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Abstract
Approximately 15% of all cancer deaths among women
worldwide is due to breast cancer. Mammography is one
of the most useful methods for the early detection of this
disease. Over the last decade, several papers were pub-
lished reporting the usage of different computer-aided
diagnosis systems using pattern recognition techniques
as a second opinion to obtain a more accurate diagno-
sis. However, the theory of formal languages has not
been explored in this field. In this context, the main
contribution of this study is to present the usage of a
new syntactic approach that is able to classify breast
masses found in mammograms as benign or malig-
nant. The experimental tests were performed using a
dataset that contains 111 images from different sources.
The grammar-based classifiers achieved accuracy values
ranging from 89% to 100% depending on the features
and the model employed. Furthermore, to achieve a
feature dimension reduction, a feature selection tech-
nique based on the Gini importance of each feature
was employed. Additionally, we compared the obtained
results with the grammar-based classifiers to the more
traditional classifiers used in this research area, such
as artificial neural networks, support vector machines,
k-nearest neighbors, and random forest. The best result
achieved by the grammar-based classifiers was approx-
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imately 10% higher, in terms of accuracy, than the best
results produced by the traditional classifiers, showing
the strength of this grammatical approach.
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1 INTRODUCTION

As reported by the World Health Organization (WHO)*, breast cancer is the most frequent can-
cer impacting women around the world and the cause of the greatest number of cancer-related
deaths. It is estimated that this disease impacts more than 2 million women every year and, in
2018 alone, more than 627 000 women died from this type of cancer. Additionally, according
to WHO, breast cancer rates are increasing globally in nearly every region. In consonance with
WHO, Surveillance, Epidemiology, and Results Program (SEER)† estimated 268 600 new cases of
this disease, which represents 15.2% of all new cancer cases, only in the United States for the year
of 2019. Furthermore, as stated by SEER, the number of estimated deaths in 2019 is more than
41 000 (6.9% of all cancer deaths) in the North American society.

Mammography is one of the most reliable and effective methods for early-stage breast cancer
detection.1 Despite the fact that some rules can be applied to discern benign and malignant cases,
only around 15% to 30% of the surgical biopsies are malignant.2 An unnecessary biopsy can lead
to problems, for instance, the physical pain the women are submitted to, the stress and anxiety
until the diagnosis is confirmed and the financial cost of the procedure.3,4

Over the last decades, various computer-aided detection and computer-aided diagnosis sys-
tems have been proposed to detect and classify findings in mammograms, respectively. Several
approaches of pattern recognition techniques have been developed and employed by the scien-
tific community and industrial companies, as for instance, in the studies 5-8. The three most
common machine learning techniques used to discriminate breast masses are artificial neural net-
works (ANN), support vector machines (SVM), and k-nearest neighborhood (KNN).9 Albeit the
theory of formal languages are being used to understand the content of images, including medi-
cal images,10 the syntactic approaches are barely used to deal with mass classification.9 Syntactic
approaches have advantages such as dealing with hierarchical structures and their relationships
found in images and the possibility to choose different type of grammars with different representa-
tion power at a cost of increasing model's complexity. These approaches are particularly attractive
for problems where the data samples are not numerous as required by more recent techniques
such as deep learning.11

To the best of our knowledge, besides our research group, only Tahmasbi et al12 published
a study in which grammars were employed in the process of mass discretization. Moreover, we
could not find any paper describing the use of syntactic approaches to classify masses without
combining grammars with other machine learning techniques.

*World Health Organization: https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
†SEER Program: https://seer.cancer.gov/statfacts/html/breast.html

https://www.who.int/cancer/prevention/diagnosis-screening/breast-cancer/en/
https://seer.cancer.gov/statfacts/html/breast.html
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This paper expands a previous study showing preliminary results of a new syntactic approach
for mass classification.13 More precisely, the main contributions of the previous paper were the
use of stochastic context-free grammars created based on the structures of AND-OR graphs to
perform the discrimination of masses as benign or malignant.

The main contributions added in the present paper are:

1 using grammars to classify masses as benign or malignant, including: (i) parameter calibration
process for feature discretization using the Omega algorithm;14 (ii) testing the KBinsDis-
cretization algorithm for feature discretization;15 (iii) using the concept of Gini importance for
feature dimension and noise reduction; (iv) using a maximum posteriori algorithm to convert
the deterministic grammars into stochastic grammars; (v) evaluation of the effect of dataset
combination on the classifier learning process.

2 a fair comparison among classifiers created using grammars and classifiers created using
the most common machine learning techniques (ANNs, SVMs, KNN, and random forest,
RF) in the context of mass classification. For each traditional classifier, all possible feature
combinations were tested in order to achieve the highest possible accuracy for each classifier.

2 BACKGROUND

2.1 Mammography

Mammography is an exam that uses X-rays to project the three-dimensional structures of a female
breast in a two-dimensional (2D) image.5 The exam was introduced in 1963 and brought an impor-
tant revolution in breast cancer detection and treatment.16 Mammography is an effective aid for
early detection of breast cancer, since it is able to detect abnormal growth of tissues in the breast
before they become palpable.5 During a mammographic exam, normally, two projections of the
breast are recorded17—the craniocaudal (CC) and the mediolateral oblique (MLO) views. Studies
show that using the two views improves performing the detection and diagnosis of breast cancer
when compared to using a single view.17

In general, women over the age of 45 are encouraged to undergo mammography screen-
ing at least once every two years, since the incidence of this disease tends to increase with age.
Nevertheless, it is also common to find cases where young women were diagnosed with breast
cancer.16

2.2 Grammars

A grammar is a quadruple G = (V N , V T, R, S), where VN is a set of nonterminal symbols, VT is
a set of terminal symbols, R is a set of production rules and S ∈ VN is the initial symbol of the
grammar. Considering the Chomsky hierarchy,18 a context-free grammar is a type of grammar
where the production rules are as follows:

• A → 𝛽,A ∈ VN , 𝛽 ∈ (VT ∪ VN)∗

A stochastic grammar is a quintuple Gs = (VN ,VT ,R, S,P), where:

• VN ,VT , S, have the same meaning as described previously;
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• R ⊂ {𝛼 → 𝛽, p}, where 𝛼 → 𝛽 is a production and p, 0 ≤ p ≤ 1, is a probability associated to the
production;

• For each 𝛼 that is the left side of a production rule, considering all productions {𝛼 → 𝛽i, pi} ∈
R, 𝛽i ∈ (VN ∪ VT)∗, we have

∑
i=1pi = 1;

• P is the set of probabilities of the production rules.

A parser for a given grammar G is an algorithm that, given a sequence x, is able to provide one
or all the syntactic trees for that sequence if it belongs to the language generated by G, otherwise,
the parser generates an error. For a stochastic grammar Gs, the parser not only generates the
syntactic trees, but also provides the probability of x according to the grammar Gs.

Stochastic grammars are useful to classify a new object, since it is just necessary to compute
the probability of that object belonging to a class by computing a parse tree, and then choosing
the class with the highest probability.

3 RELATED WORKS

Numerous works have dealt with the problem of mass classification in digital mammograms.9
Among these works, the studies19-23 were conduced using the same set of images and features
used in the present work.

The studies19,20 presented the use of concavity and convexity fractions combined with com-
pactness and spiculation index as features to serve as input to a discriminant analysis program
for the classification of masses. The authors achieved an accuracy of 81% in Reference 19 for the
classification of masses as benign or malignant and an accuracy of 91% in Reference 20 when
classifying masses as circumscribed or spiculated.

The study21 showed the use of genetic programming and feature selection in the mass clas-
sification processes. The authors used shape and texture features extracted from 57 images from
the Alberta Program for the Early Detection of Breast Cancer database (Screen Test),24 obtaining
a specificity of 95% and a sensitivity of 97.3%.

The features compactness, spiculation index, fractal dimension, and fractional concavity
were employed in Reference 22. In the classification process, the higher value of the area
under the Receiver Operating Characteristic (ROC) curve was 0.92 with images combined from
Mammographic Image Analysis Society database (MIAS)25 and from Screen Test database.

In Reference 23, gradient and texture features were combined. To feed the classifiers based on
posterior probabilities computed from Mahalanobis distance, the authors provided features based
on gray level co-occurrence matrices, acutance, and coefficient of gradient strength variation. The
higher value of the area under the ROC curve was 0.76 with combined images from MIAS and
Screen Test databases.

The work 12 demonstrated the use of syntactic approach as part of the process of mass clas-
sification. In the work, the authors used the output of a syntactic analysis as input to an ANN
classifier. Features based on texture and Zernike moments were extracted from images coming
from MIAS database. As a result, the average area achieved under the ROC curve was 0.861.

More recently, other approaches were employed in the process of mass classification. For
instance, in study 26 the use of an ANN considering the four BI-RADS categories was reported.
The authors used texture and shape features together with patient age as input to the classifier.
The experiments were performed using 480 mass images selected from DDSM database27 and the
highest accuracy rate achieved was 88.02% considering benign and malignant classes.
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A convolutional neural network (CNN) was employed in Reference 28. The authors used 600
images selected from DDSM database achieving an accuracy rate of 97.4%.

