. they still showed
continuum-like behaviour. However, in the next simulation a nano channel where the walls
are further apart is simulated. This is done to investigate the minimum size of the channel
needed to obtain “true” continuum properties. Just like before, each wall of the nano channel
consists of two layers of solid atoms, placed in a fcc lattice. The centers of the two walls
are now separated by 25.6496 units, which corresponds to approximately 8.2 nanometres
when using the parameters for argon in Table 2.2. The total number of atoms simulated
is N = 4096. Because the channel is higher, a smaller value for the body force is needed
to achieve the same flow velocity. The used body force is, f, = 0.010 units. The other
simulation parameters remain identical.

Figure 2.30 shows the resulting density, velocity, pressure, and shear stress profiles in the
larger nanochannel. Although there are still large variations visible near the wall, the values
in the middle of the nano channel have almost no visible variation. The density profile
shows that in the middle of the channel the averaged particle number density is 0.8, as
expected. The averaged velocity profile shows a closer match to a (continuum) Poiseuille
velocity profile than obtained by the previous simulations, while the same applies to the
shear stress.

The results of the simulations show that in a nanochannel with a height of about 25.6 units, or
8 nanometres, yield results near that expected for a continuum. Also results obtained by, for
example Travis et al. [195], suggest that the velocity profiles in nano channels with a height of
10 units show very small deviations between continuum and MD results. However, this does
not yet mean that a pure continuum method to compute the flow inside this channel would
be advisable. The variations in the values of several properties are noticeable until about 8.5
units distance away from each wall. For the nanochannel this means that a total of 17 units
out of 25.6 units experiences variations in values of properties, which in effect means that
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Figure 2.30: The density profile (left), the velocity profile (middle), and stress profiles (right)
for a nanochannel where the walls are further apart. This channel has a height of ~ 25.6
units which is ~ 8.2 nanometres. The total number of atoms simulated is N = 4096, while
the applied bodyforce, f, = 0.010.

about 65% of the nanochannel experiences non-continuum effects. This information however
gives a possibility to find the minimum required height of the nano channel before a pure
continuum method provides reliable results. For example, the continuum computation of a
nano channel with a height of 170 units, which is approximately 58 nanometres, neglects
only 10% non-continuum effects.

This section showed how flow in a nano channel can be simulated with MD, and how changing
several parameters can affect this flow. However, all simulations had in common that near
the atomistic wall large variations in values can be observed, while away from the wall these
variations become smaller. Although these non-continuum effects are noticeable, the velocity
profile still resembles that of a Poiseuille flow. In the larger nanochannel the variations in the
middle of the channel even disappear, and basically motion of the atoms can be considered
as a continuum. Especially for larger channels the MD method is really only required near
the wall, while the rest of the channel can be computed with a much more efficient method
than MD. One way of doing this is discussed in Chapter 3.

2.4.3 MD: Obtaining Viscosity Using Poiseuille and Couette Flow

In the previous section several results from simulations of flow inside a nanochannel were
presented. However, MD is more than just a flow simulation technique; by simulating
a certain amount of atoms in a specific ensemble, important material properties can be
obtained. In this section one of such material properties, namely viscosity, is obtained from
such a simulation.

There are several ways how viscosity can be obtained from a MD simulation. The Green—Kubo
relations [76, 112] are commonly used, which is an exact expression for linear transport co-
efficients in terms of integrals of time correlation functions. The value of the viscosity in
these cases are predominately taken from a simulation that simulates the bulk, e.g. using an
infinite periodic system. However, there are other possibilities, which are generally faster.
In the previous section it was shown how a Poiseuille-like flow was generated using an ex-
ternally applied force, fy,, inside a nano channel. This gives the possibility to relate the
resulting Poiseuille flow to the viscosity of the liquid, which is argon in this case. However,
Bitsanis et al. [22] showed that the effective viscosity inside the channel can increase con-
siderably in very narrow channels, generally smaller than 4 units. However, when the size
of the channels is increased, the bulk value can be obtained. This is in line what was noted
before; that, except for near the wall, continuum-like behaviour can be observed whenever
the channel is large enough. Therefore the bulk viscosity can be obtained from the velocity
profile inside this channel using the equation relating the viscosity and the velocity inside



2.4. RESULTS 53

0.5 1.0
int d °

O\ o the f 08

0.4 ; 0.6

_ 0.4

= 0.3 o 02
z 2

'g § 0.0

2 0.2 @ -0.2

>

-0.4

0.1t - -0.6

° ° -0.8

0.0 . -1.0

00 40 80 120 00 40 80 120
z-position (-) z-position (-)

Figure 2.31: The viscosity can be determined from a Poiseuille flow using two different
methods. The first method fits the velocity profile and compares it to a pure Poiseuille
velocity profile (left), while the second method uses the shear stress and velocity gradient to
obtain the value of the viscosity (right). The selection of the values that are used for the fit
are based on where the shear stress profile does not show any apparent variations (see text
for details).

the channel, which is given by:
0 ou
— p=— )=~ 2.85
g (H 62) o (2.85)

In order to determine the viscosity from this equation, the second derivative of the velocity
profile needs to be measured. The easiest way to do this is to curve fit the resulting velocity
profile from the MD simulation. From this curve fit the second derivative can be taken. An
alternative relation that can be used to determine the viscosity is using the relation between
the shear stress and the velocity gradient perpendicular to the flow:

ou
Sus = i (2.86)

In this case, the first derivative from the curve fit of the velocity profile is taken and the
value for the shear stress is binned during the simulation and is therefore known. However,
the evaluation of the curve fit needs further attention. The curve fit is trying to fit a
Poiseuille velocity profile (a second order polynomial fit), or in other words, a continuum
profile. Near the wall there are large variations that are non-continuum. Therefore the
curve fit must include only those values that are continuum-like. Figure 2.31 shows the
same velocity profile and shear stress profile displayed in Figure 2.25, but now includes the
collection of values that are used for the fit (different colour) and the fit itself (solid line).
The selection of the values that can be used for the fit are based on the shear stress profile.
Only those points on the curve are used that correspond to a straight line, i.e. no variation
are apparent for these values. The same datapoints are used for the velocity profile fit. The
fitted curves which corresponds to a continuum profile, can now be used to determine the
viscosity using 2.85, i.e. method 1 or 2.86, i.e. method 2. Table 2.6 shows the viscosity
determined from various simulations, with different applied body force. The amount of time
steps over which the values were binned is shown in the second column. When the body
force is small, the simulation runs over a longer time in order to collect more statistics to
distinguish the average value from the discrete noise. The third and fourth columns show the
value for the viscosity obtained using 2.85 and 2.86, respectively. The errors in these values
are computed using the 95% confidence bounds obtained from the fitted curves. Although
the values for the viscosity fall nicely within the range of values obtained by others [106],
there is some variation visible in the obtained values for the viscosity and the errors. In
general, the errors of the fit obtained with method 2 are larger. The predominant reason
for this is the fact that more statistics need to be collected to obtain meaningful values for
stress inside MD simulation than for velocity, i.e. the value of stress is similar to the noise of
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Table 2.6: Obtained viscosity from the simulation of the nanochannel where the total
number of atoms, N = 2048 and 7" = 1.2. The results are obtained by using two different
methods (see text).

Io timesteps binned p method 1 (-) g method 2 (-)
0.005 18.4 x 10° 1.840+0.07 2.054+0.42
0.010 18.4 x 108 2.03540.04 2.166+0.22
0.020 8.8 x 106 1.950-+0.03 2.09940.17
0.050 3.2 x 108 1.988-+0.02 2.14740.11
0.100 1.6 x 108 2.0134+0.02 2.09140.09
0.200 1.6 x 108 2.2104+0.01 2.14340.04

Table 2.7: Obtained viscosity from the simulation of a nanochannel where the walls are
further apart. The total number of atoms, N = 4096.

fo | timesteps binned p method 1 (-) g method 2 (-)

0.002 6.4 x 10° 2.0534+0.02 2.209+0.15
0.005 6.4 x 10° 1.9834+0.01 2.138+0.08
0.010 3.2 x 106 1.9754+0.01 2.1334+0.06
0.020 1.6 x 10° 1.972+0.01 2.12640.04

the MD simulation. Another observation is the fact that the value of the viscosity obtained
with method 1 seems to rise with increasing body force. The reason for this is most likely
caused by the increasing shear rates inside the very small channel. However, the very small
size of the nano channel simulated here could also be a factor. This is discussed next.

The nanochannel simulated previously is a very narrow channel, about 4.1 nanometres
in height. As described before, the non-continuum effects are present inside the entire
nanochannel. These effects may affect the value of the measured viscosity. Therefore an-
other set of simulations is performed with a wider nanochannel. The height of the nano
channel is doubled to about 8.2 nanometres, where the total number of atoms simulated
becomes N = 4096. The results of these simulations are shown in Table 2.7. The values for
the viscosity are similar to those of the previous simulation, but more consistent than before.
Therefore it can be concluded that in the middle of the nanochannel indeed continuum-like
behaviour occurs. However, note that the (local) viscosity near the atomistic wall changes
dramatically and is not equal to the value of viscosity in the bulk of the nanochannel.

So far only Poiseuille flow was simulated. However, another type of flow that is easy to deal
with, is Couette flow. Couette flow occurs as the flow between two no-slip walls, where one
or both walls are movin g. The main advantage is that no body force needs to be applied.
It is the no-slip boundary condition that implies that the velocity of the fluid is the same
as the velocity of the wall. This principle can also be applied to MD. The atoms in the
atomistic wall are moved with a certain constant velocity. When the wall atoms move they
will start dragging the fluid atoms with them. In order to determine the viscosity of the
MD fluid two simple simulations are performed. Again the nanochannel with N = 2048 is
used, where at the top the wall atoms are given a velocity of 0.1 and 0.2, respectively, while
at the bottom the wall atoms are give the velocity of —0.1 and —0.2, respectively. In each
simulation the shear stress is also binned.

Figure 2.32 shows the results from the simulation. As expected, the shear stress is nearly a
constant in the middle of the channel, while near the walls large variations are again seen.
From these results, the viscosity can be determined using 2.86. The viscosity determined
using the curve “Couette 1”7 is pu = 2.084 £ 0.11, while the viscosity determined using the
curve “Couette 2”7 is p = 2.098 £ 0.05. These values are again similar to the results obtained
previously and reported in Tables 2.6-2.7.

In this section it was shown how molecular dynamics can be used to determine the viscosity
of the simulated liquid inside a nanochannel. In this case argon was simulated and the
viscosity is approximately 2.0. This result is very important for simulations where MD and
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Figure 2.32: The viscosity of argon is determined for a Couette flow. This method uses the
shear stress and velocity gradient to obtain the value of the viscosity. The total number of
atoms, N = 2048 and the temperature, T' = 1.2.

the continuum become coupled. Unlike what is the case for MD, where the viscosity is a
result of the simulation, the continuum flow equation requires a value for the viscosity in
order to solve the equation.

2.4.4 MD: Using Particle Mesh Methods to Accurately Simulate
Surface Tension

The simulations so far used a cutoff radius of r. = 2.5 to optimise the computation. In
Section 2.3.2 it was argued that in this case the interaction energy is only 0.8% of the
maximum attraction value possible. It is therefore reasonably safe to neglect all molecular
interaction beyond the cutoff radius and to correct the final result of the simulation (e.g.,
a desired material property) with a long-tail correction (if needed). However, there are
exceptions, and one important one is encountered in the study of multiphase flows, where
the effect of surface tension is crucial. For example, Nijmeijer et al. [138] showed how the
value of the surface tension in the simulation is increased by a factor of 2.8 if the cutoff
radius is increased to r. = 7.33¢0 and Holcomb et al. [90] and Meche et al. [130] concluded
that a cutoff radius of r. = 5.00 together with a tail correction is required to obtain a
reliable value for the surface tension. Trokhymchuk et al. [196] confirmed that the value of
surface tension still changes up to 10% when the cutoff radius is increased from r. = 4.40 to
re = 5.50. Also, more recently Sinha et al. [175] found that truncating long-range terms of
the Lennard-Jones potential function at r. = 4.50 would cause errors as high as 15 percent
in surface tension of argon, but also showed how this can be eliminated by using the PPPM
method for long range terms for the 1/r¢ term inside the Lennard-Jones potential. Bo Shi et
al. [172] showed how the same method can also be used to accurately simulate the surface
tension of water. Very recently [171], the same authors also showed how the contact angle
of a Lennard-Jones liquid and water droplets adjacent to a solid surface can be predicted in
good agreement with experimental values, using the same long-range technique.

However, another interesting phenomenon is the nano-jet and nano-jet breakup, which has
application in future inkjet printing. Most of the models and theories used for the simulation
of inkjet printing do use continuum models, however because of the small scale of the nanojet,
these models give different results than a pure MD simulation predicts. On the other hand,
a pure MD simulation can also give the possibility to accurately and easily model wall-fluid
interactions like wetting, hydrophilic or hydrophobic behaviour. Recently a lot of interest
is shown in the simulation of the break-up of the (long) nanojet [36, 45, 55, 133, 173, 190],
where because of the small scale not only the surface tension, viscous, and intertial forces
play a role in breakup, but also the thermal fluctuations in the interfacial region. These
fluctuations also tend to suppress the formation of satellite drops, i.e. smaller drops than
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Figure 2.33: The MD model of the nano inkjet printer used for the simulations. The liquid
is contained inside a reservoir which is connected to a nozzle. The liquid is set into motion
by a moving wall at the left. This snapshot is taken just after the moving wall (red atoms)
is set into motion.

the main drop, which is a desirable feature in inkjet printing. Molecular dynamics can also
be used to study important practical parameters of the inkjet printing device, e.g. the final
droplet size. Choi et al. [36] showed what the influence of the nozzle outlet size is on the
breakup time and on the growth rate of spherical droplets. Dai et al. [45] investigated
the whole nanojet ejection process for various compressing velocities. Their results showed
large variations in density and pressure during the ejection process and a linear relationship
between the length of the liquid threads and the compressing velocity was found. However,
connected to what was mentioned in the previous paragraph, it is interesting to investigate
the influence of the used cutoff radius on the actual droplet formation process and the final
droplet. Shin et al. [173] used a cutoff radius of r. = 3.50, while Choi et al. [36] used
re = 3.00 and Dai et al. [45] 7. = 2.50. Clearly these values are lower than the value
of the cutoff radius where correct surface tension values are obtained. In this section a
simulation of a nano-sized inkjet printer and the break-up of a nano-jet is investigated.
More specifically, the method where the PPPM method is used to determine the 1/r¢ term
inside the Lennard-Jones potential is used to compare the creation of the droplet and the
break-up of the nanojet, obtained with different cutoff radii.

The atomistic model that is used for the simulation is depicted in Figure 2.33. The device
consists of a 9.6 x 6.6 nanometre rectangular reservoir where the left side of the reservoir
is mobile and can push out the liquid. The right side of the reservoir is connected to a
nozzle that concentrates the liquid (argon) towards the nozzle outlet with a 3.5 nanometre
width. The walls of the device are created using atoms that are placed in a FCC lattice
where the total number of wall atoms is 10912. The number deunsity of the liquid is py =
0.8, which means that the total number of atoms corresponding to the liquid inside the
device is 13920 atoms. The boundary conditions of the MD domain are periodic in the y-
direction, while the boundary condition in the x-direction and z-direction is a specular wall
that keeps the atoms inside the MD domain. The total MD domain size is approximately
45.3 x 9.3 x 10.5 nanometres. The fluid atoms interact with each other according to a
Lennard-Jones potential, although the wall-fluid interaction needs further attention. The
hydrophobic or hydrophylic capabilities of the surface can influence the ability to create
droplets and for this purpose the interaction potential of the wall and fluid atoms can be

modified [136]:
12 6
o o
Uwali— fiuid (Tij) = 40w pe K—) — Buy (—) ] (2.87)
Tij Tij

where the parameters a,, 5 and 3,5 are the hydrophylic and hydrophobic interaction factors,
respectively. High values of a, ¢ and B, (o« > 1 and 8 > 1) will result in a strong interaction,
which means that it simulates a hydrophylic surface, while low values will result in reduced
interfacial resistance, simulating a hydrophobic surface. Before the droplet creation process
is initiated by moving the left side of the reservoir chamber, the whole MD domain is
equilibrated and thermostatted with a Nosé-Hoover thermostat to a temperature of 7= 0.9.
During the equilibration the liquid atoms are kept inside the device by means of a specular
wall at the nozzle outlet to prevent atoms escaping, i.e. evaporate. This specular wall is
removed once the equilibration is achieved. At that point, the wall at the left side is set into
motion with a certain velocity. This wall keeps on moving at this velocity over a certain
distance, and then it is stopped. This is done for two reasons: The first reason is that
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Figure 2.34: The simulation of the creation of a droplet is sensitive to the employed cutoff
radius. The left sequence (top to botttom) shows how the computation of the tail enlongation
change when the cutoff radii r. = 3.50, r. = 4.50, r. = 5.50, and the long-range method
for the van der Waals interaction with a cutoff radius, r. = 2.50 are used. The same is
shown for the droplet creation in the right figure. Note that the results for every sequence
are shown at the same point in time of the simulation.

during the motion a certain amount of inertia builts up, and when the wall stops moving,
this energy is large enough to overcome the energy associated with the surface tension to
create a droplet with a certain size and velocity. The second reason is that the displaced
volume of fluid inside the chamber is nearly identical to the volume of the droplet that is
created. This gives a possibility to control the droplet size.

The first set of simulations is performed to investigate the influence of the cutoff radius
on the numerical results of the droplet creation. The cutoff radii that are investigated are
r. = 3.50, r. = 4.50, and r. = 5.50. The results from these simulations is also compared
to a simulation where the van der Waals attraction force is obtained using the PPPM long-
range technique, while the cutoff for the other interactions is r. = 2.50. However, the MD
system only has periodic boundary conditions specified in one dimension, while the other
dimensions are specified by a specular wall. This means that the PPPM-method must be
adapted to prevent wrong summation in the non-periodic directions. In section 2.3.6 several
methods where specified that deal with this kind of systems, however the method used here
is the 2D-Slab method with an added (vacuum) space at both sides of the inkjet device
and includes the ELC term to prevent the slab-slab interaction in z-direction. This means
that the long-range interaction in x-direction is (wrongly) considered periodic, however it is
expected that the simulation results are not severely changed by this. The grid size for the
PPPM method is [256 x 32 x 96] with splitting parameter 8 = 0.790. The velocity of the
moving wall is vye = 0.50 and it is moved inwards over a distance of about 4.5 nanometres
and then stopped. In this simulation, the parameters used for the wall-fluid interaction are,
aws = 1.0 and B¢ = 1.0, which means that the interaction is identical to the fluid-fluid
interaction. Figure 2.34 shows the comparison of the formation of the droplet (left) and the
resulting drop (right) simulated with the different cutoff radii, where the snapshots are all
taken at the same point in time. The results obtained from the simulation where the cutoff
radius, r. = 3.50, shows an unrealistic droplet formation and resulting drop because the
surface tension of the liquid is underestimated which results in non-spherical shapes. On
the other hand, the results obtained from the simulation where the cutoff radius, r. = 4.50
and r. = 5.50, show much more realistic shapes, while the difference between r. = 4.5¢0
and 7. = 5.50 are only visible in the details of the droplet break-up. Finally, the simulation
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Figure 2.35: This figure demonstrates how the simulation of the creation of a droplet is
sensitive to the hydrophilic or hydrophobic characteristics of the wall.
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Figure 2.36: This figure demonstrates how the simulation of the creation of a droplet is
sensitive to the total distance the moving wall is moved and how the velocity of the moving
wall needs to be changed in order to create a droplet.

with r. = 2.50, but where the 1/+¢ term inside the potential is obtained using the long-
range PPPM technique, show results which are very close to those obtained where all the
interaction is obtained using large cutoff radii. Besides droplet size and shape, the velocity
of the droplet is also an important parameter for inkjet applications. The velocity of the
droplet is easily obtained from the simulation results and in all cases the value was between
Vgrop = 0.5 and vgrop = 0.6, indicating that this parameter is not highly sensitive to the
applied cutoff radius.

The second simulation is performed to investigate the effect of the hydrophobic or hy-
drophylic properties of the surface. For this simulation the parameters inside the wall-fluid
interaction potential are taken as ay,5 = 0.3 and S, s = 0.4, which means that the surface
now is strongly hydrophobic. The employed cutoff radius is r. = 4.50, while the other sim-
ulation parameters are the same as before. Figure 2.35 shows the comparison between the
simulation with r, = 4.5¢ with the hydrophylic surface done before and the new simulation
with the hydrophobic surface. As expected, the big difference is the fact that in case of
a hydrophobic surface, the liquid does not want to be in contact with the outside of the
nozzle and therefore more liquid is pushed into the tail of the droplet and the droplet itself,
which also results into a bigger droplet size in the end. It also has effect on the velocity of
the droplet, which now is v4rop = 0.8 and is higher than when a hydrophylic surface was
simulated.

The third simulation is performed to investigate what effect the velocity of the moving wall
and the total distance that the wall moves has on the resulting droplet formation and droplet
size. For this simulation, the wall is only moved to the right over a distance of about 2.8
nanometres, which is 1.7 nanometres less than before, while the velocity of the wall is kept
the same at vy,q; = 0.50. However, the result of this simulation showed that the built-up
energy was not large enough to overcome the energy involved in creating a droplet and
therefore no droplet was created and all the liquid collected near the nozzle entrance due to
surface tension. Therefore another simulation was performed where the velocity of the wall
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was increased tO vyqy = 0.70. Figure 2.36 shows the results of this simulation, where now a
much smaller droplet is created. The velocity of this droplet is however also much smaller,
Vdrop = 0.35.

In this section a nano-sized inkjet device was investigated, especially the influence of the
cutoff radius on the resulting droplet formation. It was shown that the long-range technique
where the van der Waals interaction is computed using a PPPM technique while the rest
of the interaction uses a cutoff radius of r. = 2.50, shows similar results compared to
simulation without the long-range technique but with much larger cutoff radii. Also, the
employed cutoff radius does have a big impact on the actual computed droplet creation
process, e.g. the elongation of jet and ultimate shape and size of the droplet. Surprisingly,
the cutoff radius did not seem to have a lot of effect on the computed droplet velocity, which
is an important model parameter for inkjet printers. On the other hand, it was shown that
the wall-fluid interaction can have a major impact on both the droplet size and velocity.
However, it was also demonstrated how the droplet size can be changed by changing the
distance the wall of the inkjet device is moved.

2.4.5 MD: Comparing the Value of Viscosity for Several Water
Models'

Viscosity plays an important role in many physical processes and hence it is important
to specify it accurately in computer simulations in which these processes are investigated.
Of special interest is water. When simulating water with molecular dynamics (MD) it is
vital to choose a water model that correctly predicts the process investigated. Many water
models have been developed, differing in parameter values and number of charge sites, and
each having different succes in predicting the correct value of a certain physical parameter.
However, only few references give a complete set of the viscosity versus temperature of a
certain water model, which makes it difficult to choose the appropriate water model. In this
study, the viscosity temperature relation of four water models is considered. These are the
popular 3-point charge SPC/E water model [16], and several variants of the 4-point charge
models, TIP4P [102], TIP4P/Ew [92], and the recent TIP4P /2005 [2].

There are several ways to obtain the values of the viscosity by means of MD simulations and
most of them require many statistics to be collected. The most frequently used methods
are the Green-Kubo method [76, 112] and the Stokes-Einstein method [57]. Both methods
are based on the autocorrelation function of the pressure tensor, which is computationally
expensive to obtain. Another way of finding the viscosity is by simulating Couette shear
flow, which for argon was done in section 2.4.3, however, this still requires the computation
of the ratio of pressure tensor and strain rate. The quality of viscosity obtained from these
methods strongly depends on the accuracy of the pressure, which in turn strongly depends
on the used cut-off radius and method used to compute the long-range interactions [87].
Alternatively, the periodic perturbation method [75] can be used, where the viscosity can be
calculated from a steady-state velocity profile generated by a periodic external force applied
to the system. Compared to the pressure, the velocity profile is straightforward to extract
from a MD simulation with less statistics that needs to be collected to obtain meaningful
results.

Previous calculations of the viscosity for different water models showed that there can be a
large difference between the calculated value and the experimental value, as discussed next.
Most research concentrated on the SPC/E water model. For example Balasubramanian et
al. [14] showed how the viscosity of SPC/E is calculated for T = 303.15K, using both
equilibrium and non-equilibrium molecular dynamics. The value they found is about 18%
less than the experimental value, which is similar to the error that Gou et al. [80] found. Hess
et al. [87] used periodic shear flow to calculate the viscosity of the SPC/E water model at T' =
300K and found a value about 30% lower than the experimental value. Recently, this has also
been verified by Chen et al. [35] using the Green-Kubo method. Wu et al. [211] simulated
shear flow at 7' = 298.5K and found an error of about 23% for SPC/E. On the other hand,
Bordat et al. [23], using a reverse non-equilibrium molecular dynamics simulation, calculated
the value of the viscosity for the SPC/E water model at T = 300K which was almost the
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same as the experimental value (within 5% error). Less research is done on the other water
models. For example, Yongli et al. [214] calculated the value of the viscosity at several liquid
water temperatures for several water models (including the TIP4P model) using the Stokes-
Einstein relation and reported errors between 30.3% and 52.3% between experimental values
and calculated values. Wensink et al. [205] calculated the value of the viscosity for the TIP4P
model at 7" = 298.25K and found an error of more than 60% compared to the experimental
value. Very recently, Song et al. [178] performed non-equilibrium molecular dynamics
simulations using the periodic perturbation method to simulate the shear viscosity of five
commonly used water models (including the SPC/E and TIP4P model). The value they
found for the viscosity of the SPC/E model at 7' = 300K is 15% less than the experimental
value, while the value for the TIP4P model was 41% less than the experimental value. For the
TIP4P/Ew water model no data for the viscosity is known to us, while for the TIP4P /2005
only very recently [73] the dependency of the value of the viscosity on the pressure at three
different temperatures were calculated using the Green-Kubo method. The conclusion was
that, at least at these temperatures, the value of the viscosity is very well predicted (slightly
less than 5% error) with the TIP4P /2005 water model. Furthermore, in other recent papers
[1, 7, 149] it was shown how the TIP4P /2005 water model predicts a wide range of material
properties accurately and therefore is a promising water model.

