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Abstract

Monitoring of in-person conversations has largely been done using acoustic sensors. In this paper, 

we propose a new method to detect moment-by-moment conversation episodes by analyzing 

breathing patterns captured by a mobile respiration sensor. Since breathing is affected by physical 

and cognitive activities, we develop a comprehensive method for cleaning, screening, and 

analyzing noisy respiration data captured in the field environment at individual breath cycle level. 

Using training data collected from a speech dynamics lab study with 12 participants, we show that 

our algorithm can identify each respiration cycle with 96.34% accuracy even in presence of 

walking. We present a Conditional Random Field, Context-Free Grammar (CRF-CFG) based 

conversation model, called rConverse, to classify respiration cycles into speech or non-speech, and 

subsequently infer conversation episodes. Our model achieves 82.7% accuracy for speech/non-

speech classification and it identifies conversation episodes with 95.9% accuracy on lab data using 

a leave-one-subject-out cross-validation. Finally, the system is validated against audio ground-

truth in a field study with 32 participants. rConverse identifies conversation episodes with 71.7% 
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accuracy on 254 hours of field data. For comparison, the accuracy from a high-quality audio-

recorder on the same data is 71.9%.
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1 INTRODUCTION

Social interaction is a fundamental aspect of human life [11]. The most direct form of social 

interaction occurs through conversations. A deep understanding of social and psychological 

contexts during conversation helps improve interpersonal communication skills through 

taking and giving turns at the right moment in social and professional settings, and improves 

overall mental well-being, work performance, and productivity [43, 58].

Scientists for decades have proposed diverse methodologies to analyze audio data recorded 

during conversation episodes to characterize conversation through various attributes such as 

speech content [35], speaker identification [9, 33], group size [64], speaker’s stress [34], and 

emotion [46]. However, audio based models depend on utterances and miss some interesting 

aspects of silent moments during conversation, especially unsuccessful attempts to take turns 

[50], cutting someone off, utterance planning [17], and the potential psycho-physiological 

stress of not being able to take a turn when a listener has an urge to speak [14, 27, 39].

In addition to generating sounds, conversation also causes specific changes in breathing 

patterns. Studies consistently show that speech production is achieved by a specific control 

of breathing, visible in the clear reduction of the inhalation duration relative to the 

exhalation duration, as compared with quiet breathing [38, 49, 60, 61, 63]. This gives speech 

breathing its well-known asymmetrical profile [21, 22, 50]. Thus, breathing kinematics can 

provide useful information about a person’s speaking status.

Use of respiration measurements to assess conversations can open up numerous avenues for 

investigating the role of conversation in health outcomes. For example, respiration 

measurements are now routinely collected in field studies for smoking cessation [51] and 

stress regulation [26]. Conversation plays an important role in these and other health 

outcomes (e.g., depression) as well as in everyday work performance. With a respiration-

based model for detecting conversations, conversation patterns can now be obtained from 

data already collected in such studies, and help investigate the role of conversation in 

determining health and performance outcomes.

Respiration-based conversation modeling can potentially enable an assessment of urge to 

speak, even in the absence of vocalized utterances. Listener’s urge to speak and unsuccessful 

attempts to take turns influence respiratory patterns and interrupt physiological rhythms [27, 

50], which may increase listener’s stress [14, 39]. Another benefit of respiration sensing is 

that respiration along with other physiological data (e.g., heart rate variability) can be used 

to infer psycho-physiological stress even when there are no utterances (e.g., before and after 
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speech) [23]. The first step to enable the above mentioned analyses is to demonstrate the 

feasibility of detecting conversations from respiration infield settings.

Respiration based conversation assessment has traditionally been underexplored. Emerging 

connected wearables [6, 15] and contactless sensing technologies [8, 59] are making it 

increasingly feasible to reliably capture respiration data continuously infield setting. For 

example, a commercially available accelerometer-based small device called Spire (which 

can be clipped to clothing) helps people capture breathing and visualize the signals on a 

smartphone [13]. Moreover, Hao et al., [20] shows that real-time breathing waveforms can 

be monitored by analyzing data from a gyroscope sensor embedded in a smartwatch.

mConverse [47] was one of the first works to demonstrate that respiration measurements 

captured from a respiration sensor can be used to infer naturally-occurring conversation 

events. But, this early model could only work on 30-second windows, that usually contain a 

mixture of speech and non-speech events in a spontaneous conversation. Hence, a decision 

on a 30-second window cannot reveal moment-by-moment turn-taking and turn-holding 

behaviors, let alone urge to speak analysis. Finally, the mConverse model was not validated 

with audio ground-truth collected infield environment.

There are several challenges that prevent achieving good accuracy for detecting human 

states and behaviors at the cycle-level of granularity in respiration data collected in the field 

environment. Respiration data has traditionally been collected in controlled settings such as 

sleep labs and speech labs. But, the natural environment introduces numerous challenges to 

the screening, cleaning, and processing of respiration data.

A first challenge is the accurate identification of breathing cycles, i.e., onsets of inspiration 

and expiration that demarcate change in phases of breathing and are critical to accurate 

computation of features along both time and amplitude dimensions. Cycle identification is 

challenging due to voluntary control of breathing, the baseline shift in the respiratory data, 

daily activities, short breaths, end expiratory pauses or breath holds, and others.

A second challenge is to get fine-grained labels for each cycle (speech and non-speech) 

which are necessary to train and validate a classifier. Most existing approaches for labeling 

data are inadequate for our study: a) requesting self-reports from the users is impractical, 

i.e., users cannot label each breath cycle when they are engaged in a natural conversation, b) 

having an observer annotate each cycle (as done in mConverse [47]) is not scalable to the 

field environment. Further, turn taking can occur swiftly, making it impossible to keep track 

of and synchronize the labels to the sensor data.

A third challenge is segmenting the respiration signal into periods of conversation, which 

consists of both speech and non-speech cycles. For example, silence during a conversation 

may be due to all parties engaged in thinking or may mark the start of a new conversation 

episode. A fourth challenge is to generalize the conversation model built using controlled lab 

data to naturally occurring conversations in uncontrolled field environments, which may 

have different distributions of speech/non-speech durations. The final challenge is to validate 

the model in the field against a widely-used gold standard.
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In this paper, we present a rigorous method for screening, cleaning respiration signals and 

improved algorithms for identifying respiration cycles captured infield setting. We propose a 

novel feature selection method to select cycle level features to improve lab to field 

generalizability. We apply a model from machine learning called the Conditional Random 

Field, Context-Free Grammar (CRF-CFG) model to infer conversation episodes at fine-

granularity, achieving 95.9% accuracy in the lab and 71.7% accuracy in the field settings 

(using audio data for labels). These are comparable with conversation detection from high-

quality audio recordings from the LENA device [4].

2 BACKGROUND AND RELATED WORKS

Conversation modeling, based on acoustic data captured with smartphone microphones [35] 

or with wearable microphones [24] has been a fertile area of research for decades. Advanced 

research has been done in audio sensing not only to distinguish conversation episodes from 

ambient sound or music [35], but also to model various characteristics of a conversation, 

including turn-taking behavior [30], group size estimation [64], and speaker identification 

[9, 33]. Furthermore, acoustic researchers have also addressed speakers’ emotions [46] and 

stress levels [34]; and developed socio-therapy applications [30] for children with autism.

In this paper, we explore the potential for detecting conversations from respiratory 

measurements that can be useful when respiration data is collected in context of health 

related research (e.g., smoking cessation, asthma) or self-monitoring (e.g., biofeedback). A 

model for detecting conversations from respiration can be applied to such data collected to 

infer conversation episodes which play an important role in stress management, smoking 

lapse, depression, etc. An advantage of respiration based models is that they are more 

specific to the speaker and less privacy sensitive [47].

Respiration-based conversation modeling is, however, underexplored, perhaps due to the 

lack of reliable respiration signals collected infield setting. The emergence of connected 

wearable and contactless smart technologies have made it feasible to capture respiration data 

reliably and comfortably in everyday life.

Two common methods for continuous respiration rate monitoring in clinical settings are 

impedance pneumography and capnography, which require the use of a nasal probe [5]. 

These methods are expensive and intrusive, and therefore not useful for daily use. In order to 

minimize the discomfort, researchers developed pressure-based bed sensors [42, 45] for 

long-term and continuous respiration monitoring while users are lying down.

