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Abstract. In this paper, we provide a survey of recent advances in the 
field "grammatical inference" With a particular emphasis on the results 
concerning the learnability of target classes represented by deterministic 
finite automata, context-free grammars, hidden Markov models, stochas- 
tic context-free grammars, simple recurrent neural networks, and case- 
based representations. 

1 Introduction 

Loosely speaking, Grammatical Inference is an inductive inference problem where 
the target domain is a. formal language and the representation class is a fam- 
ily of grammars. The learning task is to identify a "correct" grammar for the 
(unknown) target language, given a finite number of examples of the language. 
Grammatical Inference is a well-established research field in Artificial Intelli- 
gence as it dates back to the 60s. Gold [25] originated this study and introduced 
the notion of identification in the limit. His motivation for studying the problem 
is to construct a formal model of human language acquisition. Since his seminal 
work, there has been a remarkable amount of work to establish a theory of gram- 
matical inference, to find effective and efficient methods for inferring grammars, 
and to apply those methods to practical problems. 

Grammatical inference has been investigated, more or less independently, 
within many research fields, including machine learning, computational learning 
theory, pattern recognition, computational linguistics, neural networks, formal 
language theory, information theory, and many others. Recently, the interna- 
tional conference on Grammatical Inference has been established with an aim to 
bring together researchers from diverse fields and to bring about a stimulating 
interdisciplinary interaction between them. The first colloquium on grammat- 
ical inference was held in U.K. in April 1993, and the second one in Spain in 
September 1994 [19]. 

There are several excellent survey articles on the field of grammatical infer- 
ence. An early survey on inductive inference is Angluin and Smith's article [14]. 
An early good introduction to grammatical inference is Miclet's article [38]. A 
recent extensive survey of the inference of deterministic finite automata is Pitt 's 
paper [42]. 



Much of the recent research activities on grammatical inference .have been 
stimulated by the new learning models proposed recently within computational 
learning theory framework: the query learning model of Angluin [10] and the 
PAC (probably approximately correct) learning model of Valiant [59]. These 
new models put much more emphasis on the computational efficiency of the 
inference algorithm. A good introduction to computational learning theory is 
Laird's paper [34], and a very recent survey of computational learning theory is 
Angluin's paper [12]. Thus grammatical inference is an old and new paradigm 
in artificial intelligence. 

This paper, rather than being a thorough survey on the topic, is intended 
mainly as a review of the research carried out by the Machine Learning group 
at Fujitsu Laboratories Ltd. and related work done at other institutions. The 
interested reader can consult the above cited survey papers. Also, an important 
subject which we won't deal with here is inductive inference of indexable classes 
of formal languages (e.g., see [14] and [63] for references). This is because, while 
we acknowledge that enumeration is a powerful and useful technique in inductive 
inference, we are more interested in "constructive" methods in the sense that 
the grammars are constructed directly from training examples rather than by 
enumeration. 

We will begin with the problem of identifying deterministic finite automata 
(DFAs) from examples. DFAs are the bottom class of formal grammars in the 
Chomsky hierarchy, and the problem of identifying DFAs from examples has 
been studied quite extensively [14, 42]. We will pick up several interesting re- 
sults on identifying DFAs: polynomial-time identification of DFAs from queries, 
identification of subclasses of DFAs from positive data, computationally hard- 
ness results, and identification from erroneous examples. In Section 4, we will 
consider the problem of identifying context-free grammars (CFGs) because the 
questions of whether there are analogous results held for context-free grammars 
would be more interesting and important. The results contain identification of 
CFGs from examples in the form of structured strings, polynomial-time reduc- 
tion to identification of finite automata, and efficient identifications of several 
subclasses of CFGs. In Section 5, since stochastic modeling is very important 
for practical applications, we will consider the problem of identifying stochastic 
grammars. A stochastic grammar is obtained by specifying a probability for each 
production in a grammar. We will review some fundamental methods for train- 
ing probabilistic parameters in the grammar based on expectation maximization 
(EM), and their applications to biological sequence analyses. In Section 6, we will 
see two special topics which use non-grammatical representations for grammat- 
ical inference or language learning. One is simple recurrent neural networks and 
the other is case-based representations. 

2 T h e  L e a r n i n g  M o d e l s  

Within computationM learning theory, there are three major established formal 
models for learning from examples or inductive inference: the identification in 



the limit by Gold [25], the query learning model by Angluin [10], and the PAC 
learning model by Valiant [59]. Each model provides a learning protocol and a 
criterion for the success of learning. Identification in the limit views learning as 
an infinite process and provides a learning model where an infinite sequence of 
examples of the unknown grammar G is presented to the inference algorithm M 
and the eventual o r  limiting behavior of the algorithm is used as the criterion 
of its success. A complete presentation of the unknown grammar G is an infinite 
sequence of ordered pairs (w, l) from S* • {0, 1} such that l = 1 if and only if 
w is generated by G, and such that  every string w of S* appears at least once 
as the first component of some pair in the sequence, where S is the terminal 
alphabet. If after some finite number of steps in a complete presentation of G, 
M guesses a correct grammar which is equivalent to the unknown grammar G 
and never changes its guess after this, then M is said to identify G in the limit 
from complete presentations. 

Angluin [10] has considered a learning situation in which a teacher is available 
to answer specific kind of queries on the unknown grammar G and devised an 
elegant formulation of such a teacher and learner paradigm. In this setup, we 
can expect the inference algorithm be the exact identification, which means the 
algorithm outputs a correct grammar in a certain finite time. This is no longer 
a limiting criterion of learning. In the query learning model, a teacher is a fixed 
set of oracles that  can answer specific kinds of queries made by the inference 
algorithm on the unknown grammar G. For example, the following two types of 
queries are typical: 

1. Membership. The input is a string w E S* and the output is "yes" if w is 
generated by G and "no" otherwise. 

2. Equivalence. The input is a grammar G' and the output is "yes" if G' is 
equivalent to G (i.e., G' generates the same language as G) and "no" oth- 
erwise. If the answer is "no", a string w in the symmetric difference of the 
language generated by G and the language generated by G I is returned. 

