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We describe recent developments in the hybrid atomistic/continuum modelling of
dense fluids. We discuss the general implementation of mass, momentum and energy
transfers between a region described by molecular dynamics and a neighbouring
domain described by the Navier–Stokes equations for unsteady continuum fluid flow.
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1. Introduction

The flow of complex fluids near interfaces is governed by a subtle interplay between
the fast microscopic dynamics within a small localized region of the system close to
the interface and the slow dynamics in the bulk fluid region. This scenario is encoun-
tered in a wide variety of applications ranging from nanotechnology (nanofluidics)
and other industrial processes—such as wetting, droplet formation, critical fluids
near heated surfaces or crystal growth from a fluid phase—to biological systems, for
example, membranes or biomolecules near interfaces. The dynamics of these systems
depends on the intimate connection of many different spatiotemporal scales: from
the nanoscale to the microscale and beyond. Realistic simulations of such systems
via standard classical molecular dynamics (MD) are prohibitive, while continuum
fluid dynamics (CFD) cannot describe the important details within the interfacial
region. In view of this fact, the field of computer simulation is now faced with the
need for new techniques that bridge a wider range of time- and length-scales with the
minimum loss of information. A hybrid particle-continuum approach provides a reso-
lution to this dilemma. A hybrid algorithm retains all the atomistic detail within the
relevant localized domain and couples this region to the continuum hydrodynamic
description of the remainder of the system. Indeed, hybrid algorithms for liquids can
be expected to provide a powerful tool for the fast-growing field of nanofluidics in
microelectromechanical systems (MEMS) and our ongoing contributions have been
recognized by the nanoscience community (Delgado-Buscalioni & Coveney 2003a) as
offering a promising simulation technique with nanotechnological applications.

Hybrid algorithms for solids (Abraham et al . 1998) and gases (Garcia et al . 1999)
were the first to be fully developed in the literature. As expected in most theoretical
descriptions of matter, the hybrid description of the liquid state is the most chal-
lenging one. The general procedure is to connect the particle domain (P) and the

One contribution of 21 to a Theme ‘Connecting scales: micro, meso and macro processes’.

Phil. Trans. R. Soc. Lond. A (2004) 362, 1639–1654
1639

c© 2004 The Royal Society

 on December 2, 2014http://rsta.royalsocietypublishing.org/Downloaded from 

http://rsta.royalsocietypublishing.org/


1640 R. Delgado-Buscalioni and P. V. Coveney

P C

(a)

 x

n
HW

w

(b)

x = lC x = lC x = lPx = lP

A

C → P

P → C

P → C

∆xPC

Ε

Figure 1. The domain decomposition of the hybrid scheme. (a) Display of P and C regions
separately. The shaded region represents the overlapping domain comprised of two-dimensional
arrays of C → P and P → C cells where the exchange of microscopic and macroscopic information
is carried out. The surface area of each cell is A. (b) The P → C region shown in more detail
with the neighbouring control cells pertaining to the finite-volume discretization of the C region.
In this one-dimensional example, the width of the P → C cell is ∆xPC and its volume is
VPC = A∆xPC. H is the midpoint of the central cell; W and E are the midpoints of cells to the
left and right, respectively.

continuum domain (C) within an overlapping region comprised of two buffers: C → P
and P → C (see figure 1). Within the P → C buffer the particle dynamics are coarse
grained to extract the boundary conditions for the C region. The most complicated
part of any hybrid scheme is the C → P coupling, where the microscopic dynamics
need to be reconstructed to adhere to the prescriptions given by the continuum vari-
ables. Moreover, in doing so the unphysical artefacts thereby introduced should be
minimized (following Occam’s razor).

In this paper we provide an overview of the state of the art in the hybrid modelling
of liquids. In § 2 we start by presenting an overview of the hybrid scheme and some
preliminary topics such as the inherent constraints on the continuum time-step and
the spatial-grid size. Section 3 discusses several implementations of the temporal
coupling. The C → P coupling scheme is explained in § 4 for the general case of
mass, momentum and energy. We illustrate this important part of the scheme by
reproducing the three hydrodynamic modes (shear, sound and heat) governing the
relaxing flows in an infinite medium. Section 5 is devoted to the P → C coupling,
based on a finite-volume method for solving the flow within the C domain. Some
comments on the effect of noise on the accuracy of the scheme are made. The full
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method is used in § 6 to solve the problem of shear flow driven by oscillatory wall
motion in a nano-slot. Finally, conclusions and future directions for this research are
described in § 6.

