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Genome sequence analysis of RNAs presents special challenges to computational biology, because conserved RNA
secondary structure plays a large part in RNA analysis. Algorithms well suited for RNA secondary structure and sequence
analysis have been borrowed from computational linguistics. These “stochastic context-free grammar” (SCFG) algorithms
have enabled the development of new RNA genefinding and RNA homology search software. The aim of this paper is to
provide an accessible introduction to the strengths and weaknesses of SCFG methods and to describe the state of the art in
one particular kind of application: SCFG-based RNA similarity searching. The INFERNAL and RSEARCH programs are capa-
ble of identifying distant RNA homologs in a database search by looking for both sequence and secondary structure

conservation.

A fundamental goal of genomics is to compile a
comprehensive parts list for every organism: a catalog of
all genes, regulatory elements, and other functional
sequences in the genome (ENCODE Project Consortium
2004). But words such as “all” and “comprehensive” are
terms of art in genomics. They mean as many as possible,
for a reasonable cost and in reasonable time, of the kinds
of functional sequences we know how to identify. For
some kinds of sequence elements, we are only beginning
to be able to take genome-wide approaches. Functional
noncoding RNA elements are a striking example.

There are many known functional RNAs, ranging from
catalysts in the ribosome and RNase P, to guide RNAs for
RNA editing, to structural RNAs in the spliceosome, and
more (Eddy 2001; Szymanski et al. 2003; Mattick and
Makunin 2005). A series of discoveries in the past decade
made it clear how incomplete our knowledge of func-
tional RNA still is, including the discoveries of several
large families of RNA genes, such as microRNAs
(miRNAs) involved in posttranscriptional regulation of
mRNAs (Bartel 2004), C/D small nucleolar RNAs
(snoRNAs) directing site-specific 2’-O-methylation of
target RNAs, and H/ACA snoRNAs directing site-spe-
cific pseudouridylation of target RNAs (Bachellerie et al.
2002; Brown et al. 2003). Even in Escherichia coli,
many small new RNA genes have been discovered, at
least some of which are posttranscriptional regulators
(Storz et al. 2005), and numerous cis-regulatory elements
called riboswitches have been identified in bacteria as
well (Tucker and Breaker 2005; Winkler 2005).

For molecular biologists to discover whole new fami-
lies of RNA elements in well-studied organisms is both
embarrassing and exciting. These discoveries serve to
remind us that unbiased discovery methods do not exist.
Consider the recent explosion of papers on miRNAs
(Bartel 2004). Up until 2001, tiny 21-25-nucleotide
miRNA genes were not within the parameters of what we
expected genes to look like, aside from two oddball
Caenorhabditis elegans lin-4 and let-7 genes. miRNAs
are often biochemically abundant, but they are only

noticed if tiny RNAs are not run off the end of the gel.
miRNAs are readily cloned and sequenced, but not when
RNA samples are enriched for capped poly(A)" mRNA to
eliminate the “uninteresting” background of poly(A)~
rRNAs and tRNAs. miRNA genes show mutant genetic
phenotypes, but if the mutation maps to an interval that
contains no protein-coding genes, it takes intestinal forti-
tude to persevere and find the gene (as Victor Ambros’s
lab did with lin-4; Lee et al. 1993) as opposed to giving
up. Specialized computational genefinding programs
readily predict miRNA genes, but standard genefinders
are looking for open reading frames and codon bias,
which noncoding RNA genes do not have.

We probably do not know the full extent to which
organisms use RNA regulatory motifs and noncoding
RNA genes. We need better systematic genome-wide
approaches for identifying functional RNA elements.
One approach is to map complete transcriptomes, includ-
ing both mRNA and noncoding RNA populations, by
cDNA sequencing and tiled whole-genome microarrays
(Okazaki et al. 2002; Carninci et al. 2005; Cheng et al.
2005). In mammalian genomes, these approaches have
resulted in claims of thousands of putative noncoding
RNA transcripts (Okazaki et al. 2002; Numata et al. 2003;
Furuno et al. 2006; Ravasi et al. 2006). However, it
remains unclear how many of these cDNA transcripts
represent functional noncoding RNAs, as opposed to
being artifacts of cryptic low-level promoters, pre-
mRNA contamination, missplicing, unannotated alterna-
tive splicing, unrecognized small protein-coding genes,
RNA degradation intermediates, and other sources of
apparently noncoding RNA one should expect to find in
a total cellular RNA population (Wang et al. 2004;
Hiittenhofer et al. 2005; Babak et al. 2005; Lee et al.
2006). Additional analysis is required to distinguish func-
tional noncoding RNAs from other transcripts.
Additionally, although transcriptome mapping can iden-
tify novel independent transcripts, it does not help in
identifying new cis-regulatory RNA elements contained
in known mRNA transcripts.
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Another approach is to systematically identify evolu-
tionarily conserved elements by comparative genome
sequence analysis. More than half of the conserved
sequence in mouse/human genome comparisons appears
to be in noncoding regions (Waterston et al. 2002). Large
numbers of comparative genome sequences are enabling
higher-resolution identification of short and/or weakly
conserved elements (Eddy 2005; Stone et al. 2005). An
advantage of comparative genome sequence analysis is
that it can identify both conserved noncoding RNA genes
and conserved cis-regulatory RNA elements. A disad-
vantage is that many other kinds of functional elements
show sequence conservation, not just functional RNAs.
Sequence conservation suggests that a genomic region is
functional, but some kind of additional analysis is
required to distinguish whether that function is at the
level of DNA, RNA, or protein.

A focus of my lab has been on the development of
computational analysis methods for identifying func-
tional RNAs. The heart of our work is a general class of
statistical models called “stochastic context-free gram-
mars” (SCFGs), which we use to create computational
methods that treat RNA as both primary sequence and
base-paired secondary structure (Durbin et al. 1998).
With different kinds of SCFGs, we have developed
strong RNA similarity search methods (Eddy and
Durbin 1994; Eddy 2002; Klein and Eddy 2003), rea-
sonable noncoding RNA genefinding methods (Rivas
and Eddy 2001; Rivas et al. 2001), and promising pro-
totypes of RNA structure prediction methods (Dowell
and Eddy 2004 and in prep.). Despite the off-putting jar-
gon “stochastic context-free grammar,” which we inher-
ited from the field of computational linguistics where
SCFGs were first developed (Lari and Young 1990),
SCFGs are in fact a natural extension from familiar pri-
mary sequence analysis methods to RNA secondary
structure methods.

