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and secondary structure need to be considered since generation of a multiplealignment and analysis of folding are mutually dependent. (A multiple align-ment of RNA sequences is a list of the sequences with the letters representingnucleotides spaced such that nucleotides considered functionally equivalent havetheir letters appearing in the same column in the list. To enhance the alignmentof some sequences with respect to others, spaces may need to be inserted inthem.) Elucidation of common folding patterns among multiple sequences mayindicate the pertinent regions to be aligned and vice versa [San85].Two principal methods have been established for predicting RNA secondarystructure (i.e., which nucleotides are base-paired). The �rst technique, phylo-genetic analysis of homologous RNA molecules [FW75, WGGN83], ascertainsstructural features that are conserved during evolution. The second techniqueemploys thermodynamics to compare the free energy changes predicted for for-mation of possible secondary structure and relies on �nding the structure withthe lowest free energy [TUL71, TSF88, Gou87]. Though in principle HMMs couldalso be used to model RNA, the standard HMM approach treats all positionsas having independent distributions and is unable to model the interactions be-tween positions. However, if two positions in an alignment are base-paired, thenthe bases at these positions will be highly correlated. Since base-pairing interac-tions play such a dominant role in determining RNA structure and function, anystatistical method for modeling RNA that does not consider these interactionswill encounter insurmountable problems.In this work, we use formal language theory to describe a means to generalizeHMMs to model most RNA interactions. We compare our method to Eddy andDurbin's use of \covariance models" (CMs) to model RNA [ED94]. CMs areequivalent to SCFGs, but Eddy and Durbin employ di�erent algorithms fortraining and producing multiple alignments.As in the elegant work of Searls [Sea92], we view the character strings rep-resenting DNA, RNA and protein as sentences derived from a formal grammar.In the simplest kind of grammar, a regular grammar, strings are derived fromproductions (rewriting rules) of the forms S ! aS and S ! a, where S is a non-terminal symbol, which does not appear in the �nal string, and a is a terminalsymbol, which appears as a letter in the �nal string. Searls has shown that basepairing in RNA can be described by a context-free grammar (CFG). CFGs areoften used to de�ne the syntax of programming languages. A CFG is more pow-erful than a regular grammar in that it permits a greater variety of productions,such as those of the forms S ! SS and S ! aSa. As described by Searls, theseadditional types of productions are crucial to model the base-pairing structurein RNA. (CFGs can not describe all RNA structure, but we believe they canaccount for enough to make useful models.) Productions of the forms S ! A S U,S ! U S A, S ! G S C and S ! C S G describe the structure in RNA due toWatson-Crick base pairing. Using productions of this type, a CFG can specifythe language of biological palindromes.Searls' original work [Sea92] argues the bene�ts of using CFGs as models forRNA folding, but does not discuss stochastic grammars or methods for creating



the grammar from training sequences. Recent work provides an e�ective methodfor building a stochastic context-free grammar (SCFG) to model a family ofRNA sequences. Some analogs of stochastic grammars and training methodsdo appear in Searls' most recent work in the form of costs and other trainableparameters used during parsing [Sea93a, Sea93b, SD93], but we believe that ourintegrated probabilistic framework may prove to be a simpler and more e�ectiveapproach.We have designed an algorithm that deduces grammar parameters automat-ically from a set of unaligned primary sequences. It is a novel generalization ofthe forward-backward algorithm commonly used to train HMMs. Our algorithm,Tree-Grammar EM, is based on tree grammars [TW68] and is more e�cientthan the