In this section, several of the water models (SPC/E, TIP4P, TIP4P /Ew, and TIP4P /2005)
will be tested on their ability to model the viscosity of liquid water between the temperatures
T = 273K — 373K. Especially, it will be shown how Poiseuille flow generated inside a nano-
sized channel can be used to extract the value of viscosity versus the temperature for these
models very efficiently. The flow is generated by a constant body force on each of the
water molecules inside the channel and the resulting velocity profile is used to calculate
the viscosity. This technique was used before to investigate the viscosity of simple fluids,
like argon, in Section 2.4.3, and has several benefits compared to the other methods. For
example, the reported simulation times needed in order to obtain meaningful statistics to
calculate the viscosity using the Green-Kubo method, the Stokes-Einstein method, or the
Couette shear flow method are 10, 20, or 60 ns. Water simulations commonly use a time step
of 1 or 2 fs, meaning that several tens of million time steps are required in these simulations
and therefore require considerable computational effort. Although the periodic perturbation
method performs better, where only 2 ns - 4 ns of simulation time is needed to obtain the
results, here it will be shown that good statistics for the velocity profile can be obtained
within only 1 ns of steady state flow. However, similar to the periodic perturbation method,
it means that the viscosity is not obtained in a shear-free situation. Therefore, care must
be taken that the shear inside the nano channel does not become too large.

The value of the viscosity is calculated for the different water models by examining Poiseuille
flow inside a nano-sized channel illustrated in Figure 2.37. The Poiseuille flow is generated
by a constant body force fp, in the x-direction, to each molecule. The channel itself is
created by modelling two parallel solid atomistic walls at a certain distance from each other
in the z-direction. Between the two walls, the water molecules are placed. The boundary
conditions in the x and y-direction are periodic, while in the z-direction the water molecules
are constricted by the walls. The equation for ideal Poiseuille flow inside a channel in this
case is:

d du

- (u - ) P fox (2.88)
where u,, is the (macroscopic) velocity in the x-direction inside the channel, p is the liquid
density, and p is the unknown viscosity. The velocity profile and density can be extracted
from the MD simulation, while the applied force is known. This gives the possibility to relate
the resulting Poiseuille flow to the viscosity of the used water model. However, care must
be taken, for example Bitsanis et al. [22] showed that, at least for simple liquids like argon,
the effective viscosity inside the channel can increase considerably in very narrow channels
(height smaller than 5 molecular diameters). One reason for this is the wall-fluid interaction
which results in a layering effect of atoms near the wall and this effect only gradually
disappears away from the wall (see Section 2.4.2). However, despite this, approximately
quadratic velocity profiles can be obtained for simple liquids confined to channels only 10
molecular diameters in height [195]. For more complex liquids, like water, which is simulated
in this study, the same phenomenon can be expected.

In order to extract the viscosity from the velocity profile, it is important that only the part



2.4. RESULTS 61

Figure 2.37: Figures showing the MD model of the nano channel (left). In total 2048 water
molecules are placed between two solid atomistic walls each consisting of 648 silicon atoms.
The distance between the centres of the two walls is &~ 4.3 nm. Poiseuille flow is generated
by a body force f, in the x-direction.

of the results are used that show the expected continuum behaviour. The results of the
simulations with argon showed a layering effect of atoms near the wall due to the wall-fluid
interaction and the used Lennard-Jones potential parameters. The same can be expected
from simulations with water near an atomistic wall. To examine this, an equilibrium MD
simulation (i.e. without flow) is carried out, where the variations near the wall and extent
of the variations are studied, especially the density and charge distribution profiles. The
density profile should show a region with a constant value, i.e. the expected continuum
value, in the middle of the channel, while layering of molecules can be visible near the wall.
The charge distribution profile is of interest, because this indirectly gives information about
the orientation of the water molecules. However, note that in this study, the wall atoms
are deliberately not charged. This means that the well-known phenomenon of the electric
double layer (see Section 2.1.2) is not taken into account and the resulting velocity profile
is only due to Poiseuille flow.

The water models that are investigated all have in common that they solve for the following
potential energy equation between molecules 7 and j:

U = 4e l("oo)m - (UOO)G] +2N: el (2.89)

T0O T0O oD 5T deoTias

Lennard-Jones interaction between the water molecules is only considered between the O-
atoms of each molecule ¢ and j, where rpo is the distance between the two atoms. The
Coulombic interaction of the water molecules is computed using a total of N charge sites
associated to each water molecule, where g, is the charge of the ath charge site of molecule
i and €g is the electrical permittivity of vacuum. The bond lengths and angles are fixed
using the SHAKE algorithm [165]. The water models differ in the values of the parameters
they use. Table 2.4 gives an overview of the used parameters in the four models compared
here.

For each water model, several MD simulations are performed in a (canonical) NVT ensemble.
The temperature in the system is controlled by a Nosé-Hoover thermostat [91, 139] and the
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simulated temperatures range from 273 to 373 K. The walls of the nano channel are placed
approximately 4.3 nm apart, measured from the centre of the bottom wall to the centre
of the top wall. Each of the atomistic walls consists of four layers of solid atoms, placed
and fixed in a fcc lattice square, i.e. in ABAB layers. The chosen material properties of
the wall are based on silicon, which has a density of pya = 2329ke/m® at the initilisation
temperature of the MD system, T;,;; = 293 K. Each wall consists of 648 wall atoms, which
interact with (only) the oxygen atoms according to the Lennard-Jones 12-6 potential. The

Lennard-Jones parameters for the wall in the case of Silicon are: oyu—0 = 0si—0 = 3.24A
and €yq1—0 = €5i—0 = 1.274%I/mo1 [103], however, as will be revealed later, slightly different
parameters for the wall are used in the simulations where the viscosity is obtained. The
total number of water molecules between the two walls is 2048. These are also initialised in
a fcc lattice, with an initial density of pi,i = 998.2ke/m?, and are allowed to melt during
the equilibration process [63], which takes 0.3 ns.

The value of the body force fp, is chosen such that the typical value of the maximum velocity
inside the channel never exceeds 20 m/s. This was done to prevent the shear inside the nano
channel becoming too large. This maximum velocity is selected since it provides good
statistics of the velocity profile compared to the natural vibrations of the water molecules,
while it was verified that the value of the viscosity was not greatly affected by the amount
of generated shear in the channel by performing a simulation with different values for f,.

The integration of Newton’s equation of motion is performed with the Verlet algorithm,
while the electrostatic interactions are treated by the 'Particle-Particle and Particle-Mesh’
(PPPM) method (see Section 2.3.4.2). However, the MD domain only has periodic boundary
conditions specified in two dimensions, the PPPM-method must be adapted to prevent
erroneous summation in the direction perpendicular to the walls. The method adopted here
is the 2D-Slab method with an added (vacuum) space at both sides of the wall, and includes
the ELC term to prevent slab-slab interactions (see section 2.3.4.3 for details). The grid
size for the PPPM method is [36 x 36 x 60] with a splitting parameter 8 = 0.305, while
the cutoff value for the Lennard-Jones interaction is r. = 1.0 nm, which is =~ 3op¢p. For
each MD simulation, the total simulation time is 1.5 ns, with a MD time step of 1.0 fs. All
results are determined from the last 1.2 ns of the simulation and are obtained by binning the
different macroscopic values in 500 bins, which are equally distributed across the z-direction.

First the equilibrium MD simulation is carried out in order to study the variations near the
wall. The water model SPC/E is employed for this simulation, for which the parameters
can be found in table 2.4. During the simulation, the density and charge distribution values
are collected in the bins.

Figure 2.38 (top) shows the density profile while the bottom figure shows the charge dis-
tribution across the channel. The density profile shows large variations around a more or
less constant value in the middle of the channel, where the variations near the wall are the
largest. These variations are the result of the interaction of the water molecules with the
solid atoms of the wall and can also be observed experimentally [34]. Water molecules spend
more time inside certain layers parallel to the walls, where the interaction between the wall
and the surrounding liquid is more in equilibrium than elsewhere. These layers are the peaks
visible in the density profile and come from the fact that, due to the strong LJ repulsion,
have a minimal distance in z-direction, but can be disordered (inside the layer) in x-y di-
rection. On the other hand, because of the dense layer of water molecules, the remaining
molecules can not come too close to this disordered layer because of the strong repulsion at
close range. That means that on either side of a dense layer, fewer molecules are present on
average, which are the troughs in the density profile. Only when the water molecules are
far enough from the wall, the interaction between the surrounding water molecules becomes
isotropic due to increased disorder, and the result is that more or less constant isotropic
density is reached.

The charge distribution profile shows that the orientation of the water molecules is also
constricted near the walls. The first strong positive peak of the profile indicates that more
H-atoms than O-atoms can be found near the wall, while the first trough after the peak
shows a strong negative charge indicating a layer of mostly O-atoms coinciding with the
density profile. The second peak and trough show something similar. On the other hand, in
the middle of the channel the average charge is zero, indicating random orientation of the
water molecules. Note that the total charge averaged across the entire profile equals zero,
e.g. the water inside the channel is neutral. Although in the simulation the electrokinetic
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Figure 2.38: The density profile (top) and charge distribution profile (bottom) obtained for
the nano channel from the equilibrium MD simulation (p;n: = 998.2ke/m?3, T;p;e = 293 K,
using the SPC/E water model)

effect caused by charges of the wall and counter-ions in the water, i.e. the electric double
layer, was deliberately not simulated, the orientation of the water molecule itself can create
a charge distribution perpendicular to the wall.

Near bulk or continuum conditions are established 1.2 nm away from the walls, indicating
the possibility to extract the value of the viscosity. However, the value of the density in the
middle of the channel is about 1035 keg/m?, while the averaged density across the complete
density profile is exactly the same as the initialised value, pini = 998.2ks/m?®. The reason
for the higher value of density measured in the middle of the channel is the combination
of the Lennard-Jones parameters for the wall-fluid interaction and the resulting interaction
with the water molecules.

In order to compare the value of the viscosity of each water model to the theoretical value
of the viscosity, each simulation should be performed with a predefined value of the density
in the middle of the channel. The value of the density that is aimed for, is the value at 1 bar
for the different temperatures, i.e. p (T)|p:mnst and can be found in for example Bird et

al. [20]. There are several ways how this can be accomplished. One possibility is to change
the distance between the two walls of the channel accordingly. This is comparable what
is done in an NPT-simulation, where the pressure is kept constant by changing the size of
the MD simulation box. However, considering the fact the simulations are done in an NVT
ensemble, another way to simulate the correct density in the middle of the channel is to
adjust the wall-fluid interaction parameter of the wall, owq—0o. If this value is decreased,
water molecules are able to move closer to the wall and therefore, on average, spent more
time in a larger volume between the two walls. This results in a lower density in the middle of
the channel. The following simulations are therefore performed with a variable value of the
wall-fluid interaction parameter o,.—0. The (macroscopic) density can easily be sampled
and does not require a lot statistics to be collected before a meaningful value is obtained.
Therefore, the correct value of o,411—0 can be obtained within the equilibration process (i.e.
within 0.3 ns of simulation time) and the remainder of the simulation is performed with this
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Figure 2.39: A typical velocity profile from one of the simulations of water inside a nanochan-
nel (using TIP4P/2005). An illustration of the fraction of the velocity profile used for the
curve fit is given.

Table 2.8: The value of viscosity of the four water models as obtained from the fitted

velocity profile. The experimental values are given for reference.

SPC/E TIPAP TIPAP/Ew  TIP4P/2005 | Experiment
T(K) p(mPas) u(mPas) p(mPas) u(mPas) p(mPas)
273 | 1.282£0.0940 0.668 £0.0515 1.601 £0.1459 1.697 £0.1259 1.778
277 | 1.073£0.0556 0.698 £0.0232 1.196 £0.0776 1.506 £0.1125 1.572
283 | 0.879£0.0356 0.605+0.0179 1.057+0.0947 1.114 4+ 0.0629 1.303
293 | 0.795£0.0473 0.544£0.0143 0.744£0.0261 0.928 £0.0341 1.004
303 | 0.6634+0.0239 0.4794+0.0146 0.7054+0.0249 0.817 +0.0476 0.802
313 | 0.519+0.0134 0.402+0.0089 0.538 £0.0148 0.586 £ 0.0280 0.658
323 | 0.4244+0.0154 0.3254+0.0125 0.483 +0.0240 0.557 +0.0248 0.551
343 | 0.370£0.0193 0.285+0.0135 0.384 +£0.0218 0.408 +0.0152 0.407
363 | 0.301+0.0097 0.28040.0159 0.270+0.0110 0.320+0.0135 0.315
373 | 0.271 £0.0068 0.251 +£0.0128 0.264 +£0.0110 0.291 +£0.0120 0.281

obtained value.

Next, the viscosity will be determined for the four different water models, SPC/E, TIP4P,
TIP4P/Ew and TIP4P /2005 for a temperature range of 7' = 273K — 373K by simulating
Poiseuille flow in the nano channel. As noted before, the value of the wall-fluid interaction
parameter of the wall, o410 is changed such that the density in the middle of the channel is
equal to the (theoretical) value of the density of water at 1 bar. Furthermore, the interaction
strength between the wall and the water molecules is changed/increased to: €yau—o =
3esi—0 = 3.822kJ/mol. This was done in order to reduce any significant slip developing near
the wall.

Figure 2.39 shows a typical velocity profile obtained from such a simulation. As expected,
the velocity profile is similar to a Poiseuille flow velocity profile, with only minor differences
very near the wall. In order to determine the viscosity from equation 2.88, the second
derivative of the velocity profile needs to be measured. The easiest way to do this is to curve
fit the data points of the velocity profile from the MD simulation. From this fitted velocity
profile, the second derivative with respect to the height of the channel can be taken easily.
The data points are fitted to a function described by v = ug+a (z — 20)2, where the fitting
parameters ug and a need to be determined and the parameter zy is taken as the middle
of the channel. Doing so, means the obtained velocity profile is assumed to be symmetric,
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Figure 2.40: The values of the viscosity as a function of the temperature obtained from the
curve fit of the velocity profile for the four different water models. The error of the fit is
also displayed. The lines in the figure are obtained from a fit of the type: pu = (T — To)fb,
where the fit with experimental data from Bird et al. [20] is used for reference.

Table 2.9: The parameters obtained from the fit of the type p = (T — TO)_b from the
datapoints as shown in figure 2.40.

| Experiment | TIP4P/2005| TIP4P/Ew | SPC/E | TIP4P
T, | 2254 2210 2245 212.4 173.6
b 1.637 1.642 1.677 1.633 1.578

while the fitting parameter a is directly related to the second derivative and therefore the
viscosity. However, because this value is sensitive to the actual fit, multiple symmetric curve
fits of different (continuum-like) sections of the (same) velocity profile of the MD results are
taken. The sections of the velocity profile that are used for the fit, are described by the
fraction of the total velocity profile, where the value of 1.0 means the obtained velocity
profile from wall to wall is used. In total 10 fits for each MD velocity profile are performed.
The fractions for the set of curve fits are: 0.80, 0.75, 0.70, 0.65, 0.60, 0.55, 0.50, 0.45, 0.40,
and 0.35. The final value for the viscosity is obtained by averaging the resulting set of fits
and the error of the fitted value is estimated using the corresponding 95% confidence bounds
of the set of fits.

Figure 2.40 shows the obtained values for the viscosity and the error of the fit for the four
different water models. The experimental values of the viscosity are displayed for reference.
The curves are obtained from a fit of the type: p = (T — To)fb, fitted to experimental
data from Bird et al. [20], where T, = 225.4 K and b = 1.637. Table 2.9 show the fitted
parameters obtained for the simulation results of the four water models. Table 2.8 shows
the obtained values of viscosity for the four different water models and the deviation from
the theoretical value of viscosity in percent.

The results show that the TIP4P water model severely underpredicts the value of the vis-
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cosity at all liquid water temperatures, especially at the lower temperatures, where the
deviation from the theoretical value is 45% to 60%, as found also by others [205, 214]. The
SPC/E model and the TIP4P /Ew water model show comparable performance in predicting
the value of the viscosity. The TIP4P/Ew water model is slightly better, but does so with
more computational effort because of the extra interaction site involved. In general the devi-
ations are about 15% to 30% for the SPC/E water model and 10% to 25% for the TIP4P /Ew
water model at the lower temperatures. The error for the SPC/E water model at T' = 293K
and T = 303K are very similar to the errors reported by other authors [14, 35, 80, 87, 211].
Both models predict the value for the viscosity within 10% to 15% for the higher tempera-
tures. However, the TIP4P /2005 water model predicts the value of viscosity very accurately
for the whole range of liquid water temperatures. The values are within about 5% to 10%
from the experimental values of the viscosity.

Overall, the averaged data confirm the above conclusions; the TIP4P model underpredicts
the viscosity by as much as -39%, the SPC/E and TIP4P /Ew water models underpredict the
viscosity by 19% and 15%, respectively, while the TIP4P /2005 water model underpredicts
the value of viscosity by (only) 3%.

This concludes this section where numerical results are presented that show how the viscosity
for four different water models is calculated and compared to experimental values. This was
accomplished by simulating Poiseuille flow in a MD nano channel. The value of the viscosity
was determined by curve fitting the resulting velocity profile and comparison of the profile to
a continuum solution. The benefit of using this method is the fact that good statistics for the
velocity profile can be obtained within only 1 ns of steady state flow, which is considerably
faster than alternative methods for finding the viscosity in MD simulations. The results
from the simulations showed that the TIP4P /2005 water model is able to accurately predict
the viscosity over a wide range of temperatures of liquid water, the TIP4P model performs
the worst, while the SPC/E and TIP4P /Ew water model performed similar and resulted in
reasonable accuracy for the value of the viscosity. Therefore, if a simulation is performed
where the viscosity plays an important role, the TIP4P /2005 water model is recommended.
Furthermore, in the next chapter the coupling of molecular dynamics and continuum is
introduced. As will become evident, the value of the viscosity is a very important parameter
for correct coupling of the two domains. Therefore, if a molecular dynamics simulation
of water needs to be coupled with the continuum, the TIP4P /2005 water model is also
recommended.



Chapter 3

Coupling MD and CFD: Argon
and Water

In the previous chapter the two separate simulation techniques of computational fluid dy-
namics and molecular dynamics were discussed. Both numerical techniques use Newton’s
equations of motion to obtain the simulation variables like velocity and pressure. However,
in MD the trajectories of individual atoms are followed that, when averaged, give the desired
macroscopic variables, while CFD solves differential equations to obtain them directly. In
this chapter a technique is explained that couples both numerical techniques, i.e. in one
domain the CEFD technique is applied while in another domain the MD technique is applied,
these are coupled and the two region together will give an unique solution based on the two
domains.

3.1 Schwarz Alternating Method

In Section 2.4 it was shown that using a MD simulation, basic continuum behaviour can be
seen even at the very small scales. However, also large deviations to continuum behaviour
can be observed, especially near the wall. In the region where there is continuum behaviour,
a CFD technique could equally well be applied. The fact that the MD technique yields the
same (continuum) solution, establishes a way to couple the two different regions.

When dealing only with partial differential equations (i.e. continuum description), it is
well established that with domain decomposition methods a boundary-value problem can be
solved by splitting it into smaller boundary value problems on sub domains. The solution
to the whole domain can be obtained by alternatingly solving the same boundary value
problem restricted to each individual subdomain. More specifically, in overlapping domain
decomposition methods, the sub domains overlap by more than the boundary, which in
practice means that the overlap is several grid cells. One of the earliest of these methods is
the Schwarz alternating method [169]. This method in turn solves the differential equation
on each of the sub domains where the latest values of the approximate solution of one domain
are used as the boundary condition for the other domains.

To illustrate the method, consider Figure 3.1. The top figure represents the complete domain
of which the boundary conditions are known and specified. For this example, the (Poisson)
differential equation 9?u/dz? = —8 is solved on the domain z — [0,1], with boundary
conditions u (0) = 0, u (1) = 0. Of course, the solution is easy to obtain and equals u () =
—4 (w2 — x) To illustrate the Schwarz alternating method, the complete domain is now
split into three overlapping domains. Domain 1 runs from 2 = 0 to x = 1/3, domain 2
from z = 2/3 to * = 1 and domain 3 from & = 1/4 to x = 3/4. Consequently, the two
overlapping regions range from x = /4 to x = 1/3, and from = 2/3 to & = 3/4, respectively.
The iteration is started by solving for domain 1 first. One of the boundary conditions
is known, u; (0) = 0, but the boundary condition at = 1/3 is not known. However,
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Figure 3.1: Figure illustrating the different domains used in the example. The top illustration
shows the complete domain x — [0, 1], while the bottom illustration shows how the domain
is split into three overlapping domains and how they can communicate with each other.

the Schwarz alternating method states that the approximate solution of domain 3 can be
used as a boundary condition for domain 1. Because domain 3 is not yet solved for, an
initial guess can be used, which can be “zero” everywhere, making the boundary condition
uy (1/3) = uz (1/3) = 0. This makes the solution of domain 1 uy (#) = —4 (#* — 3z). The
same can now be done for domain 2, where the boundary condition at = 1 is known and the

boundary condition at x = 2/3 is taken from domain 3 (i.e. the initial guess). The solution
for domain 2 is: up () = —4 (22 — 3z + 2). At this stage the “new” solutions for domain 1
and 2 are known. These solutions can now be used to obtain a “new” solution for domain
3. Domain 3 needs boundary conditions at = /4 and x = 3/4. The alternating Schwarz
method dictates that the values from domain 1 and 2 can be used. So, from domains 1
and 2, ug (/1) = uy (Y/4) = Y12, and us (3/4) = ug (3/4) = /12, can be used as the boundary
conditions for domain 3, making the “new” solution for domain 3: ug (z) = —4 (:E2 -+ 1/6).
The Schwarz iteration can now be continued for domains 1 and 2, where the boundary
conditions can be taken from us. The second column of Table 3.1 shows how the boundary
condition for domain 3, ug (1/4), changes over the Schwarz iterations, and the third column
shows the error relative to the final (exact) solution. The fourth and fifth columns show the
same for the value of the solution at # = 1/2. So this means that with the current geometry
and overlap, the Schwarz alternating method needs about 40 iterations to find the solution
for all domains with an error less than 1075 relative to the exact solution.

The example described above gives a good insight in how the Schwarz alternating method
works. In this paragraph a closer look is taken on the error analysis and the effect of the
size of the overlap used in the method. Figure 3.2 shows these results. The left graph shows
how the error from the previous example, decreases with the number of iterations. The
error decreases exponentially with the number of iterations. In the previous example, the
domain overlap size was picked randomly and kept constant during the iterations. However,

Table 3.1: Convergence of the Schwarz alternating method.

value error value error
iteration us (/1) ezaot=us(1/2) us (1/2) Lo o
1 0.0833 8.80-10°1 0.3333 6.67-1071
2 0.2500 6.67-1071 0.5000 5.00-1071
3 0.3750 5.00-1071 0.6250 3.75-1071
4 0.4688 3.75-1071 0.7188 2.81-1071
5 0.5390 2.81-1071 0.7891 2.11-10"1
10 0.7000 6.67-1072 0.9500 5.01-1072
20 0.7473 3.76-1073 0.9973 2.82.1073
30 0.7498 2.12-107% 0.9998 1.59-10~*
40 0.7500 1.19-10~° 1.0000 8.94-106
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Figure 3.2: Figure showing the error analysis and convergence behaviour of the alternating
Schwarz method. The left figure shows how the error for the example shown in Table 3.1
decays exponentially with the number of iterations. The right figure shows the effect of
the number of required iterations when changing the overlap size, while keeping the desired
minimum error between the exact and iterated solution constant.

the size of the overlap influences the error convergence, or more precise, the ratio between
the domain size and the overlap size has an influence on the error convergence. To test this,
the same total domain size and function as the previous example is used, although the size
of the overlap is varied while keeping the size of domain 3 constant. The right graph in
Figure 3.2 shows the result. From the figure it can be seen that the number of iterations
that is needed, decreases when the overlap size is increased. The number of iterations in this
case corresponds to the number needed to obtain a solution with an error less than 1076.
The datapoints in the figure are fitted to @/d,,.i.,, where a needs to be fitted and doperiap
is the relative overlap size. This means that the number of iterations scales approximately
inversely proportional to the relative overlap size, i.e. Nit ~ 1/d,yeriap. Note that when the
domain size and overlap size are increased by the same factor, the number of iterations does
not change.