RF and CNN were used in the study 8 to solve the problem of mass classification. The best
results were accuracy of 0.95 with the RF on the CNN with pretraining, accuracy of 0.91 with the
CNN with pretraining and accuracy of 0.90 with the RF on hand-crafted features.

In the work 29 a novel representation of shape masses using a sparse region of interest
was presented. Several features were extracted from this new representation using gray level
co-occurrence matrix (GLCM) and gray level aura matrix to serve as input to a multi-SVM. The
classification accuracy was of 97.2% using 322 images from MIAS database and considering the
following classes: calcifications, circumscribed, spiculated, ill-defined, architectural distortions,
asymmetry(s), and normal.

Muramatsu et al30 proposed the use of radial local ternary patterns as features to discriminate
masses as benign or malignant. They tested their approach using ANN, SVM, and RF. Moreover,
they compared the classification ability of the proposed feature against regular local ternary pat-
tern, rotation invariant uniform local ternary pattern, texture features based on the GLCM and
wavelets features. The highest area under the ROC curve was of 0.90 achieved with the proposed
features and the ANN classifier.

4 MATERIALS AND METHODS

4.1 Database

The first dataset (dataset 1) contains 54 images from MIAS database and from the teaching library
of the Foothills Hospital in Calgary.20 Images from MIAS have spatial resolution of 50𝜇m, while
images from Foothills Hospital have spatial resolution of 62𝜇m. The other dataset (dataset 2)
has 57 images from Screen Test database.24 The images have a spatial resolution of 50𝜇m, but to
extract gradient/texture features the images were resampling to 200 𝜇m.21

The boundaries of all masses were manually drawn by specialists22 and the 111 images were
labeled with the following labels: (i) circumscribed benign (CB); (ii) spiculated benign (SB); (iii)
circumscribed malignant (CM); and (iv) spiculated malignant (SM). The benign and malignant
labels were used as class labels in the classification process, while the circumscribed and spicu-
lated labels were used as shape labels. Considering the two datasets combined, there are 53 CB
masses, 10 CM masses, 12 SB masses, and 36 SM masses. Figure 1 shows the distribution of the
masses considering their labels and the dataset.

F I G U R E 1 Distribution of
masses according to their labels.
From 65 benign masses, 81.5% are
circumscribed and 18.5% are
spiculated. From 46 malignant
masses, 21.7% are circumscribed
and 78.3% are spiculated [Color
figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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4.2 Features

To deal with the mass classification problem, a total of 12 features were extracted from gray-level
images belonging to the datasets. Eight features represent the shape characteristics of the masses,
three features are related to the image gradient and one feature represents the mass texture. These
same features were previously extracted and used in the studies.19-23

4.2.1 Shape features

Compactness:
The feature compactness (CC) is useful to verify the efficiency of a contour to cover a given area.22

This measure was obtained considering Equation (1),20 where P is the perimeter of the mass and
A is its area.

CC = 1 − 4𝜋A
P2 . (1)

Spiculation index:
The spiculation index (SI) is a measure used to verify how spiculated a nodule is. It can be obtained
by Equation (2),20 where Si and 𝜃i for i = 1, 2, 3,… , N represent the length and the angle of N sets
of segments corresponding to N mass spicules, respectively.

SI =
∑N

i=1(1 + cos 𝜃i)Si∑N
i=1 Si

. (2)

Fractional concavity:
Fractional concavity (FC) is a measure based on the number of concavities in a mass boundary.
This measure is useful, since benign masses tend to have more convex parts and malignant masses
tend to have both concave and convex parts. Let Si, i = 1, 2, 3,… ,M, be the size of M segments
from a mass boundary. The total length of the boundary Tl is computed using Equation (3). Let
CCi, i = 1, 2, 3,…P, be the length of P concave segments, the length of all concave segments CCl
is given by Equation (4). The FC is computed by Equation (5).19,20

Tl =
M∑

i=1
Si. (3)

CCl =
P∑

i=1
CCi. (4)

FC = CCl

Tl
. (5)

Fractal dimension:
Fractal dimension (FD) is a measure used to verify self-similarity, nested complexity or the capac-
ity of filling spaces of a shape. In general, this measure can be used to explain the complexity of
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a pattern.22 A self-similarity D is defined by Equation (6), where a is the number of self-similar
pieces considering a reduction factor of 1∕s, which can be obtained by Equation 7. Thus, the slope
of a straight-line approximation of a plot log(a) vs log(1/s) can be considered as an estimation
of D.22

Four different measures of FD were used in this study. The first two were fractal dimensions
computed using the 2D contour of the masses applying the methods ruler and box counting.22

The other two fractal dimension measures were calculated considering the one-dimensional (1D)
signature of the contour of the masses also using the methods ruler and box counting.

D =
log(a)

log(1∕s)
. (6)

a = 1
sD . (7)

Fourier Factor:
The Fourier Factor (FF) is a measure related to the roughness or the presence of high-frequency
components in a contour.22 This measure can be obtained by Equation 8, where Z0(k) are the
Fourier descriptors normalized (Equation (9)), Z(k) are the Fourier descriptors (Equation (10)),
for k = −N∕2,… ,−1, 0, 1, 2,…N∕2 − 1, and z(n) = x(n) + jy(n),n = 0, 1,…N − 1 is the sequence
of contour pixels.22

FF = 1 −

∑N∕2
K=−N∕2+1 |Z0(k)|∕|k|∑N∕2

K=−N∕2+1 |Z0(k)| . (8)

Z0(k) =
{ 0, k = 0;

Z(k)|Z(1)| , otherwise. (9)

Z(k) = 1
N

N−1∑
n=0

z(n)exp
[
−j 2𝜋

N
nk

]
. (10)

4.2.2 Gradient/texture features

Acutance:
Acutance (A) is a measure of the change in density across a mass boundary.23 It is computed
using directional derivatives along a line of pixels in the normal direction in each point of the
mass boundary. This feature was calculated considering Equation 11, where fmax and fmin are the
local maximum and minimum pixel values along the line of pixels in the normal direction in
each point of the mass boundary, respectively, and di is the root-mean-squared gradient at the ith
boundary point.

A = 1
fmax − fmin

∑N
i=1 di

N
. (11)
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Two versions of acutance were used in this study. The first one (traditional acutance [TA]),
was computed considering the difference between pairs of pixel values along the normal direction
of the mass boundary. The second one (acutance), was calculated in a similar way, but consid-
ering the differences between pairs of adjacent pixels along the normal direction of the mass
boundary.23

Coefficient of variation:
The aim of coefficient of variation (CV) is to investigate how the sharpness of a mass varies around
its boundary, besides evaluating its average sharpness with the measure of acutance.23 The value
of the CV can be obtained using Equation (12), where M = 5, fi(n),n = 0, 1, 2,… ,ni are the pixels
considered in the ith boundary point considering the perpendicular direction, and 𝜇𝜔 is defined
according to Equation (13).23

𝜎2
𝜔 = 1

M

[M∕2]∑
n=[−M∕2]

[fi(n) − 𝜇𝜔]2. (12)

𝜇𝜔 = 1
M

[M∕2]∑
n=[−M∕2]

fi(n). (13)

Contrast:
A GLCM that considers the pixels of the mass boundary and their surroundings was used to
extract the feature contrast (CO). A GLCM Pd(i, j, 𝜃, d) reflects the probability distribution of the
transition of gray-level i to a gray-level j, considering the direction 𝜃 and a distance d (in this case,
d = 1). The contrast measure used in this study is given by Equation (14), where N is the number
of gray-levels (256 in this study) and R is the total pairs of pixels in the region used in the specified
angular direction.23

Contrast =
N−1∑
n=0

n2
∑

i−j=n

(
P(i, j)

R

)2

. (14)

4.3 Mass classification approach

The approach used in this study consists of the feature extraction, the grammar-based classifiers
development (Sections 4.3.1 to 4.3.5) and a comparison among grammar-based classifiers and
other classifiers, such as, ANN, SVM, KNN, and RF (Sections 6 and 7). The features used in the
present work have been extracted by the researchers of studies 19-23. Figure 2 shows the pipeline
of tasks that were executed in order to create and validate the proposed grammar-based classifier.
In the next sections, each task is explained in detail.

4.3.1 Feature selection

The RF classifier implicitly performs feature selection for the classification task. The output of the
RF learning algorithm includes the “Gini importance” of each feature. The Gini importance of a
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F I G U R E 2 Pipeline of tasks executed to create and validate the proposed approach [Color figure can be
viewed at wileyonlinelibrary.com]

feature measures how often this feature was selected for a split, and how important its discrim-
inative value was for the classification process.31 Selection of the most discriminative features is
important not only to reduce dimensionality saving resources such as memory, CPU, and time
of processing, but also to reduce noise in the data, since not all features necessarily contribute
to increase the accuracy of the model. In fact, feature selection techniques have been applied to
several pattern recognition fields, such as fingerprint and face recognition.32

This study used the Gini importance as a feature selection criterion to choose the most
adequate features to create the proposed grammar models (first step in Figure 2).