inside-outside algorithm [LY90], a computationally expensive general-ization of the forward-backward algorithm developed to train SCFGs [Bak79].Full details are described elsewhere [SBH+93]; here we present a summary.1 Stochastic Context-Free Grammar MethodsSpecifying a probability for each production in a grammar yields a stochasticgrammar. A stochastic grammar assigns a probability to each string it derives.Stochastic regular grammars are equivalent to HMMs and suggest an interestinggeneralization fromHMMs to SCFGs [Bak79]. In this work, we explore stochasticmodels for tRNA sequences using a stochastic context-free grammar that issimilar to our HMMs [KBM+94] but incorporates base-pairing information.1.1 Context-free grammars for RNAA grammar is principally a set of productions (rewrite rules) that is used to gen-erate a set of strings, a language. The productions are applied iteratively to gen-erate a string in a process called derivation. For example, application of the pro-ductions in Figure 1 could generate the RNA sequence CAUCAGGGAAGAUCUCUUGby the following derivation:Beginning with the start symbol S0, any production with S0 left of the arrowcan be chosen to have its right side replace S0. If the production S0 ! S1 isselected (in this case, this is the only production available), then the symbolS1 replaces S0. This derivation step is written S0 ) S1, where the double ar-row signi�es application of a production. Next, if the production S1 ! C S2 Gis selected, the derivation step is S1 ) C S2 G. Continuing with similar deriva-tion steps, each time choosing a nonterminal symbol and replacing it with theright-hand side of an appropriate production, we obtain the following derivation



terminating with the desired sequence:S0 ) S1 ) CS2G ) CAS3UG ) CAS4S9UG) CAUS5AS9UG ) CAUCS6GAS9UG) CAUCAS7GAS9UG ) CAUCAGS8GAS9UG) CAUCAGGGAS9UG ) CAUCAGGGAAS10UUG) CAUCAGGGAAGS11CUUG) CAUCAGGGAAGAS12UCUUG) CAUCAGGGAAGAUS13UCUUG) CAUCAGGGAAGAUCUCUUG:P = f S0 ! S1; S7 ! G S8;S1 ! C S2 G; S8 ! G;S1 ! A S2 U; S8 ! U;S2 ! A S3 U; S9 ! A S10 U;S3 ! S4 S9; S10 ! C S10 G;S4 ! U S5 A; S10 ! G S11 C;S5 ! C S6 G; S11 ! A S12 U;S6 ! A S7; S12 ! U S13;S7 ! U S7; S13 ! C gFig. 1. This set of productions P generates RNA sequences with a certain restrictedstructure. S0; S1; : : : ; S13 are nonterminals; A, U, G and C are terminals representingthe four nucleotides.A derivation can be arranged in a tree structure called a parse tree (Figure 2).A parse tree represents the syntactic structure of a sequence produced by agrammar. For an RNA sequence, this syntactic structure corresponds to thephysical secondary structure (Figure 3).Formally, a context-free grammar G consists of a set of nonterminal symbolsN , an alphabet of terminal symbols �, a set of productions P , and the startsymbol S0. For a nonempty set of symbols X, let X� denote the set of all �nitestrings of symbols inX. Every CFG production has the form S ! �where S 2 Nand � 2 (N [�)�, thus the left-hand side consists of a single nonterminal whilethere is no restriction on the number or placement of nonterminals and terminalson the right-hand side. The production S ! � means that the nonterminal Scan be replaced by the string �. If S ! � is a production in P , then for anystrings  and � in (N [�)�, we de�ne S� ) �� and we say that S� directlyderives �� in G. We say the string � can be derived from �, denoted � �) �, ifthere exists a sequence of direct derivations �0 ) �1, �1 ) �2; : : : ; �n�1 ) �nsuch that �0 = �, �n = �, �i 2 (N [�)�, and n � 0. Such a sequence is calleda derivation. Thus, a derivation is an order of productions applied to generate a



string. The grammar generates the language fw 2 �� j S0 �) wg, the set of allterminal strings w that can be derived from the grammar.Our work in modeling RNA uses productions of the following forms: S ! SS,S ! aSa, S ! aS, S ! S and S ! a, where S is a nonterminal and a is aterminal. S ! aSa productions describe the base pairings in RNA; S ! aS andS ! a describe unpaired bases; S ! SS describe branched secondary structuresand S ! S are used in the context of multiple alignments.