So far, only the continuum case was discussed. The Schwarz alternating method can be
successfully used to split one large (continuum) domain into several smaller overlapping
domains. After a certain number of iterations between the subdomains, the solution for the
complete domain is found. This fact and the fact that the results from molecular dynamics
simulations produce continuum solutions (provided that the local physics allow it), inspired
several researchers [6, 81, 82, 206] to use the Schwarz alternating method to couple molecular
dynamics to a continuum, which is illustrated in Figure 3.3. The domain on the left is the
continuum domain, where for example the Navier-Stokes equations are solved, while the
domain on the right is a molecular dynamics domain, where a MD simulation is performed
to solve for the atomic motion.

In order to successfully initiate the iterations between the two domains, two conditions need
to be satisfied first. First of all, to start iterating between the two domains, it must be made
sure that the boundary conditions on both domains can be specified. As will become clear
in the following section, the boundary condition applied to the continuum domain obtained
from the MD domain is straightforward. However, the other way around, i.e. setting the
appropriate boundary condition for the MD domain, is not so straightforward. The other
condition to successfully start the iterations originates from the overlap region. As was
mentioned before, an MD simulation gives the right continuum solution, but it will only do
so if the conditions for a continuum are satisfied. It is known from previous simulations that,
for example near walls, discrete non-continuum effects can be present. When this region is
solved with a continuum method, the same result cannot and will not be obtained. Therefore,
the position of the overlap region must be placed somewhere where the MD simulation gives
the same solution as the continuum method applied in the continuum domain. Note that
this position is not always known beforehand and it can become a case of trial and error to
find the proper position for the overlapping domain. Finally, the size of the overlap that can
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be used in the MD/Continuum case is not yet specified. Obviously, the preferred overlap
size is as small as possible, because this will limit the MD domain size, which strongly affects
the total computational effort. However, as was discussed above, a smaller overlap size also
means that more iterations for the Schwarz alternating method need to be performed before
a satisfactory solution is obtained, which increases computational effort again. This means
that the ideal overlap size is a compromise between the two. In practice the size of the overlap
is just chosen to any convenient value matching either the grid in the continuum domain or
the size of the cell list in the MD domain. In Section 3.3 this is further investigated.

As a final note, consider the case what happens if a simulation would be attempted where the
overlapping domain is placed somewhere where the continuum domain is not able to solve
the same solution as the one obtained by MD, e.g. unexpected constitutive behaviour. In
this case the continuum domain, that is unaware of the non-continuum behaviour, will try to
enforce this incorrect solution onto the MD domain. On the other hand, The MD domain will
continue solving for the non-continuum behaviour, albeit with different boundary conditions.
The (end) result will be a incorrect coupled solution and almost certainly diverge, i.e. the
convergence behaviour as shown in figure 3.2 will not be obtained. Hence, the position of
the overlap domain is crucial, because this is the place where the two domains exchange
information. How they exchange information, or how to specify the boundary conditions on
the different domains, is discussed next.

BC-1 BC-2 BC-3 BC-4

overlap region

continuum domain + molecular dynamics domain

Figure 3.3: The alternating Schwarz method for the MD/CFD coupling. For the quasi
one-dimensional case, in total four boundary conditions need to be specified, BC-1 - BC-4.

3.2 Connecting Boundaries (MD—CFD, CFD—MD)

In order for the Schwarz alternating method to work for MD and continuum domains, a
specification of boundary conditions on both domains must be available. More specifically,
in the quasi one-dimensional coupled case shown in Figure 3.3, four boundary conditions are
needed. First, there is the “pure” boundary condition for the far left continuum boundary
(BC-1), which could for example be a certain velocity, pressure, or a flux boundary con-
dition. Second, there is a “pure” MD boundary condition for the far right MD boundary
(BC-4), which could for example be an atomistic or a specular wall. The other boundary
conditions (BC-2 and BC-3) however need further attention. On the right hand side of
the overlap region (BC-3), which is the boundary of the continuum domain, a (continuum)
boundary condition needs to be specified that is taken from the (approximate) solution of
the MD domain at that position. On the opposite side of the overlap region (BC-2), which
is the boundary of the MD domain, an (atomistic) boundary condition needs to be specified
that conforms to the (approximate) continuum solution at that position. Because of the
different variables that are solved in a continuum and in an MD simulation, i.e. continuum
variables versus atomistic position and trajectories, clearly these boundary conditions are
not straightforward. First in Section 3.2.1 it is explained how the continuum domain can
be connected to the MD domain. In Section 3.2.2 the opposite is done, i.e. how the con-
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Figure 3.4: Figure demonstrating how to obtain the boundary condition for the continuum
(extending to the left) using a bin near the boundary in the MD domain (extending to the
right)

tinuum solution can be opposed to the MD domain. Although the techniques explained in
this section are general, they do focus on the single atom case, like MD simulation of argon.
The coupling of molecules does require some special attention, which is explained in Section
3.2.3.

3.2.1 Connecting the Continuum Domain to the MD Domain

The first issue that needs to be tackled is the connection of the continuum domain to the
MD domain. In other words, the issue of the boundary condition that is applied to the
continuum domain and is acquired from the (approximate) solution in the MD domain.
Luckily, part of this issue was already solved in Section 2.3.2, where the process of binning
was explained. There it was established that when a sufficient number of atoms are averaged
over a sufficient amount of time, macroscopic variables like density, velocity, pressure and
temperature can be obtained from the positions, the velocities, and the interatomic forces
of the atoms. Consider the situation sketched in Figure 3.4, where the overlap region is
shown. The continuum boundary condition can be acquired from the boundary-bin, which is
a bin positioned with its center on the continuum boundary and covers a small region near
the boundary. Now this boundary-bin can collect data like atom velocities and interatomic
forces of all atoms that enter the region during certain time steps. When enough data are
gathered to obtain converged statistics, the boundary-bin gives a macroscopic variable, which
consequently can be used as the boundary condition. This of course means that the MD
simulation must progress for several timesteps before the boundary-bin has collected enough
information (see Section 2.3.2 for more details). In other words, the continuum domain does
not need frequent updating compared to the MD domain. Please note that it was not
specified which continuum variable is binned and coupled. This is because technically any
variable in the continuum equation solved in the continuum domain can be coupled this
way. This is used in later sections where both velocity and temperature are coupled. Once
the boundary condition is known, the continuum domain can be updated with any of the
techniques discussed in Section 2.1. This gives a new approximate solution that is applied
to the MD domain and eventually will give an improved approximate solution for the MD
domain again. However, then first a way of specifying the continuum boundary conditions
on the MD domain must be given.
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3.2.2 Connecting the MD Domain to the Continuum Domain

The previous section showed how to connect the continuum domain to the MD domain,
where it was shown how it is possible to obtain a single continuum variable for the boundary,
from many atoms near the boundary at many different time steps. However, in this section
the opposite is considered, i.e. knowing a single continuum variable at the boundary, the
positions and velocities of the atoms near the boundary at many time steps are desired. Of
course, this requirement is unrealistic, since there are many possible sets of atom positions
and velocities with same average continuum value. So instead of trying to determine the
exact position and velocity of the atoms, a method must be used that at least results
in the right average value. This is discussed in Section 3.2.2.1. Then there is another
issue; when fluid is flowing into the continuum domain and leaves this domain through the
boundary, mass may not be conserved. However, this can easily be solved by applying a
flux boundary condition and the continuity equation takes care of the mass conservation by
putting constraints on the velocity field. However, the discrete description of MD means
that the atoms that actually leave and enter the MD domain, must do so in a way consistent
with the flux through the continuum boundary. How this issue is tackled, is explained in
Section 3.2.2.2. Then finally, there is an issue that purely exist because of the way MD is
computed. Using molecular dynamics, for each atom the interaction with all surrounding
atoms, or at least all atoms within a certain radius, is considered. On the other hand, the
continuum domain, per definition, does not simulate individual atoms. This means that close
to the boundary where the MD domain and the continuum domain meet each other, the
MD domain still wants to interact with non-simulated atoms inside the continuum domain.
If nothing is done, this situation will result in visible non-continuum behaviour near the
continuum boundary, which is pure computational and not physical. Clearly this situation
must be prevented, which is discussed in Section 3.2.2.3.

3.2.2.1 Imposing the Desired Macroscopic Properties to the MD Domain

As discussed in the previous section, to connect the MD domain to the continuum domain
it is required to manipulate the atoms in such a way that they, on average, behave as the
continuum. This manipulation (or forcing) is only done in a small region near the MD domain
boundary, while the rest of the MD domain is untouched. Figure 3.5 shows the situation
that is discussed here. As shown before, the MD domain and continuum domain have an
overlap region where both methods should give the same result. In the previous section the
boundary-bin was used to communicate the MD solution to the continuum domain. Similar
to this, at the MD domain boundary, a forcing-bin is now constructed. This forcing-bin is
used to communicate the continuum solution to the MD domain. Because of the way the
Schwarz alternating method works, this boundary-bin and forcing-bin need to be separated
by a certain distance, which as discussed before, influences the convergence of the method
(for the results see Section 3.3).

Of course, it depends on the continuum variable that needs to be communicated to the
MD domain on how to proceed. However, a straightforward variable to communicate is the
macroscopic temperature. In Section 2.3.3 it was discussed how a (full) MD domain could
be set to a target temperature using the concept of thermostats. Basically the atoms were
manipulated in such a way that the system was solved in a NVT ensemble. Thus it achieves
a constant temperature. In the case of the velocity rescaling method, the atom velocities
were manipulated in such a way that the kinetic energy, and thus the instant temperature,
was constant and set equal to the continuum temperature at every time step. The more
advanced Nosé-Hoover method allows for temperature fluctuations while maintaining a con-
stant macroscopic temperature. These methods were previously applied to the whole MD
domain, and this can still be done in the coupled MD and continuum domain simulation
(including the forcing-bin). However, for the connection of the MD domain to the contin-
uum domain, it is possible to only apply these methods in the forcing-bin, and let the rest of
the system respond to the thermostatted area. This now means that every forcing-bin can
have its own temperature, which is taken from the continuum domain, and thus enabling
temperature coupling as well. The results of such a coupled simulation, where a temperature
gradient is applied, is shown in Section 3.3.

Another continuum variable that needs to be communicated is the macroscopic velocity
field. In other words, all atoms that are inside the forcing-bin need to be manipulated in



3.2. CONNECTING BOUNDARIES (MD—CFD, CFD—MD)

the “forcing bin”

continuum domain boundary

73

Ty O © o © ©
(@)
~lo ©0° oc! ¢ °: o °
3 . 5) . o °
21.°¢© o %20 P o:g0 o 4
é o : O o :o (@) q O o overlap region
=219 0:0 o © 0 (@) o o O S ole 0, 0% o
g 0 o © 0 © ' o © NI TR
§le e’ ® ® "i00l e 5”0 o — T
o 0:109 o"dg g _o: ° 00 e
2 o b ° : [®) ooo :oo (&) © .....00:00..
R (%) : ° U lo : (@) © (@) ~e— continuum domain ¢
:\: :/ \ MD domain —»

the “boundary bin”
overlap region

Figure 3.5: Application of the boundary condition for the MD domain obtained from the
continuum using a bin near the boundary in the MD domain.

such a way that they on average produce the macroscopic velocity. It needs to be stressed
at this point that this does not mean that the velocities of the individual atoms inside the
bin are identical, or that the fluctuations in the velocities of individual atoms caused by the
finite temperature of the bin vanish. Actually, the method should avoid this all together
and can be accomplished as follows. To start the derivation, consider the following equation
where the macroscopic velocity is obtained through binning the individual atom velocities
and adding through time [40]:

1 M 1 Nyin
i, = N, > D >y (3.1)
n=1 bin ;=1

In this equation  is the macroscopic velocity vector at time ¢, N; the number of sampled
time steps to average the instant velocities, Ny} the number of atoms that are inside the bin
at every time step n, and @} is the (instant) velocity vector of atom ¢ at time step n. The
velocities of the individual atoms are of course changing at every time step inside the MD
simulation, because of the interacting forces between the atoms. The equation expressing

the new velocity of atom i is given by (2.57):
At

TRy U
2mi

Uy i

(Frer s 1) (3.2)
Here @7 is the (instantaneous) velocity of atom 7 at time step n -+ 1, /7 the total force on

atom ¢ at time step n, and f?“ the total force on atom 7 at time step n + 1. These two
equations can be combined into:

Nty Niin Niin At

St —n 41 m

= 2 W Z“i+Z2mi(fi +17)
n=0 bin, i=1 i=1

This equation gives the macroscopic velocity in a bin, in terms of MD variables that are
binned over time. At this point, the only variable that can be manipulated in this equation
in a MD simulation, is the total force on each atom inside the bin at the subsequent time

step, fi"H. In Section 2.4 it was shown that with the aid of a body force applied to the
whole MD domain, the atoms were set in such a motion that the average motion of the
atoms, thus in the macroscopic continuum, was equal to that of a Poiseuille flow. Now,
instead of applying the same body force to all atoms, a unique additional force is applied
to each atom inside the bin. In other words, the total force on atom i now consists of the
interatomic force on ¢ exerted by all surrounding atoms plus this additional force. The value



74 CHAPTER 3. COUPLING MD AND CFD: ARGON AND WATER

of this additional force remains unknown for now. So, the total force on atom i is:

Nb1n
n+1 § 1 n+1 41 1
f + iw,extra — Ji,LJ + fz extra (33)
J=1,j#i

where represents the interaction force on atom 4, and fzneﬁfm is the additional force

applied to atom 7 at time step n+ 1. This equation is substltuted into the previous equation,
resulting in:

fn+1

1 Ni—1 1 Niin Nein

it n+1 1 m

Ue = 77 + ( + 1ex7"a+ i) 3.4
DIl PO Z Jiditra ] 34

To simplify the derivation at this point, it is convenient to take the mass of all atoms equal
to m. This allows to remove the mass from the sum over the bin, and it allows to write the
sum of the interaction forces on atom ¢ at time step n + 1 and the total force on atom ¢
at time step n as average values of the bin. After rewriting the resulting equation for the
applied extra force and writing everything as a single sum, the equation becomes:

1 N;—1 1 Ny, 1 N;—1 wn
N; ZO Ny Z (ff;cltm) - N, ZO [E (ﬁc 71131)9) — favg f;lvtlLJ (3.5)
n= mo =1 n=

This equation shows how the new value of the additional force on each atom in the bin
depends on the force caused by the velocity difference between the (target) macroscopic
velocity and the average velocity in the bin at each time step, minus the force that was
applied to the bin and the interaction force at the next time step. However, at this point
the problem remains that any sequence of values inside the sum for the additional force on
atom ¢ can still result in the same (net) value. In other words, the force on each atom inside
the bin can still be any value, as long as the LHS and RHS of the equation are equal. An
additional assumption is needed in order to proceed. The first assumption is that the extra
force is not applied to each individual atom inside the bin, but is constant for the whole bin.

The equation for the applied extra force f‘fmﬁa, then becomes:
iy 1 2m
1 - 1
Z f‘?;;m = ﬁt Z [E (uc - ﬂ’:’zlvg) - ( avg + f:vj;, ):| (36)
n= n=0
The second assumption is to set the additional force, _ng equal to the expression inside

the sum on the RHS of the equation. The result of this is an additional force that is applied
to the forcing-bin, which can influence the MD solution in such a way that on average the
continuum solution is simulated.
2m

f;lrtq}a = At (uC - ﬁgvg) - ( avg + fg;;lLJ) (37)
This additional force is a simple way to communicate the continuum solution to the MD
domain, and it enables the specification of any (macroscopic) velocity field to an MD domain
in the coupled simulation. Note that this expression is similar to the constrained dynamics
equation derived by O’Connell et al. [40]. However, at this point, also note that because
the additional applied force is set to a single value in the entire forcing-bin each time step,
the average value of the velocity in this bin is a single constant value. In other words, the
averaged velocity profile extracted from the MD simulation with a bin taken as the size of
the forcing-bin, will have a plateau over the distance that is equal to the size of the bin.
However, if one would sample the velocity profile with a different sized bin, the averaged
velocity profile will not be a strict plateau, i.e. absolutely flat, because although the average
of all atoms inside the forcing-bin is a constant value, this is not the case if only a sub-set
of these atoms is sampled.

To demonstrate the plateau or flatting effect, figure 3.6 shows the velocity profile obtained
from a coupled simulation of Couette flow. Here the MD domain is connected to a continuum
domain at two boundaries, while the other boundaries are periodic. Each of the continuum
domains have a Dirichlet velocity boundary condition specified on the outside boundary,
while the other boundary condition is determined from the MD domain. On the other hand,
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Figure 3.6: Figure demonstrating how the velocity profile does have a plateau caused by the
constant extra force inside the forcing-bin and how this can be solved by applying a local
shear based on the continuum velocity gradient.

the macroscopic velocity is enforced inside the forcing-bin using the technique discussed
above. The resulting velocity profile (dots in figure 3.6) clearly shows a region with a
different velocity gradient where the MD domain is connected to the continuum domain,
which is caused by applying the same additional force over the entire bin. In order to
remove the plateau in the velocity profile, the additional force must be adapted. In the
deriviation of the additional force, only the value of the macroscopic velocity was taken into
account. In order to remove the plateau inside the velocity profile, also the macroscopic
velocity gradients must be included. In other words, inside the forcing-bin also the correct
shear needs to be applied. Therefore, starting with equation 2.86, the new additional force
in the case of the Couette flow simulated here, can be written as:
2m Ouy

f:?.,i_xltra,i = E (U’C - u:,avg) - ( ;,avg + f;l,jl_;g,LJ> + MEAZZ (38)
The difference between this term and the additional force as specified before is that the
new term is different for every atom i inside the forcing-bin. The additional term is a
shear force determined from the distance atom ¢ is away from the centre of the forcing-
bin, Az; = zcentre — Ti- The resulting velocity profile (solid line in figure 3.6) is shown in
figure 3.6. The plateau is now greatly reduced and the correct velocity gradient is obtained
everywhere inside the MD domain. The small difference that remains is caused by another
effect that will be discussed in Section 3.2.2.3.

3.2.2.2 Controlling the Mass Flux and Resulting Reinsertion of Atoms

In the previous section it was explained how the macroscopic velocity is communicated to
the MD domain using a forcing-bin near the MD domain boundary. However, this combi-
nation of macroscopic velocity and domain boundary creates an additional problem. When
dealing with a pure continuum flow problem, the boundary conditions are either a speci-
fied velocity, a velocity gradient, or a specified pressure at the boundary. The continuity
equation dictates the mass conservation of the continuum, and the Navier-Stokes equation
dictates the resulting velocity and pressure inside the system. The flow of the continuum
through the boundaries can simply be expressed as a mass or volume flux. However, this
continuum behaviour now must be translated back to the discrete behaviour in the MD.

The macroscopic variable “mass flux” in the MD simulation can simply be described as
follows. Counsider an imaginary wall somewhere inside the MD domain; over time, atoms
of a certain mass pass this wall from one side to the other, but atoms also do the opposite
(i.e. move back through the boundary) because they vibrate due to the finite temperature
of the atoms. Each time an atom passes this wall, its mass is added or subtracted from a
discrete value representing the total flux, depending on its direction. This motion of atoms
through the wall is averaged over time giving the (macroscopic) mass-flux. There are two
important things here: 1) atoms move back and forth through the boundary and 2) the
average of this movement is the continuum flux through the boundary. However, near the
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MD domain boundary this becomes problematic. Once atoms went through the MD domain
boundary, they are located outside the MD domain that is simulated, and thus the number
of atoms N is no longer constant inside the computational domain. In other words, the
(instant) mass of the whole domain changes at that point, and the only way to prevent this
is to insert an equal number of atoms into the domain somewhere else. Strictly speaking,
this is exactly what the continuity equation imposes in the continuum, i.e. to preserve mass
by putting restrictions on the velocity field. However, an atom that went outside the MD
domain could be coming back the next time step, and from an averaged point of view, in
that case nothing has happened (i.e. no flux). So, in order to communicate the continuum
flux to the MD domain, atoms should be able to go through the MD domain boundary,
either going out or going in the MD domain. In the first case the atom must not disappear,
i.e. somehow remain inside the MD domain volume, and in the second case the atom needs
to be reinserted at the right location. Luckily, both problems can be solved, which will be
explained next.

First the subject of the insertion of atoms at the right spot is discussed. The first question
that arises here is: “What is the right spot?”. Inside the MD domain all the atoms interact
with each other (and vibrate) through the interatomic potential, which in the case of the
Lennard-Jones potential is strongly repulsive at short range and attractive at long range.
This also means that those atoms that are in close range with each other have a large (positive
valued) energy associated to them, while those atoms that are further away contribute to
less (but negatively valued) energy. However, for the NVE ensemble the total energy, the
sum of the potential and kinetic energy, remains the same for the whole domain. Therefore,
the “right spot” of the newly inserted atom, is a new position inside the domain where the
energy of the system does not change too much or remains the same. In other words, the
position of the new atom must be determined from the interaction with the atoms that are
in the neighbourhood of the new position in such a way that the potential energy associated
to the new atom is equal to the presribed (mean) energy. This also means that the insertion
of the atom can become computationally very expensive, because for each atom that is
inserted many interactions must be determined beforehand. Another problem, especially
associated with dense liquids, is the fact that the potential energy landscape can change
value of several orders of magnitudes in a very small distance and it has large hills and very
deep holes which can act as traps for normal steepest-descent iterators. Delgado-Buscalionia
et al. [49] developed a special steepest-descent iterator, called USHER, that overcomes this
problem by adapting the magnitude of the displacement to the local features of the energy
landscape and in this way it can very quickly find an appropriate spot. To prevent trapping,
the routine is simply restarted at another random position when it detects it is trapped.
The updating of the new atom position 7 *! is written as:

= %és" (3.9)
where fis the (virtual) interatomic force on the atom that needs to be inserted, while f is the
modulus of f and ds™ is the displacement of the iterator. The USHER insertion algorithm is

optimised by choosing the right displacement each time step. The original USHER, method
suggests an optimal performance by choosing:

ASopip, it U™ > Uguip
0s" =

min (As, Unf_nUU) , U™ < Ugpip
where Uy, corresponds to a high value of potential energy (> 10? in reduced units), as-
sociated to the condition where the new atom position is very close to an existing atom,
i.e. they almost overlap. The parameter As,,;, is chosen such that in the next iteration,
the new atom position is moved away from the overlap. This can be accomplished by us-

ing the fact that the large repulsive part goes like U, cpuisive ~ 4r~'2, therefore chosing

(3.10)

ASovip =15 — (4/U ”)1/ '? will gaurantee that the new atom position is moved a distance 7,
away from the center of the overlapped atom. Here 7, should be chosen as the characteristic
contact distance between the atoms. For the Lennard-Jones potential this is; r, = 0.90.
When the potential energy of the new position is lower than the overlap value, the iterations
proceeds in driving the new position downhill in energy, towards the target energy Uy. The
two terms between the brackets have different purposes. The second term is used to drive
the iterations very quickly into (near) the local minimum, while near the local minimum the
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Figure 3.7: The continuum mass flux is applied to the MD domain by means of particle/atom
insertion. The atoms that are selected or rejected to be inserted are chosen using a very
simple statistical probability.

maximum displacement is governed by the parameter As which ideally is chosen near the
value of the width of the energy hole.

The USHER iteration is able to quickly find a right position with a predefined energy, how-
ever, this is only one part of the particle insertion routine. To complete the insertion of the
new atom, it must also be given new velocities, but the insertion and possible new position
should also take into account the (continuum) mass flux defined by the continuum domain.
To illustrate the processes, figure 3.7 shows a simplified view on how this is accomplished.
Here the case of uniform flow with a (continuum) velocity, @ = {u,, 0,0}, is shown. This
velocity is enforced with the method described in the previous section in the most left and
most right cell. The inflow and outflow of atoms through the MD domain boundaries, where
the normal of the boundary is given by 7, must on average be the same as the continuum
mass flux py (@ - ) = pyu,. For the MD domain this means that in order to preserve mass,
every time step a certain number of atoms exit the MD domain at the right, while these
same atoms are reinserted at the left in the same time step. The average number of atoms
that should be inserted every time step At is: Nnsert = pnAmpuAt, where p, is the
number density as defined before and Aj/p is the outlet/inlet area of the MD domain cell.
This would mean that for a typical simulation condition where, p, = 0.8, Ap;p = 40 x 20,
u,, = 0.2, and At = 0.005, the average number of atoms to be inserted per time step is
(only) Nynsert &~ 1. However, if an impermeable wall would be placed at the MD boundary,
all the atoms that hit the wall are simply bounced back and stay inside the forcing-bin.
In the meantime, the enforced velocity u,, inside the cell (which effectively is a force) adds
more atoms inside the forcing-bin and under the action of this applied force moves them,
on average, towards the MD boundary. This means the density and pressure near the MD
boundary is increasing. On the other hand, if no obstruction is placed at the MD boundary,
all the atoms which go through the MD boundary now are inserted into the cell where there
is a inflow (the left boundary). At first, the number of atoms leaving the domain is larger
than the number needed based on the mass flux, which means that there will be a depletion
of atoms inside the cell. This can mean that now the number of atoms that go through the
boundary is less than required by the mass flux, simply because there are not enough atoms
available. The result is that the process automatically comes into an equilibrium, where the
density inside the cell becomes too low.