4.3.2 Feature discretization process

Omega algorithm14 and KBinsDiscretizer algorithm15 were employed in order to discretize the
continuous features (second step in Figure 2). This task is necessary since each value of a feature
has to be represented by a symbol or token in formal languages. Thus, these symbols can be used
to create a sequence of symbols that will represent a benign or malignant mass. For instance, con-
sider that the values {0.1, 0.2, 0.3, 0.4, 0.5} are the only possible values of compactness feature, and
the values {0.5, 0.8, 1.0, 1.1} are the only possible values of spiculation index feature. A discretiza-
tion process could label the compactness values 0.1, 0.2 as “cc1,” and the compactness values 0.3,
0.4, and 0.5 as “cc2” (“cc” to specify the compactness feature and “1” and “2” to represent the two
intervals/bins). Similarly, the process could label the instances 0.5 and 0.8 as “si1” and 1.0 and 1.1
as “si2” for the spiculation index.

Omega algorithm has two input parameters, Hmin and 𝜁max. The parameter Hmin specifies the
minimum number of elements for each bin, that is, the minimum number of elements that each
symbol/token should represent. The parameter 𝜁max is the maximum inconsistency level, deter-
mining that two consecutive bins can be merged only if their elements have the same majority
class and if the inconsistency level is below 𝜁max.14 In the present study we performed a calibration
process in order to choose the best input parameters to handle the classification process.

The implementation of KBinsDiscretizer used in this work has three input parameters: n_bins
is the number of bins to be generated, encode is the method used to encode the result, that is, how
the bin identifier is generated, and strategy is the strategy used to define the widths of each bin.

http://wileyonlinelibrary.com
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4.3.3 Hierarchical models and grammars

AND-OR graphs are hierarchical models able to represent context-free languages and also some
context dependencies.33 Here, the AND-OR graphs were used to supply a visual representation of
the features extracted from masses in a hierarchical form (third step in Figure 2). Since we have
not included context dependencies in these representations, each AND/OR graph was converted
into an equivalent context-free grammar. The AND/OR (internal) nodes can be seen as the non-
terminal symbols of the grammar, and the leaf nodes can represent the terminal symbols of the
grammar. The AND nodes are used to decompose entities into their parts (representing the right
side of a production, composed of a concatenation of symbols), while the OR nodes are used to
produce alternative substructures (ie, alternative productions for the same left side symbol).33

Three core hierarchical models were created to represent the masses considering several dif-
ferent combinations of shape and gradient/texture features. Each core model derives two models,
one for benign and other for malignant masses, where the leaf nodes are the discretized values
of the features from benign/malignant labeled images, respectively. The difference between a
benign and malignant representation, considering these models, are due to the possible values of
the features in the leaf nodes.

The first core model, named shape-only model (Figure 3A), considers that a mass can be
circumscribed or spiculated and uses only shape features to discriminate masses as benign or
malignant. In Figure 3A, two shape features are represented (compactness and spiculation index)
together with the Circumscribed/Spiculated labels. The leaf nodes represent the values of these
features and they were discretized using the labels CB, CM, SB, and SM. In addition, Figure 3B
shows the grammar designed from this AND-OR graph (fourth step in Figure 2).

The second core model, named shape-texture model, is shown in Figure 4A and also con-
siders that a mass can be circumscribed or spiculated. However, it uses not only shape, but also
gradient/texture features in the process of masses discrimination as benign or malignant. In this
model, the shape features (compactness and spiculation index) were discretized using the labels
CB, CM, SP, and SM, while the gradient/texture features (contrast and acutance) were discretized
using the labels Benign (B) and Malignant (M). Figure 4B shows the grammar designed from this
AND-OR graph (fourth task in Figure 2).

F I G U R E 3 (A) Core hierarchical model (shape-only model) for representation of masses using AND-OR
graphs. (B) The designed grammar. The solid circles are the AND nodes, the dashed circles are the OR nodes and
the squares are the leaf nodes. The symbol "|" represents the logic condition OR and the symbol "." represents the
logic condition AND (concatenation operation in formal languages) [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 4 (A) Core hierarchical model (shape-texture model) for representation of masses using
AND-OR graphs. (B) The designed grammar. The solid circles are the AND nodes, the dashed circles are the OR
nodes and the squares are the leaf nodes. The symbol "|" represents the logic condition OR and the symbol "."
represents the logic condition AND (concatenation operation in formal languages) [Color figure can be viewed at
wileyonlinelibrary.com]

The last core model, named no-shape-label model, and its grammar are displayed in
Figure 5A,B (fourth step in Figure 2), respectively. This model does not take into consideration
whether a mass is circumscribed or spiculated, but it uses the shape and the gradient/texture fea-
tures to classify masses as benign or malignant. In addition, the discretization process considered
only the labels (B) and (M) for shape and gradient/texture features.

To convert the context-free grammars generated in the previous step in stochastic context-free
grammars, we used a maximum posteriori algorithm proposed in Reference 34 (fifth step in

F I G U R E 5 (A) Core hierarchical model (no-shape-label model) for representation of masses using
AND-OR graphs. (B) The designed grammar. The solid circles are the AND nodes, the dashed circles are the OR
nodes and the squares are the leaf nodes. The symbol "|" represents the logic condition OR and the symbol "."
represents the logic condition AND (concatenation operation in formal languages) [Color figure can be viewed at
wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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F I G U R E 6 Process of a mass classification considering the benign and malignant classes [Color figure can
be viewed at wileyonlinelibrary.com]

Figure 2). In this algorithm each production rule of the grammar has a counter, initialized‡ with
value 0.1. The next step is to use this initial grammar to parse each sequence in the training
set and, every time a production rule is used during the parsing, its counter is incremented by
1. After analyzing all sequences in the training set, the counter values are normalized into a
probability value so that the sum of probabilities of production rules with the same left side is
equal to 1.

4.3.4 The classifier

A version of the Earley algorithm35 for stochastic grammars was used to parse the sequences
representing the masses, considering the stochastic context-free grammars created (sixth step in
Figure 2). Each built classifier (seventh step in Figure 2) contains a parser generated for the benign
grammar (G1) and another parser generated for the malignant grammar (G2). For a given image x
represented by its sequence, each parser i is used to provide P(x, η̂|Gi)where η̂ = argmaxP(x, j|Gi),
that is, the probability value of the most probable syntactic tree of x given by grammar Gi, i=1,2.
The mass image is classified as benign if P(x, η̂|G1) > P(x, η̂|G2), otherwise it is classified as malig-
nant. Figure 6 shows the process of a mass classification. In this example, the mass is represented
by the sequence cca sib cc aa, which consists of the discretized values of the features compactness,
spiculation index, contrast, and acutance. The parsers created that consider the grammars used
to represent the benign and malignant masses, analyze the sequence and cast the most probable
syntactic trees and their probabilities. The classifier then labels the mass as belonging to the class
whose parser provided the highest probability.

‡Initialize the counters with 0.1 are important to guarantee that, at the end of the process, no production rule will have
probability equals to zero.

http://wileyonlinelibrary.com
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4.3.5 Validation

A k-fold cross validation technique (k = 23) was used to test the three core hierarchical models
and their variations (different number of features) with the two datasets combined (eighth step in
Figure 2). This value of k was chosen due to the small number of available images in the database,
calculated in order to allow the classifier learning from 106 images and testing with five images,
approximately, in each iteration (fold).

Moreover, to verify the performance of the classifiers, the metrics sensitivity, specificity, accu-
racy and the estimated area under the ROC curve (AUC) as proposed in Reference 36 were
calculated.

5 EXPERIMENTS AND RESULTS

This section presents the experiments and the results obtained by the classifiers based on gram-
mars. During the feature discretization, when Omega algorithm was employed, we performed a
calibration procedure varying the values of Hmin (using 2, 3, 4, and 5) that specify the minimum
number of elements that each symbol can represent and the values of 𝜁max (0.35, 0.40, and 0.45)
that specify the maximum inconsistence level. For the KBinsDiscretizer algorithm, we varied the
values of n_bins (using 20, 30, and 40) and keep the value of encode as “ordinal” and the value of
strategy as “uniform” (then, the bins have all the same size). Thus, the impact of the discretization
process on the mass classification can be analyzed. Moreover, the tests were performed combining
the datasets described in Section 4.1.

In addition, the Gini importance of each feature was used as feature selection criterion during
the creation of some models. To calculate the Gini importance a RF classifier was created using
70% of the images for training and the other 30% of the images for testing. The classifier (Random-
ForestClassifier) was created using the python sklearn.ensemble API§. Table 1 shows the Gini
importance of each feature.

In the created models, except when all shape and texture features were used, we limited the
number of each type of feature to 70 % of the total of that type of features. For instance, when
the Gini importance was used to select the shape features, the highest number of features used
was five of the eight possible features. For texture, when the Gini importance was considered, the
highest number of features used was two of the four possible features.