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SCFGs are a generalization of HMMs. The three main types of nontermi-nals in an SCFG correspond to each of the primary states in an HMM: match,insert and skip [HKMS93, KBM+94]. The match nonterminals in a grammarcorrespond to important structural positions in an RNA molecule. Insert non-terminals also generate nucleotides but with di�erent distributions. These areused to model loops by inserting nucleotides between important (match) posi-tions. Productions of the form S ! S are called skip productions because theyare used to skip a match nonterminal, so that no nucleotide appears at that po-sition in a multiple alignment. In an SCFG, use of a skip production in parsinga sequence is equivalent to choice of a delete state in aligning a sequence to anHMM.1.2 Stochastic context-free grammarsIn an SCFG, every production for a nonterminal S has an associated probabilityvalue such that a probability distribution exists over the set of productionsfor S. (Any production with the nonterminal S on the left side is called \aproduction for S.") We denote the associated probability for a production S ! �by P(S ! �).A stochastic context-free grammarG generates sequences and assigns a prob-ability to each generated sequence, thereby de�ning a probability distributionon the set of sequences. The probability of a derivation (parse tree) can be cal-culated as the product of the probabilities of the production instances appliedto produce the derivation. The probability of a sequence s is the sum of prob-abilities over all possible derivations that G could use to generate s, written asfollows:Prob(s j G) = Xall derivations(or parse trees) d Prob(S0 d) s j G)= X�1; : : : ; �n h Prob(S0 ) �1 j G) � Prob(�1 ) �2 j G) � � � �� Prob(�n ) s j G) iwhere terms �i 2 (N [�)�.E�ciently computing Prob(s j G) presents a problem because the num-ber of possible parse trees for s is exponential in the length of the sequence.However, a dynamic programming technique analogous to the Cocke-Younger-Kasami (CYK) or Early parsing methods [AU72] for non-stochastic CFGs cancomplete this task in polynomial time (proportional to the cube of the length ofsequence s). We de�ne the negative logarithm of the probability of a sequencegiven by the grammarG, � log(Prob(s j G)), as the negative log likelihood (NLL)



score of the sequence. The NLL score quanti�es how well the sequence s �ts thegrammar|the likelihood that the grammar with its production probabilitieswould produce s.CFGs have a drawback in that a sequence can sometimes be derived by aCFG in multiple ways. Since alternative parse trees reect alternative secondarystructures (foldings), a grammar may give several possible secondary structuresfor a single RNA sequence. An SCFG has the advantage that it can provide themost likely parse tree from this set of possibilities. If the productions are chosencarefully and the probabilities are estimated accurately, a parsing algorithm,when given grammarG and an RNA sequence s, will produce a most likely parsetree for s that corresponds to the correct secondary structure for s. Indeed, formost of the tRNA sequences we test, the most likely parse trees given by thetRNA-trained grammar match precisely the accepted secondary structures.We can compute the most likely parse tree e�ciently using a variant of theabove procedure for calculating Prob(s j G). To obtain the most likely parse treefor the sequence s, we calculatemaxparse trees dProb(S0 d) s j G):The dynamic-programming procedure to do this resembles the Viterbi algorithmfor HMMs [Rab89]. We also use this procedure to obtain multiple alignments:the parser aligns each sequence by �nding the most likely parse tree given bythe grammar, yielding an alignment of all nucleotides that correspond to thematch nonterminals for each sequence, after which the mutual alignment of thesequences among themselves is determined. (Insertions of varying lengths canexist between match nonterminals, but by inserting enough spaces in each se-quence to accommodate the longest insertion, an alignment of all the sequencesis obtained.) This is equivalent to multiple alignment in an HMM, where thesingle most likely path for each sequence is computed.1.3 Estimating SCFGs from sequencesBoth an SCFG's production probabilities and the productions themselves canin principle be chosen using an existing alignment of RNA sequences. Resultsusing this approach were reported in our previous work [SBU+93]. Also, Eddyand Durbin report recent results in which nearly all aspects of the grammar aredetermined solely from the training sequences [ED94]. In contrast, we make moreuse of prior information about the structure of tRNA to design an appropriateinitial grammar, and then use training sequences only to re�ne our estimates ofthe probabilities of the productions used in this grammar.1.4 The Tree-Grammar EM training algorithmTo estimate the SCFG parameters from unaligned training tRNA sequences, weintroduce Tree-Grammar EM (Figure 4), a new method for training SCFGs thatuses a generalization of the forward-backward algorithm commonly used to train