2. Overview

The domain decomposition deployed in our hybrid scheme is depicted in figure 1.
Within domain P the fluid is described at the atomistic level via Newtonian dynamics.
The position of the N(t) atoms at time t inside P is updated during each time
interval ∆tP using a standard MD scheme. The present calculations were done with
a Lennard-Jones (LJ) fluid. Throughout the ongoing discussion all quantities are
given in reduced Lennard-Jones units: length σ, mass m, energy ε, time (mσ2/ε)1/2,
and temperature ε/kB. We refer to Hoheisel (1996) for the estimated physical values
of the LJ parameters for several substances (as an example, for a simple molecular
fluid such as N2, σ � 0.35 nm and ε/kB � 100 K).

The rest of the computational domain (C) is described by the Navier–Stokes
equations. The fluid variables at C are the densities of the conserved quantities
for which the equations of motion in conservative form are ∂Φ/∂t = −∇ · JΦ with
Φ = {ρ, ρu, ρe} and JΦ = {ρu, ρu + Π, ρue + Π · u + q} standing for the mass,
momentum and energy fluxes, respectively. Here ρ is the density, u the local velocity,
e the specific energy, Π = P1+τ the stress tensor which contains the pressure P and
the viscous tensor τ (for a Newtonian fluid), and q = −κ∇ · T the heat flux by con-
duction expressed via Fourier’s law. These continuum equations may be solved via
standard CFD methods. Alternatively, for low-Reynolds-number flows (Re � O(10))
the equations can be solved analytically (Delgado-Buscalioni & Coveney 2003b), as
is done in the tests presented in § 4.

The kind of information that needs to be transferred in the overlapping region has
been the subject of some discussion. The first attempts in the literature (see Delgado-
Buscalioni & Coveney (2003b) and references therein) considered the transfer of
momentum in steady shear flows and proposed a matching procedure based on the
continuity of velocity across the overlapping region. This sort of coupling strategy
may be referred to as ‘coupling through state’. An alternative formulation of the
information exchange for liquids, based on matching the fluxes of conserved quantities
(to/from P and C), was proposed by Flekkøy et al . (2000). These authors considered
steady shear flows with mass transfer. In subsequent work by Delgado-Buscalioni &
Coveney (2003b) the flux-coupling scheme was generalized to enable transfer of mass,
energy and momentum (along both transversal and longitudinal directions). Delgado-
Buscalioni & Coveney (2003b) also present a comparative study of the coupling-
through-fluxes and coupling-through-state schemes for flows involving energy transfer
(longitudinal waves). It was shown that the coupling-through-fluxes scheme provides
the correct physical behaviour, while the coupling-through-state scheme does not
guarantee positive entropy production. Consequently, the coupling of fluxes is of
central importance in our hybrid scheme (see §§ 4 and 5).

3. Temporal coupling schemes

In general there are three times involved in the coupling scheme: the MD time-step
∆tP, the time-step for the C solver ∆tC (� ∆tP) and the averaging time ∆tav,
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which are presented below in the outline of two possible strategies for merging the
time evolution of C and P. The information transfer (from C → P and P → C) is
updated over each time interval, ∆tC. As stated above, the P → C coupling consists
firstly of a coarse-graining procedure. In particular, for any particulate quantity, Φi,
the spatial average over each P → C cell of volume VPC (= A∆XPC, in figure 1)
is defined as Φ(R, t) =

∑
i∈VPC

Φi/NPC, where R is the position of the cell in the
coarse-grained coordinates and NPC is the number of particles inside VPC. The time
average also needs to be local with respect to the coarse-grained dynamics. To that
end, the microscopic quantities are sampled over a time interval ∆tav which is treated
as an independent parameter of the simulation:

〈Φ〉(R, tC) =
1

∆tC

∫ tC

tC−∆tav

Φ(R, t) dt. (3.1)

The magnitudes of ∆tC and ∆tav are constrained by several physical and numerical
prerequisites quoted in table 1.