From the simplified view in the previous paragraph, it can be concluded that the correct
boundary is a permeable wall that allows some of the atoms to pass (to be reinserted) while
the other atoms are simply bounced back into the outflow cell. This method does require a
certain criterion to determine which atoms can pass or not. For example, Werder et al. [206]
proposed a criterion based on the collision of atoms with respect to a moving MD domain
boundary. This (local) MD boundary is moving with a velocity equal to the macroscopic
velocity, but is set back to its original position at each time step. This leaves three options
for an atom that was in the vicinity of the boundary. 1) The atom was bounced back by the
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moving wall, and has a final position inside the MD domain. 2) The atom bounced back by
the moving wall, but has a final position between the position of the wall that was moved
and the MD domain. 3) The atom moved outside the MD domain but did not came into
contact with the moving wall. The re-insertion criterion is this case is based on the fact that
all atoms that are outside the MD domain after the moving wall is moved back, need to be
reinserted (i.e. condition 2 and 3).

However, the mass-flux criterion that is used in this work is a simple statistical probability.
The first atom that is going to have a new position outside the MD boundary starts with
a 50% chance to be selected to be bounced back or to be reinserted. In the first case its
velocity component perpendicular to the boundary is reversed while the other components
remain the same, while in the second case the atom is removed from the outflow cell to be
reinserted into a inflow cell. The selection of this atom is recorded with a certain counter.
If the atom was reinserted this counter is increased, while the counter is decreased if the
atom bounced back. The number of the counter can now be used to determine the selection
for the next atom that is going to have a new position outside the MD boundary. If the
counter is positive, this atom has a larger chance to be bounced back, while if the counter is
negative the opposite is true. The whole insertion criterion can be controlled by the relative
weight that are given to the counter when an atom is bounced back or reinserted. For
example, if both events are equally important (41 for insertion, -1 for bounce-back), after
one insertion it is less likely that it is followed by another insertion, but on average both
events are occuring with equally chance. However, if different relative weights are given to
the events, more atoms are inserted than bounced back (or opposite). Therefore, the relative
weigths can be coupled and controlled with continuum information like the density or mass
flux (total number of particles inserted) and gives a way to control the mass flux.

The last remaining item for a succesful particle insertion method is to find a way to apply
the correct mass flux in the cells that have an inflow condition. In the simplified situation
illustrated in figure 3.7 this was very simple; every atom that left the domain at the right had
to be reinserted into the cell at the left. However, in general, multiple cells have an inflow
and an outflow condition and once an atom has left one of the cells, it must be inserted in
one of the inflow cells. Similar to what was the case with the outflow mass-flux, the velocity
that is enforced inside the inflow cell will move the atoms, on average, towards the center of
the MD domain. When there are not enough atoms inserted (or provided) inside this cell,
the cell will be depleted from its atoms on one side. This situation is worse when the mass
flux inside the cell is higher. Based on this reasoning, the cells should receive the amount
of atoms based on their relative mass-flux with all cells. In other words, the cell with the
highest mass-flux will have more chance of receiving a new atom.

This ends this section where it was demonstrated how the continuum mass flux and resulting
particle insertion can be accomplished. This method, together with the method discussed
in the previous section, is all which is needed to succesfully couple the MD domain to the
continuum domain for steady incompressible flow. However, the fact that the MD domain
has a non-periodic boundary condition where it is connected to the continuum domain and
the fact that in molecular dynamics one atom interacts with all its neighbours brings forth
a problem that manifest itself in unrealistic non-continuum effects. These will be discussed
in the next section.

3.2.2.3 Prevention of Fluctuations Near the Boundaries

Molecular dynamics works on the principle that the force on one atom is obtained by looking
at the interatomic interaction of all surrounding atoms, or in the case of a cutoff radius, only
those inside the radius of the one atom. Whenever a “pure” MD domain is modelled, this is
not a problem, because even at the boundary of the MD domain, the atom interacts with
the atoms on the other side of the MD domain because of the periodic boundary condition.
The result is that this one atom cannot make a distinction between a bulk condition and
the post-processing results show a constant density profile, and other profiles. On the other
hand, when the interatomic interaction of an atom near a molecular wall is examined the
density profile will show variations. These are the (real) wall-fluid interactions that are
explicitly modelled. However, with the coupling of the MD domain and the continuum
domain a different problem arises. At some point the MD domain stops and the continuum
domain is the only computational domain left. Near this boundary is where the particles
get inserted and may leave the domain, possibly to be reinserted somewhere else. However,
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Figure 3.8: Figure demonstrating how the atoms near the boundary have incorrect inter-
atomic interaction

the atoms inside this area do have incomplete interactions, and this result in unrealistic
variations in the density profile and other profiles. The missing interaction is illustrated in
Figure 3.8 by the shaded area inside the radius of interaction.

The incomplete interaction is a results of the fact that the continuum domain does not
simulate atoms or molecules by definition, while molecular dynamics requires the individual
position of the atoms in order to compute the interaction. This also means that the amount
of missing interactions differ as a function of the distance to the boundary and that by
providing the molecular dynamics simulation some meaningful information, the missing
information can be compensated. For example an atom that is relatively far away from the
boundary will only miss a small part of the long-range attractive tail of the Lennard-Jones
potential, while an atom that is very near the boundary at the right, predominately interacts
with atoms on its left side, which translates back to a strong force towards the right, which
in both cases is easy to compensate in order to complete the total interaction. However, the
missing interaction potential and force on an atom that is in between the two extreme cases
is a complicated function that mostly depends on the structure of the liquid which in turn
depends on variables like density, pressure, temperature, and their gradients. The fact that
the local structure of the liquid plays a role in the function for the missing interaction was
also proposed by Werder et al. [206] where the radial distribution function g (r) describing
the local structure for a monatomic fluid like argon, is used. The model for the missing
interaction is based on the integration of the force components normal to the boundary
and the potential energy contributions weighted by ¢ (r) over the shaded area in figure 3.8.
They also showed a way how the missing interaction can be determined from a periodic MD
simulation. As explained above, the missing interaction is due to the fact a certain amount
of atoms are not taken into account, where the amount depends on the distance from the
boundary. The idea of the periodic MD simulation is to simulate a certain atom inside a MD
domain that has a complete set of interactions all the time. However, at the same time the
total instant force on the atom is split into one part that originates from all those atoms at
one side of a virtual wall, while the second part contributes to the interaction of the atoms
on the other side of this virtual wall. This last contribution is the part that an atom near
the MD/continuum boundary would have missed. If this is done for several virtual walls
and sampled for several time steps, this method should give the missing interaction as a
function of the distance from the MD /continuum boundary.

The solid line in the left graph in figure 3.9 shows this function for a MD simulation where
the number density p,, = 0.8 and the reduced temperature is T' = 1.2. As predicted by the
extreme cases, the missing interaction force has a weak-attractive force at long distance from
the MD/continuum boundary, while the force is large-repulsive whenever the atom is very
near the boundary. Please note that the curve between those two cases shows a dip where the
force is strong-attractive. The right graph in figure 3.9 shows how the normalised density
profile (p* = p/p,) near the MD/continuum boundary changes when this boundary force
function is used. The circles represent the normalised density profile when no boundary force
function is used. In this case the density profile shows large variations near the boundary,
indicating layering of atoms. This layering is the result of atoms being bounced back at the
boundary while they at the same time only have interactions with atoms on one side, thus
forcing them towards the wall on average. However, because now there are more atoms in the
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Figure 3.9: Figure demonstrating the density profiles (right) obtained using different bound-
ary functions (left). The boundary functions show how the missing interaction is summarised
in one function that is dependent on the distance from the MD /continuum boundary.

region very near the boundary, the large repulsive force at short distance of the atoms result
in a dip in the density profile further away from the boundary and both effects are repeated
a couple of times away from the wall with lowering amplitude. The density profile obtained
when the boundary force function is used, is shown with the red squares and gives a much
better result. Although the variations in the density profile are much less, some variations
do remain. Very near the boundary the normalised density is less than 1, indicating that
the force in this region is too large. The remainder of the profile show a similar pattern as
the case when no boundary force is used. The amplitude of the variations is considerably
lower, however the peaks and dips of this profile are slightly shifted.

The fact that some variations remain, means the boundary force is still missing some in-
teractions or the conditions near the MD/CFD boundary are not completely the same as
those in the bulk condition. One fact could be the influence of the bounce-back wall that
regulates the mass-flux, while others [110] think the lack of fluctuation in the boundary
force are the cause of the differences. However, as shown above, by adding the boundary
force, the density variations became less, which also means that it is possible to change the
boundary force in such a way that there are no density variations anymore. It was also al-
ready shown qualitatively that the boundary force near the boundary is too high, while the
rest of the boundary force must push more atoms into the low-density regions, while at the
same time pull them from the high-density regions. In order to quantify this new boundary
force function an iterations with respect to the resulting density needs to be performed.
Kotsalis et al. [110] showed how this can be done using a very simple control algorithm.
In this algortihm the boundary force is slightly changed every iteration, depending on the
sampled density profile obtained from the coupled MD /continuum simulation. The change
in boundary force at a certain point of the boundary force function is computed using the
local gradient of the density profile. This basically is the push and pull analogy explained
above, where a dip in the density profile means that atoms on average are pushed into this
dip from both sides of the dip. Whenever the density profile is very near the wanted value,
the resulting change in force is near zero. The dotted line in the left graph of figure 3.9
show the iterated function for a MD simulation where the number density p, = 0.8 and the
reduced temperature is 7' = 1.2. Compared to the function obtained with the periodic sim-
ulation, the largest changes are near the MD/continuum boundary where indeed the value
is lower, while the dip in the boundary force function is slightly shifted and is larger. The
black triangles in the right graph in figure 3.9 shows how the normalised density profile is
everywhere near one, meaning that the iterated boundary force eliminated the variations in
density near the boundary.

Although the boundary function obtained from the iteration with respect to the density
profile is a correct boundary force function that completely removed the density variations
near the MD /continuum boundary, its shape raises a question. The solid line in figure 3.10
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Figure 3.10: Figure demonstrating the average force on one atom as function of the distance
from the atom obtained from a periodic simulation. The figure also shows how part of the
function, after simple scaling or stretching, is very similar to the boundary force function
obtained by iteration with respect to the density profile.

shows again the boundary force extracted from the simulation of the periodic MD domain
with p, = 0.8 as done before, however this time the function is also extracted for the other
side of the atom. For example, the negative numbers in the distance from the atom indicate
left of the atom, while positive numbers indicate right of the same atom. As expected,
this function is symmetric with respect to the position of the atom (rq = 0), but also the
derivative of this function at r4 = 0 is zero. However, when these results are compared with
the boundary force function that completely eliminated the density variations (shown as the
dotted line in the left figure of figure 3.9), it is evident that when this function would also
be symmetric at r4 = 0, the derivative of the force would not be zero at r4 = 0. Another
observation of the differences between the two functions showed how the first dip in the
curve is shifted. On the other hand, the derivative is zero at the top of the first peak at
rq =~ 0.25, which again indicates a shift. Comparing these two shifts, reveals that the new
boundary force function can be made to match the solid line in figure 3.10 by shifting and
stretching it a little bit. The result of this is shown in figure 3.10, where this is done for a
simulation with p,, = 0.8 and p,, = 0.6. The conclusion from this comparison is that the
simulated and iterated functions are very similar in shape, however to completely eliminate
the density variations, the simulated function needs to be shifted and stretched. Further
research should point out what the cause of this shift and stretch are.

This ends this section where it is explained how large density variations appear near the
MD/continuum boundary. These are caused by the missing interactions from the atoms
that by definition of a continuum are not modelled. However, it was shown how the missing
(averaged) interactions can be supplied by an extra boundary force depending on the distance
from the wall and how this function can lower or even elimate the density variations. This
boundary force function can either be obtained using a separate periodic MD simulation or
by iteration together with the observed density profile.

3.2.3 Connecting Boundaries when Modelling Water

In the previous section it was shown how the MD domain and the continuum domain were
connected using the Schwarz alternating method. The coupling of the two domains relies
on the fact that the boundary conditions of each domain could be applied to, and extracted
from each subdomain. The theories explained so far were relatively general, but concentrated
mainly on the case where there is only one type of atom, i.e. argon. In this section it is
shown how comparatively the same techniques can be used to couple molecules, especially
water.

In the case of molecules, the connection of the continuum domain to the MD domain remains



82 CHAPTER 3. COUPLING MD AND CFD: ARGON AND WATER

the same. The boundary conditions for the continuum equation can be extracted by binning
or averaging the results obtained from the MD domain. Although the simulation of the
molecules in the MD domain is much more complex, the difference in the continuum domain
is simply specified by using different continuum parameters like density and viscosity of the
liquid that is simulated.

However, the connection of the MD domain to the continuum domain needs more attention.
As some in the previous subsection, there are three vital parts for a successful coupling
of the MD domain to the continuum domain. The first part is: 1) opposing the correct
macroscopic variables, e.g. velocity or temperature, to the MD domain. In the Argon case,
this was done by an additional force inside the forcing-bin to oppose the correct macroscopic
velocity, while the macroscopic temperature could be opposed by using a local thermostat.
The second vital part is: 2) generating the macroscopic mass flux inside the MD domain.
This involves a controlled method that selects which atom does exit and re-enter the MD
domain. Whenever an atom is selected to be reinserted, this atom must be inserted in a
spot that has the right contribution to the total energy of the MD domain. The third vital
part is: 3) to minimise or eliminate unnatural variations in obtained results from the MD
domain. These variations are the result of incomplete interactions of atoms that are near
the MD/continuum boundary, because there are no atoms simulated inside the continuum
domain. This part is solved by adding a mean boundary force to those atoms that are near
the boundary. The value of this force is dependent on the distance between the atom and
the boundary.

For general molecules, e.g. water, opposing the correct macroscopic variables, the method
explained in Section 3.2.2.1 is still applicable. The only difference is that in the case of
general molecules, the value of the mass of atom ¢, m;, cannot be assumed as one value. For
Argon this was done in order to derive equation (3.6), which is the equation that gives the
additional force inside the forcing-bin. However, a similar equation can be derived in the
case of general molecules by considering the averaged mass inside the cell. In other words,
the additional force in the case of general molecules becomes:

- 2my,. _ -

f;l;t_rla = At 4 (U’C - ﬁygvg) - ( gvg + f;lv—;,lLJ) (311)
where my,, is the average mass inside the forcing-bin at time step n. Consequently, the
equation of the additional forces that includes the velocity gradient, 3.8, is changed accord-
ingly. The method to opposing the macroscopic temperature to the MD domain remains
the same, i.e. using a local thermostat.

The methods used to oppose the macroscopic mass-flux to the MD domain for general
molecules is very similar to the methods used for Argon. However, the big difference is
the fact that whole molecules (consisting of bonded atoms) must be able to exit and enter
the MD domain and can rotate, which generates several problems. It now is possible that
certain atoms (belonging to a molecule) can be outside the MD domain but should still be
included in the interatomic interaction evaluation. Even now atoms are outside the MD
domain, the molecule itself does not necessarily need to be reinserted because of this. It is
only when the molecule’s center of mass crosses the boundary, the selection method, whether
the molecule needs to be reinserted or bounced-back into the domain, is invoked. If it is
bounced-back, the whole molecule (all separate atoms) is bounced-back. If it is selected for
reinsertion, the whole molecule (all its atoms) is removed from the domain to be reinserted
somewhere else. The reinsertion of one Argon atom was a relatively easy task because only
one atom and its interaction with all surrounding (single) atoms needed to be counsidered.
Special techniques, like USHER, [49], can speed-up this process of finding the right spot inside
the energy landscape of the MD domain, based on the instant total energy of the system.
However, the reinsertion of a whole molecule is a formidable task, because the interaction
of all atoms inside the molecule with all surrounding atoms need to be computed. Further,
in the case of a single atom, like Argon, there was no need to also find an orientation of the
atom. In other words, in the case of Argon only a new position was needed. In the case
of a general molecule, the positions of all atoms inside the molecule also result in a certain
orientation of the molecule. In the case of fixed bonds and angles between the atoms inside
the molecule, this means for example that the new center of mass and the new rotation of
the reinserted molecule needs to be computed. Luckily, for the relatively simple molecules
(in terms of configuration), especially water, there are techniques available in literature [60].
Similar to the technique used in USHER [49], De Fabritiis et al. [60] developed a more




3.3. RESULTS 83

general USHER technique that can be used for polar liquids, where the energy minimisation
process, described in Section 3.2.2.2; is now applied concurrently to all degrees of freedom
(translational and rotational).

The last minimum requirement for successful coupling of the MD domain and the con-
tinuum domain is the elimination of the unnatural variations in the MD results near the
MD/continuum boundary. In the case of an argon atom, these unatural variations were
contributed to the missing interatomic interactions due to the non-existing (virtual) atoms
inside the continuum domain. In Section 3.2.2.3 it was explained how these missing inter-
actions could be simulated by a (single) averaged boundary force function, where the value
of the missing interaction is dependent on the distance from the atom and the boundary.
This function can be obtained from a separate simulation of a periodic domain where all
the interactions on a single atom are collected as a function of the distance between the
atom and a virtual (non-existing) wall. Although this obtained function is successful in re-
ducing the variations, the variations only dissappeared completely when the boundary force
function was adjusted slightly. This adjustment was accomplished by an iteration where
the desired density profile and the obtained density profile were compared and where the
boundary force was changed accordingly (see Section 3.2.2.3 for details). Of course, the same
technique can be applied to any molecule. If the correct force is applied to the molecule,
then from a macroscopic point of view, the correct density can be obtained or enforced by
the iteration. This can be done because the density is simply defined as a certain amount
of atoms (mass) that are present in a certain volume (a bin), on average. However, the
same problem that was encountered with the reinsertion of the molecules also occurs here,
namely the orientation of the molecule. Additionally, another problem must be solved. To
be precise, the inclusion of the long-range interactions, like Coulombic interactions.

One attempt to percieve such a boundary force for the use of molecular dynamics simula-
tions of water, was done recently by Kotsalis et al. [109] and further applied very recently
by the same author [108] to a lipid bilayer in water. Here the density /boundary force iter-
ation method the same author developed before [110], is applied to water. The iteration is
performed between the obtained and desired density profile to find a single boundary force
that can be applied to the centre of mass of each water molecule. Further, this simulation
used a fixed cutoff radius for both the Lennard-Jones interactions and the Coulombic inter-
actions of about 1 nanometre, effectively not simulating the long-range interactions. Using
this technique, the density variations in the density profile of water can completely be elim-
inated. However, it is also shown [109] how the probability distribution of the orientation
of the water molecules near the MD/continuum boundary is very much different than the
distribution somewhere else in the domain. In other words, if nothing is done to prevent so,
the water molecules have a certain preferred orientation near the boundary. This preferred
orientation can be the result of other missing interactions (e.g. long-range interactions), the
influence of the specular wall, or simply because the boundary force is applied to the centre
of mass. To investigate the influence of the position where the boundary force is applied, an
adaption of the density /boundary force iteration method is developed here. The difference
between this method and the method described in [109] is the fact that now for each atom
inside the water molecule, a separate boundary force is obtained and applied at the position
of the atom itself (instead of the centre of mass of the molecule). Of special interest is
the question whether this has any effect on the preferred orientation of the water molecule
near the MD/continuum boundary. The detailed results of this simulation can be found in
Section 3.3.4.

In conclusion, the same techniques that are used to couple a MD domain containing argon
atoms and a continuum domain, can be used to couple MD domains that contain molecules.
Especially in the case of small molecules, like water, these techniques can easily be adapted.
However, it must be appreciated that for larger molecules several issues, e.g. orientation of
the molecule, still remain and that the computational effort can become a limiting factor.

3.3 Results

In this section several applications and results of coupled continuum and MD simulations
are given. In Section 3.3.1 it is demonstrated that the convergence of a coupled MD and
continuum simulation is very similar to that of the pure continuum method when both
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are used to model continuum bulk behaviour. In Section 3.3.2 it is shown how a coupled
simulation using argon can be used to model Poiseuille flow inside a nano channel. The non-
continuum effects near the wall are modelled with MD, while the remainder of the domain
can safely be simulated using any continuum method. In Section 3.3.3 the coupling of an
MD domain and a continuum domain is extended to two-dimensional coupling. Here the
flow around an MD obstacle is shown. This effectively also means that a MD simulation
is performed where only continuum boundary conditions are applied to the system, i.e. no
periodic boundary conditions are needed. In Section 3.3.4 a coupled simulation using water
is shown. First the results of the boundary force function, as discussed in Section 3.2.3,
are shown. Using these results, Poiseuille flow inside a nano channel is simulated, where
the water molecules near the boundary are simulated using MD, while the remainder of
the channel is modelled using a continuum method. Finally, in Section 3.3.5 a coupled
simulations is shown, where the coupled variable is different that the (macroscopic) velocity.
The simulation shows how a temperature gradient applied to the continuum domain can
influence an atomistic particle inside the MD domain. It is also shown how the same principle
can be applied to a charged particle and its surrounding ions inside the MD domain and
how it can influence the continuum domain.

3.3.1 Convergence Tests for the Schwarz Alternating Method

In Section 3.1 the Schwarz alternating method was introduced. There, certain convergence
and error properties were identified when the method is applied to continuum domains only,
i.e. only partial differential equations. It was explained that this method could also be used
to couple a MD domain and a continuum domain, as long as certain conditions are fulfilled.
In this section, for that case, a validation is given for the behaviour of the error with the
number of iterations, and how the required number of iterations changes with the size of the
overlap region.
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Figure 3.11: The model layout used for the convergence test. Domain 1 and 2 are contin-
uum domains, while domain 3 is simulated with MD. The applied boundary conditions are
indicated in the figure. The boundary conditions for the MD domain that are not relevant
to the coupling are chosen to be periodic.

To test the convergence of the error, consider the model layout shown in Figure 3.11. Here
three domains are specified exactly as was done in the example in Section 3.1, where all
three domains were solved as a continuum, and all three were solved for the same differential
equation. However, here only domains 1 and 2 are continuum domains, while the domain
in the middle, domain 3, is an MD domain. As before, the Schwarz alternating method is
initiated with a guessed initial solution, while the two outer boundary conditions for domains
1 and 2 are set to a certain value. However, the difference now is that the behaviour
in domain 3, i.e. the MD domain, is not described as a single differential equation with
boundary conditions. This means the discrete behaviour of domain 3 somehow must be
manipulated in such a way that basically the same differential equation is solved for.
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One of such manipulations can be the solving for a Poiseuille flow in all domains, where the
velocity is only in the z-direction, while the coupling is done in the z-direction (see Figure
3.11). The continuum differential equation to be solved is the stationary Stokes equation
2.6 with an externally applied force:

0%u

Wz = ~Plueo (3.12)
In this equation, u is the fluid viscosity, u, the velocity in the z-direction, p the fluid density,
and f5 cz+ the externally applied force in the z-direction. The solution of this equation is of
course a parabolic velocity profile. However, Poiseuille flow was also simulated in a (pure)
MD domain in Section 2.4, where the flow was obtained by applying a body force to each
atom. Together with the simulated MD walls that created a nano-channel, the resulting
velocity profile was parabolic. However, these same walls also caused non-continuum flow
near the boundary, caused by the wall-fluid interaction. On the other hand, at the centre
of the nano-channel the flow was exactly the same as that of a continuum flow. Therefore,
in this Schwarz convergence test, the MD domain is only used for that part of the velocity
profile where a continuum was simulated. Poiseuille flow can be obtained by applying a
body force to each atom. This simulation method ensures that in all domains the same
conditions are simulated, e.g. continuum flow, by different simulation techniques. Initial
solutions for the MD domains were discussed in Section 2.3.2, where it was shown that
the position of atoms were placed in according with a certain lattice (e.g. FCC) and the
velocities of the atoms obey Maxwell’s distribution at a given temperature. The system is
then “melted” into a liquid form. However, for the Schwarz alternating method, generally an
initial solution of zero velocity everywhere in the domain is used. This is a simple concept
for the continuum domain, but this means that for the MD domain the system first must
melt, while no additional force is applied. Once the system has molten and the binned
velocity of the MD system equates to zero, the Schwarz alternating method can be initiated.
In practice this is not a stringent condition, because generally the MD system equilibrates
faster than it takes to collect enough statistics for one Schwarz iteration update.

Now that the domains and initial conditions are specified, the boundary conditions need to be
specified. For the two continuum domains, the boundary conditions are very straightforward.
To simulate Poiseuille flow in a continuum, the two outer boundaries simulate a no-slip wall.
So, the left boundary of domain 1 and the right boundary of domain 2 have a boundary
condition u, = 0. All other boundary conditions must be obtained by communication
between the MD domain and the continuum domains as discussed in this chapter. In a
simulation the continuum domains are updated every 250 time units, which is equal to 62500
MD time steps in this case. The total MD simulation time is 6 x 10% time steps. This means
that in total 96 Schwarz iterations are carried out during the complete simulation. After
each iteration the MD solution is used to update the continuum solution, and during the next
iteration the new continuum solution is used to update the MD solution. It is expected that
the number of Schwarz iterations is more than enough for a converged solution. However,
the simulation needs to be extended in order to obtain meaningful statistical information for
the average velocity profile from the MD simulation when the coupled solution has actually
converged.