RNA SEQUENCE ANALYSIS OUGHT TO
MODEL RNA SECONDARY STRUCTURE

Computational tools are an essential part of compre-
hensive genome annotation. We rely on similarity search
programs such as BLAST (Altschul et al. 1997) to identify
informative protein homologies and to deduce gene struc-
tures by mapping cDNA and EST (expressed sequence
tags) sequences onto genome sequence. Genefinding pro-
grams are used to identify novel genes, by looking for
general statistical properties of that class of feature, such
as the presence of an open reading frame and codon bias
in protein-coding genes. Motif identification programs try
to identify cis-regulatory elements, such as transcription-
factor-binding sites, by identifying short conserved
and/or overrepresented DNA sequences.

Most tools only look at linear primary sequence, scor-
ing one residue (or aligned pair or column of homologous
residues) at a time. In RNA analysis, linear sequence
models are inadequate. Many (although not all) func-
tional RNAs conserve a base-paired secondary structure.
We want RNA computational analysis tools to be able to
model both sequence and RNA secondary structure.

Why are we mostly satisfied with primary sequence
analysis tools like BLAST for proteins, but not for RNA?
Surely, any computational sequence analysis method
would be more powerful if it took structural constraints
into account. Both RNAs and proteins fold into three-
dimensional structures composed of stereotyped second-
ary structure elements, and these structures constrain
primary sequence evolution. That is, in general, if artifi-
cial sequences are produced with good primary sequence
similarity to a known protein or RNA, few will fold prop-
erly (Socolich et al. 2005).

In making a practical computational tool, it is not
sufficient to know that structure imposes constraints on
sequence. These constraints also have to have predictable
effects on sequence, and these effects have to be com-
putable with time-efficient algorithms. Additionally, one
uses the simplest tool that gets the job done. A simple
linear sequence model is preferred over a more
biologically realistic model if the simple model does just
as well in a fraction of the time.

In the case of proteins, for the task of similarity search-
ing, BLAST analysis has substantial power, routinely iden-
tifying significant homologies down to 20—-30% amino
acid sequence identity. Many proteins are conserved at
this level across billions of years of divergence.
Moreover, although protein structure clearly constrains
primary sequence, we do not really understand Zow (i.e.,
we cannot yet predict very well which sequences will fold
into active structures), nor do we know how to compute
efficiently with what we do know (most existing protein
folding or “threading” algorithms are very compute-
intensive). Higher-order tools for protein analysis do
exist (Godzik 2003), but they gain relatively little power
at a high computational cost.

In the case of RNA, BLAST analysis is often unsatisfac-
tory. Significant nucleic acid sequence alignments
are only detected down to about 60-70% nucleotide
sequence identity, largely as a consequence of the smaller
nucleotide alphabet. Although some RNAs are highly
conserved (notably ribosomal RNAs), many conserved
RNAs will diverge below a 60-70% identity threshold in
just tens or hundreds of millions of years. Thus, BLAST
comparisons of RNAs are often unable to see reliably
across important evolutionary divergences, such as across
different animal phyla. The contrast between protein and
RNA similarity searches is perhaps most striking when
one looks at genome annotations of conserved homologs
of the components of well-studied ribonucleoprotein
(RNP) complexes. Often, the protein components of
RNPs are annotated and the RNA components are not. If
BLAST is used to search the fly, nematode, or yeast genome
for homologs of human RNase P RNA, for example, no
significant hits are seen, whereas conserved RNase P pro-
tein components are readily detectable. The presence of
small nucleolar RNA homologs in Archaea was suspected
based on BLAST detection of homologs of snoRNA-
associated proteins, but detection of Archaeal snoRNAs
required a combination of experiment and more sophisti-
cated computational modeling (Omer et al. 2000).

Moreover, RNA structure is dominated by base pairs,
and base pairs induce highly predictable patterns of long-
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distance pairwise residue complementarity in RNA
primary sequence (Gutell et al. 2002). These patterns of
structure-induced complementarity are so obvious in
aligned RNA sequences that human analysts are often
capable of accurately deducing the conserved secondary
structure of an RNA sequence family solely from
observed pairwise correlations in sequence alignments
(comparative sequence analysis) (Pace et al. 1989).
Robin Gutell and coworkers, for example, correctly pre-
dicted 97-98% of the conserved base pairs in ribosomal
RNAs, essentially by eye (Gutell et al. 2002).

Thus, we need more powerful methods of RNA analy-
sis than primary sequence analysis, and the constraints
that conserved base-pairing imposes on RNA sequences
are understood and easily predictable—by humans, at
least. But are base-pairing constraints something we can
use in efficient computer programs?

SCORING BOTH SEQUENCE AND
RNA STRUCTURE

We want to be able to use a combination of sequence
and structure information for a variety of RNA analysis
problems, but for clarity, it will be useful to focus on a
specific problem. Consider the problem of identifying
homologs of a known RNA sequence family. Given a
multiple sequence alignment of a family of homologous
RNAs, and a consensus secondary structure for that fam-
ily, we want to build a position-specific scoring model and
use that model to search a sequence database and identify
more homologs. (The model is called the guery, and each
database sequence is considered one ata time as a farget.)

In a standard linear sequence profile, we assign 4 scores
(for A, C, G, U) at each aligned column. If residue a
occurs at some aligned position with probability p,, com-
pared to its average overall background frequency f,, we
calculate the score for that residue as:

pa

S =log,
(The base two on the logarithm is an arbitrary and
traditional choice, which makes scores in units of “bits.”)
For example, a completely conserved adenine (p, = 1.0)
gets a score of +2 (assuming uniform background expec-
tation of 25% for each base). A position that allows either
purine (p4 = pg = 0.5) scores +1 for either purine. All
standard sequence alignment methods (BLAST,
Smith—Waterman, profile hidden Markov models) use
essentially this same additive log-odds scoring method,
which is well-grounded in statistics (Durbin et al. 1998).
Now, imagine that we have a perfectly conserved
Watson—Crick base pair, but no primary sequence
conservation in either column individually. That is, one
column can be any of A, C, G, U with uniform proba-
bility, but when the residue there is an A, the residue in
the other column is a U, and so on, with the two aligned
columns maintaining a complementary Watson—Crick
base pair. A primary sequence method assigns a score of
0 to any base in both columns, regardless of whether the
two bases can base-pair or not. Substantial information
is lost.

To capture that information, we must be able to score
pairs of residues simultaneously. Log-odds scores are
readily applied to pairs of positions. We obtain the
score s, for residue pair a,b from the joint probability
Pap WE expect to see that pair occur and the expected
frequency that we would see a,b occur by chance inde-
pendently, the product £, f5:

P

_Lab
1.7,

A perfectly conserved Watson—Crick pair could thus
get a score of +2, when the individual positions are freely
varying. That is, one base pair potentially conveys as
much information as one completely conserved residue in
a sequence profile.