Several methods have been developed to measure respiration continuously in indoor settings 

(e.g., home, office) while users are mobile and not conned to a bed or any furniture [8, 18]. 

For example, Adib et al., developed a radar based, contactless Vital-Radio [8] to track 

respiration rhythm while the user is 8m away from the sensor, co-located with multiple other 

subjects, regardless of whether she is sleeping, watching TV, or typing on her laptop. In 

order to make the contactless respiration measurement infrastructureless and cost-effective, 

researchers have developed several methods based on commodity sensors, such as camera 

[44] and WiFi [59]. The basic idea of such systems is to measure displacements of the chest 
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of human subjects during breathing. These methods can capture breathing depth, location, 

orientation, and respiration rate from a distance, making them viable for long-term 

respiration monitoring in indoor settings.

Wearable wireless sensors make the respiration signal continuously available in mobile 

settings. Commercial releases and research prototypes of wearable chestband [6, 15] and 

smart garments [1] have been developed to continuously measure respiration 24/7. They are 

either piezoelectric-based or inductance-based sensors to reliably capture respiration 

rhythms in natural settings. These straps are sometimes reported to be uncomfortable for the 

wearers.

Recently developed wearable devices enable respiration data to be captured more easily and 

comfortably in our daily lives. For example, commercially available accelerometer-based 

small devices (clipped with clothing) such as Spire or Prana [3] help users capture breathing 

information and visualize on a smartphone to aid in breathing regulation. The Philips Health 

Watch [2], an FDA1 approved commercial product, makes respiration rate accessible from a 

comfortable, easy-to-wear smartwatch. A popular consumer device, Apple Watch, 

introduced the Breathe app in WatchOS3, and the Fitbit Charge 2 added a guided breathing 

tool called ‘relax’. The increasing number of devices and associated smartphone apps that 

feature respiration data capture and usage demonstrates that respiration data is becoming 

more accessible and can be collected unobtrusively in user’s natural environment.

We note, however, that capturing accurate respiration waveforms today still requires wearing 

a belt around the chest that may not be comfortable for long-term wearing. But, despite such 

constraints, chest-worn respiration sensors are being used to collect over 10,000 person days 

(over 100,000 hours) of data from over 1,000 participants at five sites across the US2. We 

have used a similar chestband sensor to collect reliable respiration data continuously in wide 

variety of field settings. Although our model has been developed on waveforms collected 

from a respiration belt worn around the chest in natural settings, they can be suitably adapted 

for other emerging respiration sensing modalties.

The closest work to ours is mConverse [47] that captured respiratory measurements from a 

chestband sensor to infer conversation events. However, as described in Section 1, this early 

model could only operate on 30-second windows. For training and validation, each 30-

second window of respiration data was labeled based on a majority of speech or non-speech 

duration within the window as marked by a human observer. Consequently, this work either 

overestimated or underestimated speech and non-speech durations in a conversation.

Because respiratory cycle is a unit of speech breathing, cycle-based classification is the 

finest granularity for speech modeling from respiration data. Each respiration cycle 

dynamically varies in duration. Hence, cycle-based dynamic windowing is an appropriate 

approach for the respiration based speech modeling as presented in the current model. To 

generate labels, speech/non-speech cycles were carefully marked based on audio, video, and 

hospital grade respiratory inductive plethysmograph bands with synchronized channels in 

1US Food and Drug Administration. https://www.fda.gov/
2See https://md2k.org/studies for a list of these deployments.
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the lab setting and by using audio processing from LENA and confirmation from human 

raters in the field. Moreover, we present a CRF-CFG model which both classifies cycles into 

speech and non-speech, and further segments cycles into conversation episodes. This model 

is evaluated against gold-standard acoustic data collected in the natural environment.

On the modeling side, segmentation based models have been successfully used for a wide 

variety of activity recognition tasks [7, 41, 53, 54]. For example, Tang et al., [54] and Sung 

et al., [53] use conditional segmentation models for labeling and segmenting activities in 

video streams. Adams et al., [7] use a hierarchical segmentation model to label and segment 

smoking activities in respiration data. Most closely related to our approach, [41] use a CRF-

CFG model for ECG morphology extraction. In this work, we develop a grammar for a 

CRF-CFG model to detect conversation episodes, which has different characteristics than 

prior works on ECG morphology or smoking, demonstrating wider applicability for the 

CRF-CFG approach.

3 DATA COLLECTION AND LABELING

For development, training, and testing of our model, we collected data in both lab and field 

settings as described below. All studies were approved by the Institutional Review Board 

(IRB) at University of Memphis, and all participants provided written informed consent.

3.1 Data Collection

3.1.1 Lab Data.—High quality lab data is collected in two settings - (1) in a true 

laboratory setting and (2) in a natural environment. Data collected in the laboratory setting is 

designed to: validate the performance of the chest band sensor with a hospital grade system 

and to collect conversation data in sitting position from a heterogeneous group of 12 

participants (6 couples) recruited from a diverse population i.e., students, full-time 

professionals and part-time employees. Within the sample recruited in this study, there are 7 

women (mean age: 29.9 ± 7.4 years) and 5 men (mean age: 27.2 ± 2.9 years). The ‘Field’ 

training data is collected to enhance the generalizability of the model to detect conversation 

in presence of free-living activity since activity also affects respiration measurements.

In the lab, respiratory activity was measured with two types of Respiratory Inductance 

Plethysmography (RIP) bands. The first one is a hospital grade Inductotrace band which 

quantifies changes in the rib cage and abdomen cross-sectional areas by means of two elastic 

transducer belts placed at the level of the armpits and the navel (see Figure 1a). Inductotrace 

bands were connected to a calibration unit (Inductotrace system, Ambulatory Monitoring 

Inc.) via a transducer oscillator. A Data Translation DT381 analog-to-digital (A-D) converter 

operated by TF32 software was used to convert this signal into digital form on a computer.

The Inductotrace system, however, is not suitable for collecting data in the field as it is 

bulky, requires a fixed setup, and is not wireless. To monitor respiratory behavior in the 

field, we use the AutoSense chest sensor [15] that collects respiration and 3-axis 

accelerometer signals (Figure 2a). In this experiment, we are able to compare the 

performance of the field instruments to well calibrated hospital-grade respiratory monitoring 

equipment to provide ground truth data and improve the potential of field sensors for 

BARI et al. Page 6

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



modeling conversational behaviors in the field. Electrocardiogram (ECG) data were also 

collected for stress monitoring: These data will be analyzed and reported separately to 

investigate relationships between stress and conversation.

A headset microphone as shown in Figure 1b was placed in front of the participant’s mouth 

and processed through an analog amplifier. Participants also wore a throat microphone (see 

Figure 1c), which captures the vibration of the throat that occurs during speaking and helps 

to isolate very low level speech that might otherwise be overlaid by airborne cross talk 

(PentaxMedical model 7184–9700). In this setting, we obtained video with both face and 

side views of the conversational partners. Figure 1d shows the whole lab setup where 

conversation partners were seated face-to-face, as captured using the side view video 

camera.

Participants engaged in several tasks. For the ‘Quiet Breathing’ task, participants remained 

seated face to face in a comfortable chair silently for five minutes. Next, they were asked to 

read an interactive script that was created using previously recorded spontaneous 

conversation as a ‘Scripted Dialogue’ task. This lasted for approximately five minutes. The 

third phase of lab recording then utilized a task that involved recreating a map [10] which 

elicits goal-oriented conversation. During this phase, a (blocking) screen was placed 

between the participants. Both participants were given maps that had been used in prior 

literature, one presenting a pre-printed route with a starting and finishing point for the 

Instruction Giver and the other presenting a map with only a starting point for the Instruction 

Receiver. The Instruction Follower attempted to recreate the Instruction Giver’s pre-printed 

route based on verbal directions from the Instruction Giver. They then switched roles and 

were given another set of maps to generate another conversation to complete the task. A 

screen was placed between them for visual separatation. The Map task lasted for 

approximately twenty minutes. After that, participants took part in a five minute debriefing 

conversation; as the nature of the map task tended to induce some conflict between partners 

which they were motivated to resolve. We did not use this data for modeling due to difficulty 

in labeling in the presence of rapid turn taking. Finally, to obtain spontaneous natural 

dialogue, participants were encouraged to engage in continuous speech on their chosen topic 

for fifteen minutes.

