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PACS. 47.11.+j – Computational methods in fluid dynamics.
PACS. 83.20.Di – Microscopic (molecular) theories.
PACS. 83.20.Lr – Boundary conditions.

Abstract. – Differential equations for continuum fields describe many macroscopic phe-
nomena. Hydrodynamics, for example, is described by the Navier-Stokes equations, and their
solutions depend on boundary conditions. However, boundary conditions are set by the inter-
actions at the atomistic or molecular scale. We introduce a “hybrid model” that permits a
continuum description in one region to be coupled to an atomistic description in another re-
gion. The coupling is symmetric in the sense that the fluxes of the conserved quantities are
continuous across the particle-field interface. As an example, we couple a Lennard-Jones liquid
and the compressible Navier-Stokes equations and show that the hybrid model is consistent
with hydrodynamic predictions.

Conflicting views on matter as either continuous or discrete date back at least to early
Greek philosophy: Aristotle has been taken to represent the continuous point of view and
Democritus the discrete, atomistic standpoint. Modern physics has reconciled the conflicting
views by considering continuum descriptions as local averages of the underlying, fundamentally
discrete, atoms. Theoretically one may proceed from the atomistic equations of motion to
continuum equations, such as the Navier-Stokes equation [1], via kinetic theory [2] or some
other coarse-graining theory.

While discrete particle descriptions, such as molecular dynamics (MD) [3], are useful and
necessary on microscopic or mesoscopic scales, they cannot be handled on a macroscopic scale:
the computational effort is prohibitive. Indeed, continuum descriptions are absolutely crucial
for the description of macroscopic systems.

However, there are processes on macroscopic length scales that, for fundamental reasons,
cannot be described by continuum theory; they must be treated on the discrete atomistic
scale. Famous examples of such processes include the moving contact line [4], the breakup
and merging of fluid droplets [5], strong shear localization, dynamic melting processes [6] and
the evolution of a fracture tip [7–9]. In all of these examples dense systems self-organize
to produce strong gradients on the atomic scale, thus coupling the macroscopic behavior to
microscopic processes in ways that are not easily captured by constitutive relations or other
average descriptions.
c© EDP Sciences
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For the modeling of such processes it is of fundamental interest to combine a local and
detailed particle description with a continuous field description of greater numerical economy.
Particle models that seek to bridge the gap between the microscopic and the macroscopic
scale do exist, most notably the hydrodynamic models known as dissipative particle dynamics
[10, 11]. Even though these models have recently evolved to include an adaptive range of
particle scales [12], they remain mesoscopic in the sense that their particles are coarse-grained
representatives of the underlying micro-dynamics.

Much progress has been made in the description of multi-scale processes in solids. For
instance, in recently developed hybrid descriptions of fracture [7,8], the continuum mechanics
equations are solved using an adaptive mesh that follows the atomic motion in lock step
at the continuum-particle interface. The same approach cannot be applied to hydrodynamic
problems in which the particles follow random trajectories and mass flow across the continuum-
particle interface may occur.

Recently, several multiscale coupling schemes designed specifically to explore hydrody-
namic problems were presented. Hadjiconstantinou and Patera [13–15] used the flow field
observed in conventional molecular dynamics simulations to provide the boundary conditions
for separate finite-element computations. Thus microscopic and macroscopic length scales
were coupled elegantly; at the price of limiting the approach to the study of steady-state
solutions. Li et al. [16] studied the general problem of obtaining boundary conditions from a
particle ensemble. Finally, O’Connel and Thompson [17] studied the Couette flow problem us-
ing an overlap region mediating between a particle ensemble and a continuum described by the
incompressible Navier-Stokes equation. This approach is limited to scenarios in which there
is no mass and energy exchange between the discrete and the continuous phases. Moreover,
in their model momentum is conserved only in the special case in which the continuum equa-
tions exactly describe the particle system. Garcia et al. [18] have coupled multigrid continuum
equations to a Direct Simulation Monte Carlo particle simulator. This sophisticated approach
includes the exchange of mass, momentum and energy but is limited to dilute systems.