For the equivalence query, the returned string w is called a counter-example. A 
membership query returns one bit of information. Nevertheless it often plays an 
important role in efficient exact identification. 

Valiant [59] has introduced the distribution-independent probabilistic model 
of learning from random examples, which is called probably approximately correct 
learning (PAC learning, for short). In the PAC learning model, we assume that  
random samples are drawn independently from the domain S* whose probability 
distribution D may be arbitrary and unknown. The inference algorithm takes a 
sample as input and produces a grammar as output. The success of identification 
is measured by two parameters: the accuracy parameter e and the confidence 
parameter 5, which are given as inputs to the inference algorithm. A successful 
inference algorithm is one that  with high probability (at least 1 - 6) finds a 
grammar whose error is small (less than e). 

We measure the efficiency of the inference algorithm with respect to relevant 
parameters: the size of examples and the size of the unknown grammar. The Size 
of an example in the form of string is the length of the string. The Size of the 



unknown grammar is usually the number of states, in the case of finite .automata, 
and the number of production rules, in the case of context-free grammars. 

3 Learning Finite Automata 

The study of the identifiability of deterministic finite automata  is an excellent 
mean for studying a number of general aspects of inductive inference and gram- 
matical inference [42]. In this section, we will review several important results 
and useful techniques related to computationally efficient identifications of de- 
terministic finite automata. 

A determinislic finite (state) automaton (DFA) is defined by a 5-tuple A = 
(Q, Z:, 5, q0, F),  where Q is a finite set of slates, Z is an alphabet of input symbols, 
6 is the state-transition function 6 : Q • Z ---* Q, qo E Q is the initial state, and 
F C_ Q is a set of final states. The language accepted by a DFA A is denoted by 
L(A). 

3.1 Learning from representative samples 

When trying to identify an unknown DFA A = (Q, S ,  6, q0, F)  from examples, 
a useful information about A is the representative sample S of A, that is, a 
finite subset of L(A) that  exercises every live transition in A. Taking the set 
R(S) of all prefixes of strings in S, for every live state q of A, there must exist 
a string u in R(S) such that 6(q0, u) = q. Further, for every state q and every 
transition 6(q, a) from q where a E Z,  there exists a string va in R(S) such that 
6(q0,v) = q and 6(q, a) = 6(q0, va) = q'. Thus every state and transition are 
represented by strings in R(S). It remains to distinguish two states qu and q, 
represented by two strings u and v in R(S),  i.e., q~ = 6(q0, u) and q~ = 6(qo, v), 
if qu and q, are different states in A. Angluin [7] has given an efficient procedure 
to solve this problem using membership queries. A membership query made by 
an inference algorithm proposes a string w and asks whether w E L(A), where 
A is the unknown DFA. The answer is either "yes" or "no". 

T h e o r e m  1 [7]. The class of deterministic finite automata can be identified in 
polynomial time from a representative sample and using membership queries. 

3.2 Learning with teachers 
Angluin [9] has considered a learning protocol which is based on what is called 
"minimally adequate teacher". This teacher can answer two types of queries 
about the unknown DFA A made by an inference algorithm: membership query 
and equivalence query. An equivalence query proposes a conjecture A I of DFA 
and asks whether L(A) = L(A'). The answer is either "yes" or "no". If it is 
"no", then it provides a counterexample, an arbitrary string w in the symmet- 
ric difference of L(A) and L(A'). Angluin [9] has shown that  the equivalence 
query compensates for the lack of representative samples, and presented an effi- 
cient inference algorithm for identifying DFAs using equivalence and membership 

queries. 



T h e o r e m  2 [9]. The class of deterministic finite automata can be identified in 
polynomial time using equivalence queries and membership queries. 

Yokomori [61] has studied efficient identification of non-deterministic finite 
automata from equivalence and membership queries. 

3.3 Learn ing  f rom posit ive da ta  

One interesting and important topic on the Gold's framework of identification 
in the limit for language learning is identification from positive data. A posi- 
tive presentation of the unknown DFA A is any infinite sequence of examples 
such that the sequence contains all and only the strings in the language L(A). 
Gold [25] has shown that there is a fundamental, important difference in what 
could be learned from positive versus complete presentations, and shown a neg- 
ative result that no "superfinite" class of languages can be identified in the limit 
from positive presentation. Since the class of regular languages is superfinite, we 
need to restrict DFAs somehow to subclasses to establish identifiability results 
from positive presentation. 

The problem is to avoid "overgeneralization", which means guessing a lan- 
guage that is a strict superset of the unknown language. Angluin [8] has in- 
troduced a series of subclasses of DFAs, called k-reversible automata for k = 
0, 1,2,. . . ,  and shown that the existence of characteristic samples is sufficient 
for identification from positive presentation (to avoid overgeneralization) for k- 
reversible automata and there exist such characteristic samples for the class of 
k-reversible automata. A characteristic sample of a k-reversible automaton A is 
a finite sample S C L(A) such that L(A) is the smallest k-reversible language 
that contains S. It turns out that any characteristic sample is a representative 
sample for k-reversible automata. 

As we have seen in Section 3.1, a representative sample provides enough 
information for reconstructions of states and state transitions. By utilizing the 
structural properties specific to k-reversible automata, we could accomplish the 
main task of state distinctions in identifying k-reversible automata without the 
use of membership queries. For example, a zero-reversible aulomaton is a DFA 
such that it has at most one final state and no two edges entering any state 
are labeled with the same symbol. Given a representative sample S for the 
unknown zero-reversible automaton, we construct the prefix tree automaton A' 
that precisely accepts the set S, and then merge states in A' to satisfy the 
conditions for zero-reversible automata. 

T h e o r e m  3 [8]. The class of k-reversible automata, for k = 0, 1, 2,.. . ,  can be 
identified in the limit from positive presentation. 

Furthermore, the inference algorithm updates a conjecture in time polyno- 
mial in the size of the inputs. 

Another interesting class of DFAs which can be identified in the limit from 
positive presentation is the class of strictly deterministic automata investigated 



by Yokomori [62]. A strictly deterministic automaton is a DFA such that the set 
of labels W for state-transition edges is extended to be a finite subset'of strings 
over s each edge has the unique label (no same label is attached to different 
edges), and for each symbol a E 57 there is at most one label in W starting with 
a .  