To acquire high-quality data in the presence of natural activities, labeled quiet breathing and 

speech breathing data were collected in the presence of physical activity (i.e., walking) from 

5 healthy adults (mean age: 30.9 ± 1.3 years) in their natural environment.

For this study, participants wore an AutoSense chestband sensor underneath their clothes 

(Figure 2a). They also carried an android smartphone (Xperia X10) and an audio recorder 

[4] shown in Figures 2b and 2c. The LENA recorder is housed in a fixed position relative to 

the speaker’s mouth in a secure manner that minimized noise and maintained orientation of 

the microphone. We designed a phone interface with labels: Walk-Talk and Walk-NoTalk. 

Participants were asked to mark the timing of different activities i.e., walking and high level 

conversational state, i.e. talking or not, on the study phone interface by choosing the 

appropriate label.
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3.1.2 Field Study—A ‘Field’ study was designed to evaluate the performance of the 

conversation model in the natural environment with 38 participants (19 couples). 

Participants wore the sensors for a day during their awake hours. As raw recording of audio 

data in the natural environment poses significant privacy concerns, the data collection was 

limited to one day, while the number of participants was increased to broaden the diversity 

across individuals as well as situations.

Both partners wore the AutoSense respiration band underneath their clothes, carried a smart 

phone and a wearable audio recorder LENA (see Figure 2a, 2b and 2c). They were told to 

carry the recorder in a waist pouch which was placed around abdomen to reduce occlusion 

of microphone. The recorder was able to record 16 hours of continuous audio. This setup 

maximized the chance to capture high quality audio from field.

3.2 Data Labeling

3.2.1 Lab Data Labeling.—To get fine granularity labeling of the data collected in lab, 

we utilized the information from headset microphones, throat microphones and video to 

precisely mark the speech status of each cycle. We trained four coders to label the 

Inductotrace signal using the Action Analysis Coding and Training software (AACT; 

Delgado and Milenkovic, 2017), which gave the coders access to the time-synchronized 

audio and video recordings as well as the respiratory signals. This multi-modal analysis 

environment allowed both rib cage and abdominal signals as well as their sum to be 

inspected in synchrony with audio to certify when speech related exhalation was occurring, 

and often when non-speech exhalations and inhalations occurred as well. Furthermore, 

synchronized video recordings of the lab conversations also allowed coders to observe when 

respiratory signals were affected by motion. A snippet of AACT screen is shown in Figure 

3a. All displays and sound signals were considered when marking the onsets and offsets of 

inspiration, expiration, and utterances produced by each conversation partner. After a 

training period, coders labeled respiratory and audio data for the same four sessions. Inter-

rater reliability was assessed: all reliability kappas were significant and greater than 0.8. 

Coders were then assigned to label individual sessions for the rest of the dataset. This 

training was conducted by a speech scientist with 30+ years of experience examining 

conversational speech and 15+ years of experience examining respiratory kinematics during 

conversation.

Next, AutoSense chest band sensor data, which was worn simultaneously with the 

Inductotrace bands, was labeled. As these two systems are independent, participants were 

told to take three quick breaths before each task, afterwards, to sync the signals from both 

types of bands. First, we aligned the Inductotrace signal and the AutoSense respiration 

signal as shown in Figure 3b. The top panel in this figure shows the Inductotrace sum signal 

plotted with manually labeled start and end time for each cycle. The manual marking of the 

Inductotrace signal serves as a reference to label the AutoSense chest band signal.

3.2.2 Field Data Labeling.—In the field, we collected respiration and audio data from 

38 participants to evaluate the lab-to-field generalizability of the proposed rConverse model. 

On average, we collected 12 hours of audio data/day from each participant (sampling rate 16 
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KHz). Among the 38 participants, audio data was lost from 5 participants due to le 

corruption. Additionally, respiration data from 1 participant was of poor quality. We were 

able to analyze data from the remaining 32 participants.

Labeling field conversation data from the audio stream presented several challenges. First, 

since our dataset contains around half million respiration cycles and each cycle varies in 

fine-grained time-granularity (milliseconds to seconds), it is not practical to annotate each 

respiration cycle as containing speech or not. Therefore, we focus on marking start and end 

of conversations. To label the time-series for conversation, we used audio from LENA as an 

indicator of the presence of conversation and corrected false positives generated by LENA 

using the raw audio signal.

Second, there is a time drift (up to 1 minute) between the audio device and the respiration 

sensor and it is difficult to build in explicit synchronization actions as in the lab due to 

intermittent data loss from exercise of privacy control by the participants. Third, the large 

volume of audio data (over 200 hours) requires extensive time and effort for human raters to 

annotate, especially to mark each turn-taking in the conversation. Rapid turn-taking inside 

the conversation aggravates this challenge. Fourth, it is difficult to mark the start and end 

boundaries of a conversation episode when both conversing parties are silent (e.g., thinking) 

in a conversation.

Therefore, when annotating the beginnings and endings of conversations, we assumed that a 

pause of greater than one minute constituted the start of a new conversation. We labeled 254 

hours of audio data, on average 8 hours per participant.

4 DATA SCREENING AND PROCESSING TO LOCATE EACH BREATH 

CYCLE

The first stage in detecting conversation from respiratory waveforms is the automated 

detection of individual breath cycles. In this section, we describe a method to identify 

respiration cycles automatically in both the lab and field settings.

4.1 Data Pre-processing

Since respiration data from wireless on-body sensors exhibit significant baseline drift, the 

first step is to account for baseline drift. We normalize the signal within each five minute 

window by subtracting off the mean within the segment. All of our subsequent processing 

steps are applied on baseline corrected respiration data. Respiration signals are impacted by 

physical movement and positioning of the chestband. We mark the signal acceptable as long 

as the signal retains the characteristic morphology of a respiration signal. After removing 

poor quality signals, we apply the following cycle identification method on baseline 

removed data to locate each breath cycle.

4.2 Cycle Identification

The simplest procedure for detecting breaths is a threshold level detector [32, 47, 48, 62]. In 

this approach, a breath is detected when the waveform passes through a predetermined 
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threshold level in a given direction (i.e., up or down). The difficulty in this approach is 

finding an appropriate threshold that works across diverse participants and diverse contexts 

e.g., conversation, physical activity. Using too small of a threshold may create spurious 

peaks whereas too large of a threshold may lead to missed peaks. Moreover, body 

orientation may shift the signal baseline. To allow for changes in mean level, a moving 

baseline can be used, but even then sudden mean level changes will still result in missed 

breath detection.

Another popular technique to find respiration cycles is to use a change-point detection 

algorithm (i.e., track local maxima and minima) [12, 31, 37]. However, there can be a large 

number of change points even within a cycle, especially in the presence of activity (e.g., 

walking,). Hence, more sophisticated methods are needed to discard excess peaks.

A semi-automatic method was developed for peak and valley detection in free-breathing 

respiratory waveforms in [36]. Breath cycles are identified by locating the intercepts of a 

moving average with the inspiration and expiration branches of the signal and finally manual 

adjustments are applied. Because manual selection is not practical for a dataset containing a 

large number of respiration cycles, a computerized method is desirable. Another semi-

automatic method for detecting breathing cycles is proposed in [56], which also needs user 

intervention to make a decision either to: keep, adjust/move, delete or add points of interest.

None of the above mentioned methods are validated in natural environments to identify 

breath cycles in different situations e.g., in the presence of physical activity or conversation. 

We build upon the method proposed in [36]. We make several improvements to clean, 

screen, and detect breath cycles accurately in the natural environment. Our current method 

shows the feasibility of identifying breath cycles in both lab and field data, and to locate 

points of interest within a cycle, e.g., peak, start and end of a cycle.

Among 1,934 respiration cycles collected in lab in presence of conversation, the proposed 

cycle identification method can identify 94.4% cycles correctly. Among 1,500 cycles 

collected in natural environments, the proposed method identified 96.34% cycles correctly in 

the presence of physical activities (walking) and in different postures (e.g., sitting and 

standing). In the presence of conversation, this method correctly identifies 94.84% of cycles 

collected in the field environment. We present the details of this method in the following 

section.

4.2.1 Cycle Identification Algorithm.

Step 1: Signal Smoothing.: The first step is to smooth the raw signal using a moving 

average filter of M points. Let x be a respiration signal with M number of samples in the 

moving average, and y the smoothed signal. Larger values of M flatten the fluctuations in 

the signal.

