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Abstract—Most commonly used and researched data mining
approaches use neural and statistical methods to extract infor-
mation for large data sources. This paper proposes a framework
for a novel approach in data mining using Probabilistic Con-
text Free Grammar (PCFG). The framework is proposed for
two distributed data structures; dependent and independent.
Escherichia Coli promoter DNA sequences dataset are chosen
as a case study in this paper.

I. INTRODUCTION

Data Mining is defined as searching large volumes of

data for significant information [10]. The big data growth

explosion created the need for an efficient data management

and extraction techniques. Most data mining research topics

in the field focused on neural network through developing a

learning system based recognizer to mine data. Instead, this

paper conducts data mining in a different approach through

applying Probabilistic Context-Free Grammar (PCFG) on

distributed data sources. Formal grammars provide structural

and statistical knowledge of data. Grammars are used to

compress big data and simplify it into an easy to understand

data. Identifying the data source is the first step to select

a data mining technique. Here, data source will consist of

DNA Escherichia coli promoter sequences (also called E.

Coli promoter). As a case study, the paper will tackle two

types of multi-source data mining. The first data type is

independent data sources. Independent data sources are data

sources that store all data of a single instance in one data

source. Data search and extraction in this distributed data

structure is usually done orthogonally. The second type of

multi-source data mining is dependent data sources. It is

when parts of an instance can have different data in various

data storages but each is attribute independent. Data search

and extraction in dependent distributed data structures are

more complex and are usually done in a horizontal manner.

The remainder of this paper will further explain general

framework and approach. The next sections in this paper will

be as follows; section II is work related work to this paper.

Section III, covers grammars. A definition of data mining

and different structures related to this paper is covered in

section IV. Section V shows the different steps to infer a

grammar to be used in data mining. Then, the paper shows

how to use the inferred grammar to data mine in section

VI. Section VII, provides a case study of this framework by

using an Escherichia Coli promoter DNA sequences. Finally,

in section VIII will conclude this paper and explain future

work.

II. RELATED WORK

With the recent vast amount of data availability, data

mining big data became an interesting topic for various

researchers. Most proposed data mining techniques are based

on neural and statistical approaches. Some researchers pro-

posed grammatical inference approaches to mine data. A

paper published by Borges and Levene propose a hypertext

probabilistic grammar with the use of kth-order Markov mod-

els. It learns the user web navigation history and generates

probabilities to predict the next page the user is going to. The

probabilities are generated where higher probability corre-

sponds to the users preferred trail [7]. Their algorithm mines

the trail and uses a model where the last N pages visited will

effect which page will be visited next. This approach is based

on collecting historical data before generating knowledge.

The approach proposed in this paper studies the structure

of data instead of historical data. Therefore, no need for

previous knowledge or data collection time to infer grammar.

III. GRAMMARS

Grammatical inference (also called grammatical learning

or induction) is the study of finding the set of rules when

given a finite sample of infinite elements [4]. An inferred

grammar can be seen as a set of rules that is generated to

describe the overall language. Inferred grammar represents,

not only the statistical properties, but also the structural

relations of data [1] [2]. Grammars can also assist in pattern

recognition or regenerate an infinite set of sentences that

belongs to a language [2]. Some of advantages of using

formal grammar to data mine are:

• Data description. Data mining using grammars can help

identify recurring patterns and trends in the given data.

An example can been seen in a research conducted by

Borges and Levene where they used grammatical infer-

ence to data mine users web-navigation patterns. After
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analyzing using probabilistic context-free grammar, they

were able to identify the users navigation patterns and

predict the next page the user will most likely visit.[7]

• Data classification. Given big data, classifying the large

data source into sub-groups with common features,

where each sub-group has its own grammar, will help

the investigator simplify and further analyze a subgroup

of interest.

• Association. Given a string, the grammar can evaluate

and analyze if it belongs to the data set or reject it

otherwise. After inferring a grammar for a data, if the

grammar was properly inferred, the production rules

should be able to reproduce all the data. For instance,

given a number of grammars for different functional

genes (e.g. human promoter, operator, and terminator),

the algorithm should be able to identify if this sequence

can be reproduced by any of the grammars. If the

promoter grammar regenerates the same sequence, then

it is said that the given sample is a promoter DNA

sequence. If not, other grammars are tested or the

sequence rejected.

A language can be defined as a finite or infinite set of

strings where each string is a combination of symbols from

the alphabet. Languages of significance do not consist of

arbitrary set of strings. Languages usually contain strings

that follow a certain form, or what might be called a certain

grammatical structure. Grammars, in general, are used to

describe natural language syntax through simple replacement

rules and transformations. However, they are not limited to

natural languages. Grammatical inference has been research

in various fields including machine learning, computational

learning theory, pattern recognition, computational linguis-

tics, and many others[6].Grammars can represent the syntax

of languages or the structural relations of patterns of data. It

is a syntactic source that can characterize the data and can

be used to regenerate all finite and infinite sentences in a

language. It can also characterize the patterns belonging to a

specific call or set [2]. There are various types of grammatical

probabilistic and deterministic methods surveyed by Booth

and Fu [2]. Different types of data require different types of

grammars.

