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ABSTRACT

We discuss hybrid atomistic-continuum methods for multiscale hydrodynamic
applications. Both dense-fluid and dilute-gas formulations are considered. The
choice of coupling method and its relation to the fluid physics as well as the need
for timescale decoupling is highlighted. In particular, by relating the molecular
integration timestep to the CFL timestep, we show that compressibility is im-
portant in determining the choice of a coupling method. Appropriate coupling
techniques for various flow regimes are discussed and proposed. We also dis-
cuss recently developed incompressible and compressible hybrid methods for di-
lute gases. The incompressible framework is based on the Schwarz alternating
method, which provides timescale decoupling; the compressible method is a mul-
tispecies, fully adaptive mesh and algorithm refinement approach that introduces
the direct-simulation Monte Carlo at the finest level of mesh refinement.
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1. INTRODUCTION

By limiting the molecular treatment to regions
where it is needed, a hybrid method allows the
simulation of complex thermo-fluid phenom-
ena, which require modeling at the microscale
without the prohibitive cost of a fully molec-
ular calculation. In what follows we provide
an overview of this rapidly expanding field
and discuss recent developments. We also de-
scribe archetypal hybrid methods for incom-
pressible and compressible flows; the hybrid
method for incompressible gas flow is based
on the Schwarz alternating coupling method;
and the hybrid method for compressible flow
is based on the recently developed [34] flux-
coupling, multispecies adaptive mesh and algo-
rithm refinement scheme that extends adaptive
mesh refinement by introducing the molecular
description at the finest level of refinement.

Over the years a fair number of hybrid simu-
lation frameworks have been proposed leading
to some confusion over the relative merits and
applicability of each approach. Original hybrid
methods focused on dilute gases [10, 20, 28, 29],
which are arguably easier to deal with within
a hybrid framework than dense fluids, mainly
because boundary condition imposition is sig-
nificantly easier in gases. The first hybrid meth-
ods for dense fluids appeared a few years later
[11, 16, 17, 26]. These initial attempts have led
to a better understanding of the challenges as-
sociated with hybrid methods.

To a large extent, the two major issues in de-
veloping a hybrid method is the choice of a cou-
pling method and the imposition of boundary
conditions on the molecular simulation. Gener-
ally speaking, these two can be viewed as de-
coupled, in the sense that the coupling tech-
nique can be developed on the basis of match-
ing two compatible and equivalent over some
region of space hydrodynamic descriptions and
can thus be borrowed from the already ex-
isting and extensive continuum-based numer-
ical methods literature. The choice of cou-
pling technique is further discussed in Section

2.1–2.3. Boundary condition imposition can
again be considered in a decoupled sense and
can be posed as a general problem of impos-
ing “macroscopic” boundary conditions on a
molecular simulation. In our opinion, this is
a very challenging problem that has not been,
in general, resolved to date completely satis-
factorily. Boundary condition imposition on
the molecular subdomain is discussed in Sec-
tion 2.4. Boundary condition imposition on the
continuum subdomain is generally well under-
stood, as is the process of extracting macro-
scopic fields from molecular simulations (typ-
ically achieved through averaging).

In Section 3, we give a brief description of
the direct simulation Monte Carlo (DSMC), the
dilute-gas simulation method used in this work.
In Section 4, we demonstrate a hybrid scheme
suitable for low-speed, incompressible gaseous
flows based on the Schwarz alternating method.
The current paper introduces Chapman-Enskog
boundary condition imposition in incompress-
ible hybrid formulations. Subsequently, in Sec-
tion 5 we discuss a recently developed multi-
species compressible formulation [34] for gases
that introduces the molecular simulation at the
finest level of refinement within a fully adap-
tive mesh refinement framework. We finish with
some concluding remarks.

2. DEVELOPING A HYBRID METHOD

2.1. The Choice of Coupling Method

Coupling a continuum to a molecular descrip-
tion is meaningful in a region where both can
be presumed valid. In choosing a coupling
method, it is therefore convenient to draw upon
the wealth of experience and large cadre of cou-
pling methods nearly 50 years of continuum
computational fluid dynamics have brought us.
Coupling methods for compressible and incom-
pressible formulations generally differ, since
the two correspond to two different physical
and mathematical hydrodynamic limits. The
compressible formulation lends itself naturally
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to time-explicit flux-based coupling while in-
compressible formulations are typically cou-
pled using either state (Dirichlet) properties or
gradient (Neumann) variables.