Here we focus on the general principles for coupling a particle and a field description in
possibly dense systems and develop a model that is applied to some simple hydrodynamic
examples. Our approach represents the first coupling scheme that is explicitly based on
direct flux exchange. As such, it has the advantage that it directly implies adherence to the
relevant conservation laws. Garcia et al. introduce a “refluxing” correction step to ensure flux
continuity in dilute systems. The other existing coupling schemes [13–15,17], however, rely on
the use of the exact constitutive relations and equations of state to maintain the conservation
laws. This is generally a problematic requirement in contexts where particle methods are
needed to replace inadequate continuum descriptions. The problem is thus to communicate
between the two representations in a way that conserves mass, momentum and energy, even
when the representations have somewhat different macroscopic properties. In order to obtain
a generally valid coupling scheme, the different representations must interact by the symmetric
exchange of fluxes of the conserved densities. This is qualitatively illustrated in fig. 1. Existing
hydrodynamic coupling schemes for hydrodynamic flows [13,17] are based on the exchange of
densities (mass, momentum, and energy), rather than on flux exchange.

The hybrid model presented here is based fully on flux boundary conditions and is conser-
vative in general. This is demonstrated to good accuracy in two-dimensional flow simulations
in which the particle system cannot easily be described in terms of a single Newtonian viscos-
ity. Figure 1 illustrates how the discrete and continuous phases couple. While both phases
are thought to represent the same underlying physical system, they may simultaneously be
considered as two interacting systems. In region P←C the continuum fluxes are imposed on
the particles; in region P→C the particle fluxes are measured and imposed on the continuum.
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Fig. 1 – A schematic illustration of the interaction between the particles and the continuum in 2d.
The narrow strips on the edges of the two spaces receive the local flux values of the other phase.

This ensures that whatever flows out of one representation, flows into the other. The two re-
gions cannot coincide since this would impose a hierarchy given by the order of flux exchanges;
in each region the interaction is one way.

The continuum equations that describe mass and momentum conservation are given in the
general form [1]

∂ρ

∂t
+∇ · (ρu) = 0 and

∂ρu

∂t
+∇ · Π = 0 , (1)

where ρ and ρu are the mass and momentum densities, u the velocity, and Π the momentum
flux tensor. For a compressible Newtonian liquid in two dimensions we have

Π = ρuu+ P − µ
(∇u+ (∇u)T −∇ · u) − λ∇ · u , (2)

where µ and λ are the dynamic and bulk viscosities, respectively, P is the pressure, and T

denotes the transpose of the ∇u tensor. For simplicity, we take both the continuum and the
particles system to be at a constant temperature T . In order for the above description to hold
for the particle system, the value of µ as well as the equation of state P = P (ρ, T ) must be
measured in separate particle simulations for the relevant range of ρ-values.

Imposing boundary conditions on the continuum is straightforward. In the continuum
region the derivatives of the flux densities, ∇·ρu and ∇·Π, are computed as finite differences
across nodes; these differences are used to propagate the continuity equations (1) in time. Flux
boundary conditions are imposed by substituting the fluxes at the boundary by the averaged
particle fluxes. We measure and coarse-grain the mass and momentum flux density [3] of
the particles in region P→C. This results in average flux densities that replace the original
continuum flux densities on the nodes in region P→C:

1
V

∑
i

m〈vi〉 · n⊥ → ρu · n⊥ and
1
V

∑
i


m〈vivi〉+ 1

2

∑
j �=i

〈Fijrij〉

 · n⊥ → Π · n⊥ , (3)

where i labels individual MD particles of mass m in a subregion of volume V pertaining to
one node, vi is their velocity, Fij is the force acting from particle j on particle i and rij is
their separation vector. The unit vector n⊥ is defined in fig. 1 and the average 〈..〉 is taken
over the time step ∆t with which the continuum equations are integrated in time. In addition,
the velocity u on the boundary nodes is replaced by the coarse-grained particle velocity, in
order to compute the velocity gradients in Π on the nodes next to region P→C in a consistent
fashion.
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Imposing boundary conditions on the particles implies that the few degrees of freedom
described by the continuous fields must be used to set the many degrees of the particles
in region P←C. For the mass flux into the particle system to equal the mass flux out of the
continuum, we introduce s(x, t) particles per unit time in region P←C according toms(x, t) =
Aρu ·n⊥, where A is the surface area (or length) corresponding to one node spacing L. Note
that s may be negative, corresponding to the removal of particles from region P←C. Likewise,
to obtain momentum flux continuity, we impose the averaged conditionms(x, t)〈v′〉+∑