Respiration signals exhibit fewer bumps or small oscillations while the wearer is sitting or 

standing (see Figure 4a) as compared to walking. During walking, the body shakes or hands 

move back and forth for each step, causing visible bumps in the respiration signal as 

depicted in Figure 4b. Larger values of M reduce the impact of bumps in walking cycles and 
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reduce the number of spurious cycles detected by the algorithm. If M is chosen to be too 

large, we risk over-smoothing and losing sharpness around points of interest (e.g., peaks and 

valleys).

We chose a value for M that balances the proportion of correctly identified cycles against the 

amplitude reduction due to smoothing. We iteratively tuned the value of M by applying the 

algorithm on field data. The most appropriate value of M was found to be 5 (250 ms) for 

sitting and standing signals, and 11 (515 ms) for walking. The equation for smoothing 

respiratory raw signals appears in Equation 1.

y(t) = 1
M ∑

j = −(M − 1)
2

(M − 1)
2

x(t + j) (1)

Step 2: Moving Average Centerline (MAC).: The next step is to compute a moving 

average centerline (MAC) curve using Equation 2, where y is the smoothed respiratory 

signal, L its duration, t is time, and y(t) t − T
t + T the average value of y during [t1, t2]. The MAC 

appears as a center line (shown as red dotted line in Figure 4c) that intercepts each breathing 

cycle twice, once in the inspiration phase and then in the expiration phase. T is the average 

cycle duration. The average cycle duration is 2.94 seconds.

MAC(t) = y(t) t − T
t + T ,  i f  T < t ≤ L − T (2)

After visual inspection we found that, in cases of large baseline drift infield data, T = 3 

seconds setting takes time to cope with the drift and results in missed cycles. We visually 

confirmed that T = 2 seconds is fast enough to keep track with the signal drift and intercepts 

more cycles in baseline shifted region. However, in the cases of regular/quiet breathing 

cycles, we found the T = 2 and T = 3 result in nearly the same performance and chose T = 2 

for the window width.

Step 3: Intercept Identification.: Next, we identify the points where the MAC curve 

intercepts the smoothed signal. The following equations are used to find the up intercepts 

where the MAC crosses the inspiration branch. Similarly, down intercepts are the points 

where the MAC curve crosses the expiration branch of the signal. Ideally, there should be 

exactly one up intercept and one down intercept for each breath cycle as shown in Figure 4c.

Iup = y(t − 1) ≤ MAC t ≤ y t

Idn =  y(t − 1) ≥ MAC(t) ≥ y t
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Step 4: Intercept Screening.: To avoid spurious intercepts, if there are more than two 

consecutive intercepts with the same label, only the last one is kept. The resultant sequence 

becomes: Idn(1) < Iup(1) < Idn(2) < Iup(2)… < Idn(m) < Iup(m) where m is the number of up 

(down) intercepts.

Step 5: Peak (Expiration onset) Detection.: The peak or onset of expiration of a breathing 

cycle is determined by finding the maximum between consecutive up and down intercepts 

using the formula,

peak(i) = max(y(Iup(i)):  y(Idn(i +  1))),

where i = 1, 2, …, p and p = number of peaks. In cases of a regular breathing signal (as 

Figure 4c), taking a maximum provides the location of exact peak position. However, 

breathing signals may not always be so rhythmic (e.g. during speaking), thus the maximum 

value may not represent the actual peak position. If there exists one or more notches in the 

peak region as seen in Figures 4d and 4e, two things can happen — either the peak needs to 

be adjusted to its actual position or another cycle must be considered. In the first case where 

a peak needs to be adjusted, the maximum point among all the notches is considered as a 

candidate peak. We consider the maximum value as a peak if 70% of inspiration of that 

cycle is done up to that point. The value 70% was tuned from the annotated data collected in 

the lab.

However, if the MAC line fails to intersect small cycles at the top as shown in Figure 4e, 

there is a possibility that there exists another cycle within the detected cycle, thus shifting 

the peak to left may not suffice. To address this issue, we look for a portion within a cycle 

that looks like a breathing cycle, i.e., it has ascending and descending trends resembling 

inspiration and expiration phases. Then, we split the cycle into two. We detect the points of 

interest in the two newly formed cycles. If both cycles’ inspiration and expiration durations 

are greater than 0.4 seconds [19, 52], and total cycle duration lies within the range of 0.8 

seconds to 12.5 seconds [23, 52], we consider both cycles as valid cycles. If any of the 

newly formed cycles fail to meet these criteria, we assume there is only one cycle and the 

position of the peak is adjusted if required.

Step 6: Cycle’s Start and End Point Detection (Valleys).: In general, a valley is the 

minimum point between a down intercept and the following up intercept for a regular semi-

sinusoidal breathing cycle. However, if a cycle has an expiratory pause, the minimum point 

may not represent the actual valley. Therefore, we consider the minimum as a candidate 

valley. From this candidate valley to the next up intercept, we compute all the slopes. By 

examining the slopes, we determine the point from where the signal monotonically rises 

towards the next peak and consider that as the actual valley (see Figure 4f).

However, the MAC curve may not intersect a cycle if the amplitude changes dramatically. 

For example, if the baseline shifts abruptly or there lies a small cycle adjacent to a larger 

one, a moving average can’t cope with the change so quickly and may not intersect, as 

depicted in Figure 4g. Similarly, as described above, we look for a portion within a cycle 
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that looks like a breathing cycle and detect the interesting points of the new cycle. If all the 

durations satisfy the standard durations [19, 23, 52], we consider both cycles as valid cycles.

Step 7: Peak-Valley Screening.: When searching for peaks and valleys, only those where 

time intervals of more than 0.4 seconds [52] exist, from a peak to the next valley or from a 

valley to the next peak, assuming that the minimum breathing period is around 0.8s. 

Otherwise, the peaks and valleys are considered to be spurious are removed as shown in 

Figure 4h. Second, if an inspiration or expiration amplitude is too small, 10% of the mean 

cycle amplitude, the associated cycle is not considered to be of good quality and is screened 

out.

4.3 Evaluation Metric

It is usual to compute the number of correctly identified peaks and valleys. They suffice 

when only the respiration rate is to be computed. However, they do not indicate the accuracy 

in features related to respiration rhythm (e.g., inhalation, exhalation) that are needed in 

inferences of speaking or smoking events from respiration signal. This is because even if the 

number of peaks and valleys are identified correctly, their respective locations in the signal 

waveform may introduce errors in the resultant features. For accurate inferences, the 

locations of peaks and valleys along both time and amplitude dimensions are important. 

Therefore, we use the following metrics.

1. Spurious cycle rate. A spurious cycle can affect the inspiration/expiration 

duration depending on where it is detected (see Figure 5a).

Spurious cycles Rate: Percentage of cycles that are spuriously detected with 

respect to the total number of actual cycles (N). N is the number of actual cycles 

annotated by human rater.

Error(%) = Number of spurious cycles/N *  100

2. Missed cycle rate. Missing of one or more cycles results in elongated cycle 

duration as shown in Figure 5b. Missed cycles Rate: Percentage of cycles that are 

missed with respect to total number of actual cycles (N).

Error(%) = Number of missed cycles/N *  100

3. Error in Inspiration duration due to Mislocated Peaks. Mislocated Peaks 

introduce error in the corresponding cycle’s inspiration and expiration duration 

although cycle duration may still be correct (see Figure 5c). Thus, a cycle’s 

inspiration duration may decrease (increase) and that cycle’s expiration duration 

may increase (decrease) depending on the peak position. This error can’t be 

captured using the respiration duration. This absolute duration error is measured 

in seconds and defined as Error in Inspiration duration (ΔI)

4. Error in Cycle duration due to Mislocated valleys. Incorrect positioning of a 

valley affects both the current and the next cycle duration as shown in Figure 5d 

which either underestimate or overestimate the durations of neighboring cycles. 

BARI et al. Page 13

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A mislocated valley decreases (or increases) the current cycle’s duration and 

increases (or decreases) the next cycle’s duration. This absolute duration error is 

measured in seconds and dened as Error in Cycle duration (ΔC).

4.4 Algorithm Evaluation and Performance Comparison

We implemented two other widely used methods to compare with the performance of our 

algorithm. The first one is a threshold based method [47] where the threshold is set by taking 

the average of the signal for every 30 second window. The second one is a change point 

detection method described in [31]. We also present the performance evaluation of the semi-

automatic method [36], which we call the ‘base method’.