Given that the two formulations have dif-
ferent limits of applicability and/or physical
regimes in which each is significantly more ef-
ficient than the other, care must be exercised
when selecting the ingredients of the hybrid
method. In other words, the choice of a cou-
pling method and continuum subdomain for-
mulation needs to be based on the degree to
which compressibility effects are important in
the problem of interest and not on a preset
notion that a particular coupling method is
more appropriate than all others. The latter
approach was recently pursued in a variety
of studies, which enforce the use of a com-
pressible, time-explicit, flux-matching coupling
scheme to steady and essentially incompress-
ible physical problems. This approach is not
recommended. On the contrary, for an effi-
cient simulation method, similar to the case of
continuum solution methods, it is important
to allow the flow physics to dictate the appro-
priate formulation, while the numerical imple-
mentation is chosen to cater to the particular re-
quirements of the latter. Below, we expand on
some of the considerations that influence the
choice of coupling method under the assump-
tion that the hybrid method is applied to prob-
lems of practical interest and, therefore, the con-
tinuum subdomain is appropriately large. Our
discussion extends to timescale considerations
that are more complex, but equally important
to limitations resulting from length scale con-
siderations, such as the size of the molecular re-
gion(s).

2.2. Timescale Decoupling

It is well known [31] that the timestep for
explicit integration of the compressible Navier-
Stokes formulation τc, scales with the physical
timestep of the problem τ∆x(= ∆x/U , where
∆x is the numerical grid spacing and U is the

characteristic velocity), according to

τc ≤ M

1 + M
τ∆x, (1)

where M is the Mach number. As the Mach
number becomes small, we are faced with the
well-known stiffness problem whereby a) the
numerical efficiency degrades due to dispar-
ity of the timescales in the system of equations
and b) the accuracy of the compressible solu-
tion degrades due to mismatch of magnitudes
between fluxes in the original equations and
corresponding terms in the numerically added
artificial viscosity [36]. For this reason, when
the Mach number is small, the incompressible
formulation is used that allows integration at
the physical timestep τ∆x. In the hybrid case,
matters are complicated by the introduction of
the molecular integration timestep, τm, which
is at most of the order of τc (in some cases in
gases when ∆x ≤ λ, where λ is the molecu-
lar mean free path) and in most cases signifi-
cantly smaller. One consequence of Eq. (1) is
that as the global domain of interest grows, the
total integration time grows, and transient cal-
culations in which the molecular subdomain is
explicitly integrated in time become more com-
putationally expensive and eventually infeasi-
ble. The severity of this problem increases with
decreasing Mach number and makes unsteady
incompressible problems very computationally
expensive. New integrative frameworks, which
coarse grain the time integration of the molecu-
lar subdomain, are therefore required.

Fortunately, for coupling low-speed steady
problems implicit (iterative) coupling methods
exist that provide solutions without the need
for explicit integration of the molecular do-
main to the global problem steady state. The
particular method used here is known as the
Schwarz method and is discussed further in
Section 4. This method decouples the global
evolution timescale from the molecular evo-
lution timescale (and timestep) by achieving
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convergence to the global problem steady-state
through an iteration between steady state so-
lutions of the continuum and molecular sub-
domains. Because the molecular subdomain is
small, explicit integration to its steady state is
feasible. Although the steady assumption may
appear restrictive, it is interesting to note that
the vast majority of both compressible and in-
compressible test problems solved to date by
hybrid methods have been steady.

A variety of other iterative methods may be
suitable as they provide for timescale decou-
pling. The choice of the Schwarz coupling
method, which uses state variables instead of
fluxes to achieve matching, was motivated by
the fact (as explained below) that state variables
suffer from smaller statistical noise and are thus
easier to prescribe on a continuum formulation.

The above observations do not preclude the
use of the compressible formulation in the con-
tinuum subdomain for low-speed flows. In
fact, preconditioning techniques, which allow
the use of the compressible formulation at very
low Mach numbers, have been developed [31].
Such a formulation can, in principle, be used
to solve the continuum subproblem while this
is being coupled to the molecular subprob-
lem via an implicit (e.g., Schwarz) iteration.
What should be avoided is a compressible,
time-explicit, flux-based coupling procedure
for solving essentially incompressible steady-
state problems.

The issues discussed above have not been
very apparent to date because in typical test
problems published so far the continuum and
atomistic subdomains are of the same size (and,
of course, small). In this case the large cost
of the molecular subdomain masks the cost of
the continuum subdomain and also typical evo-
lution timescales (or times to steady state) are
small. It should not be forgotten, however, that
hybrid methods make sense when the contin-
uum subdomain is significantly larger than the
molecular subdomain.