There are essentially two ways to deal with the coupling of time within the hybrid
scheme: sequential coupling or synchronized coupling. The diagrams in figure 2 illus-
trate two possible choices for these time-coupling strategies starting from given ini-
tial conditions. In the sequential coupling scheme, both P and C are first moved to
t = ∆tC using the initial conditions. The C → P coupling is performed at t = ∆tC
and the P system is advanced to t = 2∆tC ∼ 300∆tP. The averaged P information
collected over the time interval ∆tav = 2∆tC within the P → C cell is then trans-
ferred to the C domain, providing the required boundary condition to advance C
towards the same time t = 2∆tC. This procedure is suited for serial processing. More
refined versions of sequential coupling can be constructed to perform averaging over
times ∆tav greater than ∆tC.

In the synchronized-coupling scheme both domains advance in time independently
until a certain instant at which both C → P and P → C information transfers
are exchanged. This scheme is suitable for parallel processing because the P and
C domains are solved concurrently. We note that in this case the averaged informa-
tion from P transferred at any of these times is obtained during the previous time
interval ∆tav. This introduces a delay of O(∆tav/2) in the C flow. Hence it is impor-
tant to ensure that ∆tav is about O(10−1) times smaller than the fastest physical
time of the flow process (see table 1).

4. Continuum-to-particle coupling scheme and its validation

The generalized forces arising from fluxes of mass, momentum and energy mea-
sured from the C flow are to be injected into the particle system at the C → P cell.
Table 2 summarizes how each flux contribution arising within C is translated into
the P domain.

Mass continuity is ensured by inserting or extracting particles at a rate given
by (T1) in table 2. The convection of momentum is determined by the product of
the rate of particle insertion s and the average velocity of the incoming/outgoing
particles 〈v′〉. By inserting (T1) into (T2) it is easily seen that convection balance
requires 〈v′〉 = u. New particles are therefore introduced with velocities sampled
from a Maxwellian distribution at temperature T and mean velocity u. On the other
hand, the local equilibrium 〈v̄〉 = u (where the bar on v̄ denotes spatial averaging
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Figure 2. Two possible time-coupling strategies in a particle-continuum hybrid scheme: (a) syn-
chronized coupling and (b) sequential coupling. Bold arrows indicate the direction of the infor-
mation transfer. The time average of the P variables is calculated during the time interval ∆tav
by ns samplings separated in time by δts. ∆tC and ∆tP are the continuum time-step and the
MD time-step, respectively.

within the PC domain) ensures that the average velocity of any extracted particles
is equal to that of the continuum prescription.

Viscous and pressure forces are introduced via external forces acting on the par-
ticles at P → C. An important issue is to decide how to distribute the overall force
in (T3),

∑NPC
i=1 F ext

i , over the individual particles. We refer to Flekkøy et al . (2000)
and Delgado-Buscalioni & Coveney (2003b) for a full discussion. Although in gen-
eral the force to be felt by each particle i within the P → C cell can be distributed
according to the particle positions (see Flekkøy et al . 2000), we have adopted a flat
distribution F ext

i = AΠ · n/NPC because it provides, by construction, a correct rate
of energy dissipation in (T5) (see Delgado-Buscalioni & Coveney 2003b). Using (T1)
it is seen that the balance of advected energy in (T4) implies 〈ε′〉 = e. The energy
of each particle is composed of kinetic and potential parts, εi = v2

i /2 + ψi({r}N ).
The specific energy of the continuum is e = u2/2 + 3kT/(2m) + φ (here φ is the
excess potential energy). The balance of kinetic energy 〈(v′)2〉 = u2/2+3kT/(2m) is
ensured by inserting the new particles with the proper Maxwellian distribution. The
balance of the potential energy requires a more difficult condition 〈ψ({r}N )〉 = φ to
be satisfied. When inserting a new particle, this involves finding a precise location
within the C → P cell with the desired potential energy. To solve this problem in a
fast and effective way we have constructed an algorithm for particle insertion called
usher (Delgado-Buscalioni & Coveney 2003c). In order to find the site with the
desired energy within the complex potential energy landscape, the usher algorithm
uses a variation of the steepest descent algorithm including an adaptable displace-
ment. For densities within the range ρ = [0.4–0.8], the usher scheme needs around
8–30 iterations, each one involving the evaluation of a single force. The usher algo-
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Table 1. Constraints on the coarse-grained time- and length-scales
within our hybrid MD-CFD scheme