Importantly, the pairwise score s,, contains informa-
tion about both primary sequence and base-pairing con-
servation. If both positions were completely conserved
residues (say an A/U), s, would be +4, the same as if we
scored the two columns independently by sequence as +2,
+2. It is also important that the score s, is a general pair-
wise residue score, and it does not restrict the two
residues to canonical Watson—Crick pairs. The pairwise
residue score s, can deal with any pairwise correlation,
including GU and noncanonical RNA pairs.

The amount of extra information in pairwise residue
correlations induced by base-pairing is significant (Fig.
1). Generally speaking, in a typical structural RNA
sequence family, about 50-60% of residues are involved
in base pairs. Empirically, a scoring model that captures
base-pairing typically has about 50% more information
content as a sequence-only model (albeit with wide vari-
ation, depending on the RNA).

The point here is that formally grounded, statistical
scoring of conserved RNA base pairs is straightforward
and well understood. There is no reason for any proposed
RNA alignment method to use arbitrary scores. The real
difficulty is not in scoring residues, but in how to align a
model to a target sequence when insertions and deletions
are allowed. If we allow insertions and deletions, we do
not know which target residues to score as which con-
sensus base pairs and consensus singlet positions. We
need the scoring system, and we also need an optimiza-
tion algorithm that can look at all possible predicted
structures and alignments of the target sequence, and
find the best-scoring one(s). There are an astronomical
number of possible solutions for typical alignment prob-
lems, unfortunately. Brute force enumeration of all pos-
sible solutions is not feasible. Either we need to simplify
the problem, or we need a clever efficient algorithm.

If we restrict alignments to a limited number of possi-
ble gaps—by assuming that individual helices behave as
ungapped blocks, for instance—then it becomes possible
to exhaustively enumerate all possible alignments, as in
Gautheret and Lambert’s RNA profile search program
ERPIN (Gautheret and Lambert 2001). But restricting
where gaps are allowed is worrisome. It falls short of the
general alignment methods we are accustomed to in
primary sequence analysis.

This is where stochastic context-free grammars come in.
SCFGs give us efficient and general alignment algorithms

S ab = 10g2
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Figure 1. An example of how an RNA sequence/structure profile captures more information than a standard sequence profile. A mul-
tiple alignment is shown for eight homologous RNAs, all of which share the same consensus secondary structure (shown at right, for
the “human” sequence). Below the alignment is a bar graph of the average expected score (information content) per position, in bits,
for a sequence profile. In this contrived example, the only values are 2 bits (a 100% conserved residue), 1 bit (2 possible residues, 50%
each), or 0 bits (no conservation, 25% each for all 4 residues). Above the alignment is a sequence/structure profile, a binary tree
(instead of a linear array of columns) in which the six consensus base pairs are captured as six pairwise states (red bars) instead of as

12 single uncorrelated columns.

for base-paired RNA structure (Eddy and Durbin 1994,
Sakakibara et al. 1994). To understand the generality of
SCFGs, it is useful to make a brief digression into the
current state of the art in linear sequence analysis.

PROBABILISTIC MODELS OF
BIOLOGICAL SEQUENCES

Historically, sequence alignment algorithms were
developed independently of statistical scoring methods.
Different analysis applications typically used their own
special algorithm(s) and parameterization methods.
However, today, many primary sequence analysis meth-
ods, including similarity search, motif identification, and
genefinding applications, are viewed by many computa-
tional biologists in a single formal framework called
hidden Markov models (HMMs) (or more generally, sto-
chastic regular grammars, and related models) (Durbin
et al. 1998). Using HMM formalisms, every score is
based on a probabilistic model—not just residue scores,
but also any insertion/deletion penalties. HMMs allow
straightforward creation of more complex yet consistent
models that combine multiple information sources
(protein-coding genefinders, for example [Burge and
Karlin 1997], or position-specific profiles of conserved
protein domains [Krogh et al. 1994]).

A key point is that any HMM, no matter how compli-
cated, can be optimally aligned to a target sequence using
a general algorithm called the Viterbi algorithm. For the
special case of simple HMMs for sequence alignment, the
Viterbi algorithm becomes identical to the well-known
Smith/Waterman or Needleman/Wunsch sequence align-
ment algorithms (Needleman and Wunsch 1970; Smith
and Waterman 1981).

Thus, adopting an explicit HMM framework has the
advantage of splitting a sequence analysis problem into
three pieces, two of which are standardized. The first
piece is specifying the structure of the HMM. This is the
interesting bit, where one decides what biological infor-
mation to capture. The second piece is calculating the
probability parameters (scores) of an HMM, which is
standard probability theory. The third piece is how to
align HMMs to target sequences, which is done with the
standard Viterbi algorithm (and related HMM algo-
rithms). By focusing specialization effort on the design of
new models for different biological problems, rather than
on the shared computational and statistical foundation,
probabilistic models like HMMs give us powerful, bio-
logically intuitive, and general toolkits for building a
wide variety of sequence analysis methods of varying
complexity and realism (Eddy 2004).

An HMM, however, is still “just” a primary sequence
analysis method, scoring linear sequence one (or a few)
residue at a time. HMMs cannot efficiently capture the
long-distance pairwise correlations in RNA secondary
structure.

STOCHASTIC CONTEXT-FREE GRAMMARS

In computational linguistics, HMMs are stochastic reg-
ular grammars, at the lowest level of a hierarchy of formal
grammars originally defined by Noam Chomsky (1956)
for the purpose of understanding the structure of natural
languages. The next level in Chomsky’s hierarchy are the
so-called context-free grammars, or in probabilistic form
as opposed to pattern-matching form, stochastic context-
firee grammars (SCFGs). One thing SCFGs can do that
HMMs cannot is to efficiently model nested, long-
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Figure 2. Comparison of regular grammars (linear sequence models) and context-free grammars, which can capture nested pairwise
correlations. Productions of possible residues are shown as single rules generating a generic X (or €, for end productions that generate
a null symbol), rather than enumerating all possible 4 residues or 16 residue pairs. See text for more explanation.

distance pairwise correlations in strings of symbols—rare
in natural languages, as it happens, but exactly what we
need for RNA analysis. Shortly after HMMs were
introduced into computational biology as general models
of primary sequence analysis, SCFGs were brought into
the field as general models of RNA sequence and structure
(Eddy and Durbin 1994; Sakakibara et al. 1994).