Grammatical inference is a technique that generates a

model that characterizes a set of strings. A formal grammar

has four tuples.

G= <T, N, R, S>where

T is a finite set of terminal symbols

N is a finite set of non-terminal symbols

R is a finite set of production rules (also called rewrite

rules)

S is the starting symbol ∈ N (N and T are disjoint)

If X is the string generated by the grammar G, then S
*
=⇒ X

. starting from the starting symbol S, applying the production

rules R on S will form the string X. A set of strings will be

generated from the productions rules which is defined as the

language L(G) where

L(G) = { X ∈ T* | S
*
=⇒ X}.

Different set of operation are used in grammatical regular

expression such as union (∪ ), Keleen star (*), and concate-

nation (designated by juxtaposition).

1) Union is when there is two separate sets {a} and {b}.
Then, {a}∪{b}= {a,b}.

2) Concatenation of two languages means appending each

string with the string from the second language together

to form a single string such as {a}{b}={ab}
3) When Keleen star is used, it means the set contains zero

or more of concatenated symbol. For instance, L(a*)=

{λ , a, aa, aaa, aaaa, .}
Different types of grammars are used for different types of

data types. Grammars differentiate based on their rewrite

rules. The collection of all strings that can be generated

from the grammar is called the language L(G). Finite state

grammars and context free grammars are the two most used

grammar classes used in computer science [1].

A. Finite-State Grammar

Chomsky defines a finite-state grammar as the process of a

finite-state machine producing a set of symbols while moving

from one state to the other, which is also called a sentence

[8]. The set of sentences produced by a finite-state grammar

is called a finite-state language. Finite-state grammar has

the most restrictions and defines the most limited class of

languages. A grammar G is defined as a finite-state grammar

if and only if the grammars production rules R are in the

format A → b where A ∈ N and either b =c D or b =

c where c ∈ T ’terminal symbol’ and D∈N ’non-terminal

symbol’

B. Context-Free Grammar

In 1950, Noam Chomsky attempted to provide a specific

definition of natural language structure [8]. His research

has lead to the development of number of production rule

restrictions and a promising class of grammar called context-

free grammar. A grammar is considered context-free when

the production rules R are as follows A
*−→x where A is a

single non-terminal symbol (A ∈ N) and x is either a terminal

or a non-terminal symbol (x ∈ N ∪ T). Finite-state grammar

is a type of a context-free grammar.

C. Probabilistic Context-Free Grammar

A probabilistic context-free grammar (PCFG) is a five

tuple G= <T, N, R, P, S>where P is the probability associated

with each productive rule such that the sum of rules for with

the same left-side is equal to 1. To calculate the probability

of a string x that uses the rule r where the probability of

r if Pr and is called mr times is as follows [1]: p(x)=
∏

r

(Pr)
mr

0 ≤ pr ≤ 1
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Describing a data source with probabilistic grammar is

called grammatical inference [2]. Grammatical inference pro-

vides a grammar that is identical to the data source with

probability measures. Probabilistic Grammar has five tuples

[7]. G= <T, N, R, P, S>, where:

T finite set of terminal symbols

N finite set of non-terminal symbols

R finite set of rewrite rules

P finite set of probabilities that are assigned by 1-1

mapping to R

S start symbol

To infer a grammar, a number of sub-problems need to be

solved [1]. First, collect and analysis a sample of the data.

Second, choose a suitable number of grammars for the data.

Third, outline how the suggested grammar is produced for the

collected data set. Finally, verify if suggested grammar is a

suitable representation for data (Figure 1). Each grammatical

inference step is further described in later section detail.

IV. DATA MINING

In this research, DNA sequences will be used as a case

study data. However, the approach is not limited to DNAs.

Finding an efficient approach to data mine that balances

between time and accuracy is vital in order to utilize and

benefit from stored data. Most data mining research topics in

the field focused on developing a learning system based on a

recognizer to mine data through neural network, clustering,

and statistics. This paper conducts data mining using a

different approach by using formal grammars.

Data mining is done on four main stages:

• Data exploration: In this step, a sample data is collected

that can sufficiently represent the data source. This

step is essential in analyzing and understanding the

nature and structure of the data to generate an efficient

grammar.

• Building model: The main step where all the analysis

and knowledge is gathered. In this paper, this step will

involve choosing a grammar, or number of grammars,

that will work on the data based on the collected sample.