The total number of atoms that are simulated is NV = 4608, while the density of the liquid
is p = 0.8 and the temperature is kept constant by a Nosé-Hoover thermostat at T' = 1.2.
The value for the applied external force is specified as f; ezt = 0.00125. The only remaining
variable to be specified is the viscosity. Unlike in the continuum, the viscosity in a MD
simulation is a result rather than a specified variable (see Section 2.4). In an MD simulation
the substance modelled has a certain viscosity based on conditions like the temperature of
the MD domain. The MD simulation here simulates argon and in Section 2.4 it was already
shown that the viscosity of argon at T = 1.2 is p ~ 2. So, the viscosity for the differential
equation that describes the motion of the continuum is specified on that basis, 4 = 2.0 units.
This makes the solution of the differential equation for the velocity as follows:

- % (2 — 21) (2 — 25) = —0.00025 (2 — zL) (= — 2) (3.13)
where 2, is the left boundary of domain 1 and zp is the right boundary of domain 2, which
values are given next.

The last prerequisite for the Schwarz iterations is the size of the overlap. As explained in
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Figure 3.12: The velocity profile obtained in the coupled simulation when an overlap of 8
cells is used. The vertical lines indicate the boundaries of the coupled domains.

Section 3.1, from a computational point of view, the choice for the size of the overlap is
governed by the layout and the total number of cells used in the cell list method. For this
simulation, the MD domain has a size of 41.04 x 10.26 x 13.68, and it is subdivided into 28
cells in the x-direction. Here the two top and two bottom cells are used to communicate
the continuum solution to the MD domain (i.e. the forcing-bin). The boundary-bin, which
is used to communicate the MD solution to the continuum domain, also has the size of two
cells, which improves the rate of convergence of the statistics. The overlap used for the
Schwarz alternating method is determined by the distance of the centres of the bins. For
example, when the boundary-bin is placed at cell numbers 5 and 6, the overlap runs from
the top of the first cell up to the top of the fifth cell, making the overlap a total of 4.0 cells.
For the results it will however be more convenient to specify the overlap relative to the size
of the whole MD domain. To check the dependence of the convergence on the size of the
overlap, five different overlaps are simulated. The overlaps that were used are 2, 4, 6, 8,
and 10 cells. Finally, the left and right boundaries of the continuum domains need to be
specified. The size of the whole coupled domain (continuum and MD) is fixed to twice the
size of the MD domain, and the MD domain is placed exactly in the middle. This means
that z; = —20.52 and zr = 61.56.

Next the results are discussed. As expected, the coupled solution is sufficiently converged
(with a relative error less than 107%) in all cases with a different overlap, before the comple-
tion of the 96th Schwarz iteration. Therefore, a converged velocity profile can be obtained
using the last 105 MD time steps of the coupled simulation. Figure 3.12 shows the velocity
profiles in both the continuum domains, the velocity profile obtained from binning in the
MD domain, and the exact solution of the whole domain, for the simulation with an overlap
of 8 cells. The vertical lines in the figure indicate where the boundaries for the coupled do-
mains are located. The results show that the simulation produces a Poiseuille flow, and that
the Schwarz alternating method matches the exact solution in the overlap region, and that
both the MD domain and the two continuum domains responded accordingly. The small
visible difference (less than 1%) between the exact solution and the coupled solutions can be
explained by two predominant causes. The first one being the statistical noise in obtaining
the averaged (macroscopic) velocity from the MD domain, and the second one from the fact
that, as explained before, the viscosity of the MD domain is a result of the simulation and
not a predefined parameter as is the case in the continuum. A small difference between the
two values of viscosity can result in small deviations in the final solution.

Now it is established that indeed Poiseuille flow is obtained and that all domains give the
same solution, it is checked how the convergence of this solution behaves. The left graph
in Figure 3.13 shows how the error relative to the exact Poiseuille solution decreases as a
function of the number of iterations for the case where the overlap size is 8 cells. Each point
in this curve represents the 62,500 MD timesteps that needs to be simulated to obtain a
new continuum solution. The fitted curve in the figure is exponential. It is evident that,
just as shown in Section 3.1 with the pure continuum case, the error in the coupled MD
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Figure 3.13: The convergence of the error for Schwarz alternating method and the number
of iterations as a function of the size of the overlap (for a relative error less than 10~%). The
solid line indicates the fitted curve; the error is fitted with an exponential function, while
the number of iterations is fitted with an inverse function.

and continuum solution decreases exponentially. However, it must be noted that, especially
when the error becomes very small, the statistical noise in the MD solution becomes obvious.
This statistical noise can only be lowered when the number of atoms in the MD simulation
is increased, or when more time steps are used (i.e. more statistics are gathered). This
means that the fitted curve is used, in order to determine the number of iterations that
it takes to achieve a solution within a given error. Doing this for the case shown in the
figure, the coupled MD and continuum solution has a relative error less than 10~% when
38 Schwarz iterations are performed. The number of iterations that are needed to obtain a
relative error less than 1076 for different sizes of the domain overlap are shown in the right
graph of Figure 3.13. The points in the figure are fitted to a curve where the number of
iterations is inversely proportional to the overlap size relative to the domain size. Again,
as in the continuum case, the number of iterations scales inversely proportional with the
relative overlap size.

This section showed that the convergence of the error for the Schwarz alternating method
in the case of a coupled MD and continuum simulation behaves exactly the same as in the
pure continuum case. It also showed that by using this method, the MD and continuum
domains can communicate with each other, and when the solution has converged, both the
MD and continuum domains yield the same solution.

3.3.2 Comparison of a Pure MD and a MD/CFD Coupled Model

In the previous section it was shown how the Schwarz alternating method can be used to
couple two continuum domains and one MD domain to simulate continuum Poiseuille flow in
a channel. The continuum domains were applied near the wall, while the MD was applied in
the middle of the channel. This was to ensure that all domains solve a continuum solution.
In this section the opposite is done. In Section 2.4 it was shown that Poiseuille-like flow
can be simulated by a pure MD simulation. The conclusion of that simulation was that
in the middle of the channel a good matching Poiseuille velocity profile could be obtained.
However, near the walls the wall-fluid interaction causes non-continuum behaviour, like
density variations. Therefore, in this section a coupled simulation is performed where the
MD domain is used to simulate the non-continuum behaviour near the walls, while the rest
of the channel is simulated as a continuum domain. To verify and compare the results, a
full MD simulation of the channel is also performed.

Figure 3.14 shows the model layout used for the coupled simulation. The fluid near the
wall, including the wall itself, is represented with atoms and is solved with MD. The con-



88 CHAPTER 3. COUPLING MD AND CFD: ARGON AND WATER

S
z-position (-)

Figure 3.14: The model layout used in the coupled MD/continuum simulation. The left
graph shows a nanochannel that is completely modeled with MD. The right graph shows
how the same nanochannel can be modeled by using MD near the walls, while the rest of
the solution is obtained with a continuum method.

tinuum domain, which shares an overlap region with the MD domain, solves the continuum
equation. Note that for the coupled simulation only half of the channel has to be simulated,
because unlike the pure MD simulation, in the continuum it is very easy to apply a sym-
metry boundary condition. The Poiseuille velocity profile is at its maximum there, so the
boundary condition is simply described by du/0z = 0. The other boundary condition for
the continuum domain must be obtained from the MD domain.

The full MD simulation is initialised into 14 x 8 x 42 lattice sites, where the top and bottom
lattice sites are marked as solid atoms, composing the walls of the nanochannel. The number
density of atoms in the MD domain is set to p = 0.8, which means the MD domain size
is 23.940 x 13.680 x 71.819 units and that the centres of the walls are separated by 70.109
units. This corresponds to approximately 23.3 nanometres in physical units (for argon).
The temperature is kept constant by a Nosé-Hoover thermostat at 7" = 1.2. For the coupled
simulation only the region near one of the MD walls, where the non-continuum effects are
present, needs to be simulated with MD. However, the overlap region used for the Schwarz
alternating method need to solve a continuum solution. Therefore, the minimum size of
the MD domain is limited. In Section 2.4 it was shown that the non-continuum effects at
least extend to a distance of about 8.5 units away from each wall, making this the minimum
domain size. Therefore, the MD domain in the coupled simulation is initialised in 14 x 8 x 11
lattice sites, where now only the bottom lattice site is marked representing a solid (atomistic)
wall. This MD domain size is 23.940 x 13.680 x 18.810, which effectively reduces the size and
computational effort by a factor 4, while simulating exactly the same solution. As before,
the cell list structure used for the efficient computation of the interatomic forces is also used
for the coupling. As shown in Figure 3.14, the two top cells are used for the forcing-bin,
while the center of the boundary-bin, which also consists of two layers of cells, is placed
four cell distances (6.27 units) away from the centre of the forcing-bin. For the coupled
simulation, the continuum domain is updated every 375 time units, which is in this case
is equal to 75 x 10> MD time steps. This number was found to be a good compromise
between convergence of the statistics and the computational effort. During the simulation
the convergence of the solution is checked. Ounce it is detected that the solution has converged
sufficiently, the coupled simulation is continued for an additional of 1 x 105 MD time steps.
This is done in order to obtain sufficiently converged statistics to create the average profiles.
The full MD simulation of the channel is run for a fixed total of 2.4 x 10° time steps. Similar
to the coupled simulation, only the last 1 x 10° time steps are used for making the average
profiles.

Next, the boundary conditions are discussed. As shown in the previous section, Poiseuille
flow is simulated by applying a body force and solves for stationary Stokes flow with an
external force for the MD and continuum domains, respectively. The MD domain has
periodic boundary conditions in the x-direction and y-direction. For the full MD simulation
the boundary conditions in z-direction are determined by the top and bottom MD walls.
For the coupled MD simulation the MD wall is only used for the bottom side of the domain,
while the continuum solution is used for the top side of the domain. The applied body force
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Figure 3.15: The resulting velocity profiles from the full MD simulation and the coupled
simulation.

is in the x-direction and has a value of f; ¢, = 0.0020. Because the MD domain is periodic in
the x-direction, the continuum domain solves a 1D equation. Therefore, only two boundary
conditions are needed. The first boundary condition is taken from the average MD solution,
obtained from the boundary-bin, while the other one is the symmetry boundary condition
discussed above. Finally, the value for the viscosity for the continuum domain needs to be
specified. Just as before, a value of © = 2.0 is chosen. However, because also a full MD
simulation is performed, this value is again verified against these results.

Figure 3.15 shows the velocity profiles and density profiles obtained from the pure MD simu-
lation and from the coupled simulation. It is evident that the coupled simulation successfully
simulates the non-continuum details near the wall, while the remaining part of the profile
obtained with the continuum equation are identical to those obtained with the full MD
simulation. However, by using the coupled simulation, considerably less computation time
was needed to obtain the same final solution, e.g. good part of the day versus only several
hours. Furthermore, from the full MD simulation the value for the viscosity is extracted and
vields pimeasured = 1.98, which is almost identical to the value used for the viscosity in the
continuum domain.

In this section, a coupled simulation was shown where Poiseuille flow in a nano channel is
simulated. The strength of this coupled simulation is that the non-continuum effects near
the wall are simulated and no expensive MD computation time is wasted on the continuum
part, while the total solution is the same as the solution obtained with a full MD simulation.
Although the simulation shown above is somewhat idealistic, the same principle can also be
used for cases where the wall-fluid interaction is very important and can not be correctly
simulated by standard continuum techniques, like phenomena such as wetting and velocity
slip in microchannels [103].

3.3.3 Coupled Simulations of Flow round nano-sized particles

In the previous section it was shown how the coupled simulation can be seen as a new bound-
ary condition for the continuum. From the continuum perspective nothing has changed; the
boundary condition is still a Dirichlet boundary condition, where the value is now more ac-
curately supplied by the communication of the MD and continuum domains. In this section
the opposite is shown, namely how coupling MD and continuum enables boundary conditions
for MD systems that are difficult or impossible to implement in a pure MD case.

The most used boundary conditions for MD simulation tend to be periodic boundary condi-
tions. This is partially because these boundary conditions are very easy to implement in an
MD code, and partially because this boundary condition is used to try to simulate the bulk
instead of a localised problem. On the other hand, periodic boundary conditions are simply
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Figure 3.16: The principle of two-dimensional coupling. The MD domain is surrounded by
a continuum domain. The three dimensional MD domain is periodic in y-direction and is
coupled to the continuum domain using the boundary-bin and the forcing-bin in the other
directions. Inside the continuum domain a two-dimensional differential equation is solved.

used because there is no good alternative. However, there are situations where non-periodic
boundary conditions are essential to accurately solve the problem, e.g. the influence of one
obstacle instead of the influence of the one and all its many periodic images. In this situation
the coupling between MD and the continuum can be used to accomplish this, as is shown
below.

So far only one-dimensional coupled simulations were shown, where the other two dimensions
were still periodic. The next step is to remove another periodic boundary condition and to
substitute it with a coupled boundary condition. This means that coupling now is done for
full two-dimensional cases, where only one boundary is periodic. This principle is similar to
pure continuum two-dimensional flow, where basically the third dimension is eliminated from
the equations. However, for the coupling, this added dimension implies several important
things. First of all, the MD domain now is surrounded by a continuum domain both in the z
and z directions. Furthermore, atoms are now free to leave and enter the domain anywhere
in any direction. This also means that the additional applied force inside the forcing-
bin and the gradient as discussed in Section 3.2.2.1 must be applied in two dimensions.
However, from another perspective, all the external boundary conditions are now continuum
boundary conditions that are communicated with the MD domain. To demonstrate the 2D
coupling, continuum flow around a nano-sized obstacle is simulated. Two distinctive features
of the coupled simulation compared to a full MD simulation are that without the need for
periodic boundary conditions the flow round a single nano-sized obstacle is simulated, and
the external boundary conditions can be anything that is possible for the continuum. Figure
3.16 demonstrates this 2D coupling in more detail.

Up to this point it was not yet specified how the nano-sized obstacle looks like. However,
because the obstacle is modelled in MD it can be any molecular structure of interest, which
can be a nanotube, nanowire, or even a complex molecule like DNA. Furthermore, in the
case of a geometric obstacle (e.g., a spherical particle or membrane), any “real” lattice
structure of a solid material can be modelled where the material properties can be matched
by adjusting the two Lennard-Jones parameters € and o. Clearly, the coupled simulation
has another added benefit compared to a pure continuum simulation where the obstacle
must be modelled with a no-slip (or similar) boundary condition. However, in order to show
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the main principle of the two-dimensional coupling, in the following simulation a nanowire
is simulated. This nanowire is modelled similar to how the walls of the nano channel in
the previous Section are modelled, i.e. with atoms fixed inside a lattice. The coupled
MD/continuum simulation positions this nanowire in the centre of the whole domain and
in the continuum domain a uniform flow is applied, which will be enforced on the nanowire
through the coupling. Figure 3.16 shows this situation, demonstrating the different bins and
boundary involved. The uniform flow inside the continuum domain is generated by applying
a constant velocity boundary condition, U,, at the left, top, and bottom boundary. The
right boundary boundary condition is set to an outflow boundary condition. This basically
means that the directions of the velocity vectors are perpendicular on the right boundary
and is applied by a Neumann boundary condition. The continuum solution is enforced to
the MD domain inside the forcing-bin, while the new boundary conditions for the continuum
domain are supplied by the boundary-bin. The centre-line of the boundary bin (the dotted
line in the figure) represents the inside continuum boundary.

The MD domain is initialised in 28 x 5 x 28 lattice sites, where the size of the domain is
41.04 x 10.26 x 41.04 units. The nanowire has a diameter of 8.0 units which about 2.8
nanometre when using the parameters for argon. The number of atoms representing the
nanowire are Nyps¢ = 384. The number density of the fluid is taken p = 0.8, which means a
total of Ny = 13416 atoms are representing the fluid around the nanowire. The temperature
is controlled with the Nosé-Hoover thermostat to 7' = 1.2. The thermostat is only applied
inside the forcing-bin. For the situation sketched in Figure 3.16 this means that the two outer
layers of cells are used for the forcing-bin, while the center of the boundary-bin, which also
consists of two layers of cells, is placed four cell distances (5.86 units) away from the centre
of the forcing-bin. For the coupled simulation, the continuum domain is updated every 500
time units, which is in this case is equal to 1.25 x 10° MD time steps. This number was
found to be a good compromise between convergence of the statistics and the computational
effort. During the simulation the convergence of the solution is checked by fitting the sum
of the values of the boundary conditions with an exponential function (see also Section
3.3.1). Once it is detected that the solution has converged sufficiently (< 4 x 1073), the

coupled simulation is continued for an additional of 5 x 10> MD time steps. As before, this is
done in order to obtain sufficiently converged statistics to create the figures under constant
conditions. The boundary conditions for the MD domain in the x and z-directions are
specified by the continuum solution, while in the y-direction periodic boundary conditions
are specified. The size of the continuum domain is set to three times the MD domain size in
z-direction and to times the MD domain size in z-direction, i.e 123.12 x 82.08 units. Finally,
the value for the viscosity for the continuum domain needs to be specified. Just as before, a
value of = 2.0 is chosen. The uniform flow velocity that is simulated is U, = 0.25 units.

Figure 3.17 shows the resulting velocity magnitude contours obtained by averaging the last
5 x 10° MD time steps of the coupled simulation. The total number of time steps needed to
obtain this solution was 7.5 x 10° time steps, which is equal to 60 Schwarz iterations. At
that point the solution was converged sufficiently enough ( relative error< 4 x 10~2), which
basically means that the change of the coupled solution did not change more than what can
be expected from the statistical noise from the MD model. The velocity contours show how
the uniform flow, specified at the left, top, and bottom, flows around the single nanowire.
The centre-lines of the forcing-bin and boundary-bin are displayed with the dotted lines
inside the figure. The maximum velocity is reached between the nanowire and the top and
bottom boundary. The velocity near the nanowire is low to very low, similar to the no-slip
boundary condition. The solution is not completely symmetric with respect to cross-section
(BB), which has two reasons. The first reason is the fact that the Reynolds number [20]
in this case is Re = pU,D/u = 0.8, while Stokes flow, which would be symmetric, assumes
Re < 1. However, the MD domain does not have this restriction and any non-linear effects
inside the MD domain will result in non-symmetric boundary conditions for the continuum
domain. The second reason is the numerical and statistical noise in the MD domain involved
in obtaining the boundary conditions for the continuum domain. One way to avoid this is to
make the extracted boundary conditions for the continuum for cross-section (BB) symmetric
before each Schwarz iteration. This for example, is done by Werder et al. [206]. However,
doing so will also limit the type of flow that can be simulated in this coupled situation. In
general, it is hard to distinguish the border between the MD solution and the continuum
solution from the contours alone, meaning that the coupling method is working. However,
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Figure 3.17: The velocity magnitude contours demonstrating the results from the coupled
simulation of uniform flow round the nanowire. The two cross-section AA and BB (see text)
are also shown.

in order to investigate the velocity near the nanowire more closely and to compare the
values with a pure continuum solution, two cross-sections of the velocity contour plot are
investigated. The first cross-section (AA) is taken from the top to the bottom boundary,
positioned at the centre of the nanowire. The other cross-section (BB) is taken from the left
to the right boundary, again through the centre of the nanowire.

Figure 3.18 shows the results of the values of the velocity at the two cross-sections AA (left)
and BB (right). Both graphs contain three data sets. The first two data sets, the circles
and the solid line, represent the coupled solution. The third data set represents the solution
obtained from a pure continuum technique. This is accomplished by also simulating the
nanowire (as a smooth cylinder) and the flow near the nanowire using a continuum technique.
The boundary condition on the nanowire is the no-slip boundary condition, while the other
boundary conditions remain the same. The velocity profiles shown in Figure 3.18 show
that there is a difference in solution between the coupled situation and the pure continuum
situation. This is especially noticeable near the nanowire, where in the coupled situation the
value of the velocity is much lower than the one computed in the pure continuum situation.
On the other hand, by definition, the value of the velocity at the left, right, top, and bottom
boundary are the same in all situations. This, together with the fact that near the nanowire
the velocity is lower than in the pure continuum case, this means that the value of the
maximum velocity inside the whole domain is higher in the coupled situation. A possible
reason for why the velocity is lower near the nanowire in the coupled situation, is discussed
next.

By simulating the interatomic interactions between the fluid and the nanowire, non-continuum
effects, like density variations, are simulated. Very similar to what was the case inside the
nano channel simulated in Section 2.4.2, near the nanowire density variations occur up to a
distance of about 8.5 units. These density variations can also mean that the local viscosity
is affected. In a situation where the local viscosity near the nanowire is much higher than
the value of viscosity in bulk conditions, this would mean the velocity would be smaller than
expected from the case where the viscosity is everywhere the same. As is evident from figure
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Figure 3.18: The value of the velocity taken from two cross-sections positioned at the centre
of the nanowire. The coupled values are compared to a pure continuum case.

3.18 this is exactly the case, i.e. near the nanowire the velocity in the MD/Continuum cou-
pled case shows a much lower value than in the pure continuum case. However, in order to
further prove the possibility that the local viscosity is the cause of the lower velocity, another
type of coupled simulation is performed next. In this coupled simulation, the nanowire is
replaced with a nano structure as shown in Figure 3.19.

The nano structure has the purpose to make a small duct through which the fluid should
flow. The height of the duct is 10 units, which is about 3.4 nanometres when using the
parameters for argon. This means that the density variations are present inside the whole
duct. As before, the continuum boundary conditions simulate uniform flow. If the viscosity
near the MD structure is not affected by the density variations, the velocity inside this duct
shown left in figure 3.19) should more or less be equal to the pure continuum situation
shown right in figure 3.19). The structure in the pure continuum situation is modelled
with a smooth object, i.e. the boundary condition at the nano structure is set to the no-
slip boundary condition. However, in order to test the effect of the value of the viscosity
in the duct, this area can be modelled using a different value of the viscosity, pguct. The
two continuum cases that are simulated use a viscosity of ppuix = ftauet =2.0 units and
tduct = 12.0 units (i.e. 6 X ppyx). From the simulations, the velocity profile along the cross-
section (AA) is obtained, which should show a difference between the two cases simulated.
The other simulation conditions are exactly the same as before.

Figure 3.20 shows the velocity profiles obtained from the coupled simulation (top right),
the two pure continuum simulations (top left), and the the continuum velocity contours
inside the domain when the viscosity inside the duct is taken six times higher than the bulk
(bottom) . First the pure continuum solutions (top left graph) are discussed. As is evident,
a higher viscosity inside the duct results in a lower velocity inside the duct. The main reason
for this is the fact that a higher viscosity in the duct means it is less favorable for the fluid
to go through the duct. The velocity contours in this situation (the bottom graph) show
how almost no fluid is going through the duct, but instead flows around the nano structure.
The velocity profile from the coupled MD /continuum solution shows that, in the coupled
situation, also almost no flow is present inside the duct, similar to the higher viscosity case
for the pure continuum simulation. Note that the value of the velocity inside the MD duct
is within the statistical noise of the MD simulation. Hence, any detailed observation of the
coupled solution must be done sceptically. However, the coupled results compared to the
pure continuum results clearly show that when the value of the viscosity inside the duct
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Figure 3.19: The model of the nano structure, which effectively act as a duct, that is used to
test the influence of the density variations on the viscosity. The left figure shows the coupled
MD/Continuum model, while the right figure shows the pure continuum model where the
(continuum) viscosity is set differently than the bulk value inside the duct (ppuir versus
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Figure 3.20: The velocity profiles obtained from the pure continuum situation (top left) and
from the coupled MD/Continuum model (top right) when simulating the nano structure
that creates a small duct. The bottom graph shows the continuum velocity contours inside
the domain when the viscosity inside the duct is taken six times higher than the bulk.
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is much higher than the bulk value, both simulations solve the similar solutions. In other
words, the influence of the density variations on the value of the velocity near nano-sized
obstacles can be explained by the fact that the viscosity is much higher near these nano-sized
obstacles.

This concludes this section where the flow around a single nanowire is investigated using
an two-dimensional MD/Continuum coupled simulation. The simulation showed that the
density variations near the nanowire influences the velocity near the nanowire and therefore
the velocity contours inside the whole domain. In a separate coupled simulation it was
shown how the local viscosity near the MD obstacles can become very high and therefore
influences the flow. Therefore, the strength of this coupled simulation is the fact that the
(continuum) flow around a single obstacle is simulated, where the effects of the molecular
structure of the obstacle can be simulated very accurately. From another perspective, the
coupled simulation also enables the specification of any continuum boundary condition for
an MD domain.

3.3.4 Coupled Simulations Using Water / Boundary Force for Wa-
ter

The coupled simulations so far, simulated a liquid that consisted of single non-polar atoms,
i.e. argon. It was shown that this type of coupled simulation can be very helpful to invest-
igate flow problems where the most important effects, e.g. wall effects, are happening at
the scale that is easily accessible to an MD simulation, while there is a macroscopic effect
that would not be easy to be simulated with an MD simulation alone (due to the compu-
tational time needed). In other words, these simulations with single non-polar atoms can
give good insight of the behaviour of liquids at very small scales (i.e. nanometre scale).
However, especially for biological applications, another type of atoms/molecule plays a very
important role, namely water. As shortly explained in Section 3.2.3, the methods used for
the coupling of water are very similar to those used for the coupling of argon. However,
before a successful coupling can be achieved, some problems first need to be solved.