5.1 Shape-only model

The shape-only model is the core hierarchical model where only shape features are used. The
model considers whether the masses are circumscribed or spiculated while the discretization
process when using Omega algorithm considers the labels CB, SB, CM, and SM. It is impor-
tant to mention that although these shape labels are used to create the model, they are not
required during the classification task. The KBinsDiscretizer does not consider any label during
the discretization process (Figure 3A in Section 4.3.3)

§RandomForestClassifier: https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.
RandomForestClassifier.html

https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClassifier.html
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T A B L E 1 Gini importance of each feature according to the random forest classifier. The
features are ordered according to the Gini importance, from the highest to the lowest value

Feature Type Gini importance

Fractal dimension 1D Ruler (1R) Shape 0.161724998

Spiculation index (SI) Shape 0.135610343

Fractional concavity (FC) Shape 0.129359555

Fourier factor (FF) Shape 0.107758047

Fractal dimension 2D Ruler (2R) Shape 0.094202521

Fractal dimension 1D Box counting (1B) Shape 0.079181666

Compactness (CC) Shape 0.066315130

Contrast (CO) Texture 0.063269016

Fractal dimension 2D Box counting (2B) Shape 0.056634071

Traditional acutance (TA) Gradient 0,040501998

Acutance (AC) Gradient 0.034178034

Coefficient of variation (CV) Gradient 0.031264622

The results of the mass classification when Omega algorithm was employed can be seen in
Tables A1, A2, A3, and A4. These tables show the accuracy when three, four, five, and all features
were used to create the models (the features were selected according to the Gini importance). As
can be noticed, with the increasing values of Hmin the accuracies tend to decrease. The reason
for this fact might be that the higher the Hmin, the classes belonging to the same bin in the dis-
cretization process can be more mixed. Moreover, it can be seen that the values of 𝜁max chosen to
the discretization process had a minimum impact in the classification of masses, since the accu-
racies tend to be the same as the 𝜁max changes. Furthermore, the highest accuracies (0.97) were
achieved when five and eight features were used and, the accuracies tend to decrease when the
models used fewer features.

5.2 Shape-texture model

The shape-texture model is one of the core hierarchical models where shape and texture fea-
tures are used. The model considers whether the masses are circumscribed or spiculated and the
discretization process when Omega algorithm is applied considers the labels CB, SB, CM, and
SM for the shape features and the labels Benign (B) and Malignant (M) for the texture/gradient
features. As previously (Section 5.1), the KBinsDiscretizer does not consider any label during the
discretization process (Figure 4A in section 4.3.3).

Tables A1, A2, A3, and A4 show the results of the mass classification when five (three shape
and two texture), six (four shape and two texture), seven (five shape and two texture), and when
all eight shape and four texture/gradient features were used to create the model and Omega
algorithm was used in the discretization process. Again, the features used were selected accord-
ing to their importance given by the Gini coefficient. Analyzing these tables, it was observed that
the accuracy values did not change too much when the number of features decreased. The high-
est accuracy obtained was one with the models with 12 features. Nevertheless, the values of Hmin
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continue exerting a significant impact on the performance of the models, since when this
parameter increases, the accuracies tend to decrease.

The results of the classification using KBinsDiscretizer as discretization algorithm are shown
in Tables A5, A6, A7, and A8. This model achieved the maximum accuracy (one) when all the 12
features were used.

5.3 No-shape-label model

The no-shape-label model is the core model where shape and texture features are used with-
out considering the shape labels circumscribed and spiculated. The discretization process using
Omega algorithm considered only the labels Benign (B) and Malignant (M) while the KBinsDis-
cretizer algorithm does not consider any labels (Figure 5A in Section 4.3.3).

The mass classification results considering the classes benign and malignant and Omega
algorithm are shown in Tables A1, A2, A3, and A4. These tables display the results when five
(three shape and two texture), six (four shape and two texture), seven (five shape and two tex-
ture), and all the eight shape and the four texture/gradient features were included to create the
model. The best accuracy achieved was 0.93 considering four shape and two texture features.
Yet, the Hmin parameter had a major role in the classification process, since when this parameter
increases, the accuracies tend to decrease.

Tables A5, A6, A7, and A8 show the results when the KBinsDiscretizer was used in the dis-
cretization process. The maximum accuracy (one) was obtained with eight shape and four texture
features and the same pattern previously observed has repeated, that is, when the number of bins
increases, it also increases the accuracy of the model.

6 OTHER CLASSIFIERS

According to a systematic review previously conducted,9 the most used pattern recognition tech-
niques to handle mass classification are ANN, SVM, and KNN, in this order. In this study, these
three techniques were implemented using the python sklearn library15 in order to compare the
accuracies achieved by the models based on grammar in contrast to the accuracies achieved by the
most employed techniques. Moreover, the RF technique was also implemented using the sklearn
library, as there are also numerous works that have used RF or decision trees to deal with the
mass classification problem.9

For a fair comparison, all classifiers were evaluated using a paired cross-validation, where each
fold contained exactly the same images for all the classifiers. Before executing the tests, all features
were standardized and, consequently, their values ranged from 0 to 1. This step is important in
order to avoid different influences of the feature scales.

Table 2 shows the hyperparameters used in the execution of each classifier. In addition, all
possible combinations of the 12 features were tested, given a total of 4095 different feature subsets.
This brute force approach was employed to guarantee that at the end of the tests, we would have
the highest accuracy for each classifier considering the chosen hyperparameters.

The highest and lowest accuracies obtained by each classifier are shown in Tables A9 and A10.
It is observed that the highest accuracies achieved by ANN, SVM, KNN, and RF were 0.92, 0.92,
0.90, and 0.89, respectively.
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T A B L E 2 Hyperparameters tested for each classifier. For artificial neural
networks (ANN): 𝛼 is the regularization term; learning_rating is the step size used to
update the weights; n_neurons is the number of neurons in the hidden layer (only one
hidden layer was used); and f_activation is the activation function. For support vector
machines (SVM): kernel is the type of kernel used; C is the penalty parameter of the
error term; 𝛾 is the kernel coefficient. For k-nearest neighborhood (KNN): k is the
number of neighbors. For random forest (RF): n_estimators is the number of threes
used; max_features is the number of features used when searching for the best split

Classifier Hyperparameters

ANN 𝛼 = 0.0001;

learning_rating = 0.001, 0.01, 0.1, 1;

n_neurons = 2, 3;

f_activation = sigmoid, hyperbolic tangent, linear

SVM kernel = linear, polynomial, radial basis function;

C = 0.01, 0.1, 1, 5, 10, 50, 100;

𝛾 = 1
n_features

KNN k = 1, 3, 5, 7, 9

RF n_estimators = 100;

max_features =
√

n_features

7 DISCUSSION

As presented in Section 5, various experiments were performed to verify if masses could be
correctly classified as benign or malignant using grammars. More precisely, three core hierar-
chical models were created using several variations of features and two algorithms were used to
discretize features to verify the robustness of the proposed approach.

The shape-only model used only shape features and the highest accuracies achieved when
Omega algorithm was used were of 0.97, 0.97, 0.96, and 0.91 when eight (all), five, four, and three
features were used and Hmin = 2, respectively. Its worst accuracies achieved considering the same
number of features were 0.89, 0.91, 0.92, and 0.92 with Hmin = 5. When KBinsDiscretizer was
used, the best accuracies were 0.97 (eight and five features), 0.95 (four features) and 0.94 (three
features) using n_bins = 40, while the worst accuracies were 0.94 (eight features), 0.92 (five and
four features), and 0.91 (three features) using n_bins = 20.

The no-shape-label model used shape and texture features and does not consider whether
the masses are circumscribed or spiculated. The highest accuracies achieved when Omega
algorithm was used were 0.93, 0.92, 0.93, and 0.92 with Hmin = 2 when 12 (all), seven, six, and five
features were used, respectively. The worst accuracies obtained by this model were of 0.90, 0.88,
0.90, and 0.91 when the same number of features were used, but with Hmin = 5. Using KBinsDis-
cretizer as discretization method, the best accuracies were 1, 0.97, 0.95, and 0.92 when 12 (all),
seven, six and five features were used, respectively. Yet, the worst results were accuracies of 0.92,
0.90, 0.89, and 089 considering the same number of features.

Overall, when Omega was used the highest accuracies were achieved by the shape-texture
model. This is the model that uses shape and texture features and considers whether the masses
are circumscribed or spiculated. The accuracies were of 1, 0.99, 0.99, and 0.98 when the Hmin = 2
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and 12 (all), seven, six, and five features were used, respectively. The worst accuracies obtained
by this model, considering the same number of features were, respectively, 0.94, 0.95, 0.95, and
0.93 with Hmin = 5 or Hmin = 4. When KBinsDiscretizer was employed, the best accuracies were
1, 0.99, 0.96, and 0.96 considering 12 (all), seven, six, and five features. The worst accuracies were
of 0.97, 0.94, 0.92, and 0.93 for the same number of features.

Figure 7 exhibits the highest accuracies by each core hierarchical model when the number of
features changed and Omega algorithm was used. Note that the shape-only model uses fewer
features than the other models, since this model does not use the gradient/texture features. As
can be seen, the shape-only model is the model that has a bigger impact when the number of
features decreases (accuracy goes from 97% with eight shape features to 91% with three shape
features). The other two core hierarchical models proved to be more stable when the number of
features decreased.