Figure 2 briefly sketches the salient features of linear
sequence algorithms (using regular grammars) and RNA
sequence/structure algorithms (using context-free gram-
mars). Both are generative models, consisting of a set of
production rules that generate good sequences (those that
belong to a homologous family, or align to a homologous
query, or fit a gene model) with higher probability than
other sequences. Production rules consist of nonterminal
symbols (also called states) and terminal symbols (the
observed A, C, G, U residues). Production rules describe
the probabilistic expectation for what residues are
favored in different places and for what states follow
others. In essence, we use one state or production rule for
each different way that we might want to score a residue.
For example, a linear sequence profile of a multiple align-
ment might consist of a linear array of one state per con-
sensus alignment column. An RNA structure profile
might consist of one state per consensus base pair and
one state per consensus single-stranded position. A
genefinder might use two or more states to describe dif-
ferent residue compositions in exons versus introns.

Regular grammars are linear models. Production rules
simply generate a symbol and move to a new state, from
left to right. Still, regular grammar rules can capture a fair
amount of complexity. For instance, to deal with insertions
and deletions in a profile, we might move to the next con-
sensus state, or move to an insertion state (and possibly
stay there for a few self-transitions) to model a traditional
gap-open/gap-extend penalty, or skip one or more of the
next consensus states to model a deletion penalty.

Context-free grammars (CFGs) generate sequence
outside-in, rather than left to right. For RNA, the crucial

property of a CFG is that one production rule can gener-
ate a correlated pair of residues, then another correlated
pair inside that. In an SCFG, a base-pair production is
associated with a 4 x 4 probability table for all possible
residue pairs, including Watson—Crick as well as non-
canonical pairs. CFGs also allow one to fork off two or
more substructures, so they can describe complex RNA
secondary structures with multiple stem-loops.

In an actual application, the problem is not to generate
simulated sequences, but to align a model to a given
target sequence and assign it a score. The alignment prob-
lem is called parsing in linguistics. We aim to determine
the optimal (highest probability) series of production
rules that would have generated the target sequence. Just
as all HMMs have a common parsing algorithm (the
Viterbi algorithm), all SCFGs have a common parsing
algorithm, the CYK algorithm.

The CYK algorithm identifies the best-scoring manner
in which the model can generate the target sequence. The
resulting so-called parse tree is the RNA secondary
structure analog of a sequence alignment (Fig. 3),
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Figure 3. An SCFG parse tree (right) corresponding to a small
example RNA secondary structure (/eft), for the set of five types
of production rules in Fig. 2.
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describing an assignment of residues in the target
sequence to states of the query SCFG. A parse tree essen-
tially specifies how to factorize an RNA alignment into a
sum of additive scoring units, such as base pairs and sin-
glet residues, or in more complicated models, base stacks
and different lengths and types of loops.

Different SCFGs can be drawn for different problems
(structure prediction, similarity search, or genefinding),
depending on what statistical information one wants to
capture in the model. Like HMMs for sequence analysis,
SCFGs are a general toolkit for probabilistic modeling of
RNA sequence and secondary structure.

LIMITATIONS OF SCFGs

The most important limitation of SCFGs is their com-
putational complexity. Sequence analysis algorithms such
as BLAST typically take time and memory proportional to
L? for comparing two sequences of length L in residues,
because the set of all possible alignments must try every
residue in the query against every residue in the target.
SCFG-based RNA analysis algorithms require time and
memory proportional to at least L*, because every possible
pair of residues (L?) must be tried against up to L/2 base-
pairing states in the model (and in most RNA SCFGs, the
time required more typically scales as L*.) Thus, roughly
speaking, for a typical RNA of length 100—-1000 residues,
compared to linear sequence analysis, SCFG-based algo-
rithms take 100—1000-fold more memory and 10*-10°-
fold more time. Although this is high, it should be noted
that this kind of compute complexity is not foreign to bio-
logical sequence analysis. Well-known RNA secondary
structure prediction programs such as the Zuker MFOLD
program (Zuker 2000) have the same computational com-
plexity (not a coincidence, because the MFOLD folding
algorithm is essentially a special case of the SCFG CYK
algorithm). Nonetheless, computational complexity is a
very serious problem for SCFGs, especially in database-
searching applications. Although the standard CYK algo-
rithm is a useful general starting point for all SCFGs,
much of the work in my lab is devoted toward finding
more efficient algorithms.

A second limitation of SCFGs is that they can only
model nested pairwise correlations. RNA pseudoknots,
which involve nonnested interactions, cannot be
described by SCFG formalisms. More powerful grammar
classes (so-called “mildly context-sensitive grammars”)
can model RNA pseudoknots, but their computational
complexity is currently prohibitive for many applications
(Rivas and Eddy 1999). Likewise, base triples are usually
prohibited, because they also usually involve nonnested
pairing. These losses are unfortunate and would be espe-
cially serious if three-dimensional RNA structure predic-
tion were the goal. But for many objectives, including
homology search, motif identification, and genefinding,
this information loss is an acceptable tradeoff. RNA
pseudoknots typically account for something like 5-10%
of the base pairs in most RNA structures. There is still a
large gain in being able to capture most of the pairwise
correlation information in an RNA structure in an effi-
cient computational model.

SCFG-BASED RNA SIMILARITY
SEARCH PROGRAMS

My lab has been exploring the use of SCFGs for a
variety of tasks, including RNA structure prediction
(Dowell and Eddy 2004 and in prep.) and noncoding
RNA genefinding (Rivas and Eddy 2001). Rather than
survey all this work, I continue to focus here on RNA
similarity searching applications. So far, I have discussed
the formal benefits of SCFGs from a mathematical and
computational point of view. This leaves an important
question—How well do they actually work?

Again, our problem is, given either a single RNA
sequence and its secondary structure, or a RNA multiple
alignment and a known consensus structure, we want
to search a sequence database for similar sequences. A
position-specific SCFG is constructed which has a set of
4 scores for each single-stranded position, 16 scores for
each base pair, and appropriate extra states and state tran-
sitions that allow for insertions and deletions. Because
there are many ways to deal with insertions and deletions,
in terms of where to allow them and how to score them,
there are many ways one can convert an RNA structure
query into SCFG production rules. I adopted one particu-
lar general convention for building SCFGs for similarity
searching, called “covariance models” (CMs) (Eddy and
Durbin 1994; Eddy 2002). The conventions in CMs
follow, as closely as possible, conventions in linear
sequence analysis. Insertions and deletions are allowed
anywhere, and are assigned gap-open and gap-extend
penalties (affine gap penalties). Figure 4 shows an example
of a CM alignment and parse tree for a tRNA profile
aligned to yeast phenylalanine tRNA.