4.4.1 Evaluation on Lab Data.—We compare the performance of the current method 

on lab data (1,938 marked respiration cycles) with the base method [36] as well as two other 

methods i.e., the threshold based and Maxima-Minima based methods. The results are 

presented in Table 1. In comparison with the base method, percentage of missed cycles 

reduces from 12.2% to 5.6 % though spurious cycles increase by 1% in the current method. 

The Maxima-Minima based method detects extra 6.6% as spurious cycles and misses 4% 

cycles. The original threshold based method [47] was developed using filtered respiration 

signals. This might be one reason for so many missed cycles i.e., 61.7% using our unfiltered 

respiration signals.

Paired t-tests show significant reduction in inspiration duration error (p-value < 0.001) with 

respect to the base method and the existing methods. However, in the case of cycle duration, 

error has significantly dropped with respect to the base method and the threshold based 

method (p-value < 0.001), but no significant difference is found with Maxima-Minima based 

method.

4.4.2 Evaluation on Data from a Natural Setting.—To measure the performance 

with field data, we applied all the methods on data that includes several postures and 

activities, such as sitting, standing, walking and conversation. Two human raters annotated 

these data independently and inter-rater agreement between them was > 0.81.

Evaluation on real-life data shows that among 1,500 respiration cycles (around 2 hours) that 

occurred in the presence of physical activity, overall, the current method accurately 

identified 96.34% cycles, missed 3.66% cycles and identified extra 1.9% cycles as spurious 

(Table 2). Overall performance of the Maxima-Minima method revealed that it could 

identify 99.64% cycles accurately and detect an extra 16.71% cycles as spurious. The base 

method identified 89.83% cycles correctly while it missed 10.16% cycles and no spurious 

cycles were found. Table 2 shows that most spurious cycles were found during walking for 

both the Maxima-Minima method and the current method. Spurious rate was higher during 

walking because of the presence of bumps in the respiration cycle as shown in Figure 4b.

Table 3 shows that the performance of cycle detection methods vary in presence of 

conversation. Maxima-Minima method located 99.22% true cycles with 35.95% spurious 

cycles. the base method detected 82.63% cycles correctly with a miss of 17.37%. However, 
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our current method identified 94.84% cycles correctly with a miss of 5.16% and 4.17% 

spurious cycles.

5 SPEECH DETECTION USING CONDITIONAL RANDOM FIELD-CONTEXT 

FREE GRAMMAR (CRF-CFG)

Given a sequence of respiration cycles, we now turn to the problem of labeling each cycle as 

corresponding to speech or not and segmenting these cycles into period of conversation. We 

achieve this using a Conditional Random Field Context Free Grammar (CRF-CFG) model. 

In this section, we begin by reviewing the CRF-CFG model [16] and then describe how we 

apply it to speech detection and conversation episode segmentation. The CRF-CFG model 

was first used in mHealth to extract heart-beat signal morphology (QRS complex) in ECG 

time-series data [41]. To the best of our knowledge, ours is the first work to apply CRF-CFG 

model for detecting conversation episodes on respiration time-series data. We begin by 

reviewing the conditional random field (CRF) model [28] and context free grammars (CFGs) 

and then describe how a CRF can be used to parameterize a distribution over parse trees. 

Finally, we present the CFG used for speech detection and conversation episode 

segmentation. In section 8, we present experiments validating this model on the lab and field 

data described in previous sections.

5.1 Conditional Random Fields

Conditional randomfields (CRFs) are a sub-class of probabilistic graphical models [25] that 

encode correlations between label variables. A CRF denes a conditional distribution over a 

set of L label variables Y = {Y1,…, YL} given a corresponding set of M feature variables X 

= {X1,…, XM}. We assume each feature variable Xi ∈ ℝD is a D dimensional real vector and 

label variable Yi take values in a set 𝒴i; however, there may be additional constraints on the 

set of possible joint configurations, denoted by Y. Throughout this work, we will use upper-

case to refer to random variables (e.g., Y) and lower case to refer to particular assignments 

to those variables (e.g., y).

A general log-linear CRF is defined through a linear energy function that takes the form of a 

weighted sum of K feature functions fk involving values of Y and X:

Eθ(y, x) = − ∑
k = 1

K
θk f k(y, x)

These feature functions are typically sparse in the sense that they involve few label and 

feature variables. The set of label and feature variables referenced in function fk is referred 

to as its scope Sk. If Sk contains at most two variables for all k, then the model is referred to 

as a pair-wise CRF, and it can be represented using a graph 𝒢 where an undirected edge 

connects each pair of variables that share a scope. If the graph 𝒢 is a tree, then the resulting 

CRF is referred to as a tree-structured CRF.
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The joint probability Pθ(y|x) of a setting of the label variables y = [y1,…, yL] conditioned on 

the observed feature variables x = [x1,…, xL] is given below. ZW(x) is referred to as the 

partition function and is the normalization term of the probability distribution.

pθ(y|x) =
exp( − Eθ(y, x

∑
y ∈ 𝒴L exp( − Eθ(y, x))

(3)

The parameters of a CRF can be estimated using either maximum likelihood estimation 

(MLE) or max-margin learning [57]. Importantly, the inference routines required to learn the 

parameters for a tree-structured CRF can be computed exactly in time linear in the number 

of variables in the model using the belief propagation algorithm [25]. Chain-structured CRFs 

are an important special case of tree-structured CRFs. The main weakness of chain-

structured models is that they cannot model long-range dependencies. In the next section we 

describe the context free grammar conditional randomfield model which remedies this 

problem.

5.2 Context Free Grammars

A context free grammar (CFG) is defined by a set of production rules ℛ that map from a set 

of non-terminal symbols ℐ to strings of terminal and non-terminal symbols. We call the set 

of terminal symbols 𝒱. Beginning with a special “start” symbol, these rules can be 

recursively applied until only terminal symbols remain. A sequence of such recursive 

applications produces a tree structure referred to as a parse tree. Given a grammar G, the set 

of strings of terminal symbols that can be produced in this way is referred to as the language 

defined by this G. Each production rule can be written as A → BC or A → a where capital 

letters denote non-terminal symbols and lower-case letters denote terminal symbols3. 

Formally, a grammar is defined as the tuple G = (ℐ, 𝒱, ℛ, α) where ℐ is the set of non-

terminal symbols, 𝒱 is the set of terminal symbols, ℛ is the set of production rules, and 

α ∈ ℐ is the “start” symbol. For example, consider a simple CFG with 

ℐ = γ, A, B , 𝒱 = a, b  and the production rules γ AB, A aA, A a, B bB, B b.4 

The recursive application of rules produces strings that contain any number of a’s followed 

by any number of b’s.

The problem of parsing a string is the problem of identifying the parse tree used to generate 

the string. In the simple example described above, every string in the language has a unique 

valid parse, but this is not the case in general. In cases where multiple trees are possible, a 

weight can associate each rule with a large weight indicating that a rule is more likely to be 

observed. Then parsing becomes the problem offinding the parse tree with the maximum 

weight. Finally, a weighted CFG can be interpreted as defining an unnormalized distribution 

over parse trees given the input string where the maximum weighted parse tree is the most 

3We assume a slightly relaxed form equivalent to Chomsky normal form.
4For brevity, we will write production rules using “|” to denote multiple possible productions from the same non-terminal symbol. 
Using this notation, we can write the example grammar as A → aA|A and B → bB |B.
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probable parse tree under this distribution. The conditional randomfield context free 

grammar (CRF-CFG) model presented in the next section further conditions weighted CFG 

on features of the input sequence.

5.3 The CRF-CFG Model

The conditional randomfield context free grammar (CRF-CFG) model is a CRF model that 

denes a distribution over parse trees given a grammar G = (ℐ, 𝒱, ℛ, γ) and a length L feature 

sequence x = [x1,…, xL].[16]. The set of all parse trees is represented by a set of binary 

random variables Y={yA, BC, i, j, l A BC ∈ℛ, 1 ≤ i ≤ j < l ≤ L  yA,BC,i,j,l takes the value 1 if 

and only if the parse contains the sub-tree rooted at A covering positions i through l, A’s left 

child is B covering positions i through j, and A’s right child is C covering positions j through 

l. Otherwise, yA,BC,i,j,l takes the value 0.