Theorem 4 [62]. The class of strictly deterministic automata can be idenlified 
in the limit from positive presentation. 

An inference algorithm can be constructed so that it not only runs in time 
polynomial in  m, the maximum length of all positive examples provided, but 
also makes at most a polynomial number of implicit errors of prediction in m 
and n, the size of the unknown strictly deterministic automaton. 

Other interesting topics and results on identification from positive presenta- 
tion which may not directly be related to DFAs are Angluin's characterization 
of identifiability from positive presentation [6], Angluin's pattern languages [5], 
Koshiba's extension to typed pattern languages [32], Shinohara's general result 
for identifiability from positive presentation [55], and Oncina et al.'s subsequen- 
tial transducers [40]. 

3.4 Hardness  resul ts  

There are many computationally hardness results related to identifying DFAs. 
Gold [26] has shown that the problem of finding a DFA with a minimum number 
of states consistent with a given finite sample of positive and negative examples 
is NP-hard. This result is generally interpreted as indicating that even a very 
simple case of grammatical inference, identifying DFA from positive and negative 
examples, is computationally intractable. Further, Pitt and Warmuth [43] have 
proven a stronger result, namely that it is NP-hard to find a DFA of at most 
n(1-e) log log ~ states consistent with a given finite sample of positive and negative 
examples for any constant e > 0, where n is the number of states of a minimum 
DFA consistent with the given sample. 

Angluin [11] has shown negative results for efficient identifications of various 
classes of grammars from equivalence queries only. She has developed the useful 
technique of "approximate fingerprints" to obtain negative results for identifica- 
tion from equivalence queries only. 

3.5 Learning from erroneous examples  

In practice, it is natural to assume that the examples may contain some noise. 
There are fewer works to study the effect of noise on learning from queries in 
the Valiant's probabilistic framework of PAC-learnability. 

Sakakibara [48] has defined a benign model for errors in the responses to 
membership queries where answers to queries are subject to random independent 
noise (i.e., for each query there is some independent probability to receive an 
incorrect answer and these errors are not persistent), and shown that these 



errors can be effectively removed by repeating the query until the confidence in 
the correct answer is high enough. 

Ron and Rubinfeld [46] have considered a model of persistent noise in mem- 
bership queries in which a fixed but randomly chosen fraction of membership 
queries are answered incorrectly but any additional query on the same string 
is answered consistently when queried again. They have shown by modifying 
Angluin's algorithm (Theorem 2) for identifying DFAs using equivalence and 
membership queries that DFAs can be learned in polynomial time from mem- 
bership queries with persistent noise under the uniform distribution on inputs. 

Sakakibara and Siromoney [53] have studied a noise model which is specific 
to language learning where the examples are corrupted by purely random er- 
rors affecting only the strings (and not the labels). They have considered three 
types of errors on strings, called EDIT operation errors. EDIT operations con- 
sist of "insertion", "deletion", and "change" of a symbol in a string. They have 
shown efficient identification from random examples with EDIT noise for a small 
subclass of regular languages defined by containment decision lists, a variant of 
decision list [45] to represent languages. 

4 L e a r n i n g  C o n t e x t - F r e e  G r a m m a r s  

As we have seen in the previous sections, there has been extensive research into 
the problem of identifying DFAs from examples. The question of whether there 
are analogous results for context-free grammars is important because context- 
free grammars are a more interesting class of grammars from the practical point 
of view. 

A contezt-free grammar (CFG) is defined by a quadruple G =  (N, Z:, P, S), 
where N is an alphabet of nonterminal symbols, Z is an alphabet of terminal 
symbols such that N N Z = 0, P is a finite set of production rules of the form 
A --+ a for A E N and a E (N tA Z)*, and S is a special nonterminal called the 
start symbol. The language generated by a CFG G is denoted L(G). 

Angluin [11] has shown that the whole class of CFGs cannot be identified 
in polynomial time using equivalence queries only. Furthermore, Angluin and 
Kharitonov [13] have shown that the problem of identifying the class of CFGs 
from membership and equivalence queries is computationally as hard as the 
cryptographic problems for which there is currently no known polynomial-time 
algorithm. Despite these negative results, we will present in the foIlowing sections 
several positive results for identifying the whole class of CFGs with additional 
information or identifying subclasses of CFGs efficiently. 

4.1 Learning f rom s t ruc tu ra l  in format ion  

We consider an identification problem for CFGs where, besides given examples, 
some additional information is available for the inference algorithm. A useful 
(and maybe reasonable) information would be information on the grammatical 
structure of the unknown CFG. We assume example presentations in the form 



( ( t h e  (big dog) )  (chases(a (youngg i r l ) } ) )  

Fig. 1. An example of structured string for "the big dog chases a young girl". 

of strings with grammatical structure. Levy and Joshi [36] have already sug- 
gested the possibility of efficient grammatical inferences in terms of strings with 
grammatical structure. 

A string with grammatical structure, called a structured string or a structural 
description (of string), is a string with some parentheses inserted to indicate the 
shape of the derivation tree of a CFG, or equivalently an unlabeled derivation 
tree of the CFG, that is, a derivation tree whose internal nodes have no labels. 
(See Figure 1.) It is known that the set of derivation trees of a CFG constitutes 
a rational set of trees, where a rational set of trees is a set of trees which can be 
recognized by some tree automaton. Further, the set of unlabeled derivation trees 
of a CFG also constitutes a rational set of trees. Based on these observations, the 
problem of identifying CFGs from structured strings is reduced to the problem 
of identifying tree automata. 

Sakakibara [47] has shown by extending Angluin's inference algorithm (The- 
orem 2) for DFAs to tree automata that the class of CFGs can be identified in 
polynomial time using structural membership queries and structural equivalence 
queries. 

T h e o r e m  5 [47]. The class of context-free grammars can be identified in poly- 
nomial time using structural equivalence queries and structural membership queries. 

A structural membership query is a membership query for a structured string, 
and a structural equivalence query returns "yes" if a queried CFG is structurally 
equivalent to the unknown CFG and returns "no" with a counterexample oth- 
erwise. 