2.3. Statistical Noise Considerations

The use of a compressible formulation with flux
coupling in the M → 0 limit leads to two ad-
ditional disadvantages. The first, continuum
subdomain stiffness (see Eq. 1), may be reme-
died by implicit timestepping methods [38] or
preconditioning approaches [31]. The second,
more serious disadvantage, is linked to adverse
signal to noise ratios (compared to non-flux-
based schemes) in connection with the averag-
ing required for imposition of boundary con-
ditions from the molecular subdomain to the
continuum subdomain. More specifically, in
the case of an ideal gas (where compressible
formulations are typical) it has been shown in
[19] that, for the same number of samples, flux
(shear stress, heat flux) averaging exhibits rel-
ative noise Ef , which scales with Esv, the rel-
ative noise in the corresponding state variable
(velocity, temperature) according to,

Ef ∼ Esv

Kn
. (2)

Here Kn = λ/L is the Knudsen number based
on the characteristic length scale of the trans-
port gradients L, and λ is the mean-free path,
which is expected to be much smaller than L,
because, by assumption, a continuum subdo-
main is present. It thus appears that flux cou-
pling will be significantly disadvantaged in this
case, because the number of samples required
to make Ef ≈ Esv scales as 1/Kn2 times the
number of samples required by state-variable
averaging.

On the other hand, Schwarz-type iterative
methods based on the incompressible physics
of the flow require a fair number of iterations
for convergence [O(10)]. These iterations re-
quire the re-evaluation of the molecular solu-
tion. This is an additional computational cost
that is not shared by time-explicit approaches.
At this time, the best choice for incompressible
unsteady problems appears to be an explicit in-
compressible approach, such as the one used by
O’Connell and Thompson [26]. We should re-
call, however, that unless time coarse-graining
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techniques are developed, large, low-speed,
unsteady problems are currently too expensive
to be feasible by any approach (see discussion
in Section 2.2).

2.4. Boundary Condition Imposition

Consider the molecular region Ω on the bound-
ary of which, ∂Ω, we wish to impose a set of
hydrodynamic (macroscopic) boundary condi-
tions. Typical implementations require the use
of particle reservoirs R (see Fig. 1) in which
particle dynamics may be altered in such a way
that the desired boundary conditions appear on
∂Ω; the hope is that the influence of the per-
turbed dynamics in the reservoir regions de-
cays sufficiently fast and does not propagate
into the region of interest, that is, the relaxation
distance both for the velocity distribution func-
tion and the fluid structure is small compared
to the characteristic size of Ω.

In a dilute gas, the nonequilibrium distri-
bution function in the continuum limit has
been characterized [8] and is known as the
Chapman-Enskog distribution. Use of this dis-
tribution to impose boundary conditions on
molecular simulations of dilute gases results
in a robust, accurate, and theoretically elegant

FIGURE 1. Continuum to atomistic boundary condi-
tion imposition using reservoirs.

approach. Typical implementations [14] require
particle generation and initialization within R.
Particles that move into Ω within the simulation
timestep are added to the simulation whereas
particles remaining in R are discarded. More
details on implementation are provided in
Section 4.

Unfortunately, for dense fluids where not
only the particle velocities but also the fluid
structure is important and needs to be imposed,
no theoretical results for their distributions ex-
ist. A related issue is that of domain termina-
tion; due to particle interactions, Ω, or in the
presence of a reservoir, R needs to be termi-
nated in a way that does not have a big effect
on the fluid state inside of Ω.

As a result, researchers have experimented
with possible methods to impose boundary
conditions. It is now known that similarly to
a dilute gas, use of a Maxwell-Boltzmann dis-
tribution for the velocities leads to slip [16]. Li
et al. [22] used a Chapman-Enskog distribu-
tion to impose boundary conditions to gener-
ate a dense-fluid shear flow. In this approach,
particles crossing ∂Ω acquire velocities that are
drawn from a Chapman-Enskog distribution
parametrized by the local values of the required
velocity and stress boundary condition. Al-
though this approach was only tested for a
Couette flow, it appears to give reasonable re-
sults (within molecular fluctuations). Because
in Couette flow no flow normal to ∂Ω exists, ∂Ω
can be used as symmetry boundary separating
two back-to-back shear flows; this sidesteps the
issue of domain termination.