As in all CRFs, the CRF-CFG model is defined by a set of feature functions. In this case, 

there are a set of Kr scalar feature functions for every production rule 

r ∈ ℛ: f k
r(yr, i, j, l, i, j, l, x) for k = 1, ..., Kr .   f k

r(yr, i, j, l, i, j, l, x) takes the value 0 if yr,i,j,l = 0 

otherwise it may be any function of the input sequence x and the indices of the) production 

rule i, j, and l which leads to tremendousflexibility.

Finally, the probability of a parse tree y given an input sequence x is given by

Pθ(y, x) ∝ 𝟙y ∈ 𝒴 exp ∑
r ∈ ℛ

∑
i ≤ j < l

∑
k = 1

Kr

θk
r f k

r(yr, i, j, l, i, j, l,x) ,

where 𝟙 is the indicator function and 𝒴 is the set of all valid parse trees. While this model is 

substantially richer and more complex than the linear chain CRF, it has the important 

property that the maximum probability parse can still be computed in polynomial time given 

a setting of the weights θ. Specically, the maximum probability parse can be computed in 

𝒪(L3) time using the inside-outside dynamic programming algorithm originally developed 

for the weighted CFG model [29].

5.4 Context-Free Grammars for segmentation

In the speech detection task, we are interested in jointly labeling the sequence of respiration 

cycles as corresponding to speech or not and segmenting the cycles into contiguous, non-

overlapping segments of conversation and non-conversation activities. In this section, we use 

the CFG formalism to describe the set of all such segmentations and labellings of a sequence 

and then use the CRF-CFG model to induce a distribution over these segmentations given 

features available from the sensor data. The complete speech detection grammar is described 

below and an example parse is shown in Figure 6.
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γ α β
α Cβ C
β Oα O
O sO qO s q
C sC qC s q

(4)

In this case, the set of terminals is 𝒱 = s, q  which indicate whether a respiration cycle 

contains speaking (s) or not (q). The symbols C and O are structural symbols that indicate 

whether we are currently in a conversation or other state respectively. The α and β symbols 

represent the roots of conversation and non-conversation segments respectively.

There are a few noteworthy structural characteristics of this grammar. First, speaking 

symbols are allowed in both conversation and non-conversation segments to allow for short 

duration speaking events outside of conversations. Second, the sequence labels and 

segmentation interact only through the weights on the terminal producing rules such as O → 
sO, which means that the probability of a cycle label conditioned on the segment it is in, is 

independent of all other cycle labels in the segment. One possible extension to this model is 

to allow for Markov type interactions between labels within a segment, but we leave this for 

future work. It is further worth noting, that while the number of parameters in a CRF-CFG 

model scales linearly with the number of production rules in the grammar, the proposed 

grammar is relatively small and adds minimal model complexity relative to structure. 

Finally, because this model only provides a single layer of segmentation, marginal and MAP 

inference can be performed in 𝒪(L2).

We estimate the parameters of this model using loss-augmented max-margin learning [55, 

57]. For the augmentation loss, we use the Hamming loss between the true and predicted 

sequence labels.

6 FEATURE EXTRACTION AND SELECTION

In the previous section, it was assumed that input signal had been discretized into a sequence 

of respiration cycles, and that features had been extracted from each cycle to form a feature 

sequence x. In this section, we present the feature extraction methods used to derive features 

from each respiration cycle. Further, we present a series of feature selection strategies to 

minimize covariate shift between the lab andfield domains.

6.1 Feature Extraction and Normalization

We compute the duration, amplitude, area and several other features for the inspiration, 

expiration and respiration segments of each cycle as depicted in Figure 7

Duration features.—These features measure the duration for the segments of each cycle: 

inspiration, expiration and respiration phase. Inspiration duration (TI). The process of 

actively drawing air into the lungs is defined as inspiration. Inspiration time is measured as 

the time between the beginning and end of inspiration phase as indicated by an upward slope 

BARI et al. Page 18

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2018 November 08.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



from left to right in the respiration signal. Expiration duration (TE). Expiration is normally a 

passive process where air leaves the lungs. Expiration time is defined as the time from the 

end of inspiration to the beginning of inspiration of the next cycle. Cycle duration (TC). The 

time it takes to complete a breathing cycle, calculated as (TI + TE).

Magnitude features.—The amplitude of a cycle varies for different activities, postures 

and conversation shown in Figure 7.

Inspiration magnitude (MI). is defined as the vertical distance between the maximum and 

minimum of each inspiration phase. Expiration magnitude (ME) is defined as the vertical 

distance between the maximum and minimum of each expiration phase. Magnitude 
Difference is defined as the difference between inspiration magnitude and expiration 

magnitude. During quiet breathing, difference of magnitude is small compared to speech 

breathing cycles. Stretch is defined as the vertical distance between the maximum and 

minimum point within a cycle.

Area features.—The change in air volume during the inhalation and exhalation stages is 

reflected with these features. Inspiration area (AI ) is defined as the area under the curve 

between the beginning of inspiration to the end of inspiration phase for each cycle. 

Expiration area (AE) is defined as the area under the curve from the end of inspiration phase 

of a cycle to the start of inspiration phase of the next cycle. Mean inspiratoryflow rate (AI 

+AE)/TI or drive is defined as a ratio of cycle area to inspiration duration.

Flow rate features.—We measure the instantaneousflow rate for both inhaling and 

exhaling phases. Inspiratory Flow rate (VI ) is described as the time requires to inhale the 

amount of air during the inspiration phase. Expiratory Flow Rate (VE) is described as the 

time requires to exhale the amount of air during the exhalation phase.

Ratio features.—We use several ratio features. Ratio of inspiration to expiration duration, 

area andflow rate is presented as IET, IEA, IEV respectively. Fractional inspiratory time or 

effective timing ratio is defined as a ratio of TI to Ttot.

Power in Frequency Bands.—We calculate the spectral power in several frequency 

bands, 0.01–0.2 Hz, 0.2–0.4 Hz, 0.4–0.6 Hz, 0.6–0.8 Hz and 0.8–1 Hz. We further measure 

the LF to HF spectral power (LF/HF) ratio where spectral power is calculated in the low 

frequency band between 0.05 Hz and 0.15 Hz (LF) and high frequency band from 0.15 Hz to 

0.5 Hz (HF).

Breath-by-Breath Correlation.—From the lab data, we see that the correlation between 

two neighboring cycles is high when both of them are non-speaking cycles. Otherwise, 

correlation is mostly low when adjacent cycles are either speaking-speaking or speaking-

quiet. Thus we measure the cross-correlation of a cycle with its previous cycle and with the 

next cycle and using them as features.

Other Features.—We also calculate the energy, entropy and skewness of each cycles.
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Additionally, we apply a simple non-linear transformation to these features byfindingfive 

equal sized percentile bins for each feature and compute the distance from the center of each 

percentile bin to the input feature value. Finally, we z-normalize all feature values.

6.2 Feature Selection - Reducing Covariate Shift for Lab to Field Generalization

Covariate shift refers to a significant difference between the lab andfield feature 

distributions. This difference can result in decreased generalization performance of models 

trained on lab data to afield setting. While several methods exist to address covariate shift in 

the independent classification setting (e.g. [40]), these methods do not generalize to the 

structured prediction setting where objective functions do not decompose over individual 

variables. Instead, we propose a feature selection method to select cycle level features that 

balance class discrimination against domain discrimination. We did this by training the 

importance weighted logistic regression model and selected 20 features with the highest 

absolute weights in the resulting model.

Specifically, [40] used the following importance weighted logistic regression model:

argmin
x

∑
i = 1

N
δ(yi, xi)log(1 + exp( − yi(w

Txi + w0))) + λ w
2

(5)

where λ controls regularization strength and the importance weights δ(yi, xi) are given by a 

second, unweighted, logistic regression model trained to discriminate the lab andfield data. 

Let Q(xi) be the output from a logistic regression model trained to discriminate the lab data 

from thefield data. Then,

δi(yi, xi) = 1/(1 − Q(xi)) (6)

The regularization parameter was tuned over a logarithmic grid using leave-one-subject-out 

cross-validation on the training set.

We tested the effectiveness of this method by training a logistic regression model to 

discriminate the lab and field datasets and evaluating the accuracy of this model. Using the 

raw features, a logistic regression model can discriminate the lab andfield data with an 

accuracy of 95.6%. After applying feature selection, this accuracy goes down to 76.1% 

indicating that the covariate shift was substantially reduced. To demonstrate this visually, we 

took the feature weights learned by a logistic regression model trained to discriminate lab 

andfield data and plotted the distribution of weighted sums of feature vectors. Figure 8a 

shows this distribution for all features and Figure 8b shows this distribution for selected 

features.