(Condition (C1) ensures the local thermodynamic equilibrium within the averaging region: the
coarse-graining time ∆tav and grid spacing ∆x need to be larger than the collision time τcol

and the mean free path λ, respectively. In (C1) τcol and λ are estimated by the hard-sphere
approximation. Condition (C2) is needed to resolve the fastest flow characteristic time τflow and
the spatial variation of any physical variable Φ over the control cell |Φ−1(dΦ/dx)|∆x. Depending
on the flow behaviour, in (C2), τflow may stand for the period of the oscillatory flow f−1 or for
the diffusive time L2

x/ν, etc. The accuracy condition in (C3) ensures that the signal-to-noise ratio
of the transversal momentum flux in a flow with shear rate γ is greater than 1 (similar kinds of
relationship can be derived for the longitudinal momentum and energy fluxes). The conditions
(C1)–(C3) are applied within the P → C cell. The last condition, (C4), ensures the stability
of the numerical (explicit) scheme used for time integration of the C flow. The characteristic
velocity of the flow (on one grid space) is denoted by uflow.)

algebraic constraints
physical condition ︷ ︸︸ ︷ condition

local equilibrium ∆tC > τcol = 0.14ρ−1T −1/2 ∆x > λ = 0.2ρ−1 (C1)
flow resolution ∆tav < O(0.1)τflow |Φ−1 dΦ/dx|∆x < 1 (C2)
accuracy VPC∆tav > T/(γ2η) (C3)
Courant condition ∆tC < ∆x/(2uflow) (C4)

Table 2. The balance of mass, momentum and energy fluxes at each C → P cell

(The fluxes measured within C (third column) are imposed on P via the expressions given in the
second column. The cell’s surface area is A, and the surface vector n points outwards (figure 1).
The mass rate is s(t) (s > 0 for inserted and s < 0 for removed particles). The velocity and
energy of the inserted/removed particles are v′ and ε′, respectively. The external force and heat
flux inserted within the C → P cell are

∑NPC
i=1 F ext

i and 〈Jext
Q 〉, respectively.)

conserved
quantity fluxes P ← C equation

mass ms = Aρu · n (T1)

momentum convection ms〈v′〉 = Aρuu · n (T2)
stress 〈

∑NCP F ext
i 〉 = AΠ · n (T3)

energy advection ms〈ε′〉 = Aρue · n (T4)
dissipation 〈

∑NCP F ext
i · vi〉 = AΠ · u · n (T5)

conduction 〈Jext
Q 〉 · n = Aq · n (T6)

rithm can also be applied in other problems involving particle insertion, such as
grand-canonical molecular dynamics.

Finally, (T6) in table 2 determines the rate of heat transfer into P by conduction.
This energy can be injected by reproducing a non-isothermal environment within
the C → P cell. To that end we have implemented a set of (typically 2–3) Nosé–
Hoover thermostats (NHT) separated by a distance d with temperatures differing by
∆T = [∇T · n]d, where ∇T is the C temperature gradient at C → P.

The decay of transversal and longitudinal waves is an excellent test for the validity
of our proposed C → P coupling as they comprise the whole set of hydrodynamic
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Figure 3. The Fourier components of (a) the transversal and (b) the longitudinal velocity per-
turbation. In the notation v

(s,n)
y , ‘s’ indicates the sinusoidal component, ‘c’ the cosinusoidal

component, and n the wavenumber kn = nk0. The transversal wave has k0 = 0.35, the size of
the P region was Lx = 20 (in LJ units) and the temperature was T = 2.5; while for the longitu-
dinal wave k0 = 0.168, Lx = 40 and T = 3.5. In both cases ρ = 0.53. The autocorrelation of the
velocity (ACF) is also shown. In all graphs the dashed lines are the analytical solution from linear
hydrodynamics. (Reproduced from Delgado-Buscalioni & Coveney (2003b) with permission.)

modes: shear, sound and heat waves. For these tests we implemented a set-up con-
sisting of a P region of length Lx (with periodic boundary conditions in y- and
z-directions) surrounded by two C domains. We initially imposed on the P system a
sinusoidal (x- or y-) velocity profile along the x-direction. By extracting the initial
amplitudes of the spatial Fourier components of all the hydrodynamic quantities it
is then possible to trace the entire time evolution of the relaxing flow using linear
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Figure 4. The dominant Fourier mode of the various thermodynamic variables ((a) temperature,
(b) energy, (c) density, (d) pressure) in the decay of the same longitudinal wave shown in figure 3.
Comparison is made between a calculation with two Nosé–Hoover thermostats per C → P cell
(2-NHTCP) and another using only one thermostat (1-NHTCP). Dashed lines are the analytical
hydrodynamic solution. The entropy production from these two simulations is shown in figure 5,
only the one with two thermostats yields the correct physical behaviour. (Reproduced from
Delgado-Buscalioni & Coveney (2003b) with permission.)