Since the class of CFGs is superfinite, Gold's negat've result [25] on identifi- 
ability from positive presentation implies that the class of CFGs cannot be iden- 
tified in the limit from positive presentation. Sakakibara [49] has demonstrated 
that, here also, information on the grammatical structure of the unknown CFG 
could help the inference. He has shown that there exists a class of CFGs, called 
reversible context-free grammars, which can be identified in the limit from posi- 
tive presentations of structured strings, that is, all and only unlabeled derivation 
trees of the unknown CFG, and shown that the reversible context-free grammar 



is a normal form for CFGs, that is, reversible context-free grammars can generate 
all the context-free languages. 

A reversible context-free grammars is a CFG G = (N, ~,  P, S) such that 
A --* a and B ~ a in P implies that A = B and A --* aBf l  and A ~ aCfl  in P 
implies that B = C, where A, B, and C are nonterrninals, and a,/~ E (N U E)*. 

T h e o r e m  6 [49]. The class of reversible context-free grammars can be identified 
in the limit from positive presentation of structured strings. 

Since the inference algorithm for reversible context-free grammars is an exten- 
sion of Angluin's inference algorithm which identifies zero-reversible automata 
(Theorem 3), the algorithm updates a conjecture in time polynomial in the size 
of the inputs. Note that the above result does not imply that the whole class of 
CFGs can be identified from positive presentation of structured strings. 

A related early work to identifying CFGs from positive presentation of struc- 
tured strings is Crespi-Reghizzi's [20]. He has described a constructive method 
for identifying a subclass of CFGs, which is a different class from reversible 
CFGs, from positive samples of structured strings. His class of CFGs defines 
only a subclass of context-free languages, called noncounting context-free lan- 
guages. M~ikinen [37] has refined Sakakibara's inference algorithm for reversible 
CFGs to gain more efficiency, and also investigated a subclass of reversible CFGs, 
called type invertible grammars, that can be identified from positive presentation 
of structured strings in time linear in the size of the inputs. 

4.2 Reduc t ions  to f in i t e -au tomata  learning problems 

A well-known technique often used to establish identifiabiiity results is a reduc- 
tion technique that reduces an inference problem to an other inference problem 
whose result is known. Takada [57] has shown that the inference problem for 
even linear grammars can be solved by reducing it to the one for DFAs, and 
presented a polynomial-time algorithm for the reduction. For example, we can 
identify the class of even linear grammars rising equivalence and membership 
queries in polynomial time by employing Angluin's efficient algorithm for DFAs 
(Theorem 2) via reduction. 

An even linear grammar is a CFG that has productions only of the form 
A --~ uBv  or A --~ w such that u and v have the same length, where A and B 
are nonterminals and u, v and w are strings over S.  Let G = (N, S,  P, S) be 
an1 even linear grammar. We write z = ~  y to mean that y is derived from x 
applying the production 7r in P, where x, y E (N U S)*. We denote a derivation 
from z0 to ~k obtained by applying a sequence 7 = 7rlTr2 �9 �9 "7rk of productions 
by z0 = ~  xn. 7 is called an associate word and-a set of associate words is called 
a control set on (7. The language generated by G with a control set C is defined 
by L(G,C)  -=- {w E ~* I S ~ w and 7 ~ C}. It can be shown that there is 
a universal even linear grammar Gu such that for any even linear grammar G, 
L(G) = L(Gtr, C) for some regular control set C. 
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T h e o r e m  7 [57]. The problem of identifying lhe class of even linear grammars 
is reduced to the problem of identifying the class of finite automata. 

Note that the class of even linear languages properly contains the class of  
regular languages and is a proper subclass of context-free languages. By itera- 
tively applying the above reduction technique, Takada [58] has further developed 
an infinite hierarchy of families of languages whose identification problems are 
reduced to the identification problem of DFAs. 

4.3 Learning subclasses o f  context-free grammars 

Because the whole class of CFGs seems to be hard to be identified efficiently 
without any additional information, there have been some attempts to design 
polynomial-time algorithms for identifying subclasses of CFGs from examples. 

Ishizaka [30] has investigated a subclass of CFGs, called simple deterministic 
grammars, and gave a polynomial-time algorithm for exactly identifying it using 
equivalence and membership queries in terms of general CFGs. This inference 
algorithm may sometimes ask an equivalence query for a CFG which is not 
simple deterministic. 

A CFG G = (N, S,  P, S) in 2-standaxd form is called simple deterministic if 
A --+ aa and A ~ a/3 in P implies that a =/3, where A and B are nonterminals, 
a is a terminal, and a, fl E (N U Z)*. 

T h e o r e m  8 [30]. The class of simple deterministic grammars can be identified 
in polynomial time using equivalence queries and membership queries in terms 
of general context-free grammars. 

Note that given any regular language L, the language L ~  is simple deter- 
ministic, where # is a special symbol not in ~.  In this sense, the class of simple 
deterministic languages properly contains the class of regular languages. 

Yokomori [60] has considered a smaller class of simple deterministic gram- 
mars with the goal of finding a polynomial-time algorithm to identify it in the 
limit from positive presentation. A CFG G = (N, Z, P, S) in Greibach normal 
form is called very simple if for each terminal symbol a in Z,  there exists ex- 
actly one production rule starting with a (i.e., exactly one production rule of 
the form A --+ aa, where a E (N t.J ~)*). He has shown that the class of very 
simple grammars can efficiently be identified in the limit from positive presenta- 
tion, and this result has provided the first instance of language class containing 
non-regular languages that can be identified in the limit in polynomial time in 
the sense of Pitt [42], that is, the time for updating a conjecture is bounded by 
a polynomial in the size n of the unknown grammar and the sum of lengths of 
examples provided, and the number of times the inference algorithm makes a 
wrong conjecture is bounded by a polynomial in n. 

T h e o r e m 9  [60]. The class of very simple grammars can be identified in the 

limit from positive presentation in polynomial time. 
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From this result, it immediately follows that the class of very simple gram- 
mars can be identified in polynomial time using only equivalence queries. 