Essentially the same CM structure and alignment
algorithms are the basis of three software packages from
my lab. Two are for consensus profiles of multiple
alignments—coVE (Eddy and Durbin 1994) (now obso-
lete) and COVE’s replacement INFERNAL (Eddy 2002).
The third, Robbie Klein’s RSEARCH, is for searching with
single RNA sequence/structure queries (Klein and Eddy
2003). INFERNAL is the RNA secondary structure analog
of the HMMER profile HMM software for sequence
analysis (Eddy 1998), and RSEARCH is the analog of
Smith/Waterman single query sequence alignment
(Smith and Waterman 1981).

One of the first practical applications of CMs for simi-
larity search demonstrated both the power and the limita-
tions of SCFG-based approaches. Todd Lowe in my lab
developed a program for tRNA gene identification,
TRNASCAN-SE, as a wrapper script around a CM built from
a large alignment of known tRNAs (Lowe and Eddy
1997). At the time, the best tRNA gene identification pro-
grams had false-positive rates of about 0.2-0.3 per
megabase and sensitivities of about 95-99% for known
tRNAs (Fichant and Burks 1991; Pavesi et al. 1994).
These programs were quite adequate for small genomes,
such as E. coli or Saccharomyces cerevisiae, where they
identified only a small number of false positives (<10),
but we realized that for large genomes like the 3000 Mb
human genome, these false positive rates would become
a problem. We expected only about 500 or so true tRNA
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Figure 4. A real example of a CM parse tree (fop right) for yeast phenylalanine tRNA (fop left), for a CM constructed from a tRNA
alignment, similar to the CM used by the TRNASCAN-SE program. Below, the two-dimensional parse tree is represented by the program
as a four-line sequence alignment between the consensus of the query CM (second line) and the target yeast tRNA sequence (fourth
line), in a format akin to BLAST output format. The output format is augmented in two ways to indicate RNA secondary structure. First,
: symbols in the identity line (#hird line) indicate positive-scoring compensatory base pairs. (+ symbols indicate positive-scoring sin-
gle residues as in BLAST). Second, an extra line of annotation (first line) annotates the base pairs in the consensus secondary structure
with <> and () pairs (and other symbols annotating different single-stranded residues).

genes in the human genome, but the programs were
going to predict more than 1000 false positives. We
needed to increase the specificity of tRNA gene identifi-
cation by orders of magnitude if we were going to be able
to annotate the tRNA gene family in large genomes.
Lowe showed that a CM built automatically by the
COVE software from a large tRNA sequence alignment
database (Steinberg et al. 1993) achieved 99.8% sensitiv-
ity with less than 0.002 false positives per megabase
(Lowe and Eddy 1997). On the other hand, the search
speed was far too slow for whole-genome analysis. We
estimated needing 10 CPU (central processing unit)-years
for a human genome, on 1997 CPUs. Since the existing
programs were fast and sensitive, just not specific
enough, Lowe solved the speed problem by using a com-
bination of two existing programs as prefilters (Fichant
and Burks 1991; Pavesi et al. 1994), and only passing
their proposed tRNAs to cOve and the tRNA CM. The
combination of programs resulted in TRNASCAN-SE, which
showed 99.5% average sensitivity on tRNA genes, a false
positive rate below the detection limit of our simulations

(<1 per 15 gigabases), and we could process the human
genome in about 2 CPU-days (on 1997 CPUs).

Today, TRNASCAN-SE seems to still be the standard for
whole-genome annotation of tRNA genes, although a
newer heuristic program, ARAGORN, now has comparable
performance (Laslett and Canback 2004). TRNASCAN-SE
has, on occasion, even produced interesting new tRNA
biology. For example, the CM in TRNASCAN-SE detected
the noncanonical tRNA for the “22nd amino acid,”
pyrrolysine, in the Methanosarcina barkeri genome
(Srinivasan et al. 2002). The principal failings of the pro-
gram are largely unrelated to the similarity detection
power of its CM. It has trouble distinguishing tRNA
pseudogenes from true tRNA genes, and some genomes,
such as the rat, have thousands of tRNA pseudogenes
(Gibbs et al. 2004). It also has trouble correctly annotating
some tRNA isoacceptor types in cases where a tRNA
anticodon is posttranscriptionally modified.

TRNASCAN-SE was a nice demonstration of SCFGs.
However, tRNAs are an unusually ideal case, in several
ways:
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1. tRNAs are small (~75 nucleotides), so the O(Z*) mem-
ory requirement of CM alignment algorithms did not
have serious impact. tRNA-sized RNAs can be
aligned in about 1 MB RAM with the standard CYK
algorithm. However, for larger RNAs, memory
requirements could become prohibitive. We estimated
that RNase P alignments (~400 nucleotides) would
take 340 MB RAM, and LSU rRNA alignments
(~2900 nucleotides) would take 150 GB RAM.

2. We had a highly reliable, deep, manually curated
alignment of 1415 tRNAs to use to estimate the tRNA
CM’s parameters (Steinberg et al. 1993). Thus, we
could use observed frequencies of single-stranded
residues, base pairs, and indels as parameters, without
any need for more sophisticated parameterization
methods, such as the use of mixture Dirichlet priors in
profile HMM parameter estimation (Sjélander et al.
1996), or the determination of general RNA substitu-
tion score matrices akin to the use of BLOSUM matri-
ces in BLAST.

3. Structural variation in tRNAs is minimal. Almost all
tRNAs adopt a four-stemmed cloverleaf consensus
structure. Most structural RNAs—even ribosomal
RNA-—show much more substantial structural varia-
tion over evolutionary time, with stems or even whole
substructural domains coming and going. Global
alignment to a single consensus model works fine for
tRNA, but fails for most other RNAs.

4. The O(L*) time requirement of the CM search algo-
rithm is punitive, even for RNAs as small as tRNA.
The only reason we could make a practical tRNA
search program based on CM algorithms is that fast
rule-based search programs were already available,
which we could use as effective prescreens.

Several lines of research in my lab have focused on
addressing each of these four problems in order to make
RNA similarity searching practical.

IMPROVED MEMORY USAGE

The memory requirement of CMs was at first the most
serious barrier. This issue was essentially solved in 2002
(Eddy 2002). Using an approach analogous to approaches
already in common use in sequence alignment, I devel-
oped a “divide and conquer” (Hirschberg 1975) variant of
the CYK algorithm that reduces the cubic O(L?) dynamic
programming lattice for CMs to O(L*logL) while still
guaranteeing a mathematically optimal alignment (Eddy
2002). The price is a relatively negligible extra factor in
time (an extra 20% on average, as measured empirically).
tRNA alignments now cost 0.1 megabytes, RNase P costs
4 MB, and LSU rRNA costs 270 MB, all well within the
capabilities of standard current computers.

IMPROVED PARAMETERIZATION

Techniques for parameterizing probabilistic models
are well understood. The same methods that are used for
sequence alignment scores work for CMs, so once the

memory problem was no longer limiting, it just required
applying known methods to CMs.