hydrodynamics. In particular, this permits us to calculate at any time the generalized
forces to be inserted into the C → P cell. The time evolution of the spatial Fourier
components of the P variables is finally compared with the analytical expressions.
Such kinds of comparison are shown in figures 3 and 4 for the case of a relaxing
shear wave and a longitudinal wave, respectively. The excellent agreement obtained
indicates that the C → P coupling protocol can be used for capturing fast and
low-amplitude flows, such as those governed by sound, shear or heat waves.

The entropy perturbation, shown in figure 5, was calculated from the tempera-
ture and density perturbative field. The results clearly show that using only one
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thermostat per C → P cell (denoted by 1-NHTCP in figures 3 and 4) leads to nega-
tive entropy production. The pure exponential decay of heat due to diffusion is only
recovered when the correct (averaged) heat flux is connected to each C → P cell;
in figures 4 and 5 we present a result with two thermostats per cell (2-NHTCP).
This result confirms that the coupling-through-fluxes scheme is the correct matching
procedure.

5. Particle-to-continuum coupling: finite volumes and fluctuations

Within the P → C cells the information coming from the particle dynamics is coarse
grained to provide boundary conditions at the ‘upper’ C level. In § 2 we introduced
the averages needed to produce such information. At the P → C interface the C region
receives the averaged particle fluxes as open-flux (von Neumann) boundary condi-
tions. The averaged mass, momentum and energy particle fluxes through the P → C
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Figure 5. The main Fourier mode of the entropy density (as a product with the mean tempera-
ture) −〈Q(s,1)〉 time averaged over ∆tav = 1.0. The result comes from the same longitudinal wave
shown in figures 3 and 4. Comparison is made between a flux-coupling scheme (using 2-NHTCP)
and the coupling-state scheme using 1-NHTCP (cf. figure 4); the latter violates the second law
of thermodynamics. The dashed line is the analytical hydrodynamic result. (Reproduced from
Delgado-Buscalioni & Coveney (2003b) with permission.)

interface are constructed as follows:

ρu · nPC =
1

VPC

〈 NPC∑
i=1

mvi

〉
· nPC, (5.1)

Π · nPC =
1

VPC

〈( NPC∑
i=1

mvivi − 1
2

NPC∑
i,j

rijFij

)〉
· nPC, (5.2)

q · nPC =
1

VPC

〈( NPC∑
i=1

εivi − 1
2

NPC∑
i,j

rijviFij

)〉
· nPC, (5.3)

where NPC is the number of particles inside the P → C cell of volume VPC, and nPC
is the surface vector shown in figure 1.

(a) Hybrid finite volume scheme: boundary conditions

Let us now illustrate how these fluxes can be injected into the C domain in the
framework of the finite-volumes method (Patankar 1980). The finite-volumes method
is ideally suited to our scheme because it exactly balances the fluxes across the
computational cells. Its principle is simple. Briefly, the computational domain (C)
is divided into cells of volume Vl whose size and location are given by the nodes
of a specified mesh, {Rl}, l = {1, . . . , M}. Integrating the conservation equation
∂Φ/∂t = −∇ · JΦ over each computational cell (say the cell H in figure 1) one
obtains

dρHΦH

dt
=

1
VH

∑
f

AfJΦ,f · nf, (5.4)

where Af stands for the area of the face ‘f’ and nf is the outward normal surface
vector. The volume integral of the transient term within the conservation equation
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has been approximated by VH multiplied by the explicit time derivative of the value of
the integrand at the cell centre, halfway between the surfaces: ρHΦH . Equation (5.4)
yields a set of ordinary differential equations (ODEs) involving the flow variables at
each cell face ‘f’. The set of equations is closed for the flow variables at the cell centre
by expressing the fluxes at the interfaces JΦ,f in terms of differences of flow variables
at neighbouring cell centres, via the constitutive relations.