Related to identification of very simple grammars, Burago [18] has investi- 
gated the structurally reversible context-free grammars, and shown that the class 
of structurally reversible CFGs can be identified in polynomial time using equiv- 
alence queries and membership queries. A CFG is called structurally reversible 
if among all nonterminal strings that might derive a given terminal string, no 
one is an extension of the other. The class of structurally reversible CFGs is a 
subclass of CFGs and the class of structurally reversible context-free languages 
properly contains the class of very simple languages. 

Other representation forms for languages which are not in the form of gram- 
mars sometimes help understanding the mathematical structures and designing 
efficient inference algorithms. Fahmy and Biermann [23] have investigated iden- 
tification of real time acceptors. The class of languages accepted by real time 
aeceptors is a subclass of context-sensitive languages and incomparable with the 
class of context-free languages. 

5 L e a r n i n g  S t o c h a s t i c  G r a m m a r s  

Another major research topic in grammatical inference is stochastic modeling 
and training of stochastic grammars. Stochastic modeling has become increas- 
ingly important for applications such as speech recognition, natural language 
processing, and biological sequence analysis. A stochastic grammar is obtained 
by specifying a probability for each production in a grammar. A stochastic 
grammar assigns a probability to each string which it derives and hence de- 
fines a probability distribution on  the set of strings. Stochastic (probabilistic) 
automata are the probabilistic counterpart of finite automata that are known as 
hidden Markov models (HMMs) and very extensively used in speech recognition. 
Stochastic context-free grammars (SCFGs) is a superclass of and goes one step 
beyond hidden Markov models in the Chomsky hierarchy. 

The problem of identifying stochastic grammars has two aspects: determin- 
ing the discrete structure (topology) of the grammar and estimating proba- 
bilistic parameters in the grammar. Based on the maximum likelihood crite- 
rion, efficient estimation algorithms for probabilistic parameters have been pro- 
posed: forward-backward algorithm for HMMs [44] and inside-outside algorithm 
for SCFGs [16, 35]. The relative success of stochastic grammars in real tasks is 
due to the existence of these techniques for automatic estimation of probabilities 
and distributions. Both algorithms are iterative algorithms which are based on 
the ext)ectation-maximization (EM) technique that increases the likelihood of 
the training sample in each step until a local maximum is reached. Therefore, 
the initialization in the iterative process is a crucial point since it affects the 
speed of convergence and the goodness of the results. On the other hand, finding 
an appropriate discrete structure of the grammar is a harder problem. In certain 
cases, it might be possible to consider the inference of the discrete structure as 
a result of the probability estimation process. For example, in the case of ttMM, 
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we start with a fully connected HMM, get a locally maximum estimation of prob- 
abilities, and obtain a structure of HMM by pruning out zero or low probability 
transitions. However, this method does not seem to be effective or efficient. In 
fact, Abe and Warmuth [2] have shown a computationally hardness result for 
the inference of probabilistic automata. 

In the remaining of this section, we will focus on probability estimation pro- 
cedures for ttMM and SCFG. 

5.1 Hidden  Markov m o d e l s  

A Hidden Markov Model (HMM) is defined by a 5-tuple $ = (Q,E,T,O, 7r), 
where Q is a finite set of states, X: is an alphabet of output symbols, T is 
a state transition probability distribution, O is an output  symbol probability 
distribution, and ~r is an initial state distribution. Let Q = {ql,-..,q,~}- T is 
the set {tij I 1 < i, j < n} of state transition probabilities where t~j is a state 
transition probability from state qi to state qj, O is the set {oj(a) [ 1 < j < 
n, a E 5Y} of output symbol probabilities where oj(a) is a probability to output  
a at state qj, and r is the set {~ri I 1 < i < n} of initial state probabilities where 
~ri is the probability to start  at state qi. 

Given a HMM $, there are three basic problems for dealing with ~: given a 

string w = a 1 " .am, 

1. calculate Pr(wl$ ), the probability of the string w, 
2. find the most probable path s = qil ""qi ,  of states to maximize Pr(slw, $), 
3. estimate the parameters in $ to maximize Pr(wl$ ). 

These problems can be solved efficiently using dynamic programming techniques 
[44]. A polynomial-time algorithm for solVing the second algorithm is known as 
Viterbi algorithm, and a polynomial-time algorithm for the third problem is 
known as Forward-Backward (Baum-Welch) algorithm. To solve the first prob- 
lem, we consider the forward variable ~ (qi) defined as c~k (qi) = Pr(al  �9 �9 �9 at, qi I~), 
i.e., the probability of the initial segment al .. �9 ak of the string w and state q~ 
at time k. The probability ak(qi) can be calculated inductively as follows: 

1. Initialization: 

2. Induction: 

3. Termination: 

Crl(qi) "- ~rioi(al) 

ak+l(qj) -'- (i=~l ~(ql)tlJ) 
oj(a +l) 

N 

Pr(wl)t ) = ~ am(qi). 
i-----1 

The forward-backward algorithm is an EM (expectation maximization) algo- 
r i thm which finds parameters in the HMM )~ to maximize Pr(wt;~). It proceeds 

as follows: 
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1. Let ,~old be an initial guess for the parameters. 
2. Based on ,~ord and the given string w, 

(a) For each pair q~, qj of states, estimate the fraction of times a transition 
is made from q~ to qj among all transitions out of q~. In ~ne~, set tij to 
this value. 

(b) For each state qj and output symbol a, estimate the fraction of times 
that a is output in state qj. In A,~ew, set oj (a) to this value. 

3. Set Aozd = ~ e ~  and iterate starting at step 2 until there are no significant 
changes in ~ozd. 

The forward-backward algorithm for HMMs is very efficient because of the 
use of dynamic programming techniques, including the forward procedure and 
the symmetric "backward" procedure. Each iteration in the algorithm increases 
Pr(w]~), but the algorithm can still get caught in local maxima. The algorithm 
is easily extended to handle a set of strings, but the algorithm suffers from the 
usual problems with maximum likelihood estimates: when it observe something 
0 times, it sets the probability to 0. 