Figure 8 shows the highest accuracies by each core hierarchical model when the number
of features changed and KBinsDiscretizer algorithm was used. In general, it can be noticed
that when all features are used, the accuracies are higher than the ones achieved when Omega
algorithm was used. Nevertheless, as the number of features decreases, the accuracy tends to
decrease more abruptly.

In general, one possible reason the shape-only model is less robust could be the absence of
texture features. Usually, the circumscribed masses tend to be benign while the spiculated ones
tend to be malignant. Consequently, the shape features are ideal to be used in the classification
process. Nevertheless, some benign masses can be spiculated and some malignant masses can
be circumscribed and, in this scenario, the absence of texture features and a limited number of
shape features may compromise the classifier performance. Another possible reason might be
that with a very limited number of features (only three in this case), the grammars used were
not generic enough to deal with masses that were not present in the training set, which led to a
misclassification.

Furthermore, on average, the no-shape-label model achieved an inferior result when com-
pared to the other two models. This fact might be used to show the importance of the labels
indicating whether the mass is circumscribed or spiculated when creating the hierarchical model
in the classification process.

F I G U R E 7 Accuracies achieved in the process of mass classification considering the three core
hierarchical models and different number of features. The shape-only model used eight, five, four, and three
features. The shape-texture model and the no-shape-label model used 12, 7, 6, and 5 features [Color figure
can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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F I G U R E 8 Accuracies achieved in the process of mass classification considering the three core
hierarchical models and different number of features. The shape-only model used eight, five, four, and three
features. The shape-texture model and the no-shape-label model used 12, 7, 6, and 5 features [Color figure
can be viewed at wileyonlinelibrary.com]

Figure 9 shows the highest accuracies achieved by each core hierarchical model when all the
features were used. We can observe the importance of the Hmin, as the higher this parameter is,
the lower the accuracy obtained. All grammar-based models showed a good performance when
Hmin = 2, but the accuracies decrease by around 10% when the Hmin = 5.

In Figure 10 we can see the highest accuracies when the KBinsDiscretizer algorithm is used
in the feature discretization process and all the features are used to build the models. It can be
noticed that as the parameter n_bins increases the accuracy of the model also increases. This
behavior is the same presented when the Omega algorithm is used, but in that case the number
of bins is influenced by the parameter Hmin.

The discretization process proved to be crucial to the performance of the proposed method.
The Hmin is an input parameter for Omega algorithm and restricts the minimum number of ele-
ments that each bin must have. In general, when the Hmin value is high, less bins are obtained
during the discretization process. Thus, the higher the Hmin parameter, the higher the inconsis-
tencies generated during this process. Considering this fact, it is important to keep this value as

F I G U R E 9 Accuracies achieved in the process of mass classification considering the three core
hierarchical models, all (eight shape and four texture/gradient) features and different values of parameter Hmin

[Color figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com


PEDRO et al. 19

F I G U R E 10 Accuracies achieved in the process of mass classification considering the three core
hierarchical models, all (eight shape and four texture/gradient) features and different values of parameter n_bins
[Color figure can be viewed at wileyonlinelibrary.com]

low as possible, even when only a small reduction in the number of bins is achieved.14 The same
behavior is also valid for the KBinsDiscretizer algorithm, that is, it is important to choose a proper
value for the parameter n_bins, since the classification accuracies tend to be better for higher val-
ues of this parameter. In addition, the more inconsistencies in each bin, the worse the accuracies
achieved by the models as shown in Figures 9 and 10.

Analyzing Figures 7, 8, 9, and 10 we can see that the shape-texture model achieved the
best performance when the number of features and the number of bins vary. In general, the
shape-only model has a better or the same performance than the no-shape-label model when
the six or more features are used. However, when the number of features decrease, these two
models tend to present a similar result.

Furthermore, the grammar-based models were compared with some of the most used classi-
fiers found in the literature: ANN, SVM, KNN, and RF. The highest accuracies achieved by the
grammar-based models have surpassed the highest accuracies achieved by the other classifiers
by almost 10% in the experiments performed. However, these results do not imply that the tradi-
tional approaches should not continue being used to handle the mass classification problem. In
fact, these results show that the grammar-based models had superior results in the classification
task considering the images used and the features extracted. Moreover, these results show that
syntactic approaches could be helpful and more explored to solve the mass classification problem.
Figure 11 shows a comparison of the best results achieved by grammar-based models and by the
traditional classifiers.

A limitation of using grammars, especially when compared to deep learning approaches, is
the need to extract previously handcrafted features. To perform this extraction, a good segmenta-
tion method is required or the masses need to have their boundaries manually drawn by expert
radiologists. The images used in this work had their boundaries manually drawn by experts, but
images with boundaries drawn automatically by a segmentation algorithm could also have been
used. Another limitation is that a discretization process is mandatory and, if the algorithm and
the parameters chosen are not ideal, the classifiers might not perform as good as other techniques.

An advantage of hierarchical models and grammars is their concise representation and
interpretability. In general, engineers and radiologists can easily understand the grammatical
models, unlike ANNs, for instance. In this study, stochastic context-free grammars were used, but
there are different grammatical approaches that a researcher can choose to deal with different

http://wileyonlinelibrary.com
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F I G U R E 11 Highest accuracies achieved in the process of mass classification considering the three core
hierarchical (shape-only, shape-texture and no-shape-label) models and the most used classifiers to discriminate
masses [Color figure can be viewed at wileyonlinelibrary.com]

representations in order to solve this problem. Another advantage of using the proposed model,
specially when compared to deep learning methods, is that the proposed model could learn the
pattern of benign and malignant masses using a small number of images. In a previous work,13 we
used 57 and 54 images from two datasets in separate. In this work a combination of these images
was used. For a deep learning approach it is necessary a larger dataset due to the complexity of
the model and the number of features and weights to learn.

The proposed approach is formed by several intermediate steps, for example, feature dis-
cretization, hierarchical model representation, creation of stochastic grammars, and Bayesian
classifier that could appear cumbersome, but other approaches also have intermediate steps.
For instance, considering traditional ANNs it is generally required a standardization of features,
the definition of the number of neurons and hidden layers, choose the right hyperparameters
and learning the weights of the ANN before performing the classification. Thus, using syntactic
approaches do not lead to a more complex process for the classifier learning.

8 CONCLUSIONS

A syntactic approach to classify masses found in digital mammograms was presented in the
present study. The tests were performed using 111 images from two different datasets, and the
results show that the proposed syntactic approach can be helpful to classify masses as benign or
malignant with superior results to the ones presented in recent papers.

Three core hierarchical models were created and the highest accuracies ranged from 0.98
to 1 when all features were used. A good discretization process proved to be mandatory, since
depending on the parameters chosen, the accuracies can decrease by around 10%. Furthermore,
the Gini importance of each feature was calculated and used to perform a feature selection.

http://wileyonlinelibrary.com
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The approaches demonstrated to be robust when the number of features decreased due to the fea-
ture selection implemented. The core model that used only shape features had a major decrease
in its performance when fewer features were used. The other two core models proved to be more
robust.

To compare the results obtained by the grammar-based models with non-hierarchical
approaches, we implemented some of the most used machine learning techniques to handle the
problem of mass classification (ANN, SVM, KNN, and RF). The grammar-based models showed
better performance, in terms of accuracy, when compared with the more traditional models. In
fact, the worst accuracies achieved by the grammar-based models were similar to the highest
accuracies achieved by the traditional models (around 90%). In addition, the highest accuracies of
the grammar-based models were almost 10% superior to the highest accuracies of the traditional
models.

For future work, we are investigating how grammars can be used to generate synthetic masses
that are similar to the real ones. These new generated masses could create a database of synthetic
images that could be used by other researchers in projects of classification or segmentation of
masses, as well as for training new radiologists.

Finally, we would like to mention how important this research area is to society as a whole.
Breast cancer is one of the deadliest cancers that affects mainly women and deserves attention
from research institutes.
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APPENDIX A. TABLES WITH ALL RESULTS

The results when KBinsDiscretizer was used in the feature discretization process are shown
in Tables A5, A6, A7, and A8. The highest accuracy achieved was 0.97 using three, four, five, or all
the shape features and n_bins = 40. Moreover, the results using this algorithm showed a behavior
similar to that observed using the Omega algorithm: model accuracy increase as the number of
bins increases.