In a different approach, Flekkoy et al. [11]
use external forces to impose boundary con-
ditions. More specifically, in the reservoir re-
gion they apply an external field of such mag-
nitude that the total force on the fluid parti-
cles in the reservoir region is the one required
by momentum conservation. They then ter-
minate their reservoir region by using an ad
hoc weighing factor for the distribution of this
force on particles within R that prevents parti-
cles from leaving the reservoir region from its

Volume 2, Number 2, 2004



194 WIJESINGHE & HADJICONSTANTINOU

outer edge. In particular, they chose a weigh-
ing factor that diverges as particles approach
this boundary such that particles do not es-
cape the reservoir region while particles intro-
duced there move towards Ω. Particles intro-
duced into the reservoir are given velocities
drawn from a Maxwell-Boltzmann distribution,
while a Langevin thermostat keeps the temper-
ature constant. The method appears to be suc-
cessful although the nonunique (ad hoc) choice
of force fields and Maxwell-Boltzmann distri-
bution makes it not very theoretically pleas-
ing. It is also not clear what the effect of these
forces are on the local fluid state (it is well
known that even in a dilute gas [25] gravity-
driven flow exhibits significant deviations from
Navier-Stokes behavior), but this effect is prob-
ably negligible since force fields are only acting
in the reservoir region. Delgado-Buscalioni and
Coveney [9] refined the above approach by us-
ing an Usher algorithm to insert particles in the
energy landscape such that they have the de-
sired specific energy, which is beneficial to im-
posing a desired energy current while eliminat-
ing the risk of particle overlap at some com-
putational cost. This approach, however, uses
a Maxwell–Boltzmann distribution, for the ini-
tial velocities of the inserted particles. Temper-
ature gradients are imposed by a small num-
ber of thermostats placed in the direction of the
gradient. Although no proof exists that the dis-
turbance to the particle dynamics is small, it
appears that this technique is successful at im-
posing boundary conditions with moderate er-
ror. Boundary conditions on MD simulations
can also be imposed through the method of
constraint dynamics [26]. Although the ap-
proach in [26] did not allow hydrodynamic
fluxes across the matching interface, this fea-
ture can be integrated into this approach with
a suitable domain termination.

A method for terminating molecular dynam-
ics simulations with small effect on particle dy-
namics has been suggested and used in [16].
This simply involves making the reservoir re-
gion fully periodic. In this manner, the bound-

ary conditions on ∂Ω also impose a boundary
value problem onR, where the inflow to Ω is the
outflow from R. As R becomes bigger, the gra-
dients in R become smaller; thus, the flow field
in Rwill have a small effect on the solution in Ω.
The disadvantage of this method is the number
of particles that are needed to fill R that is fairly
large, especially in high dimensions.

We believe that significant contributions can
still be made by developing methods to impose
boundary conditions in hydrodynamically con-
sistent and, most importantly, rigorous ap-
proaches.

3. THE DIRECT SIMULATION MONTE
CARLO

The DSMC method was proposed by Bird [7]
in the 1960s and has been used extensively to
model rarefied gas flows. A comprehensive dis-
cussion of DSMC can be found in the review
article by Alexander et al. [2]. The DSMC algo-
rithm is based on the assumption that a small
number of representative “computational par-
ticles” can accurately capture the hydrodynam-
ics of a dilute gas as given by the Boltzmann
equation. Air under standard conditions nar-
rowly meets the dilute gas criterion. Empiri-
cal results [7] show that a small number (≈ 20)
of computational particles per cubic molecular
mean-free path is sufficient to capture the rele-
vant physics. This is approximately two orders
of magnitude smaller than the actual number
of gas atoms/molecules contained in the same
volume. This is one source of the DSMC’s sig-
nificant computational advantage over a fully
molecular simulation.

The DSMC solves the Boltzmann equation
using a splitting approach: the time evolution
of the system is approximated by a sequence
of discrete timesteps ∆t in which particles un-
dergo successively collisionless advection and
collisions. Collisions are performed between
randomly chosen particle pairs within small
cells of linear size ∆x. The flow solution is
determined by averaging the individual parti-
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cle properties over space and time. This ap-
proach has been shown to produce correct so-
lutions of the Boltzmann equation in the limit
∆x, ∆t → 0 [30]. The splitting approach elim-
inates the computational cost associated with
integrating the equations of motion of all parti-
cles, but most importantly allows the timestep
to be significantly larger (see also below) than a
typical timestep in a hard sphere molecular dy-
namics simulation. This is another reason why
the DSMC is significantly more computation-
ally efficient than “brute force” molecular dy-
namics.

Recent studies [15, 18] have shown that for
steady flows or flows that are evolving at
timescales that are long compared to the molec-
ular relaxation times, a finite timestep leads to
a truncation error that manifests itself in the
form of timestep-dependent transport coeffi-
cients; this error has been shown to be of the
order of 5% when the timestep is of the order
of a mean-free time and goes to zero as ∆t2.
Quadratic dependence of transport coefficients
on the collision cell size ∆x was shown in [3].