Then choosing the most suitable one that can represent

the data. Formal linguistics approaches has been used

to describe DNA sequences biology since the structure

of DNA has been solved in 1953[12]. Due to the

nature of DNA sequences and complexity, most DNA

structures are described and parsed using approaches

more powerful than Context-Free Grammars such as

DCG [12]. In this paper, we investigate data mining

large amounts of DNA promoter sequences using PCFG

and an algorithm introduced by Rajasekaran and Nicolae

in 2014 as an error correcting cover grammar algo-

rithm[15]. Probabilistic grammar has unique features

that made it an interesting research choice. Probabilistic

grammar can be used represent both statistical properties

and structural relations of data [1].

Fig. 1. Grammatical Inference Process

• Validation: Testing the build model on the actual data

then testing it on another data set with similar structures

and features. Which, in this paper, will involve applying

the grammar then measuring results precision. Various

methods of measurement are used with a preset accep-

tance value. One popular method is the Chi-square test.

• Deployment: When the grammar is accepted it can be

deployed and used to mine data. Adjustments on the

approach can be done after deployment to improve

results can be done as deemed necessary.

Massive data are rarely saved in a single data source.

Data is often distributed on multi-sources. There are several

structures that can be used. Here, two structures are going

to be studied; independent data sources and dependent data

sources.

V. GRAMMATICAL INFERENCE

Grammatical Inference is done in several steps [1]. A

sample is first collected that represents the source is col-

lected. Then, the grammatical inference process is done with

assistance of the investigator. A basic grammatical inference

model can be seen in figure 2.Then the goodness of the

inferred grammar is test to be accepted or repeat the process.

A. Analyze Data

The nature of the data is studied to generate the grammar

using a sample of that dataset. Terminal symbols are ex-

tracted. They can be found in data sentences collected from

samples and as outputs of production rules. Non-terminal

235243243243



Fig. 2. Basic Model for Interactive Grammatical Inference[1]

symbols are also generated, which are the symbols that can

be replaced and found as input or output of a production

rule.Non-terminals can be seen as syntactic variables of the

sentences. Grammatical rules production will depend on the

type of grammar selected.

B. Selecting Suitable Grammar

The choice of grammar is based on the data that it is

going to be applied on. Looking at the sample data, choose a

suitable grammar that can reproduce all the data set. The

grammar can be one of many types that differ in power

based on the complexity of the data structure. Some of

the most common types are Finite State Automa, Context-

Free grammars, Probabilistic Context-Free grammars, Tree-

Adjoining Grammar, and Context-Sensitive grammars.

C. Test and Validation

The last step is applying the test of goodness measure

on the constructed grammar. If accepted, the results will

be validated on the larger data set. A Chi-Square test will

be used to confirm the fitness of the chosen grammar. Chi-

square test is designed to confirm if the results probabilistic

process is consistent or significantly different from what is

assumed.

X2(C,E) = (Ci−Ei)
2

Ei

where C is the number of observations found and E

is the number of observations expected.

VI. USING GRAMMARS FOR DATA MINING

The grammar will be tested to data mine two different

structures of data; independent and dependent.

A. Independent

Independent data sources are the sources were a single data

entry that contains all input attributes in each entry. Data

is searched and extracted orthogonally in independent data

sources. However, this approach is more suitable for data

with a limited number of attributes (Figure 3). Using PCFG

to data mine independent data sources can help:

Fig. 3. Independent Data Distribution

• Identify and extract entries that belong to certain gram-

mar in heterogeneous data sets. In other words, given

several grammars, categorizing a large data set to var-

ious sub-sets based on sentries belonging to which

grammar.

• PCFG can be used to identify the data that has the most

similarity to the grammar structure. For instance, we

were given a grammar for a human DNA sequence and

horses DNA sequences data set, rats DNA sequences

data set, and fish DNA sequences data set. These data

sets can be data mined to determine the data set that

has the highest probability based on the human DNA

sequence grammar. This means this species has the most

DNA similarity to human DNA.

For instance, given a large data set of heterogeneous DNA

sequences of different types, the algorithm can scan through

each data set and run the algorithm and extract sequences

that belong to the grammar.

B. Dependent

Dependent distributed data is when data is gathered based

on the attributes. For instance, when looking for a patients

data in a hospital, there can be a data source dedicated to

medical history, another for billing, and one for personal

information. These data sources are linked to connect patients

information. This approach is more complicated than the

independent, since it requires searching each data source.

Data extraction in this case is horizontal. (Figure 4). First

a grammar is inferred to each data set separately. Then,

the resulting grammars are concatenated to generate a single

grammar. This resulting grammar will represent the overall

structure of the distributed data sets.