HMMs. This generalization, called TG Reestimator, is more e�cient than theinside-outside algorithm, which was previously proposed to train SCFGs.1. Start with an initial grammar G0.2. Use grammar G0 and the CYK-like parsing algorithm to parse the raw input se-quences, producing a tree representation for each sequence indicating which nucleotidesare base-paired. This set of initial trees is denoted T0. Set Told = ; and Tnew = T0.3. While Tnew 6= Told do the following: f3a. Set Told = Tnew.3b. Use Told trees as input to our TG Reestimator algorithm, which iterativelyre-estimates the grammar parameters until they stabilize. The grammar with the�nal stabilized probability values is called new grammar Gnew.3c. Use grammar Gnew and the CYK-like parsing algorithm to parse the inputsequences, producing a new set of trees Tnew.g Fig. 4. Pseudocode for the Tree-Grammar EM training algorithm.The inside-outside algorithm [LY90, Bak79] is an expectation maximization(EM) algorithm that calculates maximum likelihood estimates of an SCFG'sparameters based on training data. However, it requires the grammar to be inChomsky normal form, which is possible but inconvenient for modeling RNA(and requires more nonterminals). Further, it takes time at least proportional tojsj3 per training sequence, whereas the forward-backward procedure for HMMstakes time proportional to jsj per training sequence s, where jsj is the length ofs. In addition, the inside-outside algorithm is prone to settling in local minima;this presents a problem when the initial grammar is not highly constrained.To avoid these problems, we developed an iterative estimator algorithm calledTG Reestimator (Step 3b in Figure 4). While the running times of both Tree-Grammar EM and the inside-outside algorithm are asymptotically equivalentdue to the use of the CYK-like algorithm (Step 3c of Figure 4), in practiceTree-Grammar EM is much more e�cient. In Tree-Grammar EM, the inner loop(Step 3b) takes time proportional to jsj per sequence per iteration (the grammarsize is constant); in the inside-outside algorithm, the analogous step takes timeproportional to jsj3 per sequence per iteration. Since the number of iterations inStep 3b is typically on the order of 100, while the number of iterations of Step3 is typically two or three, Tree-Grammar EM is more practical for longer RNAsequences.TG Reestimator requires folded RNA sequences as training examples, ratherthan unfolded ones. Thus, some tentative \base pairs" in each training sequencehave to be identi�ed before TG Reestimator can begin. To do this, we designa rough initial grammar (see Section 1.6) that may represent only a portion ofthe base-pairing interactions (Step 1) and parse the unfolded RNA training se-quences to obtain a set of partially folded RNA sequences (Step 2). Then we



estimate a new SCFG using the partially folded sequences and TG Reestimator(Step 3b). Further productions might be added to the grammar at this step,though we have not yet experimented with this. The parameter re-estimationis then repeated. In this way, TG Reestimator can be used even when precisebiological knowledge of the base pairing is not available. TG Reestimator con-stitutes one part of the entire training procedure, Tree-Grammar EM.The Tree-Grammar EM procedure is based on the theory of stochastic treegrammars [TW68, Fu82]. Tree grammars are used to derive labeled trees insteadof strings. Labeled trees can be used to represent the secondary structure ofRNA easily [SZ90] (see Figure 2). A tree grammar for RNA denotes both theprimary sequence and the secondary structure of each molecule. Since these aregiven explicitly in each training molecule, the TG Reestimator algorithm doesnot have to (implicitly) sum over all possible interpretations of the secondarystructure of the training examples when re-estimating the grammar parameters,as the inside-outside method must do. The TG Reestimator algorithm iteratively�nds the best parse for each molecule in the training set and then readjusts theproduction probabilities to maximize the probability of these parses. The newalgorithm also tends to converge faster because each training example is muchmore informative [SBU+93].