4. THE SCHWARZ METHOD FOR
INCOMPRESSIBLE FORMULATIONS

Although in some cases compressibility may be
important, a large number of applications are
typically characterized by flows where use of
the incompressible formulation results in a sig-
nificantly more efficient approach [31]. As ex-
plained in the introduction section, our defi-
nition of incompressible formulation is based
on the flow physics and not on the numerical
method used. Although we have used here a fi-
nite element discretization based on the incom-
pressible formulation, we believe that a precon-
ditioned compressible formulation could also
be used to solve the continuum subdomain
problem provided that it is matched to the
molecular solution through a coupling method
which takes into account the flow physics as
outlined in Section 2.

Here, matching is achieved through an it-

erative procedure based on the Schwarz alter-
nating method for the treatment of steady-state
problems. The Schwarz method was originally
proposed for molecular dynamics-continuum
methods in [16] and extended in [17], but it
is equally applicable to DSMC-continuum hy-
brid methods [1, 33]. This approach was cho-
sen because of its ability to couple different de-
scriptions through Dirichlet boundary condi-
tions (easier to impose on dense-system molec-
ular simulations compared to flux conditions
because fluxes are nonlocal in dense systems),
and its ability to reach the solution steady state
in an implicit manner by using only steady so-
lutions from each subdomain. The importance
of the latter characteristic cannot be overem-
phasized; the implicit convergence in time
through exchange of steady solutions guaran-
tees timescale decoupling that is necessary for
the solution of macroscopic problems: while
the integration of molecular trajectories at the
molecular timestep for total times correspond-
ing to macroscopic evolution times is, and will
for a long time be, infeasible, integration of the
molecular region to its steady state is feasible.

Within the Schwarz coupling framework, an
overlap region facilitates information exchange
between the continuum and atomistic subdo-
mains in the form of Dirichlet boundary con-
ditions. A steady-state continuum solution is
first obtained using boundary conditions taken
from the atomistic subdomain solution. For the
first iteration, this latter solution can be a guess.
A steady-state atomistic solution is then found
using boundary conditions taken from the con-
tinuum subdomain. This exchange of bound-
ary conditions corresponds to a single Schwarz
iteration. Successive Schwarz iterations are re-
peated until convergence, i.e., until the solu-
tions in the two subdomains are identical in the
overlap region.

The Schwarz method was recently applied
[1] to the simulation of flow-through micro-
machined filters. These filters have passages
that are sufficiently small that require a molec-
ular description for the simulation of the flow
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through them. Depending on the geometry and
number of filter stages, the authors have re-
ported computational savings ranging from 2
to 100. The approach in [1] used a Maxwellian
velocity distribution and a “control mecha-
nism” to impose the flow field on the molec-
ular simulation. This approach, although suc-
cessful in quasi-one-dimensional flows, is not
very general; additionally, it is well known that
using a Maxwellian distribution to impose hy-
drodynamic boundary conditions, in general,
if uncorrected will lead to slip (discrepancy
between the imposed and observed boundary
conditions). As discussed in Section 2.4 general
boundary condition imposition on dilute-gas
molecular simulations can be performed us-
ing the Chapman-Enskog velocity distribution
[8, 14]. This approach eliminates the need for
a feedback correction since supplying the cor-
rect local distribution function eliminates slip.
A Chapman-Enskog procedure for the Schwarz
method is described below.

Extensions of the Schwarz method to time-
dependent problems is currently under inves-
tigation [32], although, as discussed in Sec-
tion 2.3, when the Mach number is low, the
disparity between the molecular and hydrody-
namic timescales makes this a very stiff problem.

Before proceeding with an example, a sub-
tle numerical issue associated with the incom-
pressible formulation should be discussed. Let
Γ1 be the portion of the continuum subdomain
that receives boundary data from the molecular
subdomain. Due to inherent statistical fluctu-
ations in this data, the boundary condition on
the complete continuum subdomain boundary
(φ ⊇ Γ1) may not conserve mass exactly. Al-
though this phenomenon is an artifact of the
finite sampling of the atomistic solution (if a
sufficiently large —“infinite”— number of sam-
ples are taken, the mean field obtained from
the atomistic simulation should be appropri-
ately incompressible), it is sufficient to cause a
numerical instability in the continuum calcula-
tion. The most common remedy is to apply a
correction to vΓ1 , the atomistic boundary data

to be imposed on Γ1, namely

(vΓ1 .n)corrected = vΓ1 .n −
∫
φ vφ.ndS∫

Γ1
dS

, (3)

where n is the unit outward normal vector
to the boundary and dS is an element of the
boundary. This correction essentially removes
the discrepancy in mass flux equally across all
normal velocity components of vΓ1 . Tests with
various problems [16, 17, 33] indicate that it is
successful at removing the numerical instabil-
ity.