Let us consider the momentum flux balance for the low-Reynolds-number flow of
an incompressible and isothermal fluid driven by the diffusion of y-velocity along
the x-direction: u = u(x)j. In this case J · n = P i − η(du/dx)j, where the surface
vector of the P → C surface is n = i. Let us consider an isobaric environment
and restrict ourselves to the transfer of transversal (y) momentum, governed by
the momentum flux J ≡ J · j = −ηγ̇ and the shear rate γ̇ ≡ du/dx. Integrating
along the cell H (see figure 1), using a first-order space discretization of the stress
(e.g. Jw = −η(uH − uW )/∆x) and an explicit time-integration scheme, one obtains

un
H = uH(1 − 2r) + ruE + ruW , (5.5)

where the subscripts H denote the set of cell centres H = {1, M}, and the sym-
bols E (east) and W (west) denote measured variables: x = E (= H + 1) and
x = W (= H − 1) (see figure 1). The time instant is denoted by uH = u(xH , t),
un

H = u(xH , t + ∆tC) and r ≡ ν∆t/(∆x2) with ν = η/ρ the kinematic viscosity. In
order to guarantee the numerical stability of the explicit scheme in equation (5.5),
the size of the (smallest) control cell inside the C region ∆x and the time-step ∆t are
related through r � 1

2 , which corresponds to the grid-diffusive velocity uflow = ν/∆x
in the Courant condition (C4) of table 1. In solving equation (5.5) we used a uniform
grid with a typical value of ∆x ∼ 0.5.

In order to impose the boundary condition one needs to determine the velocity
within the outer cells: at the rightmost x = xM+1 = Lx and at the leftmost boundary
(inside the P → C cell, see figure 1) x = x0 = lC − ∆x/2. At xM+1 = Lx there is a
rigid wall which moves at a velocity uwall(t) and provides the Dirichlet boundary
condition uM+1 = uwall(t). The hybrid formulation is applied at the left boundary
x0 = lC − ∆x/2. To evaluate the outer velocity uW = u0 we impose the balance of
momentum flux across the w surface at x = lC. This means that the continuum flux
evaluated at x = w (see figure 1) is made equal to the corresponding averaged particle
flux 〈j〉w = −η(ūH − uW )/∆x. The outer velocity to be inserted in equation (5.5) is
then uW = ūH + 〈j〉w∆x/η. The velocity ūH is evaluated as a linear combination of
the continuum uH (= u1) and the average particle velocity 〈v〉H at x1 = lC + ∆x/2:

ūH = (1 − α)uH + α〈v〉H . (5.6)

By inserting equation (5.6) into equation (5.5) one obtains the velocity at the bound-
ary cell:

un
H = uH(1 − r) + ruE +

〈j〉w∆t

ρ∆xH
+ αr(〈v〉H − uH). (5.7)

The reason for the choice of ūH in equation (5.6) now becomes clear. It introduces the
last term on the right-hand side of equation (5.7), which acts as a forcing term ensur-
ing velocity continuity by gently driving the continuum velocity to the corresponding
particle average uH = 〈v〉H . The strength of the velocity coupling is maximal when
α = 1 and is absent if α = 0. The idea of using a hybrid gradient (arising for any
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α 	= 0 in equation (5.6)) arose from the outcome of calculations performed at very
low shear rates (γ̇ < 10−2). Using α = 0 one obtains a velocity discontinuity at
P → C which is of the same order of magnitude as the fluctuations of the mean
instantaneous velocity within the overlapping region. At low shear rates this means
substantial relative differences in the C and P velocities, (〈v〉H − uH)/uH ∼ O(1).
This problem is solved by introducing a small velocity coupling in the continuum
scheme, with a small value of α ∈ [0.2, 0.5], which drives the continuum velocity to
the average particle velocity in a time of O[∆x2/(να)]. The velocity coupling term
is vanishingly small when averaged over the time-scale of the C flow, so it does not
introduce any extra flux on the coarse-grained time-scale.