i Fi =
A Π·n⊥, where v′ is the velocity of the introduced particles and Fi an external force acting on
particle i in region P←C. The left-hand side is thus the momentum per unit time introduced
in the particle system averaged over ∆t. Now, inserting the result for s(x, t) and comparing
with eq. (2) we observe from the last equation that momentum continuity is satisfied if the
particles are introduced with the average velocity 〈v′〉 = u and that the overall force

∑
i Fi

on the particles equals the stress force Aσ · n⊥, where σ = Π − ρuu.
Since only the sum of the forces on the particles from the continuum is determined, it may

be shown that the particles may spread arbitrarily far to the right of region P←C if Fi is
position-independent. To fix the volume available to the particles, we introduce an arbitrary
weight function g(x) that obeys g(x) = g′(x) = 0 for x ≤ 0 and that diverges as g(x → L/2) ∼
(L/2− x)−1 on the edge of region P←C (1) (see fig. 1). The coordinate x runs parallel to n⊥
and x = 0 in the middle of the P → C region. The precise form of the weight function is not
important. The stress force acting on the i-th particle is Fi = (g(xi)/

∑
i g(xi))Aσ ·n⊥, where

the sum includes all NA particles in a given section A of region P←C. By construction, the
fraction Fi of the total stress force imposed by the continuum increases as the i-th particle
approaches the edge of region P←C, driving the particle back into the bulk. This solves the
potential stacking problem posed by the insertion of particles as these may always be placed
sufficiently deep into region P←C, and yet avoid the vicinity of other particles.

In this work we disregard energy flux exchange and limit ourselves to an isothermal contin-
uum at temperature T . Future applications will include energy exchange on the same footing
as mass and momentum exchange. Each particle must have then an average kinetic energy of
kBT , where kB is Boltzmann’s constant; new particles are inserted with a velocity vector v′

picked randomly from the Maxwellian distribution P (v′) ∝ exp[m(v′ − u)2/(2kBT )].
The imposed continuum stress forces will perform work on the particles and thus change

their thermal energy. To compensate the stress work, it is necessary to thermalize the particles
in region P←C. This is done by adding the Langevin force FLi = −α(vi−u)+F̃ to Fi. Here v
is the particle velocity, α is a friction coefficient and F̃ is a fluctuating force of zero mean and a
Gaussian distribution with the correlation function 〈F̃ (t)F̃ (t′)〉 = 2kBTαδ(t− t′). To correct
for fluctuations −(∑iε(P←C) FLi/

∑
iε(P←C) 1) is added to all FLi. In this way an independent

net momentum input due to the Langevin forces is prevented.
There is an inherent asymmetry in the coupling scheme as only the particle system sup-

plies fluctuations, while the continuum is intrinsically non-fluctuating. As a consequence, the
continuum does not fully play the role of a thermodynamic bath. For instance, fluctuations
in the total particle number will be smaller than those predicted by statistical mechanics, and
they will in general decrease as L is increased.

The present coupling scheme was implemented and tested for elementary flow scenar-
ios. The interaction forces governing the molecular dynamics were derived from the shifted
Lennard-Jones potential [3] VLJ = 4ε

[
(σ/r)12 − (σ/r)6

]−Vc −B(r− rc), where ε is the char-
acteristic interaction energy and σ the characteristic interaction distance, and the constants
Vc and B are chosen so as to ensure vanishing forces at the cut-off distance rc = 2.5σ. The

(1)In the simulations reported here, we used g(x) = 2[(L − 2x)−1 − L−1 − 2xL−2] for 0 ≤ x ≤ L/2.