4.1. Driven Cavity Test Problem

In this section we discuss the Schwarz alternat-
ing method in the context of the solution of the
driven cavity problem. We pay particular at-
tention to the imposition of boundary condi-
tions on the DSMC domain using a Chapman-
Enskog distribution, which is arguably the
most rigorous and general approach. For illus-
tration and verification purposes we solve the
steady driven cavity problem (see Fig. 2), in
which the continuum subdomain is described
by the Navier-Stokes equations solved by finite-
element discretization. The hybrid solution is
expected to recover the fully continuum so-
lution because the atomistic subdomain is far
from solid boundaries and from regions of large
velocity gradients. This test, therefore, pro-
vides a consistency check for the scheme.

Standard Dirichlet velocity boundary condi-
tions for a driven cavity problem were applied
on the system boundaries; the horizontal ve-
locity component on the left, right, and lower
walls were held at zero while the upper-wall
horizontal velocity was set to 50 m/s. The ver-
tical velocity component on all boundaries was
set to zero. Despite the relatively high veloc-
ity, the flow is essentially incompressible and
isothermal. The pressure is scaled by setting
the middle node on the lower boundary at at-
mospheric pressure (1.013 × 105 Pa).

Figure 3 shows the detailed structure of the
approach used for exchanging boundary condi-
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FIGURE 2. Continuum and atomistic subdomains
for Schwarz coupling for the two-dimensional driven
cavity problem.

tions between the two subdomains. By center-
ing DSMC cells on the finite element (FE) nodes
we can directly impose the molecular solution
onto the continuum calculation (after correcting
for mass conservation using Eq. 3). The impo-
sition of boundary conditions on the atomistic
subdomain is facilitated by the particle reser-
voir shown in Fig. 3 which, in this implemen-
tation acts also as part of the overlap region.
Particles are created at locations x, y within
the reservoir with velocities C = (C x,Cy,Cz)
drawn from a Chapman-Enskog velocity distri-
bution f(C) given by [13],

f(C) = f0(C)Γ(C), (4)

where, if C̃ = C/(2kT/m)1/2 is the normalized
thermal velocity,

f0(C̃) =
1

π3/2
e−C̃2

(5)

and,

FIGURE 3. Schematic of the boundary condition im-
position approach. Only the bottom left corner is
shown.

Γ(C̃)=1 + (qxC̃x + qyC̃y + qzC̃z)
(

2
5
C̃ 2 − 1

)

− 2(τxyC̃xC̃y + τxzC̃xC̃z + τyzC̃yC̃z)
− τxx(C̃ 2

x − C̃ 2
z ) − τyy(C̃ 2

y − C̃ 2
z ) (6)

with,

qi = − κ

P

(
2m
kT

)1/2 ∂T

∂xi
, (7)

τij =
µ

P

(
∂vi

∂xj
+

∂vj

∂xi
− 2

3
∂vk

∂xk
δij

)
. (8)

Here qi and τij are the dimensionless heat
flux and stress tensor, respectively, with µ, κ, P
and v = (v1, v2, v3) being the viscosity, thermal
conductivity, pressure, and mean fluid veloc-
ity. The Chapman-Enskog distribution of ve-
locities can be generated using an “acceptance-
rejection” scheme as detailed by Garcia and
Alder [13].

The number and spatial distribution of par-
ticles in the reservoir are chosen according
to the overlying continuum cell mean density
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and density gradients. After particles are cre-
ated in the reservoir they move for a single
DSMC timestep. Particles that enter DSMC
cells are incorporated into the standard convec-
tion/collision routines of the DSMC algorithm.
Particles that remain in the reservoir are dis-
carded. Particles that leave the DSMC domain
are also deleted from the computation. The
rapid convergence of the Schwarz approach is
demonstrated in Fig. 4. The continuum nu-
merical solution is reached to within ±10% at
the third Schwarz iteration and to within ±2%
at the tenth Schwarz iteration. Our error es-
timate, which includes the effects of statisti-
cal noise [19] and discretization error due to
finite timestep and cell size, is approximately
2.5%. Similar convergence of the vertical veloc-
ity field is also observed.

