1 Modos de convergência

Seja X um espaço métrico e $f_n: X \to \mathbb{R}$, temos noções de convergência para f:

- 1. Dada $f_n \in x_0 \in X$, dizemos que $f_n(x_0)$ converge para $f(x_0)$ se $|f_n(x_0) f(x_0)| \to 0$ quando $n \to \infty$.
- 2. Dizemos que a sequência é **uniformemente convergente** num conjunto $A \subset X$ se $\sup_{x \in A} \{|f_n(x) f(x)|\} \to 0$ quando $n \to \infty$.

A noção de medida acrescenta outros tipos de convergência:

- 1. Convergência em quase todo ponto: ó que ocorre quando o conjunto $B = \{x \in X \mid f_n(x) \not\to f(x)\}$ tem medida zero.
- 2. Convergência no espaço L^p : Se f_n ,, $f \in L^p$ e $||f_n f||_p \to 0$ (com $p \ge 1$).
- 3. Convergência no espaço L_{∞} quando $||f_n f||_{\infty} = \sup ess|f_n(x) f(x)| \to 0$.

Exemplo. Seja $f_n:[0,1]\to\mathbb{R}$ dada por $f_n=n\chi_{(0,1/n)}$. É claro que $f_n\to 0$ q.t.p. Mas não converge uniformemente e não converge em L^p . Com efeito, $\|f_n-0\|_p^p=\int n^p\chi_{(0,1/n)}d\mu=n^p\frac{1}{n}=n^{p-1}\not\to 0$ Daí, $\|f_n-0\|_p=n^{p-1/p}$ que vale 1 se p=1 e diverge se p>1.

Veremos depois que convergência em L^p em geral não implica convergência q.t.p, exceto claro no caso de L_{∞} .

Temos mais dois tipos de convergência, importantes por si e em especial na área de probabilidades (quando $\mu(X) = 1$).

Definição 1.1 (Convergência em medida). Dizemos que $f_n \to f$ em medida e escrevemos $f_n \xrightarrow{\mu} f$ se para todo $\varepsilon > 0$ temos $\mu(\{|f_n(x) - f(x)| \ge \varepsilon\}) \to 0$.

Para ilustrar, a sequência do exemplo acima converge em medida para f=0, pois $\mu(\{|f_n(x)| \geq \varepsilon\}) \leq \frac{1}{n} \to 0$. Um outro exemplo importante onde é usada a convergência em medida, é a Lei Fraca dos Grandes Números ou Teorema de Bernoulli.

Observe que pela definição o conjunto pode depender de cada f_n , ou seja, mudar com n.

Definição 1.2 (Convergência quase uniforme). Dizemos que $f_n \to f$ quase uniformemente em X (q.u.) se dado $\varepsilon > 0$ existe $A(\varepsilon) \subset X$ com:

- 1. $A(\varepsilon) = \{f_n \to f \text{ uniformemente }\}$
- 2. $\mu(A(\varepsilon)^c) < \varepsilon$

Observação: o nome "quase uniforme" pode levar à confusão, porque temos usado a palavra "quase" para designar algum fato que ocorre exceto num conjunto de medida 0. Na verdade a convergência uniforme exceto num conjunto de medida zero é a convergência em L_{∞} .

Seguindo o mesmo exemplo, $f_n \to 0$ q.u. porque dado $\varepsilon > 0$ tomamos $1/n < \varepsilon$ e $A(1/n) = [1/n, 1] \cup \{0\}$, neste conjunto temos $f_k = f = 0$ para todo

 $k \ge n + 1$.

Vamos estudar estas convergências. Quando uma implica a outra? Quando isso é falso? Quando a implicação é falsa, mas existe uma subsequencia que converge no sentido desejado?

Se acrescentarmos hipóteses, como $\mu(X) < \infty$ ou que existe g integrável que domina a sequência $|f_n|$, o que muda?

No exemplo discutido vimos que se $f_n \to f$ q.t.p ou em medida isto não implica que $||f_n - f||_p \to 0$, mesmo no caso $\mu(X) < \infty$.