T A B L E A1 Classification results using shape-only, shape-texture and no-shape-label models
with Omega. Only the shape and gradient/texture features with the highest Gini importance were used to
build the classifiers - (Shape features: Fractal dimension one-dimensional Ruler, Spiculation index, and
Fractional concavity; Texture features: Contrast and Traditional acutance). In this table the highest
accuracies and area under the ROC curve (AUC) achieved by each classifier are shown in bold

Three shape and two texture features - (Omega)

Model Hmin 𝜻max Sensitivity Specificity Accuracy AUC

Shape-only 2 0.35 0.89 ± 0.25 0.93 ± 0.19 0.91 ± 0.14 0.91 ± 0.15

Shape-only 2 0.40 0.89 ± 0.25 0.93 ± 0.19 0.91 ± 0.14 0.91 ± 0.15

Shape-only 2 0.45 0.89 ± 0.25 0.93 ± 0.19 0.91 ± 0.14 0.91 ± 0.15

Shape-only 3 0.35 0.93 ± 0.17 0.94 ± 0.16 0.94 ± 0.11 0.94 ± 0.11

(continues)
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T A B L E A1 (Continued)

Three shape and two texture features - (Omega)

Model Hmin 𝜻max Sensitivity Specificity Accuracy AUC

Shape-only 3 0.40 0.93 ± 0.17 0.94 ± 0.16 0.94 ± 0.11 0.94 ± 0.11

Shape-only 3 0.45 0.93 ± 0.17 0.94 ± 0.16 0.94 ± 0.11 0.94 ± 0.11

Shape-only 4 0.35 0.91 ± 0.19 0.91 ± 0.20 0.91 ± 0.13 0.91 ± 0.12

Shape-only 4 0.40 0.91 ± 0.19 0.91 ± 0.20 0.91 ± 0.13 0.91 ± 0.12

Shape-only 4 0.45 0.91 ± 0.19 0.91 ± 0.20 0.91 ± 0.13 0.91 ± 0.12

Shape-only 5 0.35 0.89 ± 0.21 0.93 ± 0.17 0.91 ± 0.16 0.91 ± 0.17

Shape-only 5 0.40 0.89 ± 0.21 0.94 ± 0.16 0.92 ± 0.15 0.92 ± 0.16

Shape-only 5 0.45 0.89 ± 0.20 0.94 ± 0.16 0.92 ± 0.15 0.92 ± 0.16

Shape-texture 2 0.35 0.96 ± 0.14 1 0.98 ± 0.06 0.98 ± 0.07

Shape-texture 2 0.40 0.96 ± 0.14 1 0.98 ± 0.06 0.98 ± 0.07

Shape-texture 2 0.45 0.96 ± 0.14 1 0.98 ± 0.06 0.98 ± 0.07

Shape-texture 3 0.35 0.96 ± 0.14 0.96 ± 0.15 0.96 ± 0.10 0.96 ± 0.10

Shape-texture 3 0.40 0.96 ± 0.14 0.96 ± 0.15 0.96 ± 0.10 0.96 ± 0.10

Shape-texture 3 0.45 0.96 ± 0.14 0.96 ± 0.15 0.96 ± 0.10 0.96 ± 0.10

Shape-texture 4 0.35 0.96 ± 0.14 0.91 ± 0.24 0.93 ± 0.15 0.93 ± 0.13

Shape-texture 4 0.40 0.96 ± 0.14 0.91 ± 0.24 0.93 ± 0.15 0.93 ± 0.13

Shape-texture 4 0.45 0.96 ± 0.14 0.91 ± 0.24 0.93 ± 0.15 0.93 ± 0.13

Shape-texture 5 0.35 0.98 ± 0.10 0.97 ± 0.09 0.97 ± 0.07 0.97 ± 0.07

Shape-texture 5 0.40 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09

Shape-texture 5 0.45 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09

No-shape-label 2 0.35 0.96 ± 0.14 0.90 ± 0.23 0.92 ± 0.15 0.93 ± 0.14

No-shape-label 2 0.40 0.96 ± 0.14 0.90 ± 0.23 0.92 ± 0.15 0.93 ± 0.14

No-shape-label 2 0.45 0.96 ± 0.14 0.90 ± 0.23 0.92 ± 0.15 0.93 ± 0.14

No-shape-label 3 0.35 0.93 ± 0.17 0.90 ± 0.19 0.92 ± 0.13 0.92 ± 0.13

No-shape-label 3 0.40 0.93 ± 0.17 0.90 ± 0.19 0.92 ± 0.13 0.92 ± 0.13

No-shape-label 3 0.45 0.93 ± 0.17 0.90 ± 0.19 0.92 ± 0.13 0.92 ± 0.13

No-shape-label 4 0.35 0.91 ± 0.28 0.90 ± 0.23 0.91 ± 0.17 0.91 ± 0.17

No-shape-label 4 0.40 0.91 ± 0.25 0.90 ± 0.23 0.91 ± 0.16 0.91 ± 0.15

No-shape-label 4 0.45 0.91 ± 0.24 0.90 ± 0.23 0.91 ± 0.16 0.91 ± 0.15

No-shape-label 5 0.35 0.96 ± 0.20 0.90 ± 0.20 0.93 ± 0.14 0.93 ± 0.14

No-shape-label 5 0.40 0.93 ± 0.22 0.89 ± 0.26 0.91 ± 0.17 0.91 ± 0.16

No-shape-label 5 0.45 0.93 ± 0.22 0.89 ± 0.26 0.91 ± 0.17 0.91 ± 0.16
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T A B L E A2 Classification results using shape-only, shape-texture, and no-shape-label models with
Omega. Only the shape and gradient/texture features with the highest Gini importance were used to build the
classifiers - (Shape features: Fractal dimension one-dimensional Ruler, Spiculation index, Fractional concavity
and Fourier factor; Texture features: Contrast and Traditional acutance). In this table the highest accuracies
and area under the ROC curve (AUC) achieved by each classifier are shown in bold

Four shape and two texture features - (Omega)

Model Hmin 𝜻max Sensitivity Specificity Accuracy AUC
Shape-only 2 0.35 0.96 ± 0.14 0.97 ± 0.13 0.96 ± 0.10 0.96 ± 0.09

Shape-only 2 0.40 0.96 ± 0.14 0.97 ± 0.13 0.96 ± 0.10 0.96 ± 0.09

Shape-only 2 0.45 0.96 ± 0.14 0.97 ± 0.13 0.96 ± 0.10 0.96 ± 0.09

Shape-only 3 0.35 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08

Shape-only 3 0.40 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08

Shape-only 3 0.45 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08

Shape-only 4 0.35 0.96 ± 0.14 0.91 ± 0.20 0.93 ± 0.13 0.93 ± 0.11

Shape-only 4 0.40 0.96 ± 0.14 0.91 ± 0.20 0.93 ± 0.13 0.93 ± 0.11

Shape-only 4 0.45 0.96 ± 0.14 0.91 ± 0.20 0.93 ± 0.13 0.93 ± 0.11

Shape-only 5 0.35 0.89 ± 0.21 0.94 ± 0.16 0.92 ± 0.15 0.92 ± 0.16

Shape-only 5 0.40 0.89 ± 0.21 0.94 ± 0.16 0.92 ± 0.15 0.92 ± 0.16

Shape-only 5 0.45 0.89 ± 0.21 0.94 ± 0.16 0.92 ± 0.15 0.92 ± 0.16

Shape-texture 2 0.35 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05

Shape-texture 2 0.40 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05

Shape-texture 2 0.45 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05

Shape-texture 3 0.35 0.96 ± 0.14 0.98 ± 0.07 0.97 ± 0.07 0.97 ± 0.08

Shape-texture 3 0.40 0.96 ± 0.14 0.98 ± 0.07 0.97 ± 0.07 0.97 ± 0.08

Shape-texture 3 0.45 0.96 ± 0.14 0.98 ± 0.07 0.97 ± 0.07 0.97 ± 0.08

Shape-texture 4 0.35 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10

Shape-texture 4 0.40 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10

Shape-texture 4 0.45 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10

Shape-texture 5 0.35 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09

Shape-texture 5 0.40 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09

Shape-texture 5 0.45 0.94 ± 0.17 0.97 ± 0.09 0.95 ± 0.08 0.95 ± 0.09

No-shape-label 2 0.35 0.98 ± 0.10 0.90 ± 0.25 0.93 ± 0.16 0.94 ± 0.14

No-shape-label 2 0.40 0.98 ± 0.10 0.90 ± 0.25 0.93 ± 0.16 0.94 ± 0.14

No-shape-label 2 0.45 0.98 ± 0.10 0.90 ± 0.25 0.93 ± 0.16 0.94 ± 0.14

No-shape-label 3 0.35 0.96 ± 0.14 0.86 ± 0.20 0.90 ± 0.13 0.90 ± 0.12

No-shape-label 3 0.40 0.96 ± 0.14 0.86 ± 0.20 0.90 ± 0.13 0.90 ± 0.12

No-shape-label 3 0.45 0.96 ± 0.14 0.86 ± 0.20 0.90 ± 0.13 0.90 ± 0.12

No-shape-label 4 0.35 0.93 ± 0.22 0.90 ± 0.23 0.92 ± 0.15 0.92 ± 0.15

No-shape-label 4 0.40 0.93 ± 0.22 0.90 ± 0.23 0.92 ± 0.15 0.92 ± 0.15

No-shape-label 4 0.45 0.93 ± 0.22 0.90 ± 0.23 0.92 ± 0.15 0.92 ± 0.15

No-shape-label 5 0.35 0.96 ± 0.20 0.90 ± 0.21 0.93 ± 0.14 0.93 ± 0.14

No-shape-label 5 0.40 0.96 ± 0.20 0.90 ± 0.21 0.93 ± 0.14 0.93 ± 0.14

No-shape-label 5 0.45 0.96 ± 0.20 0.90 ± 0.21 0.93 ± 0.14 0.93 ± 0.14
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T A B L E A3 Classification results using shape-only, shape-texture, and no-shape-label models with
Omega. Only the shape and gradient/texture features with the highest Gini importance were used to build the
classifiers - (Shape features: Fractal dimension one-dimensional Ruler, Fractal dimension two-dimensional
Ruler, Spiculation index, Fractional concavity and Fourier factor; Texture features: Contrast, and Traditional
acutance). In this table the highest accuracies and area under the ROC curve (AUC) achieved by each
classifier are shown in bold