The close agreement with the fully con-
tinuum results indicates that the Chapman-
Enskog procedure is not only theoretically ap-
propriate, but also robust. Despite a Reynolds
number of Re ≈ 1, the Schwarz method
(originally only shown to converge for elliptic
problems [23]) converges with negligible error.
This is in agreement with the findings of Liu
[24] who has recently shown that the Schwarz
method is expected to converge for Re ∼ O(1).
Extension of the the Schwarz method to flows
with higher Re ∼ O(100) has also been pos-
sible [12] provided suitable preconditioning is
utilized.

5. ADAPTIVE MESH AND ALGORITHM
REFINEMENT FOR COMPRESSIBLE
FORMULATION

As discussed above, consideration of the com-
pressible equations of motion leads to hybrid
methods that differ significantly from their in-
compressible counterparts. The hyperbolic na-
ture of compressible flows means that steady-
state formulations typically do not offer a sig-
nificant computational advantage, and as a re-
sult, explicit time integration is the preferred
solution method and flux matching is the pre-
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FIGURE 4. Convergence of the horizontal velocity
component along the y = 0.425 × 10−6m plane with
successive Schwarz iterations.

ferred coupling method. Given that the char-
acteristic evolution time, τh, scales with the
system size, the largest problem that can be
captured by a hybrid method is limited by
the separation of scales between the molecu-
lar integration time and τh. Local mesh re-
finement techniques [14, 34] minimize the re-
gions of space that need to be integrated at
small CFL timesteps (due to a fine mesh), such
as the regions adjoining the molecular subdo-
main. Implicit timestepping methods [38] can
also be used to speed up the time integration of
the continuum subdomain. Unfortunately, al-
though both approaches enhance the computa-
tional efficiency of the continuum subproblem,
they do not alleviate the issues arising from the
disparity between the molecular timestep and
the total integration time.

As discussed in the introduction, over-
whelming computational costs can be incurred
when using a time-explicit flux-based coupling
approach to capture steady phenomena where
compressibility effects are negligible, as is in
most cases, in dense fluids. In this case the
integration timestep of the continuum subdo-
main also becomes of the order of the molecu-
lar timescale, while the continuum subdomain

International Journal for Multiscale Computational Engineering



DISCUSSION OF HYBRID ATOMISTIC-CONTINUUM METHODS 199

is, presumably, much larger than the molecu-
lar subdomain and evolves at a much longer
timescale. This appears to not have been fully
appreciated by various groups that have at-
tempted to develop dense-fluid hybrid meth-
ods based on the compressible continuum for-
mulation and flux-based matching procedures
to solve steady and essentially incompressible
problems.

On the other hand, for compressible gas flow,
locally refining the continuum solution cells to
the size of DSMC cells leads to a particularly
seamless compressible hybrid formulation in
which DSMC cells differ from the neighboring
continuum cells only by the fact that they are
inherently fluctuating (the DSMC timestep re-
quired for accurate solutions, see [3, 15, 18],
is very similar to the CFL timestep of a com-
pressible formulation). Thus a finite volume
formulation can be used to couple the two sub-
domains quite naturally. In such a method
[18, 19] the fluxes of mass, momentum, and
energy from DSMC to the continuum subdo-
main given by particles leaving the DSMC re-
gion and traveling toward the continuum sub-
domain can be used directly for finite volume
integration. Imposition of the continuum “in-
terface conditions” onto DSMC requires the use
of reservoirs similarly to the procedure out-
lined in Section 4.1. The flux of mass, mo-
mentum, and energy from the continuum to
the atomistic domain is provided by the parti-
cles that, upon initialization in the reservoir at
the continuum solution conditions, travel into
the DSMC region. In this paper we review
recent developments [34, 35] that embed this
methodology into an adaptive mesh refinement
framework.

Another characteristic inherent to compress-
ible formulations is the possibility of describing
parts of the domain by the Euler equations of
motion [34]. In that case, consistent coupling
to the molecular formulation can be performed
using a Maxwell-Boltzmann distribution [14].

In a recent paper [4], Alexander et al. have
shown that explicit time-dependent flux-based

formulations preserve the fluctuating nature of
the molecular description within the molecular
regions, but the fluctuation amplitude decays
rapidly within the continuum regions; correct
fluctuation spectra can be obtained in the en-
tire domain by solving a fluctuating hydrody-
namics formulation [21] in the continuum sub-
domain.

