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Some other thoughs and
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Clustering based on graphs

Each item is a vertex of a graph.

Edges conect the vertices according to some criterium (nearest
neighbor, similarity, special relation, etc)

Clustering: graph cut, connected components, ...
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Clustering based on density

Clusters are regions of high density.

Basic idea: estimate the density of the points in the space and group
based on density significance

Good for complex shaped clusters

Outliers are usually handled/discovery efficiently

Have time complexity less than O(N2)
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Clustering to large volumes of data

Data mining applications motivated the creation of a large number of new
algorithms mainly to large volumes of data.

Some algorithms:

CURE, ROCK, Chameleon, k-medoids, Fuzzy, PAM,
CLARA, CLARANS, SOM, DBSCAN, DENCLUE,
CLIQUE, etc
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Clustering to large volumes of data

DBScan - Go to PR slides, page 46

Nina S. T. Hirata & R. Hirata Jr. MAC0459 / MAC5865 (2020) IME-USP 6 / 21



SOM - Self Organized Maps
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SOM - Self Organized Maps

Basic idea: map objects in a high dimensional space to a low
dimensional space making that objects that are near in high
dimension remain near in low dimension.

The low dimension space corresponds to a set of nodes
organized in a grid in the plane (map)

Each node of the map has a coordinate (in the plane) and a
vector of weights of dimension d

OBS.: The literature usually presents as SOM as a kind of
neural network
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SOM - Self Organized Maps - Architecture

Orange nodes: BMU (best matching unit), node that has a vector of
weights similar to a given input x ∈ X .

Pink and dark blue nodes: neighbors defined by a window function.
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SOM - Self Organized Maps - Algorithm

Initialize the weight of the nodes of the map
Repeat

For each x ∈ X
Let pk be a BMU
Update the BMU and its neighbors p

wki (t + 1) = wki (t) + η(t)φ(p− pk)(xi − wki (t))

until convergence

φ is a window function (kernel function) and η(t) is a learning rate.

wki is the ith component of the weight vector wk associated to node pk in the

map
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SOM - Self Organized Maps

Example: if the weight vector has 3 components, they can be thought as
the R, G, B channes and the map can be “painted” by the corresponding
RGB color.

It is not easy to divide the map in regions: how may colors (groups)? To which group the nodes

in the border are inside (for instance, between green and blue?)
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SOM - Self Organized Maps

Example: The original space are several statistics of a country (education,
health, etc)
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SOM - Self Organized Maps
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SOM - Self Organized Maps

Interpretation of a map

Color of the nodes: the intensity represents the
difference between nodes (neighbors), for instance,
the mean difference between the weight vectors.

Dark lines corresponds to discontinuities and light
color regions to similar weight nodes

Each region can be interpreted as a group

We still can apply clustering.
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How to validate the clustering result

Most clustering algorithms impose a clustering structure to the
dataset

The dataset may not possess any structure

Before we apply any clustering algorithm, we should check if the
dataset has a clustering structure

This is called clustering tendency

Clustering tendency is heavily based on hypothesis testing
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Cluster validation

Run an algorithm several times, using different parameters.

Run different clustering algorithms

Check with a priori knowledge (area experts)
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How do we compare clusters?

Indexes (values between 0 and 1) that indicate how distinct or
similar are two partitions:

Purity

Rand index

Mutual information

etc

Bibliographical references:

Section 25.1 of Kevin P. Murphy’s book (Machine Learning: a Probabilistic
Perspective)

Davies, David L.; Bouldin, Donald W., “A Cluster Separation Measure,” Pattern
Analysis and Machine Intelligence, IEEE Transactions on , vol.PAMI-1, no.2,
pp.224,227, April 1979 (doi: 10.1109/TPAMI.1979.4766909)

Marina Meila, Comparing clusterings – an information based distance, Journal of
Multivariate Analysis, Volume 98, Issue 5, May 2007, Pages 873-895,
http://dx.doi.org/10.1016/j.jmva.2006.11.013.
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Purity index

Nij : number of itens in cluster i that belong to class j
Ni =

∑c
j=1 Nij : total number of elements in cluster i

pij =
Nij

Ni
is the empirical distribution over class labels for cluster i

pi = maxj{pij} is the purity of a cluster

Overall purity index:
∑

i
Ni
N pi

If there is no mixture pi will be 1 for all i and the index will be 1. On the
other hand, the larger the mixture in the clusters i , the lesser will be pi
and so the Purity.

Weak point: it doesn’t take in consideration the number of clusters; if all
clusters are unitary, they will be pure (the larger the number of clusters,
the purer).
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Purity index

Example: U =
{
{A,A,A,A,A,B}, {A,B,B,B,B,C}, {A,A,C ,C ,C}

}
Overall purity index:

∑
i
Ni
N pi = 6

17
5
6 + 6

17
4
6 + 5

17
3
5 = 0.71
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Rand index

Let U and V two different partitions of X .
TP: number of pairs that are in the same cluster in both U and V .

TN: number of pairs that are in different clusters in both U and V .

FN: number of pairs that are in distinct clusters in U but in the same cluster in V

FP: number of pairs that are in the same cluster in U but in different clusters in V

Rand index: R = TP+TN
TP+FP+TN+FN
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Rand index

Example:

U =
{
{A,A,A,A,A,B}, {A,B,B,B,B,C}, {A,A,C ,C ,C}

}
V =

{
{A,A,A,A,A,A,A,A}, {B,B,B,B,B}, {C ,C ,C ,C}

}
We have

TP + FP = C (6, 2) + C (6, 2) + C (5, 2)

TP = C (5, 2) + C (4, 2) + C (3, 2) + C (2, 2) = 20 and

Homework, show that FN = 24 e TN = 72.

Therefore, the number of possible pairs (TP + FP + TN + FN) is 136 and

R = 20+72
136 = 0.68.
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