5.2 S t o c h a s t i c  c o n t e x t - f r e e  g r a m m a r s  

A stochastic context-free grammar (SCFG) G consists of a set of nonterminal 
symbols N, a terminal alphabet ~ ,  a set P of production rules with associated 
probabilities, and the start symbol S. The associated probability for every pro- 
duction A ~ ~ in P is denoted Pr(A --* ~), and a probability distribution exists 
over the set of productions which have the same nonterminal on the left-hand 
sides. 

The three basic problems to deal with SCFGs which are same as in HMMs can 
be solved efficiently. The first two problems, calculating the probability Pr(wlG ) 
of a given string w assigned by a SCFG G and finding the most likely derivation 
tree of w by G, can be solved using dynamic programming methods analogous 
to the Cocke-Kasami-Young or Early parsing methods [4]. There is a standard 
method for estimating the parameters of an SCFG (i.e. the probabilities of the 
productions) from a set of training strings. This procedure is known as the inside- 
outside algorithm [35]. Just like the forward-backward algorithm for ttMMs, this 
procedure is an expectation-maximization (EM) method for obtaining maximum 
likelihood of the grammar's parameters. However, it requires the grammar to be 
in Chomsky normal form, which is inconvenient to handle in many practical 
problems (and requires more nonterminals). Further, it takes time at least pro- 
portional to n 3, whereas the forward-backward procedure for HMMs takes time 
proportional to n 2, where n is the length of the typical string. There are also 
many local maxima in which the method can get caught. 

To avoid such problems, Sakakibara et al. [50] have developed a new method 
for training SCFGs that is a generalization of the forward-backward algorithm to 
tree grammars and which is more efficient than the inside-outside algorithm. The 
new algorithm, called Tree-Grammar EM, requires structured strings as training 
examples. This algorithm uses a similar idea to identification of CFGs from 
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structured strings shown in Section 4.1. Since information on the grammatical 
structure is given explicitly in training strings, Tree-Grammar EM does not 
have to (implicitly) consider all possible derivations of the training strings when 
reestimating the grammar's parameters, as the inside-outside algorithm must 
do. This reduces the time complexity to a time proportional to n per training 
string of length n, and hence may be practical on longer strings. Tree-Grammar 
EM also tends to converge faster because each training structured string is much 
more informative. 

Sakakibara et al. [50] have also modified the algorithm to train SCFGs even 
from (unstructured) strings. If only unstructured training strings are available, 
we iteratively estimate the structure of the training strings as follows: 

1. Start with a initial grammar and parse the training strings to obtain'a set 
of partially structured strings. 

2. Estimate a new SCFG using the partially structured strings and the estima- 
tion algorithm Tree-Grammar EM. 

3. Use the trained grammar to obtain more accurately structured training 
strings. 

4. Repeat steps 2 and 3 until finding the structures stabilizes. 

In natural language processing, Pereira and Schabes [41] have developed a 
similar method to Tree-Grammar EM for training SCFGs from bracketed sen- 
tences to incorporate linguistic information. Their method utilizes phrase brack- 
eting information during the estimation process of the inside-outside algorithm 
to get a linguistically-motivated maximum. 

Stolcke and Omohundro [56] have considered identification of a discrete struc- 
ture of the stochastic grammar. They have proposed efficient heuristic methods 
for finding the topology of HMM and for finding an appropriate set of produc- 
tion rules of SCFG based on Bayesian criterion, and shown some experimental 
results. 

5.3 Applications to molecular sequence analyses 

Attempts to understand the folding, structure, function and evolution of molecules 
have resulted in the confluence of many diverse disciplines ranging from struc- 
tural biology and chemistry, to computer science and computational linguistics. 
Rapid generation of sequence data in recent years thus provides abundant oppor- 
tunities for developing new approaches, to problems in computational biology 
[29]. Determining common or consensus patterns among a family of sequences, 
producing a multiple sequence alignment, discriminating members of the family 
from non-members and discovering new members of the family will continue to 
be some of the most important and fundamental tasks in mathematical analysis 
and comparison of macromolecular sequences. 

Recently, Searls [54, 29] has argued the benefits of viewing the biological 
strings representing DNA, RNA and protein as sentences derived from a formal 
grammar. In this new direction of computational biology research, stochastic 
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context-free grammars have been applied to the problems of folding, aligning 
and modeling families of tRNA sequences [50]. SCFGs capture the sequences' 
common primary and secondary structure (See Figure 2) and generalize the 
HMMs used in related work on protein and DNA. Results show that after hav- 
ing been trained on as few as 20 tRNA sequences from only two tRNA sub- 
families (mitochondrial and cytoplasmic), the model can discern general tRNA 
from similar-length RNA sequences of other kinds, can find secondary struc- 
ture of new tRNA sequences, and can produce multiple alignments of large sets 
of tRNA sequences. Figure 3 shows an example of multiple sequence alignment 
(which is a central problem in computational biology) produced by the learned 
grammar: the learned grammar has successfully produced a very accurate mul- 
tiple alignments for some family (gene) of molecular sequences, called tRNA. 

s o , ] 0 + '  

c" I " &  

S3 S SA 'S 

sis s~ ~ " c ' ~ ' s / \  " " / \ �9 
t A ~  / \ s �9 / \ 

~7\ s,~ s~ G G. s , , - - - - u .  

I / $ 7 ~  S t A~. $12~S~ I 
C A U C A G G G A A G A U C U C U U G G,  ~ , '  "1J/% ~ C '  

Fig. 2. A derivation tree (left) generated by a simple CFG for RNA molecules and the 
physical secondary structure (right) of the RNA sequence which is a reflection of the 
derivation tree. 

Related to the above work, Krogh et al. [33] have applied HMMs to the prob- 
lems of statistical modeling, database searching and multiple sequence alignment 
of protein families and protein domains. These methods are demonstrated on 
the globin family, the protein kinase catalytic domain, and the EF-hand calcium 
binding motif. In each case, the parameters of an HMM are estimated from a 
training set of unaligned sequences. The HMM produces multiple alignments 
of good quality that agree closely with the alignments produced by programs 
that incorporate three-dimensional structural information. When employed in 
discrimination tests, the HMM is able to distinguish members of these families 
from non-members with a high degree of accuracy. 