5.1. Fully Adaptive Mesh and Algorithm
Refinement for a Dilute Gas

The compressible formulation of Garcia et
al. [14], referred to as AMAR (Adaptive Mesh
and Algorithm Refinement), pioneered the use
of mesh refinement as a natural framework
for the introduction of the molecular descrip-
tion in a hybrid formulation. In AMAR, the
typical continuum mesh refinement capabilities
are supplemented by an algorithmic refinement
(continuum to atomistic) based on continuum
breakdown criteria. This seamless transition is
both theoretically and practically very appeal-
ing.

In what follows we briefly discuss a re-
cently developed [34, 35] fully adaptive AMAR
method. In this method, the DSMC provides
an atomistic description of the flow while the
compressible two-fluid Euler equations serve
as the continuum-scale model. The continuum
and atomistic representations are coupled by
matching fluxes at the continuum-atomistic in-
terfaces and by proper averaging and interpola-
tion of data between scales. This is performed
in three steps: a) the continuum solution val-
ues are interpolated to create DSMC particles
in the reservoir region, here called buffer cells;
b) the conserved quantities in each continuum
cell overlaying the DSMC region are replaced
by averages over particles in the same region;
and c) fluxes recorded when particles cross the
DSMC interface are used to correct the con-
tinuum solution in cells adjacent to the DSMC
region. This coupling procedure makes the
DSMC region appear as any other level in an
AMAR grid hierarchy. Similarly to the over-
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FIGURE 5. Moving Mach 10 shock wave though Ar-
gon. The AMAR algorithm tracks the shock by adap-
tively moving the DSMC region with the shock front.

lap region described for the Schwarz method
above, the Euler solution information is passed
to the particles via buffer cells surrounding the
DSMC region. At the beginning of each DSMC
integration step, particles are created in the
buffer cells using the continuum hydrodynamic
values.

The above algorithm allows grid and algo-
rithm refinement based on any combination of
flow variables and their gradients. Density
gradient-based refinement has been found to be
generally robust and reliable [34]. Concentra-
tion gradients or concentration values within
some interval are also effective refinement cri-
teria especially for multispecies flows involv-
ing concentration interfaces. In this particu-
lar implementation, refinement is triggered by
spatial gradients exceeding user defined toler-
ances. This approach follows from the contin-
uum breakdown parameter method proposed
by Bird [6].

Using the AMAR capabilities provided by
the Structured Adaptive Mesh Refinement Ap-
plication Infrastructure (SAMRAI) developed
at the Lawrence Livermore National Labora-
tory [27], the above adaptive framework has
been implemented in a fully 3D, massively par-
allel form in which multiple molecular (DSMC)
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FIGURE 6. Moving Mach 10 shock wave though Ar-
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patches can be introduced or removed as
needed.

Figure 5 shows the adaptive tracking of a
shockwave of Mach number 10 used as a val-
idation test for this method. Density gradient-
based mesh refinement ensures the DSMC re-
gion tracks the shock front accurately. Further-
more, as shown in Fig. 6 the density profile of
the shock wave remains smooth and is devoid
of oscillations that are known to plague tradi-
tional shock capturing schemes [5, 37].

6. DISCUSSION

One of the most important messages of this
paper is that boundary-condition imposition
on molecular domains is quite independent of
the choice of the solution-coupling approach.
As an example, consider the Schwarz method,
which provides a recipe for making solutions
in various subdomains globally consistent sub-
ject to exchange of Dirichlet conditions. The
imposition of these boundary conditions can
be achieved through any method, and no cer-
tain method is favored by the coupling ap-
proach. Flexibility in adopting appropriate el-
ements from previous approaches and the im-
portance of choosing the coupling method ac-
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cording to the flow physics are key steps to
the development of more sophisticated, next-
generation hybrid methods.

Although hybrid methods provide signifi-
cant savings by limiting molecular solutions
only to the regions where they are needed, so-
lution of time-evolving problems, which span
a large range of timescales, is still not possible
if the molecular domain, however small, needs
to be integrated for the total time of interest.
New frameworks are, therefore, required that
allow timescale decoupling or coarse-grained
time evolution of molecular simulations.

Significant computational savings can be ob-
tained by using incompressible formulation
when appropriate. Neglect of these simpli-
fications can lead to a problem that is sim-
ply intractable when the continuum subdo-
main is appropriately large. It is interesting to
note that, when a hybrid method was used to
solve a problem of practical interest [1] while
providing computational savings, the Schwarz
method was preferred because it provided a
steady solution framework with timescale de-
coupling.

For dilute gases the Chapman-Enskog distri-
bution provides a robust and accurate method
for imposing boundary conditions. Further
work is required for the development of simi-
lar frameworks for dense liquids.
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