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representation of the folded RNA sequence (AA(GUC)U). We assume all internalnodes in t are numbered from 1 to T (the number of internal nodes) in someorder. For an internal node n (1 � n � T ), let t=n denote the subtree of t withroot n (Figure 5, center) and let tnn denote the tree obtained by removing asubtree t=n from t (Figure 5, right).The probability of any folded sequence t given by an SCFG G = (N;�; P; S0)is calculated e�ciently using a dynamic programming technique (as is done withthe forward algorithm in HMMs). A labeled tree t representing a folded RNAsequence has the shape of a parse tree, so to parse the folded RNA, the grammarG needs only to assign nonterminals to each internal node according to theproductions. Let inn(S) be the probability of the subtree t=n given that thenonterminal S is assigned to node n and given grammar G, for all nonterminalsS and all nodes n such that 1 � n � T . We can calculate inn(S) inductively asfollows:1. Initialization: inn(a) = 1; for all leaf nodes n and all terminals a (allnucleotides). This extension of inn(S) is for the convenience of the inductivecalculation of inn(S).2. Induction:inm(S) = XY1; : : : ; Yk2 (N [�) inn1(Y1) � � � innk(Yk) � P(S ! Y1 � � � Yk);for all nonterminals S, all internal nodes m and allm's children nodes n1; : : : ; nk.3. Termination: For the root node n and the start symbol S0,Prob(t j G) = inn(S0): (1)We need one more quantity, outn(S), which de�nes the probability of tnngiven that the nonterminal S is assigned to node n and given grammarG, whichwe obtain similarly.1. Initialization: For the root node n,outn(S) = 8<:1 for S = S0 (start symbol),0 otherwise:2. Induction:outm(S) = XY1; : : : ; Yk2 (N[�);S0 2 N inn1(Y1) � � � innk(Yk) � P(S0 ! Y1 � � � S � � � Yk) � outl(S0);for all nonterminals S, all internal nodes l and m such that l is m's parent andall nodes n1; : : : ; nk are m's siblings. (There is no termination step given in thiscase because the calculation of Prob(t j G) is given in the termination step forinn(S).)Given a set of folded training sequences t(1); : : : ; t(n), we can determinehow well a grammar �ts the sequences by calculating the probability that the



grammar generates them. This probability is simply a product of terms of theform given by (1), i.e.,Prob(sequences j G) = nYj=1Prob(t(j) j G); (2)where each term Prob(t(j) j G) is calculated as in Equation (1). The goal isto obtain a high value for this probability, called the likelihood of the grammar.The maximum likelihood (ML) method of model estimation �nds the model thatmaximizes the likelihood (2). There is no known way to directly and e�cientlycalculate the best model (the one that maximizes the likelihood) and avoid get-ting caught in suboptimal solutions during the search. However, the general EMmethod, given an arbitrary starting point, �nds a local maximum by iterativelyre-estimating the model such that the likelihood increases in each iteration, andoften produces a solution that is acceptable, if perhaps not optimal. This methodis often used in statistics.Thus in Step 1 of Tree-Grammar EM, an initial grammar is created by as-signing values to the production probabilities P(S ! Y1 � � � Yk) for all S and allY1; : : : ; Yk, where S is a nonterminal and Yi (1 � i � k) is a nonterminal or ter-minal. If some constraints or features present in the sequences' actual (trusted)multiple alignment are known, these are encoded in the initial grammar. Thecurrent grammar is set to this initial grammar.In Step 3b of Tree-Grammar EM, using the current grammar, the valuesinn(S) and outn(S) for each nonterminal S and each node n for each foldedtraining sequence are calculated in order to get a new estimate of each productionprobability, P̂(S ! Y1 � � � Yk)=Xall t Xall m outm(S) � P(S ! Y1 � � �Yk) � inn1(Y1) � � � innk(Yk)=Prob(t j G)!norm ;which is a double sum over all sequences t and all nodes m, where G is theold grammar and \norm" is the appropriate normalizing constant such thatPY1;:::;Yk P̂(S ! Y1 � � � Yk) = 1. A new current grammar is created by replacingall P(S ! Y1 � � �Yk) with the re-estimated probabilities P̂(S ! Y1 � � �Yk).1.5 Over�tting and regularizationAttempts to estimate a grammar with too many free parameters from a smallset of training sequences will encounter the over�tting problem|i.e., the gram-mar �ts the training sequences well, but poorly �ts other, related (test) se-quences. One solution is to use regularization to control the e�ective number offree parameters. We regularize our grammars by taking a Bayesian approach tothe parameter estimation problem, similar to our approach with protein HMMs[KBM+94, BHK+93b].