Ou seja, temos um esquema:

$$\begin{array}{cccc}
L^p & \longleftarrow & q.u \\
\uparrow & & & \\
q.t.p & & EM
\end{array}$$

Também temos as noções de sequências de Cauchy (também chamadas de sequências fundamentais) para cada um destes tipos de convergência.

Deixamos como exercício enunciar as definições.

Por outro lado, é claro que:

- 1. Se f_n for sequência de Cauchy q.t.p então ela converge q.t.p.
- 2. Se f_n for de Cauchy em L^p o Teorema de Riesz-Fischer mostra que ela é convergente em L^p .
- 3. Se f_n for de Cauchy em L_∞ também converge, como vimos depois do Teorema de Riesz-Fischer.

É fácil mostrar que:

Proposição 1. Se $||f_n - f||_p \to 0$ então $f_n \xrightarrow{\mu} f$.

Demonstração. Seja $A_n = \{|f_n - f| \ge \varepsilon\}$, por Chebychev

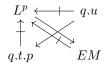
$$||f_n - f||_p^p = \int |f_n - f|^p d\mu \ge \varepsilon^p \mu(A_n)$$

Como
$$||f_n - f||_p^p \to 0$$
 então $\mu(A_n) \to 0$ e $f_n \xrightarrow{\mu} f$.

Proposição 2. Se $f_n \to f$ q.u então $f_n \to f$ q.t.p.

Demonstração. Seja $A_k = \{x \in X \mid f_n \to f \text{ uniformemente }\} \text{ com } \mu(A_k^c) < \frac{1}{k}$. Então $f_n \to f$ em A_k . Pela mesma razão, $f_n \to f$ em $A = \cup A_k$. Agora, $\mu(A^c) = \mu((\cup A_k)^c) = \mu(\cap A_k^c)$. Como $\mu(\cap A_k^c) < \mu(A_k^c) < \frac{1}{k}$ para todo k, segue que $\mu(A^c) = 0$. Logo $f_n \to f$ q.t.p.

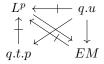
Exemplo: $f_n = x^n$, $x \in (-1,1)$ ilustra a demonstração acima. Converge q.u, não converge uniformemente e converge qtp. Temos então o diagrama:



Proposição 3. $f_n \to f \ q.u \Rightarrow f_n \xrightarrow{\mu} f$

 $\begin{array}{ll} \textit{Demonstração}. \text{ Pela convergência quase uniforme existe } A_k = \{x \in X \mid f_n \rightarrow f \text{ uniformemente } \} \text{ com } \mu(A_k^c) < \frac{1}{k}, \text{ como acima. Logo para } n \text{ grande, dado } \varepsilon > 0, \text{ o conjunto } \{|f_n - f| \geq \varepsilon\} \text{ está contido em } A_k^c \text{ e assim, } \mu(\{|f_n - f| \geq \varepsilon\}) \leq \mu(A_k^c) < \frac{1}{k} \rightarrow 0. \text{ Logo } f_n \xrightarrow{\mu} f. \end{array}$

Ficamos assim com o diagrama:



Exercício: seja a sequência $g_n=(1/n)\chi_{[n,2n]}$. Como é a convergência: uniforme, em todo ponto, qtp, q.u., em média p, em L_{∞} , em medida? O mesmo para as funções $h_n=\chi_{[n,2n]};\; \varphi_n=\chi_{[n,n+1]}; \psi_n=x^n,\; x\in [-1,1],\; \lambda_n=x^n;\; x\in (-1,1).$ E a função $\nu_n=(n+1)\,x^n;\; x\in [0,1)$?

Uma pergunta natural é: será que $f_n \to f$ q.t.p implica $f_n \xrightarrow{\mu} f$? Em geral isto é falso. Tomemos $f_n = \chi_{[n,n+1)}$ e $X = \mathbb{R}$. Então $f_n \to 0$ q.t.p mas $\mu(\{f_n \geq \varepsilon > 0\}) = 1$ para todo n, se $\varepsilon < 1$. Notemos que isto ocorre num conjunto $X \operatorname{com} \mu(X) = \infty$.