Five shape and two texture features - (Omega)

Model Hmin 𝜻max Sensitivity Specificity Accuracy AUC
Shape-only 2 0.35 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 2 0.40 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 2 0.45 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 3 0.35 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08
Shape-only 3 0.40 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08
Shape-only 3 0.45 0.96 ± 0.14 0.97 ± 0.09 0.96 ± 0.07 0.96 ± 0.08
Shape-only 4 0.35 0.93 ± 0.17 0.91 ± 0.20 0.92 ± 0.13 0.92 ± 0.12
Shape-only 4 0.40 0.93 ± 0.17 0.91 ± 0.20 0.92 ± 0.13 0.92 ± 0.12
Shape-only 4 0.45 0.93 ± 0.17 0.91 ± 0.20 0.92 ± 0.13 0.92 ± 0.12
Shape-only 5 0.35 0.87 ± 0.22 0.94 ± 0.16 0.91 ± 0.15 0.90 ± 0.16
Shape-only 5 0.40 0.87 ± 0.22 0.94 ± 0.16 0.91 ± 0.15 0.90 ± 0.16
Shape-only 5 0.45 0.87 ± 0.22 0.94 ± 0.16 0.91 ± 0.15 0.90 ± 0.16
Shape-texture 2 0.35 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 2 0.40 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 2 0.45 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 3 0.35 0.98 ± 0.10 0.98 ± 0.06 0.98 ± 0.06 0.98 ± 0.06
Shape-texture 3 0.40 0.98 ± 0.10 0.98 ± 0.06 0.98 ± 0.06 0.98 ± 0.06
Shape-texture 3 0.45 0.98 ± 0.10 0.98 ± 0.06 0.98 ± 0.06 0.98 ± 0.06
Shape-texture 4 0.35 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10

Shape-texture 4 0.40 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10
Shape-texture 4 0.45 0.98 ± 0.10 0.93 ± 0.19 0.95 ± 0.12 0.95 ± 0.10
Shape-texture 5 0.35 0.91 ± 0.19 0.97 ± 0.09 0.95 ± 0.10 0.94 ± 0.12
Shape-texture 5 0.40 0.91 ± 0.19 0.97 ± 0.09 0.95 ± 0.10 0.94 ± 0.12
Shape-texture 5 0.45 0.91 ± 0.19 0.97 ± 0.09 0.95 ± 0.10 0.94 ± 0.12
No-shape-label 2 0.35 0.96 ± 0.14 0.90 ± 0.25 0.92 ± 0.16 0.93 ± 0.15
No-shape-label 2 0.40 0.96 ± 0.14 0.90 ± 0.25 0.92 ± 0.16 0.93 ± 0.15
No-shape-label 2 0.45 0.96 ± 0.14 0.90 ± 0.25 0.92 ± 0.16 0.93 ± 0.15
No-shape-label 3 0.35 0.93 ± 0.17 0.86 ± 0.20 0.89 ± 0.13 0.90 ± 0.13
No-shape-label 3 0.40 0.93 ± 0.17 0.86 ± 0.20 0.89 ± 0.13 0.90 ± 0.13
No-shape-label 3 0.45 0.93 ± 0.17 0.86 ± 0.20 0.89 ± 0.13 0.90 ± 0.13
No-shape-label 4 0.35 0.89 ± 0.29 0.80 ± 0.19 0.90 ± 0.14 0.89 ± 0.16
No-shape-label 4 0.40 0.87 ± 0.30 0.89 ± 0.24 0.88 ± 0.17 0.88 ± 0.17
No-shape-label 4 0.45 0.87 ± 0.30 0.89 ± 0.24 0.88 ± 0.17 0.88 ± 0.17
No-shape-label 5 0.35 0.91 ± 0.28 0.90 ± 0.21 0.91 ± 0.16 0.91 ± 0.16
No-shape-label 5 0.40 0.93 ± 0.22 0.90 ± 0.21 0.92 ± 0.14 0.92 ± 0.14
No-shape-label 5 0.45 0.93 ± 0.22 0.90 ± 0.21 0.92 ± 0.14 0.92 ± 0.14
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T A B L E A4 Classification results using shape-only, shape-texture, and no-shape-label models with
Omega. All features available were used to build the classifiers (Shape features: Compactness, Spiculation
index, Fractional concavity, Fourier factor, Fractal dimension one-dimensional Ruler, Fractal dimension
two-dimensional Ruler, Fractal dimension one-dimensional Box and Fractal dimension two-dimensional Box;
Texture: Contrast, Accutance, Traditional acutance and Coeficient of variation). In this table the highest
accuracies and area under the ROC curve (AUC) achieved by each classifier are shown in bold

Eight shape and four texture features (Omega)

Model Hmin 𝜻max Sensitivity Specificity Accuracy AUC
Shape-only 2 0.35 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 2 0.40 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 2 0.45 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-only 3 0.35 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09
Shape-only 3 0.40 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09
Shape-only 3 0.45 0.93 ± 0.17 0.97 ± 0.09 0.96 ± 0.08 0.95 ± 0.09
Shape-only 4 0.35 0.91 ± 0.19 0.94 ± 0.16 0.93 ± 0.11 0.93 ± 0.11
Shape-only 4 0.40 0.91 ± 0.19 0.94 ± 0.16 0.93 ± 0.11 0.93 ± 0.11
Shape-only 4 0.45 0.91 ± 0.19 0.94 ± 0.16 0.93 ± 0.11 0.93 ± 0.11
Shape-only 5 0.35 0.85 ± 0.27 0.94 ± 0.16 0.90 ± 0.15 0.89 ± 0.17
Shape-only 5 0.40 0.83 ± 0.28 0.94 ± 0.16 0.89 ± 0.15 0.88 ± 0.17
Shape-only 5 0.45 0.83 ± 0.28 0.94 ± 0.16 0.89 ± 0.15 0.88 ± 0.17
Shape-texture 2 0.35 1 1 1 1
Shape-texture 2 0.40 1 1 1 1
Shape-texture 2 0.45 1 1 1 1
Shape-texture 3 0.35 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 3 0.40 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 3 0.45 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05
Shape-texture 4 0.35 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-texture 4 0.40 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-texture 4 0.45 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08
Shape-texture 5 0.35 0.91 ± 0.19 0.97 ± 0.09 0.95 ± 0.09 0.94 ± 0.10
Shape-texture 5 0.40 0.89 ± 0.20 0.97 ± 0.09 0.94 ± 0.09 0.93 ± 0.10
Shape-texture 5 0.45 0.89 ± 0.20 0.97 ± 0.09 0.94 ± 0.09 0.93 ± 0.10
No-shape-label 2 0.35 0.98 ± 0.10 0.90 ± 0.21 0.93 ± 0.14 0.94 ± 0.12
No-shape-label 2 0.40 0.98 ± 0.10 0.90 ± 0.21 0.93 ± 0.14 0.94 ± 0.12
No-shape-label 2 0.45 0.98 ± 0.10 0.90 ± 0.21 0.93 ± 0.14 0.94 ± 0.12
No-shape-label 3 0.35 0.93 ± 0.17 0.88 ± 0.21 0.90 ± 0.14 0.91 ± 0.13
No-shape-label 3 0.40 0.93 ± 0.17 0.90 ± 0.18 0.91 ± 0.13 0.92 ± 0.12
No-shape-label 3 0.45 0.93 ± 0.17 0.90 ± 0.18 0.91 ± 0.13 0.92 ± 0.12
No-shape-label 4 0.35 0.91 ± 0.24 0.89 ± 0.19 0.90 ± 0.15 0.90 ± 0.16
No-shape-label 4 0.40 0.91 ± 0.24 0.90 ± 0.19 0.91 ± 0.16 0.91 ± 0.16
No-shape-label 4 0.45 0.91 ± 0.24 0.90 ± 0.19 0.91 ± 0.16 0.91 ± 0.16
No-shape-label 5 0.35 0.91 ± 0.28 0.90 ± 0.19 0.91 ± 0.14 0.91 ± 0.16
No-shape-label 5 0.40 0.91 ± 0.28 0.92 ± 0.18 0.92 ± 0.14 0.92 ± 0.16
No-shape-label 5 0.45 0.91 ± 0.28 0.92 ± 0.18 0.92 ± 0.14 0.92 ± 0.16
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T A B L E A5 Classification results using shape-only, shape-texture, and no-shape-label models
with KBinsDiscretizer. Only the shape and gradient/texture features with the highest Gini importance
were used to build the classifiers - (Shape features: Fractal dimension one-dimensional Ruler, Spiculation
index and Fractional concavity; Texture features: Contrast and Traditional acutance). In this table the
highest accuracies and area under the ROC curve (AUC) achieved by each classifier are shown in bold