Recently, Abe and Mamitsuka [1] have studied a more powerful class of gram- 
mars, called stochastic ranked node rewriting grammars, than SCFGs and applied 
it to the problem of secondary structure prediction of proteins. 
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< D-domain > < Anticodon >< Extra >< T-domain > 

(((( (((( )))) ((((( = = z  ))))) (((((  ) ) ) ) ) ) ) )  
AAGGUGGCAGAGUUCGGCCUAACGCGGCGGCCUGCAGAGCCGCUC .... AUCGCCGGUUCAAAUCCGGCCCU 

CGUGUGGCGUAGUC-GGU--AGCGCGCUCCCUUAGCAUGGGAGAG .... GUCUCCGGUUCGAUUCCGGACUC 

CCCAUCGUCUAGA--GGCCUAGGACACCUCCCUUUCACGGAGGCG .... A-CGGGGAUUCGAAUUCCCCUGG 

GGCAUAGCCAAGC--GGU--AAGGCCGUGGAUUGCAAAUCCUCUA .... UUCCCCAGUUCAAAUCUGGGUGC 

UUUGUAGUUUAUGUG ..... AAAAUGCUUGUUUGUGAUAUGAGUGAAAU .................... UGG 

(((( (((( )))) (((((  === ))))) (((((  ) ) ) ) ) ) ) )  
AAGGUGGCAG.AGUUcGGccUAACGCGGCGGCCUGCAGAGCCGCUC---AUCGCCGGUUCAAAUCCGGCCCU 
CGUGUGGCGU.AGUC.GG..UAGCGCGCUCCCUUAGCAUGGGAGAGG---UCUCCGGUUCGAUUCCGGACUC 

CC-AUCGUCU.AGAG.GCc.UAGGACACCUCCCUUUCACGGAGGCG .... ACGGGGAUUCGAAUUCCCCU-G 

GGCAUAGCCA.AGC-.GG..UAAGGCCGUGGAUUGCAAAUCCUCUA---UUCCCCAGb-~CAAAUCUGGGUGC 

UUUGUAGUUU.A--U.GU..GAAAAUGCUUGUUUGUGAUAUGAGUGA--AAU ................. UGG 

Fig. 3. Comparison of the alignment of several representative tRNAs produced by 
trained (learned) grammar (bottom) with that from the biologically trusted database 
(top). Parentheses indicate base-paired positions; === the anticodon. 

6 Learning with non-grammatical representations 

In grammatical inference, formal grammars or finite automata are usually used 
to represent the unknown languages. There are many other forms of representa- 
tions which define languages. A typical example of representations which are not 
in the form of grammars is regular expressions for regular languages. Br~zma 
and Cer~ns [17] have studied efficient identification of regular expressions from 
good examples. Arikawa et al. [15] have considered elementary formal systems, 
a variant of logic programs, for ~identification of context sensitive languages. 

In this section, we study two non-grammatical representation classes which 
are very hot and interesting topics in machine learning: one is simple recurrent 
neural networks and the other is case-based representations. 

6.1 Connectlonlst approach 

In neural network studies, recurrent neural networks have been shown to have 
the potential to encode temporal properties of a sequence of inputs. There have 
been proposed many recurrent neural network models [28] for dealing with tem- 
poral sequences, and here we consider variations of the simple recurrent neural 
network introduced by Elman [22]. In addition to the input and hidden units, 
the architecture of simple recurrent networks has an extra hidden layer of context 
units which acts as the memory or the internal state of the network (Figure 4). 
Thus the simple recurrent network is a two-layer feedforward network augmented 
by the context units and the feedback connections to context units. There has 
been a great deal of interest in training simple recurrent networks to recognize 
grammars and simulate finite automata [24]. 
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(backward copy) 

Context Units 
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Fig. 4. Simple recurrent neural network. 

Sakakibara and Golea [51] have proposed the simple recurrent network of 
Figure 4. The random variables represented by the input units take real values 
in 7~, and the hidden variables represented by the hidden units take values in 
{0, 1}. The hidden variables represented by context units also take values in 
{0, 1}. The context units simply hold a copy of the activations (state) of the 
hidden units from the previous time step. Thus the next state of the hidden 
units is determined by the inputs and the state of the context units, the latter is 
equal to the previous state of the hidden units. From the finite-automata point 
of view, this dynamic structure is a finite-state machine and the simple recurrent 
network represents a state-transition function. Hence simple recurrent networks 
should be able to perform the same type of computations as finite automata and 
solve grammatical inference problems. 

Sakakibara and Golea [51] have proposed these simple recurrent neural net- 
works as probabilistic models for representing and predicting time-sequences, 
and shown that the model can be viewed as a generalized hidden Markov model 
with distributed representations. First, the state transition and the output prob- 
ability functions are nonlinear. Second, the model can deal with high-dimensional, 
real valued vectors as output symbols. Third, it has an efficient learning algo- 
rithm using dynamic programming based on gradient descent (the algorithm can 
be seen as an extension of back-propagati0n). Moreover, compared to the previ- 
ous attempts to link neural nets and HMM, the present model is more appealing 
because it does not require a specifically tailored architecture, e.g. second or- 
der connections where the multiplication operation is used between connection 
weights [24]. 

The model of Sakakibara and Golea [51] provides a new probabilistic for- 
mulation of learning in simple recurrent networks. They have presented some 
very preliminary simulation results to demonstrate the potential capabilities of 
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the model. The very simple test uses a simple recurrent network with one in- 
put, two hidden units, and two context units to learn the periodic sequence 
"-2, O, 2 , -2 ,  0, 2 , - 2 ,  0, 2, ...". The learned recurrent network is shown in Fig- 
ures 5 and 6. It is easy to see that  the network represents a probabilistic finite 
automaton (HMM) and that  each binary vector in the hidden layer corresponds 
to a state in the automaton. The output probability distribution is a time- 
varying (state-dependent) mixture of four basic Gaussians with variance cr = 1 
and means 0, wl, w2, and wl + w2. It is interesting to see how the learned recur- 
rent network encodes the state transition function and the output function of 
the finite automaton in a distributed manner. For example, the learned network 
starts with two initial states, represented by the vectors "(0,0)" and "(0, 1)", 
which have significant initial probabilities, and then repeats a sequence of state 
transitions: "(0, 1) --* (1, 0) ~ (1, 1) --+ (0, 1)". 

h~ t) h, (t) 

X (t) h~ t'l) h~ t'l) 
0.3860 N ~  

1~ 0.0254 

Fig. 5. The learned RNN and its equivalent probabilistic FA. 