Before training the grammars, we construct a prior probability density foreach of their \important" parameter sets. This prior density takes the form ofa Dirichlet distribution [SD89]. The \important" productions are of two forms:S ! aSb and S ! aS, where terminal symbols a; b 2 fA; C; G; Ug. S ! aSbproductions, which generate base pairs, come in groups of 16, correspondingto all possible pairs of terminal symbols. S ! aS productions, which generatenucleotides in loop regions, come in groups of four. For the base-pairing pro-ductions, we employ prior information about which productions are most likely.For instance, Watson-Crick pairs are more frequently observed than other basepairs. To calculate precise prior information about base-pair probabilities, weobtain the 16 parameters of a Dirichlet density over possible base-paired po-sition distributions from a large alignment of 16S rRNA sequences [LOM+93].We similarly use the alignment to calculate a four-parameter Dirichlet prior fornucleotide distributions in loop region positions. (We present further details else-where [BHK+93b].) These parameters constitute our regularizer. We add themas \pseudocounts" during each re-estimation step of Tree-Grammar EM (step 3bin Figure 4). Thus, at each iteration, TG Reestimator computes mean posteriorestimates of the model parameters rather than maximum likelihood estimates.In a similar manner, we regularize probability distributions for other pro-duction types, including chain rules S ! S, branch productions S ! SS andinsert productions S ! aS. We regularize loops with very large uniform pseudo-counts over the four possible nucleotides so that their probability distributionswill be �xed at uniform values rather than estimated from the training data.This is equivalent to the regularization we used for the insert states of HMMs[KBM+94]. This further reduces the number of parameters to be estimated,helping to avoid over�tting.1.6 The initial grammarIn the initial grammar, we model a loop that is typically l nucleotides in lengthby an HMM model with l match states as described in our previous proteinwork [KBM+94], except that the four-letter nucleic-acids alphabet replaces thetwenty-letter amino-acids alphabet. Nucleotide distributions in such a loop arede�ned by probabilities of l match-nonterminals' productions. Longer or shorterloops can be derived using special nonterminals and productions that allowposition-speci�c insertions and deletions.A helix l base pairs in length consists of l nonterminals. Each nonterminalhas 16 productions that derive possible base pairs for its position in the helix.Each nonterminal has its own probability distribution over these 16 productions.These distributions, like those for match nonterminals in loops, are initiallyde�ned using Dirichlet priors (Section 1.5). Other nonterminals and productionsare added to allow deletions of base pairs, enabling helix length variations.Special treatment of nonterminals involved in branch productions of the formS ! SS can also be included. In particular, we specify that certain branchproductions may also, with some probability, omit one of the nonterminals onthe right-hand side. This allows the grammar to derive tRNAs that lack certain