Three shape and two texture features (KBinsDiscretizer)

Model Bins Sensitivity Specificity Accuracy AUC

Shape-only 20 0.91 ± 0.19 0.91 ± 0.20 0.91 ± 0.15 0.91 ± 0.15

Shape-only 30 0.93 ± 0.17 0.91 ± 0.24 0.92 ± 0.15 0.92 ± 0.14

Shape-only 40 0.96 ± 0.14 0.93 ± 0.24 0.94 ± 0.15 0.94 ± 0.13

Shape-texture 20 0.93 ± 0.16 0.93 ± 0.22 0.93 ± 0.15 0.93 ± 0.14

Shape-texture 30 0.96 ± 0.14 0.94 ± 0.18 0.95 ± 0.12 0.95 ± 0.11

Shape-texture 40 0.98 ± 0.10 0.96 ± 0.20 0.96 ± 0.13 0.97 ± 0.11

No-shape-label 20 0.87 ± 0.26 0.90 ± 0.23 0.89 ± 0.17 0.89 ± 0.17

No-shape-label 30 0.89 ± 0.25 0.90 ± 0.21 0.90 ± 0.15 0.90 ± 0.15

No-shape-label 40 0.91 ± 0.24 0.93 ± 0.22 0.92 ± 0.16 0.92 ± 0.15

T A B L E A6 Classification results using shape-only, shape-texture, and no-shape-label models
with KBinsDiscretizer. Only the shape and gradient/texture features with the highest Gini importance
were used to build the classifiers - (Shape features: Fractal dimension one-dimensional Ruler, Spiculation
index, Fractional concavity and Fourier factor; Texture features: Contrast and Traditional acutance). In
this table the highest accuracies and area under the ROC curve (AUC) achieved by each classifier are
shown in bold

Four shape and two texture features (KBinsDiscretizer)

Model Bins Sensitivity Specificity Accuracy AUC

Shape-only 20 0.91 ± 0.19 0.93 ± 0.19 0.92 ± 0.15 0.92 ± 0.15

Shape-only 30 0.95 ± 0.14 0.94 ± 0.21 0.95 ± 0.13 0.95 ± 0.12

Shape-only 40 0.96 ± 0.14 0.94 ± 0.19 0.95 ± 0.12 0.95 ± 0.11

Shape-texture 20 0.89 ± 0.20 0.94 ± 0.21 0.92 ± 0.18 0.92 ± 0.18

Shape-texture 30 0.95 ± 0.14 0.97 ± 0.13 0.96 ± 0.10 0.96 ± 0.09

Shape-texture 40 0.98 ± 0.10 0.96 ± 0.20 0.96 ± 0.13 0.97 ± 0.11

No-shape-label 20 0.89 ± 0.25 0.89 ± 0.24 0.89 ± 0.19 0.89 ± 0.19

No-shape-label 30 0.91 ± 0.24 0.90 ± 0.21 0.90 ± 0.15 0.91 ± 0.15

No-shape-label 40 0.98 ± 0.10 0.93 ± 0.22 0.95 ± 0.13 0.96 ± 0.12
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T A B L E A7 Classification results using shape-only, shape-texture, and no-shape-label models
with KBinsDiscretizer. Only the shape and gradient/texture features with the highest Gini importance
were used to build the classifiers (Shape features: Fractal dimension one-dimensional Ruler, Fractal
dimension two-dimensional Ruler Spiculation index, Fractional concavity and Fourier factor; Texture
features: Contrast and Traditional acutance). In this table the highest accuracies and area under the ROC
curve (AUC) achieved by each classifier are shown in bold

Five shape and two texture features (KBinsDiscretizer)

Model Bins Sensitivity Specificity Accuracy AUC

Shape-only 20 0.89 ± 0.20 0.94 ± 0.16 0.92 ± 0.11 0.92 ± 0.12

Shape-only 30 0.96 ± 0.14 0.96 ± 0.15 0.96 ± 0.10 0.96 ± 0.10

Shape-only 40 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08

Shape-texture 20 0.91 ± 0.19 0.97 ± 0.09 0.94 ± 0.10 0.94 ± 0.12

Shape-texture 30 0.96 ± 0.14 0.98 ± 0.07 0.97 ± 0.07 0.97 ± 0.08

Shape-texture 40 0.98 ± 0.10 1 0.99 ± 0.04 0.99 ± 0.05

No-shape-label 20 0.89 ± 0.25 0.90 ± 0.16 0.90 ± 0.13 0.90 ± 0.14

No-shape-label 30 0.91 ± 0.24 0.95 ± 0.13 0.93 ± 0.12 0.93 ± 0.13

No-shape-label 40 0.98 ± 0.10 0.96 ± 0.12 0.97 ± 0.07 0.97 ± 0.07

T A B L E A8 Classification results using shape-only, shape-texture, and no-shape-label models
with KBinsDiscretizer. All features available were used to build the classifiers (Shape features:
Compactness, Spiculation index, Fractional concavity, Fourier factor, Fractal dimension one-dimensional
Ruler, Fractal dimension two-dimensional Ruler, Fractal dimension one-dimensional Box and Fractal
dimension two-dimensional Box; Texture: Contrast, Accutance, Traditional acutance, and Coefficient of
variation). In this table the highest accuracies and area under the ROC curve (AUC) achieved by each
classifier are shown in bold

Eight shape and four texture features (KBinsDiscretizer)

Model Bins Sensitivity Specificity Accuracy AUC

Shape-only 20 0.93 ± 0.17 0.94 ± 0.16 0.94 ± 0.11 0.94 ± 0.11

Shape-only 30 0.98 ± 0.10 0.96 ± 0.15 0.96 ± 0.10 0.97 ± 0.09

Shape-only 40 0.98 ± 0.10 0.97 ± 0.13 0.97 ± 0.09 0.97 ± 0.08

Shape-texture 20 0.98 ± 0.10 0.97 ± 0.09 0.97 ± 0.07 0.97 ± 0.07

Shape-texture 30 1 0.98 ± 0.07 0.99 ± 0.04 0.99 ± 0.03

Shape-texture 40 1 1 1 1

No-shape-label 20 0.93 ± 0.17 0.90 ± 0.16 0.92 ± 0.10 0.92 ± 0.10

No-shape-label 30 0.96 ± 0.14 0.95 ± 0.13 0.95 ± 0.09 0.95 ± 0.09

No-shape-label 40 1 1 1 1
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T A B L E A9 The best results achieved by each of the most used classifiers. Features: Compactness (CC),
Spiculation Index (SI), Fractional Concavity (FC), Fourier Factor (FF), Fractal dimension two-dimensional box
counting (2B), Fractal dimension one-dimensional box counting (1B), Fractal dimension two-dimensional ruler
(2R), Fractal dimension one-dimensional ruler (1R), Contrast (CO), Acutance (AC), Traditional acutance (TA)
and Coefficient of Variation (CV)

Best results using ANN, SVM, KNN, and RF

Classifier Feature combination Sensitivity Specificity Accuracy AUC

ANN CC, FC, 2B, 1B, 2R, AC 1 0.86 ± 0.20 0.92 ± 0.11 0.93 ± 0.10

SVM SI, FC, FF, CO, CV 0.87 ± 0.26 0.97 ± 0.11 0.92 ± 0.13 0.91 ± 0.14

KNN SI, 2R, CO, CV 0.83 ± 0.24 0.95 ± 0.13 0.90 ± 0.11 0.89 ± 0.12

RF 2R, 1R, CO, AC 0.85 ± 0.23 0.91 ± 0.14 0.89 ± 0.13 0.88 ± 0.14

Abbreviations: ANN, artificial neural networks; KNN, k-nearest neighborhood; RF, random forest; SVM support vector
machines.

T A B L E A10 The worst results achieved by each of the most used classifiers. Features: Compactness (CC),
Spiculation Index (SI), Fractional Concavity (FC), Fourier Factor (FF), Fractal dimension two-dimensional box
counting (2B), Fractal dimension one-dimensional box counting (1B), Fractal dimension two-dimensional ruler
(2R), Fractal dimension one-dimensional ruler (1R), Contrast (CO), Acutance (AC), Traditional acutance (TA)
and Coefficient of Variation (CV)

Worst results using ANN, SVM, KNN, and RF

Classifier Feature combination Sensitivity Specificity Accuracy AUC

ANN 1R, CO, AC 0 1 0.58 ± 0.06 0.5

SVM CO, AC, CV 0.30 ± 0.31 0.57 ± 0.39 0.45 ± 0.16 0.43 ± 0.14

KNN TA 0.22 ± 0.25 0.54 ± 0.29 0.40 ± 0.20 0.38 ± 0.20

RF CO 0.41 ± 0.35 0.55 ± 0.32 0.49 ± 0.19 0.48 ± 0.20

Abbreviations: ANN, artificial neural networks; KNN, k-nearest neighborhood; RF, random forest; SVM support vector
machines.