VII. CASE STUDY

As a case study for the framework, E. Coli DNA promoter

sequences were chosen as data set. Promoter sequences are
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Fig. 4. Dependent Data Distribution

Fig. 5. A typical E. Coli Promoter Sequence

the part of DNA that effects the frequency and location if

transcription initiation through interaction with RNA poly-

merase [14]. They are one the most researched and studied

regions in DNA in bioinformatics. A sample of 106 E Coli

DNA sequences is collected from the Machine Learning

Repository UCI [12]. The data set contains 53 positive and 53

negative sets. DNAs Nucleic acid primary structure consists

of four nitrogenous bases (Adenine, Guanine, Cytosine, and

Thymine). The DNA sequence comprises of a large sequence

of the four nitrogenous. Therefore, the grammars alphabet

(T) will consist of four symbols {a, g, c, t} representing

each nitrogens first letter respectively. Each DNA is a string

consisting a sequence of alphabets.There are certain features

that promoter DNA have that make them distinct from other

DNA regions[12]. Certain repetitive pattern elements are

identified that are commonly found in the DNA promoter

region, which are the ’ttgaca’ and ’tata’ regions. These

elements are going to be part of non-terminal symbols for

our grammar. DNA E. Coli promoter sequences are identified

by the -35 and -15 base pairs (bp) regions from the transcript

site [14]. The -35 is called the TTGACA region and its

standard form is ttgaca. The -15 bp region is called the TATA

region and its standard form is tataat. These two regions are

separated with a 15-19 long base pair sequence (Figure 5).

However, these two region are frequently found as mutations

of the standard sequence. For instance, taaaat and gacaat are

both part of the TATA region [14]. The sequences preceding

the TTGACA region and following the TATA region are

called gap. A gap is a sequence that is not important or its

significance is not known yet [19]. The sequence between

the TTGACA and TATA regions is typically 17 bp space.

However, it can range between 15-19 bp [16]. CFG is written

in Chomsky Normal Form (CNF). A grammar is said to be

in CNF when the grammar production rules are in only two

forms; A → B C, or A → a.

Algorithm 1: Context-Free Grammar Error Correcting

Algorithm[15]

Data: G = (N, T, P, S), a grammar;

I= a1a2...an, input string;

Result: minimum distance � and I and any string in

L(G);

begin
GenerateG′;
for A ∈ N ′ and i← 1 to n do

XA[i] := {};
end
for i← 1 to n and j ← (i+ 1) to (n+1) do

Mi,j := {};
end
for i← 1 to n do

for (A �−→ ai) ∈ P’ do
insert(A, �) into Mi,i+1;

insert(i, i +1, �) into XA[i];
end

end
for s← 2 to n do

for A �2−→ BC ∈ P’ do
for (i, k, �1) ∈ LIST(B) do

for (C, �2) ∈ Mk,i+s do
� := �1 + �2 + �3 ;

insert (A, �) into Mi,i+s;

insert (i, i+ s, �) into XA[i];
end

end
end

end
find � which (1, n + 1, �) ∈ XS [1];
return �;

end

These regions that identify E. Coli promoter sequence,

have multiple variations. This mismatch will require a beyond

a simple CFG. Promoter sequences are rarely found in the
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Fig. 6. Parsing for a Standard Promoter Structure

typical form (Figure 6). Searls used a Prolog-based definite

clause grammar as an attempt to overcome CFG shortcom-

ings to represent DNAs. This paper aims to utilize the CFG

grammar by adding a error correcting cover grammar pro-

posed by Rajasekaran and Nicolae that can parse in a cubic

time (2014) [15]. The cover grammar counts the distance

between a typical form of a sequence and the sequence

given by counting differences (algorithm 1). The approach

is extended and modified to sum probabilities instead of

counting differences[20]. Probabilities on grammar rules are

based on Lisser and Marglit research on 300 E. Coli mRNA

promoter sequences [16][20].

After applying the grammar inferred to identify and extract

DNA promoter sequences on the 106 sequences, the tech-

nique was able to correctly identify the positive sequences

with 4 false positives out of the 53 negative and 53 positive

data sequences given.

VIII. CONCLUSION

Data mining research are mostly focused on neural and sta-

tistical approaches. This paper presents a framework that can

be used to data mine distributed data using formal grammar.

Using formal grammar to data mine provides simplicity and

description of targeted data. A sample of the data is gathered

to be analyzed. Based on the nature of the data grammar is

inferred. The grammar will be the base of the model for data

mining. Two types of distributed data sources are studied;

independent and dependent. This approach can be used for

various applications;

• Separate large data into smaller sub-sets by inferring a

grammar for each sub-category.

• In heterogeneous data set, it can identify data entries

that belong to the grammar.

• Identify the degree of similarity between two data sets.

A case study for the technique was conducted on 106 E.

Coli DNA promoter sequences. It was able to count and

identify the positive sequences with 4 false positives.
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