For CMs built from single RNA query structures,
Robbie Klein developed the RIBOSUM substitution matri-
ces, 4 x 4 matrices for scoring single-residue alignments
and 16 x 16 for scoring base-pair alignments (Klein and
Eddy 2003). Klein implemented these in a program called
RSEARCH. RSEARCH uses CM formalisms and the INFERNAL
CM alignment engines, but parameterizes the models with
RIBOSUM substitution scores and arbitrary gap penalities,
much like standard sequence alignment algorithms.

For CMs built as profiles of a multiple RNA sequence
alignment of known consensus structure, Eric Nawrocki
estimated informative mixture Dirichlet priors from
known RNA structural alignments and implemented
these priors in INFERNAL (E.P. Nawrocki and S.R. Eddy,
unpubl.). INFERNAL profiles built from only a few aligned
sequences (five, for example) now seem to perform
reasonably. (Quantifying “reasonably” would require a
digression into how similarity search programs are
benchmarked, which I will forego here.)

LOCAL STRUCTURAL ALIGNMENT

In most structural RNAs, not all of the secondary struc-
ture is conserved over evolutionary time. A computa-
tional model that requires a global RNA structural
alignment is not ideal. We extended CMs to allow local
structure alignment (Eddy 2002; Klein and Eddy 2003).
The basic idea is in two parts. One is to allow a parse tree
to start at any consensus position, instead of always start-
ing at the root of the tree. The second is to allow the
model to end prematurely from any consensus state and
generate zero or more nonhomologous random residues
before stopping. These rules allow large deletions and
truncations of structural subdomains, where that deletion
is consistent with the rest of the conserved secondary
structure. For example, Figure 5 shows an INFERNAL
alignment of a gamma-proteobacterial RNase P RNA
profile to the Bacillus subtilis RNase P RNA, in which
four substructural domains have to be deleted or inserted
to see the homology.

The combination of the above three improvements has
made it possible to routinely see remote RNA homologies
that were previously below the radar of existing
sequence-based approaches. RNase P RNAs are an inter-
esting example. RNase P RNA is one of the best-studied
catalytic RNAs and is thought to be nearly universally
conserved in all domains of life. However, few metazoan
RNase Ps had been identified until recently (Marquez
et al. 2005; Piccinelli et al. 2005), even in sequenced
model organisms like Caenorhabditis elegans and
Drosophila melanogaster, because many RNase P RNA
homologs are not detected by BLAST searches. A single
RSEARCH search, using the human RNase P RNA structure
as a query, cleanly identifies single RNase P RNA
homologs in C. elegans, D. melanogaster, and several
other eukaryotic genomes, with significant E-values. The
predicted C. elegans RNase P is shown in Figure 6, along
with the structure of the human RNase P query and the
alignment output from RSEARCH.
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Figure 5. Example of output for a local structural alignment, when a CM built from five homologous gamma-proteobacterial RNase
P RNAs (including E. coli) successfully detects a homologous alignment in the RNase P RNA of B. subtilis RNase P with a signifi-
cant score of 49.4 bits. (Top) In the maximum likelihood alignment, three substructural domains of 102 (P8, P9, P10.1 helices), 37
(P12), and 64 (P15, P15.1, P18) nucleotides in the B. subtilis structure are treated as nonhomologous by the CM’s local alignment
rules, and an additional 40-nucleotide domain (P19) is handled as an insertion. The predicted P1-P11 stem regions are annotated
beneath the output lines, with italics indicating mispredictions of the P7 and P10 stems as the result of the large structural variations
in these regions. (Bottom) The accepted secondary structure of the B. subtilis RNase P is shown (Brown 1999), with red indicating
which residues were aligned to the query model. These aligned residues roughly correspond to the conserved core of the RNase P

three-dimensional structure.

SPEED IMPROVEMENTS

The remaining problem is the slow speed of CM
searches. For example, whereas a BLAST search of the C.
elegans genome with a mammalian RNase P RNA query
takes CPU-seconds, an INFERNAL or RSEARCH search takes
CPU-months. On the other hand, the BLAST search does
not find anything significant, whereas SCFG searches do.
Our first priority has been to get the right answer (however
slowly), but now it is time to worry about speed. Up until
now, we have been able to address the computational
speed problem by brute force, by parallelizing our search

programs and running them on a cluster (~300 Linux
processors in the St. Louis lab), but this is not a satisfac-
tory long-term solution. We and other investigators are
working on accelerated CM search algorithms. Zasha
Weinberg and Larry Ruzzo at the University of Washington
in Seattle have developed a clever “rigorous filter”
approach, which Diana Kolbe in my lab has incorporated
into the INFERNAL codebase (Weinberg and Ruzzo 2004,
2006). Eric Nawrocki and I have developed a comple-
mentary method, query-dependent banding, a banded
dynamic programming algorithm specific to CMs. We
think that the combination of these acceleration methods
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Figure 6. The RSEARCH program, with a human RNase P RNA query structure shown at top left (Brown 1999), detects one significant

alignment in the C. elegans genome (bottom) with an E-value of 1
same sequence was detected by Steve Marquez and Norman Pace

.656e-5. We believe that this is the C. elegans RNase P RNA. The

in 2005 (Marquez et al. 2005). Our tentative structure prediction,

with a few manual corrections from the RSEARCH alignment, is shown in the upper right. The structure shown for the P2/P? region is
uncertain (and different from that predicted by the RSEARCH alignment).

should soon give us about 10—100 times improvement in
speed in INFERNAL’s publicly distributed code. CM
approaches will still be much more compute-intensive
than BLAST, but they might start to become feasible on
single desktop CPUs.

THE Rram DATABASE

In collaboration with us, Sam Griffiths-Jones and
coworkers at the Wellcome Trust Sanger Institute have
developed a database called Rfam, which contains
curated multiple alignments and CMs for known RNA
sequence families (Griffiths-Jones et al. 2005). The cur-
rent Rfam 7.0 release contains 503 families. Rfam is an
RNA analog of the Pfam protein domain database, using
INFERNAL software where Pfam uses the HMMER profile
HMM software. Rfam makes it possible to automatically
detect and annotate homologs of known RNA structures
in genome sequences. At present, for speed reasons,
Rfam processing relies on BLAST prefilters, however, so
some of the added sensitivity that full CM searches could

provide is sacrificed. We hope to gain this back as CM
search speed increases.