Golea et al. [27] have also presented another experimental results that use 
simple recurrent networks for time series prediction, and shown that  the learned 
network is robust for outliers in noisy time sequences. 

Giles et al. [24] has enhanced simple recurrent networks by connecting to an 
external analog stack memory. It is called a neural net pushdown automaton, 
and manipulates the operations "push" and  "pop" of the external stack and 
reads the top of the stack. They have tested its ability to learn some simple 

context-free grammars. 

6.2 Case -based  r e p r e s e n t a t i o n  a n d  l ea rn ing  

Case-based reasoning is deemed an important technology to alleviate the bottle- 
neck of knowledge acquisition in Artificial Intelligence. In case-based reasoning, 
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J 

Fig. 6. Output probability distributions for state transitions: left-upper for 
(0,0) --* (1,0), left-tower for (0, 1) ~ (1, 0), right-upper for (1,0) --* (1, 1), and 
right-lower for (1, 1) --+ (0, 1) 

knowledge is represented in the form of particular cases with an appropriate 
similarity measure rather than any form of rules. The main task of case-based 
learning is to collect good cases which will be stored in the case base for describ- 
ing knowledge and classifying unknown examples [3]. Thus, case-based learning 
algorithms do not construct explicit generalizations from examples which most 
other supervised learning algorithms derive. 

A s imi lar i ty  measure ~ on s which defines a similarity between two strings 
is a computable function from Z* • Z* to real interval [0, 1]. A case base C B  is a 
finite subset of Z* x {0, 1}. We call a case (w, 1) in C B  a posit ive case and (w, 0) 
a negative case. The language L ( C B , ~ )  represented by a similarity measure 
and a finite case base C B  is defined as follows. 

L(CB, ~) = {~  E m* I ~(~, I) E CB [ ~(~, ~) > 0 A 
V(v, O) E "CB [ g(u, w) > g(v, m)]]} 

We restrict all positive cases to be taken from the unknown language and all 
negative cases to be taken from the complement of the language. 

A formal framework for case-based learning has recently been developed by 
Jantke and Lange [31] in an inductive inference manner. Sakakibara et al. [52] 
have investigated the power and the limitations of such case-based learning al- 
gorithms for formal languages in this framework. They have first shown that  
any indexable class of recursive languages is case-based representable, but many 
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Grammar 

S --* AB, B --* cBd, 
G =  ~ A --* aAb, B ~ cd, 

I. A --* ab 

Case-based representation 

[ (abed, 1) "] 
] (aabbccdd, 1) 
~" (abe~ddd, 1) + ~(~=, y) 
] (aac, O) 
( (bbb, o) 

case b a s e  similarity measure 

Fig. 7. An example of grammatical representation and case-based representation for 
the language {amb'~cnd '~ [ra, n > 0}. 

classes of languages including the class of all regular languages are not case- 
based learnable with a fixed universal similarity measure, even if both positive 
and negative examples are presented. 

T h e o r e m  10 [52]. Let f~ be any indezed class of recursive languages. There is a 
universal similarity measure ~r such that every language L in 1~ can be represented 
by o" and a finite case base CB of positive and negative cases, i.e., L = L(CB, or). 

For a complete presentation s and a natural number n, let s<,~ denote the 
initial segment of s of length n. A class of languages/2 is case-based learnable (in 
~he limit) from complete presentation if and only if there are an algorithm M and 
a similarity measure a such that  for all L E/~ and for all complete presentation 
s of L, there exists some case base CB: 

1. Vn E N : M(s<,~) = CB,  is defined, 
2. Vn E N : 0 C CB1 C { (w l , l l ) }  and CB,~ C CBn+I C CBn U {(wn.+l,l~+l)}, 
3. lim.-.o~ M ( s < , )  = CB, 
4. L = L(CB, ~r). 

T h e o r e m  11 [52]. Let 12 be the class of all finite and all co-finite languages. 
Then f-. is not case-based learnable from complete presentation. 

Next Sakakibara et al. [52] have considered a framework of case-based learn- 
ing where the learning algorithm is allowed to learn similarity measures, too. 
An interesting and important method for learning similarity measures is given 
by adopting weighting scheme for cases like the weighted nearest neighbor algo- 
rithm. This scheme is based on the idea that  some cases stored within the case 
base are more reliable than others. This can be accomplished with the weights 
in similarity measures: reliable strings are given larger weights making them 
more similar to  strings in the target domain. Then by allowing only tb learn 
parameters of the weights in the similarity measures, they have shown that  any 
indexable class of recursive languages is case-based learnable. This implies, in 
particular, that  all context-free languages are case-based learnable by collecting 
cases and learning parameters of the similarity measure. 
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7 Conclusions 

We have reviewed many recent advances in the grammatical inference research. 
Grammatical inference is considered a main subject of inductive inference, and 
grammars are important representations to be investigated in machine learning 
from both theoretical and practical points of view. In particular, recent research 
activities appeal more to the practical aspects such as computational linguistics 
and molecular sequence processing. 

Since stochastic modeling would strongly be required for practical applica- 
tions, an importan t future problem is to find efficient algorithms which solve 
both problems of determining the structure of the grammar and estimating the 
probabilistic parameters on identifying stochastic grammars. Those algorithms 
should be guaranteed theoretically for their correctnesses of identifiabilities and 
efficiencies. Other interesting topic which we have not deMt with in this article is 
Genetic Search for identification of the grammars, i.e., a search using genetic al- 
gorithm techniques for finding (approximating) the target grammar. Some works 
(e.g., [21]) have been done to see the effectiveness of genetic search for gram- 
matical inference problems. Finally, the formal language domain (in particular, 
DFAs) has been studied quite well in the PAC learning model (e.g.,. [39]) while 
we have reviewed only a few works for PAC learnabilities of formM languages. 
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