substructures (such as arms or loops). These probability values are initialized todefault prior values and then re-estimated during training on actual sequences,as are all grammar parameters.1.7 The Eddy and Durbin algorithmsSean Eddy and Richard Durbin have described an algorithm for obtaining anSCFG's productions themselves, as well as their probabilities (see Figure 6).As discussed in their work [ED94], covariance models (CMs) are describableas SCFGs. To deduce a covariance model's structure (essentially, to choose anSCFG's productions), they use the standard Nussinov/Zuker dynamic-program-ming algorithm for RNA folding [NPGK78, Zuk89], with the di�erence that thecost function being optimized is a function of the \mutual information" of twocolumns in the input multiple alignment (based on Gutell et al.'s MIXY proce-dure [GPH+92]), rather than of the number of base pairs or the thermodynamicstacking energy.Once a model structure exists, they train the model's parameters (productionprobabilities) using the Viterbi approximation of EM. This consists of iteratingthe following two-step procedure until the model parameters stabilize: First,they align each sequence to the model using the same alignment algorithm thatwe use, a Viterbi approximation to the inside-outside algorithm [LY90, Bak79].Second, they apply the Viterbi approximation of EM to maximize a Bayesianposterior-probability estimate [ED94]. In this way, training consists of optimizingthe alignment scores of the input training sequences. Eddy and Durbin use avariant of their alignment algorithm to perform database searches as well.1. Start with an initial (possibly random) alignment denoted A0. Set Acurr = A0.2. Use alignment Acurr and the Nussinov/Zuker-based RNA folding algorithm to builda covariance model. Estimate its parameters using the Viterbi approximation of EM.Denote this initial model C0. Set Cold = ; and Cnew = C0.3. While Cnew 6= Cold do the following: f3a. Set Cold = Cnew.3b. Use alignment Acurr and the Nussinov/Zuker-based RNA folding algorithmto restructure the covariance model (choose new productions). Re-estimate themodel's parameters using the iterative Viterbi approximation of EM, producinga new model Cnew .3c. Use model Cnew and the Viterbi inside-outside aligning algorithm to producea new multiple alignment Anew. Set Acurr = Anew.g Fig. 6. Pseudocode for the Eddy and Durbin training algorithm.



2 DiscussionIn a recent paper [SBH+93], we present our results in detail and compare thesewith the results of Sean Eddy and Richard Durbin's covariance models. Bothmethods have been used to produce models that perform three tasks: discrim-inate tRNA sequences from non-tRNA sequences, produce multiple alignmentsand ascertain the secondary structure of new sequences. The results show thatall our grammars, except one trained on zero sequences, can perfectly discrimi-nate nonmitochondrial tRNA sequences from non-tRNA sequences, and that ourmultiple alignments are nearly identical to the published tRNA alignments (fulldetails are given elsewhere [SBH+93]). Similarly, Eddy and Durbin's covariancemodels performed very well in database searches and produced multiple align-ments nearly identical to the published. Both methods achieve local optima,rather than global, but the resulting models seem adequate for tRNA. Bothmethods use an inside-outside-based algorithm as part of the training process:we use one for parsing training trees, while they use one for producing a multiplealignment.It appears that our basic grammar training algorithm,which is quite di�erentfrom theirs, may be somewhat faster. Further, our custom-designed grammarsand greater emphasis on learned, as opposed to constructed, Bayesian priorprobability densities [BHK+93a] may allow us to train with fewer training se-quences. However, Eddy and Durbin have developed an exciting new techniqueto learn the structure of the grammar itself from unaligned training sequences,rather than just learn the probabilities of the productions and rely on prior in-formation to specify the structure of the grammar (as we do). Also, they use adatabase searching algorithm while we do not.The SCFG methods discussed in this paper represent a new direction incomputational biosequence analysis. SCFGs provide a exible and highly e�ec-tive statistical method for solving a number of RNA sequence analysis problemsincluding discrimination, multiple alignment and prediction of secondary struc-tures. They may prove useful in maintaining, updating and revising existingmultiple sequence alignments. In