E. G. Flekkøy et al.: Hybrid model for combined particle etc. 275

0 0.2 0.4 0.6 0.8 1

y/ξ

0

0.5

1

1.5

v 
[σ

/τ
]

Continuum
Particles

Cont.Cont.v0

v

ξ

Fig. 2

0 0.2 0.4 0.6 0.8 1

x/ξ

0

0.2

0.4

0.6

0.8

1

v 
[σ

/τ
]

Theory
Particles
Continuum upstream
Continuum downstream

Cont.
downstr.

Cont.
upstr.

v

ξ

Fig. 3

Fig. 2 – Plot of the steady-state velocity profile v(y) as a function of distance y/ξ, where ξ is the
width of the channel in the Couette flow setting. Squares and circles indicate continuum and particle
averages, respectively. Error bars and square sizes indicate the standard deviation of the mean.

Fig. 3 – Plot of velocity profile v across the flow channel in the Poiseuille flow setting, measured in the
upstream and downstream continuum region and in the particle region. Also shown is the parabolic
prediction.

Newtonian equations of particle motion were integrated using the velocity Verlet algorithm [3]
with a time step ∆tMD = 0.0017τ , where τ = (mσ2/ε)1/2 is the characteristic time of the
potential. At T = 0.7ε/kB and a density of ρ = 0.4σ−2, the MD particles formed a fluid with
µ = 0.58ετσ−2.

The continuum equations were integrated using the MacCormack predictor-corrector algo-
rithm [19] on a grid of spacing L = 7.6σ, a time step ∆t = 100∆tMD, and the measured shear
viscosity. The bulk viscosity was set to λ = µ/3. The magnitude of the time steps reflects
the stability requirements of the MacCormack scheme and the steepness of the Lennard Jones
potential. The size of ∆tMD could be increased if a softer, non-divergent potential were used.
The length L must be sufficiently large that the fluctuations in the measured particle fluxes
do not cause stability problems in the continuum solver (here the MacCormack scheme). A
central region in the grid was used only by the particles, and boundary sections 3L wide each
formed two continuum-particle interfaces according to fig. 1.

Couette shear flow parallel to the continuum-particle interfaces was imposed by fixing the
velocities at the impermeable walls of the channel. Periodic boundary conditions were used
in flow direction. Initially both walls were at rest; in steady state one moved with velocity
v = 1.77σ/τ . Figure 2 shows that the fluctuations in the continuum velocities decreased away
from the particle region. This effect is due to the viscous damping of continuum velocity
fluctuations induced by fluctuations in the particle velocities. A small difference in the slope
in the particle and continuum regions is attributed to the discrepancy between the initially
measured particle viscosity, which is used in the continuum simulations, and the actual value
that results under the present flow conditions. This is the typical rather than the exceptional
situation and does not bear on the validity of the scheme. The good equality of the slopes on
both sides of the particle region demonstrates that the model works as this reflects the correct
transfer of shear forces. Correct treatment of mass and pressure transfer was tested in the
Poiseuille flow simulations illustrated in fig. 3. Here the flow direction was perpendicular to
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the continuum-particle interfaces. In the continuum, no-slip boundary conditions were used at
the channel walls, and periodic boundaries in flow direction. In the particle region, boundaries
of fixed particles were used parallel to the flow. Good agreement is found between the velocity
profiles obtained by the averaging of particle motion and the up- and downstream continuum
solutions. Also the parabolic prediction obtained from the continuum viscosity and forcing
agrees well with the measurements.

In conclusion, we have established and tested a general strategy for the consistent coupling
of different physical representations of hydrodynamic systems by means of the exchange of
fluxes of the conserved quantities. This scheme is general in the sense that it allows the
construction of a “particle window” of arbitrary boundaries within a continuum simulation—
provided potential practical difficulties with the corners of such a window are dealt with. It
does not require parallel orientations between the flow direction and the continuum-particle
interface. More importantly, it obeys the basic conservation laws even without the exact
continuum description of the particles, which may break down or not even be known in
the regions of interest. Moreover, the scheme is in principle applicable to the coupling of
conservative descriptions in general. It may be used to couple partial differential equations
and molecular dynamics in arbitrary dimensions, as in the present case, or it could be applied
to couple different particle descriptions, such as dissipative particle dynamics and molecular
dynamics.
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