(b) The effect of fluctuations: shear stress

In our scheme, the fluctuating nature of the fluxes introduced into the C region
at P → C imposes a limitation on our ability to resolve the flow field, as also arises
in experiments and full MD simulations. This limit is determined by the signal-to-
noise ratio becoming less than one. A theoretical expression for the amplitude of
the stress fluctuations can be obtained (Delgado-Buscalioni et al . 2003), providing a
relationship between the signal-to-noise ratio and the coarse-grained time- and space-
scales ∆tav and VPC. Table 1 contains a condition which ensures an averaged shear
force larger than its variance. It is clear that in weak steady flows it is always possible
to increase the signal-to-noise ratio by enlarging ∆tav. Nevertheless, in a general
space- and time-dependent flow, the sizes of the averaging windows in space and time
(VPC and ∆tav) are bounded above by the minimum wavelength and characteristic
time, which need to be treated within the flow. Such requirements on spatial and
temporal flow resolution are also quoted in table 1.

6. Oscillatory wall flow

In order to test the applicability of the full hybrid scheme for unsteady flows, we
consider the flow of an incompressible and isothermal fluid between two parallel
walls in relative oscillatory motion. This set-up is widely used to investigate the
rheological properties of complex fluids attached to surfaces, as polymer brushes
(see Wijmans & Smit (2002) for a recent review). These systems are good examples
of applications of the hybrid scheme, which can treat the complex fluid region by
MD and the momentum transfer from the bulk by CFD. A similar set-up can be
also used in the simulation of nanotechnological process. For instance, Stroock et
al . (2002) showed that the mixing of solutions in low-Reynolds-number flows in
microchannels can be enhanced by introducing bas-relief nanostructures on the floor
of the slot. In our test flow, the simulation domain is 0 � x � Lx and is periodic
along the y- and z-directions. The particle domain occupies the region x < lP and
includes the LJ liquid and the atomistic wall composed of two layers of LJ particles
at x � 0. The continuum domain comprises the region x ∈ [lC, Lx]. The sizes of the
simulation domains are within the nanoscale Lx ∼ 50σ, and lP ∼ 15σ, while the
width of the overlapping region, lP − lC, is set to around 5σ. The flow is uniquely
driven by the oscillatory motion of the x = Lx wall along the y-direction, meaning
that the mean pressure is constant throughout the domain and that there are no
transfers of mean energy or mass in the x-direction (perpendicular to the P → C
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surface). Therefore, the mean flow carries transversal momentum by diffusion only,
and the equation of motion for the y-velocity is ∂u/∂t = ν∂2u/∂x2, with boundary
conditions u(0, t) = 0 and u(L, t) = uwall(t) = umax sin ωt. This equation can be
solved analytically (Schlichting & Gersten 2000; Wijmans & Smit 2002). The flow
profile has a maximum amplitude at the moving wall and the momentum introduced
by its motion penetrates into a fluid layer of width δ ∼

√
πν/f . Beyond this layer the

flow amplitude tends to zero diffusively as it approaches the other wall held at rest.
Therefore, the maximum shear rate attained inside the momentum layer is of the
order of γ̇ ∼ umax/δ. Inserting this relation into the signal-to-noise condition ((C3)
in table 1), we find

ρu2
max∆tav > πf−1

(
kBT

VPC

)
. (6.1)

Equation (6.1) means that in order to attain a signal-to-noise ratio larger than one,
the mean kinetic energy per unit volume of the flow integrated over the averaging time
∆tav needs to be larger than the corresponding energy due to fluctuations over the
period of the mean flow. It is important to mention that, at low-enough frequencies
(f > ν/L2), there is sufficient time for momentum to be spread by diffusion over the
whole domain. In such situations the correct condition is given by the signal-to-noise
condition ((C3) in table 1) with γ̇ ∼ umax/L2.

As indicated by condition (C2) in table 1, in order to solve for the temporal
variation of the flow, we require that ∆tavf � O(0.1). Inserting this condition into
equation (6.1) one obtains umax > 5(kBT/ρVPC)1/2. For kBT = 1.0, ρ = 0.8 and
VPC = O(100) the above inequality yields umax > 0.5. We performed oscillatory
shear simulations for values of umax above, close to, and below the threshold given
by equation (6.1). As shown in figure 6a, calculations made at large flow amplitudes
are in excellent agreement with the analytical solution. In figure 6b we present results
for the same density and temperature (ρ = 0.8 and T = 1) and a wall velocity
umax = 0.5 right at the accuracy limit predicted by (6.1). The averaging time was
chosen to be ∆tav = 10. As shown by the instantaneous velocity within the P → C
cell, the noise amplitude is nearly equal to the flow amplitude and its time-averaged
value shows traces of fluctuations. Figure 6c corresponds to the same velocity and
density but at a larger temperature T = 4. This case is below the accuracy limit
(given by (C3) in table 1) where forces arising from thermal fluctuations dominate
the hydrodynamic ones.