CONCLUSION

Developing better computational sequence analysis
tools is like building better telescopes. With more and more
powerful tools, we are trying to peer into the genome and
discern the subtle signals left by functional elements that
have diverged by billions of years of evolution. As our
resolution power goes up, features come into sharper
focus. True breakthroughs are relatively rare, because
most features have been seen already, albeit at lower res-
olution and in less detail. Nonetheless, over time, steady
incremental advances in technology can amount to sur-
prising overall gains in power.

The advent of SCFGs for RNA sequence analysis was
a significant theoretical advance, making it possible to
harness RNA secondary structure constraints in almost
arbitrarily complex, fully automated computational meth-
ods while still using formally well-grounded probabilistic
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modeling. However, converting the promise of SCFG
formalisms to practice in RNA analysis has been a more
usual case of incremental progress, requiring practical
software implementations and a lot of work. We have
almost reached the point of routine practical applications
in RNA similarity search, with only computational time as
our remaining barrier. In other areas, such as SCFG-based
noncoding RNA genefinders, SCFG-based RNA structure
prediction by comparative analysis, and SCFG-based
RNA structural motif discovery in unaligned sequences,
even more serious barriers still remain, but practical appli-
cations are developing in those areas as well.

ACKNOWLEDGMENTS

I am grateful to Elena Rivas, Ariane Machado-Lima, and
Eric Nawrocki for comments on the manuscript. I thank the
National Institutes of Health National Human Genome
Research Institute, the Howard Hughes Medical Institute,
and Alvin Goldfarb for their financial support of my group.

REFERENCES

Altschul S.F., Madden T.L., Schaffer A.A., Zhang J., Zhang Z.,
Miller W., and Lipman D.J. 1997. Gapped BLAST and PSI-
BLAST: A new generation of protein database search pro-
grams. Nucleic Acids Res. 25: 3389.

Babak T., Blencowe B.J., and Hughes T.R. 2005. A systematic
search for new mammalian noncoding RNAs indicates little
conserved intergenic transcription. BMC Genomics 6: 104.

Bachellerie J.P., Cavaille J., and Hittenhofer A. 2002. The
expanding snoRNA world. Biochimie 84: 775.

Bartel D.P. 2004. MicroRNAs: Genomics, biogenesis, mecha-
nism, and function. Cell 116: 281.

Brown J.W. 1999. The ribonuclease P database. Nucleic Acids
Res. 27: 314.

Brown J.W., Echeverria M., and Qu L.H. 2003. Plant snoRNAs:
Functional evolution and new modes of gene expression.
Trends Plant Sci. 8: 42.

Burge C. and Karlin S. 1997. Prediction of complete gene struc-
tures in human genomic DNA. J. Mol. Biol. 268: 78.

Carninci P., Kasukawa T., Katayama S., Gough J., Frith
M.C., MaedaN., Oyama R., Ravasi T., Lenhard B., Wells C.,
et al. 2005. The transcriptional landscape of the mammalian
genome. Science 309: 1559.

Cheng J., Kapranov P., Drenkow J., Dike S., Brubaker S., Patel
S., Long J., Stern D., Tammana H., Helt G., et al. 2005.
Transcriptional maps of 10 human chromosomes at 5-
nucleotide resolution. Science 308: 1149.

Chomsky N. 1956. Three models for the description of lan-
guage. IRE Trans. Inf. Theory 2: 113.

Dowell R.D. and Eddy S.R. 2004. Evaluation of several light-
weight stochastic context-free grammars for RNA secondary
structure prediction. BMC Bioinformatics 5: 71.

Durbin R., Eddy S.R., Krogh A., and Mitchison G.J. 1998.
Biological sequence analysis: Probabilistic models of pro-
teins and nucleic acids. Cambridge University Press,
Cambridge, United Kingdom.

Eddy S.R. 1998. Profile hidden Markov models. Bioinformatics
14: 755.

. 2001. Non-coding RNA genes and the modern RNA
world. Nat. Rev. Genet. 2: 919.

——. 2002. A memory-efficient dynamic programming
algorithm for optimal alignment of a sequence to an RNA
secondary structure. BMC Bioinformatics 3: 18.

.2004. What is a hidden Markov model? Nat. Biotechnol.
22: 1315.

—. 2005. A model of the statistical power of comparative
genome sequence analysis. PLoS Biol. 3: ¢10.

Eddy S.R. and Durbin R. 1994. RNA sequence analysis using
covariance models. Nucleic Acids Res. 22: 2079.

ENCODE Project Consortium. 2004. The ENCODE
(ENCyclopedia of DNA Elements) project. Science 306: 636.

Fichant G.A. and Burks C. 1991. Identifying potential tRNA
genes in genomic DNA sequences. J. Mol. Biol. 220: 659.

Furuno M., Pang K.C., Ninomiya N., Fukuda S., Frith M.C.,
Bult C., Kai C., Kawai J., Carninci P., Hayashizaki Y., et al.
2006. Clusters of internally primed transcripts reveal novel
long noncoding RNAs. PLoS Genet. 2: e37.

Gautheret D. and Lambert A. 2001. Direct RNA motif definition
and identification from multiple sequence alignments using
secondary structure profiles. J. Mol. Biol. 313: 1003.

Gibbs R.A., Weinstock G.M., Metzker M.L., Muzny D.M.,
Sodergren E.J., Scherer S., Scott G., Steffen D., Worley K.C.,
Burch P.E., et al. 2004. Genome sequence of the Brown
Norway rat yields insights into mammalian evolution. Nature
428: 493.

Godzik A. 2003. Fold recognition methods. Methods Biochem.
Anal. 44: 525.

Griffiths-Jones S., Moxon S., Marshall M., Khanna A., Eddy
S.R., and Bateman A. 2005. Rfam: Annotating non-coding
RNAs in complete genomes. Nucleic Acids Res. 33: D121.

Gutell R.R., Lee J.C., and Cannone J.J. 2002. The accuracy of
ribosomal RNA comparative structure models. Curr. Opin.
Struct. Biol. 12: 301.

Hirschberg D.S. 1975. A linear space algorithm for computing
maximal common subsequences. Commun. ACM 18: 341.
Hittenhofer A., Schattner P., and Polacek N. 2005. Non-coding

RNAs: Hope or hype? Trends Genet. 21: 289.

Klein R.J. and Eddy S.R. 2003. RSEARCH: Finding homologs of
single structured RNA sequences. BMC Bioinformatics 4: 44.

Krogh A., Brown M., Mian 1.S., Sjélander K., and Haussler D.
1994. Hidden Markov models in computational biology:
Applications to protein modeling. J. Mol. Biol. 235: 1501.

Lari K. and Young S.J. 1990. The estimation of stochastic
context-free grammars using the inside-outside algorithm.
Comput. Speech Lang. 4: 35.

Laslett D. and Canback B. 2004. ARAGORN, a program to
detect tRNA genes and tmRNA genes in nucleotide
sequences. Nucleic Acids Res. 32: 11.