Antes de ver o que acontece no caso de $\mu(X) < \infty$, vejamos outra propriedade importante da convergência em medida:

Proposição 4. Seja $\{f_n\}$ de Cauchy em medida. Então:

- 1. Existe $f \in M$ tal que $f_n \xrightarrow{\mu} f$.
- 2. Existe subsequência $\{f_{n_j}\}\ com\ f_{n_i} \to f\ q.t.p.$
- 3. Se $f_n \xrightarrow{\mu} q$ então f = q q.t.p.

Demonstração. Faremos algo semelhante à demonstração do Teorema de Riesz

Escolhemos uma subsequência $\{g_j\} = \{f_{n_j}\}$ de $\{f_n\}$ tal que $E_j = \{x \mid |g_j(x) - g_j(x)| \}$ $|g_{j+1}(x)| \ge \frac{1}{2^j}$ tem medida $\mu(E_j) \le \frac{1}{2^j}$. Seja $F_k = \bigcup_{j=k}^{\infty} E_j$, então

$$\mu(F_k) \le \sum_{j=k}^{\infty} \mu(E_j) \le \sum_{j=k}^{\infty} \frac{1}{2^j} = \frac{1}{2^{k-1}}$$

Também, se $x \notin F_k$ para $k \leq j \leq i$ então

$$|g_j(x) - g_i(x)| \le \sum_{p=j}^{i-1} |g_{p+1}(x) - g_p(x)| \le \sum_{p=j}^{i-1} \frac{1}{2^p} \le \frac{1}{2^{j-1}}$$

Assim $\{g_j\}$ é de Cauchy em cada ponto de F_k^c . Tomamos $F=\cap_k F_k$. Logo $\mu(F)\leq \mu(F_k)\leq \frac{1}{2^{k-1}}$ para todo $k\in\mathbb{N}$. Assim

Definamos $f(x) = \lim g_i(x)$ para $x \notin F$ e f(x) = 0 em F. Assim f é mensurável e $g_j \to f$ q.t.p, provando o segundo item.

Também, se $j \ge k$ e $x \notin F_k$ então

$$|g_j(x) - f(x)| < \frac{1}{2^{j-1}}$$

Portanto

$$\mu\left(\{|g_j(x) - f(x)| > \frac{1}{2^{j-1}}\}\right) \le \mu(F_k) \le \frac{1}{2^{k-1}}$$

Assim, quando $k \to \infty$, como $j \ge k$, $j \to \infty$ e $\mu(F_k) \to 0$. E $g_j \xrightarrow{\mu} f$. Temos também que para quaisquer n, j:

$$\{|f_n(x) - f(x)| \ge \varepsilon\} \subset \{|f_n(x) - g_j(x)| \ge \frac{\varepsilon}{2}\} \cup \{|g_j(x) - f(x)| \ge \frac{\varepsilon}{2}\}$$

A medida dos dois conjuntos da direita tende para zero quando $n, j \to \infty$ porque o primeiro vem da hipótese de $\{f_n\}$ ser de Cauchy em medida e o segundo acabamos de ver. Logo $f_n \xrightarrow{\mu} f$ e provamos o primeiro item.

Agora o terceiro: Se $f_n \xrightarrow{\mu} g$ então, com uma desigualdade semelhante à anterior:

$$\{|f(x) - g(x)| > \varepsilon\} \subset \{|f(x) - f_n(x)| \ge \frac{\varepsilon}{2}\} \cup \{|f_n(x) - g(x)| \ge \frac{\varepsilon}{2}\}$$

Como a medida de cada um dos conjuntos da direita tende para zero segue que para todo $\varepsilon>0$

$$\mu(\{|f(x) - g(x)| > \varepsilon\}) = 0$$

Tomando $\varepsilon_n = \frac{1}{n}$ segue que

$$\{|f(x) - g(x)| > 0\} = \bigcup \{|f(x) - g(x)| > \frac{1}{n}\}$$

e o segundo membro tem medida zero. Assim, f=g q.t.p.