One of the problems to be solved is the elimination of the unnatural variations in the
MD results near the MD /continuum boundary as a result of the incomplete interatomic
interactions. As explained before, in the case of argon, these incomplete interactions could
be artificially supplied by adding an additional boundary force to all the atoms that are near
the MD/continuum boundary. This boundary force is a function of the distance between
the atom and the boundary and can be found by a separate simulation or by iteration (see
Section 3.2.2.3 and Kotsalis et al. [110]). However, for water the situation is trickier, because
now a molecule, rather than a single atom, must be considered. One attempt to perceive a
boundary force for the use of molecular dynamics simulations of water, was done recently
by Kotsalis et al. [109]. Here the density /boundary force iteration method the same author
developed before [110], is applied to water. The iteration is performed between the obtained
and desired density profile to find a single boundary force that can be applied to the centre
of mass of each water molecule. Using this technique, the density variations in the density
profile of water can completely be eliminated. However, it is also shown [109] how the
probability distribution of the orientation of the water molecules near the MD/continuum
boundary is very much different than the distribution somewhere else in the domain. In
other words, if nothing is done to prevent so, the water molecules have a certain preferred
orientation near the boundary. This preferred orientation can be the result of other missing
interactions (e.g. long-range interactions), the influence of the specular wall used as the MD
domain boundary, or simply because the boundary force is applied to the centre of mass. To
investigate the influence of the position where the boundary force is applied, an adaptation
of the density /boundary force iteration method is developed next. The difference between
this method and the method described in [109] is the fact that now for each atom inside
the water molecule, a separate boundary force is obtained and applied at the position of
the atom itself (instead of the centre of mass of the molecule). Of special interest is the
question whether this has any effect on the preferred orientation of the water molecule near
the MD /continuum boundary.

To find the boundary force function, the model layout shown in Figure 3.21 is used. The
MD domain size is 3.94 x 3.94 x 5.71 nanometres and the total number of atoms simulated
is N = 8480. The bottom boundary condition of the MD domain is given by an atomistic
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continuum domain

Figure 3.21: The model used in the coupled simulation inside a nano channel filled with
water. Only the atoms/molecules near the wall need to be considered with MD, while the
rest of the channel can be simulated with continuum methods. The wall consists of 800 atoms
positioned inside a FCC lattice. The liquid is represented by 2560 water molecules, making
the total number of atoms simulated, N = 8480. The MD domain size is 3.94 x 3.94 x 5.71
nanometres.

wall consisting of 800 atoms with a fixed position in a FCC lattice. The liquid (water)
is represented by 2560 water molecules, which means, for the volume available, the initial
density is 1000 kg/m3. The water model used for the interactions is the TIP4P /2005 water
model [2], for which the parameters can be found in Section 2.3.6. The top boundary
condition of the MD domain is a specular wall, while the four remaining boundary conditions
of the MD domain are chosen periodic. The continuum domain is coupled with the top
boundary of the MD domain. In order to accomplish the coupling, two bins are specified.
The first bin, i.e. the boundary-bin, is the bin inside the MD domain where the macroscopic
variables for the continuum boundary conditions are extracted from the MD simulation
results. The other bin, i.e. the forcing-bin, is the bin where the continuum solution is
enforced onto the MD domain. The remaining boundary conditions for the continuum
domain are set to zero everywhere, i.e. no flow is present or enforced. The area near the
MD domain boundary (of which the forcing-bin is part of), is the area where the boundary
force function is applied to the atoms inside the MD domain. The cutoff radius used for
the Lennard-Jones interaction potential in the following simulations is 7. = 0.9 nanometres.
On the other hand, the Coulombic interactions are evaluated using a PPPM technique
(see Section 2.3.4) and therefore are not truncated. However, because the MD domain is
not periodic in three dimensions, something must be done to prevent wrong interactions
in the z-direction. The technique used here, is the ELC-method [11, 99|, where besides
an artificial vacuum on top of the MD domain, also an additional correction, the so-called
electrostatic layer correction (ELC) is applied. Please note that this not mean that the
missing (long-range) interactions from the continuum domain are taken care of, because the
two-dimensional PPPM techniques only limits the unwanted periodic replications from the
interatomic interactions. Therefore, the boundary force function still needs to provide these
missing interactions. In order to evaluate the (total) boundary force function efficiently,
this function is only evaluated up to a distance of the cutoff radius away from the MD
boundary. Nevertheless, this does mean that the total boundary force function includes
both Lennard-Jones interactions and Coulombic interactions.

Before a simulation is started, the MD system is first initialised by “melting” the system
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Figure 3.22: The boundary force function obtained from the iteration simulation. The left
graph shows the function when the force is only applied to the centre of mass of the water
molecule, while the right graph shows the boundary force applied to the individual atoms
inside the water molecule.

by applying a Nosé-Hoover thermostat with a target temperature 7" = 293 K. After the
initialisation, the simulation to find the boundary force function is run for a total of 3.2ns
with a time step of 2.0ps, i.e. 1.6 x 10° time steps. As mentioned before, two different
types of boundary force functions are investigated. The first one is where the force is only
applied to the centre of mass of each water molecule. The second one is where a force
is applied to each atom inside the water molecule. In both cases, the continuum domain
boundary conditions are set to zero everywhere, i.e. no flow is present or enforced. In
each simulation, the density profile near the MD/continuum boundary is collected in 500
bins. These 500 bins are positioned between the boundary and a cutoff radius away from
the boundary. Data is collected for 4 x 10* time steps after it is compared with the target
density. The difference between the obtained density profile and the target value determines
the difference in the boundary force function [110]. The iterations continue by collecting the
density again, after changing the boundary force function accordingly. In the case when only
one boundary force function at the centre of the water molecule is simulated, the update of
the boundary force function is straightforward, i.e. all the differences are applied to the one
function. However, in the case where multiple boundary force functions are used, the update
of the boundary force function also must be distributed amongst the multiple functions.
This also means that there is no unique solution and consequently, several combinations of
different boundary force functions applied to the individual atoms can result in the same
target density profile. Therefore, in order to limit the complete randomness of the resulting
boundary force functions, first a separate simulation is performed. This simulation is similar
to what was done in Section 3.2.2.3, where the missing Lennard-Jones interactions for argon
are determined from a complete periodic MD simulation. However, for water this means that
four different interactions need to be determined. These are, the Lennard-Jones interaction
between the O atoms and the Coulombic interactions between each of the O atoms, the O
and H atoms, and each of the H atoms. Once these boundary functions are determined,
they can be optimised using the iteration method, where the updating of the boundary
force function can be distributed amongst the four different types of interaction. However,
it was soon discovered that the Coulombic interaction between the O atoms was the most
important force. Therefore, the iteration is only applied to this force.

Figure 3.22 shows the results of the simulations after the iterations. The left graph in
Figure 3.22 shows the obtained boundary force function when this force is only applied to
the centre of mass of the water molecule, while the right graph in Figure 3.22 shows the
obtained boundary force functions that are applied to the individual atoms inside the water
molecule. When comparing the left and right graph, two observations are most obvious.
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Figure 3.23: The probability distribution of the orientation of the water molecules near the
MD/continuum boundary and the resulting normalised density profile (p* = p/ppuix). The
left graphs show the probability distribution for the case when no force is applied, when the
force is applied to the centre of mass of the water molecule, and when the force is applied to
each individual atom inside the water molecule. The right graph shows the density profiles

near the MD/continuum boundary for all cases.

The first being the fact that, as mentioned before, the Coulombic interaction between the O
atoms is the most predominate force present. The second observation is that both boundary
force functions show a large negative value very near the boundary (< 0.2 nm). This implies
that the boundary force function pulls atoms strongly towards the MD/continuum boundary
in order to obtain the target density. Next the boundary force function obtained for the
centre of mass of the water molecule (left graph) is compared to this same function obtained

by Kotsalis et al. [109]. The comparison reveals a large difference between the two obtained
One possible explanation for the big difference, could be the

boundary force functions.

water model that is used in the simulations. Kotsalis et al. [109] used the SPC/E water
model (see Section 2.3.6 and [16]), while here the TIP4P /2005 water model [2] is used. In
order to verify this statement, a separate simulation using the SPC/E water model was
performed. However, the results (not shown here) still revealed a large difference between
the two boundary force functions. This also strengthens the argument that, unlike in the
case of argon, no unique (single) boundary force function can be found for water as such.
However, by definition of the iteration method, in all cases the density profile is equal to
the target density. This, and the results of the orientation of the water molecule near the

boundary, are shown next.
Figure 3.23 shows the results of probability distribution of the orientation of the water

molecules near the MD/continuum boundary and the resulting normalised density profiles
(p* = p/pouir)- The left graphs show the probability distributions for the case when no
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boundary force is applied, when the force is applied to the centre of mass of the water
molecule, and when the force is applied to each individual atom inside the water molecule.
The right graph shows the density profiles near the MD /continuum boundary for all the
cases. From the results of the orientation of the water molecule near the MD/continuum
boundary it can be concluded that in all three cases the water molecule has a preferred
orientation. Also, by comparing the two cases when a boundary force is applied, the position
where this boundary force is applied, does not have a significant effect on the preferred
orientation of the water molecule. Further, by comparing the case where no boundary force is
applied and the cases where it is applied, it must be concluded that the boundary force itself
does not have a significant effect on the orientation of water molecule at all. In other words,
the applied boundary force is not the (main) reason why the water molecule has a preferred
orientation near the MD /continuum boundary. Other effects, like long-range interaction and
the specular wall, are more likely to cause the preferred orientation. Note that the probability
distribution shown in [109] is very similar to the results obtained above. However, in all cases
(not shown here) the probability distribution of the orientation of the water molecule recovers
the correct uniform distribution, i.e. no preferred orientation, as the distance from the
boundary is increased. Therefore, the (incorrect) preferred orientation of the water molecule
is only a local effect. Next the obtained density profiles are discussed. The density profile in
the case when no boundary force function is applied, shows a steep decrease in density very
near the boundary (> 0.2 nm), while the remainder of the profile only shows several gentle
variations of the density before bulk density conditions are obtained. The density profiles in
the case when a boundary force is applied, either on the centre of mass or on each individual
atom, shows the bulk density everywhere. This means the density/boundary force iteration
is doing what it is designed for, i.e. limiting density variations.

This concludes the coupled simulations where it is shown how the boundary force function
can be used to eliminate the unnatural density variations near the MD /continuum boundary.
It is also shown that the water molecules do not have the right probability distribution of
the orientation near this boundary. However, in the remainder of this section it will be
shown how a coupled simulation of water can successfully be used for Poiseuille flow inside
a nano-sized channel.

The procedure for the coupled simulation of Poiseuille flow of water inside a nano-sized
channel is very much similar to the coupled simulation of argon discussed in Section 3.3.2.
For this purpose, the same model shown in Figure 3.21 can be used. This means that
effectively only the flow near the atomistic wall is considered with MD, while the rest of
the flow is described by a continuum equation. Again, note that for the coupled simulation,
only half of the channel has to be simulated, because unlike the pure MD simulation, in
the continuum it is very easy to apply a symmetry boundary condition. This means for
the continuum that the boundary condition is simply described by Ou,/9z = 0. The other
boundary condition for the continuum domain must be obtained from the MD domain from
the boundary-bin. The z-coordinate of the middle of the nano-sized channel, 22, is chosen to
be 1.5x the total MD domain height, i.e. zo = 8.57nm. The z-coordinate of the centreline
of the boundary-bin, i.e. the other continuum boundary, is positioned at z; = 4.28 nm. The
z-coordinate of the centreline of the forcing bin is zpp = 5.43nm. In the MD domain,
the Poiseuille flow is generated by a body force acting on each water molecule, while the
continuum solves for stationary Stokes flow with an external force. The value of the external
force is determined from the fact that the velocity inside the nano-sized channel should not
be too high, however large enough in order to collect meaningful statistics in a relatively
short time. A value of f, = 5.98 x 107*.J/ (mol - nm), which would mean the velocity in the
middle of the channel is about 50 m/s. The temperature is kept constant by a Nosé-Hoover
thermostat at 7' = 293 K. The last parameter that needs to be specified for the flow, is the
value of the viscosity. As mentioned before, the value of the viscosity is a result of an MD
simulation rather than a specified parameter, which is the case for a continuum computation
of flow. For the successful coupling of an MD domain and a continuum domain it is therefore
important to match the value of the viscosity. As shown in Section 2.4.5, several commonly
used water models, like SPC/E [16] and TIP4P [102], underpredict the value of the viscosity
by as much as 30-50%. It was also shown that the water model TIP4P /2005 [2] does give
satisfactory value of the viscosity, comparable to experimental values of the value of viscosity
for water. Therefore the coupled simulation next, will use this water model. However, to
show what will happen if the viscosity is not matched, a simulation with the TIP4P water
model is also performed. Finally, a third simulation will be performed. This simulation is
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Figure 3.24: The velocity profiles (u,) obtained from three different coupled simulation (see
text). The results show a clear dependency on the used water model and the inclusion of
the velocity gradient.

investigating the influence of adding the velocity gradient inside the forcing-bin (see Section
3.2.2.1 for details). If no gradient is included inside the forcing-bin, the velocity profile
shows a plateau. However, this plateau will also influence the local shear and therefore also
changes the surrounding velocity profile and therefore the values of the velocity used for the
coupling. The simulations run for a total of 1.6 ns, with a time step of 2 ps, therefore 8 x 10°
time steps are simulated. The macroscopic variables, like density and velocity, are sampled
for the last 1.0 ns of the MD simulation where they are collected in 1000 datapoint bins along
the z-direction (height of the channel). The boundary force function that is used here, is the
function that is applied to each individual atom (see above for details). However, as also
noted by Kotsalis et al. [109], the boundary force function must be adapted to compensate
for the influence of the flow near the boundary. Therefore, during the simulation the iteration
between the local density profile and the boundary force function is continued, in order to
prevent the unnatural variations of the density near the boundary. The parameters for this
iteration remain the same.

Figure 3.24 shows the velocity profiles obtained from the three coupled simulations. The
left graph in Figure 3.24 shows the velocity profile obtained from the simulation where
the TIP4P /2005 water model is used and the velocity gradient inside the forcing-bin is
included. The middle graph in Figure 3.24 shows the velocity profile obtained using the
same water model, however without the velocity gradient included. The right graph in
Figure 3.24 shows the results obtained with the TIP4P water model, including the velocity
gradient. In each of the graphs, the small squares represent the binned data points obtained
from the MD simulation. The solid line in the graphs is the corresponding to the coupled
continuum solution. This solution is obtained by solving the stationary Stokes equation
with the external force where the velocity boundary condition at z; is extracted from the
MD results. The dotted line inside the graph is a best-guess complete continuum solution
of the Poiseuille flow inside the nano-sized channel. In order to obtain this curve, only the
stationary Stokes equation with the external force is solved for. This means that the position
of the boundary condition where the no-slip condition is valid must be guessed/assumed.
Investigating the velocity profile obtained from the coupled MD/continuum solution, the
z-coordinate of this boundary condition is, zpo—siip ~ 1.05 nm. When comparing the three
results, two main differences can now be observed.

The first difference is caused by the inclusion of the macroscopic velocity gradient inside the
forcing-bin in the MD domain. When this gradient is included, all the solutions overlap.
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However, when the gradient is not included, the coupled solution is shifted up with respect to
the complete continuum solution. The reason for this is the plateau inside the forcing bin and
the resulting incorrect shear. When no gradient is present inside the forcing-bin, it means (in
this case) that the average velocity on the left side of the forcing-bin is too high with respect
to the continuum solution. This error in value is propagating towards the surrounding
bins/cells and therefore also influences the value inside the boundary-bin. Of course, the
value of the velocity inside the boundary-bin is used to update the continuum solution,
which now is higher than expected. This means that after the next Schwarz iteration, an
even higher velocity is applied inside the forcing-bin and the discussed sequence of events
further amplifies the problem. On the other hand, the values of the velocity near the wall
(z < 3.0 nm) do not show large differences, which means that the incorrect applied shear
and consequences for the coupling is only local (near the MD /continuum boundary).

The second difference is caused by the selection of the water model that is used in the
MD domain. Comparing the left and right graph reveals what happens with a coupled
simulation where the value of the viscosity is not matched. Inside the MD domain, the
molecules are set into an average motion by applying a body force to them, which for
the two simulations is the set to the same value. However, the TIP4P water model does
not simulate the correct value of the viscosity and underpredicts the experimental value at
T = 293K by 45.2%, which is much worse that the TIP4P /2005 water model, where the
value is underpredicted by 8.2%. For the coupled simulation this means that the following
sequence of events takes place. 1) The velocity that is enforced inside the forcing-bin is set
equal to the value obtained from the continuum equation of motion that uses the continuum
(experimental) value of the viscosity. 2) The body force applied to the TIP4P water model
results in a higher than expected velocity inside the boundary bin, which effectively means
that the velocity inside the forcing-bin is suppressing the flow inside the MD domain. 3) The
first Schwarz iteration is taking place, where the continuum solution is updated with the
higher than expected velocity but with the continuum viscosity. 4) The velocity that now
is enforced inside the forcing-bin is higher than expected from the pure continuum velocity
curve, but is lower than expected from a pure MD simulation with the TIP4P water model.
5) The inconsistency of the value of the viscosity results in a steeper velocity curve near the
wall because the value of the viscosity is lower than the continuum one. At the same time,
the continuum solution is preventing the curve to become steeper near the MD/continuum
boundary. This is evident in the velocity profile at z ~ 4.0 nm. This sequence of events
results in a velocity profile that is stretched and non-parabolic compared to the complete
continuum solution. This also means that the coupled simulation where the wrong value of
viscosity is used/simulated, produces an incorrect solution.

As a final verification, the value of the viscosity is extracted from the three different ve-
locity profiles. This is done using the method explained in Section 2.4.5 where the second
derivative of the velocity profile with respect to the height of the channel is compared
with the applied body force. The values of the viscosity are 0.999 + 0.08 x 10~3 Pas,
0.96240.08 x 103 Pas, and 0.504 4 0.02 x 103 Pas for the velocity profiles in Figure 3.24
from left to right, respectively. The experimental value of the viscosity at the simulated
temperature is iz, = 1.01 x 1073 Pas. These obtained values are similar to those obtained
in Section 2.4.5 for the different water models.

3.3.5 Coupled Simulations of Thermophoretic Flow

In the previous sections successful coupled simulation are shown where the velocity field
played a crucial role. However, as mentioned before, the principles of the coupling of do-
mains can also be applied to other macroscopic variables. One of such variables that is
accessible in both the MD domain and the continuum domain is the temperature. In MD
the value of the temperature can be controlled by a thermostat, which generally is set con-
stant and applied for the whole MD system (see Section 2.3.3). However, in this section a
simulation is performed where only in the forcing-bin the temperature is set to a certain
value while the remainder of the MD system is not thermostatted, i.e. the atoms in this
area are allowed to react to the thermostatted atoms. Similarly to what was done before,
the value for the temperature inside the forcing-bin must be obtained from a continuum
domain. This type of simulation effectively is able to create a temperature gradient inside
the two domains. In Section 2.1.3 it was shown how temperature gradient give rise to a
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phenomenon called thermophoresis, i.e. the motion of micro-sized and nano-sized particles
due to a temperature gradient. Furthermore, the concept of charge is very easily applied
to atoms, while in the continuum this concept is easier to handle with the specification of
a charge density. Nonetheless, in both domains there are ways to deal with the charges
and as discussed in Section 2.1.2, very useful and interesting flows can be generated us-
ing the charges which, for example, results in an electric double layer. Therefore, in this
section a coupled MD /Continuum simulation is performed that qualitatively studies a sin-
gle nano-sized particle inside a temperature gradient field. At the end of the section it is
shortly explained how the same principle can also be applied to a charged particle that is
surrounded with charged ions. However, this section mostly has the purpose to illustrate
some recommendations for further research, which are also discussed in Section 5.2.

First the behaviour of one single particle inside a temperature field is investigated. Previous
research that used molecular dynamics to investigate this [24, 152, 158, 162, 192]| concen-
trated on two species of different mass, interaction strength, and/or different concentration.
In all these cases, as expected, one of the species moved to the hot side, while the other
moved to the cold side. Although research is done using more realistic materials like, for
example, liquid heptane/benzene mixtures [152], where the (pure) MD simulation obtained
results were comparable to experimental values, there is still a lack of a simple physical
overall explanation of thermophoresis in liquids [192] and MD simulation can definitely help
in this. These (pure) MD simulations were performed with the aid of non-periodic bound-
ary conditions, but they were not coupled to another domain. The coupled simulation, as
proposed next, has the added advantage that the MD domain is surrounded by a control-
lable continuum domain. This opens two new options. The first one is the fact that now
continuum boundary conditions can be specified and applied to the MD domain that were
impossible before. The second option is that with the coupled simulation the phenomenon
can be investigated at length scales that are accessible to experiments. This would be very
computational expensive if the simulation was done with a pure MD code.

To illustrate the coupled simulation, the thermophoretic motion of a single nano-sized
particle inside a liquid is investigated. This is accomplished by modeling the particle in
a similar way as was done for the atomistic walls in Section 2.4.2 or the nanowire in Section
3.3.3. The particle is placed in the centre of the MD domain, while all sides of the MD
domain are coupled to a continuum domain. This means that the set-up of the coupled sim-
ulation is identical to the situation displayed in Figure 3.16. The only difference are the type
of boundary conditions that are applied and exchanged to and from the continuum domain
and MD domain, which now are values of temperature rather than velocities. The particle
is not allowed to move, but during the simulation all the forces exerted on the particle are
collected and averaged for every direction (x, y, and z). If the particle does not experience
any temperature difference, the averaged forces are zero. Therefore, any change from this
is due to the effects of the temperature difference. The sign of the force indicates whether
the particle wants to move to the hot or cold side. To investigate whether the size of the
particle has any influence on this force, two sets of simulation with different diameters of the
particle are performed. The first set simulates a particle with diameter, D,,s; = 8.5 units,
while the second set uses, Dyps¢ = 13.5 units. This corresponds to a nano-sized particle of
approximately 2.9 nm and 4.6 nm, respectively. The MD domain size is determined from
the fact that the domain should be large enough to position the particle inside the domain
and where the density variations are away from the continuum boundary. In this case this
means the MD domain size is chosen as 27.36 x 13.68 x 27.36 units for the small particle
and 34.20 x 13.68 x 34.20 units for the larger particle. As before, the value of the density
is set to p = 0.8 units. The temperature difference is applied in z-direction only, induced
by the continuum boundary conditions on the top and bottom boundary. The values of
the temperature on the left and right continuum boundary are determined by interpolating
between the top and bottom values of the temperature, i.e. the values versus the coordinate
do follow a line with a constant gradient. The flow conditions for all continuum boundary
conditions are set to no-flow, i.e. the velocity is set to zero. In all cases the simulation is
performed for 2.4 x 10° time steps, while the statisitics used to make the graphs uses the
last 1.6 x 108 time steps.

Figure 3.25 shows the results from the simulations. The curve in the figure shows how the
total force on the particle changes when the applied temperature gradient is changed. The
circles show the results for the small particle (Dops; = 8.5 units), while the squares show the
results for the larger particle (Dgpst = 13.5 units). The lines are linear fits to the data points.
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Figure 3.25: The results from the coupled thermophoretic simulation. The curve shows
how the total force on the particle changes when the temperature gradient is changed. The
circles show the results for the small particle (Dops: = 8.5 units), while the squares show the
results for the larger particle (Dypst = 13.5 units). The lines indicate the best linear fit for
the data points.

Two main conclusions can be drawn from the results. The first one is the fact that there is a
small difference between the forces on the small and larger particle when they experience the
same temperature gradient, where the larger particle experiences a larger force. The second
conclusion is the fact that in all cases the force has an opposite sign than the temperature
gradient. This indicates that in all cases the particle wants to migrate towards the cold side
of the domain. This also means, that at least for the cases investigated here, there is no
sign-change of the Soret-coefficient (see Section 2.1.3). This is the same conclusion derived
by Bordat et al. [24], where it is explained that this seems to be case with all simulations
that use the Lennard-Jones 12-6 potential applied to argon atoms. As a final verification,
another simulation is performed that employs a larger cut-off radius. The cut-off radius is
increased from 7. = 2.50 to r. = 4.00 and the difference in the total force is measured. The
results from this simulation showed that the total force on the particle changed (increased)
by as much as 20%. This again indicates (see Section 2.4.4) that the commonly accepted
cut-off radius of 2.5¢ is too small for these kind of applications.

At this point, it is easy to see how the same type of simulation could also be performed
with a charged particle in the centre of the domain, while this particle is surrounded with
it co- and counter-ions. As shown in the pure MD case by, for example, Freund [64], large
differences from the pure continuum methods can be observed at the nanometre-scale. A
coupled simulation where the particle and its electric double layer is simulated with MD,
while the surrounding liquid is modelled with a continuum method will solve this problem.
However, as a final remark of this chapter, one flaw in the simulations so far must be pointed
out. Namely, that all simulation so far concentrated on the flow round, or phenomenon near,
a static object. In other words, the MD domain remained at the same position inside the
continuum domain and did not change size during time. Therefore, to prevent the particle
of interest to move outside the static domain, the particle was pinned to its position. For
the realistic simulation of thermophoretic motion, electrokinetic flow, or any situation where
the part of the domain that cannot be simulated with a continuum method, this part should
have the freedom to move. One intermediate solution to solve this problem is to still keep
the particle inside the centre of the MD domain, but at the same time move the entire
MD domain (and its atoms) with the amount that the particle should have moved when it
would not be pinned. However, this also means that the boundary conditions applied inside
the forcing-bin must change accordingly because of the new position inside the continuum
domain. Therefore, further research should point out whether these kind of simulations can
still be performed efficiently using the alternating Schwarz method.