6.3 Resampled Lab Data - Handling Prior Probability Shi

The way participants spent time within conversations in lab environment may not be 

representative of their behavior in thefield. Figure 9 shows the amount of time participants 
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spend in conversation activities in the lab andfield. A smaller fraction of time is spent in 

conversation in thefield (about 26%, which is about 3 hours out of 12 hours), while the 

training data collection protocol significantly over-represents the proportion of time spent in 

conversation (about 62%) in lab. To address the issue of prior probability shift, the non-

conversation data in lab is resampled to match with the conversation distribution infield. On 

average, 3 hours of conversation per day in the collected dataset may seem high. Several 

factors can help explain the large quantity of conversation infield: 1) cohabiting couples 

were recruited to maximize conversational interaction; 2) most of the couples conducted 

theirfield recordings on weekends when they were spending most of their time together; 3) 

these participants were aware that we are seeking conversational interaction so they may 

have produced even more than typical (few participants mentioned this in their exit 

interviews).

6.4 Conversation in Presence of Activity

Data collected in lab typically exercises a very limited number of contexts relative tofield 

environment. Physical activity is a common phenomenon which is absent in data collected in 

lab settings. This factor can lead to significant differences in between lab and field feature 

distributions [40], which can be accounted for by covariate shifts.

To see the effect of activity, the training- Field data collected in presence of physical activity 

(i.e., walking), is combined with the resampled lab data. The activity enriched data with 

resampled lab data adds significant variability and the covariate shift of the resultant dataset 

reduces to 63.3% (Figure 8c).

7 EMPIRICAL PROTOCOLS

In this section we describe the details of data preparation, training protocols, and evaluation 

metrics.

7.1 Tasks

There are two tasks of interest in the speech detection problem: Cycle level speech labeling 

(Task 1) and conversation episode detection (Task 2). Cycle level speech labeling entails 

labeling each individual respiration cycle as corresponding to speech or not. Conversation 

episode detection entails segmenting each sequence of respiration cycles into contiguous 

periods of conversation and non-conversation activities.

7.2 Data Preparation

As described above, labeled respiration data was collected from 12 subjects in the lab. We 

dropped the data from 1 participant due to poor data quality. In order to create a single, long 

session for each subject, we concatenated the data for each subject in a random order. The 

resulting dataset contains 11 separate respiration waveforms which we process using the 

feature extraction methods described above to create a training set with 11 unique labeled 

feature sequences.
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7.3 Baseline Models and Hyper-parameter Selection

We compare our the CRF-CFG model against two common baselines: Logistic Regression 

(LR) and a linear-chain conditional randomfield model (CRF-LC). All models are trained 

using max-margin learning and all models include 𝓁2 regularization on the parameters [57]. 

For all models, the regularization strength parameter,λ was tuned over a logarithmic grid, 

{10−1, 100,…, 105}, using leave-one-subject-out cross-validation on the training set. We 

selected the value of λ that maximized cycle level accuracy averaged across all folds and 

then trained a final model on all of the training data using this λ value.

7.4 Evaluation Metrics

Evaluation on Lab Data: We assessed the performance of all models on Task 1 (cycle 

labeling) using standard classification metrics such as accuracy, precision, recall, and F1 

score. To evaluate conversation episode detection performance (Task 2), we compare the 

predicted segmentation with the true segmentation by projecting each segmentation onto the 

input sequence and calculating the performance metrics on the resulting binary sequences.

Evaluation on Field Data: We compare the performance of our model for detecting 

conversation with that from audio data by the speech classifier of the LENA foundation. To 

account for the time drift of up to one minute between respiration time-series and the audio 

time-series, we segment both the time-series into one minute windows. If both ground truth 

annotated conversation and model detected conversation is present in any one minute 

window, we consider that window to be a true positive (TP). Similarly, we calculate true 

negatives (TN), false positives (FP), and false negatives (FN). Finally, we compute the 

accuracy, precision, recall, F1-score, and false positive rates (FPR).

8 RESULTS

8.1 Experiment 1: Comparison Against Baseline Models

To evaluate the CRF-CFG model against the classification baselines, we performed a leave-

one-subject-out evaluation using the lab data for which we have detailed respiration cycle 

level labels. The leave-one-subject-out prediction results for Task 1 (cycle labeling) for each 

model averaged across subjects is shown in Figure 10.

The accuracy, precision, recall and F1-score of CRF-CFG model for cycle labeling using lab 

data is 82.7%, 81.5%, 85.4%, and 0.83, respectively. Table 4 contains the confusion matrix 

of the cross-subject validation for CRF-CFG model. Whereas, accuracy of LR and CRF-LC 

models are 76.9% and 77.6% respectively. The fact that improvement of CRF-LC over LR 

indicates that there are reasonable correlations between adjacent respiration cycles; however, 

the CRF-CFG model improves further over CRF-LC, indicating that the Markov assumption 

may not hold in this context. That is, a cycle labeling benefits from knowing whether it is in 

a conversation and not just what its neighbors labels are. The accuracy, precision, recall, and 

F1-score of CRF-CFG model for Task 2 (episode detection) on the lab data is 95.9%, 

91.28%, 96.0%, and 0.94 respectively.
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8.2 Experiment 2: Conversation Detection in the Field

In order to test the various feature selection and data augmentation methods proposed in 

Section 6 we perform an ablation study, adding in each proposed augmentation one at a 

time. Then, using all augmentation methods, we compare the performance of the CRF-CFG 

model against both human annotated ground truth and LENA model on the task of 

conversation episode detection (Task 2).

8.2.1 Performance using lab data trained on all features.—The lab data model 

trained with all features can identify the conversation episodes infield with an accuracy of 

52.03% (Figure 11). The precision and recall is 43.02% and 97.02%, respectively.

8.2.2 Performance using lab data trained on selected features.—Deploying the 

lab model trained with selected features that reduce covariate shift from lab tofield data, the 

conversation episode detection accuracy infield is 60.8%, precision is 58.6% and recall is 

98.01% (Figure 11) while the false positive rate is 87.5%. Thus, feature selection method 

has improved the accuracy by 8.8% infield. The F1 score is 0.72 for this model.

However, in comparison with the performance with lab data, conversation episode detection 

accuracy drops from 95.9% (see Figure 10) to 58.6% on thefield data using this model. Still 

there is a large gap of performance between lab andfield.

8.2.3 Performance using resampled lab data trained on selected features.—
The resampled lab data model can identify the conversation episodes with an accuracy of 

62.5% infield. The precision and recall are 59.6% and 98.4%, respectively. The false positive 

rate has been reduced to 84.4%. Thus, data resampling has improved the accuracy by 2% 

and reduced the FPR by 3.1% infield.

8.2.4 Performance using resampled lab data and activity data trained on 
selected features.—The accuracy of the model using activity enriched data with 

resampled lab data is 71.7% and false positive rate is 30.03% in thefield. The precision, 

recall and F1 score is 69.8%, 68.9% and 0.69. Thus accuracy is increased by 8.5% and FPR 

is reduced by 54.4%.

8.2.5 Performance Comparison with Audio-based Conversation Model 
(LENA).—We compare the model performance with audio recorder (LENA) that also 

detects human speech and distinguishes human vocalization from electronic sounds (e.g., 

TV). Final model (Resampled lab with activity included) predictions and LENA predictions 

are compared with human annotated ground-truth onfield data for performance comparison.

Accuracy to detect conversation by CRF-CFG model and the audio based model is similar 

(around 72% as shown in Table 5). We note that the audio recording used in this study 

capture high quality audio and it was not subject to occlusion, unlike audio capture on 

smartphones that may subsample or be occluded due to being in pocket or purse.
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9 DISCUSSION, LIMITATIONS, AND FUTURE WORKS

In this work, we used a dedicated audio device to capture long-duration, high-quality audio 

throughout the day and compared our model output with the ground-truth derived from the 

audio data. Future work may additionally collect smartphone microphone data as well to 

have a three-way comparison to understand the extent of loss in accuracy due to energy-

efficient subsampling and audio occlusion due to the recorder being in a pocket or purse.