Corolário. Se $f_n \to f$ em L^1 então existe uma subsequência $\{f_{n_j}\}$ com $f_{n_j} \to f$ q.t.p.

Demonstração. Como $f_n \to f$ em L^1 então $f_n \xrightarrow{\mu} f$ e, portanto, existe subsequência convergindo para f q.t.p.

Mostramos que se $f_n \to f$ q.t.p $\not\Rightarrow f_n \xrightarrow{\mu} f$. O contra-exemplo era num espaço de medida infinita. No caso de termos $\mu(X) < \infty$ temos um resultado ainda mais forte.

Teorema 5 (Teorema de Egoroff). Seja $f_n \to f$ q.t.p mensuráveis, com $\mu(X) < \infty$. Logo, para todo $\varepsilon > 0$ existe $E \subset X$ tal que $\mu(E) < \varepsilon$ e $f_n \to f$ uniformemente em E^c (ou seja, converge quase unifomemente).

Demonstração. Sem perda de generalidade, podemos supor que $f_n \to f$ em todo ponto em X.

Vamos achar o complementar do conjunto onde f_n converge uniformemente. Definimos os conjuntos

$$E_n(k) = \bigcup_{m=n}^{\infty} \{ |f_m(x) - f(x)| \ge \frac{1}{k} \}$$

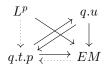
. Este é o conjunto dos pontos onde $\{|f_m(x)-f(x)|\geq \frac{1}{k}\}$ para algum $m\geq n$. Logo, para k fixo $E_{n+1}(k)\subset E_n(k)$, ou seja que a sequência é decrescente. Também $\cap_{n=1}^\infty E_n(k)=\emptyset$ porque $f_n\to f$ pontualmente. Como $\mu(X)<\infty$ segue que $\mu(E_n(k))\to \mu(\cap_{n=1}^\infty E_n(k))=0$. Assim, dado $\varepsilon>0$ e $k\in\mathbb{N}$, escolhemos n_k grande de forma que $\mu(E_{n_k}(k))<\frac{\varepsilon}{2^k}$.

Seja $E = \bigcup_{k=1}^{\infty} E_{n_k}(k)$. Logo $\mu(E) \leq \sum_{k=1}^{\infty} \mu(E_{n_k}(k)) < \varepsilon$ e se $x \notin E$, $|f_n(x) - f(x)| < \frac{1}{k}$ para todo $n \geq n_k$. Portanto $f_n \to f$ uniformemente em E^c .

Esse Teorema é muito usado em probabilidade.

Logo se $\mu(X)<\infty$ temos que convergência q
tp implica convergência q.u. e portanto convergência em medida. Mas não em
 Lp como vimos no primeiro exemplo.

Exemplo. Seja a sequência em [0,1] dada por $f_1=\chi_{[0,1]},\ f_2=\chi_{[0,1/2]},\ f_3=\chi_{[1/2,1]}$ e etc. Em geral $f_n=\chi_{[j,j+1]/2^k}$ onde $n=2^k+j,\ 0\leq j\leq 2^k-1$ (dividimos o [0,1] em 2^k intervalos e pegamos a função característica de cada um deles. Esta sequência é muito interessante. Com efeito, $f_n\to f$ em $L^p([0,1])$ e $f_n\stackrel{\mu}{\to} f$ onde $f\equiv 0$. Mas não converge q.u nem q.t.p. Mais ainda, para cada x é possível escolher uma subsequência f_{n_j} que converge para g_x onde $g_x(x)=1$ e $g_x(t)=0$ se $x\neq t$. Tudo isso acontece em X=[0,1] com medida finitam, e dominada por f_1 . O que acontece com a sequência $g_n=2^kf_n$, onde a relação entre k e n é como acima?



Agora falta ver o que acontece com uma sequência f_n dominada por uma função g em L^p .

E ver se nos casos em que a implicação não se verifica, existe uma subsequência que verifica a convergência procurada. Por exemplo, se $f_n \to_{\mu} f$ então existe subsequência $f_{n_k} \to f$ qtp. Incluindo os casos em que $\mu(X)$ finita e f_n dominada por uma função em L^p .