7. Conclusions and future directions

We have presented a hybrid continuum-particle scheme for moderate-to-large fluid
densities which takes into account mass, momentum and energy exchange between
a domain described by discrete particle Newtonian molecular dynamics (P) and
an interfacing domain described by continuum fluid dynamics (C). The coupling
scheme is applied within an overlapping region comprised of two sub-cells where
the two-way exchange of information is performed: C → P and P → C. We have
shown that the coupling-through-variables scheme (which simply ensures continuity
of variables within the overlapping region) is not sufficient to guarantee positive
entropy production. However, by generalizing the coupling-through-fluxes scheme
proposed by Flekkøy et al . (2000) to energy and mass transfer we find that the
correct decay of shear, sound and heat waves is obtained.
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Figure 6. Mean molecular velocities within the overlapping region for several oscillatory-wall
shear flows applied to an LJ fluid; umax is the maximum wall velocity and f its frequency.
(a) Flow corresponds to umax = 10, f = 0.01 and T = 1.0; we plot the instantaneous molecular
velocity at P → C and the time-averaged molecular velocity (along ∆tav = 1) at C → P. (b) Flow
corresponds to umax = 0.5, f = 0.01 and T = 1.0. (c) Flow corresponds to umax = 0.5, f = 0.01
and T = 4.0. In all cases ρ = 0.8, the extent of the periodic directions are Ly = Lz = 9, while
VPC = ∆xLyLz = 178. In (b) and (c) we show the P → C mean velocity (instantaneous and
time-averaged velocity with ∆tav = 10); dashed lines are the analytical hydrodynamic solutions
of the imposed shear flows. All quantities are given in reduced LJ units.
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We are now deploying the present scheme to study the dynamics of a tethered
polymer under shear flow. The polymer and its local environment are treated via
MD, while the shear flow imposed on the outer domain is treated via the finite-
volume CFD method (Barsky et al . 2004).

Enhancements to the present hybrid algorithm are also under investigation. In the
scheme described here the energy flux balance is ensured only in a time-averaged
sense. We are currently studying alternative schemes which exactly balance this
flux. From a numerical standpoint, we plan to implement the P → C coupling in
conjunction with a finite-volume CFD solver in three dimensions.

Also, the present scheme can be easily adapted to couple molecular dynamics with
a mesoscopic scheme that takes into account hydrodynamic fluctuations. This sort
of hybrid scheme could be used in applications where the fluctuations are relevant
(microfluidics, fluids near critical points, etc.). An important condition for the inter-
facing mesoscopic scheme is that it needs to be fully consistent with thermodynamics.
Also important is that the transport coefficients of the mesoscopic model should be
adjustable to represent the correct coarse-grained dynamics of the selected working
fluid. Natural candidates are the Lagrangian schemes involving Voronoi tessellation
(Flekkøy et al . 2000a) or the ‘smoothed particle dynamics’ model and related meso-
scopic techniques (Español 2003). The lattice Boltzmann (LB) method is another
possible candidate to interface with the MD domain. This latter approach has already
been used in multiscale modelling (Succi et al . 2001). Nevertheless, the problem with
LB methods at present is that there is no truly reliable thermohydrodynamic model
other than for single-phase flow. Energy conservation remains unsolved and indeed
most LB models are athermal; even the thermohydrodynamic lattice Bhatnagar–
Gross–Krook (BGK) models for the ideal gas are vastly overdetermined and get
the temperature dependence of the viscosity wrong (Boghosian & Coveney 1998).
Therefore, the hybrid scheme proposed here could only be interfaced with carefully
selected LB models in certain applications involving isothermal and incompressible
single-phase flows.

A longer-term goal of this research is to develop a flexible, componentized, hybrid
coupling environment into which any molecular dynamics and any continuum fluid
dynamics codes may be inserted. This will require consideration of electrostatic
forces and, therefore, an additional conserved quantity, the electric charge, whose
flux coupling requires use of Poisson–Boltzmann solvers. Moreover, such multiscale
hybrid schemes are attractive candidates for efficient deployment on computational
grids. These matters are currently under investigation within the RealityGrid project
(http://www.realitygrid.org).
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