Lee L.J., Hughes T.R., and Frey B.J. 2006. How many new
genes are there? Science 311: 1709.

Lee R.C., Feinbaum R.L., and Ambros V. 1993. The C. elegans
heterochronic gene /in-4 encodes small RNAs with antisense
complementarity to /in-14. Cell 75: 843.

Lowe T.M. and Eddy S.R. 1997. tRNAscan-SE: A program for
improved detection of transfer RNA genes in genomic
sequence. Nucleic Acids Res. 25: 955.

Marquez S.M., Harris J.K., Kelley S.T., Brown J.W., Dawson
S.C., Roberts E.C., and Pace N.R. 2005. Structural implications
of novel diversity in eucaryal RNase p RNA. RNA 11: 739.

Mattick J.S. and Makunin 1.V. 2005. Small regulatory RNAs in
mammals. Hum. Mol. Genet. 14: R121.

Needleman S.B. and Wunsch C.D. 1970. A general method
applicable to the search for similarities in the amino acid
sequence of two proteins. J. Mol. Biol. 48: 443.

Numata K., Kanai A., Saito R., Kondo S., Adachi J., Wilming
L.G., Hume D.A., Hayashizaki Y., Tomita M., RIKEN GER
Group, and GSL Members. 2003. Identification of putative
noncoding RNAs among the RIKEN mouse full-length
c¢DNA collection. Genome Res. 13: 1301.

Okazaki Y., Furuno M., Kasukawa T., Adachi J., Bono H.,
Kondo S., Nikaido 1., Osato N., Saito R., Suzuki H., et al.
(FANTOM Consortium; RIKEN Genome Exploration
Research Group Phase I & II Team). 2002. Analysis of the
mouse transcriptome based on functional annotation of
60,770 full-length cDNAs. Nature 420: 563.

Omer A.D., Lowe T.M., Russell A.G., Ebhardt H., Eddy S.R.,
and Dennis P.P. 2000. Homologs of small nucleolar RNAs in
Archaea. Science 288: 517.

Pace N.R., Smith D.K., Olsen G.J., and James B.D. 1989.
Phylogenetic comparative analysis and the secondary struc-
ture of ribonuclease P RNA: A review. Gene 82: 65.



128 EDDY

Pavesi A., Conterlo F., Bolchi A., Dieci G., and Ottonello S. 1994.
Identification of new eukaryotic tRNA genes in genomic DNA
databases by a multistep weight matrix analysis of transcrip-
tional control regions. Nucleic Acids Res. 22: 1247.

Piccinelli P., Rosenblad M.A., and Samuelsson T. 2005.
Identification and analysis of ribonuclease P and MRP RNA
in a broad range of eukaryotes. Nucleic Acids Res. 33: 4485.

Ravasi T., Suzuki H., Pang K.C., Katayama S., Furuno M.,
Okunishi R., Fukuda S., Ru K., Frith M.C., Gongora M.M., et
al. 2006. Experimental validation of the regulated expression
of large numbers of non-coding RNAs from the mouse
genome. Genome Res. 16: 11.

Rivas E. and Eddy S.R. 1999. A dynamic programming algo-
rithm for RNA structure prediction including pseudoknots. J.
Mol. Biol. 285: 2053.

. 2001. Noncoding RNA gene detection using compara-
tive sequence analysis. BMC Bioinformatics 2: 8.

Rivas E., Klein R.J., Jones T.A., and Eddy S.R. 2001.
Computational identification of noncoding RNAs in E. coli
by comparative genomics. Curr. Biol. 11: 1369.

Sakakibara Y., Brown M., Hughey R., Mian L.S., Sj6lander K.,
Underwood R.C., and Haussler D. 1994. Stochastic context-
free grammars for tRNA modeling. Nucleic Acids Res. 22:
5112.

Sjolander K., Karplus K., Brown M., Hughey R., Krogh A.,
Mian 1.S., and Haussler D. 1996. Dirichlet mixtures: A
method for improving detection of weak but significant
protein sequence homology. Comput. Appl. Biosci. 12: 327.

Smith T.F. and Waterman M.S. 1981. Identification of common
molecular subsequences. J. Mol. Biol. 147: 195.

Socolich M., Lockless S.W., Russ W.P., Lee H., Gardner K.H.,
and Ranganathan R. 2005. Evolutionary information for
specifying a protein fold. Nature 437: 512.

Srinivasan G., James C.M., and Krzycki J.A. 2002. Pyrrolysine

encoded by UAG in Archaea: Charging of a UAG-decoding
specialized tRNA. Science 296: 1459.

Steinberg S., Misch A., and Sprinzl M. 1993. Compilation of
tRNA sequences and sequences of tRNA genes. Nucleic
Acids Res. 21: 3011.

Stone E.A., Cooper G.M., and Sidow A. 2005. Trade-offs in
detecting evolutionarily constrained sequence by compara-
tive genomics. Annu. Rev. Genomics Hum. Genet. 6: 143.

Storz G., Altuvia S., and Wassarman K.M. 2005. An abundance
of RNA regulators. Annu. Rev. Biochem. 74: 199.

Szymanski M., Barciszewska M.Z., Zywicki M., and
Barciszewski J. 2003. Noncoding RNA transcripts. J. Appl.
Genet. 44: 1.

Tucker B.J. and Breaker R.R. 2005. Riboswitches as versatile
gene control elements. Curr. Opin. Struct. Biol. 15: 342.

Wang J., Zhang J., Zheng H., Li J., Liu D., Li H., Samudrala R.,
Yu J., and Wong G.K. 2004. Mouse transcriptome: Neutral
evolution of “non-coding” complementary DNAs. Nature
431: 757.

Waterston R.H., Lindblad-Toh K., Birney E., Rogers J., Abril
J.F., Agarwal P., Agarwala R., Ainscough R., Alexandersson
M., An P., et al. (Mouse Genome Sequencing Consortium).
2002. Initial sequencing and comparative analysis of the
mouse genome. Nature 420: 520.

Weinberg Z. and Ruzzo W.L. 2004. Exploiting conserved struc-
ture for faster annotation of non-coding RNAs without loss of
accuracy. Bioinformatics (suppl. 1) 20: 1334.

. 2006. Sequence-based heuristics for faster annotation of
non-coding RNA families. Bioinformatics 22: 35.

Winkler W.C. 2005. Riboswitches and the role of noncoding
RNAs in bacterial metabolic control. Curr. Opin. Chem. Biol.
9: 594.

Zuker M. 2000. Calculating nucleic acid secondary structure.
Curr. Opin. Struct. Biol. 10: 303.