This ends this section and Chapter 3. In this chapter it was explained how the Schwarz
alternating method can be used to couple an MD domain and a continuum domain. This
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method, which is introduced in the first part of this chapter, works on the principle that
inside an overlap region, both the MD domain and the continuum domain are solving the
same result. The coupling is achieved by the correct specification of boundary conditions for
each domain, obtained from the other domain. The second part of this chapter concentrated
on this and it is explained how especially the specification of the boundary conditions in
the MD domain require the most attention. The third and last part of this chapter showed
several coupled simulation results. For example, here it was shown that the coupled simu-
lations can successfully be used to very accurately model wall-fluid interactions with MD,
while the remainder of the domain is efficiently computed with a continuum method. How-
ever, the next chapter will demonstrate a different kind of coupling between molecules and
the continuum, which is very efficient to study the behaviour of polymers.



Chapter 4

Flow Injection of Polymers into
Nanopores

In this chapter * the flow injection of polymers into nanopores is discussed. We use a
mesoscale simulation to measure the strength of the velocity flux needed to push a polymer
into a narrow channel. We find excellent agreement with the prediction by Sakaue et al.
[167], based on a de Gennes blob model of the polymer, that the critical velocity flux for
translocation depends linearly on the temperature, but is independent of the length of the
polymer chain or the width of the channel.

4.1 Introduction

In a recent paper [167], which extends earlier work [29, 46, 71|, Sakaue et al used scaling
arguments, based on the de Gennes polymer blob model [48], to predict when a polymer
near the entrance to a narrow channel will be pushed into the channel by a flow field. They
predicted that penetration will occur only above a threshold velocity flux

Jv =kT/n (4.1)
where k is Boltzmann’s constant, 7" is the temperature and 7 in the viscosity of the solvent.
Surprisingly, as remarked in [167], there is no dependence in this formula on the length
of the polymer nor on the dimensions of the channel. Physically this occurs because the
penetration is a tunnelling phenomenon; there is a free energy barrier which the imposed
flow must overcome to push the polymer into the constriction.

Recent developments in mesoscale simulation techniques mean that it is now feasible to per-
form convincing numerical investigations of the hydrodynamics of polymers moving within
a flow field. In this paper we use one of these approaches, a coarse-grained representation
of a polymer coupled to a lattice Boltzmann fluid [4, 5, 197], to investigate flow-driven in-
jection into nanopores. We find that the Eq. (4.1) holds remarkably well, even for the short
polymers and narrow channels that are accessible numerically.

The motion of polymers through constricted spaces has recently attracted considerable at-
tention because of its relevance to, for example, biological applications of microfluidics [174]
sequencing DNA by passing it through a nanopore [27, 218] and the passage of biomolecules
through membrane channels [104]. The process by which a polymer moves through a channel
can usefully be thought of in three stages. Firstly the polymer must find the opening, sec-
ondly it must enter the constriction, and only then can it move through the channel. Many
authors have used simulations to model the final stage of this process. For example, there
is work considering polymers driven through a pore by an electric field which addresses the
role of charge|70, 132, 140], hydrodynamic correlations [68, 98|, a crowded environment [74]

*published as: [127]: A.P. Markesteijn, O.B. Usta, I. Ali, A.C. Balazs, and J.M. Yeomans, Flow Injection
of Polymers Into Nanopores, Soft Matter, 5:4575-4579, 2009
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Figure 4.1: Geometry used in the simulations of a polymer chain translocating through a
narrow slit. The size of the simulation box is (60,14,10). The dimensions of the slit are
(12,h,10) and its left edge is at « = 30. All lengths are reported in simulation units.

and knots in the chain [93]. Polymers driven by a flow field have received less attention, but
see [32, 182, 197] for examples concerning the behaviour of polymers moving in a Poiseuille
flow field in a narrow channel.

In this paper we consider instead the second step of the translocation process. Rather than
considering translocation times, we focus on a different question, namely, once the polymer
has found the pore, will it be driven into it by the flow field or will it escape? This question
was touched on by Matysiak et al [128], who used molecular dynamics simulations to model
a polymer driven through a pore by an electric field. They found that the probability of
translocation increased exponentially with the driving voltage at low voltages, which they
interpreted as indicating an energy barrier, but became independent of the driving voltage
at high voltages.

In Section 4.2 we describe our numerical algorithm. In Section 4.4 we present results
for the dependence of the polymer translocation probability on the velocity flux, polymer
length, temperature, solvent viscosity and channel width. The results are summarised in
Section 4.4.5.

4.2 Numerical Method

To model the dynamics of a polymer chain entering a pore we use a coarse-grained, bead-
spring model for the polymer chain and simulate the fluid by means of a fluctuating, lattice-
Boltzmann method [113, 114, 115]. The beads (hydrodynamic centers) of the polymer and
the lattice-Boltzmann model are linked by a frictional coupling [4, 5, 197]; this results in
Oseen level hydrodynamics for the polymer chain. In this section we present the details of
the algorithm.

4.2.1 Lattice Boltzmann Method

The lattice-Boltzmann model is based on a discrete analog of the continuous Boltzmann
equation. The single particle velocity distribution function in the Boltzmann equation is
replaced by a discrete version, f;(r,¢) which constitutes the fundamental quantity in the
lattice-Boltzmann approach. f;(r,t) describes the mass density of particles, at a lattice
node r at time ¢, which have a discrete velocity c; where ¢ labels a lattice vector. It evolves
according to a discrete Boltzmann equation [65]

filr + ;i At t + At) = fi(r,t) + A; [(r, t)] (4.2)
where A; is the change in f; due to collisions at the lattice nodes and At is the time step.
The hydrodynamic fields, mass density p, momentum density j, and momentum flux IT, can
be expressed as moments of the velocity distribution function

p=> 1 i=pa=3 fic;, =37, ficic; (4.3)

where u is the macroscopic velocity at a particular node.
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We use the standard 19 velocity model [65, 114, 115, 210], which consists of stationary
particles and 18 velocities corresponding to the nearest ([100]) and next nearest ([110])
neighbor directions of a simple cubic lattice. The population density associated with each
velocity has a weight a® (>, a® = 1) that describes the fraction of particles with velocity
c; in a system at rest; these weights depend only on the speed |c;|. The optimum choice of
weights for this specific lattice is

a® = l, al = i, aV? = i (4.4)
3 18 36
We describe the collision and the relaxation towards equilibrium using a 3-parameter collision
operator [115] which allows for separate relaxation of the 5 shear modes, 1 bulk mode, and
9 kinetic modes. The post-collision distribution f = f; + A; is written as

S ey

k 4.5
where the sound speed ¢, = Az/v/3At, and Az is the lattice spacing. In previous studies
[115, 197] it was found that the non-linear puu term in Eq. (4.5) should be retained for
suspensions of moving particles, since it maintains Galilean invariance and prevents an
artificial cross-stream drift. Additionally, the domain of validity of Stokes flow is larger with
the non-linear term in place.

The non-equilibrium momentum flux II"* = ", f"““c;c; relaxes due to collisions at the
lattice nodes:

—ne 1
II"es* — (1 =+ )\)H q + 5(1 4+ )\U)(H’ﬂeq . 1)1 (46)

where IT" = IT—I1%, TI°? = pc? + puu is the equilibrium momentum flux, and I indi-
cates the traceless part of II"®?. The parameters A and \, are eigenvalues of the linearized
collision operator and are related to the fluid shear and bulk viscosities [115]

1 1 2pc? 1 1
— —pPAt | =+ 2 = ———At | —+ = ). 4.
n = —pc; s 0 3 W (4.7)

The connection between the discrete evolution Eq. (4.2) and the Navier-Stokes equations
can be established using a multi-scale expansion with the expansion parameter e defined
as the ratio of the lattice spacing and a macroscopic length scale. One can show that in
the hydrodynamic limit (e < 1) the lattice-Boltzmann equation leads to the Navier-Stokes
equations with corrections of order u? and €? [65, 210].
A pressure-driven flow can be modeled using the lattice Boltzmann algorithm by introducing
an external force density F¢**. This is done by modifying the evolution equation to

fi(r + ciAt t + At) = fr (v, t) + Ff™ (r, t). (4.8)
In the presence of external forcing, more accurate solutions to the velocity field are obtained
if it is defined to include a portion of the momentum added to each node by the force [115]

1
i’ =pu’ = ici + —FtAL 4.9
el =Y e (19)

In its original form the lattice-Boltzmann approach does not lead to fluctuating hydrody-
namics. However, it is possible to introduce fluctuations by including random terms in
the non-equilibrium stresses during the collision process. We follow the prescription of
[113, 114, 115] which satisfies a discrete fluctuation-dissipation theorem. The magnitude of
the fluctuations can be controlled in a convenient way by using an independent variable, T,
identified as the temperature.

To introduce solid boundaries in the system we use a bounce-back collision rule [65] in which
incoming fluid particles are reflected back towards the nodes from which they originated.
This results in no-slip boundary conditions.
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4.2.2 Polymer Chains

We model the polymer chain as a series of N beads of mass m connected by Hookean springs
with potential

Us(r) = k(r — b)? (4.10)
where the equilibrium length of a bond b is chosen equal to the lattice spacing Az. The

stiffness k = 300, ensures low fluctuations in the bond length compared to the radius of
gyration of the polymer chain. Excluded-volume interactions between beads are modeled
using a truncated DLVO-like potential in the limit of a point particle,

Ug(r) = erXp(Ti_m, (4.11)

with DLVO parameter Uy = 0.1 and the inverse Debye-Huckel screening length x = 80.
The equation of motion of the polymer beads are solved in an inertial form:

d*X;
= —V.UXN) +F/ (4.12)

where X; is the position of bead ¢, U is the total potential energy, which depends on the

positions XV of all the beads in the chain, and Flf is the hydrodynamic force exerted on
bead ¢ by the fluid. It was shown that the large time-scale separation between the dynamics
of the polymer and the individual monomers allows time for the hydrodynamic interactions
to reach a quasi-steady state, without imposing non-inertial equations of motion at each
time step [197]. We integrate Eq. (4.12) using a first order implicit scheme. The evaluation
of the forces arising from the potential, U, can be carried out using time-steps shorter than
At.

The beads of the polymer chain are coupled to the lattice Boltzmann fluid through a frictional
force that depends on the relative velocity of the bead and the fluid

F/ = —¢ |Xi(t) —u(X;,t)| + F7. (4.13)

where & is a friction coefficient which is computed using the Stokes drag, 67nr,, where 74,
the hydrodynamic radius, is set to 0.32 for all simulations. Since the beads move continuously
whereas the fluid field is discrete in space, the fluid velocity is interpolated to the center of
mass position of each bead using a trilinear interpolation scheme [4, 5]. The random force F”
serves to balance the additional dissipation caused by using a frictional coupling instead of a
no-slip boundary condition on the bead surfaces [5]. Unlike for Brownian dynamics routines,
here F} has a local covariance matrix since the fluid satisfies its own fluctuation-dissipation
theorem [5, 197]

m

(FI(OFL(t)) = 2kTE&0S(t — /)1, (4.14)

In order to conserve local and global momentum, the accumulated force on a bead is dis-
tributed back to the fluid using the same trilinear interpolation [4, 5]; this completes the
coupling between the bead and the fluid. The approach described leads to Oseen-level
hydrodynamic interactions between the beads [197].

4.3 Simulation Details

We simulate the motion of a single polymer chain in a box of dimensions (60,14,10), where
all lengths are reported in lattice units Az. In the middle of this geometry we create a
narrow slit of size (12,h,10) as depicted in Fig. 4.1. The slit lies between x = 30 and = = 42.
Periodic boundary conditions are imposed along x and z, and no-slip boundary conditions
on the other surfaces. The slit geometry used here is expected to give the same scaling
as the pore geometry used to derive Eq. (4.1) if the motion of the polymer into the slit is
essentially one-dimensional. This was observed to be the case; eg the probability of hairpins
moving into the channel was negligible.

The polymer chain comprises N beads connected by N — 1 springs. Initially the first bead
of the chain is pinned just inside the left-hand entrance of the slit (at = 30.9) and the rest
of the beads are allowed to equilibrate for 50000 time steps. The beads are prevented from
entering the slit during the equilibration by means of a soft virtual wall. The wall is then
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removed and a pressure driven flow is applied. Assuming two dimensional Poiseuille flow
within the slit, the mean velocity flux per unit width of the slit is

jo = B2 F*t /120 (4.15)
Fluxes are measured with respect to a reference value jO = 1.1111 x 10~°, which corresponds
to A =1, p= 36, giving = 6, h = 2 and F*** = 1075, The simulation is stopped when all
the beads are out of the slit, on either side. A successful event, translocation, corresponds
to the polymer ending up on the right hand side of the geometry, x > 42. We repeat the
simulations at different temperatures, k7', for chain lengths, N = 32,64, 128, and different
viscosities, n and slit heights h, varying the applied flux. For each parameter set we perform
300 simulations to calculate the probability of translocation, P.

4.4 Results

4.4.1 Dependency on the Number of Beads “N”

Fig. 4.2 shows the translocation probability, plotted as a function of the applied velocity flux,
for three different values of N, the length of the polymer chain. Other variables are kept
constant at k7" = 0.1, n = 6 and h = 2. The error is obtained by calculating the standard
error of the mean, which is: Sg = $/\/n, where s is the standard deviation of the results
of the simulation (0 means failed, 1 means success) and n are the number of simulations
(n = 300). The errorbars in the figure indicate the 95% confidence limit of the sample
mean, which is 1.96 x Sgp. As the flux is increased, the translocation probability crosses
over smoothly from 0 to 1. Fig. 4.2 shows clearly that the probability of translocation is
independent of the length of the chain, in agreement with the prediction of Eq. (4.1) [167].

4.4.2 Dependency on the Temperature “kT”

Next we consider Fig. 4.3, which shows the probability of translocation as a function of
applied velocity flux for a range of values of the temperature k7. The polymer length
in these simulations was held fixed at 128 and each data point results from 300 runs. The
critical flux needed to push the polymer through the constriction increases with temperature,
as the entropic penalty of confinement becomes greater. Moreover, the distribution becomes
broader (02 ~ kT). This is because the probability that the polymer fluctuates to escape
the constriction, even when translocation is possible, is greater with increased temperatures
and therefore it becomes more difficult to achieve a translocation rate of unity.

To define a critical flux more quantitatively it is helpful to fit the translocation probability
curves to a continuous function. A choice that fits the data well is

p(jv) = % {1+erf<j”?f+g(%)>} (4.16)

where we define j,(p;) is the value of the velocity flux for which a threshold fraction p; of
the polymer chains translocate. The variation of j, with temperature, for different values
of p; is plotted in Fig. 4.4. The plotted fluxes shows a linear dependence on temperature
[167]. This linearity is independent of the definition of the threshold probability. The slope
and intercept of the lines do, however, show a weak dependence on the choice of threshold.
Henceforth we shall present results for p; = 0.02 and we shall term the j,(0.02) as the
threshold flux. A reason for choosing this value of p; is that it is least sensitive to the
chain’s ability to fluctuate away from the tube before it is pushed through. Physically this
is reflected in the threshold flux tending to zero as kT° — 0, as expected.

4.4.3 Dependency on the Viscosity “u”

We now consider the dependence of the threshold velocity flux on the fluid viscosity. For
a non-confined fluid the viscosity is determined by the value of A and p through Eq. (4.7).
However, the value of the velocity and therefore also the apparent viscosity within such a
small channel is strongly affected by the details of the boundary conditions and number of
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discrete points inside the small channel. In other words, from a computational view, the
effective viscosity of the fluid inside the channel is not necessarily the same as the viscosity
in the bulk. Therefore the effective viscosity of the fluid inside the channel was measured
by running a simulation without the polymer and fitting the velocity profile within the slit
to the formula for Poiseuille flow. Fig. 4.5 plots the relationship between viscosity in the
bulk and in the channel as a function of the slit width . The two values have converged by
h=14.

Results for the translocation probability as a function of the applied velocity flux, analogous
to those presented in Fig. 4.3, were obtained for a chain of length N = 128 for several
different values of the channel viscosity. From these we extracted the threshold velocity flux
J»(0.02). This is plotted as a function of the inverse channel viscosity in Fig. 4.6. The data
shows good agreement with the dependence j, ~ T~! predicted by Eq. (4.1). The results
are likely to be affected by, for example, the difficulty in measuring the viscosity precisely
near the entrance to the channel.

4.4.4 Dependency on the Slit Width “h”

As a final check on Eq. (4.1) we repeated the simulations for different values of the slit width
h. We considered chains of length 128 and each data point was the result of 400 runs. The
results, summarised in Fig. 4.7, show that the translocation probability for a given value
of the applied velocity flux, is indeed independent of h, at least for the narrow slits it was
feasible to simulate.

4.4.5 Conclusions

The numerical results presented in this article provide a striking confirmation of Eq. (4.1)
which states that the threshold velocity flux needed to capture a polymer within a narrow
constriction is independent of the length of the polymer, depends linearly on the temper-
ature, and is inversely proportional to the fluid viscosity. Eq. (4.1) follows from a scaling
argument, based on the de Gennes blob model of polymers, and hence is expected to be
applicable for long chains: however, we find that the expression can also be used to describe
short chains in a channel which has dimensions on the order of the Kuhn length of the poly-
mer. It would be interesting in future work to determine the extent to which the threshold
velocity flux depends on topological and chemical details of the polymer chain and on its
interactions with the channel walls. Numerical checks of other predictions of the blob model,
for example its application to electrophoresis [166], would also be of interest.
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Chapter 5

Conclusions and
Recommendations

In this final chapter the main conclusions that are presented in the previous chapters will
be summarised and discussed. This is done in Section 5.1. Furthermore, in Section 5.2
several possible directions for future research with respect to the topic of this thesis will be
suggested.

5.1 Conclusions

The essence of the coupled simulation is to accurately model phenomenon, like wall effects,
that basically happen on the molecular scale (possibly non-continuum), while this same phe-
nomenon can have a large effect on the macroscopic variables, like velocity, temperature,
or motion of nano-sized or micro-sized beads/particles. The coupling is necessary, because
an attempt to model both the microscopic and macroscopic world with molecular dynamics
alone, would be impossible because of computational limits. However, molecular dynamics
can successfully be applied to systems that have a size of up to O (10_8) metres. On the
other hand, simulations with only continuum methods result in assumptions of boundary
conditions, but do produce reasonably accurate solutions where the typical size of the device
that is studied is on the order O (10’5) metres or larger. Therefore, the advantage of the cou-

pled simulation is that systems that are between the two orders, O (107%)-O (107°) metres,
can be simulated effectively. The coupled simulation will also take away these assumptions
of the boundary conditions, where they are now replaced with a better representation of
what is happening.

The main goal of the research presented in this thesis was to develop a coupled numerical
simulation for dense liquids where one domain is represented with molecular dynamics, while
the other domain is treated by the conventional continuum equations. The two domains are
coupled using the Schwarz alternating method, where the two domains are solved separately
and are coupled in a so-called overlap region. Inside the overlap region the two domains
must solve for the same solution and at either end of the overlap region, the communication
between MD and the continuum takes place. It is the correct communication between the
two domains that enables a successful coupling. This way it is also possible to not only
couple the macroscopic variable of velocity, but also other variables like temperature or
stress, either separately or combined. However, before this can be accomplished, it is ne-
cessary to obtain more information about where and when a coupling is possible and under
which assumptions these coupled simulations give a correct solution. Therefore, the present
work also demonstrated several MD simulations/studies to investigate the possibilities and
limitations of MD, while also the limitations of pure continuum methods in similar condi-
tions are investigated. Further, previous research mainly demonstrated how coupling can
be achieved and illustrated the method by doing simulations where the liquid consisted of
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simple (noble) atoms, i.e. no molecules. Here, it also shown how a simulation with mo-
lecules, especially water, can also be used in a coupled approach and results of this coupled
simulations are shown.

In Chapter 2 the foundations of the numerical models for continuum mechanics and mo-
lecular dynamics are explained and they are compared to each other. The main results
are:

Large deviations between continuum mechanics and MD are especially noticeable
near the solid walls of nano-sized channels or near obstacles and are local.

e They are the result of the interaction of the atoms in the liquid with the atoms in the
solid wall and can also be observed experimentally.

e They are not a result of an applied flow or other external source.

e The sampled profile of macroscopic variables, especially the density profile, shows
large peaks and valleys in the vicinity of the wall and only far away from the wall the
macroscopic variables show their (expected) continuum value without variations.

Although these large variations in the sampled macroscopic variables indicate
large non-continuum effects, even for small nano channels of about 5 nm, near
continuum-like behaviour can be extracted from the results.

e It is shown how a Poiseuille flow can be generated and how the velocity profile can be
used to curve fit a Poiseuille velocity profile. This is done to determine the viscosity
of the liquid simulated.

e The simulation using argon showed that the value of the viscosity is p & 2.0.

e For water the value of viscosity for four frequently used water models are presented
and compared to the experimental value. The results showed that the TIP4P /2005
model has outstanding accuracy (5% to 10% deviation), while both the TIP4P/EW
and SPC/E model showed reasonable accuracy (15% to 30% deviation), and the TIP4P
model performed the worst with deviations up to 60%.

e These results are very important for the coupled simulation. Unlike what is the case
for MD, where the viscosity is a result of the simulation, the continuum flow equation
requires a value for the viscosity in order to solve the equation. The coupled solution
will diverge as a results of the mismatch between the two values of viscosity.

In general, the results of the simulations showed that in a nano channel with a
height of about 8 nm yield very good overall continuum-like behaviour. However,
this does not yet mean that a pure continuum method to compute the flow inside
this channel 1s advisable.

e The variations in the values of several properties are noticeable until about 2.6 nm
distance away from each wall of the channel. For the nano channel with a height of
8 nm this means that 65% of the nano channel experiences non-continuum effects,
while for a nano channel with a height of approximately 58 nm there are still 10%
non-continuum effects present.

There are also different reasons why not to use a continuum method to stmula-
tion certain phenomena, because MD simulations do have some unique benefits
and allow for more controllability:

e In an MD simulation the wall-fluid interaction is directly simulated, which gives the
possibility to model actual roughness or a small contamination present inside the wall,
and the effect this has on the resulting flow. It also means that the interaction strength
between the wall and the fluid can be changed. The results of such a simulations showed
that the average velocity profile inside a nano channel with roughness resembles the
expected continuum behaviour, i.e. roughness causes a lower flow through the channel
if the same force is applied. However, the MD simulation allowed much more detail to
be implemented in the simulation. A simulation with a reduced wall-fluid interaction
showed how the obtained velocity profile in the nano channel shows a shift of the
velocity, i.e. an apparent wall slip occurs, equivalent to the specification or assumption
of a certain slip velocity in the case of a pure continuum computation.
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e Furthermore, with MD several other phenomena can be simulated that are difficult or
even impossible with a continuum technique, like the nano-jet and nano-jet breakup,
which has application in future inkjet printing. Besides the fact that MD naturally
handles the actual break-up of the jet, the added benefit of a MD simulation is the
possibility to accurately model wall-fluid interactions like wetting, hydrophilic or hy-
drophobic behaviour at the nozzle of the inkjet.

However, with MD simulations care must be taken, because frequently used val-
ues of the cutoff radius, which range from 2.30 to 4.00, are too low to accurately
model several tmportant phenomena, espectally surface tension or droplet break-

up.

e This is demonstrated by a simulation of a nano-sized inkjet printer and the break-up of
a nano-jet with different cut-off radii and a relatively new method, where a long-range
technique is used to compute the long-range attraction without cut-off, while the other
interactions are computed with a very small cut-off radius.

e The long-range technique for the intermolecular interactions showed similar results
compared to the simulation that employed a very large cut-off radius, while the com-
putational effort is less.

e The employed cutoff radius did have a big impact on the computed droplet creation
process, e.g. the elongation of jet and ultimate shape and size of the droplet.

e The wall-fluid interaction had a major impact on both the droplet size and velocity.

e Surprisingly, the cutoff radius did not seem to have a lot of effect on the computed
droplet velocity, which is an important model parameter for inkjet printers.

Finally, by comparing continuum results with experimental result, it is shown
that continuum techniques, especially the ones describing electrokinetic effects,
are reasonably accurate enough for a nano-sized device where the height is only
150 nm.

e The computation was accomplished by taking into account the specific large aspect
ratio between the height and the other dimensions of the device.

In Chapter 3 it is explained how a domain where MD is employed and a domain where any
continuum technique is employed, can be coupled. This can be accomplished by using the
Schwarz alternating method, where the two domains are coupled inside an overlap region.
The main task involved in the coupling are the correct specification of the bound-
ary conditions on the MD and continuum domain.

e The extraction of the correct boundary condition for the continuum domain from the
MD domain is a straightforward process, because it only involves sampling of statistics
from the MD domain.

e Imposing the correct boundary conditions on the MD domain which are obtained from
the continuum domain is more challenging and three problems needed to be solved:

1. Imposing the desired macroscopic variable to the MD domain. This can be accom-
plished by introducing an additional force inside the overlap region, where the
coupled results can be improved by adjusting this force to take the (continuum)
gradient into account inside the overlap region.

2. Controlling the mass fluz and consequently the atoms or molecules that now can
leave and enter the MD domain. A very simple but elegant solution is to use a
simple statistical probability, where the likelihood of one atom to bounce back
or to be reinserted is based on the sign of a certain counter. The whole insertion
criterion can be controlled by the relative weight that are given to the counter
when an atom is bounced back or reinserted.