To the best of our knowledge, this is thefirst model to show feasibility of respiration cycle 

based conversation modeling withfield validation against audio ground truth with promising 

cross-subject test accuracy (71.7%). Accuracy can be further improved by reducing false 

positive rate infield deployment in several ways.

Previous research on respiration cycle based smoking detection [51] reduced false positive 

rates infield data by incorporating an additional sensor modality, i.e., tracking hand-to-

mouth gesture via a wrist-worn sensor. We could similarly combine respiration data with 

hand gesture data to capture gesturing during conversations.

Future studies can also incorporate personality information (e.g., extrovert vs introvert) and 

optimize the model parameters to further reduce false positive rate infield. Although in the 

lab training data each participant generally contributed equally, their speech rates could be 

be quite different in real life as a function of personality factors.

Since respiration based stress-relaxation devices are emerging in the market for daily use 

(e.g., Spire, Prana, Bellabeat Leaf Urban) [3], respiratory cycle based social interaction 

modeling should significantly improve and expand the capabilities of such devices. For 

example, our model enables analysis of stress due to speech planning and unsuccessful 

attempts to take turns within a conversation, which can provide richer contexts for 

interpretation. Such models can help assess whether an interaction is stressful or soothing, 

and help indicate how a user could improve their interaction behaviors (e.g., turn-taking, 

turn-yielding) to ease the conversation for herself and the conversation partner, to make 

interactions more enjoyable and productive for both. Combining stress and conversation 

patterns detected from the respiratory signals may also improve assessments and and 

treatments for depression in users via real-time intervention through mobile devices.

10 CONCLUSION

This paper presented a conversation episode identification model from respiration signals by 

classifying each breathing cycle into speech and non-speech. Audio captured in thefield is 

used to validate the models. For these classification, we describe several intuitive time 

domain features from respiration which are different from the traditional features. These 

features can be of interest in detection of other daily behaviors such as laughing, singing, 

eating, drinking, etc. Previously, detection of momentary behaviors from respiration data 

collected in thefield setting hadn’t been realized. This work can contribute a comprehensive 

approach to processing of respiration data in thefield setting and lead to momentary 

detection of various daily behaviors from respiration data and enhance the growing utility of 

respiration sensing.
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CCS Concepts: • Human-centered Computing → Ubiquitous and Mobile 
Computing; • Information Systems → Data Mining;
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Fig. 1. 
Lab equipment and lab setup.
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Fig. 2. 
(a) Chest band sensor. (b) Study phone (Sony Ericsson Xperia X10, Android Smart phone). 

(c) LENA audio recorder.
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Fig. 3. 
(a) A snippet of AACT screen which was used to label respiration data from inductotrace 

band. The screen contains five different time synchronized signals. The video is also 

synchronized. From the top, the signals are from — headset microphone, contact 

microphone, ribcage inductotrace band, abdomen inductotrace band and summed ribcage 

and abdomen signal. All the signals were utilized to label each respiration cycle as well as 

the duration of vocalization occurring within each cycle. (b) The top panel shows the ribcage 

inductotrace signal with the annotated labels, cycle start and end position, peak position etc. 

The vocalization location is indicated by the red color in the signal and duration of 

vocalization is written on top of it within the speech cycles. The bottom signal is the 

AutoSense chest band respiration signal, which is synchronized with the inductotrace signal. 

The ground truth annotation of the inductotrace signal serves as a reference to label 

AutoSense signal.
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Fig. 4. 
(a) Raw and smoothed signal during sitting. (b) Raw and smoothed signal during walking. 

(c) The moving average curve (MAC) closely follows the trend in the respiratory signal. 

Peaks and valleys are respectively determined by the maximum and minimum between pairs 

of alternating up intercepts and down intercepts. (d) There is a breath hold near the peak 

region which results in a wrong peak position. The peak is automatically shifted towards the 

left to a point where majority of inspiration has completed. (e) A new cycle is found above 

MAC as it satisfies all properties of a breathing cycle. (f) Taking a minimum results in a 

wrong valley due to the presence of an end expiratory pause. The valley is automatically 

shifted towards the right to a point where signal starts rising monotonically. (g) A new cycle 

is detected below MAC as it satisfies all properties of a breathing cycle. (h) Spurious valley-

peak pairs are automatically removed if they are too close. (i) Final peaks and valleys 

identified by the algorithm.
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Fig. 5. 
Example of (a) Spurious cycle in the expiration region resulting in splitting of a true cycle 

into two. (b) A missing cycle resulting in one long duration cycle. (c) Mislocated peaks, (d) 

Mislocated valleys.
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Fig. 6. 
An example parse (left) using the grammar described in equation 4. Also shown is the 

mapping from the parse to a labeled segmentation (right) where q and s stand for quiet and 

speaking respectively.
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Fig. 7. 
Features of interest in a theoretical quiet and speech cycle. TI =Inspiration duration, TE= 

Expiration duration, TC= Respiration Cycle duration, MI = Inspiration magnitude, ME= 

Expiration magnitude, AI = Inspiration area, AE= Expiration area.
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Fig. 8. 
(a) Covariate shift between lab and field feature distributions is 95.6 ± 0.1% with all 

features. (b) After applying feature selection method, covariate shift is reduced to 76.1 

± 0.4%. (c) Adding activity data with the resampled lab data has further reduced the 

covariate shiftto 63.4 ± 0.02%.
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Fig. 9. 
Proportion of time spent on conversation and non-conversation tasks in lab and field 

respectively.
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Fig. 10. 
Cycle labeling performance of different models on training data. LR: Logistic Regression, 

LC-CRF: Linear Chain CRF, CRF-CFG: CRF with Context Free Grammar.
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Fig. 11. 
Model performance comparison to detect conversation episodes on field data. First bar 

indicates the performance of model trained on lab data with all features. Second bar 

indicates the performance of model trained on lab data with selected features after covariate 

shift reduction. Third bar indicates the performance of model trained on resampled lab data 

with selected features. Fourth bar indicates the performance of model trained on activity 

enriched resampled lab data with selected features. The fourth model shows beer 

performance (higher accuracy, lower false positive rate) over other models to detect 

conversation episodes on field data.
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Table 1.

Performance comparison of the current method with the state-of-the-art cycle identification methods with lab 

data (with 1,938 respiration cycles). Paired t-test shows significant reduction in inspiration duration error with 

respect to the existing methods and the base method (p-value < 0.001). The cycle duration error is significantly 

higher in the Threshold method, compared with other methods.

Methods Spurious cycles Missed cycles Error in Inspiration duration (second) Error in Cycle duration (second)

Threshold based 1.5% 61.7% 0.81 ± 0.02 6.59 ± 0.04

Maxima-Minima 6.6% 4.0% 0.42 ± 0.01 0.45 ± 0.41

Base Method 2.1% 12.2% 0.44 ± 0.02 0.68 ± 0.06

Current Method 3.1% 5.6% 0.29 ± 0.01 0.43 ± 0.04
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Table 3.

Performance evaluation of breathing cycle identification methods in presence of conversation collected in 

field.

Methods
Conversation (%) Non-conversation (%)

True cycles Missed cycles Spurious cycles True cycles Missed cycles Spurious cycles

Threshold based 72.36 27.64 1.42 72.03 27.97 0.00

Maxima-minima 99.22 0.78 35.95 99.89 0.11 5.46

Base method 82.63 17.37 0.00 94.02 5.98 0.00

Current method 94.84 5.16 4.17 97.21 2.79 0.58

Proc ACM Interact Mob Wearable Ubiquitous Technol. Author manuscript; available in PMC 2018 November 08.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

BARI et al. Page 44

Table 4.

Confusion Matrix for cycle labeling on training lab data with CRF-CFG model using leave-one-subject-out 

validation; Cycle labeling Accuracy=82.7%, Precision=81.5%, Recall=85.4%, F1=0.83, and False Positive 

Rate=20.1%.

Classified by Model

TotalSpeech non-speech

Actual

Speech 833 (85.4%) 142 (14.6%) 975

Non-speech 189 (20.1%) 753 (79.9%) 942

Total 1022 895 1917
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Table 5.

Performance comparison between CRF-CFG model and LENA model that includes state-of-the-art algorithm 

to detect human speech on audio data.

Models Accuracy (%) Precision(%) Recall(%) F1-score FPR(%)

CRG-CFG model 71.7 69.8 68.9 0.69 30.0

LENA model 71.9 73.4 66.5 0.69 26.6
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