addition, a grammar itself may be a valu-able tool for representing an RNA family or domain such as group I introns[MW90, MECS90], group II introns [MUO89], RNAse P RNA [BHJ+91, TE93],small nuclear RNAs [GP88] and 7S RNA (signal recognition particle RNA)[Zwi89].The main di�culties in applying this work to other families of RNA will bethe development of appropriate initial grammars and the computational cost ofparsing longer sequences. The latter problem can only be solved by the devel-opment of fundamentally di�erent parsing methods, perhaps relying more onbranch-and-bound methods [LS94] or heuristics. It is currently not clear whichapproach will be best. The former problem might be solved by the developmentof e�ective methods for learning the grammar itself from training sequences.The work of Eddy and Durbin is an important step in this direction [ED94].Their method relies on correlations between columns in a multiple alignment[GPH+92, Lap92, KB93, Wat89, WOW+90, San85, Wat88] to discover the es-



sential base-pairing structure in an RNA family. Another approach would be touse a method like that proposed by Waterman [Wat89] to �nd helices in a roughinitial multiple alignment, use these helices to design a simple initial grammar ina semi-automated fashion using our high-level RNA grammar speci�cation lan-guage, then use the grammar to obtain a better multiple alignment, and iteratethis process until a suitable result is obtained. We are currently exploring thisapproach.Another important direction for further research is the development of sto-chastic grammars for tRNA and other RNA families that can be used to searchdatabases for these structures at the DNA level. In order to do this, the gram-mar must be modi�ed to allow for the possibility of introns in the sequence,and the parsing method must be modi�ed so that it can search e�ciently forRNAs that are embedded within larger sequences. Durbin and Eddy have donethe latter modi�cations in their tRNA experiments and report good results insearching the GenBank structural RNA database and 2.2 Mb of C. elegans ge-nomic sequence for tRNAs, even without using special intron models. In ourearlier work [SBM+94], we reported some very preliminary results on modifyingtRNA grammars to accommodate introns. We are currently planning to do fur-ther work in this direction. We see no insurmountable obstacles in developinge�ective stochastic grammar-based search methods, but predict that the mainpractical problem will be dealing with the long computation time required bythe present methods.Finally, there is the question of what further generalizations of hidden Markovmodels, beyond SCFGs, might be useful. The key advantage of our method overthe HMM method is that it allows us to explicitly deal with the secondarystructure of the RNA sequence. By extending stochastic models of strings tostochastic models of trees, we can model the base-pairing interactions of themolecule, which determine its secondary structure. This progression is similarto the path taken by the late King Sun Fu and colleagues in their developmentof the �eld of syntactic pattern recognition [Fu82]. Modeling pseudoknots andhigher-order structure would require still more general methods. One possibilitywould be to consider stochastic graph grammars (see the introductory survey byEngelfriet and Rozenberg [ER91]) in hopes of obtaining a more general modelof the interactions present in the molecule beyond the primary structure. If astochastic graph grammar framework could be developed that included both ane�cient method of �nding the most probable folding of the molecule given thegrammar and an e�cient EM method for estimating the grammar's parame-ters from folded examples, then extensions of our approach to more challengingproblems, including RNA tertiary structure determination and protein folding,would be possible. This is perhaps the most interesting direction for future re-search suggested by our results.References[AU72] A. V. Aho and J. D. Ullman. The Theory of Parsing, Translation andCompiling, Vol. I: Parsing. Prentice Hall, Englewood Cli�s, N.J., 1972.
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