3. Solving the problem that near the MD domain boundary incomplete intermolecu-
lar interactions take place. The incomplete interaction is a results of the fact
that the continuum domain does not simulate atoms or molecules by definition,
while molecular dynamics requires the individual position of the atoms in or-
der to compute the interaction. The problem is that the missing interactions
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result in unnatural variations in sampled variables near the MD boundary. Pre-
vious research focused on compensating the missing information by providing
the molecular dynamics simulation meaningful information through a so-called
boundary force function. In this work, an adaptation of this research is given.
If the correct boundary force function is used, it does eliminate the unnatural
variations in the sampled macroscopic variables near the MD boundary.

The same principles behind the coupled simulations using a liquid that consisted
of single non-polar atoms, t.e. argon, can also be used for coupled simulation
using water. However, before a successful coupling could be achieved, especially the
problem of incomplete interactions near the MD boundary needed to be solved. The main
results are:

e Previous research on the boundary force function resulted in a single function that is
applied to the centre of mass of each water molecule. Although this function is able to
eliminate the density variations near the boundary, it is not successful in preventing
incorrect orientation of the water molecule near the boundary.

e In this work is was investigated whether a boundary force function for each separate
atom inside the water molecule and for each type of interaction, i.e. short and long
ranged interactions, would result in correct orientations near the boundary. However,
the results of the simulations revealed that doing so, does not influence the orientation
of the water molecule near the MD boundary.

e On the other hand, the boundary force function obtained in this work is very different
to the boundary force function obtained by others, while the variations in the sampled
macroscopic variables are still eliminated. This result indicates that, unlike in the case
of argon, no unique (single) boundary force function can be found for water as such.

To demonstrate the applicability of the coupled approach, several coupled simulation were
performed. The main results of these simulations are:

The convergence of the Schwarz alternating method, used to couple two con-
tinuum domains and one MD domain, behaves exactly the same as when the
method is used to couple two continuum domains.

e The relative error decreases exponentially with the number of iterations and the needed
number of iterations to obtain a converged solution scales inversely proportional to the
relative overlap size.

The coupled stmulation can be seen as a new boundary condition for the con-
tinuum, where the value is now more accurately supplied by the communication
of the MD and continuum domain. This was demonstrated by simulating Poiseuille
flow of argon and water inside a large nano channel. The main results of these coupled
simulations are:

e The non-continuum effects near the wall are simulated accurately by MD and no
expensive MD computation time is wasted on the part that resembles a continuum.

e The total solution is the same as the solution obtained with a full MD simulation,
while the total computational effort is reduced by a factor 4 for the simulation of a
nano channel with a height of about 23 nm and this factor improves if the channel
height is increased, while there is virtually no drop in accuracy compared to the full
MD simulations.

e This type of simulation can be used for cases where the wall-fluid interaction is very
important and cannot be correctly simulated by standard continuum techniques, like
phenomena such as wetting and velocity slip in microchannels.

e For the successful coupling it is important to match the value of the viscosity. A
mismatch of the viscosity results in a velocity profile that is stretched and non-parabolic
compared to the expected velocity profile.

e It is also important to include the continuum (velocity) gradient inside the overlap
region in the MD domain. If no gradient is included the velocity profile shows a plateau
or flattening, which also influences the local shear and the surrounding velocity profile
and therefore the communication between the MD and continuum domain. This results
in a coupled solution that is shifted with respect to the expected solution.
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The coupling of MD and continuum also enabled the specification of non-periodic
boundary conditions for MD systems, which are difficult or impossible to im-
plement in a pure MD case. This was demonstrated by a two-dimensional coupled
simulation of a nanowire inside an uniform flow of argon. The main benefits and results of
this type of simulation are:

o It investigates the influence on the flow of one nano-sized obstacle, instead of the one
and all its periodic images.

e The nano-sized obstacle can be any molecular structure of interest, e.g. a nanotube,
nanowire, or a complex molecule like DNA, while a pure continuum technique has to
use many assumptions.

e The resulting velocity profiles showed that there is a difference in solution between
the coupled situation and the pure continuum situation, especially noticeable near the
nanowire. This is a direct effect of the interatomic interactions between the fluid and
the nanowire, which show density variations near obstacles.

e The density variations also mean that the local viscosity is affected. The value of
the viscosity near the nanowire is much higher than the value of viscosity in bulk
conditions.

The principles behind the coupling of domains can also be applied to other
macroscopic variables than wvelocity, for example temperature. In this work a
qualitatively study was performed on a single nano-sized particle inside a temperature gra-
dient field by coupling the MD domain and the continuum domain, effectively investigating
thermophoresis in liquids. The main results are:

e The total force on the particle is a linear function with respect to the applied temper-
ature gradient.

e The comparison between two different sized particles showed only a small difference
between the forces when they experience the same temperature gradient.

e In all cases the force had an opposite sign than the temperature gradient, indicating
that in all cases studied, the particle wanted to migrate towards the cold side of the
domain. This conclusion was also drawn by others, as this seems to be case with all
simulations that use the Lennard-Jones 12-6 potential applied to argon atoms.

e The results from a simulation that employed a larger cut-off radius showed that the
total force on the particle changed by as much as 20% when the cut-off radius was
increased from r. = 2.50 to r. = 4.0c0. This again indicates that the commonly
accepted cut-off radius of 2.50 is too small for these kind of applications.

In Chapter 4 a different type of coupling is presented, where a mesoscale simulation is
used to measure the strength of the velocity flux needed to push a polymer into a narrow
channel. Here, the dynamics of the polymer chain is modelled using a coarse-grained, bead-
spring model for the polymer chain, while the fluid is simulated by means of a fluctuating,
lattice-Boltzmann method. The beads (hydrodynamic centers) of the polymer and the
lattice-Boltzmann model are linked by a frictional coupling, which results in Oseen level
hydrodynamics for the polymer chain. Using this technique it was investigated whether the
prediction, based on the de Gennes polymer blob model, that penetration will occur only
above a threshold velocity flux, is valid. Furthermore, the threshold velocity flux should
only depend linearly on the temperature and inversely proportional to the fluid viscosity.
The simulation results showed excellent agreement with the prediction, even for the short
polymers and narrow channels that are accessible numerically. It was also shown how the
threshold velocity flux is independent of the length of the polymer chain or the height of the
channel.
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5.2 Recommendations

The recommendations for further research are formulated as follows:
Investigating coupled stmulations with MD and continuum for microfiuidics.

e In this thesis, coupled simulation of mostly nanosized channels were investigated. Here
the atomic details near the wall of the channel are simulated with MD, while the
remainder of the channel is modelled with a continuum method. The coupling approach
discussed in this thesis can also be used to simulate a microfluidic device, e.g. a channel
that is 5 micrometre in height. However, the problem is collecting enough statistics.
For example, to keep the velocity to acceptable limits inside the whole micro channel
in the case of Poiseuille flow, would mean that the value of the velocity inside the
overlap region used for the coupling of the MD domain and the continuum domain
is nearly zero. This means that the velocity profile will be very hard to sample, i.e.
“bad” statistics involved with the very low velocity compared to the natural vibrations
of the atoms. A possibility to improve the statistics is to either sample more atoms, i.e.
simulating a larger MD domain, or collect the statistics over a greater length of time.
In both cases, the computational effort will increase more or less linearly with the
number of atoms or time steps and will soon become too cumbersome for the average
computer system. This also leads to the next recommendation. However, note that
any relatively easy sampled property, like the density or the temperature, can still
provide very useful information for the coupled simulation results.

Improving the statistics by using different sampling methods or taking advantage
of increasing multiprocessing and GPU computing.

e Molecular Dynamics is a powerful computational technique to simulate the behaviour
of liquids without almost any need for modelling, but the method is very computa-
tionally expensive. The number of atoms used in the coupled simulations shown in

this thesis were on the order of O (104) and are sampled over the number of time

steps on the order of O (106). These simulations consume several hours to several
days of CPU power on one processor. However, reasonable results could only be ob-
tained within this time if the sampled macroscopic variable, especially velocity, was
significant compared to the natural fluctuations present in any MD computation. For
the velocity this means that simulated values are on the order of O (104) -0 (106)
larger than commonly encountered values in experiments, which is not a problem as
long as the expected behaviour scales accordingly. However, MD is an ideal target for
multiprocessing and therefore can take advantages of the current trends of the use of
multi-core CPUs and GPU computing. Doing so, could mean statistics could be im-
proved by simulating more atoms in the same time, therefore decreasing the noise-ratio
of the sampled macroscopic variables. On the other hand, by implementing specialised
time-domain decomposition techniques, the time integration could also be distributed
amongst many processors and again the statistics could be improved.

Ezxtending the method used to eliminate the unnatural variations in sampled
variables near the MD /Continuum boundary.

e It is shown how the so-called boundary force function can be used to eliminate the den-
sity variations as a result of the incomplete molecular interactions near the MD /Continuum
boundary. For the case of a single atom liquid, like argon, this function is unique and
is able to eliminate the variations completely. However, for a molecule, that has a
certain position and rotation associated to it, this is not necessarily the case. Further
research should therefore investigate how the boundary force function can be improved
to include more parameters than just the unnatural variations near the boundary or
how a different approach could be used to do the same.

Further improvement of the coupling of continuum gradients.

e In this thesis it is shown how the inclusion of the first (continuum) gradient inside the
overlap region can improve the coupled results considerably. The implementation of
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the velocity gradient is simply done by adjusting the force inside the overlap-region,
while the temperature gradient is applied through careful thermostatting. However,
further research should also include higher gradients. A possible start point could be to
use the characteristics of the continuum method employed. For example, in the cases
reported in this work, the continuum method was predominately the Finite Element
Method, and therefore the inclusion of the gradient could use the finite element shape
functions to couple these to the additional MD force.

Improving the coupling of long-range interactions.

e Although long-ranged interactions are very efficiently implemented into the MD do-
main, in the present study they are not satisfactorily implemented in the coupled
simulations. More research should be conducted in this area. Possible start points
for the long-ranged electric effect could be the direct coupling of the PPPM charges
(which can also be used to model the long-range term in the Lennard-Jones potential,

i.e. the =0 term) to the continuum Poisson equation.

Eztending the coupling approach to include a MD domain and/or continuum
domain that is allowed to move.

e The simulations shown in this thesis concentrated on the flow round, or phenomenon
near, a static object. In other words, the MD domain remained at the same position
inside the continuum domain and did not change size during time. Therefore, to pre-
vent the particle of interest to move outside the static domain, the particle was pinned
to its position. For the realistic simulation of thermophoretic motion, electrokinetic
flow, or any situation where the part of the domain that cannot be simulated with
a continuum method, this part should have the freedom to move. One intermediate
solution to solve this problem is to still keep the particle inside the centre of the MD
domain, but at the same time move the entire MD domain (and its atoms) with the
amount that the particle should have moved when it would not be pinned. However,
this also means that the communication of the boundary conditions between the MD
domain and continuum domain must change accordingly. Therefore, further research
should point out whether these kind of simulations can still be performed efficiently
using the Schwarz alternating method.

Investigating the extend of the prediction of the critical velocity flux for translo-
cation based on a de Gennes blob model of the polymer.

e It would be interesting in future work to determine the extent to which the threshold
velocity flux depends on topological and chemical details of the polymer chain and on
its interactions with the channel walls. Numerical checks of other predictions of the
blob model, for example its application to electrophoresis, would also be of interest.
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Appendix A

Electroosmosis

In this section the governing equation for electroosmosis are given. It will be shown that
although the general theory is well understood, in most cases (mostly microfluidics) very
good approximation can be made. This is primarily because of the great difference in
typical length scales of the electric double layer and the device itself. Only in the case of
nanofluidics there might be a need to use the full theory, however it will also be shown that
in the extreme case, where the device is much smaller than the electric double layer, again
good approximations can be made.

A.1 General Theory / Poisson-Boltzmann equation

The fundamental law of electricity (and magnetism) are Maxwell’s equations. The magnetic
effects can be proven to be negligible small compared to the electric effects in almost all
micro- and nanofluidic applications, and in the case of (DC) electroosmosis the electric field
is also static. In this case Maxwell’s equations reduce to the Poisson equation:

v (eE) - ':_; (A1)

where E is the electric field, e the relative permittivity of the electrolyte solution, €y the
permittivity of free space, and p. the net electric charge density. Another result from
Maxwell’s equations is that the electric field can be derived from a electric potential ¥ as

E = —VU. The net electric charge density in this case is due to all ions present per unit

volume, which is
Pe = Zcizie (A.2)
i
where ¢; is the concentration of species i, z; the valency of species i, and e the electron
charge.

The fundamental law of the transport of ions in a (dilute) solution is the Nernst-Planck
equation, which sums three types of transport. The first term describes the movement of ions
based on concentration gradients, which is Fick’s law of diffusion. The second term describes
the movement due to electric fields. The third and last term is the particle advection term.

The total particle flux for species i, J;, can now be written as

Ji = —Dchi — viciV\If + Ci’lj (A3)
where D; the diffusion constant for species i according to Fick’s first law, v; the mobility of
species i, and « the velocity vector. Equation A.3 can be written in a more convenient form
when the Nernst-Einstein equation, which gives a relation between the diffusion constant
and the mobility, and the continuity equation for species i, is used. The resulting equation
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where k£ is the Boltzmann constant, and T the absolute temperature.

The fundamental laws for the flow of (Newtonian) fluids, are the equation of continuity and
the Navier-Stokes equation. However, the Navier-Stokes equation needs to be modified such
that the interaction between the ions and the applied electrical field are taken into account.
This can be accomplished by adding an extra body force term. This extra body force term
is derived from the Maxwell electromechanical stress tensor [117] for a body in a electric
field by using equation 2.4 and equals:

_,_ — - €0 = — ]. — — 86
fe—eov-(eE>E—5E-EVe+V 20E Bos 5

J (4.5)

where p is the fluid density. The first term is the electrostatic force density. The second
term represents a force which appears whenever an inhomogeneous dielectric is placed in
an electric field respectively. This term is the driving mechanism for dielectropheresis. The
last term is the electrostriction, which is the pressure due to electric effects. For typical
applications of electroosmotic flow only the first term is required. Also, please note that this
term can be rewritten with aid of equation A.1. The final governing equations for the flow
are the continuity equation, equation 2.1 and the modified Navier-Stokes equation:

Pf (% + (d-V) ﬁ) = —Vp+uVii+p.E (A.6)
Therefore the general theory that describes electroosmotic flow is a system of coupled differ-
ential equations, namely equations A.1, A.2, A.4, 2.1, and A.6. Luckily several approxima-
tions are available that enable the solving to be done in steps, instead of solving the whole
coupled system. The most general one is discussed next.

The approximation uses the fact that in the case of thermodynamically ideal systems at
equilibrium, the complete left hand side of equation A.4 can be neglected. Consider two
walls separated from each other with a certain distance, which both have an EDL. When
the EDLs do not overlap, e.g. when the distance between the walls is very large, a bulk
concentration of the ions of species i, ¢;j o can be defined. Together with the fact that
the electric potential far away from both of the surfaces is zero, the solution is given by
the Boltzmann distribution: ¢; = ¢; ccexp (—2i¢¥/k,T). Substitution of equation A.2 into
equation A.1, and using the Boltzmann distribution for the concentration results in:

1 zieW
Vi = —— i soexp | — = zie A7
o e o (-3 (A7)
which is the Poisson-Boltzmann equation. For a symmetric electrolyte further simplifications
are possible, because z; = —z_ = z, and ¢y oo = €_ o0 = Coo- At this point it is also

convenient to introduce the reduced potential U* defined by ¥* = zeW /kT. The resulting
equation is:
V2U* = k2sinh () (A.8)

1 ecokpT
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is the Debye length which is the characteristic length of the EDL introduced before. Equation
A.8 is non-linear, however it can be made linear when the Debye-Huckel approzimation
is invoked: This approximation uses a first-order Taylor series expansion of sinh around
U* = 0, resulting in

where:

V20 = %0 (A.10)

A.2 Thin Electric Double Layer Approximation

The next approximation is especially useful when simulating microfluidics. The fact that
typical Debye lengths, s~ !, are of the order of several tens of nanometres, whereas the
typical dimensions of microfluidic devices, e.g. h, are much larger. For these devices kh > 1
and the large difference between scales can be used to divide the problem into an inner and
outer solution. The net charge density distribution varies exponentially from a certain value
at the wall to zero in the liquid bulk, and the length scale of this decay is given by the Debye
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length. The electric field inside the EDL is mainly governed by wall charges and is in most
cases larger than the externally applied field. Outside the EDL, there is no net charge and
therefore only the external potential ¢ contributes to the electric field. Together they form
the total potential by linear superposition, i.e. ¥ = 1 + ¢. Therefore equation A.10 can be
divided into

Vi = k% (A.11)
Vi = 0 (A.12)
which are called the inner solution and outer solution respectively. By substituting the
net charge density from equation A.l into the momentum equation, equation A.6, using

equation A.11 to rewrite the equation, and using E= —V¢ for the externally electric field,
the momentum equation can be rewritten to
il
P (8_1; + (- V) ﬁ) = —Vp+ uV2i + ecor*PV o (A.13)

This now means that there are the two separate Poisson equations to obtain the (two)
potentials, and decoupled from these, the momentum equation can be used to compute the
electroosmotic flow.

The approximation above can be extended if only the bulk effect of the presence of the EDL is
taken into account. In that case the velocity at the inner-outer plane is only important. This
velocity can be obtained through equation A.6, where the net charge density can substituted

from equation A.1. W is taken as the inner potential ¢ and the electric field E is calculated
from the external potential ¢, which is perpendicular to the electric field inside the EDL.
Furthermore it can be assumed that the flow is steady, no pressure gradient is applied, and
the advection terms can be neglected. This problem can now be solved by using the fact that
there is no net transfer of charge from the EDL to the far field, and the velocity gradients
are zero at the inner-outer plane. At the wall there is a no-slip boundary condition. Also
the fact that the potential difference across the Debye layer from the shear surface between
the charged surface and the electrolyte to the far field is specified by the zeta potential,
Cw, is used. By using these conditions, the velocity at the inner-outer plane is given by the
Helmholtz-Smoluchowski relation

ﬁEOF = 7660CwE_' = aOSE (A].4)
where a5 = —eep(y, /1 is a certain number that depends only on the surface and electrolyte

properties. The Helmholtz-Smoluchowski velocity is in turn used as a boundary condition
for the outer solution and can be seen from a bulk point of view as a slip velocity specified
at the wall. However, under certain conditions [42] this can be skipped altogether. In that
case the local velocity in the bulk is entirely given by the Helmholtz-Smoluchowski relation,
eqn. A.14 and the flow pathlines exactly follow the electric field lines.

A.3 Thick Electric Double Layer Approximation

In order to derive the aforementioned approximations, the fact is used that the Debye length
is much smaller than any other dimension of the device. In some nanofluidic devices, this
approach can not be used anymore because in these devices it is possible to have at least one
dimension, e.g. the height of the device, which is of the order of the Debye length (xh ~ 1).
In this case the electric double layers overlap and as a result interact with each other. Verwey
and Overbeek [201] were the first to develop a theoretical model for the potential distribution
in this case. This model uses the Boltzmann distribution and therefore using this model
for overlapping EDLs is questionable. Other researchers [39, 154] proposed more elaborate
models for overlapping EDLs and it was shown [154] that especially in the case when the
Debye length is comparable to one of the dimensions of the device, substantial deviations
from the theory of Verwey and Overbeek and their model occur. However, consider the
situation where the Debye length is much greater than the typical dimension of the device.
When the results of others [39, 154, 212] are compared, it can be concluded that more
elaborate models all converge to that of the model of Verwey and Overbeek in the case of
kh < 1. Furthermore, when sh is of order 0.2 and lower the linear Poisson-Boltzmann
equation can even be used [212]. Therefore, next consider a nanochannel with kh < 1,
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where the typical length (z-direction) and typical width (y-direction) are much larger than
the height h (z-direction). When equation A.10 is solved using the boundary conditions

\Il|z:h/2 = (w, and % .o = 0, the resulting potential distribution is

cosh (nkh
W(z) = ¢, )
cosh (§f$h)
where 7 = z/h and has values between —% and —|—%. Directly from equation A.15 it can
be seen that when kh < 1, the potential ¥ =~ (,, because coshrxh = 1 in this case.
Furthermore, due to the dimensions of the nanochannel, the role of the EDL is much greater
in the z-direction than in any other direction. On the other hand, when the height of the
nanochannel is everywhere the same, the z-component of the externally applied electric field
is everywhere zero, and now only a function of z and y. Assume the flow is steady, no
pressure gradient is applied, and the advection terms can safely be neglected. After the
net charge density of equation A.1 is substituted into the momentum equation A.6, and
equation A.10 is used to rewrite the equation where the ¢ potential is used for the potential,
the momentum equation is

(A.15)

uV3i = 660H2<wE (A.16)
Because of the dimensions of the device, 9%ii/92% > 02ii/0x?, 9%ii/0y?, the momentum
equation can be approximated with

iﬁ ~ eeOHQCwE

022 1
with boundary conditions 11’|Z:h/2 =0 and 0u/0z|,_, = 0, which specify no-slip at the wall
and symmetry with respect to the channel mid-plane, the solution for u is

Y 1 1
inor = “if B (kh)? L <n2 - —) (A.18)

(A.17)

2 4

which is similar to a Poiseuille velocity profile between two infinite plates separated by
a distance h. The above approach is similar to the Hele-Shaw approximation [86]. The
velocity field at a certain constant z (or averaged with respect to z) is a function in the (x,y)
plane only, and with respect to the (x,y) plane, the flow resembles a potential flow. In the
classic Hele-Shaw approximation this means that although viscosity is very important, the
vertically averaged flow can be regarded as effectively inviscid in the (x,y) plane. In the
case of the nanochannel this means that although the EDL is very important, the presence
of the EDL can be neglected in the (x,y) plane. Compared to equation A.14, the velocity
specified by equation A.18 is just the Helmholtz-Smoluchowski relation multiplied with a
certain factor dependent on the value of kh and the z-coordinate. In order to remove the
z-coordinate from the equation, the average velocity with respect to z can be used

+1/2 . h 2

liang = / iy — — 0w (xh) (A.19)
-1/2 K 12

which is the electroosmotic velocity an experimental observer is most likely to see.




Appendix B

General 1/r" Expressions for
Particle Mesh Methods

The force splitting in the PPPM method is based on the following trivial identity:

1 r 1—f(r

_n:f(n)Jr {;() (B.1)

r r r
where the first part is the exponentially decaying short-range term and the second part is
the slow varying long-range term. These requirements leave many choices for the function
f(r). Essmann et al. [58] proposed such a function. Their idea is based on the (Euler)

Gamma function and a simple identity as follows:
I'(z) = / t*"Lexp (—t)dt = )\Z/ t*~Lexp (—At) dt (B.2)
0 0

The next step is to split this intergral at ¢ = (3, evaluating the Gamma function at z = /2
and with A\ = |7]® = 72. The equation can then be rewritten to:

52 %0
I (v/2) :/ £~ exp (—r?t) dt+/ ¢V exp (—r?t) dt = S+ S (B.3)
0

rP 32

The integral term S7; can be rewritten with a simple substitution r?t = s which means
that dt = 2s/r2ds and the lower limit of the integral change to [Sr:

° r5\P—2 2s 2 [
Srr = /Br (;) exp (—32) 7’_2d8 = o sP~Lexp (—32) ds (B.4)

Later it will be shown that this is the short range part. The other intergral term, Sy, is a
little bit trickier and must be adapted for Fourier space. The following term can be used to
do so:

%) 2,,2
exp (—a2w2) = ﬁ/ exp (—ﬂ- f;jl
0

a a

) exp (—2mwu) du (B.5)

which is the Fourier integral expression for the Gaussian. The next thing is to use the fact
that r? = 22 + y? + 22 and apply the Gaussian term in all three dimensions with a? = t.

The result is:
2

B an (7 . 202
Sr = / ">~ exp (—r2t) dt=m /2/ 2= /2/ exp (— " ) exp (—2mou - r) d>idt
0 0 R3
(B.6)

After changing the order of integration this becomes:
B* 202
/ 71'3/2/ /272 exp ( ; ) dt | exp (—2mii - 7) d*ii (B.7)
R3 0
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The term between square brackets needs to evaluated first. Substituting of ¢ with s, where
72u? = ts? and dt = —27°v"/s3ds where the lower and upper limit of the integral changes to
oo and 7u/g are swapped because of the minus sign. The result is:

s w2u? A
71'3/2/ /272 exp < " ) dt = 27°/? <T> / s> 7P exp (—s?) ds (B.8)
0

Tu

which for reasons revealed later can also be written as:

A
on”/?3P=3) <F> / s P exp (—s?) ds (B.9)
7'\,"#
Now all the terms can be added and used to rewrite equation B.3 into:
1 _
— =g /]R £, (%‘) exp (—2miii - 7) d3@ + % (B.10)
where s
2 (x)" o 2
fp(x) = WL s* Pexp (—s%) ds (B.11)
and

2 1 2
T) = =—r— sP7 exp (—s7) ds B.12
gP( ) F(P/Q)/I Xp( ) ( )
This equation gives the long-range part that can be solved with the particle mesh method
and the short-range part that can be solved with a particle-particle method for any 1/r»
type of interaction. The only requirement is to solve the f, and g, functions, which in most
cases can be done analytically, and compute the Fourier transformed long-range part of the

interparticle force, R (k).
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